]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
Merge tag 'trace-v4.20-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, bytes, bucket;
48
49         ddir = rq_data_dir(rq);
50         bytes = blk_rq_bytes(rq);
51
52         bucket = ddir + 2*(ilog2(bytes) - 9);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67         return !list_empty_careful(&hctx->dispatch) ||
68                 sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76                                      struct blk_mq_ctx *ctx)
77 {
78         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83                                       struct blk_mq_ctx *ctx)
84 {
85         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87
88 struct mq_inflight {
89         struct hd_struct *part;
90         unsigned int *inflight;
91 };
92
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94                                   struct request *rq, void *priv,
95                                   bool reserved)
96 {
97         struct mq_inflight *mi = priv;
98
99         /*
100          * index[0] counts the specific partition that was asked for. index[1]
101          * counts the ones that are active on the whole device, so increment
102          * that if mi->part is indeed a partition, and not a whole device.
103          */
104         if (rq->part == mi->part)
105                 mi->inflight[0]++;
106         if (mi->part->partno)
107                 mi->inflight[1]++;
108 }
109
110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111                       unsigned int inflight[2])
112 {
113         struct mq_inflight mi = { .part = part, .inflight = inflight, };
114
115         inflight[0] = inflight[1] = 0;
116         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 }
118
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120                                      struct request *rq, void *priv,
121                                      bool reserved)
122 {
123         struct mq_inflight *mi = priv;
124
125         if (rq->part == mi->part)
126                 mi->inflight[rq_data_dir(rq)]++;
127 }
128
129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130                          unsigned int inflight[2])
131 {
132         struct mq_inflight mi = { .part = part, .inflight = inflight, };
133
134         inflight[0] = inflight[1] = 0;
135         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
136 }
137
138 void blk_freeze_queue_start(struct request_queue *q)
139 {
140         int freeze_depth;
141
142         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143         if (freeze_depth == 1) {
144                 percpu_ref_kill(&q->q_usage_counter);
145                 if (q->mq_ops)
146                         blk_mq_run_hw_queues(q, false);
147         }
148 }
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150
151 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 {
153         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158                                      unsigned long timeout)
159 {
160         return wait_event_timeout(q->mq_freeze_wq,
161                                         percpu_ref_is_zero(&q->q_usage_counter),
162                                         timeout);
163 }
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 void blk_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * In the !blk_mq case we are only calling this to kill the
174          * q_usage_counter, otherwise this increases the freeze depth
175          * and waits for it to return to zero.  For this reason there is
176          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177          * exported to drivers as the only user for unfreeze is blk_mq.
178          */
179         blk_freeze_queue_start(q);
180         if (!q->mq_ops)
181                 blk_drain_queue(q);
182         blk_mq_freeze_queue_wait(q);
183 }
184
185 void blk_mq_freeze_queue(struct request_queue *q)
186 {
187         /*
188          * ...just an alias to keep freeze and unfreeze actions balanced
189          * in the blk_mq_* namespace
190          */
191         blk_freeze_queue(q);
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194
195 void blk_mq_unfreeze_queue(struct request_queue *q)
196 {
197         int freeze_depth;
198
199         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
200         WARN_ON_ONCE(freeze_depth < 0);
201         if (!freeze_depth) {
202                 percpu_ref_resurrect(&q->q_usage_counter);
203                 wake_up_all(&q->mq_freeze_wq);
204         }
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229         struct blk_mq_hw_ctx *hctx;
230         unsigned int i;
231         bool rcu = false;
232
233         blk_mq_quiesce_queue_nowait(q);
234
235         queue_for_each_hw_ctx(q, hctx, i) {
236                 if (hctx->flags & BLK_MQ_F_BLOCKING)
237                         synchronize_srcu(hctx->srcu);
238                 else
239                         rcu = true;
240         }
241         if (rcu)
242                 synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256
257         /* dispatch requests which are inserted during quiescing */
258         blk_mq_run_hw_queues(q, true);
259 }
260 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261
262 void blk_mq_wake_waiters(struct request_queue *q)
263 {
264         struct blk_mq_hw_ctx *hctx;
265         unsigned int i;
266
267         queue_for_each_hw_ctx(q, hctx, i)
268                 if (blk_mq_hw_queue_mapped(hctx))
269                         blk_mq_tag_wakeup_all(hctx->tags, true);
270 }
271
272 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 {
274         return blk_mq_has_free_tags(hctx->tags);
275 }
276 EXPORT_SYMBOL(blk_mq_can_queue);
277
278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279                 unsigned int tag, unsigned int op)
280 {
281         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282         struct request *rq = tags->static_rqs[tag];
283         req_flags_t rq_flags = 0;
284
285         if (data->flags & BLK_MQ_REQ_INTERNAL) {
286                 rq->tag = -1;
287                 rq->internal_tag = tag;
288         } else {
289                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
290                         rq_flags = RQF_MQ_INFLIGHT;
291                         atomic_inc(&data->hctx->nr_active);
292                 }
293                 rq->tag = tag;
294                 rq->internal_tag = -1;
295                 data->hctx->tags->rqs[rq->tag] = rq;
296         }
297
298         /* csd/requeue_work/fifo_time is initialized before use */
299         rq->q = data->q;
300         rq->mq_ctx = data->ctx;
301         rq->rq_flags = rq_flags;
302         rq->cpu = -1;
303         rq->cmd_flags = op;
304         if (data->flags & BLK_MQ_REQ_PREEMPT)
305                 rq->rq_flags |= RQF_PREEMPT;
306         if (blk_queue_io_stat(data->q))
307                 rq->rq_flags |= RQF_IO_STAT;
308         INIT_LIST_HEAD(&rq->queuelist);
309         INIT_HLIST_NODE(&rq->hash);
310         RB_CLEAR_NODE(&rq->rb_node);
311         rq->rq_disk = NULL;
312         rq->part = NULL;
313         rq->start_time_ns = ktime_get_ns();
314         rq->io_start_time_ns = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         rq->special = NULL;
320         /* tag was already set */
321         rq->extra_len = 0;
322         rq->__deadline = 0;
323
324         INIT_LIST_HEAD(&rq->timeout_list);
325         rq->timeout = 0;
326
327         rq->end_io = NULL;
328         rq->end_io_data = NULL;
329         rq->next_rq = NULL;
330
331 #ifdef CONFIG_BLK_CGROUP
332         rq->rl = NULL;
333 #endif
334
335         data->ctx->rq_dispatched[op_is_sync(op)]++;
336         refcount_set(&rq->ref, 1);
337         return rq;
338 }
339
340 static struct request *blk_mq_get_request(struct request_queue *q,
341                 struct bio *bio, unsigned int op,
342                 struct blk_mq_alloc_data *data)
343 {
344         struct elevator_queue *e = q->elevator;
345         struct request *rq;
346         unsigned int tag;
347         bool put_ctx_on_error = false;
348
349         blk_queue_enter_live(q);
350         data->q = q;
351         if (likely(!data->ctx)) {
352                 data->ctx = blk_mq_get_ctx(q);
353                 put_ctx_on_error = true;
354         }
355         if (likely(!data->hctx))
356                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357         if (op & REQ_NOWAIT)
358                 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360         if (e) {
361                 data->flags |= BLK_MQ_REQ_INTERNAL;
362
363                 /*
364                  * Flush requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
369                     !(data->flags & BLK_MQ_REQ_RESERVED))
370                         e->type->ops.mq.limit_depth(op, data);
371         } else {
372                 blk_mq_tag_busy(data->hctx);
373         }
374
375         tag = blk_mq_get_tag(data);
376         if (tag == BLK_MQ_TAG_FAIL) {
377                 if (put_ctx_on_error) {
378                         blk_mq_put_ctx(data->ctx);
379                         data->ctx = NULL;
380                 }
381                 blk_queue_exit(q);
382                 return NULL;
383         }
384
385         rq = blk_mq_rq_ctx_init(data, tag, op);
386         if (!op_is_flush(op)) {
387                 rq->elv.icq = NULL;
388                 if (e && e->type->ops.mq.prepare_request) {
389                         if (e->type->icq_cache && rq_ioc(bio))
390                                 blk_mq_sched_assign_ioc(rq, bio);
391
392                         e->type->ops.mq.prepare_request(rq, bio);
393                         rq->rq_flags |= RQF_ELVPRIV;
394                 }
395         }
396         data->hctx->queued++;
397         return rq;
398 }
399
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401                 blk_mq_req_flags_t flags)
402 {
403         struct blk_mq_alloc_data alloc_data = { .flags = flags };
404         struct request *rq;
405         int ret;
406
407         ret = blk_queue_enter(q, flags);
408         if (ret)
409                 return ERR_PTR(ret);
410
411         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412         blk_queue_exit(q);
413
414         if (!rq)
415                 return ERR_PTR(-EWOULDBLOCK);
416
417         blk_mq_put_ctx(alloc_data.ctx);
418
419         rq->__data_len = 0;
420         rq->__sector = (sector_t) -1;
421         rq->bio = rq->biotail = NULL;
422         return rq;
423 }
424 EXPORT_SYMBOL(blk_mq_alloc_request);
425
426 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
427         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 {
429         struct blk_mq_alloc_data alloc_data = { .flags = flags };
430         struct request *rq;
431         unsigned int cpu;
432         int ret;
433
434         /*
435          * If the tag allocator sleeps we could get an allocation for a
436          * different hardware context.  No need to complicate the low level
437          * allocator for this for the rare use case of a command tied to
438          * a specific queue.
439          */
440         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
441                 return ERR_PTR(-EINVAL);
442
443         if (hctx_idx >= q->nr_hw_queues)
444                 return ERR_PTR(-EIO);
445
446         ret = blk_queue_enter(q, flags);
447         if (ret)
448                 return ERR_PTR(ret);
449
450         /*
451          * Check if the hardware context is actually mapped to anything.
452          * If not tell the caller that it should skip this queue.
453          */
454         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
455         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456                 blk_queue_exit(q);
457                 return ERR_PTR(-EXDEV);
458         }
459         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
460         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461
462         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
463         blk_queue_exit(q);
464
465         if (!rq)
466                 return ERR_PTR(-EWOULDBLOCK);
467
468         return rq;
469 }
470 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471
472 static void __blk_mq_free_request(struct request *rq)
473 {
474         struct request_queue *q = rq->q;
475         struct blk_mq_ctx *ctx = rq->mq_ctx;
476         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
477         const int sched_tag = rq->internal_tag;
478
479         blk_pm_mark_last_busy(rq);
480         if (rq->tag != -1)
481                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
482         if (sched_tag != -1)
483                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
484         blk_mq_sched_restart(hctx);
485         blk_queue_exit(q);
486 }
487
488 void blk_mq_free_request(struct request *rq)
489 {
490         struct request_queue *q = rq->q;
491         struct elevator_queue *e = q->elevator;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
494
495         if (rq->rq_flags & RQF_ELVPRIV) {
496                 if (e && e->type->ops.mq.finish_request)
497                         e->type->ops.mq.finish_request(rq);
498                 if (rq->elv.icq) {
499                         put_io_context(rq->elv.icq->ioc);
500                         rq->elv.icq = NULL;
501                 }
502         }
503
504         ctx->rq_completed[rq_is_sync(rq)]++;
505         if (rq->rq_flags & RQF_MQ_INFLIGHT)
506                 atomic_dec(&hctx->nr_active);
507
508         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
509                 laptop_io_completion(q->backing_dev_info);
510
511         rq_qos_done(q, rq);
512
513         if (blk_rq_rl(rq))
514                 blk_put_rl(blk_rq_rl(rq));
515
516         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
517         if (refcount_dec_and_test(&rq->ref))
518                 __blk_mq_free_request(rq);
519 }
520 EXPORT_SYMBOL_GPL(blk_mq_free_request);
521
522 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
523 {
524         u64 now = ktime_get_ns();
525
526         if (rq->rq_flags & RQF_STATS) {
527                 blk_mq_poll_stats_start(rq->q);
528                 blk_stat_add(rq, now);
529         }
530
531         if (rq->internal_tag != -1)
532                 blk_mq_sched_completed_request(rq, now);
533
534         blk_account_io_done(rq, now);
535
536         if (rq->end_io) {
537                 rq_qos_done(rq->q, rq);
538                 rq->end_io(rq, error);
539         } else {
540                 if (unlikely(blk_bidi_rq(rq)))
541                         blk_mq_free_request(rq->next_rq);
542                 blk_mq_free_request(rq);
543         }
544 }
545 EXPORT_SYMBOL(__blk_mq_end_request);
546
547 void blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
550                 BUG();
551         __blk_mq_end_request(rq, error);
552 }
553 EXPORT_SYMBOL(blk_mq_end_request);
554
555 static void __blk_mq_complete_request_remote(void *data)
556 {
557         struct request *rq = data;
558
559         rq->q->softirq_done_fn(rq);
560 }
561
562 static void __blk_mq_complete_request(struct request *rq)
563 {
564         struct blk_mq_ctx *ctx = rq->mq_ctx;
565         bool shared = false;
566         int cpu;
567
568         if (!blk_mq_mark_complete(rq))
569                 return;
570
571         /*
572          * Most of single queue controllers, there is only one irq vector
573          * for handling IO completion, and the only irq's affinity is set
574          * as all possible CPUs. On most of ARCHs, this affinity means the
575          * irq is handled on one specific CPU.
