]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-iocost.c
blkcg: add tools/cgroup/iocost_monitor.py
[linux.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (HWEIGHT_WHOLE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO iff doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The ouput looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% del_ms usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include "blk-rq-qos.h"
183 #include "blk-stat.h"
184 #include "blk-wbt.h"
185
186 #ifdef CONFIG_TRACEPOINTS
187
188 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
189 #define TRACE_IOCG_PATH_LEN 1024
190 static DEFINE_SPINLOCK(trace_iocg_path_lock);
191 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
192
193 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
194         do {                                                                    \
195                 unsigned long flags;                                            \
196                 if (trace_iocost_##type##_enabled()) {                          \
197                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
198                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
199                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
200                         trace_iocost_##type(iocg, trace_iocg_path,              \
201                                               ##__VA_ARGS__);                   \
202                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
203                 }                                                               \
204         } while (0)
205
206 #else   /* CONFIG_TRACE_POINTS */
207 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
208 #endif  /* CONFIG_TRACE_POINTS */
209
210 enum {
211         MILLION                 = 1000000,
212
213         /* timer period is calculated from latency requirements, bound it */
214         MIN_PERIOD              = USEC_PER_MSEC,
215         MAX_PERIOD              = USEC_PER_SEC,
216
217         /*
218          * A cgroup's vtime can run 50% behind the device vtime, which
219          * serves as its IO credit buffer.  Surplus weight adjustment is
220          * immediately canceled if the vtime margin runs below 10%.
221          */
222         MARGIN_PCT              = 50,
223         INUSE_MARGIN_PCT        = 10,
224
225         /* Have some play in waitq timer operations */
226         WAITQ_TIMER_MARGIN_PCT  = 5,
227
228         /*
229          * vtime can wrap well within a reasonable uptime when vrate is
230          * consistently raised.  Don't trust recorded cgroup vtime if the
231          * period counter indicates that it's older than 5mins.
232          */
233         VTIME_VALID_DUR         = 300 * USEC_PER_SEC,
234
235         /*
236          * Remember the past three non-zero usages and use the max for
237          * surplus calculation.  Three slots guarantee that we remember one
238          * full period usage from the last active stretch even after
239          * partial deactivation and re-activation periods.  Don't start
240          * giving away weight before collecting two data points to prevent
241          * hweight adjustments based on one partial activation period.
242          */
243         NR_USAGE_SLOTS          = 3,
244         MIN_VALID_USAGES        = 2,
245
246         /* 1/64k is granular enough and can easily be handled w/ u32 */
247         HWEIGHT_WHOLE           = 1 << 16,
248
249         /*
250          * As vtime is used to calculate the cost of each IO, it needs to
251          * be fairly high precision.  For example, it should be able to
252          * represent the cost of a single page worth of discard with
253          * suffificient accuracy.  At the same time, it should be able to
254          * represent reasonably long enough durations to be useful and
255          * convenient during operation.
256          *
257          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
258          * granularity and days of wrap-around time even at extreme vrates.
259          */
260         VTIME_PER_SEC_SHIFT     = 37,
261         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
262         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
263
264         /* bound vrate adjustments within two orders of magnitude */
265         VRATE_MIN_PPM           = 10000,        /* 1% */
266         VRATE_MAX_PPM           = 100000000,    /* 10000% */
267
268         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
269         VRATE_CLAMP_ADJ_PCT     = 4,
270
271         /* if IOs end up waiting for requests, issue less */
272         RQ_WAIT_BUSY_PCT        = 5,
273
274         /* unbusy hysterisis */
275         UNBUSY_THR_PCT          = 75,
276
277         /* don't let cmds which take a very long time pin lagging for too long */
278         MAX_LAGGING_PERIODS     = 10,
279
280         /*
281          * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
282          * donate the surplus.
283          */
284         SURPLUS_SCALE_PCT       = 125,                  /* * 125% */
285         SURPLUS_SCALE_ABS       = HWEIGHT_WHOLE / 50,   /* + 2% */
286         SURPLUS_MIN_ADJ_DELTA   = HWEIGHT_WHOLE / 33,   /* 3% */
287
288         /* switch iff the conditions are met for longer than this */
289         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
290
291         /*
292          * Count IO size in 4k pages.  The 12bit shift helps keeping
293          * size-proportional components of cost calculation in closer
294          * numbers of digits to per-IO cost components.
295          */
296         IOC_PAGE_SHIFT          = 12,
297         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
298         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
299
300         /* if apart further than 16M, consider randio for linear model */
301         LCOEF_RANDIO_PAGES      = 4096,
302 };
303
304 enum ioc_running {
305         IOC_IDLE,
306         IOC_RUNNING,
307         IOC_STOP,
308 };
309
310 /* io.cost.qos controls including per-dev enable of the whole controller */
311 enum {
312         QOS_ENABLE,
313         QOS_CTRL,
314         NR_QOS_CTRL_PARAMS,
315 };
316
317 /* io.cost.qos params */
318 enum {
319         QOS_RPPM,
320         QOS_RLAT,
321         QOS_WPPM,
322         QOS_WLAT,
323         QOS_MIN,
324         QOS_MAX,
325         NR_QOS_PARAMS,
326 };
327
328 /* io.cost.model controls */
329 enum {
330         COST_CTRL,
331         COST_MODEL,
332         NR_COST_CTRL_PARAMS,
333 };
334
335 /* builtin linear cost model coefficients */
336 enum {
337         I_LCOEF_RBPS,
338         I_LCOEF_RSEQIOPS,
339         I_LCOEF_RRANDIOPS,
340         I_LCOEF_WBPS,
341         I_LCOEF_WSEQIOPS,
342         I_LCOEF_WRANDIOPS,
343         NR_I_LCOEFS,
344 };
345
346 enum {
347         LCOEF_RPAGE,
348         LCOEF_RSEQIO,
349         LCOEF_RRANDIO,
350         LCOEF_WPAGE,
351         LCOEF_WSEQIO,
352         LCOEF_WRANDIO,
353         NR_LCOEFS,
354 };
355
356 enum {
357         AUTOP_INVALID,
358         AUTOP_HDD,
359         AUTOP_SSD_QD1,
360         AUTOP_SSD_DFL,
361         AUTOP_SSD_FAST,
362 };
363
364 struct ioc_gq;
365
366 struct ioc_params {
367         u32                             qos[NR_QOS_PARAMS];
368         u64                             i_lcoefs[NR_I_LCOEFS];
369         u64                             lcoefs[NR_LCOEFS];
370         u32                             too_fast_vrate_pct;
371         u32                             too_slow_vrate_pct;
372 };
373
374 struct ioc_missed {
375         u32                             nr_met;
376         u32                             nr_missed;
377         u32                             last_met;
378         u32                             last_missed;
379 };
380
381 struct ioc_pcpu_stat {
382         struct ioc_missed               missed[2];
383
384         u64                             rq_wait_ns;
385         u64                             last_rq_wait_ns;
386 };
387
388 /* per device */
389 struct ioc {
390         struct rq_qos                   rqos;
391
392         bool                            enabled;
393
394         struct ioc_params               params;
395         u32                             period_us;
396         u32                             margin_us;
397         u64                             vrate_min;
398         u64                             vrate_max;
399
400         spinlock_t                      lock;
401         struct timer_list               timer;
402         struct list_head                active_iocgs;   /* active cgroups */
403         struct ioc_pcpu_stat __percpu   *pcpu_stat;
404
405         enum ioc_running                running;
406         atomic64_t                      vtime_rate;
407
408         seqcount_t                      period_seqcount;
409         u32                             period_at;      /* wallclock starttime */
410         u64                             period_at_vtime; /* vtime starttime */
411
412         atomic64_t                      cur_period;     /* inc'd each period */
413         int                             busy_level;     /* saturation history */
414
415         u64                             inuse_margin_vtime;
416         bool                            weights_updated;
417         atomic_t                        hweight_gen;    /* for lazy hweights */
418
419         u64                             autop_too_fast_at;
420         u64                             autop_too_slow_at;
421         int                             autop_idx;
422         bool                            user_qos_params:1;
423         bool                            user_cost_model:1;
424 };
425
426 /* per device-cgroup pair */
427 struct ioc_gq {
428         struct blkg_policy_data         pd;
429         struct ioc                      *ioc;
430
431         /*
432          * A iocg can get its weight from two sources - an explicit
433          * per-device-cgroup configuration or the default weight of the
434          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
435          * configuration.  `weight` is the effective considering both
436          * sources.
437          *
438          * When an idle cgroup becomes active its `active` goes from 0 to
439          * `weight`.  `inuse` is the surplus adjusted active weight.
440          * `active` and `inuse` are used to calculate `hweight_active` and
441          * `hweight_inuse`.
