]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
blkcg: introduce common blkg association logic
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         const int bit = ctx->index_hw[hctx->type];
78
79         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80                 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         const int bit = ctx->index_hw[hctx->type];
87
88         sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92         struct hd_struct *part;
93         unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97                                   struct request *rq, void *priv,
98                                   bool reserved)
99 {
100         struct mq_inflight *mi = priv;
101
102         /*
103          * index[0] counts the specific partition that was asked for. index[1]
104          * counts the ones that are active on the whole device, so increment
105          * that if mi->part is indeed a partition, and not a whole device.
106          */
107         if (rq->part == mi->part)
108                 mi->inflight[0]++;
109         if (mi->part->partno)
110                 mi->inflight[1]++;
111
112         return true;
113 }
114
115 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
116                       unsigned int inflight[2])
117 {
118         struct mq_inflight mi = { .part = part, .inflight = inflight, };
119
120         inflight[0] = inflight[1] = 0;
121         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 }
123
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125                                      struct request *rq, void *priv,
126                                      bool reserved)
127 {
128         struct mq_inflight *mi = priv;
129
130         if (rq->part == mi->part)
131                 mi->inflight[rq_data_dir(rq)]++;
132
133         return true;
134 }
135
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137                          unsigned int inflight[2])
138 {
139         struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141         inflight[0] = inflight[1] = 0;
142         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147         int freeze_depth;
148
149         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
150         if (freeze_depth == 1) {
151                 percpu_ref_kill(&q->q_usage_counter);
152                 if (queue_is_mq(q))
153                         blk_mq_run_hw_queues(q, false);
154         }
155 }
156 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
157
158 void blk_mq_freeze_queue_wait(struct request_queue *q)
159 {
160         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
163
164 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
165                                      unsigned long timeout)
166 {
167         return wait_event_timeout(q->mq_freeze_wq,
168                                         percpu_ref_is_zero(&q->q_usage_counter),
169                                         timeout);
170 }
171 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
172
173 /*
174  * Guarantee no request is in use, so we can change any data structure of
175  * the queue afterward.
176  */
177 void blk_freeze_queue(struct request_queue *q)
178 {
179         /*
180          * In the !blk_mq case we are only calling this to kill the
181          * q_usage_counter, otherwise this increases the freeze depth
182          * and waits for it to return to zero.  For this reason there is
183          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
184          * exported to drivers as the only user for unfreeze is blk_mq.
185          */
186         blk_freeze_queue_start(q);
187         blk_mq_freeze_queue_wait(q);
188 }
189
190 void blk_mq_freeze_queue(struct request_queue *q)
191 {
192         /*
193          * ...just an alias to keep freeze and unfreeze actions balanced
194          * in the blk_mq_* namespace
195          */
196         blk_freeze_queue(q);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
199
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202         int freeze_depth;
203
204         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
205         WARN_ON_ONCE(freeze_depth < 0);
206         if (!freeze_depth) {
207                 percpu_ref_resurrect(&q->q_usage_counter);
208                 wake_up_all(&q->mq_freeze_wq);
209         }
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
212
213 /*
214  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
215  * mpt3sas driver such that this function can be removed.
216  */
217 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
218 {
219         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222
223 /**
224  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
225  * @q: request queue.
226  *
227  * Note: this function does not prevent that the struct request end_io()
228  * callback function is invoked. Once this function is returned, we make
229  * sure no dispatch can happen until the queue is unquiesced via
230  * blk_mq_unquiesce_queue().
231  */
232 void blk_mq_quiesce_queue(struct request_queue *q)
233 {
234         struct blk_mq_hw_ctx *hctx;
235         unsigned int i;
236         bool rcu = false;
237
238         blk_mq_quiesce_queue_nowait(q);
239
240         queue_for_each_hw_ctx(q, hctx, i) {
241                 if (hctx->flags & BLK_MQ_F_BLOCKING)
242                         synchronize_srcu(hctx->srcu);
243                 else
244                         rcu = true;
245         }
246         if (rcu)
247                 synchronize_rcu();
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
261
262         /* dispatch requests which are inserted during quiescing */
263         blk_mq_run_hw_queues(q, true);
264 }
265 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
266
267 void blk_mq_wake_waiters(struct request_queue *q)
268 {
269         struct blk_mq_hw_ctx *hctx;
270         unsigned int i;
271
272         queue_for_each_hw_ctx(q, hctx, i)
273                 if (blk_mq_hw_queue_mapped(hctx))
274                         blk_mq_tag_wakeup_all(hctx->tags, true);
275 }
276
277 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
278 {
279         return blk_mq_has_free_tags(hctx->tags);
280 }
281 EXPORT_SYMBOL(blk_mq_can_queue);
282
283 /*
284  * Only need start/end time stamping if we have stats enabled, or using
285  * an IO scheduler.
286  */
287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289         return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
290 }
291
292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293                 unsigned int tag, unsigned int op)
294 {
295         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296         struct request *rq = tags->static_rqs[tag];
297         req_flags_t rq_flags = 0;
298
299         if (data->flags & BLK_MQ_REQ_INTERNAL) {
300                 rq->tag = -1;
301                 rq->internal_tag = tag;
302         } else {
303                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
304                         rq_flags = RQF_MQ_INFLIGHT;
305                         atomic_inc(&data->hctx->nr_active);
306                 }
307                 rq->tag = tag;
308                 rq->internal_tag = -1;
309                 data->hctx->tags->rqs[rq->tag] = rq;
310         }
311
312         /* csd/requeue_work/fifo_time is initialized before use */
313         rq->q = data->q;
314         rq->mq_ctx = data->ctx;
315         rq->mq_hctx = data->hctx;
316         rq->rq_flags = rq_flags;
317         rq->cmd_flags = op;
318         if (data->flags & BLK_MQ_REQ_PREEMPT)
319                 rq->rq_flags |= RQF_PREEMPT;
320         if (blk_queue_io_stat(data->q))
321                 rq->rq_flags |= RQF_IO_STAT;
322         INIT_LIST_HEAD(&rq->queuelist);
323         INIT_HLIST_NODE(&rq->hash);
324         RB_CLEAR_NODE(&rq->rb_node);
325         rq->rq_disk = NULL;
326         rq->part = NULL;
327         if (blk_mq_need_time_stamp(rq))
328                 rq->start_time_ns = ktime_get_ns();
329         else
330                 rq->start_time_ns = 0;
331         rq->io_start_time_ns = 0;
332         rq->nr_phys_segments = 0;
333 #if defined(CONFIG_BLK_DEV_INTEGRITY)
334         rq->nr_integrity_segments = 0;
335 #endif
336         rq->special = NULL;
337         /* tag was already set */
338         rq->extra_len = 0;
339         WRITE_ONCE(rq->deadline, 0);
340
341         rq->timeout = 0;
342
343         rq->end_io = NULL;
344         rq->end_io_data = NULL;
345         rq->next_rq = NULL;
346
347         data->ctx->rq_dispatched[op_is_sync(op)]++;
348         refcount_set(&rq->ref, 1);
349         return rq;
350 }
351
352 static struct request *blk_mq_get_request(struct request_queue *q,
353                                           struct bio *bio,
354                                           struct blk_mq_alloc_data *data)
355 {
356         struct elevator_queue *e = q->elevator;
357         struct request *rq;
358         unsigned int tag;
359         bool put_ctx_on_error = false;
360
361         blk_queue_enter_live(q);
362         data->q = q;
363         if (likely(!data->ctx)) {
364                 data->ctx = blk_mq_get_ctx(q);
365                 put_ctx_on_error = true;
366         }
367         if (likely(!data->hctx))
368                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
369                                                 data->ctx->cpu);
370         if (data->cmd_flags & REQ_NOWAIT)
371                 data->flags |= BLK_MQ_REQ_NOWAIT;
372
373         if (e) {
374                 data->flags |= BLK_MQ_REQ_INTERNAL;
375
376                 /*
377                  * Flush requests are special and go directly to the
378                  * dispatch list. Don't include reserved tags in the
379                  * limiting, as it isn't useful.