576          *
577          * So complete IO reqeust in softirq context in case of single queue
578          * for not degrading IO performance by irqsoff latency.
579          */
580         if (rq->q->nr_hw_queues == 1) {
581                 __blk_complete_request(rq);
582                 return;
583         }
584
585         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
586                 rq->q->softirq_done_fn(rq);
587                 return;
588         }
589
590         cpu = get_cpu();
591         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
592                 shared = cpus_share_cache(cpu, ctx->cpu);
593
594         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
595                 rq->csd.func = __blk_mq_complete_request_remote;
596                 rq->csd.info = rq;
597                 rq->csd.flags = 0;
598                 smp_call_function_single_async(ctx->cpu, &rq->csd);
599         } else {
600                 rq->q->softirq_done_fn(rq);
601         }
602         put_cpu();
603 }
604
605 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
606         __releases(hctx->srcu)
607 {
608         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
609                 rcu_read_unlock();
610         else
611                 srcu_read_unlock(hctx->srcu, srcu_idx);
612 }
613
614 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
615         __acquires(hctx->srcu)
616 {
617         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
618                 /* shut up gcc false positive */
619                 *srcu_idx = 0;
620                 rcu_read_lock();
621         } else
622                 *srcu_idx = srcu_read_lock(hctx->srcu);
623 }
624
625 /**
626  * blk_mq_complete_request - end I/O on a request
627  * @rq:         the request being processed
628  *
629  * Description:
630  *      Ends all I/O on a request. It does not handle partial completions.
631  *      The actual completion happens out-of-order, through a IPI handler.
632  **/
633 void blk_mq_complete_request(struct request *rq)
634 {
635         if (unlikely(blk_should_fake_timeout(rq->q)))
636                 return;
637         __blk_mq_complete_request(rq);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640
641 int blk_mq_request_started(struct request *rq)
642 {
643         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
647 void blk_mq_start_request(struct request *rq)
648 {
649         struct request_queue *q = rq->q;
650
651         blk_mq_sched_started_request(rq);
652
653         trace_block_rq_issue(q, rq);
654
655         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656                 rq->io_start_time_ns = ktime_get_ns();
657 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
658                 rq->throtl_size = blk_rq_sectors(rq);
659 #endif
660                 rq->rq_flags |= RQF_STATS;
661                 rq_qos_issue(q, rq);
662         }
663
664         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
665
666         blk_add_timer(rq);
667         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
668
669         if (q->dma_drain_size && blk_rq_bytes(rq)) {
670                 /*
671                  * Make sure space for the drain appears.  We know we can do
672                  * this because max_hw_segments has been adjusted to be one
673                  * fewer than the device can handle.
674                  */
675                 rq->nr_phys_segments++;
676         }
677 }
678 EXPORT_SYMBOL(blk_mq_start_request);
679
680 static void __blk_mq_requeue_request(struct request *rq)
681 {
682         struct request_queue *q = rq->q;
683
684         blk_mq_put_driver_tag(rq);
685
686         trace_block_rq_requeue(q, rq);
687         rq_qos_requeue(q, rq);
688
689         if (blk_mq_request_started(rq)) {
690                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
691                 rq->rq_flags &= ~RQF_TIMED_OUT;
692                 if (q->dma_drain_size && blk_rq_bytes(rq))
693                         rq->nr_phys_segments--;
694         }
695 }
696
697 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
698 {
699         __blk_mq_requeue_request(rq);
700
701         /* this request will be re-inserted to io scheduler queue */
702         blk_mq_sched_requeue_request(rq);
703
704         BUG_ON(blk_queued_rq(rq));
705         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
706 }
707 EXPORT_SYMBOL(blk_mq_requeue_request);
708
709 static void blk_mq_requeue_work(struct work_struct *work)
710 {
711         struct request_queue *q =
712                 container_of(work, struct request_queue, requeue_work.work);
713         LIST_HEAD(rq_list);
714         struct request *rq, *next;
715
716         spin_lock_irq(&q->requeue_lock);
717         list_splice_init(&q->requeue_list, &rq_list);
718         spin_unlock_irq(&q->requeue_lock);
719
720         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
721                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
722                         continue;
723
724                 rq->rq_flags &= ~RQF_SOFTBARRIER;
725                 list_del_init(&rq->queuelist);
726                 blk_mq_sched_insert_request(rq, true, false, false);
727         }
728
729         while (!list_empty(&rq_list)) {
730                 rq = list_entry(rq_list.next, struct request, queuelist);
731                 list_del_init(&rq->queuelist);
732                 blk_mq_sched_insert_request(rq, false, false, false);
733         }
734
735         blk_mq_run_hw_queues(q, false);
736 }
737
738 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
739                                 bool kick_requeue_list)
740 {
741         struct request_queue *q = rq->q;
742         unsigned long flags;
743
744         /*
745          * We abuse this flag that is otherwise used by the I/O scheduler to
746          * request head insertion from the workqueue.
747          */
748         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
749
750         spin_lock_irqsave(&q->requeue_lock, flags);
751         if (at_head) {
752                 rq->rq_flags |= RQF_SOFTBARRIER;
753                 list_add(&rq->queuelist, &q->requeue_list);
754         } else {
755                 list_add_tail(&rq->queuelist, &q->requeue_list);
756         }
757         spin_unlock_irqrestore(&q->requeue_lock, flags);
758
759         if (kick_requeue_list)
760                 blk_mq_kick_requeue_list(q);
761 }
762 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
763
764 void blk_mq_kick_requeue_list(struct request_queue *q)
765 {
766         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
767 }
768 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
769
770 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
771                                     unsigned long msecs)
772 {
773         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
774                                     msecs_to_jiffies(msecs));
775 }
776 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
777
778 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
779 {
780         if (tag < tags->nr_tags) {
781                 prefetch(tags->rqs[tag]);
782                 return tags->rqs[tag];
783         }
784
785         return NULL;
786 }
787 EXPORT_SYMBOL(blk_mq_tag_to_rq);
788
789 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
790 {
791         req->rq_flags |= RQF_TIMED_OUT;
792         if (req->q->mq_ops->timeout) {
793                 enum blk_eh_timer_return ret;
794
795                 ret = req->q->mq_ops->timeout(req, reserved);
796                 if (ret == BLK_EH_DONE)
797                         return;
798                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
799         }
800
801         blk_add_timer(req);
802 }
803
804 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
805 {
806         unsigned long deadline;
807
808         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
809                 return false;
810         if (rq->rq_flags & RQF_TIMED_OUT)
811                 return false;
812
813         deadline = blk_rq_deadline(rq);
814         if (time_after_eq(jiffies, deadline))
815                 return true;
816
817         if (*next == 0)
818                 *next = deadline;
819         else if (time_after(*next, deadline))
820                 *next = deadline;
821         return false;
822 }
823
824 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
825                 struct request *rq, void *priv, bool reserved)
826 {
827         unsigned long *next = priv;
828
829         /*
830          * Just do a quick check if it is expired before locking the request in
831          * so we're not unnecessarilly synchronizing across CPUs.
832          */
833         if (!blk_mq_req_expired(rq, next))
834                 return;
835
836         /*
837          * We have reason to believe the request may be expired. Take a
838          * reference on the request to lock this request lifetime into its
839          * currently allocated context to prevent it from being reallocated in
840          * the event the completion by-passes this timeout handler.
841          *
842          * If the reference was already released, then the driver beat the
843          * timeout handler to posting a natural completion.
844          */
845         if (!refcount_inc_not_zero(&rq->ref))
846                 return;
847
848         /*
849          * The request is now locked and cannot be reallocated underneath the
850          * timeout handler's processing. Re-verify this exact request is truly
851          * expired; if it is not expired, then the request was completed and
852          * reallocated as a new request.
853          */
854         if (blk_mq_req_expired(rq, next))
855                 blk_mq_rq_timed_out(rq, reserved);
856         if (refcount_dec_and_test(&rq->ref))
857                 __blk_mq_free_request(rq);
858 }
859
860 static void blk_mq_timeout_work(struct work_struct *work)
861 {
862         struct request_queue *q =
863                 container_of(work, struct request_queue, timeout_work);
864         unsigned long next = 0;
865         struct blk_mq_hw_ctx *hctx;
866         int i;
867
868         /* A deadlock might occur if a request is stuck requiring a
869          * timeout at the same time a queue freeze is waiting
870          * completion, since the timeout code would not be able to
871          * acquire the queue reference here.
872          *
873          * That's why we don't use blk_queue_enter here; instead, we use
874          * percpu_ref_tryget directly, because we need to be able to
875          * obtain a reference even in the short window between the queue
876          * starting to freeze, by dropping the first reference in
877          * blk_freeze_queue_start, and the moment the last request is
878          * consumed, marked by the instant q_usage_counter reaches
879          * zero.
880          */
881         if (!percpu_ref_tryget(&q->q_usage_counter))
882                 return;
883
884         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
885
886         if (next != 0) {
887                 mod_timer(&q->timeout, next);
888         } else {
889                 /*
890                  * Request timeouts are handled as a forward rolling timer. If
891                  * we end up here it means that no requests are pending and
892                  * also that no request has been pending for a while. Mark
893                  * each hctx as idle.
