]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-merge.c
blk: remove bio_set arg from blk_queue_split()
[linux.git] / block / blk-merge.c
1 /*
2  * Functions related to segment and merge handling
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13
14 static struct bio *blk_bio_discard_split(struct request_queue *q,
15                                          struct bio *bio,
16                                          struct bio_set *bs,
17                                          unsigned *nsegs)
18 {
19         unsigned int max_discard_sectors, granularity;
20         int alignment;
21         sector_t tmp;
22         unsigned split_sectors;
23
24         *nsegs = 1;
25
26         /* Zero-sector (unknown) and one-sector granularities are the same.  */
27         granularity = max(q->limits.discard_granularity >> 9, 1U);
28
29         max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
30         max_discard_sectors -= max_discard_sectors % granularity;
31
32         if (unlikely(!max_discard_sectors)) {
33                 /* XXX: warn */
34                 return NULL;
35         }
36
37         if (bio_sectors(bio) <= max_discard_sectors)
38                 return NULL;
39
40         split_sectors = max_discard_sectors;
41
42         /*
43          * If the next starting sector would be misaligned, stop the discard at
44          * the previous aligned sector.
45          */
46         alignment = (q->limits.discard_alignment >> 9) % granularity;
47
48         tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
49         tmp = sector_div(tmp, granularity);
50
51         if (split_sectors > tmp)
52                 split_sectors -= tmp;
53
54         return bio_split(bio, split_sectors, GFP_NOIO, bs);
55 }
56
57 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
58                 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
59 {
60         *nsegs = 1;
61
62         if (!q->limits.max_write_zeroes_sectors)
63                 return NULL;
64
65         if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
66                 return NULL;
67
68         return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
69 }
70
71 static struct bio *blk_bio_write_same_split(struct request_queue *q,
72                                             struct bio *bio,
73                                             struct bio_set *bs,
74                                             unsigned *nsegs)
75 {
76         *nsegs = 1;
77
78         if (!q->limits.max_write_same_sectors)
79                 return NULL;
80
81         if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
82                 return NULL;
83
84         return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
85 }
86
87 static inline unsigned get_max_io_size(struct request_queue *q,
88                                        struct bio *bio)
89 {
90         unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
91         unsigned mask = queue_logical_block_size(q) - 1;
92
93         /* aligned to logical block size */
94         sectors &= ~(mask >> 9);
95
96         return sectors;
97 }
98
99 static struct bio *blk_bio_segment_split(struct request_queue *q,
100                                          struct bio *bio,
101                                          struct bio_set *bs,
102                                          unsigned *segs)
103 {
104         struct bio_vec bv, bvprv, *bvprvp = NULL;
105         struct bvec_iter iter;
106         unsigned seg_size = 0, nsegs = 0, sectors = 0;
107         unsigned front_seg_size = bio->bi_seg_front_size;
108         bool do_split = true;
109         struct bio *new = NULL;
110         const unsigned max_sectors = get_max_io_size(q, bio);
111         unsigned bvecs = 0;
112
113         bio_for_each_segment(bv, bio, iter) {
114                 /*
115                  * With arbitrary bio size, the incoming bio may be very
116                  * big. We have to split the bio into small bios so that
117                  * each holds at most BIO_MAX_PAGES bvecs because
118                  * bio_clone() can fail to allocate big bvecs.
119                  *
120                  * It should have been better to apply the limit per
121                  * request queue in which bio_clone() is involved,
122                  * instead of globally. The biggest blocker is the
123                  * bio_clone() in bio bounce.
124                  *
125                  * If bio is splitted by this reason, we should have
126                  * allowed to continue bios merging, but don't do
127                  * that now for making the change simple.
128                  *
129                  * TODO: deal with bio bounce's bio_clone() gracefully
130                  * and convert the global limit into per-queue limit.
131                  */
132                 if (bvecs++ >= BIO_MAX_PAGES)
133                         goto split;
134
135                 /*
136                  * If the queue doesn't support SG gaps and adding this
137                  * offset would create a gap, disallow it.