380                  */
381                 if (!op_is_flush(data->cmd_flags) &&
382                     e->type->ops.limit_depth &&
383                     !(data->flags & BLK_MQ_REQ_RESERVED))
384                         e->type->ops.limit_depth(data->cmd_flags, data);
385         } else {
386                 blk_mq_tag_busy(data->hctx);
387         }
388
389         tag = blk_mq_get_tag(data);
390         if (tag == BLK_MQ_TAG_FAIL) {
391                 if (put_ctx_on_error) {
392                         blk_mq_put_ctx(data->ctx);
393                         data->ctx = NULL;
394                 }
395                 blk_queue_exit(q);
396                 return NULL;
397         }
398
399         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
400         if (!op_is_flush(data->cmd_flags)) {
401                 rq->elv.icq = NULL;
402                 if (e && e->type->ops.prepare_request) {
403                         if (e->type->icq_cache)
404                                 blk_mq_sched_assign_ioc(rq);
405
406                         e->type->ops.prepare_request(rq, bio);
407                         rq->rq_flags |= RQF_ELVPRIV;
408                 }
409         }
410         data->hctx->queued++;
411         return rq;
412 }
413
414 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
415                 blk_mq_req_flags_t flags)
416 {
417         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
418         struct request *rq;
419         int ret;
420
421         ret = blk_queue_enter(q, flags);
422         if (ret)
423                 return ERR_PTR(ret);
424
425         rq = blk_mq_get_request(q, NULL, &alloc_data);
426         blk_queue_exit(q);
427
428         if (!rq)
429                 return ERR_PTR(-EWOULDBLOCK);
430
431         blk_mq_put_ctx(alloc_data.ctx);
432
433         rq->__data_len = 0;
434         rq->__sector = (sector_t) -1;
435         rq->bio = rq->biotail = NULL;
436         return rq;
437 }
438 EXPORT_SYMBOL(blk_mq_alloc_request);
439
440 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
441         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
442 {
443         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
444         struct request *rq;
445         unsigned int cpu;
446         int ret;
447
448         /*
449          * If the tag allocator sleeps we could get an allocation for a
450          * different hardware context.  No need to complicate the low level
451          * allocator for this for the rare use case of a command tied to
452          * a specific queue.
453          */
454         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
455                 return ERR_PTR(-EINVAL);
456
457         if (hctx_idx >= q->nr_hw_queues)
458                 return ERR_PTR(-EIO);
459
460         ret = blk_queue_enter(q, flags);
461         if (ret)
462                 return ERR_PTR(ret);
463
464         /*
465          * Check if the hardware context is actually mapped to anything.
466          * If not tell the caller that it should skip this queue.
467          */
468         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
470                 blk_queue_exit(q);
471                 return ERR_PTR(-EXDEV);
472         }
473         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
474         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
475
476         rq = blk_mq_get_request(q, NULL, &alloc_data);
477         blk_queue_exit(q);
478
479         if (!rq)
480                 return ERR_PTR(-EWOULDBLOCK);
481
482         return rq;
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
486 static void __blk_mq_free_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489         struct blk_mq_ctx *ctx = rq->mq_ctx;
490         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491         const int sched_tag = rq->internal_tag;
492
493         blk_pm_mark_last_busy(rq);
494         rq->mq_hctx = NULL;
495         if (rq->tag != -1)
496                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
497         if (sched_tag != -1)
498                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
499         blk_mq_sched_restart(hctx);
500         blk_queue_exit(q);
501 }
502
503 void blk_mq_free_request(struct request *rq)
504 {
505         struct request_queue *q = rq->q;
506         struct elevator_queue *e = q->elevator;
507         struct blk_mq_ctx *ctx = rq->mq_ctx;
508         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
509
510         if (rq->rq_flags & RQF_ELVPRIV) {
511                 if (e && e->type->ops.finish_request)
512                         e->type->ops.finish_request(rq);
513                 if (rq->elv.icq) {
514                         put_io_context(rq->elv.icq->ioc);
515                         rq->elv.icq = NULL;
516                 }
517         }
518
519         ctx->rq_completed[rq_is_sync(rq)]++;
520         if (rq->rq_flags & RQF_MQ_INFLIGHT)
521                 atomic_dec(&hctx->nr_active);
522
523         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
524                 laptop_io_completion(q->backing_dev_info);
525
526         rq_qos_done(q, rq);
527
528         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
529         if (refcount_dec_and_test(&rq->ref))
530                 __blk_mq_free_request(rq);
531 }
532 EXPORT_SYMBOL_GPL(blk_mq_free_request);
533
534 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
535 {
536         u64 now = 0;
537
538         if (blk_mq_need_time_stamp(rq))
539                 now = ktime_get_ns();
540
541         if (rq->rq_flags & RQF_STATS) {
542                 blk_mq_poll_stats_start(rq->q);
543                 blk_stat_add(rq, now);
544         }
545
546         if (rq->internal_tag != -1)
547                 blk_mq_sched_completed_request(rq, now);
548
549         blk_account_io_done(rq, now);
550
551         if (rq->end_io) {
552                 rq_qos_done(rq->q, rq);
553                 rq->end_io(rq, error);
554         } else {
555                 if (unlikely(blk_bidi_rq(rq)))
556                         blk_mq_free_request(rq->next_rq);
557                 blk_mq_free_request(rq);
558         }
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565                 BUG();
566         __blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569
570 static void __blk_mq_complete_request_remote(void *data)
571 {
572         struct request *rq = data;
573         struct request_queue *q = rq->q;
574
575         q->mq_ops->complete(rq);
576 }
577
578 static void __blk_mq_complete_request(struct request *rq)
579 {
580         struct blk_mq_ctx *ctx = rq->mq_ctx;
581         struct request_queue *q = rq->q;
582         bool shared = false;
583         int cpu;
584
585         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
586         /*
587          * Most of single queue controllers, there is only one irq vector
588          * for handling IO completion, and the only irq's affinity is set
589          * as all possible CPUs. On most of ARCHs, this affinity means the
590          * irq is handled on one specific CPU.
591          *
592          * So complete IO reqeust in softirq context in case of single queue
593          * for not degrading IO performance by irqsoff latency.
594          */
595         if (q->nr_hw_queues == 1) {
596                 __blk_complete_request(rq);
597                 return;
598         }
599
600         /*
601          * For a polled request, always complete locallly, it's pointless
602          * to redirect the completion.
603          */
604         if ((rq->cmd_flags & REQ_HIPRI) ||
605             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
606                 q->mq_ops->complete(rq);
607                 return;
608         }
609
610         cpu = get_cpu();
611         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
612                 shared = cpus_share_cache(cpu, ctx->cpu);
613
614         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
615                 rq->csd.func = __blk_mq_complete_request_remote;
616                 rq->csd.info = rq;
617                 rq->csd.flags = 0;
618                 smp_call_function_single_async(ctx->cpu, &rq->csd);
619         } else {
620                 q->mq_ops->complete(rq);
621         }
622         put_cpu();
623 }
624
625 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
626         __releases(hctx->srcu)
627 {
628         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
629                 rcu_read_unlock();
630         else
631                 srcu_read_unlock(hctx->srcu, srcu_idx);
632 }
633
634 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
635         __acquires(hctx->srcu)
636 {
637         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
638                 /* shut up gcc false positive */
639                 *srcu_idx = 0;
640                 rcu_read_lock();
641         } else
642                 *srcu_idx = srcu_read_lock(hctx->srcu);
643 }
644
645 /**
646  * blk_mq_complete_request - end I/O on a request
647  * @rq:         the request being processed
648  *
649  * Description:
650  *      Ends all I/O on a request. It does not handle partial completions.