894                  */
895                 queue_for_each_hw_ctx(q, hctx, i) {
896                         /* the hctx may be unmapped, so check it here */
897                         if (blk_mq_hw_queue_mapped(hctx))
898                                 blk_mq_tag_idle(hctx);
899                 }
900         }
901         blk_queue_exit(q);
902 }
903
904 struct flush_busy_ctx_data {
905         struct blk_mq_hw_ctx *hctx;
906         struct list_head *list;
907 };
908
909 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
910 {
911         struct flush_busy_ctx_data *flush_data = data;
912         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
913         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
914
915         spin_lock(&ctx->lock);
916         list_splice_tail_init(&ctx->rq_list, flush_data->list);
917         sbitmap_clear_bit(sb, bitnr);
918         spin_unlock(&ctx->lock);
919         return true;
920 }
921
922 /*
923  * Process software queues that have been marked busy, splicing them
924  * to the for-dispatch
925  */
926 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
927 {
928         struct flush_busy_ctx_data data = {
929                 .hctx = hctx,
930                 .list = list,
931         };
932
933         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
934 }
935 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
936
937 struct dispatch_rq_data {
938         struct blk_mq_hw_ctx *hctx;
939         struct request *rq;
940 };
941
942 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
943                 void *data)
944 {
945         struct dispatch_rq_data *dispatch_data = data;
946         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
947         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
948
949         spin_lock(&ctx->lock);
950         if (!list_empty(&ctx->rq_list)) {
951                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
952                 list_del_init(&dispatch_data->rq->queuelist);
953                 if (list_empty(&ctx->rq_list))
954                         sbitmap_clear_bit(sb, bitnr);
955         }
956         spin_unlock(&ctx->lock);
957
958         return !dispatch_data->rq;
959 }
960
961 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
962                                         struct blk_mq_ctx *start)
963 {
964         unsigned off = start ? start->index_hw : 0;
965         struct dispatch_rq_data data = {
966                 .hctx = hctx,
967                 .rq   = NULL,
968         };
969
970         __sbitmap_for_each_set(&hctx->ctx_map, off,
971                                dispatch_rq_from_ctx, &data);
972
973         return data.rq;
974 }
975
976 static inline unsigned int queued_to_index(unsigned int queued)
977 {
978         if (!queued)
979                 return 0;
980
981         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
982 }
983
984 bool blk_mq_get_driver_tag(struct request *rq)
985 {
986         struct blk_mq_alloc_data data = {
987                 .q = rq->q,
988                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
989                 .flags = BLK_MQ_REQ_NOWAIT,
990         };
991         bool shared;
992
993         if (rq->tag != -1)
994                 goto done;
995
996         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
997                 data.flags |= BLK_MQ_REQ_RESERVED;
998
999         shared = blk_mq_tag_busy(data.hctx);
1000         rq->tag = blk_mq_get_tag(&data);
1001         if (rq->tag >= 0) {
1002                 if (shared) {
1003                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1004                         atomic_inc(&data.hctx->nr_active);
1005                 }
1006                 data.hctx->tags->rqs[rq->tag] = rq;
1007         }
1008
1009 done:
1010         return rq->tag != -1;
1011 }
1012
1013 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1014                                 int flags, void *key)
1015 {
1016         struct blk_mq_hw_ctx *hctx;
1017
1018         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1019
1020         spin_lock(&hctx->dispatch_wait_lock);
1021         list_del_init(&wait->entry);
1022         spin_unlock(&hctx->dispatch_wait_lock);
1023
1024         blk_mq_run_hw_queue(hctx, true);
1025         return 1;
1026 }
1027
1028 /*
1029  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1030  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1031  * restart. For both cases, take care to check the condition again after
1032  * marking us as waiting.
1033  */
1034 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1035                                  struct request *rq)
1036 {
1037         struct wait_queue_head *wq;
1038         wait_queue_entry_t *wait;
1039         bool ret;
1040
1041         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1042                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1043                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1044
1045                 /*
1046                  * It's possible that a tag was freed in the window between the
1047                  * allocation failure and adding the hardware queue to the wait
1048                  * queue.
1049                  *
1050                  * Don't clear RESTART here, someone else could have set it.
1051                  * At most this will cost an extra queue run.
1052                  */
1053                 return blk_mq_get_driver_tag(rq);
1054         }
1055
1056         wait = &hctx->dispatch_wait;
1057         if (!list_empty_careful(&wait->entry))
1058                 return false;
1059
1060         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1061
1062         spin_lock_irq(&wq->lock);
1063         spin_lock(&hctx->dispatch_wait_lock);
1064         if (!list_empty(&wait->entry)) {
1065                 spin_unlock(&hctx->dispatch_wait_lock);
1066                 spin_unlock_irq(&wq->lock);
1067                 return false;
1068         }
1069
1070         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1071         __add_wait_queue(wq, wait);
1072
1073         /*
1074          * It's possible that a tag was freed in the window between the
1075          * allocation failure and adding the hardware queue to the wait
1076          * queue.
1077          */
1078         ret = blk_mq_get_driver_tag(rq);
1079         if (!ret) {
1080                 spin_unlock(&hctx->dispatch_wait_lock);
1081                 spin_unlock_irq(&wq->lock);
1082                 return false;
1083         }
1084
1085         /*
1086          * We got a tag, remove ourselves from the wait queue to ensure
1087          * someone else gets the wakeup.
1088          */
1089         list_del_init(&wait->entry);
1090         spin_unlock(&hctx->dispatch_wait_lock);
1091         spin_unlock_irq(&wq->lock);
1092
1093         return true;
1094 }
1095
1096 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1097 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1098 /*
1099  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1100  * - EWMA is one simple way to compute running average value
1101  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1102  * - take 4 as factor for avoiding to get too small(0) result, and this
1103  *   factor doesn't matter because EWMA decreases exponentially
1104  */
1105 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1106 {
1107         unsigned int ewma;
1108
1109         if (hctx->queue->elevator)
1110                 return;
1111
1112         ewma = hctx->dispatch_busy;
1113
1114         if (!ewma && !busy)
1115                 return;
1116
1117         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1118         if (busy)
1119                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1120         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1121
1122         hctx->dispatch_busy = ewma;
1123 }
1124
1125 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1126
1127 /*
1128  * Returns true if we did some work AND can potentially do more.
1129  */
1130 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1131                              bool got_budget)
1132 {
1133         struct blk_mq_hw_ctx *hctx;
1134         struct request *rq, *nxt;
1135         bool no_tag = false;
1136         int errors, queued;
1137         blk_status_t ret = BLK_STS_OK;
1138
1139         if (list_empty(list))
1140                 return false;
1141
1142         WARN_ON(!list_is_singular(list) && got_budget);
1143
1144         /*
1145          * Now process all the entries, sending them to the driver.
1146          */
1147         errors = queued = 0;
1148         do {
1149                 struct blk_mq_queue_data bd;
1150
1151                 rq = list_first_entry(list, struct request, queuelist);
1152
1153                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1154                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1155                         break;
1156
1157                 if (!blk_mq_get_driver_tag(rq)) {
1158                         /*
1159                          * The initial allocation attempt failed, so we need to
1160                          * rerun the hardware queue when a tag is freed. The
1161                          * waitqueue takes care of that. If the queue is run
1162                          * before we add this entry back on the dispatch list,
1163                          * we'll re-run it below.
1164                          */
1165                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1166                                 blk_mq_put_dispatch_budget(hctx);
1167                                 /*
1168                                  * For non-shared tags, the RESTART check
1169                                  * will suffice.
1170                                  */
1171                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1172                                         no_tag = true;
1173                                 break;
1174                         }
1175                 }
1176
1177                 list_del_init(&rq->queuelist);
1178
1179                 bd.rq = rq;
1180
1181                 /*
1182                  * Flag last if we have no more requests, or if we have more
1183                  * but can't assign a driver tag to it.
1184                  */
1185                 if (list_empty(list))
1186                         bd.last = true;
1187                 else {
1188                         nxt = list_first_entry(list, struct request, queuelist);
1189                         bd.last = !blk_mq_get_driver_tag(nxt);
1190                 }
1191
1192                 ret = q->mq_ops->queue_rq(hctx, &bd);
1193                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1194                         /*
1195                          * If an I/O scheduler has been configured and we got a
1196                          * driver tag for the next request already, free it
1197                          * again.
1198                          */
1199                         if (!list_empty(list)) {
1200                                 nxt = list_first_entry(list, struct request, queuelist);
1201                                 blk_mq_put_driver_tag(nxt);
1202                         }
1203                         list_add(&rq->queuelist, list);
1204                         __blk_mq_requeue_request(rq);
1205                         break;
1206                 }
1207
1208                 if (unlikely(ret != BLK_STS_OK)) {
1209                         errors++;
1210                         blk_mq_end_request(rq, BLK_STS_IOERR);
1211                         continue;
1212                 }
1213
1214                 queued++;
1215         } while (!list_empty(list));
1216
1217         hctx->dispatched[queued_to_index(queued)]++;
1218
1219         /*
1220          * Any items that need requeuing? Stuff them into hctx->dispatch,
1221          * that is where we will continue on next queue run.
1222          */
1223         if (!list_empty(list)) {
1224                 bool needs_restart;
1225
1226                 spin_lock(&hctx->lock);
1227                 list_splice_init(list, &hctx->dispatch);
1228                 spin_unlock(&hctx->lock);
1229
1230                 /*
1231                  * If SCHED_RESTART was set by the caller of this function and
1232                  * it is no longer set that means that it was cleared by another
1233                  * thread and hence that a queue rerun is needed.
1234                  *
1235                  * If 'no_tag' is set, that means that we failed getting
1236                  * a driver tag with an I/O scheduler attached. If our dispatch
1237                  * waitqueue is no longer active, ensure that we run the queue
1238                  * AFTER adding our entries back to the list.
1239                  *
1240                  * If no I/O scheduler has been configured it is possible that
1241                  * the hardware queue got stopped and restarted before requests
1242                  * were pushed back onto the dispatch list. Rerun the queue to
1243                  * avoid starvation. Notes:
1244                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1245                  *   been stopped before rerunning a queue.
1246                  * - Some but not all block drivers stop a queue before
1247                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1248                  *   and dm-rq.
1249                  *
1250                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1251                  * bit is set, run queue after a delay to avoid IO stalls
1252                  * that could otherwise occur if the queue is idle.
1253                  */
1254                 needs_restart = blk_mq_sched_needs_restart(hctx);
1255                 if (!needs_restart ||
1256                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1257                         blk_mq_run_hw_queue(hctx, true);
1258                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1259                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1260
1261                 blk_mq_update_dispatch_busy(hctx, true);
1262                 return false;
1263         } else
1264                 blk_mq_update_dispatch_busy(hctx, false);
1265
1266         /*
1267          * If the host/device is unable to accept more work, inform the
1268          * caller of that.
1269          */
1270         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1271                 return false;
1272
1273         return (queued + errors) != 0;
1274 }
1275
1276 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1277 {
1278         int srcu_idx;
1279
1280         /*
1281          * We should be running this queue from one of the CPUs that
1282          * are mapped to it.
1283          *
1284          * There are at least two related races now between setting
1285          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1286          * __blk_mq_run_hw_queue():
1287          *
1288          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1289          *   but later it becomes online, then this warning is harmless
1290          *   at all
1291          *
1292          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1293          *   but later it becomes offline, then the warning can't be
1294          *   triggered, and we depend on blk-mq timeout handler to
1295          *   handle dispatched requests to this hctx
1296          */
1297         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1298                 cpu_online(hctx->next_cpu)) {
1299                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1300                         raw_smp_processor_id(),
1301                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1302                 dump_stack();
1303         }
1304
1305         /*
1306          * We can't run the queue inline with ints disabled. Ensure that
1307          * we catch bad users of this early.
1308          */
1309         WARN_ON_ONCE(in_interrupt());
1310
1311         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1312
1313         hctx_lock(hctx, &srcu_idx);
1314         blk_mq_sched_dispatch_requests(hctx);
1315         hctx_unlock(hctx, srcu_idx);
1316 }
1317
1318 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1319 {
1320         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1321
1322         if (cpu >= nr_cpu_ids)
1323                 cpu = cpumask_first(hctx->cpumask);
1324         return cpu;
1325 }
1326
1327 /*
1328  * It'd be great if the workqueue API had a way to pass
1329  * in a mask and had some smarts for more clever placement.
1330  * For now we just round-robin here, switching for every
1331  * BLK_MQ_CPU_WORK_BATCH queued items.
