]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
block: Introduce request_queue.initialize_rq_fn()
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48         int ddir, bytes, bucket;
49
50         ddir = rq_data_dir(rq);
51         bytes = blk_rq_bytes(rq);
52
53         bucket = ddir + 2*(ilog2(bytes) - 9);
54
55         if (bucket < 0)
56                 return -1;
57         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60         return bucket;
61 }
62
63 /*
64  * Check if any of the ctx's have pending work in this hardware queue
65  */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         !list_empty_careful(&hctx->dispatch) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91         int freeze_depth;
92
93         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94         if (freeze_depth == 1) {
95                 percpu_ref_kill(&q->q_usage_counter);
96                 blk_mq_run_hw_queues(q, false);
97         }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108                                      unsigned long timeout)
109 {
110         return wait_event_timeout(q->mq_freeze_wq,
111                                         percpu_ref_is_zero(&q->q_usage_counter),
112                                         timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117  * Guarantee no request is in use, so we can change any data structure of
118  * the queue afterward.
119  */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122         /*
123          * In the !blk_mq case we are only calling this to kill the
124          * q_usage_counter, otherwise this increases the freeze depth
125          * and waits for it to return to zero.  For this reason there is
126          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127          * exported to drivers as the only user for unfreeze is blk_mq.
128          */
129         blk_freeze_queue_start(q);
130         blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135         /*
136          * ...just an alias to keep freeze and unfreeze actions balanced
137          * in the blk_mq_* namespace
138          */
139         blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145         int freeze_depth;
146
147         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148         WARN_ON_ONCE(freeze_depth < 0);
149         if (!freeze_depth) {
150                 percpu_ref_reinit(&q->q_usage_counter);
151                 wake_up_all(&q->mq_freeze_wq);
152         }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /**
157  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158  * @q: request queue.
159  *
160  * Note: this function does not prevent that the struct request end_io()
161  * callback function is invoked. Once this function is returned, we make
162  * sure no dispatch can happen until the queue is unquiesced via
163  * blk_mq_unquiesce_queue().
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         blk_mq_quiesce_queue_nowait(q);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 /*
185  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186  * @q: request queue.
187  *
188  * This function recovers queue into the state before quiescing
189  * which is done by blk_mq_quiesce_queue.
190  */
191 void blk_mq_unquiesce_queue(struct request_queue *q)
192 {
193         spin_lock_irq(q->queue_lock);
194         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
195         spin_unlock_irq(q->queue_lock);
196
197         /* dispatch requests which are inserted during quiescing */
198         blk_mq_run_hw_queues(q, true);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
201
202 void blk_mq_wake_waiters(struct request_queue *q)
203 {
204         struct blk_mq_hw_ctx *hctx;
205         unsigned int i;
206
207         queue_for_each_hw_ctx(q, hctx, i)
208                 if (blk_mq_hw_queue_mapped(hctx))
209                         blk_mq_tag_wakeup_all(hctx->tags, true);
210
211         /*
212          * If we are called because the queue has now been marked as
213          * dying, we need to ensure that processes currently waiting on
214          * the queue are notified as well.
215          */
216         wake_up_all(&q->mq_freeze_wq);
217 }
218
219 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
220 {
221         return blk_mq_has_free_tags(hctx->tags);
222 }
223 EXPORT_SYMBOL(blk_mq_can_queue);
224
225 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
226                 unsigned int tag, unsigned int op)
227 {
228         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
229         struct request *rq = tags->static_rqs[tag];
230
231         if (data->flags & BLK_MQ_REQ_INTERNAL) {
232                 rq->tag = -1;
233                 rq->internal_tag = tag;
234         } else {
235                 if (blk_mq_tag_busy(data->hctx)) {
236                         rq->rq_flags = RQF_MQ_INFLIGHT;
237                         atomic_inc(&data->hctx->nr_active);
238                 }
239                 rq->tag = tag;
240                 rq->internal_tag = -1;
241                 data->hctx->tags->rqs[rq->tag] = rq;
242         }
243
244         INIT_LIST_HEAD(&rq->queuelist);
245         /* csd/requeue_work/fifo_time is initialized before use */
246         rq->q = data->q;
247         rq->mq_ctx = data->ctx;
248         rq->cmd_flags = op;
249         if (blk_queue_io_stat(data->q))
250                 rq->rq_flags |= RQF_IO_STAT;
251         /* do not touch atomic flags, it needs atomic ops against the timer */
252         rq->cpu = -1;
253         INIT_HLIST_NODE(&rq->hash);
254         RB_CLEAR_NODE(&rq->rb_node);
255         rq->rq_disk = NULL;
256         rq->part = NULL;
257         rq->start_time = jiffies;
258 #ifdef CONFIG_BLK_CGROUP
259         rq->rl = NULL;
260         set_start_time_ns(rq);
261         rq->io_start_time_ns = 0;
262 #endif
263         rq->nr_phys_segments = 0;
264 #if defined(CONFIG_BLK_DEV_INTEGRITY)
265         rq->nr_integrity_segments = 0;
266 #endif
267         rq->special = NULL;
268         /* tag was already set */
269         rq->extra_len = 0;
270
271         INIT_LIST_HEAD(&rq->timeout_list);
272         rq->timeout = 0;
273
274         rq->end_io = NULL;
275         rq->end_io_data = NULL;
276         rq->next_rq = NULL;
277
278         data->ctx->rq_dispatched[op_is_sync(op)]++;
279         return rq;
280 }
281
282 static struct request *blk_mq_get_request(struct request_queue *q,
283                 struct bio *bio, unsigned int op,
284                 struct blk_mq_alloc_data *data)
285 {
286         struct elevator_queue *e = q->elevator;
287         struct request *rq;
288         unsigned int tag;
289
290         blk_queue_enter_live(q);
291         data->q = q;
292         if (likely(!data->ctx))
293                 data->ctx = blk_mq_get_ctx(q);
294         if (likely(!data->hctx))
295                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
296         if (op & REQ_NOWAIT)
297                 data->flags |= BLK_MQ_REQ_NOWAIT;
298
299         if (e) {
300                 data->flags |= BLK_MQ_REQ_INTERNAL;
301
302                 /*
303                  * Flush requests are special and go directly to the
304                  * dispatch list.
305                  */
306                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
307                         e->type->ops.mq.limit_depth(op, data);
308         }
309
310         tag = blk_mq_get_tag(data);
311         if (tag == BLK_MQ_TAG_FAIL) {
312                 blk_queue_exit(q);
313                 return NULL;
314         }
315
316         rq = blk_mq_rq_ctx_init(data, tag, op);
317         if (!op_is_flush(op)) {
318                 rq->elv.icq = NULL;
319                 if (e && e->type->ops.mq.prepare_request) {
320                         if (e->type->icq_cache && rq_ioc(bio))
321                                 blk_mq_sched_assign_ioc(rq, bio);
322
323                         e->type->ops.mq.prepare_request(rq, bio);
324                         rq->rq_flags |= RQF_ELVPRIV;
325                 }
326         }
327         data->hctx->queued++;
328         return rq;
329 }
330
331 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
332                 unsigned int flags)
333 {
334         struct blk_mq_alloc_data alloc_data = { .flags = flags };
335         struct request *rq;
336         int ret;
337
338         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
339         if (ret)
340                 return ERR_PTR(ret);
341
342         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
343
344         blk_mq_put_ctx(alloc_data.ctx);
345         blk_queue_exit(q);
346
347         if (!rq)
348                 return ERR_PTR(-EWOULDBLOCK);
349
350         rq->__data_len = 0;
351         rq->__sector = (sector_t) -1;
352         rq->bio = rq->biotail = NULL;
353         return rq;
354 }
355 EXPORT_SYMBOL(blk_mq_alloc_request);
356
357 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
358                 unsigned int op, unsigned int flags, unsigned int hctx_idx)
359 {
360         struct blk_mq_alloc_data alloc_data = { .flags = flags };
361         struct request *rq;
362         unsigned int cpu;
363         int ret;
364
365         /*
366          * If the tag allocator sleeps we could get an allocation for a
367          * different hardware context.  No need to complicate the low level
368          * allocator for this for the rare use case of a command tied to
369          * a specific queue.
370          */
371         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
372                 return ERR_PTR(-EINVAL);
373
374         if (hctx_idx >= q->nr_hw_queues)
375                 return ERR_PTR(-EIO);
376
377         ret = blk_queue_enter(q, true);
378         if (ret)
379                 return ERR_PTR(ret);
380
381         /*
382          * Check if the hardware context is actually mapped to anything.
383          * If not tell the caller that it should skip this queue.