651  *      The actual completion happens out-of-order, through a IPI handler.
652  **/
653 bool blk_mq_complete_request(struct request *rq)
654 {
655         if (unlikely(blk_should_fake_timeout(rq->q)))
656                 return false;
657         __blk_mq_complete_request(rq);
658         return true;
659 }
660 EXPORT_SYMBOL(blk_mq_complete_request);
661
662 int blk_mq_request_started(struct request *rq)
663 {
664         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667
668 void blk_mq_start_request(struct request *rq)
669 {
670         struct request_queue *q = rq->q;
671
672         blk_mq_sched_started_request(rq);
673
674         trace_block_rq_issue(q, rq);
675
676         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
677                 rq->io_start_time_ns = ktime_get_ns();
678 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
679                 rq->throtl_size = blk_rq_sectors(rq);
680 #endif
681                 rq->rq_flags |= RQF_STATS;
682                 rq_qos_issue(q, rq);
683         }
684
685         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
686
687         blk_add_timer(rq);
688         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
689
690         if (q->dma_drain_size && blk_rq_bytes(rq)) {
691                 /*
692                  * Make sure space for the drain appears.  We know we can do
693                  * this because max_hw_segments has been adjusted to be one
694                  * fewer than the device can handle.
695                  */
696                 rq->nr_phys_segments++;
697         }
698 }
699 EXPORT_SYMBOL(blk_mq_start_request);
700
701 static void __blk_mq_requeue_request(struct request *rq)
702 {
703         struct request_queue *q = rq->q;
704
705         blk_mq_put_driver_tag(rq);
706
707         trace_block_rq_requeue(q, rq);
708         rq_qos_requeue(q, rq);
709
710         if (blk_mq_request_started(rq)) {
711                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712                 rq->rq_flags &= ~RQF_TIMED_OUT;
713                 if (q->dma_drain_size && blk_rq_bytes(rq))
714                         rq->nr_phys_segments--;
715         }
716 }
717
718 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
719 {
720         __blk_mq_requeue_request(rq);
721
722         /* this request will be re-inserted to io scheduler queue */
723         blk_mq_sched_requeue_request(rq);
724
725         BUG_ON(!list_empty(&rq->queuelist));
726         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
727 }
728 EXPORT_SYMBOL(blk_mq_requeue_request);
729
730 static void blk_mq_requeue_work(struct work_struct *work)
731 {
732         struct request_queue *q =
733                 container_of(work, struct request_queue, requeue_work.work);
734         LIST_HEAD(rq_list);
735         struct request *rq, *next;
736
737         spin_lock_irq(&q->requeue_lock);
738         list_splice_init(&q->requeue_list, &rq_list);
739         spin_unlock_irq(&q->requeue_lock);
740
741         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
742                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
743                         continue;
744
745                 rq->rq_flags &= ~RQF_SOFTBARRIER;
746                 list_del_init(&rq->queuelist);
747                 blk_mq_sched_insert_request(rq, true, false, false);
748         }
749
750         while (!list_empty(&rq_list)) {
751                 rq = list_entry(rq_list.next, struct request, queuelist);
752                 list_del_init(&rq->queuelist);
753                 blk_mq_sched_insert_request(rq, false, false, false);
754         }
755
756         blk_mq_run_hw_queues(q, false);
757 }
758
759 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
760                                 bool kick_requeue_list)
761 {
762         struct request_queue *q = rq->q;
763         unsigned long flags;
764
765         /*
766          * We abuse this flag that is otherwise used by the I/O scheduler to
767          * request head insertion from the workqueue.
768          */
769         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
770
771         spin_lock_irqsave(&q->requeue_lock, flags);
772         if (at_head) {
773                 rq->rq_flags |= RQF_SOFTBARRIER;
774                 list_add(&rq->queuelist, &q->requeue_list);
775         } else {
776                 list_add_tail(&rq->queuelist, &q->requeue_list);
777         }
778         spin_unlock_irqrestore(&q->requeue_lock, flags);
779
780         if (kick_requeue_list)
781                 blk_mq_kick_requeue_list(q);
782 }
783 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
784
785 void blk_mq_kick_requeue_list(struct request_queue *q)
786 {
787         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
788 }
789 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
790
791 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
792                                     unsigned long msecs)
793 {
794         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
795                                     msecs_to_jiffies(msecs));
796 }
797 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
798
799 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
800 {
801         if (tag < tags->nr_tags) {
802                 prefetch(tags->rqs[tag]);
803                 return tags->rqs[tag];
804         }
805
806         return NULL;
807 }
808 EXPORT_SYMBOL(blk_mq_tag_to_rq);
809
810 static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
811                               void *priv, bool reserved)
812 {
813         /*
814          * If we find a request, we know the queue is busy. Return false
815          * to stop the iteration.
816          */
817         if (rq->q == hctx->queue) {
818                 bool *busy = priv;
819
820                 *busy = true;
821                 return false;
822         }
823
824         return true;
825 }
826
827 bool blk_mq_queue_busy(struct request_queue *q)
828 {
829         bool busy = false;
830
831         blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
832         return busy;
833 }
834 EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
835
836 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
837 {
838         req->rq_flags |= RQF_TIMED_OUT;
839         if (req->q->mq_ops->timeout) {
840                 enum blk_eh_timer_return ret;
841
842                 ret = req->q->mq_ops->timeout(req, reserved);
843                 if (ret == BLK_EH_DONE)
844                         return;
845                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
846         }
847
848         blk_add_timer(req);
849 }
850
851 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
852 {
853         unsigned long deadline;
854
855         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
856                 return false;
857         if (rq->rq_flags & RQF_TIMED_OUT)
858                 return false;
859
860         deadline = READ_ONCE(rq->deadline);
861         if (time_after_eq(jiffies, deadline))
862                 return true;
863
864         if (*next == 0)
865                 *next = deadline;
866         else if (time_after(*next, deadline))
867                 *next = deadline;
868         return false;
869 }
870
871 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
872                 struct request *rq, void *priv, bool reserved)
873 {
874         unsigned long *next = priv;
875
876         /*
877          * Just do a quick check if it is expired before locking the request in
878          * so we're not unnecessarilly synchronizing across CPUs.
879          */
880         if (!blk_mq_req_expired(rq, next))
881                 return true;
882
883         /*
884          * We have reason to believe the request may be expired. Take a
885          * reference on the request to lock this request lifetime into its
886          * currently allocated context to prevent it from being reallocated in
887          * the event the completion by-passes this timeout handler.
888          *
889          * If the reference was already released, then the driver beat the
890          * timeout handler to posting a natural completion.
891          */
892         if (!refcount_inc_not_zero(&rq->ref))
893                 return true;
894
895         /*
896          * The request is now locked and cannot be reallocated underneath the
897          * timeout handler's processing. Re-verify this exact request is truly
898          * expired; if it is not expired, then the request was completed and
899          * reallocated as a new request.
900          */
901         if (blk_mq_req_expired(rq, next))
902                 blk_mq_rq_timed_out(rq, reserved);
903         if (refcount_dec_and_test(&rq->ref))
904                 __blk_mq_free_request(rq);
905
906         return true;
907 }
908
909 static void blk_mq_timeout_work(struct work_struct *work)
910 {
911         struct request_queue *q =
912                 container_of(work, struct request_queue, timeout_work);
913         unsigned long next = 0;
914         struct blk_mq_hw_ctx *hctx;
915         int i;
916
917         /* A deadlock might occur if a request is stuck requiring a
918          * timeout at the same time a queue freeze is waiting
919          * completion, since the timeout code would not be able to
920          * acquire the queue reference here.