442          *
443          * `last_inuse` remembers `inuse` while an iocg is idle to persist
444          * surplus adjustments.
445          */
446         u32                             cfg_weight;
447         u32                             weight;
448         u32                             active;
449         u32                             inuse;
450         u32                             last_inuse;
451
452         sector_t                        cursor;         /* to detect randio */
453
454         /*
455          * `vtime` is this iocg's vtime cursor which progresses as IOs are
456          * issued.  If lagging behind device vtime, the delta represents
457          * the currently available IO budget.  If runnning ahead, the
458          * overage.
459          *
460          * `vtime_done` is the same but progressed on completion rather
461          * than issue.  The delta behind `vtime` represents the cost of
462          * currently in-flight IOs.
463          *
464          * `last_vtime` is used to remember `vtime` at the end of the last
465          * period to calculate utilization.
466          */
467         atomic64_t                      vtime;
468         atomic64_t                      done_vtime;
469         u64                             last_vtime;
470
471         /*
472          * The period this iocg was last active in.  Used for deactivation
473          * and invalidating `vtime`.
474          */
475         atomic64_t                      active_period;
476         struct list_head                active_list;
477
478         /* see __propagate_active_weight() and current_hweight() for details */
479         u64                             child_active_sum;
480         u64                             child_inuse_sum;
481         int                             hweight_gen;
482         u32                             hweight_active;
483         u32                             hweight_inuse;
484         bool                            has_surplus;
485
486         struct wait_queue_head          waitq;
487         struct hrtimer                  waitq_timer;
488         struct hrtimer                  delay_timer;
489
490         /* usage is recorded as fractions of HWEIGHT_WHOLE */
491         int                             usage_idx;
492         u32                             usages[NR_USAGE_SLOTS];
493
494         /* this iocg's depth in the hierarchy and ancestors including self */
495         int                             level;
496         struct ioc_gq                   *ancestors[];
497 };
498
499 /* per cgroup */
500 struct ioc_cgrp {
501         struct blkcg_policy_data        cpd;
502         unsigned int                    dfl_weight;
503 };
504
505 struct ioc_now {
506         u64                             now_ns;
507         u32                             now;
508         u64                             vnow;
509         u64                             vrate;
510 };
511
512 struct iocg_wait {
513         struct wait_queue_entry         wait;
514         struct bio                      *bio;
515         u64                             abs_cost;
516         bool                            committed;
517 };
518
519 struct iocg_wake_ctx {
520         struct ioc_gq                   *iocg;
521         u32                             hw_inuse;
522         s64                             vbudget;
523 };
524
525 static const struct ioc_params autop[] = {
526         [AUTOP_HDD] = {
527                 .qos                            = {
528                         [QOS_RLAT]              =         50000, /* 50ms */
529                         [QOS_WLAT]              =         50000,
530                         [QOS_MIN]               = VRATE_MIN_PPM,
531                         [QOS_MAX]               = VRATE_MAX_PPM,
532                 },
533                 .i_lcoefs                       = {
534                         [I_LCOEF_RBPS]          =     174019176,
535                         [I_LCOEF_RSEQIOPS]      =         41708,
536                         [I_LCOEF_RRANDIOPS]     =           370,
537                         [I_LCOEF_WBPS]          =     178075866,
538                         [I_LCOEF_WSEQIOPS]      =         42705,
539                         [I_LCOEF_WRANDIOPS]     =           378,
540                 },
541         },
542         [AUTOP_SSD_QD1] = {
543                 .qos                            = {
544                         [QOS_RLAT]              =         25000, /* 25ms */
545                         [QOS_WLAT]              =         25000,
546                         [QOS_MIN]               = VRATE_MIN_PPM,
547                         [QOS_MAX]               = VRATE_MAX_PPM,
548                 },
549                 .i_lcoefs                       = {
550                         [I_LCOEF_RBPS]          =     245855193,
551                         [I_LCOEF_RSEQIOPS]      =         61575,
552                         [I_LCOEF_RRANDIOPS]     =          6946,
553                         [I_LCOEF_WBPS]          =     141365009,
554                         [I_LCOEF_WSEQIOPS]      =         33716,
555                         [I_LCOEF_WRANDIOPS]     =         26796,
556                 },
557         },
558         [AUTOP_SSD_DFL] = {
559                 .qos                            = {
560                         [QOS_RLAT]              =         25000, /* 25ms */
561                         [QOS_WLAT]              =         25000,
562                         [QOS_MIN]               = VRATE_MIN_PPM,
563                         [QOS_MAX]               = VRATE_MAX_PPM,
564                 },
565                 .i_lcoefs                       = {
566                         [I_LCOEF_RBPS]          =     488636629,
567                         [I_LCOEF_RSEQIOPS]      =          8932,
568                         [I_LCOEF_RRANDIOPS]     =          8518,
569                         [I_LCOEF_WBPS]          =     427891549,
570                         [I_LCOEF_WSEQIOPS]      =         28755,
571                         [I_LCOEF_WRANDIOPS]     =         21940,
572                 },
573                 .too_fast_vrate_pct             =           500,
574         },
575         [AUTOP_SSD_FAST] = {
576                 .qos                            = {
577                         [QOS_RLAT]              =          5000, /* 5ms */
578                         [QOS_WLAT]              =          5000,
579                         [QOS_MIN]               = VRATE_MIN_PPM,
580                         [QOS_MAX]               = VRATE_MAX_PPM,
581                 },
582                 .i_lcoefs                       = {
583                         [I_LCOEF_RBPS]          =    3102524156LLU,
584                         [I_LCOEF_RSEQIOPS]      =        724816,
585                         [I_LCOEF_RRANDIOPS]     =        778122,
586                         [I_LCOEF_WBPS]          =    1742780862LLU,
587                         [I_LCOEF_WSEQIOPS]      =        425702,
588                         [I_LCOEF_WRANDIOPS]     =        443193,
589                 },
590                 .too_slow_vrate_pct             =            10,
591         },
592 };
593
594 /*
595  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
596  * vtime credit shortage and down on device saturation.
597  */
598 static u32 vrate_adj_pct[] =
599         { 0, 0, 0, 0,
600           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
601           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
602           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
603
604 static struct blkcg_policy blkcg_policy_iocost;
605
606 /* accessors and helpers */
607 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
608 {
609         return container_of(rqos, struct ioc, rqos);
610 }
611
612 static struct ioc *q_to_ioc(struct request_queue *q)
613 {
614         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
615 }
616
617 static const char *q_name(struct request_queue *q)
618 {
619         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
620                 return kobject_name(q->kobj.parent);
621         else
622                 return "<unknown>";
623 }
624
625 static const char __maybe_unused *ioc_name(struct ioc *ioc)
626 {
627         return q_name(ioc->rqos.q);
628 }
629
630 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
631 {
632         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
633 }
634
635 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
636 {
637         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
638 }
639
640 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
641 {
642         return pd_to_blkg(&iocg->pd);
643 }
644
645 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
646 {
647         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
648                             struct ioc_cgrp, cpd);
649 }
650
651 /*
652  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
653  * weight, the more expensive each IO.
654  */
655 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
656 {
657         return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
658 }
659
660 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
661 {
662         bio->bi_iocost_cost = cost;
663         atomic64_add(cost, &iocg->vtime);
664 }
665
666 #define CREATE_TRACE_POINTS
667 #include <trace/events/iocost.h>
668
669 /* latency Qos params changed, update period_us and all the dependent params */
670 static void ioc_refresh_period_us(struct ioc *ioc)
671 {
672         u32 ppm, lat, multi, period_us;
673
674         lockdep_assert_held(&ioc->lock);
675
676         /* pick the higher latency target */
677         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
678                 ppm = ioc->params.qos[QOS_RPPM];
679                 lat = ioc->params.qos[QOS_RLAT];
680         } else {
681                 ppm = ioc->params.qos[QOS_WPPM];
682                 lat = ioc->params.qos[QOS_WLAT];
683         }
684
685         /*
686          * We want the period to be long enough to contain a healthy number
687          * of IOs while short enough for granular control.  Define it as a
688          * multiple of the latency target.  Ideally, the multiplier should
689          * be scaled according to the percentile so that it would nominally
690          * contain a certain number of requests.  Let's be simpler and
691          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
692          */
693         if (ppm)
694                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
695         else
696                 multi = 2;
697         period_us = multi * lat;
698         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
699
700         /* calculate dependent params */
701         ioc->period_us = period_us;
702         ioc->margin_us = period_us * MARGIN_PCT / 100;
703         ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
704                         period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
705 }
706
707 static int ioc_autop_idx(struct ioc *ioc)
708 {
709         int idx = ioc->autop_idx;
710         const struct ioc_params *p = &autop[idx];
711         u32 vrate_pct;
712         u64 now_ns;
713
714         /* rotational? */
715         if (!blk_queue_nonrot(ioc->rqos.q))
716                 return AUTOP_HDD;
717
718         /* handle SATA SSDs w/ broken NCQ */
719         if (blk_queue_depth(ioc->rqos.q) == 1)
720                 return AUTOP_SSD_QD1;
721
722         /* use one of the normal ssd sets */
723         if (idx < AUTOP_SSD_DFL)
724                 return AUTOP_SSD_DFL;
725
726         /* if user is overriding anything, maintain what was there */
727         if (ioc->user_qos_params || ioc->user_cost_model)
728                 return idx;
729
730         /* step up/down based on the vrate */
731         vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
732                               VTIME_PER_USEC);
733         now_ns = ktime_get_ns();
734
735         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
736                 if (!ioc->autop_too_fast_at)
737                         ioc->autop_too_fast_at = now_ns;
738                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
739                         return idx + 1;
740         } else {
741                 ioc->autop_too_fast_at = 0;
742         }
743
744         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
745                 if (!ioc->autop_too_slow_at)
746                         ioc->autop_too_slow_at = now_ns;
747                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
748                         return idx - 1;
749         } else {
750                 ioc->autop_too_slow_at = 0;
751         }
752
753         return idx;
754 }
755
756 /*
757  * Take the followings as input
758  *
759  *  @bps        maximum sequential throughput
760  *  @seqiops    maximum sequential 4k iops
761  *  @randiops   maximum random 4k iops
762  *
763  * and calculate the linear model cost coefficients.