384          */
385         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
386         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
387                 blk_queue_exit(q);
388                 return ERR_PTR(-EXDEV);
389         }
390         cpu = cpumask_first(alloc_data.hctx->cpumask);
391         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
392
393         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
394
395         blk_queue_exit(q);
396
397         if (!rq)
398                 return ERR_PTR(-EWOULDBLOCK);
399
400         return rq;
401 }
402 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
403
404 void blk_mq_free_request(struct request *rq)
405 {
406         struct request_queue *q = rq->q;
407         struct elevator_queue *e = q->elevator;
408         struct blk_mq_ctx *ctx = rq->mq_ctx;
409         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
410         const int sched_tag = rq->internal_tag;
411
412         if (rq->rq_flags & RQF_ELVPRIV) {
413                 if (e && e->type->ops.mq.finish_request)
414                         e->type->ops.mq.finish_request(rq);
415                 if (rq->elv.icq) {
416                         put_io_context(rq->elv.icq->ioc);
417                         rq->elv.icq = NULL;
418                 }
419         }
420
421         ctx->rq_completed[rq_is_sync(rq)]++;
422         if (rq->rq_flags & RQF_MQ_INFLIGHT)
423                 atomic_dec(&hctx->nr_active);
424
425         wbt_done(q->rq_wb, &rq->issue_stat);
426         rq->rq_flags = 0;
427
428         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
429         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
430         if (rq->tag != -1)
431                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
432         if (sched_tag != -1)
433                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
434         blk_mq_sched_restart(hctx);
435         blk_queue_exit(q);
436 }
437 EXPORT_SYMBOL_GPL(blk_mq_free_request);
438
439 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
440 {
441         blk_account_io_done(rq);
442
443         if (rq->end_io) {
444                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
445                 rq->end_io(rq, error);
446         } else {
447                 if (unlikely(blk_bidi_rq(rq)))
448                         blk_mq_free_request(rq->next_rq);
449                 blk_mq_free_request(rq);
450         }
451 }
452 EXPORT_SYMBOL(__blk_mq_end_request);
453
454 void blk_mq_end_request(struct request *rq, blk_status_t error)
455 {
456         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
457                 BUG();
458         __blk_mq_end_request(rq, error);
459 }
460 EXPORT_SYMBOL(blk_mq_end_request);
461
462 static void __blk_mq_complete_request_remote(void *data)
463 {
464         struct request *rq = data;
465
466         rq->q->softirq_done_fn(rq);
467 }
468
469 static void __blk_mq_complete_request(struct request *rq)
470 {
471         struct blk_mq_ctx *ctx = rq->mq_ctx;
472         bool shared = false;
473         int cpu;
474
475         if (rq->internal_tag != -1)
476                 blk_mq_sched_completed_request(rq);
477         if (rq->rq_flags & RQF_STATS) {
478                 blk_mq_poll_stats_start(rq->q);
479                 blk_stat_add(rq);
480         }
481
482         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
483                 rq->q->softirq_done_fn(rq);
484                 return;
485         }
486
487         cpu = get_cpu();
488         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
489                 shared = cpus_share_cache(cpu, ctx->cpu);
490
491         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
492                 rq->csd.func = __blk_mq_complete_request_remote;
493                 rq->csd.info = rq;
494                 rq->csd.flags = 0;
495                 smp_call_function_single_async(ctx->cpu, &rq->csd);
496         } else {
497                 rq->q->softirq_done_fn(rq);
498         }
499         put_cpu();
500 }
501
502 /**
503  * blk_mq_complete_request - end I/O on a request
504  * @rq:         the request being processed
505  *
506  * Description:
507  *      Ends all I/O on a request. It does not handle partial completions.
508  *      The actual completion happens out-of-order, through a IPI handler.
509  **/
510 void blk_mq_complete_request(struct request *rq)
511 {
512         struct request_queue *q = rq->q;
513
514         if (unlikely(blk_should_fake_timeout(q)))
515                 return;
516         if (!blk_mark_rq_complete(rq))
517                 __blk_mq_complete_request(rq);
518 }
519 EXPORT_SYMBOL(blk_mq_complete_request);
520
521 int blk_mq_request_started(struct request *rq)
522 {
523         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
524 }
525 EXPORT_SYMBOL_GPL(blk_mq_request_started);
526
527 void blk_mq_start_request(struct request *rq)
528 {
529         struct request_queue *q = rq->q;
530
531         blk_mq_sched_started_request(rq);
532
533         trace_block_rq_issue(q, rq);
534
535         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
536                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
537                 rq->rq_flags |= RQF_STATS;
538                 wbt_issue(q->rq_wb, &rq->issue_stat);
539         }
540
541         blk_add_timer(rq);
542
543         /*
544          * Ensure that ->deadline is visible before set the started
545          * flag and clear the completed flag.
546          */
547         smp_mb__before_atomic();
548
549         /*
550          * Mark us as started and clear complete. Complete might have been
551          * set if requeue raced with timeout, which then marked it as
552          * complete. So be sure to clear complete again when we start
553          * the request, otherwise we'll ignore the completion event.
554          */
555         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
556                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
557         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
558                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
559
560         if (q->dma_drain_size && blk_rq_bytes(rq)) {
561                 /*
562                  * Make sure space for the drain appears.  We know we can do
563                  * this because max_hw_segments has been adjusted to be one
564                  * fewer than the device can handle.
565                  */
566                 rq->nr_phys_segments++;
567         }
568 }
569 EXPORT_SYMBOL(blk_mq_start_request);
570
571 /*
572  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
573  * flag isn't set yet, so there may be race with timeout handler,
574  * but given rq->deadline is just set in .queue_rq() under
575  * this situation, the race won't be possible in reality because
576  * rq->timeout should be set as big enough to cover the window
577  * between blk_mq_start_request() called from .queue_rq() and
578  * clearing REQ_ATOM_STARTED here.
579  */
580 static void __blk_mq_requeue_request(struct request *rq)
581 {
582         struct request_queue *q = rq->q;
583
584         trace_block_rq_requeue(q, rq);
585         wbt_requeue(q->rq_wb, &rq->issue_stat);
586         blk_mq_sched_requeue_request(rq);
587
588         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
589                 if (q->dma_drain_size && blk_rq_bytes(rq))
590                         rq->nr_phys_segments--;
591         }
592 }
593
594 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
595 {
596         __blk_mq_requeue_request(rq);
597
598         BUG_ON(blk_queued_rq(rq));
599         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
600 }
601 EXPORT_SYMBOL(blk_mq_requeue_request);
602
603 static void blk_mq_requeue_work(struct work_struct *work)
604 {
605         struct request_queue *q =
606                 container_of(work, struct request_queue, requeue_work.work);
607         LIST_HEAD(rq_list);
608         struct request *rq, *next;
609         unsigned long flags;
610
611         spin_lock_irqsave(&q->requeue_lock, flags);
612         list_splice_init(&q->requeue_list, &rq_list);
613         spin_unlock_irqrestore(&q->requeue_lock, flags);
614
615         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
616                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
617                         continue;
618
619                 rq->rq_flags &= ~RQF_SOFTBARRIER;
620                 list_del_init(&rq->queuelist);
621                 blk_mq_sched_insert_request(rq, true, false, false, true);
622         }
623
624         while (!list_empty(&rq_list)) {
625                 rq = list_entry(rq_list.next, struct request, queuelist);
626                 list_del_init(&rq->queuelist);
627                 blk_mq_sched_insert_request(rq, false, false, false, true);
628         }
629
630         blk_mq_run_hw_queues(q, false);
631 }
632
633 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
634                                 bool kick_requeue_list)
635 {
636         struct request_queue *q = rq->q;
637         unsigned long flags;
638
639         /*
640          * We abuse this flag that is otherwise used by the I/O scheduler to
641          * request head insertation from the workqueue.
642          */
643         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
644
645         spin_lock_irqsave(&q->requeue_lock, flags);
646         if (at_head) {
647                 rq->rq_flags |= RQF_SOFTBARRIER;
648                 list_add(&rq->queuelist, &q->requeue_list);
649         } else {
650                 list_add_tail(&rq->queuelist, &q->requeue_list);
651         }
652         spin_unlock_irqrestore(&q->requeue_lock, flags);
653
654         if (kick_requeue_list)
655                 blk_mq_kick_requeue_list(q);
656 }
657 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
658
659 void blk_mq_kick_requeue_list(struct request_queue *q)
660 {
661         kblockd_schedule_delayed_work(&q->requeue_work, 0);
662 }
663 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
664
665 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
666                                     unsigned long msecs)
667 {
668         kblockd_schedule_delayed_work(&q->requeue_work,
669                                       msecs_to_jiffies(msecs));
670 }
671 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
672
673 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
674 {
675         if (tag < tags->nr_tags) {
676                 prefetch(tags->rqs[tag]);
677                 return tags->rqs[tag];
678         }
679
680         return NULL;
681 }
682 EXPORT_SYMBOL(blk_mq_tag_to_rq);
683
684 struct blk_mq_timeout_data {
685         unsigned long next;
686         unsigned int next_set;
687 };
688
689 void blk_mq_rq_timed_out(struct request *req, bool reserved)
690 {
691         const struct blk_mq_ops *ops = req->q->mq_ops;
692         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
693
694         /*
695          * We know that complete is set at this point. If STARTED isn't set
696          * anymore, then the request isn't active and the "timeout" should
697          * just be ignored. This can happen due to the bitflag ordering.
698          * Timeout first checks if STARTED is set, and if it is, assumes
699          * the request is active. But if we race with completion, then
700          * both flags will get cleared. So check here again, and ignore
701          * a timeout event with a request that isn't active.
702          */
703         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
704                 return;
705
706         if (ops->timeout)
707                 ret = ops->timeout(req, reserved);
708
709         switch (ret) {
710         case BLK_EH_HANDLED:
711                 __blk_mq_complete_request(req);
712                 break;
713         case BLK_EH_RESET_TIMER:
714                 blk_add_timer(req);
715                 blk_clear_rq_complete(req);
716                 break;
717         case BLK_EH_NOT_HANDLED:
718                 break;
719         default:
720                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
721                 break;
722         }
723 }
724
725 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
726                 struct request *rq, void *priv, bool reserved)
727 {
728         struct blk_mq_timeout_data *data = priv;
729
730         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
731                 return;
732
733         /*
734          * The rq being checked may have been freed and reallocated
735          * out already here, we avoid this race by checking rq->deadline
736          * and REQ_ATOM_COMPLETE flag together:
737          *
738          * - if rq->deadline is observed as new value because of
739          *   reusing, the rq won't be timed out because of timing.
740          * - if rq->deadline is observed as previous value,
741          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
742          *   because we put a barrier between setting rq->deadline
743          *   and clearing the flag in blk_mq_start_request(), so
744          *   this rq won't be timed out too.
745          */
746         if (time_after_eq(jiffies, rq->deadline)) {
747                 if (!blk_mark_rq_complete(rq))
748                         blk_mq_rq_timed_out(rq, reserved);
749         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
750                 data->next = rq->deadline;
751                 data->next_set = 1;
752         }
753 }
754
755 static void blk_mq_timeout_work(struct work_struct *work)
756 {
757         struct request_queue *q =
758                 container_of(work, struct request_queue, timeout_work);
759         struct blk_mq_timeout_data data = {
760                 .next           = 0,
761                 .next_set       = 0,
762         };
763         int i;
764
765         /* A deadlock might occur if a request is stuck requiring a
766          * timeout at the same time a queue freeze is waiting
767          * completion, since the timeout code would not be able to
768          * acquire the queue reference here.