1332  */
1333 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1334 {
1335         bool tried = false;
1336         int next_cpu = hctx->next_cpu;
1337
1338         if (hctx->queue->nr_hw_queues == 1)
1339                 return WORK_CPU_UNBOUND;
1340
1341         if (--hctx->next_cpu_batch <= 0) {
1342 select_cpu:
1343                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1344                                 cpu_online_mask);
1345                 if (next_cpu >= nr_cpu_ids)
1346                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1347                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1348         }
1349
1350         /*
1351          * Do unbound schedule if we can't find a online CPU for this hctx,
1352          * and it should only happen in the path of handling CPU DEAD.
1353          */
1354         if (!cpu_online(next_cpu)) {
1355                 if (!tried) {
1356                         tried = true;
1357                         goto select_cpu;
1358                 }
1359
1360                 /*
1361                  * Make sure to re-select CPU next time once after CPUs
1362                  * in hctx->cpumask become online again.
1363                  */
1364                 hctx->next_cpu = next_cpu;
1365                 hctx->next_cpu_batch = 1;
1366                 return WORK_CPU_UNBOUND;
1367         }
1368
1369         hctx->next_cpu = next_cpu;
1370         return next_cpu;
1371 }
1372
1373 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1374                                         unsigned long msecs)
1375 {
1376         if (unlikely(blk_mq_hctx_stopped(hctx)))
1377                 return;
1378
1379         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1380                 int cpu = get_cpu();
1381                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1382                         __blk_mq_run_hw_queue(hctx);
1383                         put_cpu();
1384                         return;
1385                 }
1386
1387                 put_cpu();
1388         }
1389
1390         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1391                                     msecs_to_jiffies(msecs));
1392 }
1393
1394 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1395 {
1396         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1397 }
1398 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1399
1400 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1401 {
1402         int srcu_idx;
1403         bool need_run;
1404
1405         /*
1406          * When queue is quiesced, we may be switching io scheduler, or
1407          * updating nr_hw_queues, or other things, and we can't run queue
1408          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1409          *
1410          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1411          * quiesced.
1412          */
1413         hctx_lock(hctx, &srcu_idx);
1414         need_run = !blk_queue_quiesced(hctx->queue) &&
1415                 blk_mq_hctx_has_pending(hctx);
1416         hctx_unlock(hctx, srcu_idx);
1417
1418         if (need_run) {
1419                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1420                 return true;
1421         }
1422
1423         return false;
1424 }
1425 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1426
1427 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1428 {
1429         struct blk_mq_hw_ctx *hctx;
1430         int i;
1431
1432         queue_for_each_hw_ctx(q, hctx, i) {
1433                 if (blk_mq_hctx_stopped(hctx))
1434                         continue;
1435
1436                 blk_mq_run_hw_queue(hctx, async);
1437         }
1438 }
1439 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1440
1441 /**
1442  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1443  * @q: request queue.
1444  *
1445  * The caller is responsible for serializing this function against
1446  * blk_mq_{start,stop}_hw_queue().
1447  */
1448 bool blk_mq_queue_stopped(struct request_queue *q)
1449 {
1450         struct blk_mq_hw_ctx *hctx;
1451         int i;
1452
1453         queue_for_each_hw_ctx(q, hctx, i)
1454                 if (blk_mq_hctx_stopped(hctx))
1455                         return true;
1456
1457         return false;
1458 }
1459 EXPORT_SYMBOL(blk_mq_queue_stopped);
1460
1461 /*
1462  * This function is often used for pausing .queue_rq() by driver when
1463  * there isn't enough resource or some conditions aren't satisfied, and
1464  * BLK_STS_RESOURCE is usually returned.
1465  *
1466  * We do not guarantee that dispatch can be drained or blocked
1467  * after blk_mq_stop_hw_queue() returns. Please use
1468  * blk_mq_quiesce_queue() for that requirement.
1469  */
1470 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1471 {
1472         cancel_delayed_work(&hctx->run_work);
1473
1474         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1475 }
1476 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1477
1478 /*
1479  * This function is often used for pausing .queue_rq() by driver when
1480  * there isn't enough resource or some conditions aren't satisfied, and
1481  * BLK_STS_RESOURCE is usually returned.
1482  *
1483  * We do not guarantee that dispatch can be drained or blocked
1484  * after blk_mq_stop_hw_queues() returns. Please use
1485  * blk_mq_quiesce_queue() for that requirement.
1486  */
1487 void blk_mq_stop_hw_queues(struct request_queue *q)
1488 {
1489         struct blk_mq_hw_ctx *hctx;
1490         int i;
1491
1492         queue_for_each_hw_ctx(q, hctx, i)
1493                 blk_mq_stop_hw_queue(hctx);
1494 }
1495 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1496
1497 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1498 {
1499         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1500
1501         blk_mq_run_hw_queue(hctx, false);
1502 }
1503 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1504
1505 void blk_mq_start_hw_queues(struct request_queue *q)
1506 {
1507         struct blk_mq_hw_ctx *hctx;
1508         int i;
1509
1510         queue_for_each_hw_ctx(q, hctx, i)
1511                 blk_mq_start_hw_queue(hctx);
1512 }
1513 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1514
1515 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1516 {
1517         if (!blk_mq_hctx_stopped(hctx))
1518                 return;
1519
1520         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521         blk_mq_run_hw_queue(hctx, async);
1522 }
1523 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1524
1525 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1526 {
1527         struct blk_mq_hw_ctx *hctx;
1528         int i;
1529
1530         queue_for_each_hw_ctx(q, hctx, i)
1531                 blk_mq_start_stopped_hw_queue(hctx, async);
1532 }
1533 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1534
1535 static void blk_mq_run_work_fn(struct work_struct *work)
1536 {
1537         struct blk_mq_hw_ctx *hctx;
1538
1539         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1540
1541         /*
1542          * If we are stopped, don't run the queue.
1543          */
1544         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1545                 return;
1546
1547         __blk_mq_run_hw_queue(hctx);
1548 }
1549
1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1551                                             struct request *rq,
1552                                             bool at_head)
1553 {
1554         struct blk_mq_ctx *ctx = rq->mq_ctx;
1555
1556         lockdep_assert_held(&ctx->lock);
1557
1558         trace_block_rq_insert(hctx->queue, rq);
1559
1560         if (at_head)
1561                 list_add(&rq->queuelist, &ctx->rq_list);
1562         else
1563                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1564 }
1565
1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1567                              bool at_head)
1568 {
1569         struct blk_mq_ctx *ctx = rq->mq_ctx;
1570
1571         lockdep_assert_held(&ctx->lock);
1572
1573         __blk_mq_insert_req_list(hctx, rq, at_head);
1574         blk_mq_hctx_mark_pending(hctx, ctx);
1575 }
1576
1577 /*
1578  * Should only be used carefully, when the caller knows we want to
1579  * bypass a potential IO scheduler on the target device.
1580  */
1581 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1582 {
1583         struct blk_mq_ctx *ctx = rq->mq_ctx;
1584         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1585
1586         spin_lock(&hctx->lock);
1587         list_add_tail(&rq->queuelist, &hctx->dispatch);
1588         spin_unlock(&hctx->lock);
1589
1590         if (run_queue)
1591                 blk_mq_run_hw_queue(hctx, false);
1592 }
1593
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595                             struct list_head *list)
1596
1597 {
1598         struct request *rq;
1599
1600         /*
1601          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1602          * offline now
1603          */
1604         list_for_each_entry(rq, list, queuelist) {
1605                 BUG_ON(rq->mq_ctx != ctx);
1606                 trace_block_rq_insert(hctx->queue, rq);
1607         }
1608
1609         spin_lock(&ctx->lock);
1610         list_splice_tail_init(list, &ctx->rq_list);
1611         blk_mq_hctx_mark_pending(hctx, ctx);
1612         spin_unlock(&ctx->lock);
1613 }
1614
1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617         struct request *rqa = container_of(a, struct request, queuelist);
1618         struct request *rqb = container_of(b, struct request, queuelist);
1619
1620         return !(rqa->mq_ctx < rqb->mq_ctx ||
1621                  (rqa->mq_ctx == rqb->mq_ctx &&
1622                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623 }
1624
1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626 {
1627         struct blk_mq_ctx *this_ctx;
1628         struct request_queue *this_q;
1629         struct request *rq;
1630         LIST_HEAD(list);
1631         LIST_HEAD(ctx_list);
1632         unsigned int depth;
1633
1634         list_splice_init(&plug->mq_list, &list);
1635
1636         list_sort(NULL, &list, plug_ctx_cmp);
1637
1638         this_q = NULL;
1639         this_ctx = NULL;
1640         depth = 0;
1641
1642         while (!list_empty(&list)) {
1643                 rq = list_entry_rq(list.next);
1644                 list_del_init(&rq->queuelist);
1645                 BUG_ON(!rq->q);
1646                 if (rq->mq_ctx != this_ctx) {
1647                         if (this_ctx) {
1648                                 trace_block_unplug(this_q, depth, !from_schedule);
1649                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1650                                                                 &ctx_list,
1651                                                                 from_schedule);
1652                         }
1653
1654                         this_ctx = rq->mq_ctx;
1655                         this_q = rq->q;
1656                         depth = 0;
1657                 }
1658
1659                 depth++;
1660                 list_add_tail(&rq->queuelist, &ctx_list);
1661         }
1662
1663         /*
1664          * If 'this_ctx' is set, we know we have entries to complete
1665          * on 'ctx_list'. Do those.
1666          */
1667         if (this_ctx) {
1668                 trace_block_unplug(this_q, depth, !from_schedule);
1669                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670                                                 from_schedule);
1671         }
1672 }
1673
1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675 {
1676         blk_init_request_from_bio(rq, bio);
1677
1678         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1679
1680         blk_account_io_start(rq, true);
1681 }
1682
1683 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1684 {
1685         if (rq->tag != -1)
1686                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1687
1688         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1689 }
1690
1691 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1692                                             struct request *rq,
1693                                             blk_qc_t *cookie)
1694 {
1695         struct request_queue *q = rq->q;
1696         struct blk_mq_queue_data bd = {
1697                 .rq = rq,
1698                 .last = true,
1699         };
1700         blk_qc_t new_cookie;
1701         blk_status_t ret;
1702
1703         new_cookie = request_to_qc_t(hctx, rq);
1704
1705         /*
1706          * For OK queue, we are done. For error, caller may kill it.
1707          * Any other error (busy), just add it to our list as we
1708          * previously would have done.
1709          */
1710         ret = q->mq_ops->queue_rq(hctx, &bd);
1711         switch (ret) {
1712         case BLK_STS_OK:
1713                 blk_mq_update_dispatch_busy(hctx, false);
1714                 *cookie = new_cookie;
1715                 break;
1716         case BLK_STS_RESOURCE:
1717         case BLK_STS_DEV_RESOURCE:
1718                 /*
1719                  * If direct dispatch fails, we cannot allow any merging on
1720                  * this IO. Drivers (like SCSI) may have set up permanent state
1721                  * for this request, like SG tables and mappings, and if we
1722                  * merge to it later on then we'll still only do IO to the
1723                  * original part.
1724                  */
1725                 rq->cmd_flags |= REQ_NOMERGE;
1726
1727                 blk_mq_update_dispatch_busy(hctx, true);
1728                 __blk_mq_requeue_request(rq);
1729                 break;
1730         default:
1731                 blk_mq_update_dispatch_busy(hctx, false);
1732                 *cookie = BLK_QC_T_NONE;
1733                 break;
1734         }
1735
1736         return ret;
1737 }
1738
1739 /*
1740  * Don't allow direct dispatch of anything but regular reads/writes,
1741  * as some of the other commands can potentially share request space
1742  * with data we need for the IO scheduler. If we attempt a direct dispatch
1743  * on those and fail, we can't safely add it to the scheduler afterwards
1744  * without potentially overwriting data that the driver has already written.
