]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
13cdccef543ceed95e1af6901a65540deee8e2e1
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return sbitmap_any_bit_set(&hctx->ctx_map) ||
67                         !list_empty_careful(&hctx->dispatch) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99             !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100                 /*
101                  * index[0] counts the specific partition that was asked
102                  * for. index[1] counts the ones that are active on the
103                  * whole device, so increment that if mi->part is indeed
104                  * a partition, and not a whole device.
105                  */
106                 if (rq->part == mi->part)
107                         mi->inflight[0]++;
108                 if (mi->part->partno)
109                         mi->inflight[1]++;
110         }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114                       unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118         inflight[0] = inflight[1] = 0;
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124         int freeze_depth;
125
126         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127         if (freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 blk_mq_run_hw_queues(q, false);
130         }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141                                      unsigned long timeout)
142 {
143         return wait_event_timeout(q->mq_freeze_wq,
144                                         percpu_ref_is_zero(&q->q_usage_counter),
145                                         timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155         /*
156          * In the !blk_mq case we are only calling this to kill the
157          * q_usage_counter, otherwise this increases the freeze depth
158          * and waits for it to return to zero.  For this reason there is
159          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160          * exported to drivers as the only user for unfreeze is blk_mq.
161          */
162         blk_freeze_queue_start(q);
163         blk_mq_freeze_queue_wait(q);
164 }
165
166 void blk_mq_freeze_queue(struct request_queue *q)
167 {
168         /*
169          * ...just an alias to keep freeze and unfreeze actions balanced
170          * in the blk_mq_* namespace
171          */
172         blk_freeze_queue(q);
173 }
174 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175
176 void blk_mq_unfreeze_queue(struct request_queue *q)
177 {
178         int freeze_depth;
179
180         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181         WARN_ON_ONCE(freeze_depth < 0);
182         if (!freeze_depth) {
183                 percpu_ref_reinit(&q->q_usage_counter);
184                 wake_up_all(&q->mq_freeze_wq);
185         }
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188
189 /*
190  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191  * mpt3sas driver such that this function can be removed.
192  */
193 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194 {
195         unsigned long flags;
196
197         spin_lock_irqsave(q->queue_lock, flags);
198         queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199         spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
203 /**
204  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205  * @q: request queue.
206  *
207  * Note: this function does not prevent that the struct request end_io()
208  * callback function is invoked. Once this function is returned, we make
209  * sure no dispatch can happen until the queue is unquiesced via
210  * blk_mq_unquiesce_queue().
211  */
212 void blk_mq_quiesce_queue(struct request_queue *q)
213 {
214         struct blk_mq_hw_ctx *hctx;
215         unsigned int i;
216         bool rcu = false;
217
218         blk_mq_quiesce_queue_nowait(q);
219
220         queue_for_each_hw_ctx(q, hctx, i) {
221                 if (hctx->flags & BLK_MQ_F_BLOCKING)
222                         synchronize_srcu(hctx->queue_rq_srcu);
223                 else
224                         rcu = true;
225         }
226         if (rcu)
227                 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
231 /*
232  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233  * @q: request queue.
234  *
235  * This function recovers queue into the state before quiescing
236  * which is done by blk_mq_quiesce_queue.
237  */
238 void blk_mq_unquiesce_queue(struct request_queue *q)
239 {
240         unsigned long flags;
241
242         spin_lock_irqsave(q->queue_lock, flags);
243         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244         spin_unlock_irqrestore(q->queue_lock, flags);
245
246         /* dispatch requests which are inserted during quiescing */
247         blk_mq_run_hw_queues(q, true);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
251 void blk_mq_wake_waiters(struct request_queue *q)
252 {
253         struct blk_mq_hw_ctx *hctx;
254         unsigned int i;
255
256         queue_for_each_hw_ctx(q, hctx, i)
257                 if (blk_mq_hw_queue_mapped(hctx))
258                         blk_mq_tag_wakeup_all(hctx->tags, true);
259
260         /*
261          * If we are called because the queue has now been marked as
262          * dying, we need to ensure that processes currently waiting on
263          * the queue are notified as well.
264          */
265         wake_up_all(&q->mq_freeze_wq);
266 }
267
268 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
269 {
270         return blk_mq_has_free_tags(hctx->tags);
271 }
272 EXPORT_SYMBOL(blk_mq_can_queue);
273
274 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
275                 unsigned int tag, unsigned int op)
276 {
277         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
278         struct request *rq = tags->static_rqs[tag];
279
280         rq->rq_flags = 0;
281
282         if (data->flags & BLK_MQ_REQ_INTERNAL) {
283                 rq->tag = -1;
284                 rq->internal_tag = tag;
285         } else {
286                 if (blk_mq_tag_busy(data->hctx)) {
287                         rq->rq_flags = RQF_MQ_INFLIGHT;
288                         atomic_inc(&data->hctx->nr_active);
289                 }
290                 rq->tag = tag;
291                 rq->internal_tag = -1;
292                 data->hctx->tags->rqs[rq->tag] = rq;
293         }
294
295         INIT_LIST_HEAD(&rq->queuelist);
296         /* csd/requeue_work/fifo_time is initialized before use */
297         rq->q = data->q;
298         rq->mq_ctx = data->ctx;
299         rq->cmd_flags = op;
300         if (blk_queue_io_stat(data->q))
301                 rq->rq_flags |= RQF_IO_STAT;
302         /* do not touch atomic flags, it needs atomic ops against the timer */
303         rq->cpu = -1;
304         INIT_HLIST_NODE(&rq->hash);
305         RB_CLEAR_NODE(&rq->rb_node);
306         rq->rq_disk = NULL;
307         rq->part = NULL;
308         rq->start_time = jiffies;
309 #ifdef CONFIG_BLK_CGROUP
310         rq->rl = NULL;
311         set_start_time_ns(rq);
312         rq->io_start_time_ns = 0;
313 #endif
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321
322         INIT_LIST_HEAD(&rq->timeout_list);
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327         rq->next_rq = NULL;
328
329         data->ctx->rq_dispatched[op_is_sync(op)]++;
330         return rq;
331 }
332
333 static struct request *blk_mq_get_request(struct request_queue *q,
334                 struct bio *bio, unsigned int op,
335                 struct blk_mq_alloc_data *data)
336 {
337         struct elevator_queue *e = q->elevator;
338         struct request *rq;
339         unsigned int tag;
340         bool put_ctx_on_error = false;
341
342         blk_queue_enter_live(q);
343         data->q = q;
344         if (likely(!data->ctx)) {
345                 data->ctx = blk_mq_get_ctx(q);
346                 put_ctx_on_error = true;
347         }
348         if (likely(!data->hctx))
349                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350         if (op & REQ_NOWAIT)
351                 data->flags |= BLK_MQ_REQ_NOWAIT;
352
353         if (e) {
354                 data->flags |= BLK_MQ_REQ_INTERNAL;
355
356                 /*
357                  * Flush requests are special and go directly to the
358                  * dispatch list.
359                  */
360                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
361                         e->type->ops.mq.limit_depth(op, data);
362         }
363
364         tag = blk_mq_get_tag(data);
365         if (tag == BLK_MQ_TAG_FAIL) {
366                 if (put_ctx_on_error) {
367                         blk_mq_put_ctx(data->ctx);
368                         data->ctx = NULL;
369                 }
370                 blk_queue_exit(q);
371                 return NULL;
372         }
373
374         rq = blk_mq_rq_ctx_init(data, tag, op);
375         if (!op_is_flush(op)) {
376                 rq->elv.icq = NULL;
377                 if (e && e->type->ops.mq.prepare_request) {
378                         if (e->type->icq_cache && rq_ioc(bio))
379                                 blk_mq_sched_assign_ioc(rq, bio);
380
381                         e->type->ops.mq.prepare_request(rq, bio);
382                         rq->rq_flags |= RQF_ELVPRIV;
383                 }
384         }
385         data->hctx->queued++;
386         return rq;
387 }
388
389 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390                 unsigned int flags)
391 {
392         struct blk_mq_alloc_data alloc_data = { .flags = flags };
393         struct request *rq;
394         int ret;
395
396         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397         if (ret)
398                 return ERR_PTR(ret);
399
400         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401         blk_queue_exit(q);
402
403         if (!rq)
404                 return ERR_PTR(-EWOULDBLOCK);
405
406         blk_mq_put_ctx(alloc_data.ctx);
407
408         rq->__data_len = 0;
409         rq->__sector = (sector_t) -1;
410         rq->bio = rq->biotail = NULL;
411         return rq;
412 }
413 EXPORT_SYMBOL(blk_mq_alloc_request);
414
415 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
416                 unsigned int op, unsigned int flags, unsigned int hctx_idx)
417 {
418         struct blk_mq_alloc_data alloc_data = { .flags = flags };
419         struct request *rq;
420         unsigned int cpu;
421         int ret;
422
423         /*
424          * If the tag allocator sleeps we could get an allocation for a
425          * different hardware context.  No need to complicate the low level
426          * allocator for this for the rare use case of a command tied to
427          * a specific queue.
428          */
429         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
430                 return ERR_PTR(-EINVAL);
431
432         if (hctx_idx >= q->nr_hw_queues)
433                 return ERR_PTR(-EIO);
434
435         ret = blk_queue_enter(q, true);
436         if (ret)
437                 return ERR_PTR(ret);
438
439         /*
440          * Check if the hardware context is actually mapped to anything.
441          * If not tell the caller that it should skip this queue.
