]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
block: consolidate struct request timestamp fields
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (blk_mq_tag_busy(data->hctx)) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         return rq;
336 }
337
338 static struct request *blk_mq_get_request(struct request_queue *q,
339                 struct bio *bio, unsigned int op,
340                 struct blk_mq_alloc_data *data)
341 {
342         struct elevator_queue *e = q->elevator;
343         struct request *rq;
344         unsigned int tag;
345         bool put_ctx_on_error = false;
346
347         blk_queue_enter_live(q);
348         data->q = q;
349         if (likely(!data->ctx)) {
350                 data->ctx = blk_mq_get_ctx(q);
351                 put_ctx_on_error = true;
352         }
353         if (likely(!data->hctx))
354                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
355         if (op & REQ_NOWAIT)
356                 data->flags |= BLK_MQ_REQ_NOWAIT;
357
358         if (e) {
359                 data->flags |= BLK_MQ_REQ_INTERNAL;
360
361                 /*
362                  * Flush requests are special and go directly to the
363                  * dispatch list.
364                  */
365                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
366                         e->type->ops.mq.limit_depth(op, data);
367         }
368
369         tag = blk_mq_get_tag(data);
370         if (tag == BLK_MQ_TAG_FAIL) {
371                 if (put_ctx_on_error) {
372                         blk_mq_put_ctx(data->ctx);
373                         data->ctx = NULL;
374                 }
375                 blk_queue_exit(q);
376                 return NULL;
377         }
378
379         rq = blk_mq_rq_ctx_init(data, tag, op);
380         if (!op_is_flush(op)) {
381                 rq->elv.icq = NULL;
382                 if (e && e->type->ops.mq.prepare_request) {
383                         if (e->type->icq_cache && rq_ioc(bio))
384                                 blk_mq_sched_assign_ioc(rq, bio);
385
386                         e->type->ops.mq.prepare_request(rq, bio);
387                         rq->rq_flags |= RQF_ELVPRIV;
388                 }
389         }
390         data->hctx->queued++;
391         return rq;
392 }
393
394 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
395                 blk_mq_req_flags_t flags)
396 {
397         struct blk_mq_alloc_data alloc_data = { .flags = flags };
398         struct request *rq;
399         int ret;
400
401         ret = blk_queue_enter(q, flags);
402         if (ret)
403                 return ERR_PTR(ret);
404
405         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
406         blk_queue_exit(q);
407
408         if (!rq)
409                 return ERR_PTR(-EWOULDBLOCK);
410
411         blk_mq_put_ctx(alloc_data.ctx);
412
413         rq->__data_len = 0;
414         rq->__sector = (sector_t) -1;
415         rq->bio = rq->biotail = NULL;
416         return rq;
417 }
418 EXPORT_SYMBOL(blk_mq_alloc_request);
419
420 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
421         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
422 {
423         struct blk_mq_alloc_data alloc_data = { .flags = flags };
424         struct request *rq;
425         unsigned int cpu;
426         int ret;
427
428         /*
429          * If the tag allocator sleeps we could get an allocation for a
430          * different hardware context.  No need to complicate the low level
431          * allocator for this for the rare use case of a command tied to
432          * a specific queue.
433          */
434         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
435                 return ERR_PTR(-EINVAL);
436
437         if (hctx_idx >= q->nr_hw_queues)
438                 return ERR_PTR(-EIO);
439
440         ret = blk_queue_enter(q, flags);
441         if (ret)
442                 return ERR_PTR(ret);
443
444         /*
445          * Check if the hardware context is actually mapped to anything.
446          * If not tell the caller that it should skip this queue.
447          */
448         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
449         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
450                 blk_queue_exit(q);
451                 return ERR_PTR(-EXDEV);
452         }
453         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
454         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
455
456         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
457         blk_queue_exit(q);
458
459         if (!rq)
460                 return ERR_PTR(-EWOULDBLOCK);
461
462         return rq;
463 }
464 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
465
466 void blk_mq_free_request(struct request *rq)
467 {
468         struct request_queue *q = rq->q;
469         struct elevator_queue *e = q->elevator;
470         struct blk_mq_ctx *ctx = rq->mq_ctx;
471         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
472         const int sched_tag = rq->internal_tag;
473
474         if (rq->rq_flags & RQF_ELVPRIV) {
475                 if (e && e->type->ops.mq.finish_request)
476                         e->type->ops.mq.finish_request(rq);
477                 if (rq->elv.icq) {
478                         put_io_context(rq->elv.icq->ioc);
479                         rq->elv.icq = NULL;
480                 }
481         }
482
483         ctx->rq_completed[rq_is_sync(rq)]++;
484         if (rq->rq_flags & RQF_MQ_INFLIGHT)
485                 atomic_dec(&hctx->nr_active);
486
487         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
488                 laptop_io_completion(q->backing_dev_info);
489
490         wbt_done(q->rq_wb, rq);
491
492         if (blk_rq_rl(rq))
493                 blk_put_rl(blk_rq_rl(rq));
494
495         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
496         if (rq->tag != -1)
497                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
498         if (sched_tag != -1)
499                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
500         blk_mq_sched_restart(hctx);
501         blk_queue_exit(q);
502 }
503 EXPORT_SYMBOL_GPL(blk_mq_free_request);
504
505 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
506 {
507         u64 now = ktime_get_ns();
508
509         if (rq->rq_flags & RQF_STATS) {
510                 blk_mq_poll_stats_start(rq->q);
511                 blk_stat_add(rq, now);
512         }
513
514         blk_account_io_done(rq, now);
515
516         if (rq->end_io) {
517                 wbt_done(rq->q->rq_wb, rq);
518                 rq->end_io(rq, error);
519         } else {
520                 if (unlikely(blk_bidi_rq(rq)))
521                         blk_mq_free_request(rq->next_rq);
522                 blk_mq_free_request(rq);
523         }
524 }
525 EXPORT_SYMBOL(__blk_mq_end_request);
526
527 void blk_mq_end_request(struct request *rq, blk_status_t error)
528 {
529         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
530                 BUG();
531         __blk_mq_end_request(rq, error);
532 }
533 EXPORT_SYMBOL(blk_mq_end_request);
534
535 static void __blk_mq_complete_request_remote(void *data)
536 {
537         struct request *rq = data;
538
539         rq->q->softirq_done_fn(rq);
540 }
541
542 static void __blk_mq_complete_request(struct request *rq)
543 {
544         struct blk_mq_ctx *ctx = rq->mq_ctx;
545         bool shared = false;
546         int cpu;
547
548         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
549         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
550
551         if (rq->internal_tag != -1)
552                 blk_mq_sched_completed_request(rq);
553
554         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
555                 rq->q->softirq_done_fn(rq);
556                 return;
557         }
558
559         cpu = get_cpu();
560         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
561                 shared = cpus_share_cache(cpu, ctx->cpu);
562
563         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
564                 rq->csd.func = __blk_mq_complete_request_remote;
565                 rq->csd.info = rq;
566                 rq->csd.flags = 0;
567                 smp_call_function_single_async(ctx->cpu, &rq->csd);
568         } else {
569                 rq->q->softirq_done_fn(rq);
570         }
571         put_cpu();
572 }
573
574 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
575         __releases(hctx->srcu)
576 {
577         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
578                 rcu_read_unlock();
579         else
580                 srcu_read_unlock(hctx->srcu, srcu_idx);
581 }
582
583 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
584         __acquires(hctx->srcu)
585 {
586         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
587                 /* shut up gcc false positive */
588                 *srcu_idx = 0;
589                 rcu_read_lock();
590         } else
591                 *srcu_idx = srcu_read_lock(hctx->srcu);
592 }
593
594 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
595 {
596         unsigned long flags;
597
598         /*
599          * blk_mq_rq_aborted_gstate() is used from the completion path and
600          * can thus be called from irq context.  u64_stats_fetch in the
601          * middle of update on the same CPU leads to lockup.  Disable irq
602          * while updating.
603          */
604         local_irq_save(flags);
605         u64_stats_update_begin(&rq->aborted_gstate_sync);
606         rq->aborted_gstate = gstate;
607         u64_stats_update_end(&rq->aborted_gstate_sync);
608         local_irq_restore(flags);
609 }
610
611 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
612 {
613         unsigned int start;
614         u64 aborted_gstate;
615
616         do {
617                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
618                 aborted_gstate = rq->aborted_gstate;
619         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
620
621         return aborted_gstate;
622 }
623
624 /**
625  * blk_mq_complete_request - end I/O on a request
626  * @rq:         the request being processed
627  *
628  * Description:
629  *      Ends all I/O on a request. It does not handle partial completions.
630  *      The actual completion happens out-of-order, through a IPI handler.
631  **/
632 void blk_mq_complete_request(struct request *rq)
633 {
634         struct request_queue *q = rq->q;
635         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
636         int srcu_idx;
637
638         if (unlikely(blk_should_fake_timeout(q)))
639                 return;
640
641         /*
642          * If @rq->aborted_gstate equals the current instance, timeout is
643          * claiming @rq and we lost.  This is synchronized through
644          * hctx_lock().  See blk_mq_timeout_work() for details.
645          *
646          * Completion path never blocks and we can directly use RCU here
647          * instead of hctx_lock() which can be either RCU or SRCU.
648          * However, that would complicate paths which want to synchronize
649          * against us.  Let stay in sync with the issue path so that
650          * hctx_lock() covers both issue and completion paths.
651          */
652         hctx_lock(hctx, &srcu_idx);
653         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
654                 __blk_mq_complete_request(rq);
655         hctx_unlock(hctx, srcu_idx);
656 }
657 EXPORT_SYMBOL(blk_mq_complete_request);
658
659 int blk_mq_request_started(struct request *rq)
660 {
661         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
662 }
663 EXPORT_SYMBOL_GPL(blk_mq_request_started);
664
665 void blk_mq_start_request(struct request *rq)
666 {
667         struct request_queue *q = rq->q;
668
669         blk_mq_sched_started_request(rq);
670
671         trace_block_rq_issue(q, rq);
672
673         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
674                 rq->io_start_time_ns = ktime_get_ns();
675 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
676                 rq->throtl_size = blk_rq_sectors(rq);
677 #endif
678                 rq->rq_flags |= RQF_STATS;
679                 wbt_issue(q->rq_wb, rq);
680         }
681
682         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
683
684         /*
685          * Mark @rq in-flight which also advances the generation number,
686          * and register for timeout.  Protect with a seqcount to allow the
687          * timeout path to read both @rq->gstate and @rq->deadline
688          * coherently.