138                  */
139                 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
140                         goto split;
141
142                 if (sectors + (bv.bv_len >> 9) > max_sectors) {
143                         /*
144                          * Consider this a new segment if we're splitting in
145                          * the middle of this vector.
146                          */
147                         if (nsegs < queue_max_segments(q) &&
148                             sectors < max_sectors) {
149                                 nsegs++;
150                                 sectors = max_sectors;
151                         }
152                         if (sectors)
153                                 goto split;
154                         /* Make this single bvec as the 1st segment */
155                 }
156
157                 if (bvprvp && blk_queue_cluster(q)) {
158                         if (seg_size + bv.bv_len > queue_max_segment_size(q))
159                                 goto new_segment;
160                         if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
161                                 goto new_segment;
162                         if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
163                                 goto new_segment;
164
165                         seg_size += bv.bv_len;
166                         bvprv = bv;
167                         bvprvp = &bvprv;
168                         sectors += bv.bv_len >> 9;
169
170                         if (nsegs == 1 && seg_size > front_seg_size)
171                                 front_seg_size = seg_size;
172                         continue;
173                 }
174 new_segment:
175                 if (nsegs == queue_max_segments(q))
176                         goto split;
177
178                 nsegs++;
179                 bvprv = bv;
180                 bvprvp = &bvprv;
181                 seg_size = bv.bv_len;
182                 sectors += bv.bv_len >> 9;
183
184                 if (nsegs == 1 && seg_size > front_seg_size)
185                         front_seg_size = seg_size;
186         }
187
188         do_split = false;
189 split:
190         *segs = nsegs;
191
192         if (do_split) {
193                 new = bio_split(bio, sectors, GFP_NOIO, bs);
194                 if (new)
195                         bio = new;
196         }
197
198         bio->bi_seg_front_size = front_seg_size;
199         if (seg_size > bio->bi_seg_back_size)
200                 bio->bi_seg_back_size = seg_size;
201
202         return do_split ? new : NULL;
203 }
204
205 void blk_queue_split(struct request_queue *q, struct bio **bio)
206 {
207         struct bio *split, *res;
208         unsigned nsegs;
209
210         switch (bio_op(*bio)) {
211         case REQ_OP_DISCARD:
212         case REQ_OP_SECURE_ERASE:
213                 split = blk_bio_discard_split(q, *bio, q->bio_split, &nsegs);
214                 break;
215         case REQ_OP_WRITE_ZEROES:
216                 split = blk_bio_write_zeroes_split(q, *bio, q->bio_split, &nsegs);
217                 break;
218         case REQ_OP_WRITE_SAME:
219                 split = blk_bio_write_same_split(q, *bio, q->bio_split, &nsegs);
220                 break;
221         default:
222                 split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
223                 break;
224         }
225
226         /* physical segments can be figured out during splitting */
227         res = split ? split : *bio;
228         res->bi_phys_segments = nsegs;
229         bio_set_flag(res, BIO_SEG_VALID);
230
231         if (split) {
232                 /* there isn't chance to merge the splitted bio */
233                 split->bi_opf |= REQ_NOMERGE;
234
235                 bio_chain(split, *bio);
236                 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
237                 generic_make_request(*bio);
238                 *bio = split;
239         }
240 }
241 EXPORT_SYMBOL(blk_queue_split);
242
243 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
244                                              struct bio *bio,
245                                              bool no_sg_merge)
246 {
247         struct bio_vec bv, bvprv = { NULL };
248         int cluster, prev = 0;
249         unsigned int seg_size, nr_phys_segs;
250         struct bio *fbio, *bbio;
251         struct bvec_iter iter;
252
253         if (!bio)
254                 return 0;
255
256         switch (bio_op(bio)) {
257         case REQ_OP_DISCARD:
258         case REQ_OP_SECURE_ERASE:
259         case REQ_OP_WRITE_ZEROES:
260                 return 0;
261         case REQ_OP_WRITE_SAME:
262                 return 1;
263         }
264
265         fbio = bio;
266         cluster = blk_queue_cluster(q);
267         seg_size = 0;
268         nr_phys_segs = 0;
269         for_each_bio(bio) {
270                 bio_for_each_segment(bv, bio, iter) {
271                         /*
272                          * If SG merging is disabled, each bio vector is
273                          * a segment
274                          */