769          *
770          * That's why we don't use blk_queue_enter here; instead, we use
771          * percpu_ref_tryget directly, because we need to be able to
772          * obtain a reference even in the short window between the queue
773          * starting to freeze, by dropping the first reference in
774          * blk_freeze_queue_start, and the moment the last request is
775          * consumed, marked by the instant q_usage_counter reaches
776          * zero.
777          */
778         if (!percpu_ref_tryget(&q->q_usage_counter))
779                 return;
780
781         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
782
783         if (data.next_set) {
784                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
785                 mod_timer(&q->timeout, data.next);
786         } else {
787                 struct blk_mq_hw_ctx *hctx;
788
789                 queue_for_each_hw_ctx(q, hctx, i) {
790                         /* the hctx may be unmapped, so check it here */
791                         if (blk_mq_hw_queue_mapped(hctx))
792                                 blk_mq_tag_idle(hctx);
793                 }
794         }
795         blk_queue_exit(q);
796 }
797
798 struct flush_busy_ctx_data {
799         struct blk_mq_hw_ctx *hctx;
800         struct list_head *list;
801 };
802
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804 {
805         struct flush_busy_ctx_data *flush_data = data;
806         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809         sbitmap_clear_bit(sb, bitnr);
810         spin_lock(&ctx->lock);
811         list_splice_tail_init(&ctx->rq_list, flush_data->list);
812         spin_unlock(&ctx->lock);
813         return true;
814 }
815
816 /*
817  * Process software queues that have been marked busy, splicing them
818  * to the for-dispatch
819  */
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821 {
822         struct flush_busy_ctx_data data = {
823                 .hctx = hctx,
824                 .list = list,
825         };
826
827         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828 }
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830
831 static inline unsigned int queued_to_index(unsigned int queued)
832 {
833         if (!queued)
834                 return 0;
835
836         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 }
838
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840                            bool wait)
841 {
842         struct blk_mq_alloc_data data = {
843                 .q = rq->q,
844                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846         };
847
848         might_sleep_if(wait);
849
850         if (rq->tag != -1)
851                 goto done;
852
853         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
854                 data.flags |= BLK_MQ_REQ_RESERVED;
855
856         rq->tag = blk_mq_get_tag(&data);
857         if (rq->tag >= 0) {
858                 if (blk_mq_tag_busy(data.hctx)) {
859                         rq->rq_flags |= RQF_MQ_INFLIGHT;
860                         atomic_inc(&data.hctx->nr_active);
861                 }
862                 data.hctx->tags->rqs[rq->tag] = rq;
863         }
864
865 done:
866         if (hctx)
867                 *hctx = data.hctx;
868         return rq->tag != -1;
869 }
870
871 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
872                                     struct request *rq)
873 {
874         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875         rq->tag = -1;
876
877         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879                 atomic_dec(&hctx->nr_active);
880         }
881 }
882
883 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
884                                        struct request *rq)
885 {
886         if (rq->tag == -1 || rq->internal_tag == -1)
887                 return;
888
889         __blk_mq_put_driver_tag(hctx, rq);
890 }
891
892 static void blk_mq_put_driver_tag(struct request *rq)
893 {
894         struct blk_mq_hw_ctx *hctx;
895
896         if (rq->tag == -1 || rq->internal_tag == -1)
897                 return;
898
899         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
900         __blk_mq_put_driver_tag(hctx, rq);
901 }
902
903 /*
904  * If we fail getting a driver tag because all the driver tags are already
905  * assigned and on the dispatch list, BUT the first entry does not have a
906  * tag, then we could deadlock. For that case, move entries with assigned
907  * driver tags to the front, leaving the set of tagged requests in the
908  * same order, and the untagged set in the same order.
909  */
910 static bool reorder_tags_to_front(struct list_head *list)
911 {
912         struct request *rq, *tmp, *first = NULL;
913
914         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
915                 if (rq == first)
916                         break;
917                 if (rq->tag != -1) {
918                         list_move(&rq->queuelist, list);
919                         if (!first)
920                                 first = rq;
921                 }
922         }
923
924         return first != NULL;
925 }
926
927 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
928                                 void *key)
929 {
930         struct blk_mq_hw_ctx *hctx;
931
932         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
933
934         list_del(&wait->task_list);
935         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
936         blk_mq_run_hw_queue(hctx, true);
937         return 1;
938 }
939
940 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
941 {
942         struct sbq_wait_state *ws;
943
944         /*
945          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
946          * The thread which wins the race to grab this bit adds the hardware
947          * queue to the wait queue.
948          */
949         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
950             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
951                 return false;
952
953         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
954         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
955
956         /*
957          * As soon as this returns, it's no longer safe to fiddle with
958          * hctx->dispatch_wait, since a completion can wake up the wait queue
959          * and unlock the bit.
960          */
961         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
962         return true;
963 }
964
965 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
966 {
967         struct blk_mq_hw_ctx *hctx;
968         struct request *rq;
969         int errors, queued;
970
971         if (list_empty(list))
972                 return false;
973
974         /*
975          * Now process all the entries, sending them to the driver.
976          */
977         errors = queued = 0;
978         do {
979                 struct blk_mq_queue_data bd;
980                 blk_status_t ret;
981
982                 rq = list_first_entry(list, struct request, queuelist);
983                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
984                         if (!queued && reorder_tags_to_front(list))
985                                 continue;
986
987                         /*
988                          * The initial allocation attempt failed, so we need to
989                          * rerun the hardware queue when a tag is freed.
990                          */
991                         if (!blk_mq_dispatch_wait_add(hctx))
992                                 break;
993
994                         /*
995                          * It's possible that a tag was freed in the window
996                          * between the allocation failure and adding the
997                          * hardware queue to the wait queue.
998                          */
999                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1000                                 break;
1001                 }
1002
1003                 list_del_init(&rq->queuelist);
1004
1005                 bd.rq = rq;
1006
1007                 /*
1008                  * Flag last if we have no more requests, or if we have more
1009                  * but can't assign a driver tag to it.
1010                  */
1011                 if (list_empty(list))
1012                         bd.last = true;
1013                 else {
1014                         struct request *nxt;
1015
1016                         nxt = list_first_entry(list, struct request, queuelist);
1017                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1018                 }
1019
1020                 ret = q->mq_ops->queue_rq(hctx, &bd);
1021                 if (ret == BLK_STS_RESOURCE) {
1022                         blk_mq_put_driver_tag_hctx(hctx, rq);
1023                         list_add(&rq->queuelist, list);
1024                         __blk_mq_requeue_request(rq);
1025                         break;
1026                 }
1027
1028                 if (unlikely(ret != BLK_STS_OK)) {
1029                         errors++;
1030                         blk_mq_end_request(rq, BLK_STS_IOERR);
1031                         continue;
1032                 }
1033
1034                 queued++;
1035         } while (!list_empty(list));
1036
1037         hctx->dispatched[queued_to_index(queued)]++;
1038
1039         /*
1040          * Any items that need requeuing? Stuff them into hctx->dispatch,
1041          * that is where we will continue on next queue run.
1042          */
1043         if (!list_empty(list)) {
1044                 /*
1045                  * If an I/O scheduler has been configured and we got a driver
1046                  * tag for the next request already, free it again.
1047                  */
1048                 rq = list_first_entry(list, struct request, queuelist);
1049                 blk_mq_put_driver_tag(rq);
1050
1051                 spin_lock(&hctx->lock);
1052                 list_splice_init(list, &hctx->dispatch);
1053                 spin_unlock(&hctx->lock);
1054
1055                 /*
1056                  * If SCHED_RESTART was set by the caller of this function and
1057                  * it is no longer set that means that it was cleared by another
1058                  * thread and hence that a queue rerun is needed.
1059                  *
1060                  * If TAG_WAITING is set that means that an I/O scheduler has
1061                  * been configured and another thread is waiting for a driver
1062                  * tag. To guarantee fairness, do not rerun this hardware queue
1063                  * but let the other thread grab the driver tag.
1064                  *
1065                  * If no I/O scheduler has been configured it is possible that
1066                  * the hardware queue got stopped and restarted before requests
1067                  * were pushed back onto the dispatch list. Rerun the queue to
1068                  * avoid starvation. Notes:
1069                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1070                  *   been stopped before rerunning a queue.
1071                  * - Some but not all block drivers stop a queue before
1072                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1073                  *   and dm-rq.
1074                  */
1075                 if (!blk_mq_sched_needs_restart(hctx) &&
1076                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1077                         blk_mq_run_hw_queue(hctx, true);
1078         }
1079
1080         return (queued + errors) != 0;
1081 }
1082
1083 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1084 {
1085         int srcu_idx;
1086
1087         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1088                 cpu_online(hctx->next_cpu));
1089
1090         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1091                 rcu_read_lock();
1092                 blk_mq_sched_dispatch_requests(hctx);
1093                 rcu_read_unlock();
1094         } else {
1095                 might_sleep();
1096
1097                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1098                 blk_mq_sched_dispatch_requests(hctx);
1099                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1100         }
1101 }
1102
1103 /*
1104  * It'd be great if the workqueue API had a way to pass
1105  * in a mask and had some smarts for more clever placement.
1106  * For now we just round-robin here, switching for every
1107  * BLK_MQ_CPU_WORK_BATCH queued items.
1108  */
1109 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1110 {
1111         if (hctx->queue->nr_hw_queues == 1)
1112                 return WORK_CPU_UNBOUND;
1113
1114         if (--hctx->next_cpu_batch <= 0) {
1115                 int next_cpu;
1116
1117                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1118                 if (next_cpu >= nr_cpu_ids)
1119                         next_cpu = cpumask_first(hctx->cpumask);
1120
1121                 hctx->next_cpu = next_cpu;
1122                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1123         }
1124
1125         return hctx->next_cpu;
1126 }
1127
1128 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1129                                         unsigned long msecs)
1130 {
1131         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1132                      !blk_mq_hw_queue_mapped(hctx)))
1133                 return;
1134
1135         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1136                 int cpu = get_cpu();
1137                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1138                         __blk_mq_run_hw_queue(hctx);
1139                         put_cpu();
1140                         return;
1141                 }
1142
1143                 put_cpu();
1144         }
1145
1146         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1147                                          &hctx->run_work,
1148                                          msecs_to_jiffies(msecs));
1149 }
1150
1151 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1152 {
1153         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1154 }
1155 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1156
1157 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1158 {
1159         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1160 }
1161 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1162
1163 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1164 {
1165         struct blk_mq_hw_ctx *hctx;
1166         int i;
1167
1168         queue_for_each_hw_ctx(q, hctx, i) {
1169                 if (!blk_mq_hctx_has_pending(hctx) ||
1170                     blk_mq_hctx_stopped(hctx))
1171                         continue;
1172
1173                 blk_mq_run_hw_queue(hctx, async);
1174         }
1175 }
1176 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1177
1178 /**
1179  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1180  * @q: request queue.