764  *
765  *  *@page      per-page cost           1s / (@bps / 4096)
766  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
767  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
768  */
769 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
770                         u64 *page, u64 *seqio, u64 *randio)
771 {
772         u64 v;
773
774         *page = *seqio = *randio = 0;
775
776         if (bps)
777                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
778                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
779
780         if (seqiops) {
781                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
782                 if (v > *page)
783                         *seqio = v - *page;
784         }
785
786         if (randiops) {
787                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
788                 if (v > *page)
789                         *randio = v - *page;
790         }
791 }
792
793 static void ioc_refresh_lcoefs(struct ioc *ioc)
794 {
795         u64 *u = ioc->params.i_lcoefs;
796         u64 *c = ioc->params.lcoefs;
797
798         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
799                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
800         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
801                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
802 }
803
804 static bool ioc_refresh_params(struct ioc *ioc, bool force)
805 {
806         const struct ioc_params *p;
807         int idx;
808
809         lockdep_assert_held(&ioc->lock);
810
811         idx = ioc_autop_idx(ioc);
812         p = &autop[idx];
813
814         if (idx == ioc->autop_idx && !force)
815                 return false;
816
817         if (idx != ioc->autop_idx)
818                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
819
820         ioc->autop_idx = idx;
821         ioc->autop_too_fast_at = 0;
822         ioc->autop_too_slow_at = 0;
823
824         if (!ioc->user_qos_params)
825                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
826         if (!ioc->user_cost_model)
827                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
828
829         ioc_refresh_period_us(ioc);
830         ioc_refresh_lcoefs(ioc);
831
832         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
833                                             VTIME_PER_USEC, MILLION);
834         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
835                                    VTIME_PER_USEC, MILLION);
836
837         return true;
838 }
839
840 /* take a snapshot of the current [v]time and vrate */
841 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
842 {
843         unsigned seq;
844
845         now->now_ns = ktime_get();
846         now->now = ktime_to_us(now->now_ns);
847         now->vrate = atomic64_read(&ioc->vtime_rate);
848
849         /*
850          * The current vtime is
851          *
852          *   vtime at period start + (wallclock time since the start) * vrate
853          *
854          * As a consistent snapshot of `period_at_vtime` and `period_at` is
855          * needed, they're seqcount protected.
856          */
857         do {
858                 seq = read_seqcount_begin(&ioc->period_seqcount);
859                 now->vnow = ioc->period_at_vtime +
860                         (now->now - ioc->period_at) * now->vrate;
861         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
862 }
863
864 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
865 {
866         lockdep_assert_held(&ioc->lock);
867         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
868
869         write_seqcount_begin(&ioc->period_seqcount);
870         ioc->period_at = now->now;
871         ioc->period_at_vtime = now->vnow;
872         write_seqcount_end(&ioc->period_seqcount);
873
874         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
875         add_timer(&ioc->timer);
876 }
877
878 /*
879  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
880  * weight sums and propagate upwards accordingly.
881  */
882 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
883 {
884         struct ioc *ioc = iocg->ioc;
885         int lvl;
886
887         lockdep_assert_held(&ioc->lock);
888
889         inuse = min(active, inuse);
890
891         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
892                 struct ioc_gq *parent = iocg->ancestors[lvl];
893                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
894                 u32 parent_active = 0, parent_inuse = 0;
895
896                 /* update the level sums */
897                 parent->child_active_sum += (s32)(active - child->active);
898                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
899                 /* apply the udpates */
900                 child->active = active;
901                 child->inuse = inuse;
902
903                 /*
904                  * The delta between inuse and active sums indicates that
905                  * that much of weight is being given away.  Parent's inuse
906                  * and active should reflect the ratio.
907                  */
908                 if (parent->child_active_sum) {
909                         parent_active = parent->weight;
910                         parent_inuse = DIV64_U64_ROUND_UP(
911                                 parent_active * parent->child_inuse_sum,
912                                 parent->child_active_sum);
913                 }
914
915                 /* do we need to keep walking up? */
916                 if (parent_active == parent->active &&
917                     parent_inuse == parent->inuse)
918                         break;
919
920                 active = parent_active;
921                 inuse = parent_inuse;
922         }
923
924         ioc->weights_updated = true;
925 }
926
927 static void commit_active_weights(struct ioc *ioc)
928 {
929         lockdep_assert_held(&ioc->lock);
930
931         if (ioc->weights_updated) {
932                 /* paired with rmb in current_hweight(), see there */
933                 smp_wmb();
934                 atomic_inc(&ioc->hweight_gen);
935                 ioc->weights_updated = false;
936         }
937 }
938
939 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
940 {
941         __propagate_active_weight(iocg, active, inuse);
942         commit_active_weights(iocg->ioc);
943 }
944
945 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
946 {
947         struct ioc *ioc = iocg->ioc;
948         int lvl;
949         u32 hwa, hwi;
950         int ioc_gen;
951
952         /* hot path - if uptodate, use cached */
953         ioc_gen = atomic_read(&ioc->hweight_gen);
954         if (ioc_gen == iocg->hweight_gen)
955                 goto out;
956
957         /*
958          * Paired with wmb in commit_active_weights().  If we saw the
959          * updated hweight_gen, all the weight updates from
960          * __propagate_active_weight() are visible too.
961          *
962          * We can race with weight updates during calculation and get it
963          * wrong.  However, hweight_gen would have changed and a future
964          * reader will recalculate and we're guaranteed to discard the
965          * wrong result soon.
966          */
967         smp_rmb();
968
969         hwa = hwi = HWEIGHT_WHOLE;
970         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
971                 struct ioc_gq *parent = iocg->ancestors[lvl];
972                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
973                 u32 active_sum = READ_ONCE(parent->child_active_sum);
974                 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
975                 u32 active = READ_ONCE(child->active);
976                 u32 inuse = READ_ONCE(child->inuse);
977
978                 /* we can race with deactivations and either may read as zero */
979                 if (!active_sum || !inuse_sum)
980                         continue;
981
982                 active_sum = max(active, active_sum);
983                 hwa = hwa * active / active_sum;        /* max 16bits * 10000 */
984
985                 inuse_sum = max(inuse, inuse_sum);
986                 hwi = hwi * inuse / inuse_sum;          /* max 16bits * 10000 */
987         }
988
989         iocg->hweight_active = max_t(u32, hwa, 1);
990         iocg->hweight_inuse = max_t(u32, hwi, 1);
991         iocg->hweight_gen = ioc_gen;
992 out:
993         if (hw_activep)
994                 *hw_activep = iocg->hweight_active;
995         if (hw_inusep)
996                 *hw_inusep = iocg->hweight_inuse;
997 }
998
999 static void weight_updated(struct ioc_gq *iocg)
1000 {
1001         struct ioc *ioc = iocg->ioc;
1002         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1003         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1004         u32 weight;
1005
1006         lockdep_assert_held(&ioc->lock);
1007
1008         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1009         if (weight != iocg->weight && iocg->active)
1010                 propagate_active_weight(iocg, weight,
1011                         DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1012         iocg->weight = weight;
1013 }
1014
1015 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1016 {
1017         struct ioc *ioc = iocg->ioc;
1018         u64 last_period, cur_period, max_period_delta;
1019         u64 vtime, vmargin, vmin;
1020         int i;
1021
1022         /*
1023          * If seem to be already active, just update the stamp to tell the
1024          * timer that we're still active.  We don't mind occassional races.