1745  */
1746 static bool blk_rq_can_direct_dispatch(struct request *rq)
1747 {
1748         return req_op(rq) == REQ_OP_READ || req_op(rq) == REQ_OP_WRITE;
1749 }
1750
1751 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1752                                                 struct request *rq,
1753                                                 blk_qc_t *cookie,
1754                                                 bool bypass_insert)
1755 {
1756         struct request_queue *q = rq->q;
1757         bool run_queue = true;
1758
1759         /*
1760          * RCU or SRCU read lock is needed before checking quiesced flag.
1761          *
1762          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1763          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1764          * and avoid driver to try to dispatch again.
1765          */
1766         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1767                 run_queue = false;
1768                 bypass_insert = false;
1769                 goto insert;
1770         }
1771
1772         if (!blk_rq_can_direct_dispatch(rq) || (q->elevator && !bypass_insert))
1773                 goto insert;
1774
1775         if (!blk_mq_get_dispatch_budget(hctx))
1776                 goto insert;
1777
1778         if (!blk_mq_get_driver_tag(rq)) {
1779                 blk_mq_put_dispatch_budget(hctx);
1780                 goto insert;
1781         }
1782
1783         return __blk_mq_issue_directly(hctx, rq, cookie);
1784 insert:
1785         if (bypass_insert)
1786                 return BLK_STS_RESOURCE;
1787
1788         blk_mq_sched_insert_request(rq, false, run_queue, false);
1789         return BLK_STS_OK;
1790 }
1791
1792 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1793                 struct request *rq, blk_qc_t *cookie)
1794 {
1795         blk_status_t ret;
1796         int srcu_idx;
1797
1798         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1799
1800         hctx_lock(hctx, &srcu_idx);
1801
1802         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1803         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1804                 blk_mq_sched_insert_request(rq, false, true, false);
1805         else if (ret != BLK_STS_OK)
1806                 blk_mq_end_request(rq, ret);
1807
1808         hctx_unlock(hctx, srcu_idx);
1809 }
1810
1811 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1812 {
1813         blk_status_t ret;
1814         int srcu_idx;
1815         blk_qc_t unused_cookie;
1816         struct blk_mq_ctx *ctx = rq->mq_ctx;
1817         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1818
1819         hctx_lock(hctx, &srcu_idx);
1820         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1821         hctx_unlock(hctx, srcu_idx);
1822
1823         return ret;
1824 }
1825
1826 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1827                 struct list_head *list)
1828 {
1829         while (!list_empty(list)) {
1830                 blk_status_t ret;
1831                 struct request *rq = list_first_entry(list, struct request,
1832                                 queuelist);
1833
1834                 if (!blk_rq_can_direct_dispatch(rq))
1835                         break;
1836
1837                 list_del_init(&rq->queuelist);
1838                 ret = blk_mq_request_issue_directly(rq);
1839                 if (ret != BLK_STS_OK) {
1840                         if (ret == BLK_STS_RESOURCE ||
1841                                         ret == BLK_STS_DEV_RESOURCE) {
1842                                 list_add(&rq->queuelist, list);
1843                                 break;
1844                         }
1845                         blk_mq_end_request(rq, ret);
1846                 }
1847         }
1848 }
1849
1850 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1851 {
1852         const int is_sync = op_is_sync(bio->bi_opf);
1853         const int is_flush_fua = op_is_flush(bio->bi_opf);
1854         struct blk_mq_alloc_data data = { .flags = 0 };
1855         struct request *rq;
1856         unsigned int request_count = 0;
1857         struct blk_plug *plug;
1858         struct request *same_queue_rq = NULL;
1859         blk_qc_t cookie;
1860
1861         blk_queue_bounce(q, &bio);
1862
1863         blk_queue_split(q, &bio);
1864
1865         if (!bio_integrity_prep(bio))
1866                 return BLK_QC_T_NONE;
1867
1868         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1869             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1870                 return BLK_QC_T_NONE;
1871
1872         if (blk_mq_sched_bio_merge(q, bio))
1873                 return BLK_QC_T_NONE;
1874
1875         rq_qos_throttle(q, bio, NULL);
1876
1877         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1878         if (unlikely(!rq)) {
1879                 rq_qos_cleanup(q, bio);
1880                 if (bio->bi_opf & REQ_NOWAIT)
1881                         bio_wouldblock_error(bio);
1882                 return BLK_QC_T_NONE;
1883         }
1884
1885         trace_block_getrq(q, bio, bio->bi_opf);
1886
1887         rq_qos_track(q, rq, bio);
1888
1889         cookie = request_to_qc_t(data.hctx, rq);
1890
1891         plug = current->plug;
1892         if (unlikely(is_flush_fua)) {
1893                 blk_mq_put_ctx(data.ctx);
1894                 blk_mq_bio_to_request(rq, bio);
1895
1896                 /* bypass scheduler for flush rq */
1897                 blk_insert_flush(rq);
1898                 blk_mq_run_hw_queue(data.hctx, true);
1899         } else if (plug && q->nr_hw_queues == 1) {
1900                 struct request *last = NULL;
1901
1902                 blk_mq_put_ctx(data.ctx);
1903                 blk_mq_bio_to_request(rq, bio);
1904
1905                 /*
1906                  * @request_count may become stale because of schedule
1907                  * out, so check the list again.
1908                  */
1909                 if (list_empty(&plug->mq_list))
1910                         request_count = 0;
1911                 else if (blk_queue_nomerges(q))
1912                         request_count = blk_plug_queued_count(q);
1913
1914                 if (!request_count)
1915                         trace_block_plug(q);
1916                 else
1917                         last = list_entry_rq(plug->mq_list.prev);
1918
1919                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1920                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1921                         blk_flush_plug_list(plug, false);
1922                         trace_block_plug(q);
1923                 }
1924
1925                 list_add_tail(&rq->queuelist, &plug->mq_list);
1926         } else if (plug && !blk_queue_nomerges(q)) {
1927                 blk_mq_bio_to_request(rq, bio);
1928
1929                 /*
1930                  * We do limited plugging. If the bio can be merged, do that.
1931                  * Otherwise the existing request in the plug list will be
1932                  * issued. So the plug list will have one request at most
1933                  * The plug list might get flushed before this. If that happens,
1934                  * the plug list is empty, and same_queue_rq is invalid.
1935                  */
1936                 if (list_empty(&plug->mq_list))
1937                         same_queue_rq = NULL;
1938                 if (same_queue_rq)
1939                         list_del_init(&same_queue_rq->queuelist);
1940                 list_add_tail(&rq->queuelist, &plug->mq_list);
1941
1942                 blk_mq_put_ctx(data.ctx);
1943
1944                 if (same_queue_rq) {
1945                         data.hctx = blk_mq_map_queue(q,
1946                                         same_queue_rq->mq_ctx->cpu);
1947                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1948                                         &cookie);
1949                 }
1950         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1951                         !data.hctx->dispatch_busy)) {
1952                 blk_mq_put_ctx(data.ctx);
1953                 blk_mq_bio_to_request(rq, bio);
1954                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1955         } else {
1956                 blk_mq_put_ctx(data.ctx);
1957                 blk_mq_bio_to_request(rq, bio);
1958                 blk_mq_sched_insert_request(rq, false, true, true);
1959         }
1960
1961         return cookie;
1962 }
1963
1964 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1965                      unsigned int hctx_idx)
1966 {
1967         struct page *page;
1968
1969         if (tags->rqs && set->ops->exit_request) {
1970                 int i;
1971
1972                 for (i = 0; i < tags->nr_tags; i++) {
1973                         struct request *rq = tags->static_rqs[i];
1974
1975                         if (!rq)
1976                                 continue;
1977                         set->ops->exit_request(set, rq, hctx_idx);
1978                         tags->static_rqs[i] = NULL;
1979                 }
1980         }
1981
1982         while (!list_empty(&tags->page_list)) {
1983                 page = list_first_entry(&tags->page_list, struct page, lru);
1984                 list_del_init(&page->lru);
1985                 /*
1986                  * Remove kmemleak object previously allocated in
1987                  * blk_mq_init_rq_map().
1988                  */
1989                 kmemleak_free(page_address(page));
1990                 __free_pages(page, page->private);
1991         }
1992 }
1993
1994 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1995 {
1996         kfree(tags->rqs);
1997         tags->rqs = NULL;
1998         kfree(tags->static_rqs);
1999         tags->static_rqs = NULL;
2000
2001         blk_mq_free_tags(tags);
2002 }
2003
2004 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2005                                         unsigned int hctx_idx,
2006                                         unsigned int nr_tags,
2007                                         unsigned int reserved_tags)
2008 {
2009         struct blk_mq_tags *tags;
2010         int node;
2011
2012         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2013         if (node == NUMA_NO_NODE)
2014                 node = set->numa_node;
2015
2016         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2017                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2018         if (!tags)
2019                 return NULL;
2020
2021         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2022                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2023                                  node);
2024         if (!tags->rqs) {
2025                 blk_mq_free_tags(tags);
2026                 return NULL;
2027         }
2028
2029         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2030                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2031                                         node);
2032         if (!tags->static_rqs) {
2033                 kfree(tags->rqs);
2034                 blk_mq_free_tags(tags);
2035                 return NULL;
2036         }
2037
2038         return tags;
2039 }
2040
2041 static size_t order_to_size(unsigned int order)
2042 {
2043         return (size_t)PAGE_SIZE << order;
2044 }
2045
2046 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2047                                unsigned int hctx_idx, int node)
2048 {
2049         int ret;
2050
2051         if (set->ops->init_request) {
2052                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2053                 if (ret)
2054                         return ret;
2055         }
2056
2057         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2058         return 0;
2059 }
2060
2061 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2062                      unsigned int hctx_idx, unsigned int depth)
2063 {
2064         unsigned int i, j, entries_per_page, max_order = 4;
2065         size_t rq_size, left;
2066         int node;
2067
2068         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2069         if (node == NUMA_NO_NODE)
2070                 node = set->numa_node;
2071
2072         INIT_LIST_HEAD(&tags->page_list);
2073
2074         /*
2075          * rq_size is the size of the request plus driver payload, rounded
2076          * to the cacheline size
2077          */
2078         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2079                                 cache_line_size());
2080         left = rq_size * depth;
2081
2082         for (i = 0; i < depth; ) {
2083                 int this_order = max_order;
2084                 struct page *page;
2085                 int to_do;
2086                 void *p;
2087
2088                 while (this_order && left < order_to_size(this_order - 1))
2089                         this_order--;
2090
2091                 do {
2092                         page = alloc_pages_node(node,
2093                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2094                                 this_order);
2095                         if (page)
2096                                 break;
2097                         if (!this_order--)
2098                                 break;
2099                         if (order_to_size(this_order) < rq_size)
2100                                 break;
2101                 } while (1);
2102
2103                 if (!page)
2104                         goto fail;
2105
2106                 page->private = this_order;
2107                 list_add_tail(&page->lru, &tags->page_list);
2108
2109                 p = page_address(page);
2110                 /*
2111                  * Allow kmemleak to scan these pages as they contain pointers
2112                  * to additional allocations like via ops->init_request().
2113                  */
2114                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2115                 entries_per_page = order_to_size(this_order) / rq_size;
2116                 to_do = min(entries_per_page, depth - i);
2117                 left -= to_do * rq_size;
2118                 for (j = 0; j < to_do; j++) {
2119                         struct request *rq = p;
2120
2121                         tags->static_rqs[i] = rq;
2122                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2123                                 tags->static_rqs[i] = NULL;
2124                                 goto fail;
2125                         }
2126
2127                         p += rq_size;
2128                         i++;
2129                 }
2130         }
2131         return 0;
2132
2133 fail:
2134         blk_mq_free_rqs(set, tags, hctx_idx);
2135         return -ENOMEM;
2136 }
2137
2138 /*
2139  * 'cpu' is going away. splice any existing rq_list entries from this
2140  * software queue to the hw queue dispatch list, and ensure that it
2141  * gets run.