689          *
690          * This is the only place where a request is marked in-flight.  If
691          * the timeout path reads an in-flight @rq->gstate, the
692          * @rq->deadline it reads together under @rq->gstate_seq is
693          * guaranteed to be the matching one.
694          */
695         preempt_disable();
696         write_seqcount_begin(&rq->gstate_seq);
697
698         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
699         blk_add_timer(rq);
700
701         write_seqcount_end(&rq->gstate_seq);
702         preempt_enable();
703
704         if (q->dma_drain_size && blk_rq_bytes(rq)) {
705                 /*
706                  * Make sure space for the drain appears.  We know we can do
707                  * this because max_hw_segments has been adjusted to be one
708                  * fewer than the device can handle.
709                  */
710                 rq->nr_phys_segments++;
711         }
712 }
713 EXPORT_SYMBOL(blk_mq_start_request);
714
715 /*
716  * When we reach here because queue is busy, it's safe to change the state
717  * to IDLE without checking @rq->aborted_gstate because we should still be
718  * holding the RCU read lock and thus protected against timeout.
719  */
720 static void __blk_mq_requeue_request(struct request *rq)
721 {
722         struct request_queue *q = rq->q;
723
724         blk_mq_put_driver_tag(rq);
725
726         trace_block_rq_requeue(q, rq);
727         wbt_requeue(q->rq_wb, rq);
728
729         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
730                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
731                 if (q->dma_drain_size && blk_rq_bytes(rq))
732                         rq->nr_phys_segments--;
733         }
734 }
735
736 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
737 {
738         __blk_mq_requeue_request(rq);
739
740         /* this request will be re-inserted to io scheduler queue */
741         blk_mq_sched_requeue_request(rq);
742
743         BUG_ON(blk_queued_rq(rq));
744         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
745 }
746 EXPORT_SYMBOL(blk_mq_requeue_request);
747
748 static void blk_mq_requeue_work(struct work_struct *work)
749 {
750         struct request_queue *q =
751                 container_of(work, struct request_queue, requeue_work.work);
752         LIST_HEAD(rq_list);
753         struct request *rq, *next;
754
755         spin_lock_irq(&q->requeue_lock);
756         list_splice_init(&q->requeue_list, &rq_list);
757         spin_unlock_irq(&q->requeue_lock);
758
759         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
760                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
761                         continue;
762
763                 rq->rq_flags &= ~RQF_SOFTBARRIER;
764                 list_del_init(&rq->queuelist);
765                 blk_mq_sched_insert_request(rq, true, false, false);
766         }
767
768         while (!list_empty(&rq_list)) {
769                 rq = list_entry(rq_list.next, struct request, queuelist);
770                 list_del_init(&rq->queuelist);
771                 blk_mq_sched_insert_request(rq, false, false, false);
772         }
773
774         blk_mq_run_hw_queues(q, false);
775 }
776
777 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
778                                 bool kick_requeue_list)
779 {
780         struct request_queue *q = rq->q;
781         unsigned long flags;
782
783         /*
784          * We abuse this flag that is otherwise used by the I/O scheduler to
785          * request head insertion from the workqueue.
786          */
787         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
788
789         spin_lock_irqsave(&q->requeue_lock, flags);
790         if (at_head) {
791                 rq->rq_flags |= RQF_SOFTBARRIER;
792                 list_add(&rq->queuelist, &q->requeue_list);
793         } else {
794                 list_add_tail(&rq->queuelist, &q->requeue_list);
795         }
796         spin_unlock_irqrestore(&q->requeue_lock, flags);
797
798         if (kick_requeue_list)
799                 blk_mq_kick_requeue_list(q);
800 }
801 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
802
803 void blk_mq_kick_requeue_list(struct request_queue *q)
804 {
805         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
806 }
807 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
808
809 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
810                                     unsigned long msecs)
811 {
812         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
813                                     msecs_to_jiffies(msecs));
814 }
815 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
816
817 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
818 {
819         if (tag < tags->nr_tags) {
820                 prefetch(tags->rqs[tag]);
821                 return tags->rqs[tag];
822         }
823
824         return NULL;
825 }
826 EXPORT_SYMBOL(blk_mq_tag_to_rq);
827
828 struct blk_mq_timeout_data {
829         unsigned long next;
830         unsigned int next_set;
831         unsigned int nr_expired;
832 };
833
834 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
835 {
836         const struct blk_mq_ops *ops = req->q->mq_ops;
837         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
838
839         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
840
841         if (ops->timeout)
842                 ret = ops->timeout(req, reserved);
843
844         switch (ret) {
845         case BLK_EH_HANDLED:
846                 __blk_mq_complete_request(req);
847                 break;
848         case BLK_EH_RESET_TIMER:
849                 /*
850                  * As nothing prevents from completion happening while
851                  * ->aborted_gstate is set, this may lead to ignored
852                  * completions and further spurious timeouts.
853                  */
854                 blk_mq_rq_update_aborted_gstate(req, 0);
855                 blk_add_timer(req);
856                 break;
857         case BLK_EH_NOT_HANDLED:
858                 break;
859         default:
860                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
861                 break;
862         }
863 }
864
865 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
866                 struct request *rq, void *priv, bool reserved)
867 {
868         struct blk_mq_timeout_data *data = priv;
869         unsigned long gstate, deadline;
870         int start;
871
872         might_sleep();
873
874         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
875                 return;
876
877         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
878         while (true) {
879                 start = read_seqcount_begin(&rq->gstate_seq);
880                 gstate = READ_ONCE(rq->gstate);
881                 deadline = blk_rq_deadline(rq);
882                 if (!read_seqcount_retry(&rq->gstate_seq, start))
883                         break;
884                 cond_resched();
885         }
886
887         /* if in-flight && overdue, mark for abortion */
888         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
889             time_after_eq(jiffies, deadline)) {
890                 blk_mq_rq_update_aborted_gstate(rq, gstate);
891                 data->nr_expired++;
892                 hctx->nr_expired++;
893         } else if (!data->next_set || time_after(data->next, deadline)) {
894                 data->next = deadline;
895                 data->next_set = 1;
896         }
897 }
898
899 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
900                 struct request *rq, void *priv, bool reserved)
901 {
902         /*
903          * We marked @rq->aborted_gstate and waited for RCU.  If there were
904          * completions that we lost to, they would have finished and
905          * updated @rq->gstate by now; otherwise, the completion path is
906          * now guaranteed to see @rq->aborted_gstate and yield.  If
907          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
908          */
909         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
910             READ_ONCE(rq->gstate) == rq->aborted_gstate)
911                 blk_mq_rq_timed_out(rq, reserved);
912 }
913
914 static void blk_mq_timeout_work(struct work_struct *work)
915 {
916         struct request_queue *q =
917                 container_of(work, struct request_queue, timeout_work);
918         struct blk_mq_timeout_data data = {
919                 .next           = 0,
920                 .next_set       = 0,
921                 .nr_expired     = 0,
922         };
923         struct blk_mq_hw_ctx *hctx;
924         int i;
925
926         /* A deadlock might occur if a request is stuck requiring a
927          * timeout at the same time a queue freeze is waiting
928          * completion, since the timeout code would not be able to
929          * acquire the queue reference here.
930          *
931          * That's why we don't use blk_queue_enter here; instead, we use
932          * percpu_ref_tryget directly, because we need to be able to
933          * obtain a reference even in the short window between the queue
934          * starting to freeze, by dropping the first reference in
935          * blk_freeze_queue_start, and the moment the last request is
936          * consumed, marked by the instant q_usage_counter reaches
937          * zero.
938          */
939         if (!percpu_ref_tryget(&q->q_usage_counter))
940                 return;
941
942         /* scan for the expired ones and set their ->aborted_gstate */
943         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
944
945         if (data.nr_expired) {
946                 bool has_rcu = false;
947
948                 /*
949                  * Wait till everyone sees ->aborted_gstate.  The
950                  * sequential waits for SRCUs aren't ideal.  If this ever
951                  * becomes a problem, we can add per-hw_ctx rcu_head and
952                  * wait in parallel.
953                  */
954                 queue_for_each_hw_ctx(q, hctx, i) {
955                         if (!hctx->nr_expired)
956                                 continue;
957
958                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
959                                 has_rcu = true;
960                         else
961                                 synchronize_srcu(hctx->srcu);
962
963                         hctx->nr_expired = 0;
964                 }
965                 if (has_rcu)
966                         synchronize_rcu();
967
968                 /* terminate the ones we won */
969                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
970         }
971
972         if (data.next_set) {
973                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
974                 mod_timer(&q->timeout, data.next);
975         } else {
976                 /*
977                  * Request timeouts are handled as a forward rolling timer. If
978                  * we end up here it means that no requests are pending and
979                  * also that no request has been pending for a while. Mark
980                  * each hctx as idle.