275                         if (no_sg_merge)
276                                 goto new_segment;
277
278                         if (prev && cluster) {
279                                 if (seg_size + bv.bv_len
280                                     > queue_max_segment_size(q))
281                                         goto new_segment;
282                                 if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
283                                         goto new_segment;
284                                 if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
285                                         goto new_segment;
286
287                                 seg_size += bv.bv_len;
288                                 bvprv = bv;
289                                 continue;
290                         }
291 new_segment:
292                         if (nr_phys_segs == 1 && seg_size >
293                             fbio->bi_seg_front_size)
294                                 fbio->bi_seg_front_size = seg_size;
295
296                         nr_phys_segs++;
297                         bvprv = bv;
298                         prev = 1;
299                         seg_size = bv.bv_len;
300                 }
301                 bbio = bio;
302         }
303
304         if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
305                 fbio->bi_seg_front_size = seg_size;
306         if (seg_size > bbio->bi_seg_back_size)
307                 bbio->bi_seg_back_size = seg_size;
308
309         return nr_phys_segs;
310 }
311
312 void blk_recalc_rq_segments(struct request *rq)
313 {
314         bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
315                         &rq->q->queue_flags);
316
317         rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
318                         no_sg_merge);
319 }
320
321 void blk_recount_segments(struct request_queue *q, struct bio *bio)
322 {
323         unsigned short seg_cnt;
324
325         /* estimate segment number by bi_vcnt for non-cloned bio */
326         if (bio_flagged(bio, BIO_CLONED))
327                 seg_cnt = bio_segments(bio);
328         else
329                 seg_cnt = bio->bi_vcnt;
330
331         if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
332                         (seg_cnt < queue_max_segments(q)))
333                 bio->bi_phys_segments = seg_cnt;
334         else {
335                 struct bio *nxt = bio->bi_next;
336
337                 bio->bi_next = NULL;
338                 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
339                 bio->bi_next = nxt;
340         }
341
342         bio_set_flag(bio, BIO_SEG_VALID);
343 }
344 EXPORT_SYMBOL(blk_recount_segments);
345
346 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
347                                    struct bio *nxt)
348 {
349         struct bio_vec end_bv = { NULL }, nxt_bv;
350
351         if (!blk_queue_cluster(q))
352                 return 0;
353
354         if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
355             queue_max_segment_size(q))
356                 return 0;
357
358         if (!bio_has_data(bio))
359                 return 1;
360
361         bio_get_last_bvec(bio, &end_bv);
362         bio_get_first_bvec(nxt, &nxt_bv);
363
364         if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
365                 return 0;
366
367         /*
368          * bio and nxt are contiguous in memory; check if the queue allows
369          * these two to be merged into one
370          */
371         if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
372                 return 1;
373
374         return 0;
375 }
376
377 static inline void
378 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
379                      struct scatterlist *sglist, struct bio_vec *bvprv,
380                      struct scatterlist **sg, int *nsegs, int *cluster)
381 {
382
383         int nbytes = bvec->bv_len;
384
385         if (*sg && *cluster) {
386                 if ((*sg)->length + nbytes > queue_max_segment_size(q))
387                         goto new_segment;
388
389                 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
390                         goto new_segment;
391                 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
392                         goto new_segment;
393
394                 (*sg)->length += nbytes;
395         } else {
396 new_segment:
397                 if (!*sg)
398                         *sg = sglist;
399                 else {
400                         /*
401                          * If the driver previously mapped a shorter
402                          * list, we could see a termination bit
403                          * prematurely unless it fully inits the sg
404                          * table on each mapping. We KNOW that there
405                          * must be more entries here or the driver
406                          * would be buggy, so force clear the
407                          * termination bit to avoid doing a full
408                          * sg_init_table() in drivers for each command.