2142  */
2143 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2144 {
2145         struct blk_mq_hw_ctx *hctx;
2146         struct blk_mq_ctx *ctx;
2147         LIST_HEAD(tmp);
2148
2149         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2150         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2151
2152         spin_lock(&ctx->lock);
2153         if (!list_empty(&ctx->rq_list)) {
2154                 list_splice_init(&ctx->rq_list, &tmp);
2155                 blk_mq_hctx_clear_pending(hctx, ctx);
2156         }
2157         spin_unlock(&ctx->lock);
2158
2159         if (list_empty(&tmp))
2160                 return 0;
2161
2162         spin_lock(&hctx->lock);
2163         list_splice_tail_init(&tmp, &hctx->dispatch);
2164         spin_unlock(&hctx->lock);
2165
2166         blk_mq_run_hw_queue(hctx, true);
2167         return 0;
2168 }
2169
2170 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2171 {
2172         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2173                                             &hctx->cpuhp_dead);
2174 }
2175
2176 /* hctx->ctxs will be freed in queue's release handler */
2177 static void blk_mq_exit_hctx(struct request_queue *q,
2178                 struct blk_mq_tag_set *set,
2179                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2180 {
2181         if (blk_mq_hw_queue_mapped(hctx))
2182                 blk_mq_tag_idle(hctx);
2183
2184         if (set->ops->exit_request)
2185                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2186
2187         if (set->ops->exit_hctx)
2188                 set->ops->exit_hctx(hctx, hctx_idx);
2189
2190         if (hctx->flags & BLK_MQ_F_BLOCKING)
2191                 cleanup_srcu_struct(hctx->srcu);
2192
2193         blk_mq_remove_cpuhp(hctx);
2194         blk_free_flush_queue(hctx->fq);
2195         sbitmap_free(&hctx->ctx_map);
2196 }
2197
2198 static void blk_mq_exit_hw_queues(struct request_queue *q,
2199                 struct blk_mq_tag_set *set, int nr_queue)
2200 {
2201         struct blk_mq_hw_ctx *hctx;
2202         unsigned int i;
2203
2204         queue_for_each_hw_ctx(q, hctx, i) {
2205                 if (i == nr_queue)
2206                         break;
2207                 blk_mq_debugfs_unregister_hctx(hctx);
2208                 blk_mq_exit_hctx(q, set, hctx, i);
2209         }
2210 }
2211
2212 static int blk_mq_init_hctx(struct request_queue *q,
2213                 struct blk_mq_tag_set *set,
2214                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2215 {
2216         int node;
2217
2218         node = hctx->numa_node;
2219         if (node == NUMA_NO_NODE)
2220                 node = hctx->numa_node = set->numa_node;
2221
2222         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2223         spin_lock_init(&hctx->lock);
2224         INIT_LIST_HEAD(&hctx->dispatch);
2225         hctx->queue = q;
2226         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2227
2228         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2229
2230         hctx->tags = set->tags[hctx_idx];
2231
2232         /*
2233          * Allocate space for all possible cpus to avoid allocation at
2234          * runtime
2235          */
2236         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2237                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2238         if (!hctx->ctxs)
2239                 goto unregister_cpu_notifier;
2240
2241         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2242                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2243                 goto free_ctxs;
2244
2245         hctx->nr_ctx = 0;
2246
2247         spin_lock_init(&hctx->dispatch_wait_lock);
2248         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2249         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2250
2251         if (set->ops->init_hctx &&
2252             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2253                 goto free_bitmap;
2254
2255         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2256                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2257         if (!hctx->fq)
2258                 goto exit_hctx;
2259
2260         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2261                 goto free_fq;
2262
2263         if (hctx->flags & BLK_MQ_F_BLOCKING)
2264                 init_srcu_struct(hctx->srcu);
2265
2266         return 0;
2267
2268  free_fq:
2269         kfree(hctx->fq);
2270  exit_hctx:
2271         if (set->ops->exit_hctx)
2272                 set->ops->exit_hctx(hctx, hctx_idx);
2273  free_bitmap:
2274         sbitmap_free(&hctx->ctx_map);
2275  free_ctxs:
2276         kfree(hctx->ctxs);
2277  unregister_cpu_notifier:
2278         blk_mq_remove_cpuhp(hctx);
2279         return -1;
2280 }
2281
2282 static void blk_mq_init_cpu_queues(struct request_queue *q,
2283                                    unsigned int nr_hw_queues)
2284 {
2285         unsigned int i;
2286
2287         for_each_possible_cpu(i) {
2288                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2289                 struct blk_mq_hw_ctx *hctx;
2290
2291                 __ctx->cpu = i;
2292                 spin_lock_init(&__ctx->lock);
2293                 INIT_LIST_HEAD(&__ctx->rq_list);
2294                 __ctx->queue = q;
2295
2296                 /*
2297                  * Set local node, IFF we have more than one hw queue. If
2298                  * not, we remain on the home node of the device
2299                  */
2300                 hctx = blk_mq_map_queue(q, i);
2301                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2302                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2303         }
2304 }
2305
2306 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2307 {
2308         int ret = 0;
2309
2310         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2311                                         set->queue_depth, set->reserved_tags);
2312         if (!set->tags[hctx_idx])
2313                 return false;
2314
2315         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2316                                 set->queue_depth);
2317         if (!ret)
2318                 return true;
2319
2320         blk_mq_free_rq_map(set->tags[hctx_idx]);
2321         set->tags[hctx_idx] = NULL;
2322         return false;
2323 }
2324
2325 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2326                                          unsigned int hctx_idx)
2327 {
2328         if (set->tags[hctx_idx]) {
2329                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2330                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2331                 set->tags[hctx_idx] = NULL;
2332         }
2333 }
2334
2335 static void blk_mq_map_swqueue(struct request_queue *q)
2336 {
2337         unsigned int i, hctx_idx;
2338         struct blk_mq_hw_ctx *hctx;
2339         struct blk_mq_ctx *ctx;
2340         struct blk_mq_tag_set *set = q->tag_set;
2341
2342         /*
2343          * Avoid others reading imcomplete hctx->cpumask through sysfs
2344          */
2345         mutex_lock(&q->sysfs_lock);
2346
2347         queue_for_each_hw_ctx(q, hctx, i) {
2348                 cpumask_clear(hctx->cpumask);
2349                 hctx->nr_ctx = 0;
2350                 hctx->dispatch_from = NULL;
2351         }
2352
2353         /*
2354          * Map software to hardware queues.
2355          *
2356          * If the cpu isn't present, the cpu is mapped to first hctx.
2357          */
2358         for_each_possible_cpu(i) {
2359                 hctx_idx = q->mq_map[i];
2360                 /* unmapped hw queue can be remapped after CPU topo changed */
2361                 if (!set->tags[hctx_idx] &&
2362                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2363                         /*
2364                          * If tags initialization fail for some hctx,
2365                          * that hctx won't be brought online.  In this
2366                          * case, remap the current ctx to hctx[0] which
2367                          * is guaranteed to always have tags allocated
2368                          */
2369                         q->mq_map[i] = 0;
2370                 }
2371
2372                 ctx = per_cpu_ptr(q->queue_ctx, i);
2373                 hctx = blk_mq_map_queue(q, i);
2374
2375                 cpumask_set_cpu(i, hctx->cpumask);
2376                 ctx->index_hw = hctx->nr_ctx;
2377                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2378         }
2379
2380         mutex_unlock(&q->sysfs_lock);
2381
2382         queue_for_each_hw_ctx(q, hctx, i) {
2383                 /*
2384                  * If no software queues are mapped to this hardware queue,
2385                  * disable it and free the request entries.
2386                  */
2387                 if (!hctx->nr_ctx) {
2388                         /* Never unmap queue 0.  We need it as a
2389                          * fallback in case of a new remap fails
2390                          * allocation
2391                          */
2392                         if (i && set->tags[i])
2393                                 blk_mq_free_map_and_requests(set, i);
2394
2395                         hctx->tags = NULL;
2396                         continue;
2397                 }
2398
2399                 hctx->tags = set->tags[i];
2400                 WARN_ON(!hctx->tags);
2401
2402                 /*
2403                  * Set the map size to the number of mapped software queues.
2404                  * This is more accurate and more efficient than looping
2405                  * over all possibly mapped software queues.
2406                  */
2407                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2408
2409                 /*
2410                  * Initialize batch roundrobin counts
2411                  */
2412                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2413                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2414         }
2415 }
2416
2417 /*
2418  * Caller needs to ensure that we're either frozen/quiesced, or that
2419  * the queue isn't live yet.
2420  */
2421 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2422 {
2423         struct blk_mq_hw_ctx *hctx;
2424         int i;
2425
2426         queue_for_each_hw_ctx(q, hctx, i) {
2427                 if (shared)
2428                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2429                 else
2430                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2431         }
2432 }
2433
2434 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2435                                         bool shared)
2436 {
2437         struct request_queue *q;
2438
2439         lockdep_assert_held(&set->tag_list_lock);
2440
2441         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2442                 blk_mq_freeze_queue(q);
2443                 queue_set_hctx_shared(q, shared);
2444                 blk_mq_unfreeze_queue(q);
2445         }
2446 }
2447
2448 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2449 {
2450         struct blk_mq_tag_set *set = q->tag_set;
2451
2452         mutex_lock(&set->tag_list_lock);
2453         list_del_rcu(&q->tag_set_list);
2454         if (list_is_singular(&set->tag_list)) {
2455                 /* just transitioned to unshared */
2456                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2457                 /* update existing queue */
2458                 blk_mq_update_tag_set_depth(set, false);
2459         }
2460         mutex_unlock(&set->tag_list_lock);
2461         INIT_LIST_HEAD(&q->tag_set_list);
2462 }
2463
2464 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2465                                      struct request_queue *q)
2466 {
2467         q->tag_set = set;
2468
2469         mutex_lock(&set->tag_list_lock);
2470
2471         /*
2472          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2473          */
2474         if (!list_empty(&set->tag_list) &&
2475             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2476                 set->flags |= BLK_MQ_F_TAG_SHARED;
2477                 /* update existing queue */
2478                 blk_mq_update_tag_set_depth(set, true);
2479         }
2480         if (set->flags & BLK_MQ_F_TAG_SHARED)
2481                 queue_set_hctx_shared(q, true);
2482         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2483
2484         mutex_unlock(&set->tag_list_lock);
2485 }
2486
2487 /*
2488  * It is the actual release handler for mq, but we do it from
2489  * request queue's release handler for avoiding use-after-free
2490  * and headache because q->mq_kobj shouldn't have been introduced,
2491  * but we can't group ctx/kctx kobj without it.
2492  */
2493 void blk_mq_release(struct request_queue *q)
2494 {
2495         struct blk_mq_hw_ctx *hctx;
2496         unsigned int i;
2497
2498         /* hctx kobj stays in hctx */
2499         queue_for_each_hw_ctx(q, hctx, i) {
2500                 if (!hctx)
2501                         continue;
2502                 kobject_put(&hctx->kobj);
2503         }
2504
2505         q->mq_map = NULL;
2506
2507         kfree(q->queue_hw_ctx);
2508
2509         /*
2510          * release .mq_kobj and sw queue's kobject now because
2511          * both share lifetime with request queue.