1025          */
1026         if (!list_empty(&iocg->active_list)) {
1027                 ioc_now(ioc, now);
1028                 cur_period = atomic64_read(&ioc->cur_period);
1029                 if (atomic64_read(&iocg->active_period) != cur_period)
1030                         atomic64_set(&iocg->active_period, cur_period);
1031                 return true;
1032         }
1033
1034         /* racy check on internal node IOs, treat as root level IOs */
1035         if (iocg->child_active_sum)
1036                 return false;
1037
1038         spin_lock_irq(&ioc->lock);
1039
1040         ioc_now(ioc, now);
1041
1042         /* update period */
1043         cur_period = atomic64_read(&ioc->cur_period);
1044         last_period = atomic64_read(&iocg->active_period);
1045         atomic64_set(&iocg->active_period, cur_period);
1046
1047         /* already activated or breaking leaf-only constraint? */
1048         for (i = iocg->level; i > 0; i--)
1049                 if (!list_empty(&iocg->active_list))
1050                         goto fail_unlock;
1051         if (iocg->child_active_sum)
1052                 goto fail_unlock;
1053
1054         /*
1055          * vtime may wrap when vrate is raised substantially due to
1056          * underestimated IO costs.  Look at the period and ignore its
1057          * vtime if the iocg has been idle for too long.  Also, cap the
1058          * budget it can start with to the margin.
1059          */
1060         max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1061         vtime = atomic64_read(&iocg->vtime);
1062         vmargin = ioc->margin_us * now->vrate;
1063         vmin = now->vnow - vmargin;
1064
1065         if (last_period + max_period_delta < cur_period ||
1066             time_before64(vtime, vmin)) {
1067                 atomic64_add(vmin - vtime, &iocg->vtime);
1068                 atomic64_add(vmin - vtime, &iocg->done_vtime);
1069                 vtime = vmin;
1070         }
1071
1072         /*
1073          * Activate, propagate weight and start period timer if not
1074          * running.  Reset hweight_gen to avoid accidental match from
1075          * wrapping.
1076          */
1077         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1078         list_add(&iocg->active_list, &ioc->active_iocgs);
1079         propagate_active_weight(iocg, iocg->weight,
1080                                 iocg->last_inuse ?: iocg->weight);
1081
1082         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1083                         last_period, cur_period, vtime);
1084
1085         iocg->last_vtime = vtime;
1086
1087         if (ioc->running == IOC_IDLE) {
1088                 ioc->running = IOC_RUNNING;
1089                 ioc_start_period(ioc, now);
1090         }
1091
1092         spin_unlock_irq(&ioc->lock);
1093         return true;
1094
1095 fail_unlock:
1096         spin_unlock_irq(&ioc->lock);
1097         return false;
1098 }
1099
1100 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1101                         int flags, void *key)
1102 {
1103         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1104         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1105         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1106
1107         ctx->vbudget -= cost;
1108
1109         if (ctx->vbudget < 0)
1110                 return -1;
1111
1112         iocg_commit_bio(ctx->iocg, wait->bio, cost);
1113
1114         /*
1115          * autoremove_wake_function() removes the wait entry only when it
1116          * actually changed the task state.  We want the wait always
1117          * removed.  Remove explicitly and use default_wake_function().
1118          */
1119         list_del_init(&wq_entry->entry);
1120         wait->committed = true;
1121
1122         default_wake_function(wq_entry, mode, flags, key);
1123         return 0;
1124 }
1125
1126 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1127 {
1128         struct ioc *ioc = iocg->ioc;
1129         struct iocg_wake_ctx ctx = { .iocg = iocg };
1130         u64 margin_ns = (u64)(ioc->period_us *
1131                               WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1132         u64 vshortage, expires, oexpires;
1133
1134         lockdep_assert_held(&iocg->waitq.lock);
1135
1136         /*
1137          * Wake up the ones which are due and see how much vtime we'll need
1138          * for the next one.
1139          */
1140         current_hweight(iocg, NULL, &ctx.hw_inuse);
1141         ctx.vbudget = now->vnow - atomic64_read(&iocg->vtime);
1142         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1143         if (!waitqueue_active(&iocg->waitq))
1144                 return;
1145         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1146                 return;
1147
1148         /* determine next wakeup, add a quarter margin to guarantee chunking */
1149         vshortage = -ctx.vbudget;
1150         expires = now->now_ns +
1151                 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1152         expires += margin_ns / 4;
1153
1154         /* if already active and close enough, don't bother */
1155         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1156         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1157             abs(oexpires - expires) <= margin_ns / 4)
1158                 return;
1159
1160         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1161                                margin_ns / 4, HRTIMER_MODE_ABS);
1162 }
1163
1164 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1165 {
1166         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1167         struct ioc_now now;
1168         unsigned long flags;
1169
1170         ioc_now(iocg->ioc, &now);
1171
1172         spin_lock_irqsave(&iocg->waitq.lock, flags);
1173         iocg_kick_waitq(iocg, &now);
1174         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1175
1176         return HRTIMER_NORESTART;
1177 }
1178
1179 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1180 {
1181         struct ioc *ioc = iocg->ioc;
1182         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1183         u64 vtime = atomic64_read(&iocg->vtime);
1184         u64 vmargin = ioc->margin_us * now->vrate;
1185         u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1186         u64 expires, oexpires;
1187
1188         /* clear or maintain depending on the overage */
1189         if (time_before_eq64(vtime, now->vnow)) {
1190                 blkcg_clear_delay(blkg);
1191                 return;
1192         }
1193         if (!atomic_read(&blkg->use_delay) &&
1194             time_before_eq64(vtime, now->vnow + vmargin))
1195                 return;
1196
1197         /* use delay */
1198         if (cost) {
1199                 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1200                                                  now->vrate);
1201                 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1202         }
1203         blkcg_use_delay(blkg);
1204
1205         expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1206                                                    now->vrate) * NSEC_PER_USEC;
1207
1208         /* if already active and close enough, don't bother */
1209         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1210         if (hrtimer_is_queued(&iocg->delay_timer) &&
1211             abs(oexpires - expires) <= margin_ns / 4)
1212                 return;
1213
1214         hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1215                                margin_ns / 4, HRTIMER_MODE_ABS);
1216 }
1217
1218 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1219 {
1220         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1221         struct ioc_now now;
1222
1223         ioc_now(iocg->ioc, &now);
1224         iocg_kick_delay(iocg, &now, 0);
1225
1226         return HRTIMER_NORESTART;
1227 }
1228
1229 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1230 {
1231         u32 nr_met[2] = { };
1232         u32 nr_missed[2] = { };
1233         u64 rq_wait_ns = 0;
1234         int cpu, rw;
1235
1236         for_each_online_cpu(cpu) {
1237                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1238                 u64 this_rq_wait_ns;
1239
1240                 for (rw = READ; rw <= WRITE; rw++) {
1241                         u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1242                         u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1243
1244                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1245                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1246                         stat->missed[rw].last_met = this_met;
1247                         stat->missed[rw].last_missed = this_missed;
1248                 }
1249
1250                 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1251                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1252                 stat->last_rq_wait_ns = this_rq_wait_ns;
1253         }
1254
1255         for (rw = READ; rw <= WRITE; rw++) {
1256                 if (nr_met[rw] + nr_missed[rw])
1257                         missed_ppm_ar[rw] =
1258                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1259                                                    nr_met[rw] + nr_missed[rw]);
1260                 else
1261                         missed_ppm_ar[rw] = 0;
1262         }
1263
1264         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1265                                    ioc->period_us * NSEC_PER_USEC);
1266 }
1267
1268 /* was iocg idle this period? */
1269 static bool iocg_is_idle(struct ioc_gq *iocg)
1270 {
1271         struct ioc *ioc = iocg->ioc;
1272
1273         /* did something get issued this period? */
1274         if (atomic64_read(&iocg->active_period) ==
1275             atomic64_read(&ioc->cur_period))
1276                 return false;
1277
1278         /* is something in flight? */
1279         if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1280                 return false;
1281
1282         return true;
1283 }
1284
1285 /* returns usage with margin added if surplus is large enough */
1286 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1287 {
1288         /* add margin */
1289         usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1290         usage += SURPLUS_SCALE_ABS;
1291
1292         /* don't bother if the surplus is too small */
1293         if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1294                 return 0;
1295
1296         return usage;
1297 }
1298
1299 static void ioc_timer_fn(struct timer_list *timer)
1300 {
1301         struct ioc *ioc = container_of(timer, struct ioc, timer);
1302         struct ioc_gq *iocg, *tiocg;
1303         struct ioc_now now;
1304         int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1305         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1306         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1307         u32 missed_ppm[2], rq_wait_pct;
1308         u64 period_vtime;
1309         int i;
1310
1311         /* how were the latencies during the period? */
1312         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1313
1314         /* take care of active iocgs */
1315         spin_lock_irq(&ioc->lock);
1316
1317         ioc_now(ioc, &now);
1318
1319         period_vtime = now.vnow - ioc->period_at_vtime;
1320         if (WARN_ON_ONCE(!period_vtime)) {
1321                 spin_unlock_irq(&ioc->lock);
1322                 return;
1323         }
1324
1325         /*
1326          * Waiters determine the sleep durations based on the vrate they
1327          * saw at the time of sleep.  If vrate has increased, some waiters
1328          * could be sleeping for too long.  Wake up tardy waiters which
1329          * should have woken up in the last period and expire idle iocgs.