409                          */
410                         sg_unmark_end(*sg);
411                         *sg = sg_next(*sg);
412                 }
413
414                 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
415                 (*nsegs)++;
416         }
417         *bvprv = *bvec;
418 }
419
420 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
421                 struct scatterlist *sglist, struct scatterlist **sg)
422 {
423         *sg = sglist;
424         sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
425         return 1;
426 }
427
428 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
429                              struct scatterlist *sglist,
430                              struct scatterlist **sg)
431 {
432         struct bio_vec bvec, bvprv = { NULL };
433         struct bvec_iter iter;
434         int cluster = blk_queue_cluster(q), nsegs = 0;
435
436         for_each_bio(bio)
437                 bio_for_each_segment(bvec, bio, iter)
438                         __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
439                                              &nsegs, &cluster);
440
441         return nsegs;
442 }
443
444 /*
445  * map a request to scatterlist, return number of sg entries setup. Caller
446  * must make sure sg can hold rq->nr_phys_segments entries
447  */
448 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
449                   struct scatterlist *sglist)
450 {
451         struct scatterlist *sg = NULL;
452         int nsegs = 0;
453
454         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
455                 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
456         else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
457                 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
458         else if (rq->bio)
459                 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
460
461         if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
462             (blk_rq_bytes(rq) & q->dma_pad_mask)) {
463                 unsigned int pad_len =
464                         (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
465
466                 sg->length += pad_len;
467                 rq->extra_len += pad_len;
468         }
469
470         if (q->dma_drain_size && q->dma_drain_needed(rq)) {
471                 if (op_is_write(req_op(rq)))
472                         memset(q->dma_drain_buffer, 0, q->dma_drain_size);
473
474                 sg_unmark_end(sg);
475                 sg = sg_next(sg);
476                 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
477                             q->dma_drain_size,
478                             ((unsigned long)q->dma_drain_buffer) &
479                             (PAGE_SIZE - 1));
480                 nsegs++;
481                 rq->extra_len += q->dma_drain_size;
482         }
483
484         if (sg)
485                 sg_mark_end(sg);
486
487         /*
488          * Something must have been wrong if the figured number of
489          * segment is bigger than number of req's physical segments
490          */
491         WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
492
493         return nsegs;
494 }
495 EXPORT_SYMBOL(blk_rq_map_sg);
496
497 static inline int ll_new_hw_segment(struct request_queue *q,
498                                     struct request *req,
499                                     struct bio *bio)
500 {
501         int nr_phys_segs = bio_phys_segments(q, bio);
502
503         if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
504                 goto no_merge;
505
506         if (blk_integrity_merge_bio(q, req, bio) == false)
507                 goto no_merge;
508
509         /*
510          * This will form the start of a new hw segment.  Bump both
511          * counters.
512          */
513         req->nr_phys_segments += nr_phys_segs;
514         return 1;
515
516 no_merge:
517         req_set_nomerge(q, req);
518         return 0;
519 }
520
521 int ll_back_merge_fn(struct request_queue *q, struct request *req,
522                      struct bio *bio)
523 {
524         if (req_gap_back_merge(req, bio))
525                 return 0;
526         if (blk_integrity_rq(req) &&
527             integrity_req_gap_back_merge(req, bio))
528                 return 0;
529         if (blk_rq_sectors(req) + bio_sectors(bio) >
530             blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
531                 req_set_nomerge(q, req);
532                 return 0;
533         }
534         if (!bio_flagged(req->biotail, BIO_SEG_VALID))
535                 blk_recount_segments(q, req->biotail);
536         if (!bio_flagged(bio, BIO_SEG_VALID))
537                 blk_recount_segments(q, bio);
538
539         return ll_new_hw_segment(q, req, bio);
540 }
541
542 int ll_front_merge_fn(struct request_queue *q, struct request *req,
543                       struct bio *bio)
544 {
545
546         if (req_gap_front_merge(req, bio))
547                 return 0;
548         if (blk_integrity_rq(req) &&
549             integrity_req_gap_front_merge(req, bio))
550                 return 0;
551         if (blk_rq_sectors(req) + bio_sectors(bio) >
552             blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
553                 req_set_nomerge(q, req);
554                 return 0;
555         }
556         if (!bio_flagged(bio, BIO_SEG_VALID))
557                 blk_recount_segments(q, bio);
558         if (!bio_flagged(req->bio, BIO_SEG_VALID))
559                 blk_recount_segments(q, req->bio);
560
561         return ll_new_hw_segment(q, req, bio);
562 }
563
564 /*
565  * blk-mq uses req->special to carry normal driver per-request payload, it
566  * does not indicate a prepared command that we cannot merge with.