921          *
922          * That's why we don't use blk_queue_enter here; instead, we use
923          * percpu_ref_tryget directly, because we need to be able to
924          * obtain a reference even in the short window between the queue
925          * starting to freeze, by dropping the first reference in
926          * blk_freeze_queue_start, and the moment the last request is
927          * consumed, marked by the instant q_usage_counter reaches
928          * zero.
929          */
930         if (!percpu_ref_tryget(&q->q_usage_counter))
931                 return;
932
933         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
934
935         if (next != 0) {
936                 mod_timer(&q->timeout, next);
937         } else {
938                 /*
939                  * Request timeouts are handled as a forward rolling timer. If
940                  * we end up here it means that no requests are pending and
941                  * also that no request has been pending for a while. Mark
942                  * each hctx as idle.
943                  */
944                 queue_for_each_hw_ctx(q, hctx, i) {
945                         /* the hctx may be unmapped, so check it here */
946                         if (blk_mq_hw_queue_mapped(hctx))
947                                 blk_mq_tag_idle(hctx);
948                 }
949         }
950         blk_queue_exit(q);
951 }
952
953 struct flush_busy_ctx_data {
954         struct blk_mq_hw_ctx *hctx;
955         struct list_head *list;
956 };
957
958 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
959 {
960         struct flush_busy_ctx_data *flush_data = data;
961         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
962         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
963
964         spin_lock(&ctx->lock);
965         list_splice_tail_init(&ctx->rq_list, flush_data->list);
966         sbitmap_clear_bit(sb, bitnr);
967         spin_unlock(&ctx->lock);
968         return true;
969 }
970
971 /*
972  * Process software queues that have been marked busy, splicing them
973  * to the for-dispatch
974  */
975 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
976 {
977         struct flush_busy_ctx_data data = {
978                 .hctx = hctx,
979                 .list = list,
980         };
981
982         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
983 }
984 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
985
986 struct dispatch_rq_data {
987         struct blk_mq_hw_ctx *hctx;
988         struct request *rq;
989 };
990
991 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
992                 void *data)
993 {
994         struct dispatch_rq_data *dispatch_data = data;
995         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
996         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
997
998         spin_lock(&ctx->lock);
999         if (!list_empty(&ctx->rq_list)) {
1000                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1001                 list_del_init(&dispatch_data->rq->queuelist);
1002                 if (list_empty(&ctx->rq_list))
1003                         sbitmap_clear_bit(sb, bitnr);
1004         }
1005         spin_unlock(&ctx->lock);
1006
1007         return !dispatch_data->rq;
1008 }
1009
1010 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1011                                         struct blk_mq_ctx *start)
1012 {
1013         unsigned off = start ? start->index_hw[hctx->type] : 0;
1014         struct dispatch_rq_data data = {
1015                 .hctx = hctx,
1016                 .rq   = NULL,
1017         };
1018
1019         __sbitmap_for_each_set(&hctx->ctx_map, off,
1020                                dispatch_rq_from_ctx, &data);
1021
1022         return data.rq;
1023 }
1024
1025 static inline unsigned int queued_to_index(unsigned int queued)
1026 {
1027         if (!queued)
1028                 return 0;
1029
1030         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1031 }
1032
1033 bool blk_mq_get_driver_tag(struct request *rq)
1034 {
1035         struct blk_mq_alloc_data data = {
1036                 .q = rq->q,
1037                 .hctx = rq->mq_hctx,
1038                 .flags = BLK_MQ_REQ_NOWAIT,
1039                 .cmd_flags = rq->cmd_flags,
1040         };
1041         bool shared;
1042
1043         if (rq->tag != -1)
1044                 goto done;
1045
1046         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1047                 data.flags |= BLK_MQ_REQ_RESERVED;
1048
1049         shared = blk_mq_tag_busy(data.hctx);
1050         rq->tag = blk_mq_get_tag(&data);
1051         if (rq->tag >= 0) {
1052                 if (shared) {
1053                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1054                         atomic_inc(&data.hctx->nr_active);
1055                 }
1056                 data.hctx->tags->rqs[rq->tag] = rq;
1057         }
1058
1059 done:
1060         return rq->tag != -1;
1061 }
1062
1063 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1064                                 int flags, void *key)
1065 {
1066         struct blk_mq_hw_ctx *hctx;
1067
1068         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1069
1070         spin_lock(&hctx->dispatch_wait_lock);
1071         list_del_init(&wait->entry);
1072         spin_unlock(&hctx->dispatch_wait_lock);
1073
1074         blk_mq_run_hw_queue(hctx, true);
1075         return 1;
1076 }
1077
1078 /*
1079  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1080  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1081  * restart. For both cases, take care to check the condition again after
1082  * marking us as waiting.
1083  */
1084 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1085                                  struct request *rq)
1086 {
1087         struct wait_queue_head *wq;
1088         wait_queue_entry_t *wait;
1089         bool ret;
1090
1091         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1092                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1093                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1094
1095                 /*
1096                  * It's possible that a tag was freed in the window between the
1097                  * allocation failure and adding the hardware queue to the wait
1098                  * queue.
1099                  *
1100                  * Don't clear RESTART here, someone else could have set it.
1101                  * At most this will cost an extra queue run.
1102                  */
1103                 return blk_mq_get_driver_tag(rq);
1104         }
1105
1106         wait = &hctx->dispatch_wait;
1107         if (!list_empty_careful(&wait->entry))
1108                 return false;
1109
1110         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1111
1112         spin_lock_irq(&wq->lock);
1113         spin_lock(&hctx->dispatch_wait_lock);
1114         if (!list_empty(&wait->entry)) {
1115                 spin_unlock(&hctx->dispatch_wait_lock);
1116                 spin_unlock_irq(&wq->lock);
1117                 return false;
1118         }
1119
1120         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1121         __add_wait_queue(wq, wait);
1122
1123         /*
1124          * It's possible that a tag was freed in the window between the
1125          * allocation failure and adding the hardware queue to the wait
1126          * queue.
1127          */
1128         ret = blk_mq_get_driver_tag(rq);
1129         if (!ret) {
1130                 spin_unlock(&hctx->dispatch_wait_lock);
1131                 spin_unlock_irq(&wq->lock);
1132                 return false;
1133         }
1134
1135         /*
1136          * We got a tag, remove ourselves from the wait queue to ensure
1137          * someone else gets the wakeup.
1138          */
1139         list_del_init(&wait->entry);
1140         spin_unlock(&hctx->dispatch_wait_lock);
1141         spin_unlock_irq(&wq->lock);
1142
1143         return true;
1144 }
1145
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1148 /*
1149  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150  * - EWMA is one simple way to compute running average value
1151  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152  * - take 4 as factor for avoiding to get too small(0) result, and this
1153  *   factor doesn't matter because EWMA decreases exponentially
1154  */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157         unsigned int ewma;
1158
1159         if (hctx->queue->elevator)
1160                 return;
1161
1162         ewma = hctx->dispatch_busy;
1163
1164         if (!ewma && !busy)
1165                 return;
1166
1167         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168         if (busy)
1169                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171
1172         hctx->dispatch_busy = ewma;
1173 }
1174
1175 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1176
1177 /*
1178  * Returns true if we did some work AND can potentially do more.
1179  */
1180 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1181                              bool got_budget)
1182 {
1183         struct blk_mq_hw_ctx *hctx;
1184         struct request *rq, *nxt;
1185         bool no_tag = false;
1186         int errors, queued;
1187         blk_status_t ret = BLK_STS_OK;
1188
1189         if (list_empty(list))
1190                 return false;
1191
1192         WARN_ON(!list_is_singular(list) && got_budget);
1193
1194         /*
1195          * Now process all the entries, sending them to the driver.