981                  */
982                 queue_for_each_hw_ctx(q, hctx, i) {
983                         /* the hctx may be unmapped, so check it here */
984                         if (blk_mq_hw_queue_mapped(hctx))
985                                 blk_mq_tag_idle(hctx);
986                 }
987         }
988         blk_queue_exit(q);
989 }
990
991 struct flush_busy_ctx_data {
992         struct blk_mq_hw_ctx *hctx;
993         struct list_head *list;
994 };
995
996 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
997 {
998         struct flush_busy_ctx_data *flush_data = data;
999         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1000         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1001
1002         spin_lock(&ctx->lock);
1003         list_splice_tail_init(&ctx->rq_list, flush_data->list);
1004         sbitmap_clear_bit(sb, bitnr);
1005         spin_unlock(&ctx->lock);
1006         return true;
1007 }
1008
1009 /*
1010  * Process software queues that have been marked busy, splicing them
1011  * to the for-dispatch
1012  */
1013 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1014 {
1015         struct flush_busy_ctx_data data = {
1016                 .hctx = hctx,
1017                 .list = list,
1018         };
1019
1020         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1021 }
1022 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1023
1024 struct dispatch_rq_data {
1025         struct blk_mq_hw_ctx *hctx;
1026         struct request *rq;
1027 };
1028
1029 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1030                 void *data)
1031 {
1032         struct dispatch_rq_data *dispatch_data = data;
1033         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1034         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1035
1036         spin_lock(&ctx->lock);
1037         if (unlikely(!list_empty(&ctx->rq_list))) {
1038                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1039                 list_del_init(&dispatch_data->rq->queuelist);
1040                 if (list_empty(&ctx->rq_list))
1041                         sbitmap_clear_bit(sb, bitnr);
1042         }
1043         spin_unlock(&ctx->lock);
1044
1045         return !dispatch_data->rq;
1046 }
1047
1048 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1049                                         struct blk_mq_ctx *start)
1050 {
1051         unsigned off = start ? start->index_hw : 0;
1052         struct dispatch_rq_data data = {
1053                 .hctx = hctx,
1054                 .rq   = NULL,
1055         };
1056
1057         __sbitmap_for_each_set(&hctx->ctx_map, off,
1058                                dispatch_rq_from_ctx, &data);
1059
1060         return data.rq;
1061 }
1062
1063 static inline unsigned int queued_to_index(unsigned int queued)
1064 {
1065         if (!queued)
1066                 return 0;
1067
1068         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1069 }
1070
1071 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1072                            bool wait)
1073 {
1074         struct blk_mq_alloc_data data = {
1075                 .q = rq->q,
1076                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1077                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1078         };
1079
1080         might_sleep_if(wait);
1081
1082         if (rq->tag != -1)
1083                 goto done;
1084
1085         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1086                 data.flags |= BLK_MQ_REQ_RESERVED;
1087
1088         rq->tag = blk_mq_get_tag(&data);
1089         if (rq->tag >= 0) {
1090                 if (blk_mq_tag_busy(data.hctx)) {
1091                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1092                         atomic_inc(&data.hctx->nr_active);
1093                 }
1094                 data.hctx->tags->rqs[rq->tag] = rq;
1095         }
1096
1097 done:
1098         if (hctx)
1099                 *hctx = data.hctx;
1100         return rq->tag != -1;
1101 }
1102
1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1104                                 int flags, void *key)
1105 {
1106         struct blk_mq_hw_ctx *hctx;
1107
1108         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1109
1110         list_del_init(&wait->entry);
1111         blk_mq_run_hw_queue(hctx, true);
1112         return 1;
1113 }
1114
1115 /*
1116  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1117  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1118  * restart. For both cases, take care to check the condition again after
1119  * marking us as waiting.
1120  */
1121 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1122                                  struct request *rq)
1123 {
1124         struct blk_mq_hw_ctx *this_hctx = *hctx;
1125         struct sbq_wait_state *ws;
1126         wait_queue_entry_t *wait;
1127         bool ret;
1128
1129         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1130                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1131                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1132
1133                 /*
1134                  * It's possible that a tag was freed in the window between the
1135                  * allocation failure and adding the hardware queue to the wait
1136                  * queue.
1137                  *
1138                  * Don't clear RESTART here, someone else could have set it.
1139                  * At most this will cost an extra queue run.
1140                  */
1141                 return blk_mq_get_driver_tag(rq, hctx, false);
1142         }
1143
1144         wait = &this_hctx->dispatch_wait;
1145         if (!list_empty_careful(&wait->entry))
1146                 return false;
1147
1148         spin_lock(&this_hctx->lock);
1149         if (!list_empty(&wait->entry)) {
1150                 spin_unlock(&this_hctx->lock);
1151                 return false;
1152         }
1153
1154         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1155         add_wait_queue(&ws->wait, wait);
1156
1157         /*
1158          * It's possible that a tag was freed in the window between the
1159          * allocation failure and adding the hardware queue to the wait
1160          * queue.
1161          */
1162         ret = blk_mq_get_driver_tag(rq, hctx, false);
1163         if (!ret) {
1164                 spin_unlock(&this_hctx->lock);
1165                 return false;
1166         }
1167
1168         /*
1169          * We got a tag, remove ourselves from the wait queue to ensure
1170          * someone else gets the wakeup.
1171          */
1172         spin_lock_irq(&ws->wait.lock);
1173         list_del_init(&wait->entry);
1174         spin_unlock_irq(&ws->wait.lock);
1175         spin_unlock(&this_hctx->lock);
1176
1177         return true;
1178 }
1179
1180 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1181
1182 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1183                              bool got_budget)
1184 {
1185         struct blk_mq_hw_ctx *hctx;
1186         struct request *rq, *nxt;
1187         bool no_tag = false;
1188         int errors, queued;
1189         blk_status_t ret = BLK_STS_OK;
1190
1191         if (list_empty(list))
1192                 return false;
1193
1194         WARN_ON(!list_is_singular(list) && got_budget);
1195
1196         /*
1197          * Now process all the entries, sending them to the driver.
1198          */
1199         errors = queued = 0;
1200         do {
1201                 struct blk_mq_queue_data bd;
1202
1203                 rq = list_first_entry(list, struct request, queuelist);
1204
1205                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1206                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1207                         break;
1208
1209                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1210                         /*
1211                          * The initial allocation attempt failed, so we need to
1212                          * rerun the hardware queue when a tag is freed. The
1213                          * waitqueue takes care of that. If the queue is run
1214                          * before we add this entry back on the dispatch list,
1215                          * we'll re-run it below.
1216                          */
1217                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1218                                 blk_mq_put_dispatch_budget(hctx);
1219                                 /*
1220                                  * For non-shared tags, the RESTART check
1221                                  * will suffice.
1222                                  */
1223                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1224                                         no_tag = true;
1225                                 break;
1226                         }
1227                 }
1228
1229                 list_del_init(&rq->queuelist);
1230
1231                 bd.rq = rq;
1232
1233                 /*
1234                  * Flag last if we have no more requests, or if we have more
1235                  * but can't assign a driver tag to it.
1236                  */
1237                 if (list_empty(list))
1238                         bd.last = true;
1239                 else {
1240                         nxt = list_first_entry(list, struct request, queuelist);
1241                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1242                 }
1243
1244                 ret = q->mq_ops->queue_rq(hctx, &bd);
1245                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1246                         /*
1247                          * If an I/O scheduler has been configured and we got a
1248                          * driver tag for the next request already, free it
1249                          * again.
1250                          */
1251                         if (!list_empty(list)) {
1252                                 nxt = list_first_entry(list, struct request, queuelist);
1253                                 blk_mq_put_driver_tag(nxt);
1254                         }
1255                         list_add(&rq->queuelist, list);
1256                         __blk_mq_requeue_request(rq);
1257                         break;
1258                 }
1259
1260                 if (unlikely(ret != BLK_STS_OK)) {
1261                         errors++;
1262                         blk_mq_end_request(rq, BLK_STS_IOERR);
1263                         continue;
1264                 }
1265
1266                 queued++;
1267         } while (!list_empty(list));
1268
1269         hctx->dispatched[queued_to_index(queued)]++;
1270
1271         /*
1272          * Any items that need requeuing? Stuff them into hctx->dispatch,
1273          * that is where we will continue on next queue run.
1274          */
1275         if (!list_empty(list)) {
1276                 bool needs_restart;
1277
1278                 spin_lock(&hctx->lock);
1279                 list_splice_init(list, &hctx->dispatch);
1280                 spin_unlock(&hctx->lock);
1281
1282                 /*
1283                  * If SCHED_RESTART was set by the caller of this function and
1284                  * it is no longer set that means that it was cleared by another
1285                  * thread and hence that a queue rerun is needed.
1286                  *
1287                  * If 'no_tag' is set, that means that we failed getting
1288                  * a driver tag with an I/O scheduler attached. If our dispatch
1289                  * waitqueue is no longer active, ensure that we run the queue
1290                  * AFTER adding our entries back to the list.
1291                  *
1292                  * If no I/O scheduler has been configured it is possible that
1293                  * the hardware queue got stopped and restarted before requests
1294                  * were pushed back onto the dispatch list. Rerun the queue to
1295                  * avoid starvation. Notes:
1296                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1297                  *   been stopped before rerunning a queue.
1298                  * - Some but not all block drivers stop a queue before
1299                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1300                  *   and dm-rq.
1301                  *
1302                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1303                  * bit is set, run queue after a delay to avoid IO stalls
1304                  * that could otherwise occur if the queue is idle.
1305                  */
1306                 needs_restart = blk_mq_sched_needs_restart(hctx);
1307                 if (!needs_restart ||
1308                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1309                         blk_mq_run_hw_queue(hctx, true);
1310                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1311                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1312         }
1313
1314         return (queued + errors) != 0;
1315 }
1316
1317 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1318 {
1319         int srcu_idx;
1320
1321         /*
1322          * We should be running this queue from one of the CPUs that
1323          * are mapped to it.
1324          *
1325          * There are at least two related races now between setting
1326          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1327          * __blk_mq_run_hw_queue():
1328          *
1329          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1330          *   but later it becomes online, then this warning is harmless
1331          *   at all
1332          *
1333          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1334          *   but later it becomes offline, then the warning can't be
1335          *   triggered, and we depend on blk-mq timeout handler to
1336          *   handle dispatched requests to this hctx
1337          */
1338         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1339                 cpu_online(hctx->next_cpu)) {
1340                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1341                         raw_smp_processor_id(),
1342                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1343                 dump_stack();
1344         }
1345
1346         /*
1347          * We can't run the queue inline with ints disabled. Ensure that
1348          * we catch bad users of this early.
1349          */
1350         WARN_ON_ONCE(in_interrupt());
1351
1352         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1353
1354         hctx_lock(hctx, &srcu_idx);
1355         blk_mq_sched_dispatch_requests(hctx);
1356         hctx_unlock(hctx, srcu_idx);
1357 }
1358
1359 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1360 {
1361         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1362
1363         if (cpu >= nr_cpu_ids)
1364                 cpu = cpumask_first(hctx->cpumask);
1365         return cpu;
1366 }
1367
1368 /*
1369  * It'd be great if the workqueue API had a way to pass
1370  * in a mask and had some smarts for more clever placement.
1371  * For now we just round-robin here, switching for every
1372  * BLK_MQ_CPU_WORK_BATCH queued items.
1373  */
1374 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1375 {
1376         bool tried = false;
1377         int next_cpu = hctx->next_cpu;
1378
1379         if (hctx->queue->nr_hw_queues == 1)
1380                 return WORK_CPU_UNBOUND;
1381
1382         if (--hctx->next_cpu_batch <= 0) {
1383 select_cpu:
1384                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1385                                 cpu_online_mask);
1386                 if (next_cpu >= nr_cpu_ids)
1387                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1388                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1389         }
1390
1391         /*
1392          * Do unbound schedule if we can't find a online CPU for this hctx,
1393          * and it should only happen in the path of handling CPU DEAD.
