]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
d8534107bb6fd80453011cc8e033f21a925c36b5
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, bytes, bucket;
48
49         ddir = rq_data_dir(rq);
50         bytes = blk_rq_bytes(rq);
51
52         bucket = ddir + 2*(ilog2(bytes) - 9);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67         return !list_empty_careful(&hctx->dispatch) ||
68                 sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76                                      struct blk_mq_ctx *ctx)
77 {
78         const int bit = ctx->index_hw[hctx->type];
79
80         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81                 sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         const int bit = ctx->index_hw[hctx->type];
88
89         sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91
92 struct mq_inflight {
93         struct hd_struct *part;
94         unsigned int *inflight;
95 };
96
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98                                   struct request *rq, void *priv,
99                                   bool reserved)
100 {
101         struct mq_inflight *mi = priv;
102
103         /*
104          * index[0] counts the specific partition that was asked for. index[1]
105          * counts the ones that are active on the whole device, so increment
106          * that if mi->part is indeed a partition, and not a whole device.
107          */
108         if (rq->part == mi->part)
109                 mi->inflight[0]++;
110         if (mi->part->partno)
111                 mi->inflight[1]++;
112
113         return true;
114 }
115
116 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
117                       unsigned int inflight[2])
118 {
119         struct mq_inflight mi = { .part = part, .inflight = inflight, };
120
121         inflight[0] = inflight[1] = 0;
122         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
123 }
124
125 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
126                                      struct request *rq, void *priv,
127                                      bool reserved)
128 {
129         struct mq_inflight *mi = priv;
130
131         if (rq->part == mi->part)
132                 mi->inflight[rq_data_dir(rq)]++;
133
134         return true;
135 }
136
137 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
138                          unsigned int inflight[2])
139 {
140         struct mq_inflight mi = { .part = part, .inflight = inflight, };
141
142         inflight[0] = inflight[1] = 0;
143         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
144 }
145
146 void blk_freeze_queue_start(struct request_queue *q)
147 {
148         int freeze_depth;
149
150         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
151         if (freeze_depth == 1) {
152                 percpu_ref_kill(&q->q_usage_counter);
153                 if (queue_is_mq(q))
154                         blk_mq_run_hw_queues(q, false);
155         }
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166                                      unsigned long timeout)
167 {
168         return wait_event_timeout(q->mq_freeze_wq,
169                                         percpu_ref_is_zero(&q->q_usage_counter),
170                                         timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180         /*
181          * In the !blk_mq case we are only calling this to kill the
182          * q_usage_counter, otherwise this increases the freeze depth
183          * and waits for it to return to zero.  For this reason there is
184          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185          * exported to drivers as the only user for unfreeze is blk_mq.
186          */
187         blk_freeze_queue_start(q);
188         blk_mq_freeze_queue_wait(q);
189 }
190
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193         /*
194          * ...just an alias to keep freeze and unfreeze actions balanced
195          * in the blk_mq_* namespace
196          */
197         blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203         int freeze_depth;
204
205         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
206         WARN_ON_ONCE(freeze_depth < 0);
207         if (!freeze_depth) {
208                 percpu_ref_resurrect(&q->q_usage_counter);
209                 wake_up_all(&q->mq_freeze_wq);
210         }
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235         struct blk_mq_hw_ctx *hctx;
236         unsigned int i;
237         bool rcu = false;
238
239         blk_mq_quiesce_queue_nowait(q);
240
241         queue_for_each_hw_ctx(q, hctx, i) {
242                 if (hctx->flags & BLK_MQ_F_BLOCKING)
243                         synchronize_srcu(hctx->srcu);
244                 else
245                         rcu = true;
246         }
247         if (rcu)
248                 synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262
263         /* dispatch requests which are inserted during quiescing */
264         blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270         struct blk_mq_hw_ctx *hctx;
271         unsigned int i;
272
273         queue_for_each_hw_ctx(q, hctx, i)
274                 if (blk_mq_hw_queue_mapped(hctx))
275                         blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280         return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285                 unsigned int tag, unsigned int op)
286 {
287         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288         struct request *rq = tags->static_rqs[tag];
289         req_flags_t rq_flags = 0;
290
291         if (data->flags & BLK_MQ_REQ_INTERNAL) {
292                 rq->tag = -1;
293                 rq->internal_tag = tag;
294         } else {
295                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
296                         rq_flags = RQF_MQ_INFLIGHT;
297                         atomic_inc(&data->hctx->nr_active);
298                 }
299                 rq->tag = tag;
300                 rq->internal_tag = -1;
301                 data->hctx->tags->rqs[rq->tag] = rq;
302         }
303
304         /* csd/requeue_work/fifo_time is initialized before use */
305         rq->q = data->q;
306         rq->mq_ctx = data->ctx;
307         rq->mq_hctx = data->hctx;
308         rq->rq_flags = rq_flags;
309         rq->cmd_flags = op;
310         if (data->flags & BLK_MQ_REQ_PREEMPT)
311                 rq->rq_flags |= RQF_PREEMPT;
312         if (blk_queue_io_stat(data->q))
313                 rq->rq_flags |= RQF_IO_STAT;
314         INIT_LIST_HEAD(&rq->queuelist);
315         INIT_HLIST_NODE(&rq->hash);
316         RB_CLEAR_NODE(&rq->rb_node);
317         rq->rq_disk = NULL;
318         rq->part = NULL;
319         rq->start_time_ns = ktime_get_ns();
320         rq->io_start_time_ns = 0;
321         rq->nr_phys_segments = 0;
322 #if defined(CONFIG_BLK_DEV_INTEGRITY)
323         rq->nr_integrity_segments = 0;
324 #endif
325         rq->special = NULL;
326         /* tag was already set */
327         rq->extra_len = 0;
328         WRITE_ONCE(rq->deadline, 0);
329
330         rq->timeout = 0;
331
332         rq->end_io = NULL;
333         rq->end_io_data = NULL;
334         rq->next_rq = NULL;
335
336         data->ctx->rq_dispatched[op_is_sync(op)]++;
337         refcount_set(&rq->ref, 1);
338         return rq;
339 }
340
341 static struct request *blk_mq_get_request(struct request_queue *q,
342                                           struct bio *bio,
343                                           struct blk_mq_alloc_data *data)
344 {
345         struct elevator_queue *e = q->elevator;
346         struct request *rq;
347         unsigned int tag;
348         bool put_ctx_on_error = false;
349
350         blk_queue_enter_live(q);
351         data->q = q;
352         if (likely(!data->ctx)) {
353                 data->ctx = blk_mq_get_ctx(q);
354                 put_ctx_on_error = true;
355         }
356         if (likely(!data->hctx))
357                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
358                                                 data->ctx->cpu);
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 data->flags |= BLK_MQ_REQ_INTERNAL;
364
365                 /*
366                  * Flush requests are special and go directly to the
367                  * dispatch list. Don't include reserved tags in the
368                  * limiting, as it isn't useful.
369                  */
370                 if (!op_is_flush(data->cmd_flags) &&
371                     e->type->ops.limit_depth &&
372                     !(data->flags & BLK_MQ_REQ_RESERVED))
373                         e->type->ops.limit_depth(data->cmd_flags, data);
374         } else {
375                 blk_mq_tag_busy(data->hctx);
376         }
377
378         tag = blk_mq_get_tag(data);
379         if (tag == BLK_MQ_TAG_FAIL) {
380                 if (put_ctx_on_error) {
381                         blk_mq_put_ctx(data->ctx);
382                         data->ctx = NULL;
383                 }
384                 blk_queue_exit(q);
385                 return NULL;
386         }
387
388         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
389         if (!op_is_flush(data->cmd_flags)) {
390                 rq->elv.icq = NULL;
391                 if (e && e->type->ops.prepare_request) {
392                         if (e->type->icq_cache)
393                                 blk_mq_sched_assign_ioc(rq);
394
395                         e->type->ops.prepare_request(rq, bio);
396                         rq->rq_flags |= RQF_ELVPRIV;
397                 }
398         }
399         data->hctx->queued++;
400         return rq;
401 }
402
403 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
404                 blk_mq_req_flags_t flags)
405 {
406         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
407         struct request *rq;
408         int ret;
409
410         ret = blk_queue_enter(q, flags);
411         if (ret)
412                 return ERR_PTR(ret);
413
414         rq = blk_mq_get_request(q, NULL, &alloc_data);
415         blk_queue_exit(q);
416
417         if (!rq)
418                 return ERR_PTR(-EWOULDBLOCK);
419
420         blk_mq_put_ctx(alloc_data.ctx);
421
422         rq->__data_len = 0;
423         rq->__sector = (sector_t) -1;
424         rq->bio = rq->biotail = NULL;
425         return rq;
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
433         struct request *rq;
434         unsigned int cpu;
435         int ret;
436
437         /*
438          * If the tag allocator sleeps we could get an allocation for a
439          * different hardware context.  No need to complicate the low level
440          * allocator for this for the rare use case of a command tied to
441          * a specific queue.
442          */
443         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
444                 return ERR_PTR(-EINVAL);
445
446         if (hctx_idx >= q->nr_hw_queues)
447                 return ERR_PTR(-EIO);
448
449         ret = blk_queue_enter(q, flags);
450         if (ret)
451                 return ERR_PTR(ret);
452
453         /*
454          * Check if the hardware context is actually mapped to anything.
455          * If not tell the caller that it should skip this queue.
456          */
457         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
458         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
459                 blk_queue_exit(q);
460                 return ERR_PTR(-EXDEV);
461         }
462         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
463         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
464
465         rq = blk_mq_get_request(q, NULL, &alloc_data);
466         blk_queue_exit(q);
467
468         if (!rq)
469                 return ERR_PTR(-EWOULDBLOCK);
470
471         return rq;
472 }
473 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
474
475 static void __blk_mq_free_request(struct request *rq)
476 {
477         struct request_queue *q = rq->q;
478         struct blk_mq_ctx *ctx = rq->mq_ctx;
479         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
480         const int sched_tag = rq->internal_tag;
481
482         blk_pm_mark_last_busy(rq);
483         rq->mq_hctx = NULL;
484         if (rq->tag != -1)
485                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
486         if (sched_tag != -1)
487                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
488         blk_mq_sched_restart(hctx);
489         blk_queue_exit(q);
490 }
491
492 void blk_mq_free_request(struct request *rq)
493 {
494         struct request_queue *q = rq->q;
495         struct elevator_queue *e = q->elevator;
496         struct blk_mq_ctx *ctx = rq->mq_ctx;
497         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
498
499         if (rq->rq_flags & RQF_ELVPRIV) {
500                 if (e && e->type->ops.finish_request)
501                         e->type->ops.finish_request(rq);
502                 if (rq->elv.icq) {
503                         put_io_context(rq->elv.icq->ioc);
504                         rq->elv.icq = NULL;
505                 }
506         }
507
508         ctx->rq_completed[rq_is_sync(rq)]++;
509         if (rq->rq_flags & RQF_MQ_INFLIGHT)
510                 atomic_dec(&hctx->nr_active);
511
512         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
513                 laptop_io_completion(q->backing_dev_info);
514
515         rq_qos_done(q, rq);
516
517         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
518         if (refcount_dec_and_test(&rq->ref))
519                 __blk_mq_free_request(rq);
520 }
521 EXPORT_SYMBOL_GPL(blk_mq_free_request);
522
523 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
524 {
525         u64 now = ktime_get_ns();
526
527         if (rq->rq_flags & RQF_STATS) {
528                 blk_mq_poll_stats_start(rq->q);
529                 blk_stat_add(rq, now);
530         }
531
532         if (rq->internal_tag != -1)
533                 blk_mq_sched_completed_request(rq, now);
534
535         blk_account_io_done(rq, now);
536
537         if (rq->end_io) {
538                 rq_qos_done(rq->q, rq);
539                 rq->end_io(rq, error);
540         } else {
541                 if (unlikely(blk_bidi_rq(rq)))
542                         blk_mq_free_request(rq->next_rq);
543                 blk_mq_free_request(rq);
544         }
545 }
546 EXPORT_SYMBOL(__blk_mq_end_request);
547
548 void blk_mq_end_request(struct request *rq, blk_status_t error)
549 {
550         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
551                 BUG();
552         __blk_mq_end_request(rq, error);
553 }
554 EXPORT_SYMBOL(blk_mq_end_request);
555
556 static void __blk_mq_complete_request_remote(void *data)
557 {
558         struct request *rq = data;
559         struct request_queue *q = rq->q;
560
561         q->mq_ops->complete(rq);
562 }
563
564 static void __blk_mq_complete_request(struct request *rq)
565 {
566         struct blk_mq_ctx *ctx = rq->mq_ctx;
567         struct request_queue *q = rq->q;
568         bool shared = false;
569         int cpu;
570
571         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
572         /*
573          * Most of single queue controllers, there is only one irq vector
574          * for handling IO completion, and the only irq's affinity is set
575          * as all possible CPUs. On most of ARCHs, this affinity means the
576          * irq is handled on one specific CPU.