442          */
443         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
444         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
445                 blk_queue_exit(q);
446                 return ERR_PTR(-EXDEV);
447         }
448         cpu = cpumask_first(alloc_data.hctx->cpumask);
449         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
450
451         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452         blk_queue_exit(q);
453
454         if (!rq)
455                 return ERR_PTR(-EWOULDBLOCK);
456
457         return rq;
458 }
459 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
460
461 void blk_mq_free_request(struct request *rq)
462 {
463         struct request_queue *q = rq->q;
464         struct elevator_queue *e = q->elevator;
465         struct blk_mq_ctx *ctx = rq->mq_ctx;
466         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
467         const int sched_tag = rq->internal_tag;
468
469         if (rq->rq_flags & RQF_ELVPRIV) {
470                 if (e && e->type->ops.mq.finish_request)
471                         e->type->ops.mq.finish_request(rq);
472                 if (rq->elv.icq) {
473                         put_io_context(rq->elv.icq->ioc);
474                         rq->elv.icq = NULL;
475                 }
476         }
477
478         ctx->rq_completed[rq_is_sync(rq)]++;
479         if (rq->rq_flags & RQF_MQ_INFLIGHT)
480                 atomic_dec(&hctx->nr_active);
481
482         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
483                 laptop_io_completion(q->backing_dev_info);
484
485         wbt_done(q->rq_wb, &rq->issue_stat);
486
487         if (blk_rq_rl(rq))
488                 blk_put_rl(blk_rq_rl(rq));
489
490         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492         if (rq->tag != -1)
493                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494         if (sched_tag != -1)
495                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496         blk_mq_sched_restart(hctx);
497         blk_queue_exit(q);
498 }
499 EXPORT_SYMBOL_GPL(blk_mq_free_request);
500
501 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502 {
503         blk_account_io_done(rq);
504
505         if (rq->end_io) {
506                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
507                 rq->end_io(rq, error);
508         } else {
509                 if (unlikely(blk_bidi_rq(rq)))
510                         blk_mq_free_request(rq->next_rq);
511                 blk_mq_free_request(rq);
512         }
513 }
514 EXPORT_SYMBOL(__blk_mq_end_request);
515
516 void blk_mq_end_request(struct request *rq, blk_status_t error)
517 {
518         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
519                 BUG();
520         __blk_mq_end_request(rq, error);
521 }
522 EXPORT_SYMBOL(blk_mq_end_request);
523
524 static void __blk_mq_complete_request_remote(void *data)
525 {
526         struct request *rq = data;
527
528         rq->q->softirq_done_fn(rq);
529 }
530
531 static void __blk_mq_complete_request(struct request *rq)
532 {
533         struct blk_mq_ctx *ctx = rq->mq_ctx;
534         bool shared = false;
535         int cpu;
536
537         if (rq->internal_tag != -1)
538                 blk_mq_sched_completed_request(rq);
539         if (rq->rq_flags & RQF_STATS) {
540                 blk_mq_poll_stats_start(rq->q);
541                 blk_stat_add(rq);
542         }
543
544         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545                 rq->q->softirq_done_fn(rq);
546                 return;
547         }
548
549         cpu = get_cpu();
550         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551                 shared = cpus_share_cache(cpu, ctx->cpu);
552
553         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554                 rq->csd.func = __blk_mq_complete_request_remote;
555                 rq->csd.info = rq;
556                 rq->csd.flags = 0;
557                 smp_call_function_single_async(ctx->cpu, &rq->csd);
558         } else {
559                 rq->q->softirq_done_fn(rq);
560         }
561         put_cpu();
562 }
563
564 /**
565  * blk_mq_complete_request - end I/O on a request
566  * @rq:         the request being processed
567  *
568  * Description:
569  *      Ends all I/O on a request. It does not handle partial completions.
570  *      The actual completion happens out-of-order, through a IPI handler.
571  **/
572 void blk_mq_complete_request(struct request *rq)
573 {
574         struct request_queue *q = rq->q;
575
576         if (unlikely(blk_should_fake_timeout(q)))
577                 return;
578         if (!blk_mark_rq_complete(rq))
579                 __blk_mq_complete_request(rq);
580 }
581 EXPORT_SYMBOL(blk_mq_complete_request);
582
583 int blk_mq_request_started(struct request *rq)
584 {
585         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
586 }
587 EXPORT_SYMBOL_GPL(blk_mq_request_started);
588
589 void blk_mq_start_request(struct request *rq)
590 {
591         struct request_queue *q = rq->q;
592
593         blk_mq_sched_started_request(rq);
594
595         trace_block_rq_issue(q, rq);
596
597         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599                 rq->rq_flags |= RQF_STATS;
600                 wbt_issue(q->rq_wb, &rq->issue_stat);
601         }
602
603         blk_add_timer(rq);
604
605         WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606
607         /*
608          * Mark us as started and clear complete. Complete might have been
609          * set if requeue raced with timeout, which then marked it as
610          * complete. So be sure to clear complete again when we start
611          * the request, otherwise we'll ignore the completion event.
612          *
613          * Ensure that ->deadline is visible before we set STARTED, such that
614          * blk_mq_check_expired() is guaranteed to observe our ->deadline when
615          * it observes STARTED.
616          */
617         smp_wmb();
618         set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
619         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
620                 /*
621                  * Coherence order guarantees these consecutive stores to a
622                  * single variable propagate in the specified order. Thus the
623                  * clear_bit() is ordered _after_ the set bit. See
624                  * blk_mq_check_expired().
625                  *
626                  * (the bits must be part of the same byte for this to be
627                  * true).
628                  */
629                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630         }
631
632         if (q->dma_drain_size && blk_rq_bytes(rq)) {
633                 /*
634                  * Make sure space for the drain appears.  We know we can do
635                  * this because max_hw_segments has been adjusted to be one
636                  * fewer than the device can handle.
637                  */
638                 rq->nr_phys_segments++;
639         }
640 }
641 EXPORT_SYMBOL(blk_mq_start_request);
642
643 /*
644  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645  * flag isn't set yet, so there may be race with timeout handler,
646  * but given rq->deadline is just set in .queue_rq() under
647  * this situation, the race won't be possible in reality because
648  * rq->timeout should be set as big enough to cover the window
649  * between blk_mq_start_request() called from .queue_rq() and
650  * clearing REQ_ATOM_STARTED here.
651  */
652 static void __blk_mq_requeue_request(struct request *rq)
653 {
654         struct request_queue *q = rq->q;
655
656         trace_block_rq_requeue(q, rq);
657         wbt_requeue(q->rq_wb, &rq->issue_stat);
658         blk_mq_sched_requeue_request(rq);
659
660         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
661                 if (q->dma_drain_size && blk_rq_bytes(rq))
662                         rq->nr_phys_segments--;
663         }
664 }
665
666 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 {
668         __blk_mq_requeue_request(rq);
669
670         BUG_ON(blk_queued_rq(rq));
671         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 }
673 EXPORT_SYMBOL(blk_mq_requeue_request);
674
675 static void blk_mq_requeue_work(struct work_struct *work)
676 {
677         struct request_queue *q =
678                 container_of(work, struct request_queue, requeue_work.work);
679         LIST_HEAD(rq_list);
680         struct request *rq, *next;
681
682         spin_lock_irq(&q->requeue_lock);
683         list_splice_init(&q->requeue_list, &rq_list);
684         spin_unlock_irq(&q->requeue_lock);
685
686         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
688                         continue;
689
690                 rq->rq_flags &= ~RQF_SOFTBARRIER;
691                 list_del_init(&rq->queuelist);
692                 blk_mq_sched_insert_request(rq, true, false, false, true);
693         }
694
695         while (!list_empty(&rq_list)) {
696                 rq = list_entry(rq_list.next, struct request, queuelist);
697                 list_del_init(&rq->queuelist);
698                 blk_mq_sched_insert_request(rq, false, false, false, true);
699         }
700
701         blk_mq_run_hw_queues(q, false);
702 }
703
704 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
705                                 bool kick_requeue_list)
706 {
707         struct request_queue *q = rq->q;
708         unsigned long flags;
709
710         /*
711          * We abuse this flag that is otherwise used by the I/O scheduler to
712          * request head insertation from the workqueue.
713          */
714         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715
716         spin_lock_irqsave(&q->requeue_lock, flags);
717         if (at_head) {
718                 rq->rq_flags |= RQF_SOFTBARRIER;
719                 list_add(&rq->queuelist, &q->requeue_list);
720         } else {
721                 list_add_tail(&rq->queuelist, &q->requeue_list);
722         }
723         spin_unlock_irqrestore(&q->requeue_lock, flags);
724
725         if (kick_requeue_list)
726                 blk_mq_kick_requeue_list(q);
727 }
728 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
729
730 void blk_mq_kick_requeue_list(struct request_queue *q)
731 {
732         kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 }
734 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
735
736 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
737                                     unsigned long msecs)
738 {
739         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
740                                     msecs_to_jiffies(msecs));
741 }
742 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
743
744 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
745 {
746         if (tag < tags->nr_tags) {
747                 prefetch(tags->rqs[tag]);
748                 return tags->rqs[tag];
749         }
750
751         return NULL;
752 }
753 EXPORT_SYMBOL(blk_mq_tag_to_rq);
754
755 struct blk_mq_timeout_data {
756         unsigned long next;
757         unsigned int next_set;
758 };
759
760 void blk_mq_rq_timed_out(struct request *req, bool reserved)
761 {
762         const struct blk_mq_ops *ops = req->q->mq_ops;
763         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764
765         /*
766          * We know that complete is set at this point. If STARTED isn't set
767          * anymore, then the request isn't active and the "timeout" should
768          * just be ignored. This can happen due to the bitflag ordering.
769          * Timeout first checks if STARTED is set, and if it is, assumes
770          * the request is active. But if we race with completion, then
771          * both flags will get cleared. So check here again, and ignore
772          * a timeout event with a request that isn't active.
773          */
774         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
775                 return;
776
777         if (ops->timeout)
778                 ret = ops->timeout(req, reserved);
779
780         switch (ret) {
781         case BLK_EH_HANDLED:
782                 __blk_mq_complete_request(req);
783                 break;
784         case BLK_EH_RESET_TIMER:
785                 blk_add_timer(req);
786                 blk_clear_rq_complete(req);
787                 break;
788         case BLK_EH_NOT_HANDLED:
789                 break;
790         default:
791                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
792                 break;
793         }
794 }
795
796 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
797                 struct request *rq, void *priv, bool reserved)
798 {
799         struct blk_mq_timeout_data *data = priv;
800         unsigned long deadline;
801
802         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803                 return;
804
805         /*
806          * Ensures that if we see STARTED we must also see our
807          * up-to-date deadline, see blk_mq_start_request().
808          */
809         smp_rmb();
810
811         deadline = READ_ONCE(rq->deadline);
812
813         /*
814          * The rq being checked may have been freed and reallocated
815          * out already here, we avoid this race by checking rq->deadline
816          * and REQ_ATOM_COMPLETE flag together:
817          *
818          * - if rq->deadline is observed as new value because of
819          *   reusing, the rq won't be timed out because of timing.
820          * - if rq->deadline is observed as previous value,
821          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
822          *   because we put a barrier between setting rq->deadline
823          *   and clearing the flag in blk_mq_start_request(), so
824          *   this rq won't be timed out too.
825          */
826         if (time_after_eq(jiffies, deadline)) {
827                 if (!blk_mark_rq_complete(rq)) {
828                         /*
829                          * Again coherence order ensures that consecutive reads
830                          * from the same variable must be in that order. This
831                          * ensures that if we see COMPLETE clear, we must then
832                          * see STARTED set and we'll ignore this timeout.