1330          */
1331         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1332                 if (!waitqueue_active(&iocg->waitq) && !iocg_is_idle(iocg))
1333                         continue;
1334
1335                 spin_lock(&iocg->waitq.lock);
1336
1337                 if (waitqueue_active(&iocg->waitq)) {
1338                         /* might be oversleeping vtime / hweight changes, kick */
1339                         iocg_kick_waitq(iocg, &now);
1340                         iocg_kick_delay(iocg, &now, 0);
1341                 } else if (iocg_is_idle(iocg)) {
1342                         /* no waiter and idle, deactivate */
1343                         iocg->last_inuse = iocg->inuse;
1344                         __propagate_active_weight(iocg, 0, 0);
1345                         list_del_init(&iocg->active_list);
1346                 }
1347
1348                 spin_unlock(&iocg->waitq.lock);
1349         }
1350         commit_active_weights(ioc);
1351
1352         /* calc usages and see whether some weights need to be moved around */
1353         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1354                 u64 vdone, vtime, vusage, vmargin, vmin;
1355                 u32 hw_active, hw_inuse, usage;
1356
1357                 /*
1358                  * Collect unused and wind vtime closer to vnow to prevent
1359                  * iocgs from accumulating a large amount of budget.
1360                  */
1361                 vdone = atomic64_read(&iocg->done_vtime);
1362                 vtime = atomic64_read(&iocg->vtime);
1363                 current_hweight(iocg, &hw_active, &hw_inuse);
1364
1365                 /*
1366                  * Latency QoS detection doesn't account for IOs which are
1367                  * in-flight for longer than a period.  Detect them by
1368                  * comparing vdone against period start.  If lagging behind
1369                  * IOs from past periods, don't increase vrate.
1370                  */
1371                 if (!atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1372                     time_after64(vtime, vdone) &&
1373                     time_after64(vtime, now.vnow -
1374                                  MAX_LAGGING_PERIODS * period_vtime) &&
1375                     time_before64(vdone, now.vnow - period_vtime))
1376                         nr_lagging++;
1377
1378                 if (waitqueue_active(&iocg->waitq))
1379                         vusage = now.vnow - iocg->last_vtime;
1380                 else if (time_before64(iocg->last_vtime, vtime))
1381                         vusage = vtime - iocg->last_vtime;
1382                 else
1383                         vusage = 0;
1384
1385                 iocg->last_vtime += vusage;
1386                 /*
1387                  * Factor in in-flight vtime into vusage to avoid
1388                  * high-latency completions appearing as idle.  This should
1389                  * be done after the above ->last_time adjustment.
1390                  */
1391                 vusage = max(vusage, vtime - vdone);
1392
1393                 /* calculate hweight based usage ratio and record */
1394                 if (vusage) {
1395                         usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1396                                                    period_vtime);
1397                         iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1398                         iocg->usages[iocg->usage_idx] = usage;
1399                 } else {
1400                         usage = 0;
1401                 }
1402
1403                 /* see whether there's surplus vtime */
1404                 vmargin = ioc->margin_us * now.vrate;
1405                 vmin = now.vnow - vmargin;
1406
1407                 iocg->has_surplus = false;
1408
1409                 if (!waitqueue_active(&iocg->waitq) &&
1410                     time_before64(vtime, vmin)) {
1411                         u64 delta = vmin - vtime;
1412
1413                         /* throw away surplus vtime */
1414                         atomic64_add(delta, &iocg->vtime);
1415                         atomic64_add(delta, &iocg->done_vtime);
1416                         iocg->last_vtime += delta;
1417                         /* if usage is sufficiently low, maybe it can donate */
1418                         if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1419                                 iocg->has_surplus = true;
1420                                 nr_surpluses++;
1421                         }
1422                 } else if (hw_inuse < hw_active) {
1423                         u32 new_hwi, new_inuse;
1424
1425                         /* was donating but might need to take back some */
1426                         if (waitqueue_active(&iocg->waitq)) {
1427                                 new_hwi = hw_active;
1428                         } else {
1429                                 new_hwi = max(hw_inuse,
1430                                               usage * SURPLUS_SCALE_PCT / 100 +
1431                                               SURPLUS_SCALE_ABS);
1432                         }
1433
1434                         new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1435                                               hw_inuse);
1436                         new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1437
1438                         if (new_inuse > iocg->inuse) {
1439                                 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1440                                                 iocg->inuse, new_inuse,
1441                                                 hw_inuse, new_hwi);
1442                                 __propagate_active_weight(iocg, iocg->weight,
1443                                                           new_inuse);
1444                         }
1445                 } else {
1446                         /* genuninely out of vtime */
1447                         nr_shortages++;
1448                 }
1449         }
1450
1451         if (!nr_shortages || !nr_surpluses)
1452                 goto skip_surplus_transfers;
1453
1454         /* there are both shortages and surpluses, transfer surpluses */
1455         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1456                 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1457                 int nr_valid = 0;
1458
1459                 if (!iocg->has_surplus)
1460                         continue;
1461
1462                 /* base the decision on max historical usage */
1463                 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1464                         if (iocg->usages[i]) {
1465                                 usage = max(usage, iocg->usages[i]);
1466                                 nr_valid++;
1467                         }
1468                 }
1469                 if (nr_valid < MIN_VALID_USAGES)
1470                         continue;
1471
1472                 current_hweight(iocg, &hw_active, &hw_inuse);
1473                 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1474                 if (!new_hwi)
1475                         continue;
1476
1477                 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1478                                                hw_inuse);
1479                 if (new_inuse < iocg->inuse) {
1480                         TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1481                                         iocg->inuse, new_inuse,
1482                                         hw_inuse, new_hwi);
1483                         __propagate_active_weight(iocg, iocg->weight, new_inuse);
1484                 }
1485         }
1486 skip_surplus_transfers:
1487         commit_active_weights(ioc);
1488
1489         /*
1490          * If q is getting clogged or we're missing too much, we're issuing
1491          * too much IO and should lower vtime rate.  If we're not missing
1492          * and experiencing shortages but not surpluses, we're too stingy
1493          * and should increase vtime rate.
1494          */
1495         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1496             missed_ppm[READ] > ppm_rthr ||
1497             missed_ppm[WRITE] > ppm_wthr) {
1498                 ioc->busy_level = max(ioc->busy_level, 0);
1499                 ioc->busy_level++;
1500         } else if (nr_lagging) {
1501                 ioc->busy_level = max(ioc->busy_level, 0);
1502         } else if (nr_shortages && !nr_surpluses &&
1503                    rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1504                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1505                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1506                 ioc->busy_level = min(ioc->busy_level, 0);
1507                 ioc->busy_level--;
1508         } else {
1509                 ioc->busy_level = 0;
1510         }
1511
1512         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1513
1514         if (ioc->busy_level) {
1515                 u64 vrate = atomic64_read(&ioc->vtime_rate);
1516                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1517
1518                 /* rq_wait signal is always reliable, ignore user vrate_min */
1519                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1520                         vrate_min = VRATE_MIN;
1521
1522                 /*
1523                  * If vrate is out of bounds, apply clamp gradually as the
1524                  * bounds can change abruptly.  Otherwise, apply busy_level
1525                  * based adjustment.
1526                  */
1527                 if (vrate < vrate_min) {
1528                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1529                                           100);
1530                         vrate = min(vrate, vrate_min);
1531                 } else if (vrate > vrate_max) {
1532                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1533                                           100);
1534                         vrate = max(vrate, vrate_max);
1535                 } else {
1536                         int idx = min_t(int, abs(ioc->busy_level),
1537                                         ARRAY_SIZE(vrate_adj_pct) - 1);
1538                         u32 adj_pct = vrate_adj_pct[idx];
1539
1540                         if (ioc->busy_level > 0)
1541                                 adj_pct = 100 - adj_pct;
1542                         else
1543                                 adj_pct = 100 + adj_pct;
1544
1545                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1546                                       vrate_min, vrate_max);
1547                 }
1548
1549                 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1550                                            nr_lagging, nr_shortages,
1551                                            nr_surpluses);
1552
1553                 atomic64_set(&ioc->vtime_rate, vrate);
1554                 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1555                         ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1556         }
1557
1558         ioc_refresh_params(ioc, false);
1559
1560         /*
1561          * This period is done.  Move onto the next one.  If nothing's
1562          * going on with the device, stop the timer.