577          *
578          * So complete IO reqeust in softirq context in case of single queue
579          * for not degrading IO performance by irqsoff latency.
580          */
581         if (q->nr_hw_queues == 1) {
582                 __blk_complete_request(rq);
583                 return;
584         }
585
586         /*
587          * For a polled request, always complete locallly, it's pointless
588          * to redirect the completion.
589          */
590         if ((rq->cmd_flags & REQ_HIPRI) ||
591             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
592                 q->mq_ops->complete(rq);
593                 return;
594         }
595
596         cpu = get_cpu();
597         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
598                 shared = cpus_share_cache(cpu, ctx->cpu);
599
600         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
601                 rq->csd.func = __blk_mq_complete_request_remote;
602                 rq->csd.info = rq;
603                 rq->csd.flags = 0;
604                 smp_call_function_single_async(ctx->cpu, &rq->csd);
605         } else {
606                 q->mq_ops->complete(rq);
607         }
608         put_cpu();
609 }
610
611 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
612         __releases(hctx->srcu)
613 {
614         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
615                 rcu_read_unlock();
616         else
617                 srcu_read_unlock(hctx->srcu, srcu_idx);
618 }
619
620 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
621         __acquires(hctx->srcu)
622 {
623         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
624                 /* shut up gcc false positive */
625                 *srcu_idx = 0;
626                 rcu_read_lock();
627         } else
628                 *srcu_idx = srcu_read_lock(hctx->srcu);
629 }
630
631 /**
632  * blk_mq_complete_request - end I/O on a request
633  * @rq:         the request being processed
634  *
635  * Description:
636  *      Ends all I/O on a request. It does not handle partial completions.
637  *      The actual completion happens out-of-order, through a IPI handler.
638  **/
639 bool blk_mq_complete_request(struct request *rq)
640 {
641         if (unlikely(blk_should_fake_timeout(rq->q)))
642                 return false;
643         __blk_mq_complete_request(rq);
644         return true;
645 }
646 EXPORT_SYMBOL(blk_mq_complete_request);
647
648 int blk_mq_request_started(struct request *rq)
649 {
650         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
651 }
652 EXPORT_SYMBOL_GPL(blk_mq_request_started);
653
654 void blk_mq_start_request(struct request *rq)
655 {
656         struct request_queue *q = rq->q;
657
658         blk_mq_sched_started_request(rq);
659
660         trace_block_rq_issue(q, rq);
661
662         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
663                 rq->io_start_time_ns = ktime_get_ns();
664 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
665                 rq->throtl_size = blk_rq_sectors(rq);
666 #endif
667                 rq->rq_flags |= RQF_STATS;
668                 rq_qos_issue(q, rq);
669         }
670
671         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
672
673         blk_add_timer(rq);
674         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
675
676         if (q->dma_drain_size && blk_rq_bytes(rq)) {
677                 /*
678                  * Make sure space for the drain appears.  We know we can do
679                  * this because max_hw_segments has been adjusted to be one
680                  * fewer than the device can handle.
681                  */
682                 rq->nr_phys_segments++;
683         }
684 }
685 EXPORT_SYMBOL(blk_mq_start_request);
686
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689         struct request_queue *q = rq->q;
690
691         blk_mq_put_driver_tag(rq);
692
693         trace_block_rq_requeue(q, rq);
694         rq_qos_requeue(q, rq);
695
696         if (blk_mq_request_started(rq)) {
697                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
698                 rq->rq_flags &= ~RQF_TIMED_OUT;
699                 if (q->dma_drain_size && blk_rq_bytes(rq))
700                         rq->nr_phys_segments--;
701         }
702 }
703
704 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
705 {
706         __blk_mq_requeue_request(rq);
707
708         /* this request will be re-inserted to io scheduler queue */
709         blk_mq_sched_requeue_request(rq);
710
711         BUG_ON(!list_empty(&rq->queuelist));
712         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
713 }
714 EXPORT_SYMBOL(blk_mq_requeue_request);
715
716 static void blk_mq_requeue_work(struct work_struct *work)
717 {
718         struct request_queue *q =
719                 container_of(work, struct request_queue, requeue_work.work);
720         LIST_HEAD(rq_list);
721         struct request *rq, *next;
722
723         spin_lock_irq(&q->requeue_lock);
724         list_splice_init(&q->requeue_list, &rq_list);
725         spin_unlock_irq(&q->requeue_lock);
726
727         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
728                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
729                         continue;
730
731                 rq->rq_flags &= ~RQF_SOFTBARRIER;
732                 list_del_init(&rq->queuelist);
733                 blk_mq_sched_insert_request(rq, true, false, false);
734         }
735
736         while (!list_empty(&rq_list)) {
737                 rq = list_entry(rq_list.next, struct request, queuelist);
738                 list_del_init(&rq->queuelist);
739                 blk_mq_sched_insert_request(rq, false, false, false);
740         }
741
742         blk_mq_run_hw_queues(q, false);
743 }
744
745 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
746                                 bool kick_requeue_list)
747 {
748         struct request_queue *q = rq->q;
749         unsigned long flags;
750
751         /*
752          * We abuse this flag that is otherwise used by the I/O scheduler to
753          * request head insertion from the workqueue.
754          */
755         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
756
757         spin_lock_irqsave(&q->requeue_lock, flags);
758         if (at_head) {
759                 rq->rq_flags |= RQF_SOFTBARRIER;
760                 list_add(&rq->queuelist, &q->requeue_list);
761         } else {
762                 list_add_tail(&rq->queuelist, &q->requeue_list);
763         }
764         spin_unlock_irqrestore(&q->requeue_lock, flags);
765
766         if (kick_requeue_list)
767                 blk_mq_kick_requeue_list(q);
768 }
769 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
770
771 void blk_mq_kick_requeue_list(struct request_queue *q)
772 {
773         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
774 }
775 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
776
777 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
778                                     unsigned long msecs)
779 {
780         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
781                                     msecs_to_jiffies(msecs));
782 }
783 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
784
785 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
786 {
787         if (tag < tags->nr_tags) {
788                 prefetch(tags->rqs[tag]);
789                 return tags->rqs[tag];
790         }
791
792         return NULL;
793 }
794 EXPORT_SYMBOL(blk_mq_tag_to_rq);
795
796 static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
797                               void *priv, bool reserved)
798 {
799         /*
800          * If we find a request, we know the queue is busy. Return false
801          * to stop the iteration.
802          */
803         if (rq->q == hctx->queue) {
804                 bool *busy = priv;
805
806                 *busy = true;
807                 return false;
808         }
809
810         return true;
811 }
812
813 bool blk_mq_queue_busy(struct request_queue *q)
814 {
815         bool busy = false;
816
817         blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
818         return busy;
819 }
820 EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
821
822 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
823 {
824         req->rq_flags |= RQF_TIMED_OUT;
825         if (req->q->mq_ops->timeout) {
826                 enum blk_eh_timer_return ret;
827
828                 ret = req->q->mq_ops->timeout(req, reserved);
829                 if (ret == BLK_EH_DONE)
830                         return;
831                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
832         }
833
834         blk_add_timer(req);
835 }
836
837 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
838 {
839         unsigned long deadline;
840
841         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
842                 return false;
843         if (rq->rq_flags & RQF_TIMED_OUT)
844                 return false;
845
846         deadline = READ_ONCE(rq->deadline);
847         if (time_after_eq(jiffies, deadline))
848                 return true;
849
850         if (*next == 0)
851                 *next = deadline;
852         else if (time_after(*next, deadline))
853                 *next = deadline;
854         return false;
855 }
856
857 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
858                 struct request *rq, void *priv, bool reserved)
859 {
860         unsigned long *next = priv;
861
862         /*
863          * Just do a quick check if it is expired before locking the request in
864          * so we're not unnecessarilly synchronizing across CPUs.
865          */
866         if (!blk_mq_req_expired(rq, next))
867                 return true;
868
869         /*
870          * We have reason to believe the request may be expired. Take a
871          * reference on the request to lock this request lifetime into its
872          * currently allocated context to prevent it from being reallocated in
873          * the event the completion by-passes this timeout handler.
874          *
875          * If the reference was already released, then the driver beat the
876          * timeout handler to posting a natural completion.
877          */
878         if (!refcount_inc_not_zero(&rq->ref))
879                 return true;
880
881         /*
882          * The request is now locked and cannot be reallocated underneath the
883          * timeout handler's processing. Re-verify this exact request is truly
884          * expired; if it is not expired, then the request was completed and
885          * reallocated as a new request.
886          */
887         if (blk_mq_req_expired(rq, next))
888                 blk_mq_rq_timed_out(rq, reserved);
889         if (refcount_dec_and_test(&rq->ref))
890                 __blk_mq_free_request(rq);
891
892         return true;
893 }
894
895 static void blk_mq_timeout_work(struct work_struct *work)
896 {
897         struct request_queue *q =
898                 container_of(work, struct request_queue, timeout_work);
899         unsigned long next = 0;
900         struct blk_mq_hw_ctx *hctx;
901         int i;
902
903         /* A deadlock might occur if a request is stuck requiring a
904          * timeout at the same time a queue freeze is waiting
905          * completion, since the timeout code would not be able to
906          * acquire the queue reference here.
907          *
908          * That's why we don't use blk_queue_enter here; instead, we use
909          * percpu_ref_tryget directly, because we need to be able to
910          * obtain a reference even in the short window between the queue
911          * starting to freeze, by dropping the first reference in
912          * blk_freeze_queue_start, and the moment the last request is
913          * consumed, marked by the instant q_usage_counter reaches
914          * zero.
915          */
916         if (!percpu_ref_tryget(&q->q_usage_counter))
917                 return;
918
919         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
920
921         if (next != 0) {
922                 mod_timer(&q->timeout, next);
923         } else {
924                 /*
925                  * Request timeouts are handled as a forward rolling timer. If
926                  * we end up here it means that no requests are pending and
927                  * also that no request has been pending for a while. Mark
928                  * each hctx as idle.