1181  *
1182  * The caller is responsible for serializing this function against
1183  * blk_mq_{start,stop}_hw_queue().
1184  */
1185 bool blk_mq_queue_stopped(struct request_queue *q)
1186 {
1187         struct blk_mq_hw_ctx *hctx;
1188         int i;
1189
1190         queue_for_each_hw_ctx(q, hctx, i)
1191                 if (blk_mq_hctx_stopped(hctx))
1192                         return true;
1193
1194         return false;
1195 }
1196 EXPORT_SYMBOL(blk_mq_queue_stopped);
1197
1198 /*
1199  * This function is often used for pausing .queue_rq() by driver when
1200  * there isn't enough resource or some conditions aren't satisfied, and
1201  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1202  *
1203  * We do not guarantee that dispatch can be drained or blocked
1204  * after blk_mq_stop_hw_queue() returns. Please use
1205  * blk_mq_quiesce_queue() for that requirement.
1206  */
1207 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1208 {
1209         cancel_delayed_work(&hctx->run_work);
1210
1211         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212 }
1213 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1214
1215 /*
1216  * This function is often used for pausing .queue_rq() by driver when
1217  * there isn't enough resource or some conditions aren't satisfied, and
1218  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1219  *
1220  * We do not guarantee that dispatch can be drained or blocked
1221  * after blk_mq_stop_hw_queues() returns. Please use
1222  * blk_mq_quiesce_queue() for that requirement.
1223  */
1224 void blk_mq_stop_hw_queues(struct request_queue *q)
1225 {
1226         struct blk_mq_hw_ctx *hctx;
1227         int i;
1228
1229         queue_for_each_hw_ctx(q, hctx, i)
1230                 blk_mq_stop_hw_queue(hctx);
1231 }
1232 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1233
1234 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1235 {
1236         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1237
1238         blk_mq_run_hw_queue(hctx, false);
1239 }
1240 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1241
1242 void blk_mq_start_hw_queues(struct request_queue *q)
1243 {
1244         struct blk_mq_hw_ctx *hctx;
1245         int i;
1246
1247         queue_for_each_hw_ctx(q, hctx, i)
1248                 blk_mq_start_hw_queue(hctx);
1249 }
1250 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1251
1252 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1253 {
1254         if (!blk_mq_hctx_stopped(hctx))
1255                 return;
1256
1257         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1258         blk_mq_run_hw_queue(hctx, async);
1259 }
1260 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1261
1262 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1263 {
1264         struct blk_mq_hw_ctx *hctx;
1265         int i;
1266
1267         queue_for_each_hw_ctx(q, hctx, i)
1268                 blk_mq_start_stopped_hw_queue(hctx, async);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1271
1272 static void blk_mq_run_work_fn(struct work_struct *work)
1273 {
1274         struct blk_mq_hw_ctx *hctx;
1275
1276         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1277
1278         /*
1279          * If we are stopped, don't run the queue. The exception is if
1280          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1281          * the STOPPED bit and run it.
1282          */
1283         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1284                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1285                         return;
1286
1287                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1288                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1289         }
1290
1291         __blk_mq_run_hw_queue(hctx);
1292 }
1293
1294
1295 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1296 {
1297         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1298                 return;
1299
1300         /*
1301          * Stop the hw queue, then modify currently delayed work.
1302          * This should prevent us from running the queue prematurely.
1303          * Mark the queue as auto-clearing STOPPED when it runs.
1304          */
1305         blk_mq_stop_hw_queue(hctx);
1306         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1307         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1308                                         &hctx->run_work,
1309                                         msecs_to_jiffies(msecs));
1310 }
1311 EXPORT_SYMBOL(blk_mq_delay_queue);
1312
1313 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1314                                             struct request *rq,
1315                                             bool at_head)
1316 {
1317         struct blk_mq_ctx *ctx = rq->mq_ctx;
1318
1319         trace_block_rq_insert(hctx->queue, rq);
1320
1321         if (at_head)
1322                 list_add(&rq->queuelist, &ctx->rq_list);
1323         else
1324                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1325 }
1326
1327 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1328                              bool at_head)
1329 {
1330         struct blk_mq_ctx *ctx = rq->mq_ctx;
1331
1332         __blk_mq_insert_req_list(hctx, rq, at_head);
1333         blk_mq_hctx_mark_pending(hctx, ctx);
1334 }
1335
1336 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1337                             struct list_head *list)
1338
1339 {
1340         /*
1341          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1342          * offline now
1343          */
1344         spin_lock(&ctx->lock);
1345         while (!list_empty(list)) {
1346                 struct request *rq;
1347
1348                 rq = list_first_entry(list, struct request, queuelist);
1349                 BUG_ON(rq->mq_ctx != ctx);
1350                 list_del_init(&rq->queuelist);
1351                 __blk_mq_insert_req_list(hctx, rq, false);
1352         }
1353         blk_mq_hctx_mark_pending(hctx, ctx);
1354         spin_unlock(&ctx->lock);
1355 }
1356
1357 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1358 {
1359         struct request *rqa = container_of(a, struct request, queuelist);
1360         struct request *rqb = container_of(b, struct request, queuelist);
1361
1362         return !(rqa->mq_ctx < rqb->mq_ctx ||
1363                  (rqa->mq_ctx == rqb->mq_ctx &&
1364                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1365 }
1366
1367 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1368 {
1369         struct blk_mq_ctx *this_ctx;
1370         struct request_queue *this_q;
1371         struct request *rq;
1372         LIST_HEAD(list);
1373         LIST_HEAD(ctx_list);
1374         unsigned int depth;
1375
1376         list_splice_init(&plug->mq_list, &list);
1377
1378         list_sort(NULL, &list, plug_ctx_cmp);
1379
1380         this_q = NULL;
1381         this_ctx = NULL;
1382         depth = 0;
1383
1384         while (!list_empty(&list)) {
1385                 rq = list_entry_rq(list.next);
1386                 list_del_init(&rq->queuelist);
1387                 BUG_ON(!rq->q);
1388                 if (rq->mq_ctx != this_ctx) {
1389                         if (this_ctx) {
1390                                 trace_block_unplug(this_q, depth, from_schedule);
1391                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1392                                                                 &ctx_list,
1393                                                                 from_schedule);
1394                         }
1395
1396                         this_ctx = rq->mq_ctx;
1397                         this_q = rq->q;
1398                         depth = 0;
1399                 }
1400
1401                 depth++;
1402                 list_add_tail(&rq->queuelist, &ctx_list);
1403         }
1404
1405         /*
1406          * If 'this_ctx' is set, we know we have entries to complete
1407          * on 'ctx_list'. Do those.
1408          */
1409         if (this_ctx) {
1410                 trace_block_unplug(this_q, depth, from_schedule);
1411                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1412                                                 from_schedule);
1413         }
1414 }
1415
1416 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1417 {
1418         blk_init_request_from_bio(rq, bio);
1419
1420         blk_account_io_start(rq, true);
1421 }
1422
1423 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1424 {
1425         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1426                 !blk_queue_nomerges(hctx->queue);
1427 }
1428
1429 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1430                                    struct blk_mq_ctx *ctx,
1431                                    struct request *rq)
1432 {
1433         spin_lock(&ctx->lock);
1434         __blk_mq_insert_request(hctx, rq, false);
1435         spin_unlock(&ctx->lock);
1436 }
1437
1438 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1439 {
1440         if (rq->tag != -1)
1441                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1442
1443         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1444 }
1445
1446 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1447                                         struct request *rq,
1448                                         blk_qc_t *cookie, bool may_sleep)
1449 {
1450         struct request_queue *q = rq->q;
1451         struct blk_mq_queue_data bd = {
1452                 .rq = rq,
1453                 .last = true,
1454         };
1455         blk_qc_t new_cookie;
1456         blk_status_t ret;
1457         bool run_queue = true;
1458
1459         /* RCU or SRCU read lock is needed before checking quiesced flag */
1460         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1461                 run_queue = false;
1462                 goto insert;
1463         }
1464
1465         if (q->elevator)
1466                 goto insert;
1467
1468         if (!blk_mq_get_driver_tag(rq, NULL, false))
1469                 goto insert;
1470
1471         new_cookie = request_to_qc_t(hctx, rq);
1472
1473         /*
1474          * For OK queue, we are done. For error, kill it. Any other
1475          * error (busy), just add it to our list as we previously
1476          * would have done
1477          */
1478         ret = q->mq_ops->queue_rq(hctx, &bd);
1479         switch (ret) {
1480         case BLK_STS_OK:
1481                 *cookie = new_cookie;
1482                 return;
1483         case BLK_STS_RESOURCE:
1484                 __blk_mq_requeue_request(rq);
1485                 goto insert;
1486         default:
1487                 *cookie = BLK_QC_T_NONE;
1488                 blk_mq_end_request(rq, ret);
1489                 return;
1490         }
1491
1492 insert:
1493         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1494 }
1495
1496 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1497                 struct request *rq, blk_qc_t *cookie)
1498 {
1499         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1500                 rcu_read_lock();
1501                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1502                 rcu_read_unlock();
1503         } else {
1504                 unsigned int srcu_idx;
1505
1506                 might_sleep();
1507
1508                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1509                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1510                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1511         }
1512 }
1513
1514 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1515 {
1516         const int is_sync = op_is_sync(bio->bi_opf);
1517         const int is_flush_fua = op_is_flush(bio->bi_opf);
1518         struct blk_mq_alloc_data data = { .flags = 0 };
1519         struct request *rq;
1520         unsigned int request_count = 0;
1521         struct blk_plug *plug;
1522         struct request *same_queue_rq = NULL;
1523         blk_qc_t cookie;
1524         unsigned int wb_acct;
1525
1526         blk_queue_bounce(q, &bio);
1527
1528         blk_queue_split(q, &bio);
1529
1530         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1531                 bio_io_error(bio);
1532                 return BLK_QC_T_NONE;
1533         }
1534
1535         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1536             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1537                 return BLK_QC_T_NONE;
1538
1539         if (blk_mq_sched_bio_merge(q, bio))
1540                 return BLK_QC_T_NONE;
1541
1542         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1543
1544         trace_block_getrq(q, bio, bio->bi_opf);
1545
1546         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1547         if (unlikely(!rq)) {
1548                 __wbt_done(q->rq_wb, wb_acct);
1549                 if (bio->bi_opf & REQ_NOWAIT)
1550                         bio_wouldblock_error(bio);
1551                 return BLK_QC_T_NONE;
1552         }
1553
1554         wbt_track(&rq->issue_stat, wb_acct);
1555
1556         cookie = request_to_qc_t(data.hctx, rq);
1557
1558         plug = current->plug;
1559         if (unlikely(is_flush_fua)) {
1560                 blk_mq_put_ctx(data.ctx);
1561                 blk_mq_bio_to_request(rq, bio);
1562                 if (q->elevator) {
1563                         blk_mq_sched_insert_request(rq, false, true, true,
1564                                         true);
1565                 } else {
1566                         blk_insert_flush(rq);
1567                         blk_mq_run_hw_queue(data.hctx, true);
1568                 }
1569         } else if (plug && q->nr_hw_queues == 1) {
1570                 struct request *last = NULL;
1571
1572                 blk_mq_put_ctx(data.ctx);
1573                 blk_mq_bio_to_request(rq, bio);
1574
1575                 /*
1576                  * @request_count may become stale because of schedule
1577                  * out, so check the list again.