833                          *
834                          * (There's also the MB implied by the test_and_clear())
835                          */
836                         blk_mq_rq_timed_out(rq, reserved);
837                 }
838         } else if (!data->next_set || time_after(data->next, deadline)) {
839                 data->next = deadline;
840                 data->next_set = 1;
841         }
842 }
843
844 static void blk_mq_timeout_work(struct work_struct *work)
845 {
846         struct request_queue *q =
847                 container_of(work, struct request_queue, timeout_work);
848         struct blk_mq_timeout_data data = {
849                 .next           = 0,
850                 .next_set       = 0,
851         };
852         int i;
853
854         /* A deadlock might occur if a request is stuck requiring a
855          * timeout at the same time a queue freeze is waiting
856          * completion, since the timeout code would not be able to
857          * acquire the queue reference here.
858          *
859          * That's why we don't use blk_queue_enter here; instead, we use
860          * percpu_ref_tryget directly, because we need to be able to
861          * obtain a reference even in the short window between the queue
862          * starting to freeze, by dropping the first reference in
863          * blk_freeze_queue_start, and the moment the last request is
864          * consumed, marked by the instant q_usage_counter reaches
865          * zero.
866          */
867         if (!percpu_ref_tryget(&q->q_usage_counter))
868                 return;
869
870         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871
872         if (data.next_set) {
873                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
874                 mod_timer(&q->timeout, data.next);
875         } else {
876                 struct blk_mq_hw_ctx *hctx;
877
878                 queue_for_each_hw_ctx(q, hctx, i) {
879                         /* the hctx may be unmapped, so check it here */
880                         if (blk_mq_hw_queue_mapped(hctx))
881                                 blk_mq_tag_idle(hctx);
882                 }
883         }
884         blk_queue_exit(q);
885 }
886
887 struct flush_busy_ctx_data {
888         struct blk_mq_hw_ctx *hctx;
889         struct list_head *list;
890 };
891
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894         struct flush_busy_ctx_data *flush_data = data;
895         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897
898         sbitmap_clear_bit(sb, bitnr);
899         spin_lock(&ctx->lock);
900         list_splice_tail_init(&ctx->rq_list, flush_data->list);
901         spin_unlock(&ctx->lock);
902         return true;
903 }
904
905 /*
906  * Process software queues that have been marked busy, splicing them
907  * to the for-dispatch
908  */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911         struct flush_busy_ctx_data data = {
912                 .hctx = hctx,
913                 .list = list,
914         };
915
916         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919
920 struct dispatch_rq_data {
921         struct blk_mq_hw_ctx *hctx;
922         struct request *rq;
923 };
924
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926                 void *data)
927 {
928         struct dispatch_rq_data *dispatch_data = data;
929         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931
932         spin_lock(&ctx->lock);
933         if (unlikely(!list_empty(&ctx->rq_list))) {
934                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935                 list_del_init(&dispatch_data->rq->queuelist);
936                 if (list_empty(&ctx->rq_list))
937                         sbitmap_clear_bit(sb, bitnr);
938         }
939         spin_unlock(&ctx->lock);
940
941         return !dispatch_data->rq;
942 }
943
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945                                         struct blk_mq_ctx *start)
946 {
947         unsigned off = start ? start->index_hw : 0;
948         struct dispatch_rq_data data = {
949                 .hctx = hctx,
950                 .rq   = NULL,
951         };
952
953         __sbitmap_for_each_set(&hctx->ctx_map, off,
954                                dispatch_rq_from_ctx, &data);
955
956         return data.rq;
957 }
958
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961         if (!queued)
962                 return 0;
963
964         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968                            bool wait)
969 {
970         struct blk_mq_alloc_data data = {
971                 .q = rq->q,
972                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974         };
975
976         might_sleep_if(wait);
977
978         if (rq->tag != -1)
979                 goto done;
980
981         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982                 data.flags |= BLK_MQ_REQ_RESERVED;
983
984         rq->tag = blk_mq_get_tag(&data);
985         if (rq->tag >= 0) {
986                 if (blk_mq_tag_busy(data.hctx)) {
987                         rq->rq_flags |= RQF_MQ_INFLIGHT;
988                         atomic_inc(&data.hctx->nr_active);
989                 }
990                 data.hctx->tags->rqs[rq->tag] = rq;
991         }
992
993 done:
994         if (hctx)
995                 *hctx = data.hctx;
996         return rq->tag != -1;
997 }
998
999 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
1000                                     struct request *rq)
1001 {
1002         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
1003         rq->tag = -1;
1004
1005         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
1006                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
1007                 atomic_dec(&hctx->nr_active);
1008         }
1009 }
1010
1011 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
1012                                        struct request *rq)
1013 {
1014         if (rq->tag == -1 || rq->internal_tag == -1)
1015                 return;
1016
1017         __blk_mq_put_driver_tag(hctx, rq);
1018 }
1019
1020 static void blk_mq_put_driver_tag(struct request *rq)
1021 {
1022         struct blk_mq_hw_ctx *hctx;
1023
1024         if (rq->tag == -1 || rq->internal_tag == -1)
1025                 return;
1026
1027         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1028         __blk_mq_put_driver_tag(hctx, rq);
1029 }
1030
1031 /*
1032  * If we fail getting a driver tag because all the driver tags are already
1033  * assigned and on the dispatch list, BUT the first entry does not have a
1034  * tag, then we could deadlock. For that case, move entries with assigned
1035  * driver tags to the front, leaving the set of tagged requests in the
1036  * same order, and the untagged set in the same order.
1037  */
1038 static bool reorder_tags_to_front(struct list_head *list)
1039 {
1040         struct request *rq, *tmp, *first = NULL;
1041
1042         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1043                 if (rq == first)
1044                         break;
1045                 if (rq->tag != -1) {
1046                         list_move(&rq->queuelist, list);
1047                         if (!first)
1048                                 first = rq;
1049                 }
1050         }
1051
1052         return first != NULL;
1053 }
1054
1055 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1056                                 void *key)
1057 {
1058         struct blk_mq_hw_ctx *hctx;
1059
1060         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1061
1062         list_del(&wait->entry);
1063         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1064         blk_mq_run_hw_queue(hctx, true);
1065         return 1;
1066 }
1067
1068 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1069 {
1070         struct sbq_wait_state *ws;
1071
1072         /*
1073          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1074          * The thread which wins the race to grab this bit adds the hardware
1075          * queue to the wait queue.
1076          */
1077         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1078             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1079                 return false;
1080
1081         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1082         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1083
1084         /*
1085          * As soon as this returns, it's no longer safe to fiddle with
1086          * hctx->dispatch_wait, since a completion can wake up the wait queue
1087          * and unlock the bit.
1088          */
1089         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1090         return true;
1091 }
1092
1093 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1094                 bool got_budget)
1095 {
1096         struct blk_mq_hw_ctx *hctx;
1097         struct request *rq;
1098         int errors, queued;
1099
1100         if (list_empty(list))
1101                 return false;
1102
1103         WARN_ON(!list_is_singular(list) && got_budget);
1104
1105         /*
1106          * Now process all the entries, sending them to the driver.
1107          */
1108         errors = queued = 0;
1109         do {
1110                 struct blk_mq_queue_data bd;
1111                 blk_status_t ret;
1112
1113                 rq = list_first_entry(list, struct request, queuelist);
1114                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1115                         if (!queued && reorder_tags_to_front(list))
1116                                 continue;
1117
1118                         /*
1119                          * The initial allocation attempt failed, so we need to
1120                          * rerun the hardware queue when a tag is freed.
1121                          */
1122                         if (!blk_mq_dispatch_wait_add(hctx)) {
1123                                 if (got_budget)
1124                                         blk_mq_put_dispatch_budget(hctx);
1125                                 break;
1126                         }
1127
1128                         /*
1129                          * It's possible that a tag was freed in the window
1130                          * between the allocation failure and adding the
1131                          * hardware queue to the wait queue.
1132                          */
1133                         if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1134                                 if (got_budget)
1135                                         blk_mq_put_dispatch_budget(hctx);
1136                                 break;
1137                         }
1138                 }
1139
1140                 if (!got_budget) {
1141                         ret = blk_mq_get_dispatch_budget(hctx);
1142                         if (ret == BLK_STS_RESOURCE)
1143                                 break;
1144                         if (ret != BLK_STS_OK)
1145                                 goto fail_rq;
1146                 }
1147
1148                 list_del_init(&rq->queuelist);
1149
1150                 bd.rq = rq;
1151
1152                 /*
1153                  * Flag last if we have no more requests, or if we have more
1154                  * but can't assign a driver tag to it.
1155                  */
1156                 if (list_empty(list))
1157                         bd.last = true;
1158                 else {
1159                         struct request *nxt;
1160
1161                         nxt = list_first_entry(list, struct request, queuelist);
1162                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1163                 }
1164
1165                 ret = q->mq_ops->queue_rq(hctx, &bd);
1166                 if (ret == BLK_STS_RESOURCE) {
1167                         blk_mq_put_driver_tag_hctx(hctx, rq);
1168                         list_add(&rq->queuelist, list);
1169                         __blk_mq_requeue_request(rq);
1170                         break;
1171                 }
1172
1173  fail_rq:
1174                 if (unlikely(ret != BLK_STS_OK)) {
1175                         errors++;
1176                         blk_mq_end_request(rq, BLK_STS_IOERR);
1177                         continue;
1178                 }
1179
1180                 queued++;
1181         } while (!list_empty(list));
1182
1183         hctx->dispatched[queued_to_index(queued)]++;
1184
1185         /*
1186          * Any items that need requeuing? Stuff them into hctx->dispatch,
1187          * that is where we will continue on next queue run.
1188          */
1189         if (!list_empty(list)) {
1190                 /*
1191                  * If an I/O scheduler has been configured and we got a driver
1192                  * tag for the next request already, free it again.
1193                  */
1194                 rq = list_first_entry(list, struct request, queuelist);
1195                 blk_mq_put_driver_tag(rq);
1196
1197                 spin_lock(&hctx->lock);
1198                 list_splice_init(list, &hctx->dispatch);
1199                 spin_unlock(&hctx->lock);
1200
1201                 /*
1202                  * If SCHED_RESTART was set by the caller of this function and
1203                  * it is no longer set that means that it was cleared by another
1204                  * thread and hence that a queue rerun is needed.