929                  */
930                 queue_for_each_hw_ctx(q, hctx, i) {
931                         /* the hctx may be unmapped, so check it here */
932                         if (blk_mq_hw_queue_mapped(hctx))
933                                 blk_mq_tag_idle(hctx);
934                 }
935         }
936         blk_queue_exit(q);
937 }
938
939 struct flush_busy_ctx_data {
940         struct blk_mq_hw_ctx *hctx;
941         struct list_head *list;
942 };
943
944 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
945 {
946         struct flush_busy_ctx_data *flush_data = data;
947         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
948         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
949
950         spin_lock(&ctx->lock);
951         list_splice_tail_init(&ctx->rq_list, flush_data->list);
952         sbitmap_clear_bit(sb, bitnr);
953         spin_unlock(&ctx->lock);
954         return true;
955 }
956
957 /*
958  * Process software queues that have been marked busy, splicing them
959  * to the for-dispatch
960  */
961 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
962 {
963         struct flush_busy_ctx_data data = {
964                 .hctx = hctx,
965                 .list = list,
966         };
967
968         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
969 }
970 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
971
972 struct dispatch_rq_data {
973         struct blk_mq_hw_ctx *hctx;
974         struct request *rq;
975 };
976
977 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
978                 void *data)
979 {
980         struct dispatch_rq_data *dispatch_data = data;
981         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
982         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
983
984         spin_lock(&ctx->lock);
985         if (!list_empty(&ctx->rq_list)) {
986                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
987                 list_del_init(&dispatch_data->rq->queuelist);
988                 if (list_empty(&ctx->rq_list))
989                         sbitmap_clear_bit(sb, bitnr);
990         }
991         spin_unlock(&ctx->lock);
992
993         return !dispatch_data->rq;
994 }
995
996 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
997                                         struct blk_mq_ctx *start)
998 {
999         unsigned off = start ? start->index_hw[hctx->type] : 0;
1000         struct dispatch_rq_data data = {
1001                 .hctx = hctx,
1002                 .rq   = NULL,
1003         };
1004
1005         __sbitmap_for_each_set(&hctx->ctx_map, off,
1006                                dispatch_rq_from_ctx, &data);
1007
1008         return data.rq;
1009 }
1010
1011 static inline unsigned int queued_to_index(unsigned int queued)
1012 {
1013         if (!queued)
1014                 return 0;
1015
1016         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1017 }
1018
1019 bool blk_mq_get_driver_tag(struct request *rq)
1020 {
1021         struct blk_mq_alloc_data data = {
1022                 .q = rq->q,
1023                 .hctx = rq->mq_hctx,
1024                 .flags = BLK_MQ_REQ_NOWAIT,
1025                 .cmd_flags = rq->cmd_flags,
1026         };
1027         bool shared;
1028
1029         if (rq->tag != -1)
1030                 goto done;
1031
1032         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1033                 data.flags |= BLK_MQ_REQ_RESERVED;
1034
1035         shared = blk_mq_tag_busy(data.hctx);
1036         rq->tag = blk_mq_get_tag(&data);
1037         if (rq->tag >= 0) {
1038                 if (shared) {
1039                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1040                         atomic_inc(&data.hctx->nr_active);
1041                 }
1042                 data.hctx->tags->rqs[rq->tag] = rq;
1043         }
1044
1045 done:
1046         return rq->tag != -1;
1047 }
1048
1049 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1050                                 int flags, void *key)
1051 {
1052         struct blk_mq_hw_ctx *hctx;
1053
1054         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1055
1056         spin_lock(&hctx->dispatch_wait_lock);
1057         list_del_init(&wait->entry);
1058         spin_unlock(&hctx->dispatch_wait_lock);
1059
1060         blk_mq_run_hw_queue(hctx, true);
1061         return 1;
1062 }
1063
1064 /*
1065  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1066  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1067  * restart. For both cases, take care to check the condition again after
1068  * marking us as waiting.
1069  */
1070 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1071                                  struct request *rq)
1072 {
1073         struct wait_queue_head *wq;
1074         wait_queue_entry_t *wait;
1075         bool ret;
1076
1077         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1078                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1079                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1080
1081                 /*
1082                  * It's possible that a tag was freed in the window between the
1083                  * allocation failure and adding the hardware queue to the wait
1084                  * queue.
1085                  *
1086                  * Don't clear RESTART here, someone else could have set it.
1087                  * At most this will cost an extra queue run.
1088                  */
1089                 return blk_mq_get_driver_tag(rq);
1090         }
1091
1092         wait = &hctx->dispatch_wait;
1093         if (!list_empty_careful(&wait->entry))
1094                 return false;
1095
1096         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1097
1098         spin_lock_irq(&wq->lock);
1099         spin_lock(&hctx->dispatch_wait_lock);
1100         if (!list_empty(&wait->entry)) {
1101                 spin_unlock(&hctx->dispatch_wait_lock);
1102                 spin_unlock_irq(&wq->lock);
1103                 return false;
1104         }
1105
1106         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1107         __add_wait_queue(wq, wait);
1108
1109         /*
1110          * It's possible that a tag was freed in the window between the
1111          * allocation failure and adding the hardware queue to the wait
1112          * queue.
1113          */
1114         ret = blk_mq_get_driver_tag(rq);
1115         if (!ret) {
1116                 spin_unlock(&hctx->dispatch_wait_lock);
1117                 spin_unlock_irq(&wq->lock);
1118                 return false;
1119         }
1120
1121         /*
1122          * We got a tag, remove ourselves from the wait queue to ensure
1123          * someone else gets the wakeup.
1124          */
1125         list_del_init(&wait->entry);
1126         spin_unlock(&hctx->dispatch_wait_lock);
1127         spin_unlock_irq(&wq->lock);
1128
1129         return true;
1130 }
1131
1132 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1133 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1134 /*
1135  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1136  * - EWMA is one simple way to compute running average value
1137  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1138  * - take 4 as factor for avoiding to get too small(0) result, and this
1139  *   factor doesn't matter because EWMA decreases exponentially
1140  */
1141 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1142 {
1143         unsigned int ewma;
1144
1145         if (hctx->queue->elevator)
1146                 return;
1147
1148         ewma = hctx->dispatch_busy;
1149
1150         if (!ewma && !busy)
1151                 return;
1152
1153         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1154         if (busy)
1155                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1156         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1157
1158         hctx->dispatch_busy = ewma;
1159 }
1160
1161 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1162
1163 /*
1164  * Returns true if we did some work AND can potentially do more.
1165  */
1166 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1167                              bool got_budget)
1168 {
1169         struct blk_mq_hw_ctx *hctx;
1170         struct request *rq, *nxt;
1171         bool no_tag = false;
1172         int errors, queued;
1173         blk_status_t ret = BLK_STS_OK;
1174
1175         if (list_empty(list))
1176                 return false;
1177
1178         WARN_ON(!list_is_singular(list) && got_budget);
1179
1180         /*
1181          * Now process all the entries, sending them to the driver.
1182          */
1183         errors = queued = 0;
1184         do {
1185                 struct blk_mq_queue_data bd;
1186
1187                 rq = list_first_entry(list, struct request, queuelist);
1188
1189                 hctx = rq->mq_hctx;
1190                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1191                         break;
1192
1193                 if (!blk_mq_get_driver_tag(rq)) {
1194                         /*
1195                          * The initial allocation attempt failed, so we need to
1196                          * rerun the hardware queue when a tag is freed. The
1197                          * waitqueue takes care of that. If the queue is run
1198                          * before we add this entry back on the dispatch list,
1199                          * we'll re-run it below.
1200                          */
1201                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1202                                 blk_mq_put_dispatch_budget(hctx);
1203                                 /*
1204                                  * For non-shared tags, the RESTART check
1205                                  * will suffice.
1206                                  */
1207                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1208                                         no_tag = true;
1209                                 break;
1210                         }
1211                 }
1212
1213                 list_del_init(&rq->queuelist);
1214
1215                 bd.rq = rq;
1216
1217                 /*
1218                  * Flag last if we have no more requests, or if we have more
1219                  * but can't assign a driver tag to it.
1220                  */
1221                 if (list_empty(list))
1222                         bd.last = true;
1223                 else {
1224                         nxt = list_first_entry(list, struct request, queuelist);
1225                         bd.last = !blk_mq_get_driver_tag(nxt);
1226                 }
1227
1228                 ret = q->mq_ops->queue_rq(hctx, &bd);
1229                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1230                         /*
1231                          * If an I/O scheduler has been configured and we got a
1232                          * driver tag for the next request already, free it
1233                          * again.
1234                          */
1235                         if (!list_empty(list)) {
1236                                 nxt = list_first_entry(list, struct request, queuelist);
1237                                 blk_mq_put_driver_tag(nxt);
1238                         }
1239                         list_add(&rq->queuelist, list);
1240                         __blk_mq_requeue_request(rq);
1241                         break;
1242                 }
1243
1244                 if (unlikely(ret != BLK_STS_OK)) {
1245                         errors++;
1246                         blk_mq_end_request(rq, BLK_STS_IOERR);
1247                         continue;
1248                 }
1249
1250                 queued++;
1251         } while (!list_empty(list));
1252
1253         hctx->dispatched[queued_to_index(queued)]++;
1254
1255         /*
1256          * Any items that need requeuing? Stuff them into hctx->dispatch,
1257          * that is where we will continue on next queue run.
1258          */
1259         if (!list_empty(list)) {
1260                 bool needs_restart;
1261
1262                 /*
1263                  * If we didn't flush the entire list, we could have told
1264                  * the driver there was more coming, but that turned out to
1265                  * be a lie.
1266                  */
1267                 if (q->mq_ops->commit_rqs)
1268                         q->mq_ops->commit_rqs(hctx);
1269
1270                 spin_lock(&hctx->lock);
1271                 list_splice_init(list, &hctx->dispatch);
1272                 spin_unlock(&hctx->lock);
1273
1274                 /*
1275                  * If SCHED_RESTART was set by the caller of this function and
1276                  * it is no longer set that means that it was cleared by another
1277                  * thread and hence that a queue rerun is needed.
1278                  *
1279                  * If 'no_tag' is set, that means that we failed getting
1280                  * a driver tag with an I/O scheduler attached. If our dispatch
1281                  * waitqueue is no longer active, ensure that we run the queue
1282                  * AFTER adding our entries back to the list.
1283                  *
1284                  * If no I/O scheduler has been configured it is possible that
1285                  * the hardware queue got stopped and restarted before requests
1286                  * were pushed back onto the dispatch list. Rerun the queue to
1287                  * avoid starvation. Notes:
1288                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1289                  *   been stopped before rerunning a queue.
1290                  * - Some but not all block drivers stop a queue before
1291                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1292                  *   and dm-rq.
1293                  *
1294                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1295                  * bit is set, run queue after a delay to avoid IO stalls
1296                  * that could otherwise occur if the queue is idle.
1297                  */
1298                 needs_restart = blk_mq_sched_needs_restart(hctx);
1299                 if (!needs_restart ||
1300                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1301                         blk_mq_run_hw_queue(hctx, true);
1302                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1303                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1304
1305                 blk_mq_update_dispatch_busy(hctx, true);
1306                 return false;
1307         } else
1308                 blk_mq_update_dispatch_busy(hctx, false);
1309
1310         /*
1311          * If the host/device is unable to accept more work, inform the
1312          * caller of that.
1313          */
1314         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1315                 return false;
1316
1317         return (queued + errors) != 0;
1318 }
1319
1320 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1321 {
1322         int srcu_idx;
1323
1324         /*
1325          * We should be running this queue from one of the CPUs that
1326          * are mapped to it.
1327          *
1328          * There are at least two related races now between setting
1329          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1330          * __blk_mq_run_hw_queue():
1331          *
1332          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1333          *   but later it becomes online, then this warning is harmless
1334          *   at all
1335          *
1336          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1337          *   but later it becomes offline, then the warning can't be
1338          *   triggered, and we depend on blk-mq timeout handler to
1339          *   handle dispatched requests to this hctx
1340          */
1341         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1342                 cpu_online(hctx->next_cpu)) {
1343                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1344                         raw_smp_processor_id(),
1345                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1346                 dump_stack();
1347         }
1348
1349         /*
1350          * We can't run the queue inline with ints disabled. Ensure that
1351          * we catch bad users of this early.
1352          */
1353         WARN_ON_ONCE(in_interrupt());
1354
1355         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1356
1357         hctx_lock(hctx, &srcu_idx);
1358         blk_mq_sched_dispatch_requests(hctx);
1359         hctx_unlock(hctx, srcu_idx);
1360 }
1361
1362 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1363 {
1364         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1365
1366         if (cpu >= nr_cpu_ids)
1367                 cpu = cpumask_first(hctx->cpumask);
1368         return cpu;
1369 }
1370
1371 /*
1372  * It'd be great if the workqueue API had a way to pass
1373  * in a mask and had some smarts for more clever placement.
1374  * For now we just round-robin here, switching for every
1375  * BLK_MQ_CPU_WORK_BATCH queued items.
1376  */
1377 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1378 {
1379         bool tried = false;
1380         int next_cpu = hctx->next_cpu;
1381
1382         if (hctx->queue->nr_hw_queues == 1)
1383                 return WORK_CPU_UNBOUND;
1384
1385         if (--hctx->next_cpu_batch <= 0) {
1386 select_cpu:
1387                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1388                                 cpu_online_mask);
1389                 if (next_cpu >= nr_cpu_ids)
1390                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1391                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1392         }
1393
1394         /*
1395          * Do unbound schedule if we can't find a online CPU for this hctx,
1396          * and it should only happen in the path of handling CPU DEAD.