1394          */
1395         if (!cpu_online(next_cpu)) {
1396                 if (!tried) {
1397                         tried = true;
1398                         goto select_cpu;
1399                 }
1400
1401                 /*
1402                  * Make sure to re-select CPU next time once after CPUs
1403                  * in hctx->cpumask become online again.
1404                  */
1405                 hctx->next_cpu = next_cpu;
1406                 hctx->next_cpu_batch = 1;
1407                 return WORK_CPU_UNBOUND;
1408         }
1409
1410         hctx->next_cpu = next_cpu;
1411         return next_cpu;
1412 }
1413
1414 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1415                                         unsigned long msecs)
1416 {
1417         if (unlikely(blk_mq_hctx_stopped(hctx)))
1418                 return;
1419
1420         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1421                 int cpu = get_cpu();
1422                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1423                         __blk_mq_run_hw_queue(hctx);
1424                         put_cpu();
1425                         return;
1426                 }
1427
1428                 put_cpu();
1429         }
1430
1431         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1432                                     msecs_to_jiffies(msecs));
1433 }
1434
1435 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1436 {
1437         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1438 }
1439 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1440
1441 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1442 {
1443         int srcu_idx;
1444         bool need_run;
1445
1446         /*
1447          * When queue is quiesced, we may be switching io scheduler, or
1448          * updating nr_hw_queues, or other things, and we can't run queue
1449          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1450          *
1451          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1452          * quiesced.
1453          */
1454         hctx_lock(hctx, &srcu_idx);
1455         need_run = !blk_queue_quiesced(hctx->queue) &&
1456                 blk_mq_hctx_has_pending(hctx);
1457         hctx_unlock(hctx, srcu_idx);
1458
1459         if (need_run) {
1460                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1461                 return true;
1462         }
1463
1464         return false;
1465 }
1466 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1467
1468 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1469 {
1470         struct blk_mq_hw_ctx *hctx;
1471         int i;
1472
1473         queue_for_each_hw_ctx(q, hctx, i) {
1474                 if (blk_mq_hctx_stopped(hctx))
1475                         continue;
1476
1477                 blk_mq_run_hw_queue(hctx, async);
1478         }
1479 }
1480 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1481
1482 /**
1483  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1484  * @q: request queue.
1485  *
1486  * The caller is responsible for serializing this function against
1487  * blk_mq_{start,stop}_hw_queue().
1488  */
1489 bool blk_mq_queue_stopped(struct request_queue *q)
1490 {
1491         struct blk_mq_hw_ctx *hctx;
1492         int i;
1493
1494         queue_for_each_hw_ctx(q, hctx, i)
1495                 if (blk_mq_hctx_stopped(hctx))
1496                         return true;
1497
1498         return false;
1499 }
1500 EXPORT_SYMBOL(blk_mq_queue_stopped);
1501
1502 /*
1503  * This function is often used for pausing .queue_rq() by driver when
1504  * there isn't enough resource or some conditions aren't satisfied, and
1505  * BLK_STS_RESOURCE is usually returned.
1506  *
1507  * We do not guarantee that dispatch can be drained or blocked
1508  * after blk_mq_stop_hw_queue() returns. Please use
1509  * blk_mq_quiesce_queue() for that requirement.
1510  */
1511 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1512 {
1513         cancel_delayed_work(&hctx->run_work);
1514
1515         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1516 }
1517 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1518
1519 /*
1520  * This function is often used for pausing .queue_rq() by driver when
1521  * there isn't enough resource or some conditions aren't satisfied, and
1522  * BLK_STS_RESOURCE is usually returned.
1523  *
1524  * We do not guarantee that dispatch can be drained or blocked
1525  * after blk_mq_stop_hw_queues() returns. Please use
1526  * blk_mq_quiesce_queue() for that requirement.
1527  */
1528 void blk_mq_stop_hw_queues(struct request_queue *q)
1529 {
1530         struct blk_mq_hw_ctx *hctx;
1531         int i;
1532
1533         queue_for_each_hw_ctx(q, hctx, i)
1534                 blk_mq_stop_hw_queue(hctx);
1535 }
1536 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1537
1538 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1539 {
1540         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541
1542         blk_mq_run_hw_queue(hctx, false);
1543 }
1544 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1545
1546 void blk_mq_start_hw_queues(struct request_queue *q)
1547 {
1548         struct blk_mq_hw_ctx *hctx;
1549         int i;
1550
1551         queue_for_each_hw_ctx(q, hctx, i)
1552                 blk_mq_start_hw_queue(hctx);
1553 }
1554 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1555
1556 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1557 {
1558         if (!blk_mq_hctx_stopped(hctx))
1559                 return;
1560
1561         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1562         blk_mq_run_hw_queue(hctx, async);
1563 }
1564 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1565
1566 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1567 {
1568         struct blk_mq_hw_ctx *hctx;
1569         int i;
1570
1571         queue_for_each_hw_ctx(q, hctx, i)
1572                 blk_mq_start_stopped_hw_queue(hctx, async);
1573 }
1574 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1575
1576 static void blk_mq_run_work_fn(struct work_struct *work)
1577 {
1578         struct blk_mq_hw_ctx *hctx;
1579
1580         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1581
1582         /*
1583          * If we are stopped, don't run the queue.
1584          */
1585         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1586                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1587
1588         __blk_mq_run_hw_queue(hctx);
1589 }
1590
1591 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1592                                             struct request *rq,
1593                                             bool at_head)
1594 {
1595         struct blk_mq_ctx *ctx = rq->mq_ctx;
1596
1597         lockdep_assert_held(&ctx->lock);
1598
1599         trace_block_rq_insert(hctx->queue, rq);
1600
1601         if (at_head)
1602                 list_add(&rq->queuelist, &ctx->rq_list);
1603         else
1604                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1605 }
1606
1607 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1608                              bool at_head)
1609 {
1610         struct blk_mq_ctx *ctx = rq->mq_ctx;
1611
1612         lockdep_assert_held(&ctx->lock);
1613
1614         __blk_mq_insert_req_list(hctx, rq, at_head);
1615         blk_mq_hctx_mark_pending(hctx, ctx);
1616 }
1617
1618 /*
1619  * Should only be used carefully, when the caller knows we want to
1620  * bypass a potential IO scheduler on the target device.
1621  */
1622 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1623 {
1624         struct blk_mq_ctx *ctx = rq->mq_ctx;
1625         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1626
1627         spin_lock(&hctx->lock);
1628         list_add_tail(&rq->queuelist, &hctx->dispatch);
1629         spin_unlock(&hctx->lock);
1630
1631         if (run_queue)
1632                 blk_mq_run_hw_queue(hctx, false);
1633 }
1634
1635 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1636                             struct list_head *list)
1637
1638 {
1639         /*
1640          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1641          * offline now
1642          */
1643         spin_lock(&ctx->lock);
1644         while (!list_empty(list)) {
1645                 struct request *rq;
1646
1647                 rq = list_first_entry(list, struct request, queuelist);
1648                 BUG_ON(rq->mq_ctx != ctx);
1649                 list_del_init(&rq->queuelist);
1650                 __blk_mq_insert_req_list(hctx, rq, false);
1651         }
1652         blk_mq_hctx_mark_pending(hctx, ctx);
1653         spin_unlock(&ctx->lock);
1654 }
1655
1656 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1657 {
1658         struct request *rqa = container_of(a, struct request, queuelist);
1659         struct request *rqb = container_of(b, struct request, queuelist);
1660
1661         return !(rqa->mq_ctx < rqb->mq_ctx ||
1662                  (rqa->mq_ctx == rqb->mq_ctx &&
1663                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1664 }
1665
1666 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1667 {
1668         struct blk_mq_ctx *this_ctx;
1669         struct request_queue *this_q;
1670         struct request *rq;
1671         LIST_HEAD(list);
1672         LIST_HEAD(ctx_list);
1673         unsigned int depth;
1674
1675         list_splice_init(&plug->mq_list, &list);
1676
1677         list_sort(NULL, &list, plug_ctx_cmp);
1678
1679         this_q = NULL;
1680         this_ctx = NULL;
1681         depth = 0;
1682
1683         while (!list_empty(&list)) {
1684                 rq = list_entry_rq(list.next);
1685                 list_del_init(&rq->queuelist);
1686                 BUG_ON(!rq->q);
1687                 if (rq->mq_ctx != this_ctx) {
1688                         if (this_ctx) {
1689                                 trace_block_unplug(this_q, depth, from_schedule);
1690                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1691                                                                 &ctx_list,
1692                                                                 from_schedule);
1693                         }
1694
1695                         this_ctx = rq->mq_ctx;
1696                         this_q = rq->q;
1697                         depth = 0;
1698                 }
1699
1700                 depth++;
1701                 list_add_tail(&rq->queuelist, &ctx_list);
1702         }
1703
1704         /*
1705          * If 'this_ctx' is set, we know we have entries to complete
1706          * on 'ctx_list'. Do those.
1707          */
1708         if (this_ctx) {
1709                 trace_block_unplug(this_q, depth, from_schedule);
1710                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1711                                                 from_schedule);
1712         }
1713 }
1714
1715 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1716 {
1717         blk_init_request_from_bio(rq, bio);
1718
1719         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1720
1721         blk_account_io_start(rq, true);
1722 }
1723
1724 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1725                                    struct blk_mq_ctx *ctx,
1726                                    struct request *rq)
1727 {
1728         spin_lock(&ctx->lock);
1729         __blk_mq_insert_request(hctx, rq, false);
1730         spin_unlock(&ctx->lock);
1731 }
1732
1733 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1734 {
1735         if (rq->tag != -1)
1736                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1737
1738         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1739 }
1740
1741 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1742                                             struct request *rq,
1743                                             blk_qc_t *cookie)
1744 {
1745         struct request_queue *q = rq->q;
1746         struct blk_mq_queue_data bd = {
1747                 .rq = rq,
1748                 .last = true,
1749         };
1750         blk_qc_t new_cookie;
1751         blk_status_t ret;
1752
1753         new_cookie = request_to_qc_t(hctx, rq);
1754
1755         /*
1756          * For OK queue, we are done. For error, caller may kill it.
1757          * Any other error (busy), just add it to our list as we
1758          * previously would have done.