1205                  *
1206                  * If TAG_WAITING is set that means that an I/O scheduler has
1207                  * been configured and another thread is waiting for a driver
1208                  * tag. To guarantee fairness, do not rerun this hardware queue
1209                  * but let the other thread grab the driver tag.
1210                  *
1211                  * If no I/O scheduler has been configured it is possible that
1212                  * the hardware queue got stopped and restarted before requests
1213                  * were pushed back onto the dispatch list. Rerun the queue to
1214                  * avoid starvation. Notes:
1215                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1216                  *   been stopped before rerunning a queue.
1217                  * - Some but not all block drivers stop a queue before
1218                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1219                  *   and dm-rq.
1220                  */
1221                 if (!blk_mq_sched_needs_restart(hctx) &&
1222                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1223                         blk_mq_run_hw_queue(hctx, true);
1224         }
1225
1226         return (queued + errors) != 0;
1227 }
1228
1229 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1230 {
1231         int srcu_idx;
1232
1233         /*
1234          * We should be running this queue from one of the CPUs that
1235          * are mapped to it.
1236          */
1237         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1238                 cpu_online(hctx->next_cpu));
1239
1240         /*
1241          * We can't run the queue inline with ints disabled. Ensure that
1242          * we catch bad users of this early.
1243          */
1244         WARN_ON_ONCE(in_interrupt());
1245
1246         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1247                 rcu_read_lock();
1248                 blk_mq_sched_dispatch_requests(hctx);
1249                 rcu_read_unlock();
1250         } else {
1251                 might_sleep();
1252
1253                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1254                 blk_mq_sched_dispatch_requests(hctx);
1255                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1256         }
1257 }
1258
1259 /*
1260  * It'd be great if the workqueue API had a way to pass
1261  * in a mask and had some smarts for more clever placement.
1262  * For now we just round-robin here, switching for every
1263  * BLK_MQ_CPU_WORK_BATCH queued items.
1264  */
1265 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1266 {
1267         if (hctx->queue->nr_hw_queues == 1)
1268                 return WORK_CPU_UNBOUND;
1269
1270         if (--hctx->next_cpu_batch <= 0) {
1271                 int next_cpu;
1272
1273                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1274                 if (next_cpu >= nr_cpu_ids)
1275                         next_cpu = cpumask_first(hctx->cpumask);
1276
1277                 hctx->next_cpu = next_cpu;
1278                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1279         }
1280
1281         return hctx->next_cpu;
1282 }
1283
1284 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1285                                         unsigned long msecs)
1286 {
1287         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1288                 return;
1289
1290         if (unlikely(blk_mq_hctx_stopped(hctx)))
1291                 return;
1292
1293         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1294                 int cpu = get_cpu();
1295                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1296                         __blk_mq_run_hw_queue(hctx);
1297                         put_cpu();
1298                         return;
1299                 }
1300
1301                 put_cpu();
1302         }
1303
1304         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1305                                          &hctx->run_work,
1306                                          msecs_to_jiffies(msecs));
1307 }
1308
1309 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1310 {
1311         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1312 }
1313 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1314
1315 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1316 {
1317         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1318 }
1319 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1320
1321 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1322 {
1323         struct blk_mq_hw_ctx *hctx;
1324         int i;
1325
1326         queue_for_each_hw_ctx(q, hctx, i) {
1327                 if (!blk_mq_hctx_has_pending(hctx) ||
1328                     blk_mq_hctx_stopped(hctx))
1329                         continue;
1330
1331                 blk_mq_run_hw_queue(hctx, async);
1332         }
1333 }
1334 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1335
1336 /**
1337  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1338  * @q: request queue.
1339  *
1340  * The caller is responsible for serializing this function against
1341  * blk_mq_{start,stop}_hw_queue().
1342  */
1343 bool blk_mq_queue_stopped(struct request_queue *q)
1344 {
1345         struct blk_mq_hw_ctx *hctx;
1346         int i;
1347
1348         queue_for_each_hw_ctx(q, hctx, i)
1349                 if (blk_mq_hctx_stopped(hctx))
1350                         return true;
1351
1352         return false;
1353 }
1354 EXPORT_SYMBOL(blk_mq_queue_stopped);
1355
1356 /*
1357  * This function is often used for pausing .queue_rq() by driver when
1358  * there isn't enough resource or some conditions aren't satisfied, and
1359  * BLK_STS_RESOURCE is usually returned.
1360  *
1361  * We do not guarantee that dispatch can be drained or blocked
1362  * after blk_mq_stop_hw_queue() returns. Please use
1363  * blk_mq_quiesce_queue() for that requirement.
1364  */
1365 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1366 {
1367         cancel_delayed_work(&hctx->run_work);
1368
1369         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1370 }
1371 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1372
1373 /*
1374  * This function is often used for pausing .queue_rq() by driver when
1375  * there isn't enough resource or some conditions aren't satisfied, and
1376  * BLK_STS_RESOURCE is usually returned.
1377  *
1378  * We do not guarantee that dispatch can be drained or blocked
1379  * after blk_mq_stop_hw_queues() returns. Please use
1380  * blk_mq_quiesce_queue() for that requirement.
1381  */
1382 void blk_mq_stop_hw_queues(struct request_queue *q)
1383 {
1384         struct blk_mq_hw_ctx *hctx;
1385         int i;
1386
1387         queue_for_each_hw_ctx(q, hctx, i)
1388                 blk_mq_stop_hw_queue(hctx);
1389 }
1390 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1391
1392 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1393 {
1394         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1395
1396         blk_mq_run_hw_queue(hctx, false);
1397 }
1398 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1399
1400 void blk_mq_start_hw_queues(struct request_queue *q)
1401 {
1402         struct blk_mq_hw_ctx *hctx;
1403         int i;
1404
1405         queue_for_each_hw_ctx(q, hctx, i)
1406                 blk_mq_start_hw_queue(hctx);
1407 }
1408 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1409
1410 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1411 {
1412         if (!blk_mq_hctx_stopped(hctx))
1413                 return;
1414
1415         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1416         blk_mq_run_hw_queue(hctx, async);
1417 }
1418 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1419
1420 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1421 {
1422         struct blk_mq_hw_ctx *hctx;
1423         int i;
1424
1425         queue_for_each_hw_ctx(q, hctx, i)
1426                 blk_mq_start_stopped_hw_queue(hctx, async);
1427 }
1428 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1429
1430 static void blk_mq_run_work_fn(struct work_struct *work)
1431 {
1432         struct blk_mq_hw_ctx *hctx;
1433
1434         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1435
1436         /*
1437          * If we are stopped, don't run the queue. The exception is if
1438          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1439          * the STOPPED bit and run it.
1440          */
1441         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1442                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1443                         return;
1444
1445                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1446                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1447         }
1448
1449         __blk_mq_run_hw_queue(hctx);
1450 }
1451
1452
1453 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1454 {
1455         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1456                 return;
1457
1458         /*
1459          * Stop the hw queue, then modify currently delayed work.
1460          * This should prevent us from running the queue prematurely.
1461          * Mark the queue as auto-clearing STOPPED when it runs.
1462          */
1463         blk_mq_stop_hw_queue(hctx);
1464         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1465         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1466                                         &hctx->run_work,
1467                                         msecs_to_jiffies(msecs));
1468 }
1469 EXPORT_SYMBOL(blk_mq_delay_queue);
1470
1471 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1472                                             struct request *rq,
1473                                             bool at_head)
1474 {
1475         struct blk_mq_ctx *ctx = rq->mq_ctx;
1476
1477         lockdep_assert_held(&ctx->lock);
1478
1479         trace_block_rq_insert(hctx->queue, rq);
1480
1481         if (at_head)
1482                 list_add(&rq->queuelist, &ctx->rq_list);
1483         else
1484                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1485 }
1486
1487 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1488                              bool at_head)
1489 {
1490         struct blk_mq_ctx *ctx = rq->mq_ctx;
1491
1492         lockdep_assert_held(&ctx->lock);
1493
1494         __blk_mq_insert_req_list(hctx, rq, at_head);
1495         blk_mq_hctx_mark_pending(hctx, ctx);
1496 }
1497
1498 /*
1499  * Should only be used carefully, when the caller knows we want to
1500  * bypass a potential IO scheduler on the target device.
1501  */
1502 void blk_mq_request_bypass_insert(struct request *rq)
1503 {
1504         struct blk_mq_ctx *ctx = rq->mq_ctx;
1505         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1506
1507         spin_lock(&hctx->lock);
1508         list_add_tail(&rq->queuelist, &hctx->dispatch);
1509         spin_unlock(&hctx->lock);
1510
1511         blk_mq_run_hw_queue(hctx, false);
1512 }
1513
1514 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1515                             struct list_head *list)
1516
1517 {
1518         /*
1519          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1520          * offline now
1521          */
1522         spin_lock(&ctx->lock);
1523         while (!list_empty(list)) {
1524                 struct request *rq;
1525
1526                 rq = list_first_entry(list, struct request, queuelist);
1527                 BUG_ON(rq->mq_ctx != ctx);
1528                 list_del_init(&rq->queuelist);
1529                 __blk_mq_insert_req_list(hctx, rq, false);
1530         }
1531         blk_mq_hctx_mark_pending(hctx, ctx);
1532         spin_unlock(&ctx->lock);
1533 }
1534
1535 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1536 {
1537         struct request *rqa = container_of(a, struct request, queuelist);
1538         struct request *rqb = container_of(b, struct request, queuelist);
1539
1540         return !(rqa->mq_ctx < rqb->mq_ctx ||
1541                  (rqa->mq_ctx == rqb->mq_ctx &&
1542                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1543 }
1544
1545 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1546 {
1547         struct blk_mq_ctx *this_ctx;
1548         struct request_queue *this_q;
1549         struct request *rq;
1550         LIST_HEAD(list);
1551         LIST_HEAD(ctx_list);
1552         unsigned int depth;
1553
1554         list_splice_init(&plug->mq_list, &list);
1555
1556         list_sort(NULL, &list, plug_ctx_cmp);
1557
1558         this_q = NULL;
1559         this_ctx = NULL;
1560         depth = 0;
1561
1562         while (!list_empty(&list)) {
1563                 rq = list_entry_rq(list.next);
1564                 list_del_init(&rq->queuelist);
1565                 BUG_ON(!rq->q);
1566                 if (rq->mq_ctx != this_ctx) {
1567                         if (this_ctx) {
1568                                 trace_block_unplug(this_q, depth, from_schedule);
1569                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1570                                                                 &ctx_list,
1571                                                                 from_schedule);
1572                         }
1573
1574                         this_ctx = rq->mq_ctx;
1575                         this_q = rq->q;
1576                         depth = 0;
1577                 }
1578
1579                 depth++;
1580                 list_add_tail(&rq->queuelist, &ctx_list);
1581         }
1582
1583         /*
1584          * If 'this_ctx' is set, we know we have entries to complete
1585          * on 'ctx_list'. Do those.