1578                  */
1579                 if (list_empty(&plug->mq_list))
1580                         request_count = 0;
1581                 else if (blk_queue_nomerges(q))
1582                         request_count = blk_plug_queued_count(q);
1583
1584                 if (!request_count)
1585                         trace_block_plug(q);
1586                 else
1587                         last = list_entry_rq(plug->mq_list.prev);
1588
1589                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1590                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591                         blk_flush_plug_list(plug, false);
1592                         trace_block_plug(q);
1593                 }
1594
1595                 list_add_tail(&rq->queuelist, &plug->mq_list);
1596         } else if (plug && !blk_queue_nomerges(q)) {
1597                 blk_mq_bio_to_request(rq, bio);
1598
1599                 /*
1600                  * We do limited plugging. If the bio can be merged, do that.
1601                  * Otherwise the existing request in the plug list will be
1602                  * issued. So the plug list will have one request at most
1603                  * The plug list might get flushed before this. If that happens,
1604                  * the plug list is empty, and same_queue_rq is invalid.
1605                  */
1606                 if (list_empty(&plug->mq_list))
1607                         same_queue_rq = NULL;
1608                 if (same_queue_rq)
1609                         list_del_init(&same_queue_rq->queuelist);
1610                 list_add_tail(&rq->queuelist, &plug->mq_list);
1611
1612                 blk_mq_put_ctx(data.ctx);
1613
1614                 if (same_queue_rq) {
1615                         data.hctx = blk_mq_map_queue(q,
1616                                         same_queue_rq->mq_ctx->cpu);
1617                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1618                                         &cookie);
1619                 }
1620         } else if (q->nr_hw_queues > 1 && is_sync) {
1621                 blk_mq_put_ctx(data.ctx);
1622                 blk_mq_bio_to_request(rq, bio);
1623                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1624         } else if (q->elevator) {
1625                 blk_mq_put_ctx(data.ctx);
1626                 blk_mq_bio_to_request(rq, bio);
1627                 blk_mq_sched_insert_request(rq, false, true, true, true);
1628         } else {
1629                 blk_mq_put_ctx(data.ctx);
1630                 blk_mq_bio_to_request(rq, bio);
1631                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1632                 blk_mq_run_hw_queue(data.hctx, true);
1633         }
1634
1635         return cookie;
1636 }
1637
1638 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1639                      unsigned int hctx_idx)
1640 {
1641         struct page *page;
1642
1643         if (tags->rqs && set->ops->exit_request) {
1644                 int i;
1645
1646                 for (i = 0; i < tags->nr_tags; i++) {
1647                         struct request *rq = tags->static_rqs[i];
1648
1649                         if (!rq)
1650                                 continue;
1651                         set->ops->exit_request(set, rq, hctx_idx);
1652                         tags->static_rqs[i] = NULL;
1653                 }
1654         }
1655
1656         while (!list_empty(&tags->page_list)) {
1657                 page = list_first_entry(&tags->page_list, struct page, lru);
1658                 list_del_init(&page->lru);
1659                 /*
1660                  * Remove kmemleak object previously allocated in
1661                  * blk_mq_init_rq_map().
1662                  */
1663                 kmemleak_free(page_address(page));
1664                 __free_pages(page, page->private);
1665         }
1666 }
1667
1668 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1669 {
1670         kfree(tags->rqs);
1671         tags->rqs = NULL;
1672         kfree(tags->static_rqs);
1673         tags->static_rqs = NULL;
1674
1675         blk_mq_free_tags(tags);
1676 }
1677
1678 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1679                                         unsigned int hctx_idx,
1680                                         unsigned int nr_tags,
1681                                         unsigned int reserved_tags)
1682 {
1683         struct blk_mq_tags *tags;
1684         int node;
1685
1686         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1687         if (node == NUMA_NO_NODE)
1688                 node = set->numa_node;
1689
1690         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1691                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1692         if (!tags)
1693                 return NULL;
1694
1695         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1696                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697                                  node);
1698         if (!tags->rqs) {
1699                 blk_mq_free_tags(tags);
1700                 return NULL;
1701         }
1702
1703         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705                                  node);
1706         if (!tags->static_rqs) {
1707                 kfree(tags->rqs);
1708                 blk_mq_free_tags(tags);
1709                 return NULL;
1710         }
1711
1712         return tags;
1713 }
1714
1715 static size_t order_to_size(unsigned int order)
1716 {
1717         return (size_t)PAGE_SIZE << order;
1718 }
1719
1720 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1721                      unsigned int hctx_idx, unsigned int depth)
1722 {
1723         unsigned int i, j, entries_per_page, max_order = 4;
1724         size_t rq_size, left;
1725         int node;
1726
1727         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1728         if (node == NUMA_NO_NODE)
1729                 node = set->numa_node;
1730
1731         INIT_LIST_HEAD(&tags->page_list);
1732
1733         /*
1734          * rq_size is the size of the request plus driver payload, rounded
1735          * to the cacheline size
1736          */
1737         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1738                                 cache_line_size());
1739         left = rq_size * depth;
1740
1741         for (i = 0; i < depth; ) {
1742                 int this_order = max_order;
1743                 struct page *page;
1744                 int to_do;
1745                 void *p;
1746
1747                 while (this_order && left < order_to_size(this_order - 1))
1748                         this_order--;
1749
1750                 do {
1751                         page = alloc_pages_node(node,
1752                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1753                                 this_order);
1754                         if (page)
1755                                 break;
1756                         if (!this_order--)
1757                                 break;
1758                         if (order_to_size(this_order) < rq_size)
1759                                 break;
1760                 } while (1);
1761
1762                 if (!page)
1763                         goto fail;
1764
1765                 page->private = this_order;
1766                 list_add_tail(&page->lru, &tags->page_list);
1767
1768                 p = page_address(page);
1769                 /*
1770                  * Allow kmemleak to scan these pages as they contain pointers
1771                  * to additional allocations like via ops->init_request().
1772                  */
1773                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1774                 entries_per_page = order_to_size(this_order) / rq_size;
1775                 to_do = min(entries_per_page, depth - i);
1776                 left -= to_do * rq_size;
1777                 for (j = 0; j < to_do; j++) {
1778                         struct request *rq = p;
1779
1780                         tags->static_rqs[i] = rq;
1781                         if (set->ops->init_request) {
1782                                 if (set->ops->init_request(set, rq, hctx_idx,
1783                                                 node)) {
1784                                         tags->static_rqs[i] = NULL;
1785                                         goto fail;
1786                                 }
1787                         }
1788
1789                         p += rq_size;
1790                         i++;
1791                 }
1792         }
1793         return 0;
1794
1795 fail:
1796         blk_mq_free_rqs(set, tags, hctx_idx);
1797         return -ENOMEM;
1798 }
1799
1800 /*
1801  * 'cpu' is going away. splice any existing rq_list entries from this
1802  * software queue to the hw queue dispatch list, and ensure that it
1803  * gets run.