1759          */
1760         ret = q->mq_ops->queue_rq(hctx, &bd);
1761         switch (ret) {
1762         case BLK_STS_OK:
1763                 *cookie = new_cookie;
1764                 break;
1765         case BLK_STS_RESOURCE:
1766         case BLK_STS_DEV_RESOURCE:
1767                 __blk_mq_requeue_request(rq);
1768                 break;
1769         default:
1770                 *cookie = BLK_QC_T_NONE;
1771                 break;
1772         }
1773
1774         return ret;
1775 }
1776
1777 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1778                                                 struct request *rq,
1779                                                 blk_qc_t *cookie,
1780                                                 bool bypass_insert)
1781 {
1782         struct request_queue *q = rq->q;
1783         bool run_queue = true;
1784
1785         /*
1786          * RCU or SRCU read lock is needed before checking quiesced flag.
1787          *
1788          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1789          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1790          * and avoid driver to try to dispatch again.
1791          */
1792         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1793                 run_queue = false;
1794                 bypass_insert = false;
1795                 goto insert;
1796         }
1797
1798         if (q->elevator && !bypass_insert)
1799                 goto insert;
1800
1801         if (!blk_mq_get_dispatch_budget(hctx))
1802                 goto insert;
1803
1804         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1805                 blk_mq_put_dispatch_budget(hctx);
1806                 goto insert;
1807         }
1808
1809         return __blk_mq_issue_directly(hctx, rq, cookie);
1810 insert:
1811         if (bypass_insert)
1812                 return BLK_STS_RESOURCE;
1813
1814         blk_mq_sched_insert_request(rq, false, run_queue, false);
1815         return BLK_STS_OK;
1816 }
1817
1818 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1819                 struct request *rq, blk_qc_t *cookie)
1820 {
1821         blk_status_t ret;
1822         int srcu_idx;
1823
1824         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1825
1826         hctx_lock(hctx, &srcu_idx);
1827
1828         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1829         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1830                 blk_mq_sched_insert_request(rq, false, true, false);
1831         else if (ret != BLK_STS_OK)
1832                 blk_mq_end_request(rq, ret);
1833
1834         hctx_unlock(hctx, srcu_idx);
1835 }
1836
1837 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1838 {
1839         blk_status_t ret;
1840         int srcu_idx;
1841         blk_qc_t unused_cookie;
1842         struct blk_mq_ctx *ctx = rq->mq_ctx;
1843         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1844
1845         hctx_lock(hctx, &srcu_idx);
1846         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1847         hctx_unlock(hctx, srcu_idx);
1848
1849         return ret;
1850 }
1851
1852 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1853 {
1854         const int is_sync = op_is_sync(bio->bi_opf);
1855         const int is_flush_fua = op_is_flush(bio->bi_opf);
1856         struct blk_mq_alloc_data data = { .flags = 0 };
1857         struct request *rq;
1858         unsigned int request_count = 0;
1859         struct blk_plug *plug;
1860         struct request *same_queue_rq = NULL;
1861         blk_qc_t cookie;
1862         unsigned int wb_acct;
1863
1864         blk_queue_bounce(q, &bio);
1865
1866         blk_queue_split(q, &bio);
1867
1868         if (!bio_integrity_prep(bio))
1869                 return BLK_QC_T_NONE;
1870
1871         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1872             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1873                 return BLK_QC_T_NONE;
1874
1875         if (blk_mq_sched_bio_merge(q, bio))
1876                 return BLK_QC_T_NONE;
1877
1878         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1879
1880         trace_block_getrq(q, bio, bio->bi_opf);
1881
1882         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1883         if (unlikely(!rq)) {
1884                 __wbt_done(q->rq_wb, wb_acct);
1885                 if (bio->bi_opf & REQ_NOWAIT)
1886                         bio_wouldblock_error(bio);
1887                 return BLK_QC_T_NONE;
1888         }
1889
1890         wbt_track(rq, wb_acct);
1891
1892         cookie = request_to_qc_t(data.hctx, rq);
1893
1894         plug = current->plug;
1895         if (unlikely(is_flush_fua)) {
1896                 blk_mq_put_ctx(data.ctx);
1897                 blk_mq_bio_to_request(rq, bio);
1898
1899                 /* bypass scheduler for flush rq */
1900                 blk_insert_flush(rq);
1901                 blk_mq_run_hw_queue(data.hctx, true);
1902         } else if (plug && q->nr_hw_queues == 1) {
1903                 struct request *last = NULL;
1904
1905                 blk_mq_put_ctx(data.ctx);
1906                 blk_mq_bio_to_request(rq, bio);
1907
1908                 /*
1909                  * @request_count may become stale because of schedule
1910                  * out, so check the list again.
1911                  */
1912                 if (list_empty(&plug->mq_list))
1913                         request_count = 0;
1914                 else if (blk_queue_nomerges(q))
1915                         request_count = blk_plug_queued_count(q);
1916
1917                 if (!request_count)
1918                         trace_block_plug(q);
1919                 else
1920                         last = list_entry_rq(plug->mq_list.prev);
1921
1922                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1923                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1924                         blk_flush_plug_list(plug, false);
1925                         trace_block_plug(q);
1926                 }
1927
1928                 list_add_tail(&rq->queuelist, &plug->mq_list);
1929         } else if (plug && !blk_queue_nomerges(q)) {
1930                 blk_mq_bio_to_request(rq, bio);
1931
1932                 /*
1933                  * We do limited plugging. If the bio can be merged, do that.
1934                  * Otherwise the existing request in the plug list will be
1935                  * issued. So the plug list will have one request at most
1936                  * The plug list might get flushed before this. If that happens,
1937                  * the plug list is empty, and same_queue_rq is invalid.
1938                  */
1939                 if (list_empty(&plug->mq_list))
1940                         same_queue_rq = NULL;
1941                 if (same_queue_rq)
1942                         list_del_init(&same_queue_rq->queuelist);
1943                 list_add_tail(&rq->queuelist, &plug->mq_list);
1944
1945                 blk_mq_put_ctx(data.ctx);
1946
1947                 if (same_queue_rq) {
1948                         data.hctx = blk_mq_map_queue(q,
1949                                         same_queue_rq->mq_ctx->cpu);
1950                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1951                                         &cookie);
1952                 }
1953         } else if (q->nr_hw_queues > 1 && is_sync) {
1954                 blk_mq_put_ctx(data.ctx);
1955                 blk_mq_bio_to_request(rq, bio);
1956                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1957         } else if (q->elevator) {
1958                 blk_mq_put_ctx(data.ctx);
1959                 blk_mq_bio_to_request(rq, bio);
1960                 blk_mq_sched_insert_request(rq, false, true, true);
1961         } else {
1962                 blk_mq_put_ctx(data.ctx);
1963                 blk_mq_bio_to_request(rq, bio);
1964                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1965                 blk_mq_run_hw_queue(data.hctx, true);
1966         }
1967
1968         return cookie;
1969 }
1970
1971 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1972                      unsigned int hctx_idx)
1973 {
1974         struct page *page;
1975
1976         if (tags->rqs && set->ops->exit_request) {
1977                 int i;
1978
1979                 for (i = 0; i < tags->nr_tags; i++) {
1980                         struct request *rq = tags->static_rqs[i];
1981
1982                         if (!rq)
1983                                 continue;
1984                         set->ops->exit_request(set, rq, hctx_idx);
1985                         tags->static_rqs[i] = NULL;
1986                 }
1987         }
1988
1989         while (!list_empty(&tags->page_list)) {
1990                 page = list_first_entry(&tags->page_list, struct page, lru);
1991                 list_del_init(&page->lru);
1992                 /*
1993                  * Remove kmemleak object previously allocated in
1994                  * blk_mq_init_rq_map().
1995                  */
1996                 kmemleak_free(page_address(page));
1997                 __free_pages(page, page->private);
1998         }
1999 }
2000
2001 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2002 {
2003         kfree(tags->rqs);
2004         tags->rqs = NULL;
2005         kfree(tags->static_rqs);
2006         tags->static_rqs = NULL;
2007
2008         blk_mq_free_tags(tags);
2009 }
2010
2011 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2012                                         unsigned int hctx_idx,
2013                                         unsigned int nr_tags,
2014                                         unsigned int reserved_tags)
2015 {
2016         struct blk_mq_tags *tags;
2017         int node;
2018
2019         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2020         if (node == NUMA_NO_NODE)
2021                 node = set->numa_node;
2022
2023         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2024                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2025         if (!tags)
2026                 return NULL;
2027
2028         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2029                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2030                                  node);
2031         if (!tags->rqs) {
2032                 blk_mq_free_tags(tags);
2033                 return NULL;
2034         }
2035
2036         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2037                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2038                                  node);
2039         if (!tags->static_rqs) {
2040                 kfree(tags->rqs);
2041                 blk_mq_free_tags(tags);
2042                 return NULL;
2043         }
2044
2045         return tags;
2046 }
2047
2048 static size_t order_to_size(unsigned int order)
2049 {
2050         return (size_t)PAGE_SIZE << order;
2051 }
2052
2053 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2054                                unsigned int hctx_idx, int node)
2055 {
2056         int ret;
2057
2058         if (set->ops->init_request) {
2059                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2060                 if (ret)
2061                         return ret;
2062         }
2063
2064         seqcount_init(&rq->gstate_seq);
2065         u64_stats_init(&rq->aborted_gstate_sync);
2066         /*
2067          * start gstate with gen 1 instead of 0, otherwise it will be equal
2068          * to aborted_gstate, and be identified timed out by
2069          * blk_mq_terminate_expired.
2070          */
2071         WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2072
2073         return 0;
2074 }
2075
2076 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2077                      unsigned int hctx_idx, unsigned int depth)
2078 {
2079         unsigned int i, j, entries_per_page, max_order = 4;
2080         size_t rq_size, left;
2081         int node;
2082
2083         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2084         if (node == NUMA_NO_NODE)
2085                 node = set->numa_node;
2086
2087         INIT_LIST_HEAD(&tags->page_list);
2088
2089         /*
2090          * rq_size is the size of the request plus driver payload, rounded
2091          * to the cacheline size
2092          */
2093         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2094                                 cache_line_size());
2095         left = rq_size * depth;
2096
2097         for (i = 0; i < depth; ) {
2098                 int this_order = max_order;
2099                 struct page *page;
2100                 int to_do;
2101                 void *p;
2102
2103                 while (this_order && left < order_to_size(this_order - 1))
2104                         this_order--;
2105
2106                 do {
2107                         page = alloc_pages_node(node,
2108                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2109                                 this_order);
2110                         if (page)
2111                                 break;
2112                         if (!this_order--)
2113                                 break;
2114                         if (order_to_size(this_order) < rq_size)
2115                                 break;
2116                 } while (1);
2117
2118                 if (!page)
2119                         goto fail;
2120
2121                 page->private = this_order;
2122                 list_add_tail(&page->lru, &tags->page_list);
2123
2124                 p = page_address(page);
2125                 /*
2126                  * Allow kmemleak to scan these pages as they contain pointers
2127                  * to additional allocations like via ops->init_request().