1397          */
1398         if (!cpu_online(next_cpu)) {
1399                 if (!tried) {
1400                         tried = true;
1401                         goto select_cpu;
1402                 }
1403
1404                 /*
1405                  * Make sure to re-select CPU next time once after CPUs
1406                  * in hctx->cpumask become online again.
1407                  */
1408                 hctx->next_cpu = next_cpu;
1409                 hctx->next_cpu_batch = 1;
1410                 return WORK_CPU_UNBOUND;
1411         }
1412
1413         hctx->next_cpu = next_cpu;
1414         return next_cpu;
1415 }
1416
1417 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1418                                         unsigned long msecs)
1419 {
1420         if (unlikely(blk_mq_hctx_stopped(hctx)))
1421                 return;
1422
1423         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1424                 int cpu = get_cpu();
1425                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1426                         __blk_mq_run_hw_queue(hctx);
1427                         put_cpu();
1428                         return;
1429                 }
1430
1431                 put_cpu();
1432         }
1433
1434         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1435                                     msecs_to_jiffies(msecs));
1436 }
1437
1438 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1439 {
1440         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1441 }
1442 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1443
1444 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1445 {
1446         int srcu_idx;
1447         bool need_run;
1448
1449         /*
1450          * When queue is quiesced, we may be switching io scheduler, or
1451          * updating nr_hw_queues, or other things, and we can't run queue
1452          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1453          *
1454          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1455          * quiesced.
1456          */
1457         hctx_lock(hctx, &srcu_idx);
1458         need_run = !blk_queue_quiesced(hctx->queue) &&
1459                 blk_mq_hctx_has_pending(hctx);
1460         hctx_unlock(hctx, srcu_idx);
1461
1462         if (need_run) {
1463                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1464                 return true;
1465         }
1466
1467         return false;
1468 }
1469 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1470
1471 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1472 {
1473         struct blk_mq_hw_ctx *hctx;
1474         int i;
1475
1476         queue_for_each_hw_ctx(q, hctx, i) {
1477                 if (blk_mq_hctx_stopped(hctx))
1478                         continue;
1479
1480                 blk_mq_run_hw_queue(hctx, async);
1481         }
1482 }
1483 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1484
1485 /**
1486  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1487  * @q: request queue.
1488  *
1489  * The caller is responsible for serializing this function against
1490  * blk_mq_{start,stop}_hw_queue().
1491  */
1492 bool blk_mq_queue_stopped(struct request_queue *q)
1493 {
1494         struct blk_mq_hw_ctx *hctx;
1495         int i;
1496
1497         queue_for_each_hw_ctx(q, hctx, i)
1498                 if (blk_mq_hctx_stopped(hctx))
1499                         return true;
1500
1501         return false;
1502 }
1503 EXPORT_SYMBOL(blk_mq_queue_stopped);
1504
1505 /*
1506  * This function is often used for pausing .queue_rq() by driver when
1507  * there isn't enough resource or some conditions aren't satisfied, and
1508  * BLK_STS_RESOURCE is usually returned.
1509  *
1510  * We do not guarantee that dispatch can be drained or blocked
1511  * after blk_mq_stop_hw_queue() returns. Please use
1512  * blk_mq_quiesce_queue() for that requirement.
1513  */
1514 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1515 {
1516         cancel_delayed_work(&hctx->run_work);
1517
1518         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1519 }
1520 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1521
1522 /*
1523  * This function is often used for pausing .queue_rq() by driver when
1524  * there isn't enough resource or some conditions aren't satisfied, and
1525  * BLK_STS_RESOURCE is usually returned.
1526  *
1527  * We do not guarantee that dispatch can be drained or blocked
1528  * after blk_mq_stop_hw_queues() returns. Please use
1529  * blk_mq_quiesce_queue() for that requirement.
1530  */
1531 void blk_mq_stop_hw_queues(struct request_queue *q)
1532 {
1533         struct blk_mq_hw_ctx *hctx;
1534         int i;
1535
1536         queue_for_each_hw_ctx(q, hctx, i)
1537                 blk_mq_stop_hw_queue(hctx);
1538 }
1539 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1540
1541 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1542 {
1543         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1544
1545         blk_mq_run_hw_queue(hctx, false);
1546 }
1547 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1548
1549 void blk_mq_start_hw_queues(struct request_queue *q)
1550 {
1551         struct blk_mq_hw_ctx *hctx;
1552         int i;
1553
1554         queue_for_each_hw_ctx(q, hctx, i)
1555                 blk_mq_start_hw_queue(hctx);
1556 }
1557 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1558
1559 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1560 {
1561         if (!blk_mq_hctx_stopped(hctx))
1562                 return;
1563
1564         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1565         blk_mq_run_hw_queue(hctx, async);
1566 }
1567 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1568
1569 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1570 {
1571         struct blk_mq_hw_ctx *hctx;
1572         int i;
1573
1574         queue_for_each_hw_ctx(q, hctx, i)
1575                 blk_mq_start_stopped_hw_queue(hctx, async);
1576 }
1577 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1578
1579 static void blk_mq_run_work_fn(struct work_struct *work)
1580 {
1581         struct blk_mq_hw_ctx *hctx;
1582
1583         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1584
1585         /*
1586          * If we are stopped, don't run the queue.
1587          */
1588         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1589                 return;
1590
1591         __blk_mq_run_hw_queue(hctx);
1592 }
1593
1594 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1595                                             struct request *rq,
1596                                             bool at_head)
1597 {
1598         struct blk_mq_ctx *ctx = rq->mq_ctx;
1599
1600         lockdep_assert_held(&ctx->lock);
1601
1602         trace_block_rq_insert(hctx->queue, rq);
1603
1604         if (at_head)
1605                 list_add(&rq->queuelist, &ctx->rq_list);
1606         else
1607                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1608 }
1609
1610 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1611                              bool at_head)
1612 {
1613         struct blk_mq_ctx *ctx = rq->mq_ctx;
1614
1615         lockdep_assert_held(&ctx->lock);
1616
1617         __blk_mq_insert_req_list(hctx, rq, at_head);
1618         blk_mq_hctx_mark_pending(hctx, ctx);
1619 }
1620
1621 /*
1622  * Should only be used carefully, when the caller knows we want to
1623  * bypass a potential IO scheduler on the target device.
1624  */
1625 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1626 {
1627         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1628
1629         spin_lock(&hctx->lock);
1630         list_add_tail(&rq->queuelist, &hctx->dispatch);
1631         spin_unlock(&hctx->lock);
1632
1633         if (run_queue)
1634                 blk_mq_run_hw_queue(hctx, false);
1635 }
1636
1637 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1638                             struct list_head *list)
1639
1640 {
1641         struct request *rq;
1642
1643         /*
1644          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1645          * offline now
1646          */
1647         list_for_each_entry(rq, list, queuelist) {
1648                 BUG_ON(rq->mq_ctx != ctx);
1649                 trace_block_rq_insert(hctx->queue, rq);
1650         }
1651
1652         spin_lock(&ctx->lock);
1653         list_splice_tail_init(list, &ctx->rq_list);
1654         blk_mq_hctx_mark_pending(hctx, ctx);
1655         spin_unlock(&ctx->lock);
1656 }
1657
1658 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1659 {
1660         struct request *rqa = container_of(a, struct request, queuelist);
1661         struct request *rqb = container_of(b, struct request, queuelist);
1662
1663         if (rqa->mq_ctx < rqb->mq_ctx)
1664                 return -1;
1665         else if (rqa->mq_ctx > rqb->mq_ctx)
1666                 return 1;
1667         else if (rqa->mq_hctx < rqb->mq_hctx)
1668                 return -1;
1669         else if (rqa->mq_hctx > rqb->mq_hctx)
1670                 return 1;
1671
1672         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1673 }
1674
1675 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1676 {
1677         struct blk_mq_hw_ctx *this_hctx;
1678         struct blk_mq_ctx *this_ctx;
1679         struct request_queue *this_q;
1680         struct request *rq;
1681         LIST_HEAD(list);
1682         LIST_HEAD(rq_list);
1683         unsigned int depth;
1684
1685         list_splice_init(&plug->mq_list, &list);
1686         plug->rq_count = 0;
1687
1688         if (plug->rq_count > 2 && plug->multiple_queues)
1689                 list_sort(NULL, &list, plug_rq_cmp);
1690
1691         this_q = NULL;
1692         this_hctx = NULL;
1693         this_ctx = NULL;
1694         depth = 0;
1695
1696         while (!list_empty(&list)) {
1697                 rq = list_entry_rq(list.next);
1698                 list_del_init(&rq->queuelist);
1699                 BUG_ON(!rq->q);
1700                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1701                         if (this_hctx) {
1702                                 trace_block_unplug(this_q, depth, !from_schedule);
1703                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1704                                                                 &rq_list,
1705                                                                 from_schedule);
1706                         }
1707
1708                         this_q = rq->q;
1709                         this_ctx = rq->mq_ctx;
1710                         this_hctx = rq->mq_hctx;
1711                         depth = 0;
1712                 }
1713
1714                 depth++;
1715                 list_add_tail(&rq->queuelist, &rq_list);
1716         }
1717
1718         /*
1719          * If 'this_hctx' is set, we know we have entries to complete
1720          * on 'rq_list'. Do those.
1721          */
1722         if (this_hctx) {
1723                 trace_block_unplug(this_q, depth, !from_schedule);
1724                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1725                                                 from_schedule);
1726         }
1727 }
1728
1729 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1730 {
1731         blk_init_request_from_bio(rq, bio);
1732
1733         blk_account_io_start(rq, true);
1734 }
1735
1736 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1737 {
1738         if (rq->tag != -1)
1739                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1740
1741         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1742 }
1743
1744 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1745                                             struct request *rq,
1746                                             blk_qc_t *cookie)
1747 {
1748         struct request_queue *q = rq->q;
1749         struct blk_mq_queue_data bd = {
1750                 .rq = rq,
1751                 .last = true,
1752         };
1753         blk_qc_t new_cookie;
1754         blk_status_t ret;
1755
1756         new_cookie = request_to_qc_t(hctx, rq);
1757
1758         /*
1759          * For OK queue, we are done. For error, caller may kill it.
1760          * Any other error (busy), just add it to our list as we
1761          * previously would have done.
1762          */
1763         ret = q->mq_ops->queue_rq(hctx, &bd);
1764         switch (ret) {
1765         case BLK_STS_OK:
1766                 blk_mq_update_dispatch_busy(hctx, false);
1767                 *cookie = new_cookie;
1768                 break;
1769         case BLK_STS_RESOURCE:
1770         case BLK_STS_DEV_RESOURCE:
1771                 blk_mq_update_dispatch_busy(hctx, true);
1772                 __blk_mq_requeue_request(rq);
1773                 break;
1774         default:
1775                 blk_mq_update_dispatch_busy(hctx, false);
1776                 *cookie = BLK_QC_T_NONE;
1777                 break;
1778         }
1779
1780         return ret;
1781 }
1782
1783 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1784                                                 struct request *rq,
1785                                                 blk_qc_t *cookie,
1786                                                 bool bypass_insert)
1787 {
1788         struct request_queue *q = rq->q;
1789         bool run_queue = true;
1790
1791         /*
1792          * RCU or SRCU read lock is needed before checking quiesced flag.
1793          *
1794          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1795          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1796          * and avoid driver to try to dispatch again.