2512          */
2513         blk_mq_sysfs_deinit(q);
2514
2515         free_percpu(q->queue_ctx);
2516 }
2517
2518 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2519 {
2520         struct request_queue *uninit_q, *q;
2521
2522         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2523         if (!uninit_q)
2524                 return ERR_PTR(-ENOMEM);
2525
2526         q = blk_mq_init_allocated_queue(set, uninit_q);
2527         if (IS_ERR(q))
2528                 blk_cleanup_queue(uninit_q);
2529
2530         return q;
2531 }
2532 EXPORT_SYMBOL(blk_mq_init_queue);
2533
2534 /*
2535  * Helper for setting up a queue with mq ops, given queue depth, and
2536  * the passed in mq ops flags.
2537  */
2538 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2539                                            const struct blk_mq_ops *ops,
2540                                            unsigned int queue_depth,
2541                                            unsigned int set_flags)
2542 {
2543         struct request_queue *q;
2544         int ret;
2545
2546         memset(set, 0, sizeof(*set));
2547         set->ops = ops;
2548         set->nr_hw_queues = 1;
2549         set->queue_depth = queue_depth;
2550         set->numa_node = NUMA_NO_NODE;
2551         set->flags = set_flags;
2552
2553         ret = blk_mq_alloc_tag_set(set);
2554         if (ret)
2555                 return ERR_PTR(ret);
2556
2557         q = blk_mq_init_queue(set);
2558         if (IS_ERR(q)) {
2559                 blk_mq_free_tag_set(set);
2560                 return q;
2561         }
2562
2563         return q;
2564 }
2565 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2566
2567 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2568 {
2569         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2570
2571         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2572                            __alignof__(struct blk_mq_hw_ctx)) !=
2573                      sizeof(struct blk_mq_hw_ctx));
2574
2575         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2576                 hw_ctx_size += sizeof(struct srcu_struct);
2577
2578         return hw_ctx_size;
2579 }
2580
2581 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2582                 struct blk_mq_tag_set *set, struct request_queue *q,
2583                 int hctx_idx, int node)
2584 {
2585         struct blk_mq_hw_ctx *hctx;
2586
2587         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2588                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2589                         node);
2590         if (!hctx)
2591                 return NULL;
2592
2593         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2594                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2595                                 node)) {
2596                 kfree(hctx);
2597                 return NULL;
2598         }
2599
2600         atomic_set(&hctx->nr_active, 0);
2601         hctx->numa_node = node;
2602         hctx->queue_num = hctx_idx;
2603
2604         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2605                 free_cpumask_var(hctx->cpumask);
2606                 kfree(hctx);
2607                 return NULL;
2608         }
2609         blk_mq_hctx_kobj_init(hctx);
2610
2611         return hctx;
2612 }
2613
2614 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2615                                                 struct request_queue *q)
2616 {
2617         int i, j, end;
2618         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2619
2620         /* protect against switching io scheduler  */
2621         mutex_lock(&q->sysfs_lock);
2622         for (i = 0; i < set->nr_hw_queues; i++) {
2623                 int node;
2624                 struct blk_mq_hw_ctx *hctx;
2625
2626                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2627                 /*
2628                  * If the hw queue has been mapped to another numa node,
2629                  * we need to realloc the hctx. If allocation fails, fallback
2630                  * to use the previous one.
2631                  */
2632                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2633                         continue;
2634
2635                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2636                 if (hctx) {
2637                         if (hctxs[i]) {
2638                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2639                                 kobject_put(&hctxs[i]->kobj);
2640                         }
2641                         hctxs[i] = hctx;
2642                 } else {
2643                         if (hctxs[i])
2644                                 pr_warn("Allocate new hctx on node %d fails,\
2645                                                 fallback to previous one on node %d\n",
2646                                                 node, hctxs[i]->numa_node);
2647                         else
2648                                 break;
2649                 }
2650         }
2651         /*
2652          * Increasing nr_hw_queues fails. Free the newly allocated
2653          * hctxs and keep the previous q->nr_hw_queues.
2654          */
2655         if (i != set->nr_hw_queues) {
2656                 j = q->nr_hw_queues;
2657                 end = i;
2658         } else {
2659                 j = i;
2660                 end = q->nr_hw_queues;
2661                 q->nr_hw_queues = set->nr_hw_queues;
2662         }
2663
2664         for (; j < end; j++) {
2665                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2666
2667                 if (hctx) {
2668                         if (hctx->tags)
2669                                 blk_mq_free_map_and_requests(set, j);
2670                         blk_mq_exit_hctx(q, set, hctx, j);
2671                         kobject_put(&hctx->kobj);
2672                         hctxs[j] = NULL;
2673
2674                 }
2675         }
2676         mutex_unlock(&q->sysfs_lock);
2677 }
2678
2679 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2680                                                   struct request_queue *q)
2681 {
2682         /* mark the queue as mq asap */
2683         q->mq_ops = set->ops;
2684
2685         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2686                                              blk_mq_poll_stats_bkt,
2687                                              BLK_MQ_POLL_STATS_BKTS, q);
2688         if (!q->poll_cb)
2689                 goto err_exit;
2690
2691         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2692         if (!q->queue_ctx)
2693                 goto err_exit;
2694
2695         /* init q->mq_kobj and sw queues' kobjects */
2696         blk_mq_sysfs_init(q);
2697
2698         q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2699                                                 GFP_KERNEL, set->numa_node);
2700         if (!q->queue_hw_ctx)
2701                 goto err_percpu;
2702
2703         q->mq_map = set->mq_map;
2704
2705         blk_mq_realloc_hw_ctxs(set, q);
2706         if (!q->nr_hw_queues)
2707                 goto err_hctxs;
2708
2709         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2710         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2711
2712         q->nr_queues = nr_cpu_ids;
2713
2714         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2715
2716         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2717                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2718
2719         q->sg_reserved_size = INT_MAX;
2720
2721         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2722         INIT_LIST_HEAD(&q->requeue_list);
2723         spin_lock_init(&q->requeue_lock);
2724
2725         blk_queue_make_request(q, blk_mq_make_request);
2726         if (q->mq_ops->poll)
2727                 q->poll_fn = blk_mq_poll;
2728
2729         /*
2730          * Do this after blk_queue_make_request() overrides it...
2731          */
2732         q->nr_requests = set->queue_depth;
2733
2734         /*
2735          * Default to classic polling
2736          */
2737         q->poll_nsec = -1;
2738
2739         if (set->ops->complete)
2740                 blk_queue_softirq_done(q, set->ops->complete);
2741
2742         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2743         blk_mq_add_queue_tag_set(set, q);
2744         blk_mq_map_swqueue(q);
2745
2746         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2747                 int ret;
2748
2749                 ret = elevator_init_mq(q);
2750                 if (ret)
2751                         return ERR_PTR(ret);
2752         }
2753
2754         return q;
2755
2756 err_hctxs:
2757         kfree(q->queue_hw_ctx);
2758 err_percpu:
2759         free_percpu(q->queue_ctx);
2760 err_exit:
2761         q->mq_ops = NULL;
2762         return ERR_PTR(-ENOMEM);
2763 }
2764 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2765
2766 void blk_mq_free_queue(struct request_queue *q)
2767 {
2768         struct blk_mq_tag_set   *set = q->tag_set;
2769
2770         blk_mq_del_queue_tag_set(q);
2771         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2772 }
2773
2774 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2775 {
2776         int i;
2777
2778         for (i = 0; i < set->nr_hw_queues; i++)
2779                 if (!__blk_mq_alloc_rq_map(set, i))
2780                         goto out_unwind;
2781
2782         return 0;
2783
2784 out_unwind:
2785         while (--i >= 0)
2786                 blk_mq_free_rq_map(set->tags[i]);
2787
2788         return -ENOMEM;
2789 }
2790
2791 /*
2792  * Allocate the request maps associated with this tag_set. Note that this
2793  * may reduce the depth asked for, if memory is tight. set->queue_depth
2794  * will be updated to reflect the allocated depth.
2795  */
2796 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2797 {
2798         unsigned int depth;
2799         int err;
2800
2801         depth = set->queue_depth;
2802         do {
2803                 err = __blk_mq_alloc_rq_maps(set);
2804                 if (!err)
2805                         break;
2806
2807                 set->queue_depth >>= 1;
2808                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2809                         err = -ENOMEM;
2810                         break;
2811                 }
2812         } while (set->queue_depth);
2813
2814         if (!set->queue_depth || err) {
2815                 pr_err("blk-mq: failed to allocate request map\n");
2816                 return -ENOMEM;
2817         }
2818
2819         if (depth != set->queue_depth)
2820                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2821                                                 depth, set->queue_depth);
2822
2823         return 0;
2824 }
2825
2826 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2827 {
2828         if (set->ops->map_queues) {
2829                 /*
2830                  * transport .map_queues is usually done in the following
2831                  * way:
2832                  *
2833                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2834                  *      mask = get_cpu_mask(queue)
2835                  *      for_each_cpu(cpu, mask)
2836                  *              set->mq_map[cpu] = queue;
2837                  * }
2838                  *
2839                  * When we need to remap, the table has to be cleared for
2840                  * killing stale mapping since one CPU may not be mapped
2841                  * to any hw queue.
2842                  */
2843                 blk_mq_clear_mq_map(set);
2844
2845                 return set->ops->map_queues(set);
2846         } else
2847                 return blk_mq_map_queues(set);
2848 }
2849
2850 /*
2851  * Alloc a tag set to be associated with one or more request queues.
2852  * May fail with EINVAL for various error conditions. May adjust the
2853  * requested depth down, if it's too large. In that case, the set
2854  * value will be stored in set->queue_depth.
2855  */
2856 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2857 {
2858         int ret;
2859
2860         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2861
2862         if (!set->nr_hw_queues)
2863                 return -EINVAL;
2864         if (!set->queue_depth)
2865                 return -EINVAL;
2866         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2867                 return -EINVAL;
2868
2869         if (!set->ops->queue_rq)
2870                 return -EINVAL;
2871
2872         if (!set->ops->get_budget ^ !set->ops->put_budget)
2873                 return -EINVAL;
2874
2875         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2876                 pr_info("blk-mq: reduced tag depth to %u\n",
2877                         BLK_MQ_MAX_DEPTH);
2878                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2879         }
2880
2881         /*
2882          * If a crashdump is active, then we are potentially in a very
2883          * memory constrained environment. Limit us to 1 queue and
2884          * 64 tags to prevent using too much memory.
2885          */
2886         if (is_kdump_kernel()) {
2887                 set->nr_hw_queues = 1;
2888                 set->queue_depth = min(64U, set->queue_depth);
2889         }
2890         /*
2891          * There is no use for more h/w queues than cpus.
2892          */
2893         if (set->nr_hw_queues > nr_cpu_ids)
2894                 set->nr_hw_queues = nr_cpu_ids;
2895
2896         set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2897                                  GFP_KERNEL, set->numa_node);
2898         if (!set->tags)
2899                 return -ENOMEM;
2900
2901         ret = -ENOMEM;
2902         set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2903                                    GFP_KERNEL, set->numa_node);
2904         if (!set->mq_map)
2905                 goto out_free_tags;
2906
2907         ret = blk_mq_update_queue_map(set);
2908         if (ret)
2909                 goto out_free_mq_map;
2910
2911         ret = blk_mq_alloc_rq_maps(set);
2912         if (ret)
2913                 goto out_free_mq_map;
2914
2915         mutex_init(&set->tag_list_lock);
2916         INIT_LIST_HEAD(&set->tag_list);
2917
2918         return 0;
2919
2920 out_free_mq_map:
2921         kfree(set->mq_map);
2922         set->mq_map = NULL;
2923 out_free_tags:
2924         kfree(set->tags);
2925         set->tags = NULL;
2926         return ret;
2927 }
2928 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2929
2930 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2931 {
2932         int i;
2933
2934         for (i = 0; i < nr_cpu_ids; i++)
2935                 blk_mq_free_map_and_requests(set, i);
2936
2937         kfree(set->mq_map);
2938         set->mq_map = NULL;
2939
2940         kfree(set->tags);
2941         set->tags = NULL;
2942 }
2943 EXPORT_SYMBOL(blk_mq_free_tag_set);
2944
2945 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2946 {
2947         struct blk_mq_tag_set *set = q->tag_set;
2948         struct blk_mq_hw_ctx *hctx;
2949         int i, ret;
2950
2951         if (!set)
2952                 return -EINVAL;
2953
2954         blk_mq_freeze_queue(q);
2955         blk_mq_quiesce_queue(q);
2956
2957         ret = 0;
2958         queue_for_each_hw_ctx(q, hctx, i) {
2959                 if (!hctx->tags)
2960                         continue;
2961                 /*
2962                  * If we're using an MQ scheduler, just update the scheduler
2963                  * queue depth. This is similar to what the old code would do.