1196          */
1197         errors = queued = 0;
1198         do {
1199                 struct blk_mq_queue_data bd;
1200
1201                 rq = list_first_entry(list, struct request, queuelist);
1202
1203                 hctx = rq->mq_hctx;
1204                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1205                         break;
1206
1207                 if (!blk_mq_get_driver_tag(rq)) {
1208                         /*
1209                          * The initial allocation attempt failed, so we need to
1210                          * rerun the hardware queue when a tag is freed. The
1211                          * waitqueue takes care of that. If the queue is run
1212                          * before we add this entry back on the dispatch list,
1213                          * we'll re-run it below.
1214                          */
1215                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1216                                 blk_mq_put_dispatch_budget(hctx);
1217                                 /*
1218                                  * For non-shared tags, the RESTART check
1219                                  * will suffice.
1220                                  */
1221                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1222                                         no_tag = true;
1223                                 break;
1224                         }
1225                 }
1226
1227                 list_del_init(&rq->queuelist);
1228
1229                 bd.rq = rq;
1230
1231                 /*
1232                  * Flag last if we have no more requests, or if we have more
1233                  * but can't assign a driver tag to it.
1234                  */
1235                 if (list_empty(list))
1236                         bd.last = true;
1237                 else {
1238                         nxt = list_first_entry(list, struct request, queuelist);
1239                         bd.last = !blk_mq_get_driver_tag(nxt);
1240                 }
1241
1242                 ret = q->mq_ops->queue_rq(hctx, &bd);
1243                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1244                         /*
1245                          * If an I/O scheduler has been configured and we got a
1246                          * driver tag for the next request already, free it
1247                          * again.
1248                          */
1249                         if (!list_empty(list)) {
1250                                 nxt = list_first_entry(list, struct request, queuelist);
1251                                 blk_mq_put_driver_tag(nxt);
1252                         }
1253                         list_add(&rq->queuelist, list);
1254                         __blk_mq_requeue_request(rq);
1255                         break;
1256                 }
1257
1258                 if (unlikely(ret != BLK_STS_OK)) {
1259                         errors++;
1260                         blk_mq_end_request(rq, BLK_STS_IOERR);
1261                         continue;
1262                 }
1263
1264                 queued++;
1265         } while (!list_empty(list));
1266
1267         hctx->dispatched[queued_to_index(queued)]++;
1268
1269         /*
1270          * Any items that need requeuing? Stuff them into hctx->dispatch,
1271          * that is where we will continue on next queue run.
1272          */
1273         if (!list_empty(list)) {
1274                 bool needs_restart;
1275
1276                 /*
1277                  * If we didn't flush the entire list, we could have told
1278                  * the driver there was more coming, but that turned out to
1279                  * be a lie.
1280                  */
1281                 if (q->mq_ops->commit_rqs)
1282                         q->mq_ops->commit_rqs(hctx);
1283
1284                 spin_lock(&hctx->lock);
1285                 list_splice_init(list, &hctx->dispatch);
1286                 spin_unlock(&hctx->lock);
1287
1288                 /*
1289                  * If SCHED_RESTART was set by the caller of this function and
1290                  * it is no longer set that means that it was cleared by another
1291                  * thread and hence that a queue rerun is needed.
1292                  *
1293                  * If 'no_tag' is set, that means that we failed getting
1294                  * a driver tag with an I/O scheduler attached. If our dispatch
1295                  * waitqueue is no longer active, ensure that we run the queue
1296                  * AFTER adding our entries back to the list.
1297                  *
1298                  * If no I/O scheduler has been configured it is possible that
1299                  * the hardware queue got stopped and restarted before requests
1300                  * were pushed back onto the dispatch list. Rerun the queue to
1301                  * avoid starvation. Notes:
1302                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1303                  *   been stopped before rerunning a queue.
1304                  * - Some but not all block drivers stop a queue before
1305                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1306                  *   and dm-rq.
1307                  *
1308                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1309                  * bit is set, run queue after a delay to avoid IO stalls
1310                  * that could otherwise occur if the queue is idle.
1311                  */
1312                 needs_restart = blk_mq_sched_needs_restart(hctx);
1313                 if (!needs_restart ||
1314                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1315                         blk_mq_run_hw_queue(hctx, true);
1316                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1317                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1318
1319                 blk_mq_update_dispatch_busy(hctx, true);
1320                 return false;
1321         } else
1322                 blk_mq_update_dispatch_busy(hctx, false);
1323
1324         /*
1325          * If the host/device is unable to accept more work, inform the
1326          * caller of that.
1327          */
1328         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1329                 return false;
1330
1331         return (queued + errors) != 0;
1332 }
1333
1334 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1335 {
1336         int srcu_idx;
1337
1338         /*
1339          * We should be running this queue from one of the CPUs that
1340          * are mapped to it.
1341          *
1342          * There are at least two related races now between setting
1343          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1344          * __blk_mq_run_hw_queue():
1345          *
1346          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1347          *   but later it becomes online, then this warning is harmless
1348          *   at all
1349          *
1350          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1351          *   but later it becomes offline, then the warning can't be
1352          *   triggered, and we depend on blk-mq timeout handler to
1353          *   handle dispatched requests to this hctx
1354          */
1355         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1356                 cpu_online(hctx->next_cpu)) {
1357                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1358                         raw_smp_processor_id(),
1359                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1360                 dump_stack();
1361         }
1362
1363         /*
1364          * We can't run the queue inline with ints disabled. Ensure that
1365          * we catch bad users of this early.
1366          */
1367         WARN_ON_ONCE(in_interrupt());
1368
1369         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1370
1371         hctx_lock(hctx, &srcu_idx);
1372         blk_mq_sched_dispatch_requests(hctx);
1373         hctx_unlock(hctx, srcu_idx);
1374 }
1375
1376 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1379
1380         if (cpu >= nr_cpu_ids)
1381                 cpu = cpumask_first(hctx->cpumask);
1382         return cpu;
1383 }
1384
1385 /*
1386  * It'd be great if the workqueue API had a way to pass
1387  * in a mask and had some smarts for more clever placement.
1388  * For now we just round-robin here, switching for every
1389  * BLK_MQ_CPU_WORK_BATCH queued items.
1390  */
1391 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393         bool tried = false;
1394         int next_cpu = hctx->next_cpu;
1395
1396         if (hctx->queue->nr_hw_queues == 1)
1397                 return WORK_CPU_UNBOUND;
1398
1399         if (--hctx->next_cpu_batch <= 0) {
1400 select_cpu:
1401                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1402                                 cpu_online_mask);
1403                 if (next_cpu >= nr_cpu_ids)
1404                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1405                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1406         }
1407
1408         /*
1409          * Do unbound schedule if we can't find a online CPU for this hctx,
1410          * and it should only happen in the path of handling CPU DEAD.
1411          */
1412         if (!cpu_online(next_cpu)) {
1413                 if (!tried) {
1414                         tried = true;
1415                         goto select_cpu;
1416                 }
1417
1418                 /*
1419                  * Make sure to re-select CPU next time once after CPUs
1420                  * in hctx->cpumask become online again.