1804  */
1805 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1806 {
1807         struct blk_mq_hw_ctx *hctx;
1808         struct blk_mq_ctx *ctx;
1809         LIST_HEAD(tmp);
1810
1811         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1812         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1813
1814         spin_lock(&ctx->lock);
1815         if (!list_empty(&ctx->rq_list)) {
1816                 list_splice_init(&ctx->rq_list, &tmp);
1817                 blk_mq_hctx_clear_pending(hctx, ctx);
1818         }
1819         spin_unlock(&ctx->lock);
1820
1821         if (list_empty(&tmp))
1822                 return 0;
1823
1824         spin_lock(&hctx->lock);
1825         list_splice_tail_init(&tmp, &hctx->dispatch);
1826         spin_unlock(&hctx->lock);
1827
1828         blk_mq_run_hw_queue(hctx, true);
1829         return 0;
1830 }
1831
1832 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1833 {
1834         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1835                                             &hctx->cpuhp_dead);
1836 }
1837
1838 /* hctx->ctxs will be freed in queue's release handler */
1839 static void blk_mq_exit_hctx(struct request_queue *q,
1840                 struct blk_mq_tag_set *set,
1841                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1842 {
1843         blk_mq_debugfs_unregister_hctx(hctx);
1844
1845         blk_mq_tag_idle(hctx);
1846
1847         if (set->ops->exit_request)
1848                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1849
1850         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1851
1852         if (set->ops->exit_hctx)
1853                 set->ops->exit_hctx(hctx, hctx_idx);
1854
1855         if (hctx->flags & BLK_MQ_F_BLOCKING)
1856                 cleanup_srcu_struct(hctx->queue_rq_srcu);
1857
1858         blk_mq_remove_cpuhp(hctx);
1859         blk_free_flush_queue(hctx->fq);
1860         sbitmap_free(&hctx->ctx_map);
1861 }
1862
1863 static void blk_mq_exit_hw_queues(struct request_queue *q,
1864                 struct blk_mq_tag_set *set, int nr_queue)
1865 {
1866         struct blk_mq_hw_ctx *hctx;
1867         unsigned int i;
1868
1869         queue_for_each_hw_ctx(q, hctx, i) {
1870                 if (i == nr_queue)
1871                         break;
1872                 blk_mq_exit_hctx(q, set, hctx, i);
1873         }
1874 }
1875
1876 static int blk_mq_init_hctx(struct request_queue *q,
1877                 struct blk_mq_tag_set *set,
1878                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1879 {
1880         int node;
1881
1882         node = hctx->numa_node;
1883         if (node == NUMA_NO_NODE)
1884                 node = hctx->numa_node = set->numa_node;
1885
1886         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1887         spin_lock_init(&hctx->lock);
1888         INIT_LIST_HEAD(&hctx->dispatch);
1889         hctx->queue = q;
1890         hctx->queue_num = hctx_idx;
1891         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1892
1893         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1894
1895         hctx->tags = set->tags[hctx_idx];
1896
1897         /*
1898          * Allocate space for all possible cpus to avoid allocation at
1899          * runtime
1900          */
1901         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1902                                         GFP_KERNEL, node);
1903         if (!hctx->ctxs)
1904                 goto unregister_cpu_notifier;
1905
1906         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1907                               node))
1908                 goto free_ctxs;
1909
1910         hctx->nr_ctx = 0;
1911
1912         if (set->ops->init_hctx &&
1913             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1914                 goto free_bitmap;
1915
1916         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1917                 goto exit_hctx;
1918
1919         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1920         if (!hctx->fq)
1921                 goto sched_exit_hctx;
1922
1923         if (set->ops->init_request &&
1924             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1925                                    node))
1926                 goto free_fq;
1927
1928         if (hctx->flags & BLK_MQ_F_BLOCKING)
1929                 init_srcu_struct(hctx->queue_rq_srcu);
1930
1931         blk_mq_debugfs_register_hctx(q, hctx);
1932
1933         return 0;
1934
1935  free_fq:
1936         kfree(hctx->fq);
1937  sched_exit_hctx:
1938         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1939  exit_hctx:
1940         if (set->ops->exit_hctx)
1941                 set->ops->exit_hctx(hctx, hctx_idx);
1942  free_bitmap:
1943         sbitmap_free(&hctx->ctx_map);
1944  free_ctxs:
1945         kfree(hctx->ctxs);
1946  unregister_cpu_notifier:
1947         blk_mq_remove_cpuhp(hctx);
1948         return -1;
1949 }
1950
1951 static void blk_mq_init_cpu_queues(struct request_queue *q,
1952                                    unsigned int nr_hw_queues)
1953 {
1954         unsigned int i;
1955
1956         for_each_possible_cpu(i) {
1957                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1958                 struct blk_mq_hw_ctx *hctx;
1959
1960                 __ctx->cpu = i;
1961                 spin_lock_init(&__ctx->lock);
1962                 INIT_LIST_HEAD(&__ctx->rq_list);
1963                 __ctx->queue = q;
1964
1965                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1966                 if (!cpu_online(i))
1967                         continue;
1968
1969                 hctx = blk_mq_map_queue(q, i);
1970
1971                 /*
1972                  * Set local node, IFF we have more than one hw queue. If
1973                  * not, we remain on the home node of the device
1974                  */
1975                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1976                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1977         }
1978 }
1979
1980 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1981 {
1982         int ret = 0;
1983
1984         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1985                                         set->queue_depth, set->reserved_tags);
1986         if (!set->tags[hctx_idx])
1987                 return false;
1988
1989         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1990                                 set->queue_depth);
1991         if (!ret)
1992                 return true;
1993
1994         blk_mq_free_rq_map(set->tags[hctx_idx]);
1995         set->tags[hctx_idx] = NULL;
1996         return false;
1997 }
1998
1999 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2000                                          unsigned int hctx_idx)
2001 {
2002         if (set->tags[hctx_idx]) {
2003                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2004                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2005                 set->tags[hctx_idx] = NULL;
2006         }
2007 }
2008
2009 static void blk_mq_map_swqueue(struct request_queue *q,
2010                                const struct cpumask *online_mask)
2011 {
2012         unsigned int i, hctx_idx;
2013         struct blk_mq_hw_ctx *hctx;
2014         struct blk_mq_ctx *ctx;
2015         struct blk_mq_tag_set *set = q->tag_set;
2016
2017         /*
2018          * Avoid others reading imcomplete hctx->cpumask through sysfs
2019          */
2020         mutex_lock(&q->sysfs_lock);
2021
2022         queue_for_each_hw_ctx(q, hctx, i) {
2023                 cpumask_clear(hctx->cpumask);
2024                 hctx->nr_ctx = 0;
2025         }
2026
2027         /*
2028          * Map software to hardware queues
2029          */
2030         for_each_possible_cpu(i) {
2031                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2032                 if (!cpumask_test_cpu(i, online_mask))
2033                         continue;
2034
2035                 hctx_idx = q->mq_map[i];
2036                 /* unmapped hw queue can be remapped after CPU topo changed */
2037                 if (!set->tags[hctx_idx] &&
2038                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2039                         /*
2040                          * If tags initialization fail for some hctx,
2041                          * that hctx won't be brought online.  In this
2042                          * case, remap the current ctx to hctx[0] which
2043                          * is guaranteed to always have tags allocated
2044                          */
2045                         q->mq_map[i] = 0;
2046                 }
2047
2048                 ctx = per_cpu_ptr(q->queue_ctx, i);
2049                 hctx = blk_mq_map_queue(q, i);
2050
2051                 cpumask_set_cpu(i, hctx->cpumask);
2052                 ctx->index_hw = hctx->nr_ctx;
2053                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2054         }
2055
2056         mutex_unlock(&q->sysfs_lock);
2057
2058         queue_for_each_hw_ctx(q, hctx, i) {
2059                 /*
2060                  * If no software queues are mapped to this hardware queue,
2061                  * disable it and free the request entries.
2062                  */
2063                 if (!hctx->nr_ctx) {
2064                         /* Never unmap queue 0.  We need it as a
2065                          * fallback in case of a new remap fails
2066                          * allocation
2067                          */
2068                         if (i && set->tags[i])
2069                                 blk_mq_free_map_and_requests(set, i);
2070
2071                         hctx->tags = NULL;
2072                         continue;
2073                 }
2074
2075                 hctx->tags = set->tags[i];
2076                 WARN_ON(!hctx->tags);
2077
2078                 /*
2079                  * Set the map size to the number of mapped software queues.
2080                  * This is more accurate and more efficient than looping
2081                  * over all possibly mapped software queues.
2082                  */
2083                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2084
2085                 /*
2086                  * Initialize batch roundrobin counts
2087                  */
2088                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2089                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2090         }
2091 }
2092
2093 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2094 {
2095         struct blk_mq_hw_ctx *hctx;
2096         int i;
2097
2098         queue_for_each_hw_ctx(q, hctx, i) {
2099                 if (shared)
2100                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2101                 else
2102                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2103         }
2104 }
2105
2106 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2107 {
2108         struct request_queue *q;
2109
2110         lockdep_assert_held(&set->tag_list_lock);
2111
2112         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2113                 blk_mq_freeze_queue(q);
2114                 queue_set_hctx_shared(q, shared);
2115                 blk_mq_unfreeze_queue(q);
2116         }
2117 }
2118
2119 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2120 {
2121         struct blk_mq_tag_set *set = q->tag_set;
2122
2123         mutex_lock(&set->tag_list_lock);
2124         list_del_rcu(&q->tag_set_list);
2125         INIT_LIST_HEAD(&q->tag_set_list);
2126         if (list_is_singular(&set->tag_list)) {
2127                 /* just transitioned to unshared */
2128                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2129                 /* update existing queue */
2130                 blk_mq_update_tag_set_depth(set, false);
2131         }
2132         mutex_unlock(&set->tag_list_lock);
2133
2134         synchronize_rcu();
2135 }
2136
2137 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2138                                      struct request_queue *q)
2139 {
2140         q->tag_set = set;
2141
2142         mutex_lock(&set->tag_list_lock);
2143
2144         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2145         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2146                 set->flags |= BLK_MQ_F_TAG_SHARED;
2147                 /* update existing queue */
2148                 blk_mq_update_tag_set_depth(set, true);
2149         }
2150         if (set->flags & BLK_MQ_F_TAG_SHARED)
2151                 queue_set_hctx_shared(q, true);
2152         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2153
2154         mutex_unlock(&set->tag_list_lock);
2155 }
2156
2157 /*
2158  * It is the actual release handler for mq, but we do it from
2159  * request queue's release handler for avoiding use-after-free
2160  * and headache because q->mq_kobj shouldn't have been introduced,
2161  * but we can't group ctx/kctx kobj without it.
2162  */
2163 void blk_mq_release(struct request_queue *q)
2164 {
2165         struct blk_mq_hw_ctx *hctx;
2166         unsigned int i;
2167
2168         /* hctx kobj stays in hctx */
2169         queue_for_each_hw_ctx(q, hctx, i) {
2170                 if (!hctx)
2171                         continue;
2172                 kobject_put(&hctx->kobj);
2173         }
2174
2175         q->mq_map = NULL;
2176
2177         kfree(q->queue_hw_ctx);
2178
2179         /*
2180          * release .mq_kobj and sw queue's kobject now because
2181          * both share lifetime with request queue.