1586          */
1587         if (this_ctx) {
1588                 trace_block_unplug(this_q, depth, from_schedule);
1589                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1590                                                 from_schedule);
1591         }
1592 }
1593
1594 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1595 {
1596         blk_init_request_from_bio(rq, bio);
1597
1598         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1599
1600         blk_account_io_start(rq, true);
1601 }
1602
1603 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1604                                    struct blk_mq_ctx *ctx,
1605                                    struct request *rq)
1606 {
1607         spin_lock(&ctx->lock);
1608         __blk_mq_insert_request(hctx, rq, false);
1609         spin_unlock(&ctx->lock);
1610 }
1611
1612 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1613 {
1614         if (rq->tag != -1)
1615                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1616
1617         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1618 }
1619
1620 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1621                                         struct request *rq,
1622                                         blk_qc_t *cookie, bool may_sleep)
1623 {
1624         struct request_queue *q = rq->q;
1625         struct blk_mq_queue_data bd = {
1626                 .rq = rq,
1627                 .last = true,
1628         };
1629         blk_qc_t new_cookie;
1630         blk_status_t ret;
1631         bool run_queue = true;
1632
1633         /* RCU or SRCU read lock is needed before checking quiesced flag */
1634         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1635                 run_queue = false;
1636                 goto insert;
1637         }
1638
1639         if (q->elevator)
1640                 goto insert;
1641
1642         if (!blk_mq_get_driver_tag(rq, NULL, false))
1643                 goto insert;
1644
1645         ret = blk_mq_get_dispatch_budget(hctx);
1646         if (ret == BLK_STS_RESOURCE) {
1647                 blk_mq_put_driver_tag(rq);
1648                 goto insert;
1649         } else if (ret != BLK_STS_OK)
1650                 goto fail_rq;
1651
1652         new_cookie = request_to_qc_t(hctx, rq);
1653
1654         /*
1655          * For OK queue, we are done. For error, kill it. Any other
1656          * error (busy), just add it to our list as we previously
1657          * would have done
1658          */
1659         ret = q->mq_ops->queue_rq(hctx, &bd);
1660         switch (ret) {
1661         case BLK_STS_OK:
1662                 *cookie = new_cookie;
1663                 return;
1664         case BLK_STS_RESOURCE:
1665                 __blk_mq_requeue_request(rq);
1666                 goto insert;
1667         default:
1668  fail_rq:
1669                 *cookie = BLK_QC_T_NONE;
1670                 blk_mq_end_request(rq, ret);
1671                 return;
1672         }
1673
1674 insert:
1675         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1676 }
1677
1678 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1679                 struct request *rq, blk_qc_t *cookie)
1680 {
1681         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1682                 rcu_read_lock();
1683                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1684                 rcu_read_unlock();
1685         } else {
1686                 unsigned int srcu_idx;
1687
1688                 might_sleep();
1689
1690                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1691                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1692                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1693         }
1694 }
1695
1696 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1697 {
1698         const int is_sync = op_is_sync(bio->bi_opf);
1699         const int is_flush_fua = op_is_flush(bio->bi_opf);
1700         struct blk_mq_alloc_data data = { .flags = 0 };
1701         struct request *rq;
1702         unsigned int request_count = 0;
1703         struct blk_plug *plug;
1704         struct request *same_queue_rq = NULL;
1705         blk_qc_t cookie;
1706         unsigned int wb_acct;
1707
1708         blk_queue_bounce(q, &bio);
1709
1710         blk_queue_split(q, &bio);
1711
1712         if (!bio_integrity_prep(bio))
1713                 return BLK_QC_T_NONE;
1714
1715         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1716             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1717                 return BLK_QC_T_NONE;
1718
1719         if (blk_mq_sched_bio_merge(q, bio))
1720                 return BLK_QC_T_NONE;
1721
1722         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1723
1724         trace_block_getrq(q, bio, bio->bi_opf);
1725
1726         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1727         if (unlikely(!rq)) {
1728                 __wbt_done(q->rq_wb, wb_acct);
1729                 if (bio->bi_opf & REQ_NOWAIT)
1730                         bio_wouldblock_error(bio);
1731                 return BLK_QC_T_NONE;
1732         }
1733
1734         wbt_track(&rq->issue_stat, wb_acct);
1735
1736         cookie = request_to_qc_t(data.hctx, rq);
1737
1738         plug = current->plug;
1739         if (unlikely(is_flush_fua)) {
1740                 blk_mq_put_ctx(data.ctx);
1741                 blk_mq_bio_to_request(rq, bio);
1742                 if (q->elevator) {
1743                         blk_mq_sched_insert_request(rq, false, true, true,
1744                                         true);
1745                 } else {
1746                         blk_insert_flush(rq);
1747                         blk_mq_run_hw_queue(data.hctx, true);
1748                 }
1749         } else if (plug && q->nr_hw_queues == 1) {
1750                 struct request *last = NULL;
1751
1752                 blk_mq_put_ctx(data.ctx);
1753                 blk_mq_bio_to_request(rq, bio);
1754
1755                 /*
1756                  * @request_count may become stale because of schedule
1757                  * out, so check the list again.
1758                  */
1759                 if (list_empty(&plug->mq_list))
1760                         request_count = 0;
1761                 else if (blk_queue_nomerges(q))
1762                         request_count = blk_plug_queued_count(q);
1763
1764                 if (!request_count)
1765                         trace_block_plug(q);
1766                 else
1767                         last = list_entry_rq(plug->mq_list.prev);
1768
1769                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1770                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1771                         blk_flush_plug_list(plug, false);
1772                         trace_block_plug(q);
1773                 }
1774
1775                 list_add_tail(&rq->queuelist, &plug->mq_list);
1776         } else if (plug && !blk_queue_nomerges(q)) {
1777                 blk_mq_bio_to_request(rq, bio);
1778
1779                 /*
1780                  * We do limited plugging. If the bio can be merged, do that.
1781                  * Otherwise the existing request in the plug list will be
1782                  * issued. So the plug list will have one request at most
1783                  * The plug list might get flushed before this. If that happens,
1784                  * the plug list is empty, and same_queue_rq is invalid.
1785                  */
1786                 if (list_empty(&plug->mq_list))
1787                         same_queue_rq = NULL;
1788                 if (same_queue_rq)
1789                         list_del_init(&same_queue_rq->queuelist);
1790                 list_add_tail(&rq->queuelist, &plug->mq_list);
1791
1792                 blk_mq_put_ctx(data.ctx);
1793
1794                 if (same_queue_rq) {
1795                         data.hctx = blk_mq_map_queue(q,
1796                                         same_queue_rq->mq_ctx->cpu);
1797                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1798                                         &cookie);
1799                 }
1800         } else if (q->nr_hw_queues > 1 && is_sync) {
1801                 blk_mq_put_ctx(data.ctx);
1802                 blk_mq_bio_to_request(rq, bio);
1803                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1804         } else if (q->elevator) {
1805                 blk_mq_put_ctx(data.ctx);
1806                 blk_mq_bio_to_request(rq, bio);
1807                 blk_mq_sched_insert_request(rq, false, true, true, true);
1808         } else {
1809                 blk_mq_put_ctx(data.ctx);
1810                 blk_mq_bio_to_request(rq, bio);
1811                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1812                 blk_mq_run_hw_queue(data.hctx, true);
1813         }
1814
1815         return cookie;
1816 }
1817
1818 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1819                      unsigned int hctx_idx)
1820 {
1821         struct page *page;
1822
1823         if (tags->rqs && set->ops->exit_request) {
1824                 int i;
1825
1826                 for (i = 0; i < tags->nr_tags; i++) {
1827                         struct request *rq = tags->static_rqs[i];
1828
1829                         if (!rq)
1830                                 continue;
1831                         set->ops->exit_request(set, rq, hctx_idx);
1832                         tags->static_rqs[i] = NULL;
1833                 }
1834         }
1835
1836         while (!list_empty(&tags->page_list)) {
1837                 page = list_first_entry(&tags->page_list, struct page, lru);
1838                 list_del_init(&page->lru);
1839                 /*
1840                  * Remove kmemleak object previously allocated in
1841                  * blk_mq_init_rq_map().
1842                  */
1843                 kmemleak_free(page_address(page));
1844                 __free_pages(page, page->private);
1845         }
1846 }
1847
1848 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1849 {
1850         kfree(tags->rqs);
1851         tags->rqs = NULL;
1852         kfree(tags->static_rqs);
1853         tags->static_rqs = NULL;
1854
1855         blk_mq_free_tags(tags);
1856 }
1857
1858 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1859                                         unsigned int hctx_idx,
1860                                         unsigned int nr_tags,
1861                                         unsigned int reserved_tags)
1862 {
1863         struct blk_mq_tags *tags;
1864         int node;
1865
1866         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1867         if (node == NUMA_NO_NODE)
1868                 node = set->numa_node;
1869
1870         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1871                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1872         if (!tags)
1873                 return NULL;
1874
1875         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1876                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1877                                  node);
1878         if (!tags->rqs) {
1879                 blk_mq_free_tags(tags);
1880                 return NULL;
1881         }
1882
1883         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1884                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1885                                  node);
1886         if (!tags->static_rqs) {
1887                 kfree(tags->rqs);
1888                 blk_mq_free_tags(tags);
1889                 return NULL;
1890         }
1891
1892         return tags;
1893 }
1894
1895 static size_t order_to_size(unsigned int order)
1896 {
1897         return (size_t)PAGE_SIZE << order;
1898 }
1899
1900 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1901                      unsigned int hctx_idx, unsigned int depth)
1902 {
1903         unsigned int i, j, entries_per_page, max_order = 4;
1904         size_t rq_size, left;
1905         int node;
1906
1907         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1908         if (node == NUMA_NO_NODE)
1909                 node = set->numa_node;
1910
1911         INIT_LIST_HEAD(&tags->page_list);
1912
1913         /*
1914          * rq_size is the size of the request plus driver payload, rounded
1915          * to the cacheline size
1916          */
1917         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1918                                 cache_line_size());
1919         left = rq_size * depth;
1920
1921         for (i = 0; i < depth; ) {
1922                 int this_order = max_order;
1923                 struct page *page;
1924                 int to_do;
1925                 void *p;
1926
1927                 while (this_order && left < order_to_size(this_order - 1))
1928                         this_order--;
1929
1930                 do {
1931                         page = alloc_pages_node(node,
1932                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1933                                 this_order);
1934                         if (page)
1935                                 break;
1936                         if (!this_order--)
1937                                 break;
1938                         if (order_to_size(this_order) < rq_size)
1939                                 break;
1940                 } while (1);
1941
1942                 if (!page)
1943                         goto fail;
1944
1945                 page->private = this_order;
1946                 list_add_tail(&page->lru, &tags->page_list);
1947
1948                 p = page_address(page);
1949                 /*
1950                  * Allow kmemleak to scan these pages as they contain pointers
1951                  * to additional allocations like via ops->init_request().