1421                  */
1422                 hctx->next_cpu = next_cpu;
1423                 hctx->next_cpu_batch = 1;
1424                 return WORK_CPU_UNBOUND;
1425         }
1426
1427         hctx->next_cpu = next_cpu;
1428         return next_cpu;
1429 }
1430
1431 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1432                                         unsigned long msecs)
1433 {
1434         if (unlikely(blk_mq_hctx_stopped(hctx)))
1435                 return;
1436
1437         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1438                 int cpu = get_cpu();
1439                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1440                         __blk_mq_run_hw_queue(hctx);
1441                         put_cpu();
1442                         return;
1443                 }
1444
1445                 put_cpu();
1446         }
1447
1448         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1449                                     msecs_to_jiffies(msecs));
1450 }
1451
1452 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1453 {
1454         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1455 }
1456 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1457
1458 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1459 {
1460         int srcu_idx;
1461         bool need_run;
1462
1463         /*
1464          * When queue is quiesced, we may be switching io scheduler, or
1465          * updating nr_hw_queues, or other things, and we can't run queue
1466          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1467          *
1468          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1469          * quiesced.
1470          */
1471         hctx_lock(hctx, &srcu_idx);
1472         need_run = !blk_queue_quiesced(hctx->queue) &&
1473                 blk_mq_hctx_has_pending(hctx);
1474         hctx_unlock(hctx, srcu_idx);
1475
1476         if (need_run) {
1477                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1478                 return true;
1479         }
1480
1481         return false;
1482 }
1483 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1484
1485 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1486 {
1487         struct blk_mq_hw_ctx *hctx;
1488         int i;
1489
1490         queue_for_each_hw_ctx(q, hctx, i) {
1491                 if (blk_mq_hctx_stopped(hctx))
1492                         continue;
1493
1494                 blk_mq_run_hw_queue(hctx, async);
1495         }
1496 }
1497 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1498
1499 /**
1500  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1501  * @q: request queue.
1502  *
1503  * The caller is responsible for serializing this function against
1504  * blk_mq_{start,stop}_hw_queue().
1505  */
1506 bool blk_mq_queue_stopped(struct request_queue *q)
1507 {
1508         struct blk_mq_hw_ctx *hctx;
1509         int i;
1510
1511         queue_for_each_hw_ctx(q, hctx, i)
1512                 if (blk_mq_hctx_stopped(hctx))
1513                         return true;
1514
1515         return false;
1516 }
1517 EXPORT_SYMBOL(blk_mq_queue_stopped);
1518
1519 /*
1520  * This function is often used for pausing .queue_rq() by driver when
1521  * there isn't enough resource or some conditions aren't satisfied, and
1522  * BLK_STS_RESOURCE is usually returned.
1523  *
1524  * We do not guarantee that dispatch can be drained or blocked
1525  * after blk_mq_stop_hw_queue() returns. Please use
1526  * blk_mq_quiesce_queue() for that requirement.
1527  */
1528 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1529 {
1530         cancel_delayed_work(&hctx->run_work);
1531
1532         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1533 }
1534 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1535
1536 /*
1537  * This function is often used for pausing .queue_rq() by driver when
1538  * there isn't enough resource or some conditions aren't satisfied, and
1539  * BLK_STS_RESOURCE is usually returned.
1540  *
1541  * We do not guarantee that dispatch can be drained or blocked
1542  * after blk_mq_stop_hw_queues() returns. Please use
1543  * blk_mq_quiesce_queue() for that requirement.
1544  */
1545 void blk_mq_stop_hw_queues(struct request_queue *q)
1546 {
1547         struct blk_mq_hw_ctx *hctx;
1548         int i;
1549
1550         queue_for_each_hw_ctx(q, hctx, i)
1551                 blk_mq_stop_hw_queue(hctx);
1552 }
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1554
1555 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1556 {
1557         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1558
1559         blk_mq_run_hw_queue(hctx, false);
1560 }
1561 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1562
1563 void blk_mq_start_hw_queues(struct request_queue *q)
1564 {
1565         struct blk_mq_hw_ctx *hctx;
1566         int i;
1567
1568         queue_for_each_hw_ctx(q, hctx, i)
1569                 blk_mq_start_hw_queue(hctx);
1570 }
1571 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1572
1573 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1574 {
1575         if (!blk_mq_hctx_stopped(hctx))
1576                 return;
1577
1578         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579         blk_mq_run_hw_queue(hctx, async);
1580 }
1581 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1582
1583 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1584 {
1585         struct blk_mq_hw_ctx *hctx;
1586         int i;
1587
1588         queue_for_each_hw_ctx(q, hctx, i)
1589                 blk_mq_start_stopped_hw_queue(hctx, async);
1590 }
1591 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1592
1593 static void blk_mq_run_work_fn(struct work_struct *work)
1594 {
1595         struct blk_mq_hw_ctx *hctx;
1596
1597         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1598
1599         /*
1600          * If we are stopped, don't run the queue.
1601          */
1602         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1603                 return;
1604
1605         __blk_mq_run_hw_queue(hctx);
1606 }
1607
1608 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1609                                             struct request *rq,
1610                                             bool at_head)
1611 {
1612         struct blk_mq_ctx *ctx = rq->mq_ctx;
1613
1614         lockdep_assert_held(&ctx->lock);
1615
1616         trace_block_rq_insert(hctx->queue, rq);
1617
1618         if (at_head)
1619                 list_add(&rq->queuelist, &ctx->rq_list);
1620         else
1621                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1622 }
1623
1624 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1625                              bool at_head)
1626 {
1627         struct blk_mq_ctx *ctx = rq->mq_ctx;
1628
1629         lockdep_assert_held(&ctx->lock);
1630
1631         __blk_mq_insert_req_list(hctx, rq, at_head);
1632         blk_mq_hctx_mark_pending(hctx, ctx);
1633 }
1634
1635 /*
1636  * Should only be used carefully, when the caller knows we want to
1637  * bypass a potential IO scheduler on the target device.
1638  */
1639 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1640 {
1641         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1642
1643         spin_lock(&hctx->lock);
1644         list_add_tail(&rq->queuelist, &hctx->dispatch);
1645         spin_unlock(&hctx->lock);
1646
1647         if (run_queue)
1648                 blk_mq_run_hw_queue(hctx, false);
1649 }
1650
1651 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1652                             struct list_head *list)
1653
1654 {
1655         struct request *rq;
1656
1657         /*
1658          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1659          * offline now
1660          */
1661         list_for_each_entry(rq, list, queuelist) {
1662                 BUG_ON(rq->mq_ctx != ctx);
1663                 trace_block_rq_insert(hctx->queue, rq);
1664         }
1665
1666         spin_lock(&ctx->lock);
1667         list_splice_tail_init(list, &ctx->rq_list);
1668         blk_mq_hctx_mark_pending(hctx, ctx);
1669         spin_unlock(&ctx->lock);
1670 }
1671
1672 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1673 {
1674         struct request *rqa = container_of(a, struct request, queuelist);
1675         struct request *rqb = container_of(b, struct request, queuelist);
1676
1677         if (rqa->mq_ctx < rqb->mq_ctx)
1678                 return -1;
1679         else if (rqa->mq_ctx > rqb->mq_ctx)
1680                 return 1;
1681         else if (rqa->mq_hctx < rqb->mq_hctx)
1682                 return -1;
1683         else if (rqa->mq_hctx > rqb->mq_hctx)
1684                 return 1;
1685
1686         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1687 }
1688
1689 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1690 {
1691         struct blk_mq_hw_ctx *this_hctx;
1692         struct blk_mq_ctx *this_ctx;
1693         struct request_queue *this_q;
1694         struct request *rq;
1695         LIST_HEAD(list);
1696         LIST_HEAD(rq_list);
1697         unsigned int depth;
1698
1699         list_splice_init(&plug->mq_list, &list);
1700         plug->rq_count = 0;
1701
1702         if (plug->rq_count > 2 && plug->multiple_queues)
1703                 list_sort(NULL, &list, plug_rq_cmp);
1704
1705         this_q = NULL;
1706         this_hctx = NULL;
1707         this_ctx = NULL;
1708         depth = 0;
1709
1710         while (!list_empty(&list)) {
1711                 rq = list_entry_rq(list.next);
1712                 list_del_init(&rq->queuelist);
1713                 BUG_ON(!rq->q);
1714                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1715                         if (this_hctx) {
1716                                 trace_block_unplug(this_q, depth, !from_schedule);
1717                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1718                                                                 &rq_list,
1719                                                                 from_schedule);
1720                         }
1721
1722                         this_q = rq->q;
1723                         this_ctx = rq->mq_ctx;
1724                         this_hctx = rq->mq_hctx;
1725                         depth = 0;
1726                 }
1727
1728                 depth++;
1729                 list_add_tail(&rq->queuelist, &rq_list);
1730         }
1731
1732         /*
1733          * If 'this_hctx' is set, we know we have entries to complete
1734          * on 'rq_list'. Do those.