2964                  */
2965                 if (!hctx->sched_tags) {
2966                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2967                                                         false);
2968                 } else {
2969                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2970                                                         nr, true);
2971                 }
2972                 if (ret)
2973                         break;
2974         }
2975
2976         if (!ret)
2977                 q->nr_requests = nr;
2978
2979         blk_mq_unquiesce_queue(q);
2980         blk_mq_unfreeze_queue(q);
2981
2982         return ret;
2983 }
2984
2985 /*
2986  * request_queue and elevator_type pair.
2987  * It is just used by __blk_mq_update_nr_hw_queues to cache
2988  * the elevator_type associated with a request_queue.
2989  */
2990 struct blk_mq_qe_pair {
2991         struct list_head node;
2992         struct request_queue *q;
2993         struct elevator_type *type;
2994 };
2995
2996 /*
2997  * Cache the elevator_type in qe pair list and switch the
2998  * io scheduler to 'none'
2999  */
3000 static bool blk_mq_elv_switch_none(struct list_head *head,
3001                 struct request_queue *q)
3002 {
3003         struct blk_mq_qe_pair *qe;
3004
3005         if (!q->elevator)
3006                 return true;
3007
3008         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3009         if (!qe)
3010                 return false;
3011
3012         INIT_LIST_HEAD(&qe->node);
3013         qe->q = q;
3014         qe->type = q->elevator->type;
3015         list_add(&qe->node, head);
3016
3017         mutex_lock(&q->sysfs_lock);
3018         /*
3019          * After elevator_switch_mq, the previous elevator_queue will be
3020          * released by elevator_release. The reference of the io scheduler
3021          * module get by elevator_get will also be put. So we need to get
3022          * a reference of the io scheduler module here to prevent it to be
3023          * removed.
3024          */
3025         __module_get(qe->type->elevator_owner);
3026         elevator_switch_mq(q, NULL);
3027         mutex_unlock(&q->sysfs_lock);
3028
3029         return true;
3030 }
3031
3032 static void blk_mq_elv_switch_back(struct list_head *head,
3033                 struct request_queue *q)
3034 {
3035         struct blk_mq_qe_pair *qe;
3036         struct elevator_type *t = NULL;
3037
3038         list_for_each_entry(qe, head, node)
3039                 if (qe->q == q) {
3040                         t = qe->type;
3041                         break;
3042                 }
3043
3044         if (!t)
3045                 return;
3046
3047         list_del(&qe->node);
3048         kfree(qe);
3049
3050         mutex_lock(&q->sysfs_lock);
3051         elevator_switch_mq(q, t);
3052         mutex_unlock(&q->sysfs_lock);
3053 }
3054
3055 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3056                                                         int nr_hw_queues)
3057 {
3058         struct request_queue *q;
3059         LIST_HEAD(head);
3060         int prev_nr_hw_queues;
3061
3062         lockdep_assert_held(&set->tag_list_lock);
3063
3064         if (nr_hw_queues > nr_cpu_ids)
3065                 nr_hw_queues = nr_cpu_ids;
3066         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3067                 return;
3068
3069         list_for_each_entry(q, &set->tag_list, tag_set_list)
3070                 blk_mq_freeze_queue(q);
3071         /*
3072          * Sync with blk_mq_queue_tag_busy_iter.
3073          */
3074         synchronize_rcu();
3075         /*
3076          * Switch IO scheduler to 'none', cleaning up the data associated
3077          * with the previous scheduler. We will switch back once we are done
3078          * updating the new sw to hw queue mappings.
3079          */
3080         list_for_each_entry(q, &set->tag_list, tag_set_list)
3081                 if (!blk_mq_elv_switch_none(&head, q))
3082                         goto switch_back;
3083
3084         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3085                 blk_mq_debugfs_unregister_hctxs(q);
3086                 blk_mq_sysfs_unregister(q);
3087         }
3088
3089         prev_nr_hw_queues = set->nr_hw_queues;
3090         set->nr_hw_queues = nr_hw_queues;
3091         blk_mq_update_queue_map(set);
3092 fallback:
3093         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3094                 blk_mq_realloc_hw_ctxs(set, q);
3095                 if (q->nr_hw_queues != set->nr_hw_queues) {
3096                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3097                                         nr_hw_queues, prev_nr_hw_queues);
3098                         set->nr_hw_queues = prev_nr_hw_queues;
3099                         blk_mq_map_queues(set);
3100                         goto fallback;
3101                 }
3102                 blk_mq_map_swqueue(q);
3103         }
3104
3105         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3106                 blk_mq_sysfs_register(q);
3107                 blk_mq_debugfs_register_hctxs(q);
3108         }
3109
3110 switch_back:
3111         list_for_each_entry(q, &set->tag_list, tag_set_list)
3112                 blk_mq_elv_switch_back(&head, q);
3113
3114         list_for_each_entry(q, &set->tag_list, tag_set_list)
3115                 blk_mq_unfreeze_queue(q);
3116 }
3117
3118 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3119 {
3120         mutex_lock(&set->tag_list_lock);
3121         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3122         mutex_unlock(&set->tag_list_lock);
3123 }
3124 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3125
3126 /* Enable polling stats and return whether they were already enabled. */
3127 static bool blk_poll_stats_enable(struct request_queue *q)
3128 {
3129         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3130             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3131                 return true;
3132         blk_stat_add_callback(q, q->poll_cb);
3133         return false;
3134 }
3135
3136 static void blk_mq_poll_stats_start(struct request_queue *q)
3137 {
3138         /*
3139          * We don't arm the callback if polling stats are not enabled or the
3140          * callback is already active.
3141          */
3142         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3143             blk_stat_is_active(q->poll_cb))
3144                 return;
3145
3146         blk_stat_activate_msecs(q->poll_cb, 100);
3147 }
3148
3149 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3150 {
3151         struct request_queue *q = cb->data;
3152         int bucket;
3153
3154         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3155                 if (cb->stat[bucket].nr_samples)
3156                         q->poll_stat[bucket] = cb->stat[bucket];
3157         }
3158 }
3159
3160 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3161                                        struct blk_mq_hw_ctx *hctx,
3162                                        struct request *rq)
3163 {
3164         unsigned long ret = 0;
3165         int bucket;
3166
3167         /*
3168          * If stats collection isn't on, don't sleep but turn it on for
3169          * future users
3170          */
3171         if (!blk_poll_stats_enable(q))
3172                 return 0;
3173
3174         /*
3175          * As an optimistic guess, use half of the mean service time
3176          * for this type of request. We can (and should) make this smarter.
3177          * For instance, if the completion latencies are tight, we can
3178          * get closer than just half the mean. This is especially
3179          * important on devices where the completion latencies are longer
3180          * than ~10 usec. We do use the stats for the relevant IO size
3181          * if available which does lead to better estimates.
3182          */
3183         bucket = blk_mq_poll_stats_bkt(rq);
3184         if (bucket < 0)
3185                 return ret;
3186
3187         if (q->poll_stat[bucket].nr_samples)
3188                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3189
3190         return ret;
3191 }
3192
3193 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3194                                      struct blk_mq_hw_ctx *hctx,
3195                                      struct request *rq)
3196 {
3197         struct hrtimer_sleeper hs;
3198         enum hrtimer_mode mode;
3199         unsigned int nsecs;
3200         ktime_t kt;
3201
3202         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3203                 return false;
3204
3205         /*
3206          * poll_nsec can be:
3207          *
3208          * -1:  don't ever hybrid sleep
3209          *  0:  use half of prev avg
3210          * >0:  use this specific value
3211          */
3212         if (q->poll_nsec == -1)
3213                 return false;
3214         else if (q->poll_nsec > 0)
3215                 nsecs = q->poll_nsec;
3216         else
3217                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3218
3219         if (!nsecs)
3220                 return false;
3221
3222         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3223
3224         /*
3225          * This will be replaced with the stats tracking code, using
3226          * 'avg_completion_time / 2' as the pre-sleep target.
3227          */
3228         kt = nsecs;
3229
3230         mode = HRTIMER_MODE_REL;
3231         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3232         hrtimer_set_expires(&hs.timer, kt);
3233
3234         hrtimer_init_sleeper(&hs, current);
3235         do {
3236                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3237                         break;
3238                 set_current_state(TASK_UNINTERRUPTIBLE);
3239                 hrtimer_start_expires(&hs.timer, mode);
3240                 if (hs.task)
3241                         io_schedule();
3242                 hrtimer_cancel(&hs.timer);
3243                 mode = HRTIMER_MODE_ABS;
3244         } while (hs.task && !signal_pending(current));
3245
3246         __set_current_state(TASK_RUNNING);
3247         destroy_hrtimer_on_stack(&hs.timer);
3248         return true;
3249 }
3250
3251 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3252 {
3253         struct request_queue *q = hctx->queue;
3254         long state;
3255
3256         /*
3257          * If we sleep, have the caller restart the poll loop to reset
3258          * the state. Like for the other success return cases, the
3259          * caller is responsible for checking if the IO completed. If
3260          * the IO isn't complete, we'll get called again and will go
3261          * straight to the busy poll loop.
3262          */
3263         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3264                 return true;
3265
3266         hctx->poll_considered++;
3267
3268         state = current->state;
3269         while (!need_resched()) {
3270                 int ret;
3271
3272                 hctx->poll_invoked++;
3273
3274                 ret = q->mq_ops->poll(hctx, rq->tag);
3275                 if (ret > 0) {
3276                         hctx->poll_success++;
3277                         set_current_state(TASK_RUNNING);
3278                         return true;
3279                 }
3280
3281                 if (signal_pending_state(state, current))
3282                         set_current_state(TASK_RUNNING);
3283
3284                 if (current->state == TASK_RUNNING)
3285                         return true;
3286                 if (ret < 0)
3287                         break;
3288                 cpu_relax();
3289         }
3290
3291         __set_current_state(TASK_RUNNING);
3292         return false;
3293 }
3294
3295 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3296 {
3297         struct blk_mq_hw_ctx *hctx;
3298         struct request *rq;
3299
3300         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3301                 return false;
3302
3303         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3304         if (!blk_qc_t_is_internal(cookie))
3305                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3306         else {
3307                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3308                 /*
3309                  * With scheduling, if the request has completed, we'll
3310                  * get a NULL return here, as we clear the sched tag when
3311                  * that happens. The request still remains valid, like always,
3312                  * so we should be safe with just the NULL check.
3313                  */
3314                 if (!rq)
3315                         return false;
3316         }
3317
3318         return __blk_mq_poll(hctx, rq);
3319 }
3320
3321 static int __init blk_mq_init(void)
3322 {
3323         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3324                                 blk_mq_hctx_notify_dead);
3325         return 0;
3326 }
3327 subsys_initcall(blk_mq_init);