1952                  */
1953                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1954                 entries_per_page = order_to_size(this_order) / rq_size;
1955                 to_do = min(entries_per_page, depth - i);
1956                 left -= to_do * rq_size;
1957                 for (j = 0; j < to_do; j++) {
1958                         struct request *rq = p;
1959
1960                         tags->static_rqs[i] = rq;
1961                         if (set->ops->init_request) {
1962                                 if (set->ops->init_request(set, rq, hctx_idx,
1963                                                 node)) {
1964                                         tags->static_rqs[i] = NULL;
1965                                         goto fail;
1966                                 }
1967                         }
1968
1969                         p += rq_size;
1970                         i++;
1971                 }
1972         }
1973         return 0;
1974
1975 fail:
1976         blk_mq_free_rqs(set, tags, hctx_idx);
1977         return -ENOMEM;
1978 }
1979
1980 /*
1981  * 'cpu' is going away. splice any existing rq_list entries from this
1982  * software queue to the hw queue dispatch list, and ensure that it
1983  * gets run.
1984  */
1985 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1986 {
1987         struct blk_mq_hw_ctx *hctx;
1988         struct blk_mq_ctx *ctx;
1989         LIST_HEAD(tmp);
1990
1991         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1992         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1993
1994         spin_lock(&ctx->lock);
1995         if (!list_empty(&ctx->rq_list)) {
1996                 list_splice_init(&ctx->rq_list, &tmp);
1997                 blk_mq_hctx_clear_pending(hctx, ctx);
1998         }
1999         spin_unlock(&ctx->lock);
2000
2001         if (list_empty(&tmp))
2002                 return 0;
2003
2004         spin_lock(&hctx->lock);
2005         list_splice_tail_init(&tmp, &hctx->dispatch);
2006         spin_unlock(&hctx->lock);
2007
2008         blk_mq_run_hw_queue(hctx, true);
2009         return 0;
2010 }
2011
2012 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2013 {
2014         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2015                                             &hctx->cpuhp_dead);
2016 }
2017
2018 /* hctx->ctxs will be freed in queue's release handler */
2019 static void blk_mq_exit_hctx(struct request_queue *q,
2020                 struct blk_mq_tag_set *set,
2021                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2022 {
2023         blk_mq_debugfs_unregister_hctx(hctx);
2024
2025         blk_mq_tag_idle(hctx);
2026
2027         if (set->ops->exit_request)
2028                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2029
2030         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2031
2032         if (set->ops->exit_hctx)
2033                 set->ops->exit_hctx(hctx, hctx_idx);
2034
2035         if (hctx->flags & BLK_MQ_F_BLOCKING)
2036                 cleanup_srcu_struct(hctx->queue_rq_srcu);
2037
2038         blk_mq_remove_cpuhp(hctx);
2039         blk_free_flush_queue(hctx->fq);
2040         sbitmap_free(&hctx->ctx_map);
2041 }
2042
2043 static void blk_mq_exit_hw_queues(struct request_queue *q,
2044                 struct blk_mq_tag_set *set, int nr_queue)
2045 {
2046         struct blk_mq_hw_ctx *hctx;
2047         unsigned int i;
2048
2049         queue_for_each_hw_ctx(q, hctx, i) {
2050                 if (i == nr_queue)
2051                         break;
2052                 blk_mq_exit_hctx(q, set, hctx, i);
2053         }
2054 }
2055
2056 static int blk_mq_init_hctx(struct request_queue *q,
2057                 struct blk_mq_tag_set *set,
2058                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2059 {
2060         int node;
2061
2062         node = hctx->numa_node;
2063         if (node == NUMA_NO_NODE)
2064                 node = hctx->numa_node = set->numa_node;
2065
2066         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2067         spin_lock_init(&hctx->lock);
2068         INIT_LIST_HEAD(&hctx->dispatch);
2069         hctx->queue = q;
2070         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2071
2072         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2073
2074         hctx->tags = set->tags[hctx_idx];
2075
2076         /*
2077          * Allocate space for all possible cpus to avoid allocation at
2078          * runtime
2079          */
2080         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2081                                         GFP_KERNEL, node);
2082         if (!hctx->ctxs)
2083                 goto unregister_cpu_notifier;
2084
2085         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2086                               node))
2087                 goto free_ctxs;
2088
2089         hctx->nr_ctx = 0;
2090
2091         if (set->ops->init_hctx &&
2092             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2093                 goto free_bitmap;
2094
2095         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2096                 goto exit_hctx;
2097
2098         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2099         if (!hctx->fq)
2100                 goto sched_exit_hctx;
2101
2102         if (set->ops->init_request &&
2103             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2104                                    node))
2105                 goto free_fq;
2106
2107         if (hctx->flags & BLK_MQ_F_BLOCKING)
2108                 init_srcu_struct(hctx->queue_rq_srcu);
2109
2110         blk_mq_debugfs_register_hctx(q, hctx);
2111
2112         return 0;
2113
2114  free_fq:
2115         kfree(hctx->fq);
2116  sched_exit_hctx:
2117         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2118  exit_hctx:
2119         if (set->ops->exit_hctx)
2120                 set->ops->exit_hctx(hctx, hctx_idx);
2121  free_bitmap:
2122         sbitmap_free(&hctx->ctx_map);
2123  free_ctxs:
2124         kfree(hctx->ctxs);
2125  unregister_cpu_notifier:
2126         blk_mq_remove_cpuhp(hctx);
2127         return -1;
2128 }
2129
2130 static void blk_mq_init_cpu_queues(struct request_queue *q,
2131                                    unsigned int nr_hw_queues)
2132 {
2133         unsigned int i;
2134
2135         for_each_possible_cpu(i) {
2136                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2137                 struct blk_mq_hw_ctx *hctx;
2138
2139                 __ctx->cpu = i;
2140                 spin_lock_init(&__ctx->lock);
2141                 INIT_LIST_HEAD(&__ctx->rq_list);
2142                 __ctx->queue = q;
2143
2144                 /* If the cpu isn't present, the cpu is mapped to first hctx */
2145                 if (!cpu_present(i))
2146                         continue;
2147
2148                 hctx = blk_mq_map_queue(q, i);
2149
2150                 /*
2151                  * Set local node, IFF we have more than one hw queue. If
2152                  * not, we remain on the home node of the device
2153                  */
2154                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2155                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2156         }
2157 }
2158
2159 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2160 {
2161         int ret = 0;
2162
2163         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2164                                         set->queue_depth, set->reserved_tags);
2165         if (!set->tags[hctx_idx])
2166                 return false;
2167
2168         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2169                                 set->queue_depth);
2170         if (!ret)
2171                 return true;
2172
2173         blk_mq_free_rq_map(set->tags[hctx_idx]);
2174         set->tags[hctx_idx] = NULL;
2175         return false;
2176 }
2177
2178 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2179                                          unsigned int hctx_idx)
2180 {
2181         if (set->tags[hctx_idx]) {
2182                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2183                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2184                 set->tags[hctx_idx] = NULL;
2185         }
2186 }
2187
2188 static void blk_mq_map_swqueue(struct request_queue *q)
2189 {
2190         unsigned int i, hctx_idx;
2191         struct blk_mq_hw_ctx *hctx;
2192         struct blk_mq_ctx *ctx;
2193         struct blk_mq_tag_set *set = q->tag_set;
2194
2195         /*
2196          * Avoid others reading imcomplete hctx->cpumask through sysfs
2197          */
2198         mutex_lock(&q->sysfs_lock);
2199
2200         queue_for_each_hw_ctx(q, hctx, i) {
2201                 cpumask_clear(hctx->cpumask);
2202                 hctx->nr_ctx = 0;
2203         }
2204
2205         /*
2206          * Map software to hardware queues.
2207          *
2208          * If the cpu isn't present, the cpu is mapped to first hctx.
2209          */
2210         for_each_present_cpu(i) {
2211                 hctx_idx = q->mq_map[i];
2212                 /* unmapped hw queue can be remapped after CPU topo changed */
2213                 if (!set->tags[hctx_idx] &&
2214                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2215                         /*
2216                          * If tags initialization fail for some hctx,
2217                          * that hctx won't be brought online.  In this
2218                          * case, remap the current ctx to hctx[0] which
2219                          * is guaranteed to always have tags allocated
2220                          */
2221                         q->mq_map[i] = 0;
2222                 }
2223
2224                 ctx = per_cpu_ptr(q->queue_ctx, i);
2225                 hctx = blk_mq_map_queue(q, i);
2226
2227                 cpumask_set_cpu(i, hctx->cpumask);
2228                 ctx->index_hw = hctx->nr_ctx;
2229                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2230         }
2231
2232         mutex_unlock(&q->sysfs_lock);
2233
2234         queue_for_each_hw_ctx(q, hctx, i) {
2235                 /*
2236                  * If no software queues are mapped to this hardware queue,
2237                  * disable it and free the request entries.
2238                  */
2239                 if (!hctx->nr_ctx) {
2240                         /* Never unmap queue 0.  We need it as a
2241                          * fallback in case of a new remap fails
2242                          * allocation
2243                          */
2244                         if (i && set->tags[i])
2245                                 blk_mq_free_map_and_requests(set, i);
2246
2247                         hctx->tags = NULL;
2248                         continue;
2249                 }
2250
2251                 hctx->tags = set->tags[i];
2252                 WARN_ON(!hctx->tags);
2253
2254                 /*
2255                  * Set the map size to the number of mapped software queues.
2256                  * This is more accurate and more efficient than looping
2257                  * over all possibly mapped software queues.