1735          */
1736         if (this_hctx) {
1737                 trace_block_unplug(this_q, depth, !from_schedule);
1738                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1739                                                 from_schedule);
1740         }
1741 }
1742
1743 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1744 {
1745         blk_init_request_from_bio(rq, bio);
1746
1747         blk_account_io_start(rq, true);
1748 }
1749
1750 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1751 {
1752         if (rq->tag != -1)
1753                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1754
1755         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1756 }
1757
1758 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1759                                             struct request *rq,
1760                                             blk_qc_t *cookie, bool last)
1761 {
1762         struct request_queue *q = rq->q;
1763         struct blk_mq_queue_data bd = {
1764                 .rq = rq,
1765                 .last = last,
1766         };
1767         blk_qc_t new_cookie;
1768         blk_status_t ret;
1769
1770         new_cookie = request_to_qc_t(hctx, rq);
1771
1772         /*
1773          * For OK queue, we are done. For error, caller may kill it.
1774          * Any other error (busy), just add it to our list as we
1775          * previously would have done.
1776          */
1777         ret = q->mq_ops->queue_rq(hctx, &bd);
1778         switch (ret) {
1779         case BLK_STS_OK:
1780                 blk_mq_update_dispatch_busy(hctx, false);
1781                 *cookie = new_cookie;
1782                 break;
1783         case BLK_STS_RESOURCE:
1784         case BLK_STS_DEV_RESOURCE:
1785                 blk_mq_update_dispatch_busy(hctx, true);
1786                 __blk_mq_requeue_request(rq);
1787                 break;
1788         default:
1789                 blk_mq_update_dispatch_busy(hctx, false);
1790                 *cookie = BLK_QC_T_NONE;
1791                 break;
1792         }
1793
1794         return ret;
1795 }
1796
1797 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1798                                                 struct request *rq,
1799                                                 blk_qc_t *cookie,
1800                                                 bool bypass_insert, bool last)
1801 {
1802         struct request_queue *q = rq->q;
1803         bool run_queue = true;
1804
1805         /*
1806          * RCU or SRCU read lock is needed before checking quiesced flag.
1807          *
1808          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1809          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1810          * and avoid driver to try to dispatch again.
1811          */
1812         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1813                 run_queue = false;
1814                 bypass_insert = false;
1815                 goto insert;
1816         }
1817
1818         if (q->elevator && !bypass_insert)
1819                 goto insert;
1820
1821         if (!blk_mq_get_dispatch_budget(hctx))
1822                 goto insert;
1823
1824         if (!blk_mq_get_driver_tag(rq)) {
1825                 blk_mq_put_dispatch_budget(hctx);
1826                 goto insert;
1827         }
1828
1829         return __blk_mq_issue_directly(hctx, rq, cookie, last);
1830 insert:
1831         if (bypass_insert)
1832                 return BLK_STS_RESOURCE;
1833
1834         blk_mq_sched_insert_request(rq, false, run_queue, false);
1835         return BLK_STS_OK;
1836 }
1837
1838 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1839                 struct request *rq, blk_qc_t *cookie)
1840 {
1841         blk_status_t ret;
1842         int srcu_idx;
1843
1844         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1845
1846         hctx_lock(hctx, &srcu_idx);
1847
1848         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1849         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1850                 blk_mq_sched_insert_request(rq, false, true, false);
1851         else if (ret != BLK_STS_OK)
1852                 blk_mq_end_request(rq, ret);
1853
1854         hctx_unlock(hctx, srcu_idx);
1855 }
1856
1857 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1858 {
1859         blk_status_t ret;
1860         int srcu_idx;
1861         blk_qc_t unused_cookie;
1862         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1863
1864         hctx_lock(hctx, &srcu_idx);
1865         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1866         hctx_unlock(hctx, srcu_idx);
1867
1868         return ret;
1869 }
1870
1871 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1872                 struct list_head *list)
1873 {
1874         while (!list_empty(list)) {
1875                 blk_status_t ret;
1876                 struct request *rq = list_first_entry(list, struct request,
1877                                 queuelist);
1878
1879                 list_del_init(&rq->queuelist);
1880                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1881                 if (ret != BLK_STS_OK) {
1882                         if (ret == BLK_STS_RESOURCE ||
1883                                         ret == BLK_STS_DEV_RESOURCE) {
1884                                 list_add(&rq->queuelist, list);
1885                                 break;
1886                         }
1887                         blk_mq_end_request(rq, ret);
1888                 }
1889         }
1890
1891         /*
1892          * If we didn't flush the entire list, we could have told
1893          * the driver there was more coming, but that turned out to
1894          * be a lie.
1895          */
1896         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1897                 hctx->queue->mq_ops->commit_rqs(hctx);
1898 }
1899
1900 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1901 {
1902         list_add_tail(&rq->queuelist, &plug->mq_list);
1903         plug->rq_count++;
1904         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1905                 struct request *tmp;
1906
1907                 tmp = list_first_entry(&plug->mq_list, struct request,
1908                                                 queuelist);
1909                 if (tmp->q != rq->q)
1910                         plug->multiple_queues = true;
1911         }
1912 }
1913
1914 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1915 {
1916         const int is_sync = op_is_sync(bio->bi_opf);
1917         const int is_flush_fua = op_is_flush(bio->bi_opf);
1918         struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1919         struct request *rq;
1920         struct blk_plug *plug;
1921         struct request *same_queue_rq = NULL;
1922         blk_qc_t cookie;
1923
1924         blk_queue_bounce(q, &bio);
1925
1926         blk_queue_split(q, &bio);
1927
1928         if (!bio_integrity_prep(bio))
1929                 return BLK_QC_T_NONE;
1930
1931         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1932             blk_attempt_plug_merge(q, bio, &same_queue_rq))
1933                 return BLK_QC_T_NONE;
1934
1935         if (blk_mq_sched_bio_merge(q, bio))
1936                 return BLK_QC_T_NONE;
1937
1938         rq_qos_throttle(q, bio);
1939
1940         rq = blk_mq_get_request(q, bio, &data);
1941         if (unlikely(!rq)) {
1942                 rq_qos_cleanup(q, bio);
1943                 if (bio->bi_opf & REQ_NOWAIT)
1944                         bio_wouldblock_error(bio);
1945                 return BLK_QC_T_NONE;
1946         }
1947
1948         trace_block_getrq(q, bio, bio->bi_opf);
1949
1950         rq_qos_track(q, rq, bio);
1951
1952         cookie = request_to_qc_t(data.hctx, rq);
1953
1954         plug = current->plug;
1955         if (unlikely(is_flush_fua)) {
1956                 blk_mq_put_ctx(data.ctx);
1957                 blk_mq_bio_to_request(rq, bio);
1958
1959                 /* bypass scheduler for flush rq */
1960                 blk_insert_flush(rq);
1961                 blk_mq_run_hw_queue(data.hctx, true);
1962         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1963                 /*
1964                  * Use plugging if we have a ->commit_rqs() hook as well, as
1965                  * we know the driver uses bd->last in a smart fashion.