2182          */
2183         blk_mq_sysfs_deinit(q);
2184
2185         free_percpu(q->queue_ctx);
2186 }
2187
2188 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2189 {
2190         struct request_queue *uninit_q, *q;
2191
2192         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2193         if (!uninit_q)
2194                 return ERR_PTR(-ENOMEM);
2195
2196         q = blk_mq_init_allocated_queue(set, uninit_q);
2197         if (IS_ERR(q))
2198                 blk_cleanup_queue(uninit_q);
2199
2200         return q;
2201 }
2202 EXPORT_SYMBOL(blk_mq_init_queue);
2203
2204 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2205 {
2206         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2207
2208         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2209                            __alignof__(struct blk_mq_hw_ctx)) !=
2210                      sizeof(struct blk_mq_hw_ctx));
2211
2212         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2213                 hw_ctx_size += sizeof(struct srcu_struct);
2214
2215         return hw_ctx_size;
2216 }
2217
2218 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2219                                                 struct request_queue *q)
2220 {
2221         int i, j;
2222         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2223
2224         blk_mq_sysfs_unregister(q);
2225         for (i = 0; i < set->nr_hw_queues; i++) {
2226                 int node;
2227
2228                 if (hctxs[i])
2229                         continue;
2230
2231                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2232                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2233                                         GFP_KERNEL, node);
2234                 if (!hctxs[i])
2235                         break;
2236
2237                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2238                                                 node)) {
2239                         kfree(hctxs[i]);
2240                         hctxs[i] = NULL;
2241                         break;
2242                 }
2243
2244                 atomic_set(&hctxs[i]->nr_active, 0);
2245                 hctxs[i]->numa_node = node;
2246                 hctxs[i]->queue_num = i;
2247
2248                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2249                         free_cpumask_var(hctxs[i]->cpumask);
2250                         kfree(hctxs[i]);
2251                         hctxs[i] = NULL;
2252                         break;
2253                 }
2254                 blk_mq_hctx_kobj_init(hctxs[i]);
2255         }
2256         for (j = i; j < q->nr_hw_queues; j++) {
2257                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2258
2259                 if (hctx) {
2260                         if (hctx->tags)
2261                                 blk_mq_free_map_and_requests(set, j);
2262                         blk_mq_exit_hctx(q, set, hctx, j);
2263                         kobject_put(&hctx->kobj);
2264                         hctxs[j] = NULL;
2265
2266                 }
2267         }
2268         q->nr_hw_queues = i;
2269         blk_mq_sysfs_register(q);
2270 }
2271
2272 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2273                                                   struct request_queue *q)
2274 {
2275         /* mark the queue as mq asap */
2276         q->mq_ops = set->ops;
2277
2278         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2279                                              blk_mq_poll_stats_bkt,
2280                                              BLK_MQ_POLL_STATS_BKTS, q);
2281         if (!q->poll_cb)
2282                 goto err_exit;
2283
2284         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2285         if (!q->queue_ctx)
2286                 goto err_exit;
2287
2288         /* init q->mq_kobj and sw queues' kobjects */
2289         blk_mq_sysfs_init(q);
2290
2291         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2292                                                 GFP_KERNEL, set->numa_node);
2293         if (!q->queue_hw_ctx)
2294                 goto err_percpu;
2295
2296         q->mq_map = set->mq_map;
2297
2298         blk_mq_realloc_hw_ctxs(set, q);
2299         if (!q->nr_hw_queues)
2300                 goto err_hctxs;
2301
2302         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2303         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2304
2305         q->nr_queues = nr_cpu_ids;
2306
2307         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2308
2309         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2310                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2311
2312         q->sg_reserved_size = INT_MAX;
2313
2314         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2315         INIT_LIST_HEAD(&q->requeue_list);
2316         spin_lock_init(&q->requeue_lock);
2317
2318         blk_queue_make_request(q, blk_mq_make_request);
2319
2320         /*
2321          * Do this after blk_queue_make_request() overrides it...
2322          */
2323         q->nr_requests = set->queue_depth;
2324
2325         /*
2326          * Default to classic polling
2327          */
2328         q->poll_nsec = -1;
2329
2330         if (set->ops->complete)
2331                 blk_queue_softirq_done(q, set->ops->complete);
2332
2333         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2334
2335         get_online_cpus();
2336         mutex_lock(&all_q_mutex);
2337
2338         list_add_tail(&q->all_q_node, &all_q_list);
2339         blk_mq_add_queue_tag_set(set, q);
2340         blk_mq_map_swqueue(q, cpu_online_mask);
2341
2342         mutex_unlock(&all_q_mutex);
2343         put_online_cpus();
2344
2345         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2346                 int ret;
2347
2348                 ret = blk_mq_sched_init(q);
2349                 if (ret)
2350                         return ERR_PTR(ret);
2351         }
2352
2353         return q;
2354
2355 err_hctxs:
2356         kfree(q->queue_hw_ctx);
2357 err_percpu:
2358         free_percpu(q->queue_ctx);
2359 err_exit:
2360         q->mq_ops = NULL;
2361         return ERR_PTR(-ENOMEM);
2362 }
2363 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2364
2365 void blk_mq_free_queue(struct request_queue *q)
2366 {
2367         struct blk_mq_tag_set   *set = q->tag_set;
2368
2369         mutex_lock(&all_q_mutex);
2370         list_del_init(&q->all_q_node);
2371         mutex_unlock(&all_q_mutex);
2372
2373         blk_mq_del_queue_tag_set(q);
2374
2375         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2376 }
2377
2378 /* Basically redo blk_mq_init_queue with queue frozen */
2379 static void blk_mq_queue_reinit(struct request_queue *q,
2380                                 const struct cpumask *online_mask)
2381 {
2382         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2383
2384         blk_mq_debugfs_unregister_hctxs(q);
2385         blk_mq_sysfs_unregister(q);
2386
2387         /*
2388          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2389          * we should change hctx numa_node according to new topology (this
2390          * involves free and re-allocate memory, worthy doing?)
2391          */
2392
2393         blk_mq_map_swqueue(q, online_mask);
2394
2395         blk_mq_sysfs_register(q);
2396         blk_mq_debugfs_register_hctxs(q);
2397 }
2398
2399 /*
2400  * New online cpumask which is going to be set in this hotplug event.
2401  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2402  * one-by-one and dynamically allocating this could result in a failure.
2403  */
2404 static struct cpumask cpuhp_online_new;
2405
2406 static void blk_mq_queue_reinit_work(void)
2407 {
2408         struct request_queue *q;
2409
2410         mutex_lock(&all_q_mutex);
2411         /*
2412          * We need to freeze and reinit all existing queues.  Freezing
2413          * involves synchronous wait for an RCU grace period and doing it
2414          * one by one may take a long time.  Start freezing all queues in
2415          * one swoop and then wait for the completions so that freezing can
2416          * take place in parallel.
2417          */
2418         list_for_each_entry(q, &all_q_list, all_q_node)
2419                 blk_freeze_queue_start(q);
2420         list_for_each_entry(q, &all_q_list, all_q_node)
2421                 blk_mq_freeze_queue_wait(q);
2422
2423         list_for_each_entry(q, &all_q_list, all_q_node)
2424                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2425
2426         list_for_each_entry(q, &all_q_list, all_q_node)
2427                 blk_mq_unfreeze_queue(q);
2428
2429         mutex_unlock(&all_q_mutex);
2430 }
2431
2432 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2433 {
2434         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2435         blk_mq_queue_reinit_work();
2436         return 0;
2437 }
2438
2439 /*
2440  * Before hotadded cpu starts handling requests, new mappings must be
2441  * established.  Otherwise, these requests in hw queue might never be
2442  * dispatched.
2443  *
2444  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2445  * for CPU0, and ctx1 for CPU1).
2446  *
2447  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2448  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2449  *
2450  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2451  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2452  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2453  * ignored.
2454  */
2455 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2456 {
2457         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2458         cpumask_set_cpu(cpu, &cpuhp_online_new);
2459         blk_mq_queue_reinit_work();
2460         return 0;
2461 }
2462
2463 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2464 {
2465         int i;
2466
2467         for (i = 0; i < set->nr_hw_queues; i++)
2468                 if (!__blk_mq_alloc_rq_map(set, i))
2469                         goto out_unwind;
2470
2471         return 0;
2472
2473 out_unwind:
2474         while (--i >= 0)
2475                 blk_mq_free_rq_map(set->tags[i]);
2476
2477         return -ENOMEM;
2478 }
2479
2480 /*
2481  * Allocate the request maps associated with this tag_set. Note that this
2482  * may reduce the depth asked for, if memory is tight. set->queue_depth
2483  * will be updated to reflect the allocated depth.
2484  */
2485 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2486 {
2487         unsigned int depth;
2488         int err;
2489
2490         depth = set->queue_depth;
2491         do {
2492                 err = __blk_mq_alloc_rq_maps(set);
2493                 if (!err)
2494                         break;
2495
2496                 set->queue_depth >>= 1;
2497                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2498                         err = -ENOMEM;
2499                         break;
2500                 }
2501         } while (set->queue_depth);
2502
2503         if (!set->queue_depth || err) {
2504                 pr_err("blk-mq: failed to allocate request map\n");
2505                 return -ENOMEM;
2506         }
2507
2508         if (depth != set->queue_depth)
2509                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2510                                                 depth, set->queue_depth);
2511
2512         return 0;
2513 }
2514
2515 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2516 {
2517         if (set->ops->map_queues)
2518                 return set->ops->map_queues(set);
2519         else
2520                 return blk_mq_map_queues(set);
2521 }
2522
2523 /*
2524  * Alloc a tag set to be associated with one or more request queues.
2525  * May fail with EINVAL for various error conditions. May adjust the
2526  * requested depth down, if if it too large. In that case, the set
2527  * value will be stored in set->queue_depth.
2528  */
2529 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2530 {
2531         int ret;
2532
2533         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2534
2535         if (!set->nr_hw_queues)
2536                 return -EINVAL;
2537         if (!set->queue_depth)
2538                 return -EINVAL;
2539         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2540                 return -EINVAL;
2541
2542         if (!set->ops->queue_rq)
2543                 return -EINVAL;
2544
2545         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2546                 pr_info("blk-mq: reduced tag depth to %u\n",
2547                         BLK_MQ_MAX_DEPTH);
2548                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2549         }
2550
2551         /*
2552          * If a crashdump is active, then we are potentially in a very
2553          * memory constrained environment. Limit us to 1 queue and
2554          * 64 tags to prevent using too much memory.