2128                  */
2129                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2130                 entries_per_page = order_to_size(this_order) / rq_size;
2131                 to_do = min(entries_per_page, depth - i);
2132                 left -= to_do * rq_size;
2133                 for (j = 0; j < to_do; j++) {
2134                         struct request *rq = p;
2135
2136                         tags->static_rqs[i] = rq;
2137                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2138                                 tags->static_rqs[i] = NULL;
2139                                 goto fail;
2140                         }
2141
2142                         p += rq_size;
2143                         i++;
2144                 }
2145         }
2146         return 0;
2147
2148 fail:
2149         blk_mq_free_rqs(set, tags, hctx_idx);
2150         return -ENOMEM;
2151 }
2152
2153 /*
2154  * 'cpu' is going away. splice any existing rq_list entries from this
2155  * software queue to the hw queue dispatch list, and ensure that it
2156  * gets run.
2157  */
2158 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2159 {
2160         struct blk_mq_hw_ctx *hctx;
2161         struct blk_mq_ctx *ctx;
2162         LIST_HEAD(tmp);
2163
2164         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2165         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2166
2167         spin_lock(&ctx->lock);
2168         if (!list_empty(&ctx->rq_list)) {
2169                 list_splice_init(&ctx->rq_list, &tmp);
2170                 blk_mq_hctx_clear_pending(hctx, ctx);
2171         }
2172         spin_unlock(&ctx->lock);
2173
2174         if (list_empty(&tmp))
2175                 return 0;
2176
2177         spin_lock(&hctx->lock);
2178         list_splice_tail_init(&tmp, &hctx->dispatch);
2179         spin_unlock(&hctx->lock);
2180
2181         blk_mq_run_hw_queue(hctx, true);
2182         return 0;
2183 }
2184
2185 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2186 {
2187         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2188                                             &hctx->cpuhp_dead);
2189 }
2190
2191 /* hctx->ctxs will be freed in queue's release handler */
2192 static void blk_mq_exit_hctx(struct request_queue *q,
2193                 struct blk_mq_tag_set *set,
2194                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2195 {
2196         blk_mq_debugfs_unregister_hctx(hctx);
2197
2198         if (blk_mq_hw_queue_mapped(hctx))
2199                 blk_mq_tag_idle(hctx);
2200
2201         if (set->ops->exit_request)
2202                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2203
2204         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2205
2206         if (set->ops->exit_hctx)
2207                 set->ops->exit_hctx(hctx, hctx_idx);
2208
2209         if (hctx->flags & BLK_MQ_F_BLOCKING)
2210                 cleanup_srcu_struct(hctx->srcu);
2211
2212         blk_mq_remove_cpuhp(hctx);
2213         blk_free_flush_queue(hctx->fq);
2214         sbitmap_free(&hctx->ctx_map);
2215 }
2216
2217 static void blk_mq_exit_hw_queues(struct request_queue *q,
2218                 struct blk_mq_tag_set *set, int nr_queue)
2219 {
2220         struct blk_mq_hw_ctx *hctx;
2221         unsigned int i;
2222
2223         queue_for_each_hw_ctx(q, hctx, i) {
2224                 if (i == nr_queue)
2225                         break;
2226                 blk_mq_exit_hctx(q, set, hctx, i);
2227         }
2228 }
2229
2230 static int blk_mq_init_hctx(struct request_queue *q,
2231                 struct blk_mq_tag_set *set,
2232                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2233 {
2234         int node;
2235
2236         node = hctx->numa_node;
2237         if (node == NUMA_NO_NODE)
2238                 node = hctx->numa_node = set->numa_node;
2239
2240         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2241         spin_lock_init(&hctx->lock);
2242         INIT_LIST_HEAD(&hctx->dispatch);
2243         hctx->queue = q;
2244         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2245
2246         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2247
2248         hctx->tags = set->tags[hctx_idx];
2249
2250         /*
2251          * Allocate space for all possible cpus to avoid allocation at
2252          * runtime
2253          */
2254         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2255                                         GFP_KERNEL, node);
2256         if (!hctx->ctxs)
2257                 goto unregister_cpu_notifier;
2258
2259         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2260                               node))
2261                 goto free_ctxs;
2262
2263         hctx->nr_ctx = 0;
2264
2265         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2266         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2267
2268         if (set->ops->init_hctx &&
2269             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2270                 goto free_bitmap;
2271
2272         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2273                 goto exit_hctx;
2274
2275         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2276         if (!hctx->fq)
2277                 goto sched_exit_hctx;
2278
2279         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2280                 goto free_fq;
2281
2282         if (hctx->flags & BLK_MQ_F_BLOCKING)
2283                 init_srcu_struct(hctx->srcu);
2284
2285         blk_mq_debugfs_register_hctx(q, hctx);
2286
2287         return 0;
2288
2289  free_fq:
2290         kfree(hctx->fq);
2291  sched_exit_hctx:
2292         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2293  exit_hctx:
2294         if (set->ops->exit_hctx)
2295                 set->ops->exit_hctx(hctx, hctx_idx);
2296  free_bitmap:
2297         sbitmap_free(&hctx->ctx_map);
2298  free_ctxs:
2299         kfree(hctx->ctxs);
2300  unregister_cpu_notifier:
2301         blk_mq_remove_cpuhp(hctx);
2302         return -1;
2303 }
2304
2305 static void blk_mq_init_cpu_queues(struct request_queue *q,
2306                                    unsigned int nr_hw_queues)
2307 {
2308         unsigned int i;
2309
2310         for_each_possible_cpu(i) {
2311                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2312                 struct blk_mq_hw_ctx *hctx;
2313
2314                 __ctx->cpu = i;
2315                 spin_lock_init(&__ctx->lock);
2316                 INIT_LIST_HEAD(&__ctx->rq_list);
2317                 __ctx->queue = q;
2318
2319                 /*
2320                  * Set local node, IFF we have more than one hw queue. If
2321                  * not, we remain on the home node of the device
2322                  */
2323                 hctx = blk_mq_map_queue(q, i);
2324                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2325                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2326         }
2327 }
2328
2329 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2330 {
2331         int ret = 0;
2332
2333         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2334                                         set->queue_depth, set->reserved_tags);
2335         if (!set->tags[hctx_idx])
2336                 return false;
2337
2338         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2339                                 set->queue_depth);
2340         if (!ret)
2341                 return true;
2342
2343         blk_mq_free_rq_map(set->tags[hctx_idx]);
2344         set->tags[hctx_idx] = NULL;
2345         return false;
2346 }
2347
2348 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2349                                          unsigned int hctx_idx)
2350 {
2351         if (set->tags[hctx_idx]) {
2352                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2353                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2354                 set->tags[hctx_idx] = NULL;
2355         }
2356 }
2357
2358 static void blk_mq_map_swqueue(struct request_queue *q)
2359 {
2360         unsigned int i, hctx_idx;
2361         struct blk_mq_hw_ctx *hctx;
2362         struct blk_mq_ctx *ctx;
2363         struct blk_mq_tag_set *set = q->tag_set;
2364
2365         /*
2366          * Avoid others reading imcomplete hctx->cpumask through sysfs
2367          */
2368         mutex_lock(&q->sysfs_lock);
2369
2370         queue_for_each_hw_ctx(q, hctx, i) {
2371                 cpumask_clear(hctx->cpumask);
2372                 hctx->nr_ctx = 0;
2373         }
2374
2375         /*
2376          * Map software to hardware queues.
2377          *
2378          * If the cpu isn't present, the cpu is mapped to first hctx.
2379          */
2380         for_each_possible_cpu(i) {
2381                 hctx_idx = q->mq_map[i];
2382                 /* unmapped hw queue can be remapped after CPU topo changed */
2383                 if (!set->tags[hctx_idx] &&
2384                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2385                         /*
2386                          * If tags initialization fail for some hctx,
2387                          * that hctx won't be brought online.  In this
2388                          * case, remap the current ctx to hctx[0] which
2389                          * is guaranteed to always have tags allocated
2390                          */
2391                         q->mq_map[i] = 0;
2392                 }
2393
2394                 ctx = per_cpu_ptr(q->queue_ctx, i);
2395                 hctx = blk_mq_map_queue(q, i);
2396
2397                 cpumask_set_cpu(i, hctx->cpumask);
2398                 ctx->index_hw = hctx->nr_ctx;
2399                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2400         }
2401
2402         mutex_unlock(&q->sysfs_lock);
2403
2404         queue_for_each_hw_ctx(q, hctx, i) {
2405                 /*
2406                  * If no software queues are mapped to this hardware queue,
2407                  * disable it and free the request entries.
2408                  */
2409                 if (!hctx->nr_ctx) {
2410                         /* Never unmap queue 0.  We need it as a
2411                          * fallback in case of a new remap fails
2412                          * allocation
2413                          */
2414                         if (i && set->tags[i])
2415                                 blk_mq_free_map_and_requests(set, i);
2416
2417                         hctx->tags = NULL;
2418                         continue;
2419                 }
2420
2421                 hctx->tags = set->tags[i];
2422                 WARN_ON(!hctx->tags);
2423
2424                 /*
2425                  * Set the map size to the number of mapped software queues.
2426                  * This is more accurate and more efficient than looping
2427                  * over all possibly mapped software queues.
2428                  */
2429                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2430
2431                 /*
2432                  * Initialize batch roundrobin counts
2433                  */
2434                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2435                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2436         }
2437 }
2438
2439 /*
2440  * Caller needs to ensure that we're either frozen/quiesced, or that
2441  * the queue isn't live yet.