2258                  */
2259                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2260
2261                 /*
2262                  * Initialize batch roundrobin counts
2263                  */
2264                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2265                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2266         }
2267 }
2268
2269 /*
2270  * Caller needs to ensure that we're either frozen/quiesced, or that
2271  * the queue isn't live yet.
2272  */
2273 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2274 {
2275         struct blk_mq_hw_ctx *hctx;
2276         int i;
2277
2278         queue_for_each_hw_ctx(q, hctx, i) {
2279                 if (shared) {
2280                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2281                                 atomic_inc(&q->shared_hctx_restart);
2282                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2283                 } else {
2284                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2285                                 atomic_dec(&q->shared_hctx_restart);
2286                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2287                 }
2288         }
2289 }
2290
2291 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2292                                         bool shared)
2293 {
2294         struct request_queue *q;
2295
2296         lockdep_assert_held(&set->tag_list_lock);
2297
2298         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2299                 blk_mq_freeze_queue(q);
2300                 queue_set_hctx_shared(q, shared);
2301                 blk_mq_unfreeze_queue(q);
2302         }
2303 }
2304
2305 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2306 {
2307         struct blk_mq_tag_set *set = q->tag_set;
2308
2309         mutex_lock(&set->tag_list_lock);
2310         list_del_rcu(&q->tag_set_list);
2311         INIT_LIST_HEAD(&q->tag_set_list);
2312         if (list_is_singular(&set->tag_list)) {
2313                 /* just transitioned to unshared */
2314                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2315                 /* update existing queue */
2316                 blk_mq_update_tag_set_depth(set, false);
2317         }
2318         mutex_unlock(&set->tag_list_lock);
2319
2320         synchronize_rcu();
2321 }
2322
2323 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2324                                      struct request_queue *q)
2325 {
2326         q->tag_set = set;
2327
2328         mutex_lock(&set->tag_list_lock);
2329
2330         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2331         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2332                 set->flags |= BLK_MQ_F_TAG_SHARED;
2333                 /* update existing queue */
2334                 blk_mq_update_tag_set_depth(set, true);
2335         }
2336         if (set->flags & BLK_MQ_F_TAG_SHARED)
2337                 queue_set_hctx_shared(q, true);
2338         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2339
2340         mutex_unlock(&set->tag_list_lock);
2341 }
2342
2343 /*
2344  * It is the actual release handler for mq, but we do it from
2345  * request queue's release handler for avoiding use-after-free
2346  * and headache because q->mq_kobj shouldn't have been introduced,
2347  * but we can't group ctx/kctx kobj without it.
2348  */
2349 void blk_mq_release(struct request_queue *q)
2350 {
2351         struct blk_mq_hw_ctx *hctx;
2352         unsigned int i;
2353
2354         /* hctx kobj stays in hctx */
2355         queue_for_each_hw_ctx(q, hctx, i) {
2356                 if (!hctx)
2357                         continue;
2358                 kobject_put(&hctx->kobj);
2359         }
2360
2361         q->mq_map = NULL;
2362
2363         kfree(q->queue_hw_ctx);
2364
2365         /*
2366          * release .mq_kobj and sw queue's kobject now because
2367          * both share lifetime with request queue.
2368          */
2369         blk_mq_sysfs_deinit(q);
2370
2371         free_percpu(q->queue_ctx);
2372 }
2373
2374 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2375 {
2376         struct request_queue *uninit_q, *q;
2377
2378         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2379         if (!uninit_q)
2380                 return ERR_PTR(-ENOMEM);
2381
2382         q = blk_mq_init_allocated_queue(set, uninit_q);
2383         if (IS_ERR(q))
2384                 blk_cleanup_queue(uninit_q);
2385
2386         return q;
2387 }
2388 EXPORT_SYMBOL(blk_mq_init_queue);
2389
2390 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2391 {
2392         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2393
2394         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2395                            __alignof__(struct blk_mq_hw_ctx)) !=
2396                      sizeof(struct blk_mq_hw_ctx));
2397
2398         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2399                 hw_ctx_size += sizeof(struct srcu_struct);
2400
2401         return hw_ctx_size;
2402 }
2403
2404 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2405                                                 struct request_queue *q)
2406 {
2407         int i, j;
2408         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2409
2410         blk_mq_sysfs_unregister(q);
2411         for (i = 0; i < set->nr_hw_queues; i++) {
2412                 int node;
2413
2414                 if (hctxs[i])
2415                         continue;
2416
2417                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2418                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2419                                         GFP_KERNEL, node);
2420                 if (!hctxs[i])
2421                         break;
2422
2423                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2424                                                 node)) {
2425                         kfree(hctxs[i]);
2426                         hctxs[i] = NULL;
2427                         break;
2428                 }
2429
2430                 atomic_set(&hctxs[i]->nr_active, 0);
2431                 hctxs[i]->numa_node = node;
2432                 hctxs[i]->queue_num = i;
2433
2434                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2435                         free_cpumask_var(hctxs[i]->cpumask);
2436                         kfree(hctxs[i]);
2437                         hctxs[i] = NULL;
2438                         break;
2439                 }
2440                 blk_mq_hctx_kobj_init(hctxs[i]);
2441         }
2442         for (j = i; j < q->nr_hw_queues; j++) {
2443                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2444
2445                 if (hctx) {
2446                         if (hctx->tags)
2447                                 blk_mq_free_map_and_requests(set, j);
2448                         blk_mq_exit_hctx(q, set, hctx, j);
2449                         kobject_put(&hctx->kobj);
2450                         hctxs[j] = NULL;
2451
2452                 }
2453         }
2454         q->nr_hw_queues = i;
2455         blk_mq_sysfs_register(q);
2456 }
2457
2458 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2459                                                   struct request_queue *q)
2460 {
2461         /* mark the queue as mq asap */
2462         q->mq_ops = set->ops;
2463
2464         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2465                                              blk_mq_poll_stats_bkt,
2466                                              BLK_MQ_POLL_STATS_BKTS, q);
2467         if (!q->poll_cb)
2468                 goto err_exit;
2469
2470         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2471         if (!q->queue_ctx)
2472                 goto err_exit;
2473
2474         /* init q->mq_kobj and sw queues' kobjects */
2475         blk_mq_sysfs_init(q);
2476
2477         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2478                                                 GFP_KERNEL, set->numa_node);
2479         if (!q->queue_hw_ctx)
2480                 goto err_percpu;
2481
2482         q->mq_map = set->mq_map;
2483
2484         blk_mq_realloc_hw_ctxs(set, q);
2485         if (!q->nr_hw_queues)
2486                 goto err_hctxs;
2487
2488         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2489         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2490
2491         q->nr_queues = nr_cpu_ids;
2492
2493         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2494
2495         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2496                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2497
2498         q->sg_reserved_size = INT_MAX;
2499
2500         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2501         INIT_LIST_HEAD(&q->requeue_list);
2502         spin_lock_init(&q->requeue_lock);
2503
2504         blk_queue_make_request(q, blk_mq_make_request);
2505         if (q->mq_ops->poll)
2506                 q->poll_fn = blk_mq_poll;
2507
2508         /*
2509          * Do this after blk_queue_make_request() overrides it...
2510          */
2511         q->nr_requests = set->queue_depth;
2512
2513         /*
2514          * Default to classic polling
2515          */
2516         q->poll_nsec = -1;
2517
2518         if (set->ops->complete)
2519                 blk_queue_softirq_done(q, set->ops->complete);
2520
2521         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2522         blk_mq_add_queue_tag_set(set, q);
2523         blk_mq_map_swqueue(q);
2524
2525         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2526                 int ret;
2527
2528                 ret = blk_mq_sched_init(q);
2529                 if (ret)
2530                         return ERR_PTR(ret);
2531         }
2532
2533         return q;
2534
2535 err_hctxs:
2536         kfree(q->queue_hw_ctx);
2537 err_percpu:
2538         free_percpu(q->queue_ctx);
2539 err_exit:
2540         q->mq_ops = NULL;
2541         return ERR_PTR(-ENOMEM);
2542 }
2543 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2544
2545 void blk_mq_free_queue(struct request_queue *q)
2546 {
2547         struct blk_mq_tag_set   *set = q->tag_set;
2548
2549         blk_mq_del_queue_tag_set(q);
2550         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2551 }
2552
2553 /* Basically redo blk_mq_init_queue with queue frozen */
2554 static void blk_mq_queue_reinit(struct request_queue *q)
2555 {
2556         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2557
2558         blk_mq_debugfs_unregister_hctxs(q);
2559         blk_mq_sysfs_unregister(q);
2560
2561         /*
2562          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2563          * we should change hctx numa_node according to new topology (this
2564          * involves free and re-allocate memory, worthy doing?)
2565          */
2566
2567         blk_mq_map_swqueue(q);
2568
2569         blk_mq_sysfs_register(q);
2570         blk_mq_debugfs_register_hctxs(q);
2571 }
2572
2573 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2574 {
2575         int i;
2576
2577         for (i = 0; i < set->nr_hw_queues; i++)
2578                 if (!__blk_mq_alloc_rq_map(set, i))
2579                         goto out_unwind;
2580
2581         return 0;
2582
2583 out_unwind:
2584         while (--i >= 0)
2585                 blk_mq_free_rq_map(set->tags[i]);
2586
2587         return -ENOMEM;
2588 }
2589
2590 /*
2591  * Allocate the request maps associated with this tag_set. Note that this
2592  * may reduce the depth asked for, if memory is tight. set->queue_depth
2593  * will be updated to reflect the allocated depth.
2594  */
2595 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2596 {
2597         unsigned int depth;
2598         int err;
2599
2600         depth = set->queue_depth;
2601         do {
2602                 err = __blk_mq_alloc_rq_maps(set);
2603                 if (!err)
2604                         break;
2605
2606                 set->queue_depth >>= 1;
2607                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2608                         err = -ENOMEM;
2609                         break;
2610                 }
2611         } while (set->queue_depth);
2612
2613         if (!set->queue_depth || err) {
2614                 pr_err("blk-mq: failed to allocate request map\n");
2615                 return -ENOMEM;
2616         }
2617
2618         if (depth != set->queue_depth)
2619                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2620                                                 depth, set->queue_depth);
2621
2622         return 0;
2623 }
2624
2625 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2626 {
2627         if (set->ops->map_queues)
2628                 return set->ops->map_queues(set);
2629         else
2630                 return blk_mq_map_queues(set);
2631 }
2632
2633 /*
2634  * Alloc a tag set to be associated with one or more request queues.