1797          */
1798         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1799                 run_queue = false;
1800                 bypass_insert = false;
1801                 goto insert;
1802         }
1803
1804         if (q->elevator && !bypass_insert)
1805                 goto insert;
1806
1807         if (!blk_mq_get_dispatch_budget(hctx))
1808                 goto insert;
1809
1810         if (!blk_mq_get_driver_tag(rq)) {
1811                 blk_mq_put_dispatch_budget(hctx);
1812                 goto insert;
1813         }
1814
1815         return __blk_mq_issue_directly(hctx, rq, cookie);
1816 insert:
1817         if (bypass_insert)
1818                 return BLK_STS_RESOURCE;
1819
1820         blk_mq_sched_insert_request(rq, false, run_queue, false);
1821         return BLK_STS_OK;
1822 }
1823
1824 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1825                 struct request *rq, blk_qc_t *cookie)
1826 {
1827         blk_status_t ret;
1828         int srcu_idx;
1829
1830         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1831
1832         hctx_lock(hctx, &srcu_idx);
1833
1834         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1835         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1836                 blk_mq_sched_insert_request(rq, false, true, false);
1837         else if (ret != BLK_STS_OK)
1838                 blk_mq_end_request(rq, ret);
1839
1840         hctx_unlock(hctx, srcu_idx);
1841 }
1842
1843 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1844 {
1845         blk_status_t ret;
1846         int srcu_idx;
1847         blk_qc_t unused_cookie;
1848         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1849
1850         hctx_lock(hctx, &srcu_idx);
1851         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1852         hctx_unlock(hctx, srcu_idx);
1853
1854         return ret;
1855 }
1856
1857 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1858                 struct list_head *list)
1859 {
1860         while (!list_empty(list)) {
1861                 blk_status_t ret;
1862                 struct request *rq = list_first_entry(list, struct request,
1863                                 queuelist);
1864
1865                 list_del_init(&rq->queuelist);
1866                 ret = blk_mq_request_issue_directly(rq);
1867                 if (ret != BLK_STS_OK) {
1868                         if (ret == BLK_STS_RESOURCE ||
1869                                         ret == BLK_STS_DEV_RESOURCE) {
1870                                 list_add(&rq->queuelist, list);
1871                                 break;
1872                         }
1873                         blk_mq_end_request(rq, ret);
1874                 }
1875         }
1876
1877         /*
1878          * If we didn't flush the entire list, we could have told
1879          * the driver there was more coming, but that turned out to
1880          * be a lie.
1881          */
1882         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1883                 hctx->queue->mq_ops->commit_rqs(hctx);
1884 }
1885
1886 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1887 {
1888         list_add_tail(&rq->queuelist, &plug->mq_list);
1889         plug->rq_count++;
1890         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1891                 struct request *tmp;
1892
1893                 tmp = list_first_entry(&plug->mq_list, struct request,
1894                                                 queuelist);
1895                 if (tmp->q != rq->q)
1896                         plug->multiple_queues = true;
1897         }
1898 }
1899
1900 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1901 {
1902         const int is_sync = op_is_sync(bio->bi_opf);
1903         const int is_flush_fua = op_is_flush(bio->bi_opf);
1904         struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1905         struct request *rq;
1906         struct blk_plug *plug;
1907         struct request *same_queue_rq = NULL;
1908         blk_qc_t cookie;
1909
1910         blk_queue_bounce(q, &bio);
1911
1912         blk_queue_split(q, &bio);
1913
1914         if (!bio_integrity_prep(bio))
1915                 return BLK_QC_T_NONE;
1916
1917         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1918             blk_attempt_plug_merge(q, bio, &same_queue_rq))
1919                 return BLK_QC_T_NONE;
1920
1921         if (blk_mq_sched_bio_merge(q, bio))
1922                 return BLK_QC_T_NONE;
1923
1924         rq_qos_throttle(q, bio);
1925
1926         rq = blk_mq_get_request(q, bio, &data);
1927         if (unlikely(!rq)) {
1928                 rq_qos_cleanup(q, bio);
1929                 if (bio->bi_opf & REQ_NOWAIT)
1930                         bio_wouldblock_error(bio);
1931                 return BLK_QC_T_NONE;
1932         }
1933
1934         trace_block_getrq(q, bio, bio->bi_opf);
1935
1936         rq_qos_track(q, rq, bio);
1937
1938         cookie = request_to_qc_t(data.hctx, rq);
1939
1940         plug = current->plug;
1941         if (unlikely(is_flush_fua)) {
1942                 blk_mq_put_ctx(data.ctx);
1943                 blk_mq_bio_to_request(rq, bio);
1944
1945                 /* bypass scheduler for flush rq */
1946                 blk_insert_flush(rq);
1947                 blk_mq_run_hw_queue(data.hctx, true);
1948         } else if (plug && q->nr_hw_queues == 1) {
1949                 unsigned int request_count = plug->rq_count;
1950                 struct request *last = NULL;
1951
1952                 blk_mq_put_ctx(data.ctx);
1953                 blk_mq_bio_to_request(rq, bio);
1954
1955                 if (!request_count)
1956                         trace_block_plug(q);
1957                 else
1958                         last = list_entry_rq(plug->mq_list.prev);
1959
1960                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1961                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1962                         blk_flush_plug_list(plug, false);
1963                         trace_block_plug(q);
1964                 }
1965
1966                 blk_add_rq_to_plug(plug, rq);
1967         } else if (plug && !blk_queue_nomerges(q)) {
1968                 blk_mq_bio_to_request(rq, bio);
1969
1970                 /*
1971                  * We do limited plugging. If the bio can be merged, do that.
1972                  * Otherwise the existing request in the plug list will be
1973                  * issued. So the plug list will have one request at most
1974                  * The plug list might get flushed before this. If that happens,
1975                  * the plug list is empty, and same_queue_rq is invalid.
1976                  */
1977                 if (list_empty(&plug->mq_list))
1978                         same_queue_rq = NULL;
1979                 if (same_queue_rq) {
1980                         list_del_init(&same_queue_rq->queuelist);
1981                         plug->rq_count--;
1982                 }
1983                 blk_add_rq_to_plug(plug, rq);
1984
1985                 blk_mq_put_ctx(data.ctx);
1986
1987                 if (same_queue_rq) {
1988                         data.hctx = same_queue_rq->mq_hctx;
1989                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1990                                         &cookie);
1991                 }
1992         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1993                         !data.hctx->dispatch_busy)) {
1994                 blk_mq_put_ctx(data.ctx);
1995                 blk_mq_bio_to_request(rq, bio);
1996                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1997         } else {
1998                 blk_mq_put_ctx(data.ctx);
1999                 blk_mq_bio_to_request(rq, bio);
2000                 blk_mq_sched_insert_request(rq, false, true, true);
2001         }
2002
2003         return cookie;
2004 }
2005
2006 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2007                      unsigned int hctx_idx)
2008 {
2009         struct page *page;
2010
2011         if (tags->rqs && set->ops->exit_request) {
2012                 int i;
2013
2014                 for (i = 0; i < tags->nr_tags; i++) {
2015                         struct request *rq = tags->static_rqs[i];
2016
2017                         if (!rq)
2018                                 continue;
2019                         set->ops->exit_request(set, rq, hctx_idx);
2020                         tags->static_rqs[i] = NULL;
2021                 }
2022         }
2023
2024         while (!list_empty(&tags->page_list)) {
2025                 page = list_first_entry(&tags->page_list, struct page, lru);
2026                 list_del_init(&page->lru);
2027                 /*
2028                  * Remove kmemleak object previously allocated in
2029                  * blk_mq_init_rq_map().
2030                  */
2031                 kmemleak_free(page_address(page));
2032                 __free_pages(page, page->private);
2033         }
2034 }
2035
2036 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2037 {
2038         kfree(tags->rqs);
2039         tags->rqs = NULL;
2040         kfree(tags->static_rqs);
2041         tags->static_rqs = NULL;
2042
2043         blk_mq_free_tags(tags);
2044 }
2045
2046 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2047                                         unsigned int hctx_idx,
2048                                         unsigned int nr_tags,
2049                                         unsigned int reserved_tags)
2050 {
2051         struct blk_mq_tags *tags;
2052         int node;
2053
2054         node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2055         if (node == NUMA_NO_NODE)
2056                 node = set->numa_node;
2057
2058         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2059                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2060         if (!tags)
2061                 return NULL;
2062
2063         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2064                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2065                                  node);
2066         if (!tags->rqs) {
2067                 blk_mq_free_tags(tags);
2068                 return NULL;
2069         }
2070
2071         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2072                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2073                                         node);
2074         if (!tags->static_rqs) {
2075                 kfree(tags->rqs);
2076                 blk_mq_free_tags(tags);
2077                 return NULL;
2078         }
2079
2080         return tags;
2081 }
2082
2083 static size_t order_to_size(unsigned int order)
2084 {
2085         return (size_t)PAGE_SIZE << order;
2086 }
2087
2088 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2089                                unsigned int hctx_idx, int node)
2090 {
2091         int ret;
2092
2093         if (set->ops->init_request) {
2094                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2095                 if (ret)
2096                         return ret;
2097         }
2098
2099         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2100         return 0;
2101 }
2102
2103 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2104                      unsigned int hctx_idx, unsigned int depth)
2105 {
2106         unsigned int i, j, entries_per_page, max_order = 4;
2107         size_t rq_size, left;
2108         int node;
2109
2110         node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2111         if (node == NUMA_NO_NODE)
2112                 node = set->numa_node;
2113
2114         INIT_LIST_HEAD(&tags->page_list);
2115
2116         /*
2117          * rq_size is the size of the request plus driver payload, rounded
2118          * to the cacheline size
2119          */
2120         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2121                                 cache_line_size());
2122         left = rq_size * depth;
2123
2124         for (i = 0; i < depth; ) {
2125                 int this_order = max_order;
2126                 struct page *page;
2127                 int to_do;
2128                 void *p;
2129
2130                 while (this_order && left < order_to_size(this_order - 1))
2131                         this_order--;
2132
2133                 do {
2134                         page = alloc_pages_node(node,
2135                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2136                                 this_order);
2137                         if (page)
2138                                 break;
2139                         if (!this_order--)
2140                                 break;
2141                         if (order_to_size(this_order) < rq_size)
2142                                 break;
2143                 } while (1);
2144
2145                 if (!page)
2146                         goto fail;
2147
2148                 page->private = this_order;
2149                 list_add_tail(&page->lru, &tags->page_list);
2150
2151                 p = page_address(page);
2152                 /*
2153                  * Allow kmemleak to scan these pages as they contain pointers
2154                  * to additional allocations like via ops->init_request().
2155                  */
2156                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2157                 entries_per_page = order_to_size(this_order) / rq_size;
2158                 to_do = min(entries_per_page, depth - i);
2159                 left -= to_do * rq_size;
2160                 for (j = 0; j < to_do; j++) {
2161                         struct request *rq = p;
2162
2163                         tags->static_rqs[i] = rq;
2164                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2165                                 tags->static_rqs[i] = NULL;
2166                                 goto fail;
2167                         }
2168
2169                         p += rq_size;
2170                         i++;
2171                 }
2172         }
2173         return 0;
2174
2175 fail:
2176         blk_mq_free_rqs(set, tags, hctx_idx);
2177         return -ENOMEM;
2178 }
2179
2180 /*
2181  * 'cpu' is going away. splice any existing rq_list entries from this
2182  * software queue to the hw queue dispatch list, and ensure that it
2183  * gets run.