2442  */
2443 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2444 {
2445         struct blk_mq_hw_ctx *hctx;
2446         int i;
2447
2448         queue_for_each_hw_ctx(q, hctx, i) {
2449                 if (shared) {
2450                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2451                                 atomic_inc(&q->shared_hctx_restart);
2452                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2453                 } else {
2454                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2455                                 atomic_dec(&q->shared_hctx_restart);
2456                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2457                 }
2458         }
2459 }
2460
2461 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2462                                         bool shared)
2463 {
2464         struct request_queue *q;
2465
2466         lockdep_assert_held(&set->tag_list_lock);
2467
2468         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2469                 blk_mq_freeze_queue(q);
2470                 queue_set_hctx_shared(q, shared);
2471                 blk_mq_unfreeze_queue(q);
2472         }
2473 }
2474
2475 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2476 {
2477         struct blk_mq_tag_set *set = q->tag_set;
2478
2479         mutex_lock(&set->tag_list_lock);
2480         list_del_rcu(&q->tag_set_list);
2481         INIT_LIST_HEAD(&q->tag_set_list);
2482         if (list_is_singular(&set->tag_list)) {
2483                 /* just transitioned to unshared */
2484                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2485                 /* update existing queue */
2486                 blk_mq_update_tag_set_depth(set, false);
2487         }
2488         mutex_unlock(&set->tag_list_lock);
2489
2490         synchronize_rcu();
2491 }
2492
2493 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2494                                      struct request_queue *q)
2495 {
2496         q->tag_set = set;
2497
2498         mutex_lock(&set->tag_list_lock);
2499
2500         /*
2501          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2502          */
2503         if (!list_empty(&set->tag_list) &&
2504             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2505                 set->flags |= BLK_MQ_F_TAG_SHARED;
2506                 /* update existing queue */
2507                 blk_mq_update_tag_set_depth(set, true);
2508         }
2509         if (set->flags & BLK_MQ_F_TAG_SHARED)
2510                 queue_set_hctx_shared(q, true);
2511         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2512
2513         mutex_unlock(&set->tag_list_lock);
2514 }
2515
2516 /*
2517  * It is the actual release handler for mq, but we do it from
2518  * request queue's release handler for avoiding use-after-free
2519  * and headache because q->mq_kobj shouldn't have been introduced,
2520  * but we can't group ctx/kctx kobj without it.
2521  */
2522 void blk_mq_release(struct request_queue *q)
2523 {
2524         struct blk_mq_hw_ctx *hctx;
2525         unsigned int i;
2526
2527         /* hctx kobj stays in hctx */
2528         queue_for_each_hw_ctx(q, hctx, i) {
2529                 if (!hctx)
2530                         continue;
2531                 kobject_put(&hctx->kobj);
2532         }
2533
2534         q->mq_map = NULL;
2535
2536         kfree(q->queue_hw_ctx);
2537
2538         /*
2539          * release .mq_kobj and sw queue's kobject now because
2540          * both share lifetime with request queue.
2541          */
2542         blk_mq_sysfs_deinit(q);
2543
2544         free_percpu(q->queue_ctx);
2545 }
2546
2547 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2548 {
2549         struct request_queue *uninit_q, *q;
2550
2551         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2552         if (!uninit_q)
2553                 return ERR_PTR(-ENOMEM);
2554
2555         q = blk_mq_init_allocated_queue(set, uninit_q);
2556         if (IS_ERR(q))
2557                 blk_cleanup_queue(uninit_q);
2558
2559         return q;
2560 }
2561 EXPORT_SYMBOL(blk_mq_init_queue);
2562
2563 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2564 {
2565         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2566
2567         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2568                            __alignof__(struct blk_mq_hw_ctx)) !=
2569                      sizeof(struct blk_mq_hw_ctx));
2570
2571         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2572                 hw_ctx_size += sizeof(struct srcu_struct);
2573
2574         return hw_ctx_size;
2575 }
2576
2577 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2578                                                 struct request_queue *q)
2579 {
2580         int i, j;
2581         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2582
2583         blk_mq_sysfs_unregister(q);
2584
2585         /* protect against switching io scheduler  */
2586         mutex_lock(&q->sysfs_lock);
2587         for (i = 0; i < set->nr_hw_queues; i++) {
2588                 int node;
2589
2590                 if (hctxs[i])
2591                         continue;
2592
2593                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2594                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2595                                         GFP_KERNEL, node);
2596                 if (!hctxs[i])
2597                         break;
2598
2599                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2600                                                 node)) {
2601                         kfree(hctxs[i]);
2602                         hctxs[i] = NULL;
2603                         break;
2604                 }
2605
2606                 atomic_set(&hctxs[i]->nr_active, 0);
2607                 hctxs[i]->numa_node = node;
2608                 hctxs[i]->queue_num = i;
2609
2610                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2611                         free_cpumask_var(hctxs[i]->cpumask);
2612                         kfree(hctxs[i]);
2613                         hctxs[i] = NULL;
2614                         break;
2615                 }
2616                 blk_mq_hctx_kobj_init(hctxs[i]);
2617         }
2618         for (j = i; j < q->nr_hw_queues; j++) {
2619                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2620
2621                 if (hctx) {
2622                         if (hctx->tags)
2623                                 blk_mq_free_map_and_requests(set, j);
2624                         blk_mq_exit_hctx(q, set, hctx, j);
2625                         kobject_put(&hctx->kobj);
2626                         hctxs[j] = NULL;
2627
2628                 }
2629         }
2630         q->nr_hw_queues = i;
2631         mutex_unlock(&q->sysfs_lock);
2632         blk_mq_sysfs_register(q);
2633 }
2634
2635 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2636                                                   struct request_queue *q)
2637 {
2638         /* mark the queue as mq asap */
2639         q->mq_ops = set->ops;
2640
2641         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2642                                              blk_mq_poll_stats_bkt,
2643                                              BLK_MQ_POLL_STATS_BKTS, q);
2644         if (!q->poll_cb)
2645                 goto err_exit;
2646
2647         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2648         if (!q->queue_ctx)
2649                 goto err_exit;
2650
2651         /* init q->mq_kobj and sw queues' kobjects */
2652         blk_mq_sysfs_init(q);
2653
2654         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2655                                                 GFP_KERNEL, set->numa_node);
2656         if (!q->queue_hw_ctx)
2657                 goto err_percpu;
2658
2659         q->mq_map = set->mq_map;
2660
2661         blk_mq_realloc_hw_ctxs(set, q);
2662         if (!q->nr_hw_queues)
2663                 goto err_hctxs;
2664
2665         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2666         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2667
2668         q->nr_queues = nr_cpu_ids;
2669
2670         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2671
2672         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2673                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2674
2675         q->sg_reserved_size = INT_MAX;
2676
2677         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2678         INIT_LIST_HEAD(&q->requeue_list);
2679         spin_lock_init(&q->requeue_lock);
2680
2681         blk_queue_make_request(q, blk_mq_make_request);
2682         if (q->mq_ops->poll)
2683                 q->poll_fn = blk_mq_poll;
2684
2685         /*
2686          * Do this after blk_queue_make_request() overrides it...
2687          */
2688         q->nr_requests = set->queue_depth;
2689
2690         /*
2691          * Default to classic polling
2692          */
2693         q->poll_nsec = -1;
2694
2695         if (set->ops->complete)
2696                 blk_queue_softirq_done(q, set->ops->complete);
2697
2698         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2699         blk_mq_add_queue_tag_set(set, q);
2700         blk_mq_map_swqueue(q);
2701
2702         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2703                 int ret;
2704
2705                 ret = blk_mq_sched_init(q);
2706                 if (ret)
2707                         return ERR_PTR(ret);
2708         }
2709
2710         return q;
2711
2712 err_hctxs:
2713         kfree(q->queue_hw_ctx);
2714 err_percpu:
2715         free_percpu(q->queue_ctx);
2716 err_exit:
2717         q->mq_ops = NULL;
2718         return ERR_PTR(-ENOMEM);
2719 }
2720 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2721
2722 void blk_mq_free_queue(struct request_queue *q)
2723 {
2724         struct blk_mq_tag_set   *set = q->tag_set;
2725
2726         blk_mq_del_queue_tag_set(q);
2727         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2728 }
2729
2730 /* Basically redo blk_mq_init_queue with queue frozen */
2731 static void blk_mq_queue_reinit(struct request_queue *q)
2732 {
2733         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2734
2735         blk_mq_debugfs_unregister_hctxs(q);
2736         blk_mq_sysfs_unregister(q);
2737
2738         /*
2739          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2740          * we should change hctx numa_node according to the new topology (this
2741          * involves freeing and re-allocating memory, worth doing?)
2742          */
2743         blk_mq_map_swqueue(q);
2744
2745         blk_mq_sysfs_register(q);
2746         blk_mq_debugfs_register_hctxs(q);
2747 }
2748
2749 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2750 {
2751         int i;
2752
2753         for (i = 0; i < set->nr_hw_queues; i++)
2754                 if (!__blk_mq_alloc_rq_map(set, i))
2755                         goto out_unwind;
2756
2757         return 0;
2758
2759 out_unwind:
2760         while (--i >= 0)
2761                 blk_mq_free_rq_map(set->tags[i]);
2762
2763         return -ENOMEM;
2764 }
2765
2766 /*
2767  * Allocate the request maps associated with this tag_set. Note that this
2768  * may reduce the depth asked for, if memory is tight. set->queue_depth
2769  * will be updated to reflect the allocated depth.
2770  */
2771 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2772 {
2773         unsigned int depth;
2774         int err;
2775
2776         depth = set->queue_depth;
2777         do {
2778                 err = __blk_mq_alloc_rq_maps(set);
2779                 if (!err)
2780                         break;
2781
2782                 set->queue_depth >>= 1;
2783                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2784                         err = -ENOMEM;
2785                         break;
2786                 }
2787         } while (set->queue_depth);
2788
2789         if (!set->queue_depth || err) {
2790                 pr_err("blk-mq: failed to allocate request map\n");
2791                 return -ENOMEM;
2792         }
2793
2794         if (depth != set->queue_depth)
2795                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2796                                                 depth, set->queue_depth);
2797
2798         return 0;
2799 }
2800
2801 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2802 {
2803         if (set->ops->map_queues) {
2804                 int cpu;
2805                 /*
2806                  * transport .map_queues is usually done in the following
2807                  * way:
2808                  *
2809                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2810                  *      mask = get_cpu_mask(queue)
2811                  *      for_each_cpu(cpu, mask)
2812                  *              set->mq_map[cpu] = queue;
2813                  * }
2814                  *
2815                  * When we need to remap, the table has to be cleared for
2816                  * killing stale mapping since one CPU may not be mapped
2817                  * to any hw queue.
2818                  */
2819                 for_each_possible_cpu(cpu)
2820                         set->mq_map[cpu] = 0;
2821
2822                 return set->ops->map_queues(set);
2823         } else
2824                 return blk_mq_map_queues(set);
2825 }
2826
2827 /*
2828  * Alloc a tag set to be associated with one or more request queues.
2829  * May fail with EINVAL for various error conditions. May adjust the
2830  * requested depth down, if if it too large. In that case, the set
2831  * value will be stored in set->queue_depth.