2555          */
2556         if (is_kdump_kernel()) {
2557                 set->nr_hw_queues = 1;
2558                 set->queue_depth = min(64U, set->queue_depth);
2559         }
2560         /*
2561          * There is no use for more h/w queues than cpus.
2562          */
2563         if (set->nr_hw_queues > nr_cpu_ids)
2564                 set->nr_hw_queues = nr_cpu_ids;
2565
2566         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2567                                  GFP_KERNEL, set->numa_node);
2568         if (!set->tags)
2569                 return -ENOMEM;
2570
2571         ret = -ENOMEM;
2572         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2573                         GFP_KERNEL, set->numa_node);
2574         if (!set->mq_map)
2575                 goto out_free_tags;
2576
2577         ret = blk_mq_update_queue_map(set);
2578         if (ret)
2579                 goto out_free_mq_map;
2580
2581         ret = blk_mq_alloc_rq_maps(set);
2582         if (ret)
2583                 goto out_free_mq_map;
2584
2585         mutex_init(&set->tag_list_lock);
2586         INIT_LIST_HEAD(&set->tag_list);
2587
2588         return 0;
2589
2590 out_free_mq_map:
2591         kfree(set->mq_map);
2592         set->mq_map = NULL;
2593 out_free_tags:
2594         kfree(set->tags);
2595         set->tags = NULL;
2596         return ret;
2597 }
2598 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2599
2600 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2601 {
2602         int i;
2603
2604         for (i = 0; i < nr_cpu_ids; i++)
2605                 blk_mq_free_map_and_requests(set, i);
2606
2607         kfree(set->mq_map);
2608         set->mq_map = NULL;
2609
2610         kfree(set->tags);
2611         set->tags = NULL;
2612 }
2613 EXPORT_SYMBOL(blk_mq_free_tag_set);
2614
2615 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2616 {
2617         struct blk_mq_tag_set *set = q->tag_set;
2618         struct blk_mq_hw_ctx *hctx;
2619         int i, ret;
2620
2621         if (!set)
2622                 return -EINVAL;
2623
2624         blk_mq_freeze_queue(q);
2625
2626         ret = 0;
2627         queue_for_each_hw_ctx(q, hctx, i) {
2628                 if (!hctx->tags)
2629                         continue;
2630                 /*
2631                  * If we're using an MQ scheduler, just update the scheduler
2632                  * queue depth. This is similar to what the old code would do.
2633                  */
2634                 if (!hctx->sched_tags) {
2635                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2636                                                         min(nr, set->queue_depth),
2637                                                         false);
2638                 } else {
2639                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2640                                                         nr, true);
2641                 }
2642                 if (ret)
2643                         break;
2644         }
2645
2646         if (!ret)
2647                 q->nr_requests = nr;
2648
2649         blk_mq_unfreeze_queue(q);
2650
2651         return ret;
2652 }
2653
2654 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2655                                                         int nr_hw_queues)
2656 {
2657         struct request_queue *q;
2658
2659         lockdep_assert_held(&set->tag_list_lock);
2660
2661         if (nr_hw_queues > nr_cpu_ids)
2662                 nr_hw_queues = nr_cpu_ids;
2663         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2664                 return;
2665
2666         list_for_each_entry(q, &set->tag_list, tag_set_list)
2667                 blk_mq_freeze_queue(q);
2668
2669         set->nr_hw_queues = nr_hw_queues;
2670         blk_mq_update_queue_map(set);
2671         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2672                 blk_mq_realloc_hw_ctxs(set, q);
2673                 blk_mq_queue_reinit(q, cpu_online_mask);
2674         }
2675
2676         list_for_each_entry(q, &set->tag_list, tag_set_list)
2677                 blk_mq_unfreeze_queue(q);
2678 }
2679
2680 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2681 {
2682         mutex_lock(&set->tag_list_lock);
2683         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2684         mutex_unlock(&set->tag_list_lock);
2685 }
2686 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2687
2688 /* Enable polling stats and return whether they were already enabled. */
2689 static bool blk_poll_stats_enable(struct request_queue *q)
2690 {
2691         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2692             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2693                 return true;
2694         blk_stat_add_callback(q, q->poll_cb);
2695         return false;
2696 }
2697
2698 static void blk_mq_poll_stats_start(struct request_queue *q)
2699 {
2700         /*
2701          * We don't arm the callback if polling stats are not enabled or the
2702          * callback is already active.
2703          */
2704         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2705             blk_stat_is_active(q->poll_cb))
2706                 return;
2707
2708         blk_stat_activate_msecs(q->poll_cb, 100);
2709 }
2710
2711 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2712 {
2713         struct request_queue *q = cb->data;
2714         int bucket;
2715
2716         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2717                 if (cb->stat[bucket].nr_samples)
2718                         q->poll_stat[bucket] = cb->stat[bucket];
2719         }
2720 }
2721
2722 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2723                                        struct blk_mq_hw_ctx *hctx,
2724                                        struct request *rq)
2725 {
2726         unsigned long ret = 0;
2727         int bucket;
2728
2729         /*
2730          * If stats collection isn't on, don't sleep but turn it on for
2731          * future users
2732          */
2733         if (!blk_poll_stats_enable(q))
2734                 return 0;
2735
2736         /*
2737          * As an optimistic guess, use half of the mean service time
2738          * for this type of request. We can (and should) make this smarter.
2739          * For instance, if the completion latencies are tight, we can
2740          * get closer than just half the mean. This is especially
2741          * important on devices where the completion latencies are longer
2742          * than ~10 usec. We do use the stats for the relevant IO size
2743          * if available which does lead to better estimates.
2744          */
2745         bucket = blk_mq_poll_stats_bkt(rq);
2746         if (bucket < 0)
2747                 return ret;
2748
2749         if (q->poll_stat[bucket].nr_samples)
2750                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2751
2752         return ret;
2753 }
2754
2755 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2756                                      struct blk_mq_hw_ctx *hctx,
2757                                      struct request *rq)
2758 {
2759         struct hrtimer_sleeper hs;
2760         enum hrtimer_mode mode;
2761         unsigned int nsecs;
2762         ktime_t kt;
2763
2764         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2765                 return false;
2766
2767         /*
2768          * poll_nsec can be:
2769          *
2770          * -1:  don't ever hybrid sleep
2771          *  0:  use half of prev avg
2772          * >0:  use this specific value
2773          */
2774         if (q->poll_nsec == -1)
2775                 return false;
2776         else if (q->poll_nsec > 0)
2777                 nsecs = q->poll_nsec;
2778         else
2779                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2780
2781         if (!nsecs)
2782                 return false;
2783
2784         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2785
2786         /*
2787          * This will be replaced with the stats tracking code, using
2788          * 'avg_completion_time / 2' as the pre-sleep target.
2789          */
2790         kt = nsecs;
2791
2792         mode = HRTIMER_MODE_REL;
2793         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2794         hrtimer_set_expires(&hs.timer, kt);
2795
2796         hrtimer_init_sleeper(&hs, current);
2797         do {
2798                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2799                         break;
2800                 set_current_state(TASK_UNINTERRUPTIBLE);
2801                 hrtimer_start_expires(&hs.timer, mode);
2802                 if (hs.task)
2803                         io_schedule();
2804                 hrtimer_cancel(&hs.timer);
2805                 mode = HRTIMER_MODE_ABS;
2806         } while (hs.task && !signal_pending(current));
2807
2808         __set_current_state(TASK_RUNNING);
2809         destroy_hrtimer_on_stack(&hs.timer);
2810         return true;
2811 }
2812
2813 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2814 {
2815         struct request_queue *q = hctx->queue;
2816         long state;
2817
2818         /*
2819          * If we sleep, have the caller restart the poll loop to reset
2820          * the state. Like for the other success return cases, the
2821          * caller is responsible for checking if the IO completed. If
2822          * the IO isn't complete, we'll get called again and will go
2823          * straight to the busy poll loop.
2824          */
2825         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2826                 return true;
2827
2828         hctx->poll_considered++;
2829
2830         state = current->state;
2831         while (!need_resched()) {
2832                 int ret;
2833
2834                 hctx->poll_invoked++;
2835
2836                 ret = q->mq_ops->poll(hctx, rq->tag);
2837                 if (ret > 0) {
2838                         hctx->poll_success++;
2839                         set_current_state(TASK_RUNNING);
2840                         return true;
2841                 }
2842
2843                 if (signal_pending_state(state, current))
2844                         set_current_state(TASK_RUNNING);
2845
2846                 if (current->state == TASK_RUNNING)
2847                         return true;
2848                 if (ret < 0)
2849                         break;
2850                 cpu_relax();
2851         }
2852
2853         return false;
2854 }
2855
2856 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2857 {
2858         struct blk_mq_hw_ctx *hctx;
2859         struct blk_plug *plug;
2860         struct request *rq;
2861
2862         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2863             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2864                 return false;
2865
2866         plug = current->plug;
2867         if (plug)
2868                 blk_flush_plug_list(plug, false);
2869
2870         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2871         if (!blk_qc_t_is_internal(cookie))
2872                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2873         else {
2874                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2875                 /*
2876                  * With scheduling, if the request has completed, we'll
2877                  * get a NULL return here, as we clear the sched tag when
2878                  * that happens. The request still remains valid, like always,
2879                  * so we should be safe with just the NULL check.
2880                  */
2881                 if (!rq)
2882                         return false;
2883         }
2884
2885         return __blk_mq_poll(hctx, rq);
2886 }
2887 EXPORT_SYMBOL_GPL(blk_mq_poll);
2888
2889 void blk_mq_disable_hotplug(void)
2890 {
2891         mutex_lock(&all_q_mutex);
2892 }
2893
2894 void blk_mq_enable_hotplug(void)
2895 {
2896         mutex_unlock(&all_q_mutex);
2897 }
2898
2899 static int __init blk_mq_init(void)
2900 {
2901         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2902                                 blk_mq_hctx_notify_dead);
2903
2904         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2905                                   blk_mq_queue_reinit_prepare,
2906                                   blk_mq_queue_reinit_dead);
2907         return 0;
2908 }
2909 subsys_initcall(blk_mq_init);