2184  */
2185 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2186 {
2187         struct blk_mq_hw_ctx *hctx;
2188         struct blk_mq_ctx *ctx;
2189         LIST_HEAD(tmp);
2190
2191         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2192         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2193
2194         spin_lock(&ctx->lock);
2195         if (!list_empty(&ctx->rq_list)) {
2196                 list_splice_init(&ctx->rq_list, &tmp);
2197                 blk_mq_hctx_clear_pending(hctx, ctx);
2198         }
2199         spin_unlock(&ctx->lock);
2200
2201         if (list_empty(&tmp))
2202                 return 0;
2203
2204         spin_lock(&hctx->lock);
2205         list_splice_tail_init(&tmp, &hctx->dispatch);
2206         spin_unlock(&hctx->lock);
2207
2208         blk_mq_run_hw_queue(hctx, true);
2209         return 0;
2210 }
2211
2212 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2213 {
2214         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2215                                             &hctx->cpuhp_dead);
2216 }
2217
2218 /* hctx->ctxs will be freed in queue's release handler */
2219 static void blk_mq_exit_hctx(struct request_queue *q,
2220                 struct blk_mq_tag_set *set,
2221                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2222 {
2223         if (blk_mq_hw_queue_mapped(hctx))
2224                 blk_mq_tag_idle(hctx);
2225
2226         if (set->ops->exit_request)
2227                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2228
2229         if (set->ops->exit_hctx)
2230                 set->ops->exit_hctx(hctx, hctx_idx);
2231
2232         if (hctx->flags & BLK_MQ_F_BLOCKING)
2233                 cleanup_srcu_struct(hctx->srcu);
2234
2235         blk_mq_remove_cpuhp(hctx);
2236         blk_free_flush_queue(hctx->fq);
2237         sbitmap_free(&hctx->ctx_map);
2238 }
2239
2240 static void blk_mq_exit_hw_queues(struct request_queue *q,
2241                 struct blk_mq_tag_set *set, int nr_queue)
2242 {
2243         struct blk_mq_hw_ctx *hctx;
2244         unsigned int i;
2245
2246         queue_for_each_hw_ctx(q, hctx, i) {
2247                 if (i == nr_queue)
2248                         break;
2249                 blk_mq_debugfs_unregister_hctx(hctx);
2250                 blk_mq_exit_hctx(q, set, hctx, i);
2251         }
2252 }
2253
2254 static int blk_mq_init_hctx(struct request_queue *q,
2255                 struct blk_mq_tag_set *set,
2256                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2257 {
2258         int node;
2259
2260         node = hctx->numa_node;
2261         if (node == NUMA_NO_NODE)
2262                 node = hctx->numa_node = set->numa_node;
2263
2264         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2265         spin_lock_init(&hctx->lock);
2266         INIT_LIST_HEAD(&hctx->dispatch);
2267         hctx->queue = q;
2268         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2269
2270         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2271
2272         hctx->tags = set->tags[hctx_idx];
2273
2274         /*
2275          * Allocate space for all possible cpus to avoid allocation at
2276          * runtime
2277          */
2278         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2279                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2280         if (!hctx->ctxs)
2281                 goto unregister_cpu_notifier;
2282
2283         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2284                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2285                 goto free_ctxs;
2286
2287         hctx->nr_ctx = 0;
2288
2289         spin_lock_init(&hctx->dispatch_wait_lock);
2290         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2291         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2292
2293         if (set->ops->init_hctx &&
2294             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2295                 goto free_bitmap;
2296
2297         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2298                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2299         if (!hctx->fq)
2300                 goto exit_hctx;
2301
2302         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2303                 goto free_fq;
2304
2305         if (hctx->flags & BLK_MQ_F_BLOCKING)
2306                 init_srcu_struct(hctx->srcu);
2307
2308         return 0;
2309
2310  free_fq:
2311         kfree(hctx->fq);
2312  exit_hctx:
2313         if (set->ops->exit_hctx)
2314                 set->ops->exit_hctx(hctx, hctx_idx);
2315  free_bitmap:
2316         sbitmap_free(&hctx->ctx_map);
2317  free_ctxs:
2318         kfree(hctx->ctxs);
2319  unregister_cpu_notifier:
2320         blk_mq_remove_cpuhp(hctx);
2321         return -1;
2322 }
2323
2324 static void blk_mq_init_cpu_queues(struct request_queue *q,
2325                                    unsigned int nr_hw_queues)
2326 {
2327         struct blk_mq_tag_set *set = q->tag_set;
2328         unsigned int i, j;
2329
2330         for_each_possible_cpu(i) {
2331                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2332                 struct blk_mq_hw_ctx *hctx;
2333
2334                 __ctx->cpu = i;
2335                 spin_lock_init(&__ctx->lock);
2336                 INIT_LIST_HEAD(&__ctx->rq_list);
2337                 __ctx->queue = q;
2338
2339                 /*
2340                  * Set local node, IFF we have more than one hw queue. If
2341                  * not, we remain on the home node of the device
2342                  */
2343                 for (j = 0; j < set->nr_maps; j++) {
2344                         hctx = blk_mq_map_queue_type(q, j, i);
2345                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2346                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2347                 }
2348         }
2349 }
2350
2351 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2352 {
2353         int ret = 0;
2354
2355         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2356                                         set->queue_depth, set->reserved_tags);
2357         if (!set->tags[hctx_idx])
2358                 return false;
2359
2360         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2361                                 set->queue_depth);
2362         if (!ret)
2363                 return true;
2364
2365         blk_mq_free_rq_map(set->tags[hctx_idx]);
2366         set->tags[hctx_idx] = NULL;
2367         return false;
2368 }
2369
2370 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2371                                          unsigned int hctx_idx)
2372 {
2373         if (set->tags && set->tags[hctx_idx]) {
2374                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2375                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2376                 set->tags[hctx_idx] = NULL;
2377         }
2378 }
2379
2380 static void blk_mq_map_swqueue(struct request_queue *q)
2381 {
2382         unsigned int i, j, hctx_idx;
2383         struct blk_mq_hw_ctx *hctx;
2384         struct blk_mq_ctx *ctx;
2385         struct blk_mq_tag_set *set = q->tag_set;
2386
2387         /*
2388          * Avoid others reading imcomplete hctx->cpumask through sysfs
2389          */
2390         mutex_lock(&q->sysfs_lock);
2391
2392         queue_for_each_hw_ctx(q, hctx, i) {
2393                 cpumask_clear(hctx->cpumask);
2394                 hctx->nr_ctx = 0;
2395                 hctx->dispatch_from = NULL;
2396         }
2397
2398         /*
2399          * Map software to hardware queues.
2400          *
2401          * If the cpu isn't present, the cpu is mapped to first hctx.
2402          */
2403         for_each_possible_cpu(i) {
2404                 hctx_idx = set->map[0].mq_map[i];
2405                 /* unmapped hw queue can be remapped after CPU topo changed */
2406                 if (!set->tags[hctx_idx] &&
2407                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2408                         /*
2409                          * If tags initialization fail for some hctx,
2410                          * that hctx won't be brought online.  In this
2411                          * case, remap the current ctx to hctx[0] which
2412                          * is guaranteed to always have tags allocated
2413                          */
2414                         set->map[0].mq_map[i] = 0;
2415                 }
2416
2417                 ctx = per_cpu_ptr(q->queue_ctx, i);
2418                 for (j = 0; j < set->nr_maps; j++) {
2419                         hctx = blk_mq_map_queue_type(q, j, i);
2420
2421                         /*
2422                          * If the CPU is already set in the mask, then we've
2423                          * mapped this one already. This can happen if
2424                          * devices share queues across queue maps.
2425                          */
2426                         if (cpumask_test_cpu(i, hctx->cpumask))
2427                                 continue;
2428
2429                         cpumask_set_cpu(i, hctx->cpumask);
2430                         hctx->type = j;
2431                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2432                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2433
2434                         /*
2435                          * If the nr_ctx type overflows, we have exceeded the
2436                          * amount of sw queues we can support.
2437                          */
2438                         BUG_ON(!hctx->nr_ctx);
2439                 }
2440         }
2441
2442         mutex_unlock(&q->sysfs_lock);
2443
2444         queue_for_each_hw_ctx(q, hctx, i) {
2445                 /*
2446                  * If no software queues are mapped to this hardware queue,
2447                  * disable it and free the request entries.
2448                  */
2449                 if (!hctx->nr_ctx) {
2450                         /* Never unmap queue 0.  We need it as a
2451                          * fallback in case of a new remap fails
2452                          * allocation
2453                          */
2454                         if (i && set->tags[i])
2455                                 blk_mq_free_map_and_requests(set, i);
2456
2457                         hctx->tags = NULL;
2458                         continue;
2459                 }
2460
2461                 hctx->tags = set->tags[i];
2462                 WARN_ON(!hctx->tags);
2463
2464                 /*
2465                  * Set the map size to the number of mapped software queues.
2466                  * This is more accurate and more efficient than looping
2467                  * over all possibly mapped software queues.
2468                  */
2469                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2470
2471                 /*
2472                  * Initialize batch roundrobin counts
2473                  */
2474                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2475                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2476         }
2477 }
2478
2479 /*
2480  * Caller needs to ensure that we're either frozen/quiesced, or that
2481  * the queue isn't live yet.
2482  */
2483 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2484 {
2485         struct blk_mq_hw_ctx *hctx;
2486         int i;
2487
2488         queue_for_each_hw_ctx(q, hctx, i) {
2489                 if (shared)
2490                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2491                 else
2492                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2493         }
2494 }
2495
2496 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2497                                         bool shared)
2498 {
2499         struct request_queue *q;
2500
2501         lockdep_assert_held(&set->tag_list_lock);
2502
2503         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2504                 blk_mq_freeze_queue(q);
2505                 queue_set_hctx_shared(q, shared);
2506                 blk_mq_unfreeze_queue(q);
2507         }
2508 }
2509
2510 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2511 {
2512         struct blk_mq_tag_set *set = q->tag_set;
2513
2514         mutex_lock(&set->tag_list_lock);
2515         list_del_rcu(&q->tag_set_list);
2516         if (list_is_singular(&set->tag_list)) {
2517                 /* just transitioned to unshared */
2518                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2519                 /* update existing queue */
2520                 blk_mq_update_tag_set_depth(set, false);
2521         }
2522         mutex_unlock(&set->tag_list_lock);
2523         INIT_LIST_HEAD(&q->tag_set_list);
2524 }
2525
2526 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2527                                      struct request_queue *q)
2528 {
2529         mutex_lock(&set->tag_list_lock);
2530
2531         /*
2532          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2533          */
2534         if (!list_empty(&set->tag_list) &&
2535             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2536                 set->flags |= BLK_MQ_F_TAG_SHARED;
2537                 /* update existing queue */
2538                 blk_mq_update_tag_set_depth(set, true);
2539         }
2540         if (set->flags & BLK_MQ_F_TAG_SHARED)
2541                 queue_set_hctx_shared(q, true);
2542         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2543
2544         mutex_unlock(&set->tag_list_lock);
2545 }
2546
2547 /* All allocations will be freed in release handler of q->mq_kobj */
2548 static int blk_mq_alloc_ctxs(struct request_queue *q)
2549 {
2550         struct blk_mq_ctxs *ctxs;
2551         int cpu;
2552
2553         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2554         if (!ctxs)
2555                 return -ENOMEM;
2556
2557         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2558         if (!ctxs->queue_ctx)
2559                 goto fail;
2560
2561         for_each_possible_cpu(cpu) {
2562                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2563                 ctx->ctxs = ctxs;
2564         }
2565
2566         q->mq_kobj = &ctxs->kobj;
2567         q->queue_ctx = ctxs->queue_ctx;
2568
2569         return 0;
2570  fail:
2571         kfree(ctxs);
2572         return -ENOMEM;
2573 }
2574
2575 /*
2576  * It is the actual release handler for mq, but we do it from
2577  * request queue's release handler for avoiding use-after-free
2578  * and headache because q->mq_kobj shouldn't have been introduced,
2579  * but we can't group ctx/kctx kobj without it.
2580  */
2581 void blk_mq_release(struct request_queue *q)
2582 {
2583         struct blk_mq_hw_ctx *hctx;
2584         unsigned int i;
2585
2586         /* hctx kobj stays in hctx */
2587         queue_for_each_hw_ctx(q, hctx, i) {
2588                 if (!hctx)
2589                         continue;
2590                 kobject_put(&hctx->kobj);
2591         }
2592
2593         kfree(q->queue_hw_ctx);
2594
2595         /*
2596          * release .mq_kobj and sw queue's kobject now because
2597          * both share lifetime with request queue.
2598          */
2599         blk_mq_sysfs_deinit(q);
2600 }
2601
2602 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2603 {
2604         struct request_queue *uninit_q, *q;
2605
2606         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2607         if (!uninit_q)
2608                 return ERR_PTR(-ENOMEM);
2609
2610         q = blk_mq_init_allocated_queue(set, uninit_q);
2611         if (IS_ERR(q))
2612                 blk_cleanup_queue(uninit_q);
2613
2614         return q;
2615 }
2616 EXPORT_SYMBOL(blk_mq_init_queue);
2617
2618 /*
2619  * Helper for setting up a queue with mq ops, given queue depth, and
2620  * the passed in mq ops flags.