2832  */
2833 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2834 {
2835         int ret;
2836
2837         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2838
2839         if (!set->nr_hw_queues)
2840                 return -EINVAL;
2841         if (!set->queue_depth)
2842                 return -EINVAL;
2843         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2844                 return -EINVAL;
2845
2846         if (!set->ops->queue_rq)
2847                 return -EINVAL;
2848
2849         if (!set->ops->get_budget ^ !set->ops->put_budget)
2850                 return -EINVAL;
2851
2852         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2853                 pr_info("blk-mq: reduced tag depth to %u\n",
2854                         BLK_MQ_MAX_DEPTH);
2855                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2856         }
2857
2858         /*
2859          * If a crashdump is active, then we are potentially in a very
2860          * memory constrained environment. Limit us to 1 queue and
2861          * 64 tags to prevent using too much memory.
2862          */
2863         if (is_kdump_kernel()) {
2864                 set->nr_hw_queues = 1;
2865                 set->queue_depth = min(64U, set->queue_depth);
2866         }
2867         /*
2868          * There is no use for more h/w queues than cpus.
2869          */
2870         if (set->nr_hw_queues > nr_cpu_ids)
2871                 set->nr_hw_queues = nr_cpu_ids;
2872
2873         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2874                                  GFP_KERNEL, set->numa_node);
2875         if (!set->tags)
2876                 return -ENOMEM;
2877
2878         ret = -ENOMEM;
2879         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2880                         GFP_KERNEL, set->numa_node);
2881         if (!set->mq_map)
2882                 goto out_free_tags;
2883
2884         ret = blk_mq_update_queue_map(set);
2885         if (ret)
2886                 goto out_free_mq_map;
2887
2888         ret = blk_mq_alloc_rq_maps(set);
2889         if (ret)
2890                 goto out_free_mq_map;
2891
2892         mutex_init(&set->tag_list_lock);
2893         INIT_LIST_HEAD(&set->tag_list);
2894
2895         return 0;
2896
2897 out_free_mq_map:
2898         kfree(set->mq_map);
2899         set->mq_map = NULL;
2900 out_free_tags:
2901         kfree(set->tags);
2902         set->tags = NULL;
2903         return ret;
2904 }
2905 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2906
2907 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2908 {
2909         int i;
2910
2911         for (i = 0; i < nr_cpu_ids; i++)
2912                 blk_mq_free_map_and_requests(set, i);
2913
2914         kfree(set->mq_map);
2915         set->mq_map = NULL;
2916
2917         kfree(set->tags);
2918         set->tags = NULL;
2919 }
2920 EXPORT_SYMBOL(blk_mq_free_tag_set);
2921
2922 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2923 {
2924         struct blk_mq_tag_set *set = q->tag_set;
2925         struct blk_mq_hw_ctx *hctx;
2926         int i, ret;
2927
2928         if (!set)
2929                 return -EINVAL;
2930
2931         blk_mq_freeze_queue(q);
2932         blk_mq_quiesce_queue(q);
2933
2934         ret = 0;
2935         queue_for_each_hw_ctx(q, hctx, i) {
2936                 if (!hctx->tags)
2937                         continue;
2938                 /*
2939                  * If we're using an MQ scheduler, just update the scheduler
2940                  * queue depth. This is similar to what the old code would do.
2941                  */
2942                 if (!hctx->sched_tags) {
2943                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2944                                                         false);
2945                 } else {
2946                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2947                                                         nr, true);
2948                 }
2949                 if (ret)
2950                         break;
2951         }
2952
2953         if (!ret)
2954                 q->nr_requests = nr;
2955
2956         blk_mq_unquiesce_queue(q);
2957         blk_mq_unfreeze_queue(q);
2958
2959         return ret;
2960 }
2961
2962 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2963                                                         int nr_hw_queues)
2964 {
2965         struct request_queue *q;
2966
2967         lockdep_assert_held(&set->tag_list_lock);
2968
2969         if (nr_hw_queues > nr_cpu_ids)
2970                 nr_hw_queues = nr_cpu_ids;
2971         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2972                 return;
2973
2974         list_for_each_entry(q, &set->tag_list, tag_set_list)
2975                 blk_mq_freeze_queue(q);
2976
2977         set->nr_hw_queues = nr_hw_queues;
2978         blk_mq_update_queue_map(set);
2979         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2980                 blk_mq_realloc_hw_ctxs(set, q);
2981                 blk_mq_queue_reinit(q);
2982         }
2983
2984         list_for_each_entry(q, &set->tag_list, tag_set_list)
2985                 blk_mq_unfreeze_queue(q);
2986 }
2987
2988 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2989 {
2990         mutex_lock(&set->tag_list_lock);
2991         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2992         mutex_unlock(&set->tag_list_lock);
2993 }
2994 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2995
2996 /* Enable polling stats and return whether they were already enabled. */
2997 static bool blk_poll_stats_enable(struct request_queue *q)
2998 {
2999         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3000             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3001                 return true;
3002         blk_stat_add_callback(q, q->poll_cb);
3003         return false;
3004 }
3005
3006 static void blk_mq_poll_stats_start(struct request_queue *q)
3007 {
3008         /*
3009          * We don't arm the callback if polling stats are not enabled or the
3010          * callback is already active.
3011          */
3012         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3013             blk_stat_is_active(q->poll_cb))
3014                 return;
3015
3016         blk_stat_activate_msecs(q->poll_cb, 100);
3017 }
3018
3019 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3020 {
3021         struct request_queue *q = cb->data;
3022         int bucket;
3023
3024         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3025                 if (cb->stat[bucket].nr_samples)
3026                         q->poll_stat[bucket] = cb->stat[bucket];
3027         }
3028 }
3029
3030 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3031                                        struct blk_mq_hw_ctx *hctx,
3032                                        struct request *rq)
3033 {
3034         unsigned long ret = 0;
3035         int bucket;
3036
3037         /*
3038          * If stats collection isn't on, don't sleep but turn it on for
3039          * future users
3040          */
3041         if (!blk_poll_stats_enable(q))
3042                 return 0;
3043
3044         /*
3045          * As an optimistic guess, use half of the mean service time
3046          * for this type of request. We can (and should) make this smarter.
3047          * For instance, if the completion latencies are tight, we can
3048          * get closer than just half the mean. This is especially
3049          * important on devices where the completion latencies are longer
3050          * than ~10 usec. We do use the stats for the relevant IO size
3051          * if available which does lead to better estimates.
3052          */
3053         bucket = blk_mq_poll_stats_bkt(rq);
3054         if (bucket < 0)
3055                 return ret;
3056
3057         if (q->poll_stat[bucket].nr_samples)
3058                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3059
3060         return ret;
3061 }
3062
3063 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3064                                      struct blk_mq_hw_ctx *hctx,
3065                                      struct request *rq)
3066 {
3067         struct hrtimer_sleeper hs;
3068         enum hrtimer_mode mode;
3069         unsigned int nsecs;
3070         ktime_t kt;
3071
3072         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3073                 return false;
3074
3075         /*
3076          * poll_nsec can be:
3077          *
3078          * -1:  don't ever hybrid sleep
3079          *  0:  use half of prev avg
3080          * >0:  use this specific value
3081          */
3082         if (q->poll_nsec == -1)
3083                 return false;
3084         else if (q->poll_nsec > 0)
3085                 nsecs = q->poll_nsec;
3086         else
3087                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3088
3089         if (!nsecs)
3090                 return false;
3091
3092         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3093
3094         /*
3095          * This will be replaced with the stats tracking code, using
3096          * 'avg_completion_time / 2' as the pre-sleep target.
3097          */
3098         kt = nsecs;
3099
3100         mode = HRTIMER_MODE_REL;
3101         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3102         hrtimer_set_expires(&hs.timer, kt);
3103
3104         hrtimer_init_sleeper(&hs, current);
3105         do {
3106                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3107                         break;
3108                 set_current_state(TASK_UNINTERRUPTIBLE);
3109                 hrtimer_start_expires(&hs.timer, mode);
3110                 if (hs.task)
3111                         io_schedule();
3112                 hrtimer_cancel(&hs.timer);
3113                 mode = HRTIMER_MODE_ABS;
3114         } while (hs.task && !signal_pending(current));
3115
3116         __set_current_state(TASK_RUNNING);
3117         destroy_hrtimer_on_stack(&hs.timer);
3118         return true;
3119 }
3120
3121 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3122 {
3123         struct request_queue *q = hctx->queue;
3124         long state;
3125
3126         /*
3127          * If we sleep, have the caller restart the poll loop to reset
3128          * the state. Like for the other success return cases, the
3129          * caller is responsible for checking if the IO completed. If
3130          * the IO isn't complete, we'll get called again and will go
3131          * straight to the busy poll loop.
3132          */
3133         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3134                 return true;
3135
3136         hctx->poll_considered++;
3137
3138         state = current->state;
3139         while (!need_resched()) {
3140                 int ret;
3141
3142                 hctx->poll_invoked++;
3143
3144                 ret = q->mq_ops->poll(hctx, rq->tag);
3145                 if (ret > 0) {
3146                         hctx->poll_success++;
3147                         set_current_state(TASK_RUNNING);
3148                         return true;
3149                 }
3150
3151                 if (signal_pending_state(state, current))
3152                         set_current_state(TASK_RUNNING);
3153
3154                 if (current->state == TASK_RUNNING)
3155                         return true;
3156                 if (ret < 0)
3157                         break;
3158                 cpu_relax();
3159         }
3160
3161         __set_current_state(TASK_RUNNING);
3162         return false;
3163 }
3164
3165 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3166 {
3167         struct blk_mq_hw_ctx *hctx;
3168         struct request *rq;
3169
3170         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3171                 return false;
3172
3173         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3174         if (!blk_qc_t_is_internal(cookie))
3175                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3176         else {
3177                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3178                 /*
3179                  * With scheduling, if the request has completed, we'll
3180                  * get a NULL return here, as we clear the sched tag when
3181                  * that happens. The request still remains valid, like always,
3182                  * so we should be safe with just the NULL check.
3183                  */
3184                 if (!rq)
3185                         return false;
3186         }
3187
3188         return __blk_mq_poll(hctx, rq);
3189 }
3190
3191 static int __init blk_mq_init(void)
3192 {
3193         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3194                                 blk_mq_hctx_notify_dead);
3195         return 0;
3196 }
3197 subsys_initcall(blk_mq_init);