1563          */
1564         atomic64_inc(&ioc->cur_period);
1565
1566         if (ioc->running != IOC_STOP) {
1567                 if (!list_empty(&ioc->active_iocgs)) {
1568                         ioc_start_period(ioc, &now);
1569                 } else {
1570                         ioc->busy_level = 0;
1571                         ioc->running = IOC_IDLE;
1572                 }
1573         }
1574
1575         spin_unlock_irq(&ioc->lock);
1576 }
1577
1578 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1579                                     bool is_merge, u64 *costp)
1580 {
1581         struct ioc *ioc = iocg->ioc;
1582         u64 coef_seqio, coef_randio, coef_page;
1583         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1584         u64 seek_pages = 0;
1585         u64 cost = 0;
1586
1587         switch (bio_op(bio)) {
1588         case REQ_OP_READ:
1589                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
1590                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
1591                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
1592                 break;
1593         case REQ_OP_WRITE:
1594                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
1595                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
1596                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
1597                 break;
1598         default:
1599                 goto out;
1600         }
1601
1602         if (iocg->cursor) {
1603                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1604                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1605         }
1606
1607         if (!is_merge) {
1608                 if (seek_pages > LCOEF_RANDIO_PAGES) {
1609                         cost += coef_randio;
1610                 } else {
1611                         cost += coef_seqio;
1612                 }
1613         }
1614         cost += pages * coef_page;
1615 out:
1616         *costp = cost;
1617 }
1618
1619 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1620 {
1621         u64 cost;
1622
1623         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1624         return cost;
1625 }
1626
1627 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1628 {
1629         struct blkcg_gq *blkg = bio->bi_blkg;
1630         struct ioc *ioc = rqos_to_ioc(rqos);
1631         struct ioc_gq *iocg = blkg_to_iocg(blkg);
1632         struct ioc_now now;
1633         struct iocg_wait wait;
1634         u32 hw_active, hw_inuse;
1635         u64 abs_cost, cost, vtime;
1636
1637         /* bypass IOs if disabled or for root cgroup */
1638         if (!ioc->enabled || !iocg->level)
1639                 return;
1640
1641         /* always activate so that even 0 cost IOs get protected to some level */
1642         if (!iocg_activate(iocg, &now))
1643                 return;
1644
1645         /* calculate the absolute vtime cost */
1646         abs_cost = calc_vtime_cost(bio, iocg, false);
1647         if (!abs_cost)
1648                 return;
1649
1650         iocg->cursor = bio_end_sector(bio);
1651
1652         vtime = atomic64_read(&iocg->vtime);
1653         current_hweight(iocg, &hw_active, &hw_inuse);
1654
1655         if (hw_inuse < hw_active &&
1656             time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1657                 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1658                                 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1659                 spin_lock_irq(&ioc->lock);
1660                 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1661                 spin_unlock_irq(&ioc->lock);
1662                 current_hweight(iocg, &hw_active, &hw_inuse);
1663         }
1664
1665         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1666
1667         /*
1668          * If no one's waiting and within budget, issue right away.  The
1669          * tests are racy but the races aren't systemic - we only miss once
1670          * in a while which is fine.
1671          */
1672         if (!waitqueue_active(&iocg->waitq) &&
1673             time_before_eq64(vtime + cost, now.vnow)) {
1674                 iocg_commit_bio(iocg, bio, cost);
1675                 return;
1676         }
1677
1678         if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1679                 iocg_commit_bio(iocg, bio, cost);
1680                 iocg_kick_delay(iocg, &now, cost);
1681                 return;
1682         }
1683
1684         /*
1685          * Append self to the waitq and schedule the wakeup timer if we're
1686          * the first waiter.  The timer duration is calculated based on the
1687          * current vrate.  vtime and hweight changes can make it too short
1688          * or too long.  Each wait entry records the absolute cost it's
1689          * waiting for to allow re-evaluation using a custom wait entry.
1690          *
1691          * If too short, the timer simply reschedules itself.  If too long,
1692          * the period timer will notice and trigger wakeups.
1693          *
1694          * All waiters are on iocg->waitq and the wait states are
1695          * synchronized using waitq.lock.
1696          */
1697         spin_lock_irq(&iocg->waitq.lock);
1698
1699         /*
1700          * We activated above but w/o any synchronization.  Deactivation is
1701          * synchronized with waitq.lock and we won't get deactivated as
1702          * long as we're waiting, so we're good if we're activated here.
1703          * In the unlikely case that we are deactivated, just issue the IO.
1704          */
1705         if (unlikely(list_empty(&iocg->active_list))) {
1706                 spin_unlock_irq(&iocg->waitq.lock);
1707                 iocg_commit_bio(iocg, bio, cost);
1708                 return;
1709         }
1710
1711         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1712         wait.wait.private = current;
1713         wait.bio = bio;
1714         wait.abs_cost = abs_cost;
1715         wait.committed = false; /* will be set true by waker */
1716
1717         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1718         iocg_kick_waitq(iocg, &now);
1719
1720         spin_unlock_irq(&iocg->waitq.lock);
1721
1722         while (true) {
1723                 set_current_state(TASK_UNINTERRUPTIBLE);
1724                 if (wait.committed)
1725                         break;
1726                 io_schedule();
1727         }
1728
1729         /* waker already committed us, proceed */
1730         finish_wait(&iocg->waitq, &wait.wait);
1731 }
1732
1733 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1734                            struct bio *bio)
1735 {
1736         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1737         sector_t bio_end = bio_end_sector(bio);
1738         u32 hw_inuse;
1739         u64 abs_cost, cost;
1740
1741         /* add iff the existing request has cost assigned */
1742         if (!rq->bio || !rq->bio->bi_iocost_cost)
1743                 return;
1744
1745         abs_cost = calc_vtime_cost(bio, iocg, true);
1746         if (!abs_cost)
1747                 return;
1748
1749         /* update cursor if backmerging into the request at the cursor */
1750         if (blk_rq_pos(rq) < bio_end &&
1751             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1752                 iocg->cursor = bio_end;
1753
1754         current_hweight(iocg, NULL, &hw_inuse);
1755         cost = div64_u64(abs_cost * HWEIGHT_WHOLE, hw_inuse);
1756         bio->bi_iocost_cost = cost;
1757
1758         atomic64_add(cost, &iocg->vtime);
1759 }
1760
1761 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1762 {
1763         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1764
1765         if (iocg && bio->bi_iocost_cost)
1766                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1767 }
1768
1769 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1770 {
1771         struct ioc *ioc = rqos_to_ioc(rqos);
1772         u64 on_q_ns, rq_wait_ns;
1773         int pidx, rw;
1774
1775         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1776                 return;
1777
1778         switch (req_op(rq) & REQ_OP_MASK) {
1779         case REQ_OP_READ:
1780                 pidx = QOS_RLAT;
1781                 rw = READ;
1782                 break;
1783         case REQ_OP_WRITE:
1784                 pidx = QOS_WLAT;
1785                 rw = WRITE;
1786                 break;
1787         default:
1788                 return;
1789         }
1790
1791         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1792         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1793
1794         if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1795                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1796         else
1797                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1798
1799         this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1800 }
1801
1802 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1803 {
1804         struct ioc *ioc = rqos_to_ioc(rqos);
1805
1806         spin_lock_irq(&ioc->lock);
1807         ioc_refresh_params(ioc, false);
1808         spin_unlock_irq(&ioc->lock);
1809 }
1810
1811 static void ioc_rqos_exit(struct rq_qos *rqos)
1812 {
1813         struct ioc *ioc = rqos_to_ioc(rqos);
1814
1815         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1816
1817         spin_lock_irq(&ioc->lock);
1818         ioc->running = IOC_STOP;
1819         spin_unlock_irq(&ioc->lock);
1820
1821         del_timer_sync(&ioc->timer);
1822         free_percpu(ioc->pcpu_stat);
1823         kfree(ioc);
1824 }
1825
1826 static struct rq_qos_ops ioc_rqos_ops = {
1827         .throttle = ioc_rqos_throttle,
1828         .merge = ioc_rqos_merge,
1829         .done_bio = ioc_rqos_done_bio,
1830         .done = ioc_rqos_done,
1831         .queue_depth_changed = ioc_rqos_queue_depth_changed,
1832         .exit = ioc_rqos_exit,
1833 };
1834
1835 static int blk_iocost_init(struct request_queue *q)