2635  * May fail with EINVAL for various error conditions. May adjust the
2636  * requested depth down, if if it too large. In that case, the set
2637  * value will be stored in set->queue_depth.
2638  */
2639 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2640 {
2641         int ret;
2642
2643         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2644
2645         if (!set->nr_hw_queues)
2646                 return -EINVAL;
2647         if (!set->queue_depth)
2648                 return -EINVAL;
2649         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2650                 return -EINVAL;
2651
2652         if (!set->ops->queue_rq)
2653                 return -EINVAL;
2654
2655         if (!set->ops->get_budget ^ !set->ops->put_budget)
2656                 return -EINVAL;
2657
2658         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2659                 pr_info("blk-mq: reduced tag depth to %u\n",
2660                         BLK_MQ_MAX_DEPTH);
2661                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2662         }
2663
2664         /*
2665          * If a crashdump is active, then we are potentially in a very
2666          * memory constrained environment. Limit us to 1 queue and
2667          * 64 tags to prevent using too much memory.
2668          */
2669         if (is_kdump_kernel()) {
2670                 set->nr_hw_queues = 1;
2671                 set->queue_depth = min(64U, set->queue_depth);
2672         }
2673         /*
2674          * There is no use for more h/w queues than cpus.
2675          */
2676         if (set->nr_hw_queues > nr_cpu_ids)
2677                 set->nr_hw_queues = nr_cpu_ids;
2678
2679         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2680                                  GFP_KERNEL, set->numa_node);
2681         if (!set->tags)
2682                 return -ENOMEM;
2683
2684         ret = -ENOMEM;
2685         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2686                         GFP_KERNEL, set->numa_node);
2687         if (!set->mq_map)
2688                 goto out_free_tags;
2689
2690         ret = blk_mq_update_queue_map(set);
2691         if (ret)
2692                 goto out_free_mq_map;
2693
2694         ret = blk_mq_alloc_rq_maps(set);
2695         if (ret)
2696                 goto out_free_mq_map;
2697
2698         mutex_init(&set->tag_list_lock);
2699         INIT_LIST_HEAD(&set->tag_list);
2700
2701         return 0;
2702
2703 out_free_mq_map:
2704         kfree(set->mq_map);
2705         set->mq_map = NULL;
2706 out_free_tags:
2707         kfree(set->tags);
2708         set->tags = NULL;
2709         return ret;
2710 }
2711 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2712
2713 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2714 {
2715         int i;
2716
2717         for (i = 0; i < nr_cpu_ids; i++)
2718                 blk_mq_free_map_and_requests(set, i);
2719
2720         kfree(set->mq_map);
2721         set->mq_map = NULL;
2722
2723         kfree(set->tags);
2724         set->tags = NULL;
2725 }
2726 EXPORT_SYMBOL(blk_mq_free_tag_set);
2727
2728 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2729 {
2730         struct blk_mq_tag_set *set = q->tag_set;
2731         struct blk_mq_hw_ctx *hctx;
2732         int i, ret;
2733
2734         if (!set)
2735                 return -EINVAL;
2736
2737         blk_mq_freeze_queue(q);
2738
2739         ret = 0;
2740         queue_for_each_hw_ctx(q, hctx, i) {
2741                 if (!hctx->tags)
2742                         continue;
2743                 /*
2744                  * If we're using an MQ scheduler, just update the scheduler
2745                  * queue depth. This is similar to what the old code would do.
2746                  */
2747                 if (!hctx->sched_tags) {
2748                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2749                                                         false);
2750                 } else {
2751                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2752                                                         nr, true);
2753                 }
2754                 if (ret)
2755                         break;
2756         }
2757
2758         if (!ret)
2759                 q->nr_requests = nr;
2760
2761         blk_mq_unfreeze_queue(q);
2762
2763         return ret;
2764 }
2765
2766 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2767                                                         int nr_hw_queues)
2768 {
2769         struct request_queue *q;
2770
2771         lockdep_assert_held(&set->tag_list_lock);
2772
2773         if (nr_hw_queues > nr_cpu_ids)
2774                 nr_hw_queues = nr_cpu_ids;
2775         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2776                 return;
2777
2778         list_for_each_entry(q, &set->tag_list, tag_set_list)
2779                 blk_mq_freeze_queue(q);
2780
2781         set->nr_hw_queues = nr_hw_queues;
2782         blk_mq_update_queue_map(set);
2783         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2784                 blk_mq_realloc_hw_ctxs(set, q);
2785                 blk_mq_queue_reinit(q);
2786         }
2787
2788         list_for_each_entry(q, &set->tag_list, tag_set_list)
2789                 blk_mq_unfreeze_queue(q);
2790 }
2791
2792 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2793 {
2794         mutex_lock(&set->tag_list_lock);
2795         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2796         mutex_unlock(&set->tag_list_lock);
2797 }
2798 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2799
2800 /* Enable polling stats and return whether they were already enabled. */
2801 static bool blk_poll_stats_enable(struct request_queue *q)
2802 {
2803         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2804             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2805                 return true;
2806         blk_stat_add_callback(q, q->poll_cb);
2807         return false;
2808 }
2809
2810 static void blk_mq_poll_stats_start(struct request_queue *q)
2811 {
2812         /*
2813          * We don't arm the callback if polling stats are not enabled or the
2814          * callback is already active.
2815          */
2816         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2817             blk_stat_is_active(q->poll_cb))
2818                 return;
2819
2820         blk_stat_activate_msecs(q->poll_cb, 100);
2821 }
2822
2823 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2824 {
2825         struct request_queue *q = cb->data;
2826         int bucket;
2827
2828         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2829                 if (cb->stat[bucket].nr_samples)
2830                         q->poll_stat[bucket] = cb->stat[bucket];
2831         }
2832 }
2833
2834 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2835                                        struct blk_mq_hw_ctx *hctx,
2836                                        struct request *rq)
2837 {
2838         unsigned long ret = 0;
2839         int bucket;
2840
2841         /*
2842          * If stats collection isn't on, don't sleep but turn it on for
2843          * future users
2844          */
2845         if (!blk_poll_stats_enable(q))
2846                 return 0;
2847
2848         /*
2849          * As an optimistic guess, use half of the mean service time
2850          * for this type of request. We can (and should) make this smarter.
2851          * For instance, if the completion latencies are tight, we can
2852          * get closer than just half the mean. This is especially
2853          * important on devices where the completion latencies are longer
2854          * than ~10 usec. We do use the stats for the relevant IO size
2855          * if available which does lead to better estimates.
2856          */
2857         bucket = blk_mq_poll_stats_bkt(rq);
2858         if (bucket < 0)
2859                 return ret;
2860
2861         if (q->poll_stat[bucket].nr_samples)
2862                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2863
2864         return ret;
2865 }
2866
2867 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2868                                      struct blk_mq_hw_ctx *hctx,
2869                                      struct request *rq)
2870 {
2871         struct hrtimer_sleeper hs;
2872         enum hrtimer_mode mode;
2873         unsigned int nsecs;
2874         ktime_t kt;
2875
2876         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2877                 return false;
2878
2879         /*
2880          * poll_nsec can be:
2881          *
2882          * -1:  don't ever hybrid sleep
2883          *  0:  use half of prev avg
2884          * >0:  use this specific value
2885          */
2886         if (q->poll_nsec == -1)
2887                 return false;
2888         else if (q->poll_nsec > 0)
2889                 nsecs = q->poll_nsec;
2890         else
2891                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2892
2893         if (!nsecs)
2894                 return false;
2895
2896         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2897
2898         /*
2899          * This will be replaced with the stats tracking code, using
2900          * 'avg_completion_time / 2' as the pre-sleep target.
2901          */
2902         kt = nsecs;
2903
2904         mode = HRTIMER_MODE_REL;
2905         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2906         hrtimer_set_expires(&hs.timer, kt);
2907
2908         hrtimer_init_sleeper(&hs, current);
2909         do {
2910                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2911                         break;
2912                 set_current_state(TASK_UNINTERRUPTIBLE);
2913                 hrtimer_start_expires(&hs.timer, mode);
2914                 if (hs.task)
2915                         io_schedule();
2916                 hrtimer_cancel(&hs.timer);
2917                 mode = HRTIMER_MODE_ABS;
2918         } while (hs.task && !signal_pending(current));
2919
2920         __set_current_state(TASK_RUNNING);
2921         destroy_hrtimer_on_stack(&hs.timer);
2922         return true;
2923 }
2924
2925 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2926 {
2927         struct request_queue *q = hctx->queue;
2928         long state;
2929
2930         /*
2931          * If we sleep, have the caller restart the poll loop to reset
2932          * the state. Like for the other success return cases, the
2933          * caller is responsible for checking if the IO completed. If
2934          * the IO isn't complete, we'll get called again and will go
2935          * straight to the busy poll loop.
2936          */
2937         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2938                 return true;
2939
2940         hctx->poll_considered++;
2941
2942         state = current->state;
2943         while (!need_resched()) {
2944                 int ret;
2945
2946                 hctx->poll_invoked++;
2947
2948                 ret = q->mq_ops->poll(hctx, rq->tag);
2949                 if (ret > 0) {
2950                         hctx->poll_success++;
2951                         set_current_state(TASK_RUNNING);
2952                         return true;
2953                 }
2954
2955                 if (signal_pending_state(state, current))
2956                         set_current_state(TASK_RUNNING);
2957
2958                 if (current->state == TASK_RUNNING)
2959                         return true;
2960                 if (ret < 0)
2961                         break;
2962                 cpu_relax();
2963         }
2964
2965         return false;
2966 }
2967
2968 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2969 {
2970         struct blk_mq_hw_ctx *hctx;
2971         struct request *rq;
2972
2973         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2974                 return false;
2975
2976         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2977         if (!blk_qc_t_is_internal(cookie))
2978                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2979         else {
2980                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2981                 /*
2982                  * With scheduling, if the request has completed, we'll
2983                  * get a NULL return here, as we clear the sched tag when
2984                  * that happens. The request still remains valid, like always,
2985                  * so we should be safe with just the NULL check.
2986                  */
2987                 if (!rq)
2988                         return false;
2989         }
2990
2991         return __blk_mq_poll(hctx, rq);
2992 }
2993
2994 static int __init blk_mq_init(void)
2995 {
2996         /*
2997          * See comment in block/blk.h rq_atomic_flags enum
2998          */
2999         BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3000                         (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3001
3002         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3003                                 blk_mq_hctx_notify_dead);
3004         return 0;
3005 }
3006 subsys_initcall(blk_mq_init);