567  */
568 static bool req_no_special_merge(struct request *req)
569 {
570         struct request_queue *q = req->q;
571
572         return !q->mq_ops && req->special;
573 }
574
575 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
576                                 struct request *next)
577 {
578         int total_phys_segments;
579         unsigned int seg_size =
580                 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
581
582         /*
583          * First check if the either of the requests are re-queued
584          * requests.  Can't merge them if they are.
585          */
586         if (req_no_special_merge(req) || req_no_special_merge(next))
587                 return 0;
588
589         if (req_gap_back_merge(req, next->bio))
590                 return 0;
591
592         /*
593          * Will it become too large?
594          */
595         if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
596             blk_rq_get_max_sectors(req, blk_rq_pos(req)))
597                 return 0;
598
599         total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
600         if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
601                 if (req->nr_phys_segments == 1)
602                         req->bio->bi_seg_front_size = seg_size;
603                 if (next->nr_phys_segments == 1)
604                         next->biotail->bi_seg_back_size = seg_size;
605                 total_phys_segments--;
606         }
607
608         if (total_phys_segments > queue_max_segments(q))
609                 return 0;
610
611         if (blk_integrity_merge_rq(q, req, next) == false)
612                 return 0;
613
614         /* Merge is OK... */
615         req->nr_phys_segments = total_phys_segments;
616         return 1;
617 }
618
619 /**
620  * blk_rq_set_mixed_merge - mark a request as mixed merge
621  * @rq: request to mark as mixed merge
622  *
623  * Description:
624  *     @rq is about to be mixed merged.  Make sure the attributes
625  *     which can be mixed are set in each bio and mark @rq as mixed
626  *     merged.
627  */
628 void blk_rq_set_mixed_merge(struct request *rq)
629 {
630         unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
631         struct bio *bio;
632
633         if (rq->rq_flags & RQF_MIXED_MERGE)
634                 return;
635
636         /*
637          * @rq will no longer represent mixable attributes for all the
638          * contained bios.  It will just track those of the first one.
639          * Distributes the attributs to each bio.
640          */
641         for (bio = rq->bio; bio; bio = bio->bi_next) {
642                 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
643                              (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
644                 bio->bi_opf |= ff;
645         }
646         rq->rq_flags |= RQF_MIXED_MERGE;
647 }
648
649 static void blk_account_io_merge(struct request *req)
650 {
651         if (blk_do_io_stat(req)) {
652                 struct hd_struct *part;
653                 int cpu;
654
655                 cpu = part_stat_lock();
656                 part = req->part;
657
658                 part_round_stats(cpu, part);
659                 part_dec_in_flight(part, rq_data_dir(req));
660
661                 hd_struct_put(part);
662                 part_stat_unlock();
663         }
664 }
665
666 /*
667  * For non-mq, this has to be called with the request spinlock acquired.
668  * For mq with scheduling, the appropriate queue wide lock should be held.