1836 {
1837         struct ioc *ioc;
1838         struct rq_qos *rqos;
1839         int ret;
1840
1841         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1842         if (!ioc)
1843                 return -ENOMEM;
1844
1845         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1846         if (!ioc->pcpu_stat) {
1847                 kfree(ioc);
1848                 return -ENOMEM;
1849         }
1850
1851         rqos = &ioc->rqos;
1852         rqos->id = RQ_QOS_COST;
1853         rqos->ops = &ioc_rqos_ops;
1854         rqos->q = q;
1855
1856         spin_lock_init(&ioc->lock);
1857         timer_setup(&ioc->timer, ioc_timer_fn, 0);
1858         INIT_LIST_HEAD(&ioc->active_iocgs);
1859
1860         ioc->running = IOC_IDLE;
1861         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1862         seqcount_init(&ioc->period_seqcount);
1863         ioc->period_at = ktime_to_us(ktime_get());
1864         atomic64_set(&ioc->cur_period, 0);
1865         atomic_set(&ioc->hweight_gen, 0);
1866
1867         spin_lock_irq(&ioc->lock);
1868         ioc->autop_idx = AUTOP_INVALID;
1869         ioc_refresh_params(ioc, true);
1870         spin_unlock_irq(&ioc->lock);
1871
1872         rq_qos_add(q, rqos);
1873         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1874         if (ret) {
1875                 rq_qos_del(q, rqos);
1876                 kfree(ioc);
1877                 return ret;
1878         }
1879         return 0;
1880 }
1881
1882 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1883 {
1884         struct ioc_cgrp *iocc;
1885
1886         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1887         iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1888
1889         return &iocc->cpd;
1890 }
1891
1892 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1893 {
1894         kfree(container_of(cpd, struct ioc_cgrp, cpd));
1895 }
1896
1897 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1898                                              struct blkcg *blkcg)
1899 {
1900         int levels = blkcg->css.cgroup->level + 1;
1901         struct ioc_gq *iocg;
1902
1903         iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1904                             gfp, q->node);
1905         if (!iocg)
1906                 return NULL;
1907
1908         return &iocg->pd;
1909 }
1910
1911 static void ioc_pd_init(struct blkg_policy_data *pd)
1912 {
1913         struct ioc_gq *iocg = pd_to_iocg(pd);
1914         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1915         struct ioc *ioc = q_to_ioc(blkg->q);
1916         struct ioc_now now;
1917         struct blkcg_gq *tblkg;
1918         unsigned long flags;
1919
1920         ioc_now(ioc, &now);
1921
1922         iocg->ioc = ioc;
1923         atomic64_set(&iocg->vtime, now.vnow);
1924         atomic64_set(&iocg->done_vtime, now.vnow);
1925         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
1926         INIT_LIST_HEAD(&iocg->active_list);
1927         iocg->hweight_active = HWEIGHT_WHOLE;
1928         iocg->hweight_inuse = HWEIGHT_WHOLE;
1929
1930         init_waitqueue_head(&iocg->waitq);
1931         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1932         iocg->waitq_timer.function = iocg_waitq_timer_fn;
1933         hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1934         iocg->delay_timer.function = iocg_delay_timer_fn;
1935
1936         iocg->level = blkg->blkcg->css.cgroup->level;
1937
1938         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
1939                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
1940                 iocg->ancestors[tiocg->level] = tiocg;
1941         }
1942
1943         spin_lock_irqsave(&ioc->lock, flags);
1944         weight_updated(iocg);
1945         spin_unlock_irqrestore(&ioc->lock, flags);
1946 }
1947
1948 static void ioc_pd_free(struct blkg_policy_data *pd)
1949 {
1950         struct ioc_gq *iocg = pd_to_iocg(pd);
1951         struct ioc *ioc = iocg->ioc;
1952
1953         if (ioc) {
1954                 hrtimer_cancel(&iocg->waitq_timer);
1955                 hrtimer_cancel(&iocg->delay_timer);
1956
1957                 spin_lock(&ioc->lock);
1958                 if (!list_empty(&iocg->active_list)) {
1959                         propagate_active_weight(iocg, 0, 0);
1960                         list_del_init(&iocg->active_list);
1961                 }
1962                 spin_unlock(&ioc->lock);
1963         }
1964         kfree(iocg);
1965 }
1966
1967 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
1968                              int off)
1969 {
1970         const char *dname = blkg_dev_name(pd->blkg);
1971         struct ioc_gq *iocg = pd_to_iocg(pd);
1972
1973         if (dname && iocg->cfg_weight)
1974                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
1975         return 0;
1976 }
1977
1978
1979 static int ioc_weight_show(struct seq_file *sf, void *v)
1980 {
1981         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1982         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
1983
1984         seq_printf(sf, "default %u\n", iocc->dfl_weight);
1985         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
1986                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
1987         return 0;
1988 }
1989
1990 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
1991                                 size_t nbytes, loff_t off)
1992 {
1993         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1994         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
1995         struct blkg_conf_ctx ctx;
1996         struct ioc_gq *iocg;
1997         u32 v;
1998         int ret;
1999
2000         if (!strchr(buf, ':')) {
2001                 struct blkcg_gq *blkg;
2002
2003                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2004                         return -EINVAL;
2005
2006                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2007                         return -EINVAL;
2008
2009                 spin_lock(&blkcg->lock);
2010                 iocc->dfl_weight = v;
2011                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2012                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2013
2014                         if (iocg) {
2015                                 spin_lock_irq(&iocg->ioc->lock);
2016                                 weight_updated(iocg);
2017                                 spin_unlock_irq(&iocg->ioc->lock);
2018                         }
2019                 }
2020                 spin_unlock(&blkcg->lock);
2021
2022                 return nbytes;
2023         }
2024
2025         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2026         if (ret)
2027                 return ret;
2028
2029         iocg = blkg_to_iocg(ctx.blkg);
2030
2031         if (!strncmp(ctx.body, "default", 7)) {
2032                 v = 0;
2033         } else {
2034                 if (!sscanf(ctx.body, "%u", &v))
2035                         goto einval;
2036                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2037                         goto einval;
2038         }
2039
2040         spin_lock_irq(&iocg->ioc->lock);
2041         iocg->cfg_weight = v;
2042         weight_updated(iocg);
2043         spin_unlock_irq(&iocg->ioc->lock);
2044
2045         blkg_conf_finish(&ctx);
2046         return nbytes;
2047
2048 einval:
2049         blkg_conf_finish(&ctx);
2050         return -EINVAL;
2051 }
2052
2053 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2054                           int off)
2055 {
2056         const char *dname = blkg_dev_name(pd->blkg);
2057         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2058
2059         if (!dname)
2060                 return 0;
2061
2062         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2063                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2064                    ioc->params.qos[QOS_RPPM] / 10000,
2065                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
2066                    ioc->params.qos[QOS_RLAT],
2067                    ioc->params.qos[QOS_WPPM] / 10000,
2068                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
2069                    ioc->params.qos[QOS_WLAT],
2070                    ioc->params.qos[QOS_MIN] / 10000,
2071                    ioc->params.qos[QOS_MIN] % 10000 / 100,
2072                    ioc->params.qos[QOS_MAX] / 10000,
2073                    ioc->params.qos[QOS_MAX] % 10000 / 100);
2074         return 0;
2075 }
2076
2077 static int ioc_qos_show(struct seq_file *sf, void *v)
2078 {
2079         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2080
2081         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2082                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2083         return 0;
2084 }
2085
2086 static const match_table_t qos_ctrl_tokens = {
2087         { QOS_ENABLE,           "enable=%u"     },
2088         { QOS_CTRL,             "ctrl=%s"       },
2089         { NR_QOS_CTRL_PARAMS,   NULL            },
2090 };
2091
2092 static const match_table_t qos_tokens = {
2093         { QOS_RPPM,             "rpct=%s"       },
2094         { QOS_RLAT,             "rlat=%u"       },
2095         { QOS_WPPM,             "wpct=%s"       },
2096         { QOS_WLAT,             "wlat=%u"       },
2097         { QOS_MIN,              "min=%s"        },
2098         { QOS_MAX,              "max=%s"        },
2099         { NR_QOS_PARAMS,        NULL            },
2100 };
2101
2102 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2103                              size_t nbytes, loff_t off)
2104 {
2105         struct gendisk *disk;
2106         struct ioc *ioc;
2107         u32 qos[NR_QOS_PARAMS];
2108         bool enable, user;
2109         char *p;
2110         int ret;
2111
2112         disk = blkcg_conf_get_disk(&input);
2113         if (IS_ERR(disk))
2114                 return PTR_ERR(disk);
2115
2116         ioc = q_to_ioc(disk->queue);
2117         if (!ioc) {