2621  */
2622 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2623                                            const struct blk_mq_ops *ops,
2624                                            unsigned int queue_depth,
2625                                            unsigned int set_flags)
2626 {
2627         struct request_queue *q;
2628         int ret;
2629
2630         memset(set, 0, sizeof(*set));
2631         set->ops = ops;
2632         set->nr_hw_queues = 1;
2633         set->nr_maps = 1;
2634         set->queue_depth = queue_depth;
2635         set->numa_node = NUMA_NO_NODE;
2636         set->flags = set_flags;
2637
2638         ret = blk_mq_alloc_tag_set(set);
2639         if (ret)
2640                 return ERR_PTR(ret);
2641
2642         q = blk_mq_init_queue(set);
2643         if (IS_ERR(q)) {
2644                 blk_mq_free_tag_set(set);
2645                 return q;
2646         }
2647
2648         return q;
2649 }
2650 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2651
2652 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2653 {
2654         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2655
2656         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2657                            __alignof__(struct blk_mq_hw_ctx)) !=
2658                      sizeof(struct blk_mq_hw_ctx));
2659
2660         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2661                 hw_ctx_size += sizeof(struct srcu_struct);
2662
2663         return hw_ctx_size;
2664 }
2665
2666 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2667                 struct blk_mq_tag_set *set, struct request_queue *q,
2668                 int hctx_idx, int node)
2669 {
2670         struct blk_mq_hw_ctx *hctx;
2671
2672         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2673                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2674                         node);
2675         if (!hctx)
2676                 return NULL;
2677
2678         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2679                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2680                                 node)) {
2681                 kfree(hctx);
2682                 return NULL;
2683         }
2684
2685         atomic_set(&hctx->nr_active, 0);
2686         hctx->numa_node = node;
2687         hctx->queue_num = hctx_idx;
2688
2689         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2690                 free_cpumask_var(hctx->cpumask);
2691                 kfree(hctx);
2692                 return NULL;
2693         }
2694         blk_mq_hctx_kobj_init(hctx);
2695
2696         return hctx;
2697 }
2698
2699 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2700                                                 struct request_queue *q)
2701 {
2702         int i, j, end;
2703         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2704
2705         /* protect against switching io scheduler  */
2706         mutex_lock(&q->sysfs_lock);
2707         for (i = 0; i < set->nr_hw_queues; i++) {
2708                 int node;
2709                 struct blk_mq_hw_ctx *hctx;
2710
2711                 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2712                 /*
2713                  * If the hw queue has been mapped to another numa node,
2714                  * we need to realloc the hctx. If allocation fails, fallback
2715                  * to use the previous one.
2716                  */
2717                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2718                         continue;
2719
2720                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2721                 if (hctx) {
2722                         if (hctxs[i]) {
2723                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2724                                 kobject_put(&hctxs[i]->kobj);
2725                         }
2726                         hctxs[i] = hctx;
2727                 } else {
2728                         if (hctxs[i])
2729                                 pr_warn("Allocate new hctx on node %d fails,\
2730                                                 fallback to previous one on node %d\n",
2731                                                 node, hctxs[i]->numa_node);
2732                         else
2733                                 break;
2734                 }
2735         }
2736         /*
2737          * Increasing nr_hw_queues fails. Free the newly allocated
2738          * hctxs and keep the previous q->nr_hw_queues.
2739          */
2740         if (i != set->nr_hw_queues) {
2741                 j = q->nr_hw_queues;
2742                 end = i;
2743         } else {
2744                 j = i;
2745                 end = q->nr_hw_queues;
2746                 q->nr_hw_queues = set->nr_hw_queues;
2747         }
2748
2749         for (; j < end; j++) {
2750                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2751
2752                 if (hctx) {
2753                         if (hctx->tags)
2754                                 blk_mq_free_map_and_requests(set, j);
2755                         blk_mq_exit_hctx(q, set, hctx, j);
2756                         kobject_put(&hctx->kobj);
2757                         hctxs[j] = NULL;
2758
2759                 }
2760         }
2761         mutex_unlock(&q->sysfs_lock);
2762 }
2763
2764 /*
2765  * Maximum number of hardware queues we support. For single sets, we'll never
2766  * have more than the CPUs (software queues). For multiple sets, the tag_set
2767  * user may have set ->nr_hw_queues larger.
2768  */
2769 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2770 {
2771         if (set->nr_maps == 1)
2772                 return nr_cpu_ids;
2773
2774         return max(set->nr_hw_queues, nr_cpu_ids);
2775 }
2776
2777 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2778                                                   struct request_queue *q)
2779 {
2780         /* mark the queue as mq asap */
2781         q->mq_ops = set->ops;
2782
2783         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2784                                              blk_mq_poll_stats_bkt,
2785                                              BLK_MQ_POLL_STATS_BKTS, q);
2786         if (!q->poll_cb)
2787                 goto err_exit;
2788
2789         if (blk_mq_alloc_ctxs(q))
2790                 goto err_exit;
2791
2792         /* init q->mq_kobj and sw queues' kobjects */
2793         blk_mq_sysfs_init(q);
2794
2795         q->nr_queues = nr_hw_queues(set);
2796         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2797                                                 GFP_KERNEL, set->numa_node);
2798         if (!q->queue_hw_ctx)
2799                 goto err_sys_init;
2800
2801         blk_mq_realloc_hw_ctxs(set, q);
2802         if (!q->nr_hw_queues)
2803                 goto err_hctxs;
2804
2805         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2806         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2807
2808         q->tag_set = set;
2809
2810         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2811
2812         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2813                 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2814
2815         q->sg_reserved_size = INT_MAX;
2816
2817         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2818         INIT_LIST_HEAD(&q->requeue_list);
2819         spin_lock_init(&q->requeue_lock);
2820
2821         blk_queue_make_request(q, blk_mq_make_request);
2822         if (q->mq_ops->poll)
2823                 q->poll_fn = blk_mq_poll;
2824
2825         /*
2826          * Do this after blk_queue_make_request() overrides it...
2827          */
2828         q->nr_requests = set->queue_depth;
2829
2830         /*
2831          * Default to classic polling
2832          */
2833         q->poll_nsec = -1;
2834
2835         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2836         blk_mq_add_queue_tag_set(set, q);
2837         blk_mq_map_swqueue(q);
2838
2839         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2840                 int ret;
2841
2842                 ret = elevator_init_mq(q);
2843                 if (ret)
2844                         return ERR_PTR(ret);
2845         }
2846
2847         return q;
2848
2849 err_hctxs:
2850         kfree(q->queue_hw_ctx);
2851 err_sys_init:
2852         blk_mq_sysfs_deinit(q);
2853 err_exit:
2854         q->mq_ops = NULL;
2855         return ERR_PTR(-ENOMEM);
2856 }
2857 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2858
2859 void blk_mq_free_queue(struct request_queue *q)
2860 {
2861         struct blk_mq_tag_set   *set = q->tag_set;
2862
2863         blk_mq_del_queue_tag_set(q);
2864         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2865 }
2866
2867 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2868 {
2869         int i;
2870
2871         for (i = 0; i < set->nr_hw_queues; i++)
2872                 if (!__blk_mq_alloc_rq_map(set, i))
2873                         goto out_unwind;
2874
2875         return 0;
2876
2877 out_unwind:
2878         while (--i >= 0)
2879                 blk_mq_free_rq_map(set->tags[i]);
2880
2881         return -ENOMEM;
2882 }
2883
2884 /*
2885  * Allocate the request maps associated with this tag_set. Note that this
2886  * may reduce the depth asked for, if memory is tight. set->queue_depth
2887  * will be updated to reflect the allocated depth.
2888  */
2889 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2890 {
2891         unsigned int depth;
2892         int err;
2893
2894         depth = set->queue_depth;
2895         do {
2896                 err = __blk_mq_alloc_rq_maps(set);
2897                 if (!err)
2898                         break;
2899
2900                 set->queue_depth >>= 1;
2901                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2902                         err = -ENOMEM;
2903                         break;
2904                 }
2905         } while (set->queue_depth);
2906
2907         if (!set->queue_depth || err) {
2908                 pr_err("blk-mq: failed to allocate request map\n");
2909                 return -ENOMEM;
2910         }
2911
2912         if (depth != set->queue_depth)
2913                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2914                                                 depth, set->queue_depth);
2915
2916         return 0;
2917 }
2918
2919 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2920 {
2921         if (set->ops->map_queues) {
2922                 int i;
2923
2924                 /*
2925                  * transport .map_queues is usually done in the following
2926                  * way:
2927                  *
2928                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2929                  *      mask = get_cpu_mask(queue)
2930                  *      for_each_cpu(cpu, mask)
2931                  *              set->map[x].mq_map[cpu] = queue;
2932                  * }
2933                  *
2934                  * When we need to remap, the table has to be cleared for
2935                  * killing stale mapping since one CPU may not be mapped
2936                  * to any hw queue.
2937                  */
2938                 for (i = 0; i < set->nr_maps; i++)
2939                         blk_mq_clear_mq_map(&set->map[i]);
2940
2941                 return set->ops->map_queues(set);
2942         } else {
2943                 BUG_ON(set->nr_maps > 1);
2944                 return blk_mq_map_queues(&set->map[0]);
2945         }
2946 }
2947
2948 /*
2949  * Alloc a tag set to be associated with one or more request queues.
2950  * May fail with EINVAL for various error conditions. May adjust the
2951  * requested depth down, if it's too large. In that case, the set
2952  * value will be stored in set->queue_depth.
2953  */
2954 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2955 {
2956         int i, ret;
2957
2958         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2959
2960         if (!set->nr_hw_queues)
2961                 return -EINVAL;
2962         if (!set->queue_depth)
2963                 return -EINVAL;
2964         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2965                 return -EINVAL;
2966
2967         if (!set->ops->queue_rq)
2968                 return -EINVAL;
2969
2970         if (!set->ops->get_budget ^ !set->ops->put_budget)
2971                 return -EINVAL;
2972
2973         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2974                 pr_info("blk-mq: reduced tag depth to %u\n",
2975                         BLK_MQ_MAX_DEPTH);
2976                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2977         }
2978
2979         if (!set->nr_maps)
2980                 set->nr_maps = 1;
2981         else if (set->nr_maps > HCTX_MAX_TYPES)
2982                 return -EINVAL;
2983
2984         /*
2985          * If a crashdump is active, then we are potentially in a very
2986          * memory constrained environment. Limit us to 1 queue and
2987          * 64 tags to prevent using too much memory.
2988          */
2989         if (is_kdump_kernel()) {
2990                 set->nr_hw_queues = 1;
2991                 set->queue_depth = min(64U, set->queue_depth);
2992         }
2993         /*
2994          * There is no use for more h/w queues than cpus if we just have
2995          * a single map
2996          */
2997         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
2998                 set->nr_hw_queues = nr_cpu_ids;
2999
3000         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3001                                  GFP_KERNEL, set->numa_node);
3002         if (!set->tags)
3003                 return -ENOMEM;
3004
3005         ret = -ENOMEM;
3006         for (i = 0; i < set->nr_maps; i++) {
3007                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3008                                                   sizeof(struct blk_mq_queue_map),
3009                                                   GFP_KERNEL, set->numa_node);
3010                 if (!set->map[i].mq_map)
3011                         goto out_free_mq_map;
3012                 set->map[i].nr_queues = set->nr_hw_queues;
3013         }
3014
3015         ret = blk_mq_update_queue_map(set);
3016         if (ret)
3017                 goto out_free_mq_map;
3018
3019         ret = blk_mq_alloc_rq_maps(set);
3020         if (ret)
3021                 goto out_free_mq_map;
3022
3023         mutex_init(&set->tag_list_lock);
3024         INIT_LIST_HEAD(&set->tag_list);
3025
3026         return 0;
3027
3028 out_free_mq_map:
3029         for (i = 0; i < set->nr_maps; i++) {
3030                 kfree(set->map[i].mq_map);
3031                 set->map[i].mq_map = NULL;
3032         }
3033         kfree(set->tags);
3034         set->tags = NULL;
3035         return ret;
3036 }
3037 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3038
3039 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3040 {
3041         int i, j;
3042
3043         for (i = 0; i < nr_hw_queues(set); i++)
3044                 blk_mq_free_map_and_requests(set, i);
3045
3046         for (j = 0; j < set->nr_maps; j++) {
3047                 kfree(set->map[j].mq_map);
3048                 set->map[j].mq_map = NULL;
3049         }
3050
3051         kfree(set->tags);
3052         set->tags = NULL;
3053 }
3054 EXPORT_SYMBOL(blk_mq_free_tag_set);
3055
3056 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3057 {
3058         struct blk_mq_tag_set *set = q->tag_set;
3059         struct blk_mq_hw_ctx *hctx;
3060         int i, ret;
3061
3062         if (!set)
3063                 return -EINVAL;
3064
3065         blk_mq_freeze_queue(q);
3066         blk_mq_quiesce_queue(q);
3067
3068         ret = 0;
3069         queue_for_each_hw_ctx(q, hctx, i) {
3070                 if (!hctx->tags)
3071                         continue;
3072                 /*
3073                  * If we're using an MQ scheduler, just update the scheduler
3074                  * queue depth. This is similar to what the old code would do.