669  */
670 static struct request *attempt_merge(struct request_queue *q,
671                                      struct request *req, struct request *next)
672 {
673         if (!rq_mergeable(req) || !rq_mergeable(next))
674                 return NULL;
675
676         if (req_op(req) != req_op(next))
677                 return NULL;
678
679         /*
680          * not contiguous
681          */
682         if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
683                 return NULL;
684
685         if (rq_data_dir(req) != rq_data_dir(next)
686             || req->rq_disk != next->rq_disk
687             || req_no_special_merge(next))
688                 return NULL;
689
690         if (req_op(req) == REQ_OP_WRITE_SAME &&
691             !blk_write_same_mergeable(req->bio, next->bio))
692                 return NULL;
693
694         /*
695          * If we are allowed to merge, then append bio list
696          * from next to rq and release next. merge_requests_fn
697          * will have updated segment counts, update sector
698          * counts here.
699          */
700         if (!ll_merge_requests_fn(q, req, next))
701                 return NULL;
702
703         /*
704          * If failfast settings disagree or any of the two is already
705          * a mixed merge, mark both as mixed before proceeding.  This
706          * makes sure that all involved bios have mixable attributes
707          * set properly.
708          */
709         if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
710             (req->cmd_flags & REQ_FAILFAST_MASK) !=
711             (next->cmd_flags & REQ_FAILFAST_MASK)) {
712                 blk_rq_set_mixed_merge(req);
713                 blk_rq_set_mixed_merge(next);
714         }
715
716         /*
717          * At this point we have either done a back merge
718          * or front merge. We need the smaller start_time of
719          * the merged requests to be the current request
720          * for accounting purposes.
721          */
722         if (time_after(req->start_time, next->start_time))
723                 req->start_time = next->start_time;
724
725         req->biotail->bi_next = next->bio;
726         req->biotail = next->biotail;
727
728         req->__data_len += blk_rq_bytes(next);
729
730         elv_merge_requests(q, req, next);
731
732         /*
733          * 'next' is going away, so update stats accordingly
734          */
735         blk_account_io_merge(next);
736
737         req->ioprio = ioprio_best(req->ioprio, next->ioprio);
738         if (blk_rq_cpu_valid(next))
739                 req->cpu = next->cpu;
740
741         /*
742          * ownership of bio passed from next to req, return 'next' for
743          * the caller to free
744          */
745         next->bio = NULL;
746         return next;
747 }
748
749 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
750 {
751         struct request *next = elv_latter_request(q, rq);
752
753         if (next)
754                 return attempt_merge(q, rq, next);
755
756         return NULL;
757 }
758
759 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
760 {
761         struct request *prev = elv_former_request(q, rq);
762
763         if (prev)
764                 return attempt_merge(q, prev, rq);
765
766         return NULL;
767 }
768
769 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
770                           struct request *next)
771 {
772         struct elevator_queue *e = q->elevator;
773         struct request *free;
774
775         if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
776                 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
777                         return 0;
778
779         free = attempt_merge(q, rq, next);
780         if (free) {
781                 __blk_put_request(q, free);
782                 return 1;
783         }
784
785         return 0;
786 }
787
788 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
789 {
790         if (!rq_mergeable(rq) || !bio_mergeable(bio))
791                 return false;
792
793         if (req_op(rq) != bio_op(bio))
794                 return false;
795
796         /* different data direction or already started, don't merge */
797         if (bio_data_dir(bio) != rq_data_dir(rq))
798                 return false;
799
800         /* must be same device and not a special request */
801         if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
802                 return false;
803
804         /* only merge integrity protected bio into ditto rq */
805         if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
806                 return false;
807
808         /* must be using the same buffer */
809         if (req_op(rq) == REQ_OP_WRITE_SAME &&
810             !blk_write_same_mergeable(rq->bio, bio))
811                 return false;
812
813         return true;
814 }
815
816 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
817 {
818         if (req_op(rq) == REQ_OP_DISCARD &&
819             queue_max_discard_segments(rq->q) > 1)
820                 return ELEVATOR_DISCARD_MERGE;
821         else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
822                 return ELEVATOR_BACK_MERGE;
823         else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
824                 return ELEVATOR_FRONT_MERGE;
825         return ELEVATOR_NO_MERGE;
826 }