2118                 ret = blk_iocost_init(disk->queue);
2119                 if (ret)
2120                         goto err;
2121                 ioc = q_to_ioc(disk->queue);
2122         }
2123
2124         spin_lock_irq(&ioc->lock);
2125         memcpy(qos, ioc->params.qos, sizeof(qos));
2126         enable = ioc->enabled;
2127         user = ioc->user_qos_params;
2128         spin_unlock_irq(&ioc->lock);
2129
2130         while ((p = strsep(&input, " \t\n"))) {
2131                 substring_t args[MAX_OPT_ARGS];
2132                 char buf[32];
2133                 int tok;
2134                 s64 v;
2135
2136                 if (!*p)
2137                         continue;
2138
2139                 switch (match_token(p, qos_ctrl_tokens, args)) {
2140                 case QOS_ENABLE:
2141                         match_u64(&args[0], &v);
2142                         enable = v;
2143                         continue;
2144                 case QOS_CTRL:
2145                         match_strlcpy(buf, &args[0], sizeof(buf));
2146                         if (!strcmp(buf, "auto"))
2147                                 user = false;
2148                         else if (!strcmp(buf, "user"))
2149                                 user = true;
2150                         else
2151                                 goto einval;
2152                         continue;
2153                 }
2154
2155                 tok = match_token(p, qos_tokens, args);
2156                 switch (tok) {
2157                 case QOS_RPPM:
2158                 case QOS_WPPM:
2159                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2160                             sizeof(buf))
2161                                 goto einval;
2162                         if (cgroup_parse_float(buf, 2, &v))
2163                                 goto einval;
2164                         if (v < 0 || v > 10000)
2165                                 goto einval;
2166                         qos[tok] = v * 100;
2167                         break;
2168                 case QOS_RLAT:
2169                 case QOS_WLAT:
2170                         if (match_u64(&args[0], &v))
2171                                 goto einval;
2172                         qos[tok] = v;
2173                         break;
2174                 case QOS_MIN:
2175                 case QOS_MAX:
2176                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2177                             sizeof(buf))
2178                                 goto einval;
2179                         if (cgroup_parse_float(buf, 2, &v))
2180                                 goto einval;
2181                         if (v < 0)
2182                                 goto einval;
2183                         qos[tok] = clamp_t(s64, v * 100,
2184                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
2185                         break;
2186                 default:
2187                         goto einval;
2188                 }
2189                 user = true;
2190         }
2191
2192         if (qos[QOS_MIN] > qos[QOS_MAX])
2193                 goto einval;
2194
2195         spin_lock_irq(&ioc->lock);
2196
2197         if (enable) {
2198                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2199                 ioc->enabled = true;
2200         } else {
2201                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2202                 ioc->enabled = false;
2203         }
2204
2205         if (user) {
2206                 memcpy(ioc->params.qos, qos, sizeof(qos));
2207                 ioc->user_qos_params = true;
2208         } else {
2209                 ioc->user_qos_params = false;
2210         }
2211
2212         ioc_refresh_params(ioc, true);
2213         spin_unlock_irq(&ioc->lock);
2214
2215         put_disk_and_module(disk);
2216         return nbytes;
2217 einval:
2218         ret = -EINVAL;
2219 err:
2220         put_disk_and_module(disk);
2221         return ret;
2222 }
2223
2224 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2225                                  struct blkg_policy_data *pd, int off)
2226 {
2227         const char *dname = blkg_dev_name(pd->blkg);
2228         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2229         u64 *u = ioc->params.i_lcoefs;
2230
2231         if (!dname)
2232                 return 0;
2233
2234         seq_printf(sf, "%s ctrl=%s model=linear "
2235                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
2236                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2237                    dname, ioc->user_cost_model ? "user" : "auto",
2238                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2239                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2240         return 0;
2241 }
2242
2243 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2244 {
2245         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2246
2247         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2248                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2249         return 0;
2250 }
2251
2252 static const match_table_t cost_ctrl_tokens = {
2253         { COST_CTRL,            "ctrl=%s"       },
2254         { COST_MODEL,           "model=%s"      },
2255         { NR_COST_CTRL_PARAMS,  NULL            },
2256 };
2257
2258 static const match_table_t i_lcoef_tokens = {
2259         { I_LCOEF_RBPS,         "rbps=%u"       },
2260         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
2261         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
2262         { I_LCOEF_WBPS,         "wbps=%u"       },
2263         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
2264         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
2265         { NR_I_LCOEFS,          NULL            },
2266 };
2267
2268 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2269                                     size_t nbytes, loff_t off)
2270 {
2271         struct gendisk *disk;
2272         struct ioc *ioc;
2273         u64 u[NR_I_LCOEFS];
2274         bool user;
2275         char *p;
2276         int ret;
2277
2278         disk = blkcg_conf_get_disk(&input);
2279         if (IS_ERR(disk))
2280                 return PTR_ERR(disk);
2281
2282         ioc = q_to_ioc(disk->queue);
2283         if (!ioc) {
2284                 ret = blk_iocost_init(disk->queue);
2285                 if (ret)
2286                         goto err;
2287                 ioc = q_to_ioc(disk->queue);
2288         }
2289
2290         spin_lock_irq(&ioc->lock);
2291         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2292         user = ioc->user_cost_model;
2293         spin_unlock_irq(&ioc->lock);
2294
2295         while ((p = strsep(&input, " \t\n"))) {
2296                 substring_t args[MAX_OPT_ARGS];
2297                 char buf[32];
2298                 int tok;
2299                 u64 v;
2300
2301                 if (!*p)
2302                         continue;
2303
2304                 switch (match_token(p, cost_ctrl_tokens, args)) {
2305                 case COST_CTRL:
2306                         match_strlcpy(buf, &args[0], sizeof(buf));
2307                         if (!strcmp(buf, "auto"))
2308                                 user = false;
2309                         else if (!strcmp(buf, "user"))
2310                                 user = true;
2311                         else
2312                                 goto einval;
2313                         continue;
2314                 case COST_MODEL:
2315                         match_strlcpy(buf, &args[0], sizeof(buf));
2316                         if (strcmp(buf, "linear"))
2317                                 goto einval;
2318                         continue;
2319                 }
2320
2321                 tok = match_token(p, i_lcoef_tokens, args);
2322                 if (tok == NR_I_LCOEFS)
2323                         goto einval;
2324                 if (match_u64(&args[0], &v))
2325                         goto einval;
2326                 u[tok] = v;
2327                 user = true;
2328         }
2329
2330         spin_lock_irq(&ioc->lock);
2331         if (user) {
2332                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2333                 ioc->user_cost_model = true;
2334         } else {
2335                 ioc->user_cost_model = false;
2336         }
2337         ioc_refresh_params(ioc, true);
2338         spin_unlock_irq(&ioc->lock);
2339
2340         put_disk_and_module(disk);
2341         return nbytes;
2342
2343 einval:
2344         ret = -EINVAL;
2345 err:
2346         put_disk_and_module(disk);
2347         return ret;
2348 }
2349
2350 static struct cftype ioc_files[] = {
2351         {
2352                 .name = "weight",
2353                 .flags = CFTYPE_NOT_ON_ROOT,
2354                 .seq_show = ioc_weight_show,
2355                 .write = ioc_weight_write,
2356         },
2357         {
2358                 .name = "cost.qos",
2359                 .flags = CFTYPE_ONLY_ON_ROOT,
2360                 .seq_show = ioc_qos_show,
2361                 .write = ioc_qos_write,
2362         },
2363         {
2364                 .name = "cost.model",
2365                 .flags = CFTYPE_ONLY_ON_ROOT,
2366                 .seq_show = ioc_cost_model_show,
2367                 .write = ioc_cost_model_write,
2368         },
2369         {}
2370 };
2371
2372 static struct blkcg_policy blkcg_policy_iocost = {
2373         .dfl_cftypes    = ioc_files,
2374         .cpd_alloc_fn   = ioc_cpd_alloc,
2375         .cpd_free_fn    = ioc_cpd_free,
2376         .pd_alloc_fn    = ioc_pd_alloc,
2377         .pd_init_fn     = ioc_pd_init,
2378         .pd_free_fn     = ioc_pd_free,
2379 };
2380
2381 static int __init ioc_init(void)
2382 {
2383         return blkcg_policy_register(&blkcg_policy_iocost);
2384 }
2385
2386 static void __exit ioc_exit(void)
2387 {
2388         return blkcg_policy_unregister(&blkcg_policy_iocost);
2389 }
2390
2391 module_init(ioc_init);
2392 module_exit(ioc_exit);