3075                  */
3076                 if (!hctx->sched_tags) {
3077                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3078                                                         false);
3079                 } else {
3080                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3081                                                         nr, true);
3082                 }
3083                 if (ret)
3084                         break;
3085         }
3086
3087         if (!ret)
3088                 q->nr_requests = nr;
3089
3090         blk_mq_unquiesce_queue(q);
3091         blk_mq_unfreeze_queue(q);
3092
3093         return ret;
3094 }
3095
3096 /*
3097  * request_queue and elevator_type pair.
3098  * It is just used by __blk_mq_update_nr_hw_queues to cache
3099  * the elevator_type associated with a request_queue.
3100  */
3101 struct blk_mq_qe_pair {
3102         struct list_head node;
3103         struct request_queue *q;
3104         struct elevator_type *type;
3105 };
3106
3107 /*
3108  * Cache the elevator_type in qe pair list and switch the
3109  * io scheduler to 'none'
3110  */
3111 static bool blk_mq_elv_switch_none(struct list_head *head,
3112                 struct request_queue *q)
3113 {
3114         struct blk_mq_qe_pair *qe;
3115
3116         if (!q->elevator)
3117                 return true;
3118
3119         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3120         if (!qe)
3121                 return false;
3122
3123         INIT_LIST_HEAD(&qe->node);
3124         qe->q = q;
3125         qe->type = q->elevator->type;
3126         list_add(&qe->node, head);
3127
3128         mutex_lock(&q->sysfs_lock);
3129         /*
3130          * After elevator_switch_mq, the previous elevator_queue will be
3131          * released by elevator_release. The reference of the io scheduler
3132          * module get by elevator_get will also be put. So we need to get
3133          * a reference of the io scheduler module here to prevent it to be
3134          * removed.
3135          */
3136         __module_get(qe->type->elevator_owner);
3137         elevator_switch_mq(q, NULL);
3138         mutex_unlock(&q->sysfs_lock);
3139
3140         return true;
3141 }
3142
3143 static void blk_mq_elv_switch_back(struct list_head *head,
3144                 struct request_queue *q)
3145 {
3146         struct blk_mq_qe_pair *qe;
3147         struct elevator_type *t = NULL;
3148
3149         list_for_each_entry(qe, head, node)
3150                 if (qe->q == q) {
3151                         t = qe->type;
3152                         break;
3153                 }
3154
3155         if (!t)
3156                 return;
3157
3158         list_del(&qe->node);
3159         kfree(qe);
3160
3161         mutex_lock(&q->sysfs_lock);
3162         elevator_switch_mq(q, t);
3163         mutex_unlock(&q->sysfs_lock);
3164 }
3165
3166 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3167                                                         int nr_hw_queues)
3168 {
3169         struct request_queue *q;
3170         LIST_HEAD(head);
3171         int prev_nr_hw_queues;
3172
3173         lockdep_assert_held(&set->tag_list_lock);
3174
3175         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3176                 nr_hw_queues = nr_cpu_ids;
3177         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3178                 return;
3179
3180         list_for_each_entry(q, &set->tag_list, tag_set_list)
3181                 blk_mq_freeze_queue(q);
3182         /*
3183          * Sync with blk_mq_queue_tag_busy_iter.
3184          */
3185         synchronize_rcu();
3186         /*
3187          * Switch IO scheduler to 'none', cleaning up the data associated
3188          * with the previous scheduler. We will switch back once we are done
3189          * updating the new sw to hw queue mappings.
3190          */
3191         list_for_each_entry(q, &set->tag_list, tag_set_list)
3192                 if (!blk_mq_elv_switch_none(&head, q))
3193                         goto switch_back;
3194
3195         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3196                 blk_mq_debugfs_unregister_hctxs(q);
3197                 blk_mq_sysfs_unregister(q);
3198         }
3199
3200         prev_nr_hw_queues = set->nr_hw_queues;
3201         set->nr_hw_queues = nr_hw_queues;
3202         blk_mq_update_queue_map(set);
3203 fallback:
3204         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3205                 blk_mq_realloc_hw_ctxs(set, q);
3206                 if (q->nr_hw_queues != set->nr_hw_queues) {
3207                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3208                                         nr_hw_queues, prev_nr_hw_queues);
3209                         set->nr_hw_queues = prev_nr_hw_queues;
3210                         blk_mq_map_queues(&set->map[0]);
3211                         goto fallback;
3212                 }
3213                 blk_mq_map_swqueue(q);
3214         }
3215
3216         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3217                 blk_mq_sysfs_register(q);
3218                 blk_mq_debugfs_register_hctxs(q);
3219         }
3220
3221 switch_back:
3222         list_for_each_entry(q, &set->tag_list, tag_set_list)
3223                 blk_mq_elv_switch_back(&head, q);
3224
3225         list_for_each_entry(q, &set->tag_list, tag_set_list)
3226                 blk_mq_unfreeze_queue(q);
3227 }
3228
3229 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3230 {
3231         mutex_lock(&set->tag_list_lock);
3232         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3233         mutex_unlock(&set->tag_list_lock);
3234 }
3235 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3236
3237 /* Enable polling stats and return whether they were already enabled. */
3238 static bool blk_poll_stats_enable(struct request_queue *q)
3239 {
3240         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3241             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3242                 return true;
3243         blk_stat_add_callback(q, q->poll_cb);
3244         return false;
3245 }
3246
3247 static void blk_mq_poll_stats_start(struct request_queue *q)
3248 {
3249         /*
3250          * We don't arm the callback if polling stats are not enabled or the
3251          * callback is already active.
3252          */
3253         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3254             blk_stat_is_active(q->poll_cb))
3255                 return;
3256
3257         blk_stat_activate_msecs(q->poll_cb, 100);
3258 }
3259
3260 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3261 {
3262         struct request_queue *q = cb->data;
3263         int bucket;
3264
3265         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3266                 if (cb->stat[bucket].nr_samples)
3267                         q->poll_stat[bucket] = cb->stat[bucket];
3268         }
3269 }
3270
3271 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3272                                        struct blk_mq_hw_ctx *hctx,
3273                                        struct request *rq)
3274 {
3275         unsigned long ret = 0;
3276         int bucket;
3277
3278         /*
3279          * If stats collection isn't on, don't sleep but turn it on for
3280          * future users
3281          */
3282         if (!blk_poll_stats_enable(q))
3283                 return 0;
3284
3285         /*
3286          * As an optimistic guess, use half of the mean service time
3287          * for this type of request. We can (and should) make this smarter.
3288          * For instance, if the completion latencies are tight, we can
3289          * get closer than just half the mean. This is especially
3290          * important on devices where the completion latencies are longer
3291          * than ~10 usec. We do use the stats for the relevant IO size
3292          * if available which does lead to better estimates.
3293          */
3294         bucket = blk_mq_poll_stats_bkt(rq);
3295         if (bucket < 0)
3296                 return ret;
3297
3298         if (q->poll_stat[bucket].nr_samples)
3299                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3300
3301         return ret;
3302 }
3303
3304 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3305                                      struct blk_mq_hw_ctx *hctx,
3306                                      struct request *rq)
3307 {
3308         struct hrtimer_sleeper hs;
3309         enum hrtimer_mode mode;
3310         unsigned int nsecs;
3311         ktime_t kt;
3312
3313         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3314                 return false;
3315
3316         /*
3317          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3318          *
3319          *  0:  use half of prev avg
3320          * >0:  use this specific value
3321          */
3322         if (q->poll_nsec > 0)
3323                 nsecs = q->poll_nsec;
3324         else
3325                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3326
3327         if (!nsecs)
3328                 return false;
3329
3330         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3331
3332         /*
3333          * This will be replaced with the stats tracking code, using
3334          * 'avg_completion_time / 2' as the pre-sleep target.
3335          */
3336         kt = nsecs;
3337
3338         mode = HRTIMER_MODE_REL;
3339         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3340         hrtimer_set_expires(&hs.timer, kt);
3341
3342         hrtimer_init_sleeper(&hs, current);
3343         do {
3344                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3345                         break;
3346                 set_current_state(TASK_UNINTERRUPTIBLE);
3347                 hrtimer_start_expires(&hs.timer, mode);
3348                 if (hs.task)
3349                         io_schedule();
3350                 hrtimer_cancel(&hs.timer);
3351                 mode = HRTIMER_MODE_ABS;
3352         } while (hs.task && !signal_pending(current));
3353
3354         __set_current_state(TASK_RUNNING);
3355         destroy_hrtimer_on_stack(&hs.timer);
3356         return true;
3357 }
3358
3359 static bool blk_mq_poll_hybrid(struct request_queue *q,
3360                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3361 {
3362         struct request *rq;
3363
3364         if (q->poll_nsec == -1)
3365                 return false;
3366
3367         if (!blk_qc_t_is_internal(cookie))
3368                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3369         else {
3370                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3371                 /*
3372                  * With scheduling, if the request has completed, we'll
3373                  * get a NULL return here, as we clear the sched tag when
3374                  * that happens. The request still remains valid, like always,
3375                  * so we should be safe with just the NULL check.
3376                  */
3377                 if (!rq)
3378                         return false;
3379         }
3380
3381         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3382 }
3383
3384 static int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3385 {
3386         struct blk_mq_hw_ctx *hctx;
3387         long state;
3388
3389         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3390                 return 0;
3391
3392         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3393
3394         /*
3395          * If we sleep, have the caller restart the poll loop to reset
3396          * the state. Like for the other success return cases, the
3397          * caller is responsible for checking if the IO completed. If
3398          * the IO isn't complete, we'll get called again and will go
3399          * straight to the busy poll loop.
3400          */
3401         if (blk_mq_poll_hybrid(q, hctx, cookie))
3402                 return 1;
3403
3404         hctx->poll_considered++;
3405
3406         state = current->state;
3407         do {
3408                 int ret;
3409
3410                 hctx->poll_invoked++;
3411
3412                 ret = q->mq_ops->poll(hctx);
3413                 if (ret > 0) {
3414                         hctx->poll_success++;
3415                         __set_current_state(TASK_RUNNING);
3416                         return ret;
3417                 }
3418
3419                 if (signal_pending_state(state, current))
3420                         __set_current_state(TASK_RUNNING);
3421
3422                 if (current->state == TASK_RUNNING)
3423                         return 1;
3424                 if (ret < 0 || !spin)
3425                         break;
3426                 cpu_relax();
3427         } while (!need_resched());
3428
3429         __set_current_state(TASK_RUNNING);
3430         return 0;
3431 }
3432
3433 unsigned int blk_mq_rq_cpu(struct request *rq)
3434 {
3435         return rq->mq_ctx->cpu;
3436 }
3437 EXPORT_SYMBOL(blk_mq_rq_cpu);
3438
3439 static int __init blk_mq_init(void)
3440 {
3441         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3442                                 blk_mq_hctx_notify_dead);
3443         return 0;
3444 }
3445 subsys_initcall(blk_mq_init);