1966                  */
1967                 unsigned int request_count = plug->rq_count;
1968                 struct request *last = NULL;
1969
1970                 blk_mq_put_ctx(data.ctx);
1971                 blk_mq_bio_to_request(rq, bio);
1972
1973                 if (!request_count)
1974                         trace_block_plug(q);
1975                 else
1976                         last = list_entry_rq(plug->mq_list.prev);
1977
1978                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1979                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1980                         blk_flush_plug_list(plug, false);
1981                         trace_block_plug(q);
1982                 }
1983
1984                 blk_add_rq_to_plug(plug, rq);
1985         } else if (plug && !blk_queue_nomerges(q)) {
1986                 blk_mq_bio_to_request(rq, bio);
1987
1988                 /*
1989                  * We do limited plugging. If the bio can be merged, do that.
1990                  * Otherwise the existing request in the plug list will be
1991                  * issued. So the plug list will have one request at most
1992                  * The plug list might get flushed before this. If that happens,
1993                  * the plug list is empty, and same_queue_rq is invalid.
1994                  */
1995                 if (list_empty(&plug->mq_list))
1996                         same_queue_rq = NULL;
1997                 if (same_queue_rq) {
1998                         list_del_init(&same_queue_rq->queuelist);
1999                         plug->rq_count--;
2000                 }
2001                 blk_add_rq_to_plug(plug, rq);
2002
2003                 blk_mq_put_ctx(data.ctx);
2004
2005                 if (same_queue_rq) {
2006                         data.hctx = same_queue_rq->mq_hctx;
2007                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2008                                         &cookie);
2009                 }
2010         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2011                         !data.hctx->dispatch_busy)) {
2012                 blk_mq_put_ctx(data.ctx);
2013                 blk_mq_bio_to_request(rq, bio);
2014                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2015         } else {
2016                 blk_mq_put_ctx(data.ctx);
2017                 blk_mq_bio_to_request(rq, bio);
2018                 blk_mq_sched_insert_request(rq, false, true, true);
2019         }
2020
2021         return cookie;
2022 }
2023
2024 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2025                      unsigned int hctx_idx)
2026 {
2027         struct page *page;
2028
2029         if (tags->rqs && set->ops->exit_request) {
2030                 int i;
2031
2032                 for (i = 0; i < tags->nr_tags; i++) {
2033                         struct request *rq = tags->static_rqs[i];
2034
2035                         if (!rq)
2036                                 continue;
2037                         set->ops->exit_request(set, rq, hctx_idx);
2038                         tags->static_rqs[i] = NULL;
2039                 }
2040         }
2041
2042         while (!list_empty(&tags->page_list)) {
2043                 page = list_first_entry(&tags->page_list, struct page, lru);
2044                 list_del_init(&page->lru);
2045                 /*
2046                  * Remove kmemleak object previously allocated in
2047                  * blk_mq_init_rq_map().
2048                  */
2049                 kmemleak_free(page_address(page));
2050                 __free_pages(page, page->private);
2051         }
2052 }
2053
2054 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2055 {
2056         kfree(tags->rqs);
2057         tags->rqs = NULL;
2058         kfree(tags->static_rqs);
2059         tags->static_rqs = NULL;
2060
2061         blk_mq_free_tags(tags);
2062 }
2063
2064 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2065                                         unsigned int hctx_idx,
2066                                         unsigned int nr_tags,
2067                                         unsigned int reserved_tags)
2068 {
2069         struct blk_mq_tags *tags;
2070         int node;
2071
2072         node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2073         if (node == NUMA_NO_NODE)
2074                 node = set->numa_node;
2075
2076         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2077                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2078         if (!tags)
2079                 return NULL;
2080
2081         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2082                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2083                                  node);
2084         if (!tags->rqs) {
2085                 blk_mq_free_tags(tags);
2086                 return NULL;
2087         }
2088
2089         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2090                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2091                                         node);
2092         if (!tags->static_rqs) {
2093                 kfree(tags->rqs);
2094                 blk_mq_free_tags(tags);
2095                 return NULL;
2096         }
2097
2098         return tags;
2099 }
2100
2101 static size_t order_to_size(unsigned int order)
2102 {
2103         return (size_t)PAGE_SIZE << order;
2104 }
2105
2106 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2107                                unsigned int hctx_idx, int node)
2108 {
2109         int ret;
2110
2111         if (set->ops->init_request) {
2112                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2113                 if (ret)
2114                         return ret;
2115         }
2116
2117         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2118         return 0;
2119 }
2120
2121 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2122                      unsigned int hctx_idx, unsigned int depth)
2123 {
2124         unsigned int i, j, entries_per_page, max_order = 4;
2125         size_t rq_size, left;
2126         int node;
2127
2128         node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2129         if (node == NUMA_NO_NODE)
2130                 node = set->numa_node;
2131
2132         INIT_LIST_HEAD(&tags->page_list);
2133
2134         /*
2135          * rq_size is the size of the request plus driver payload, rounded
2136          * to the cacheline size
2137          */
2138         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2139                                 cache_line_size());
2140         left = rq_size * depth;
2141
2142         for (i = 0; i < depth; ) {
2143                 int this_order = max_order;
2144                 struct page *page;
2145                 int to_do;
2146                 void *p;
2147
2148                 while (this_order && left < order_to_size(this_order - 1))
2149                         this_order--;
2150
2151                 do {
2152                         page = alloc_pages_node(node,
2153                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2154                                 this_order);
2155                         if (page)
2156                                 break;
2157                         if (!this_order--)
2158                                 break;
2159                         if (order_to_size(this_order) < rq_size)
2160                                 break;
2161                 } while (1);
2162
2163                 if (!page)
2164                         goto fail;
2165
2166                 page->private = this_order;
2167                 list_add_tail(&page->lru, &tags->page_list);
2168
2169                 p = page_address(page);
2170                 /*
2171                  * Allow kmemleak to scan these pages as they contain pointers
2172                  * to additional allocations like via ops->init_request().
2173                  */
2174                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2175                 entries_per_page = order_to_size(this_order) / rq_size;
2176                 to_do = min(entries_per_page, depth - i);
2177                 left -= to_do * rq_size;
2178                 for (j = 0; j < to_do; j++) {
2179                         struct request *rq = p;
2180
2181                         tags->static_rqs[i] = rq;
2182                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2183                                 tags->static_rqs[i] = NULL;
2184                                 goto fail;
2185                         }
2186
2187                         p += rq_size;
2188                         i++;
2189                 }
2190         }
2191         return 0;
2192
2193 fail:
2194         blk_mq_free_rqs(set, tags, hctx_idx);
2195         return -ENOMEM;
2196 }
2197
2198 /*
2199  * 'cpu' is going away. splice any existing rq_list entries from this
2200  * software queue to the hw queue dispatch list, and ensure that it
2201  * gets run.
2202  */
2203 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2204 {
2205         struct blk_mq_hw_ctx *hctx;
2206         struct blk_mq_ctx *ctx;
2207         LIST_HEAD(tmp);
2208
2209         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2210         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2211
2212         spin_lock(&ctx->lock);
2213         if (!list_empty(&ctx->rq_list)) {
2214                 list_splice_init(&ctx->rq_list, &tmp);
2215                 blk_mq_hctx_clear_pending(hctx, ctx);
2216         }
2217         spin_unlock(&ctx->lock);
2218
2219         if (list_empty(&tmp))
2220                 return 0;
2221
2222         spin_lock(&hctx->lock);
2223         list_splice_tail_init(&tmp, &hctx->dispatch);
2224         spin_unlock(&hctx->lock);
2225
2226         blk_mq_run_hw_queue(hctx, true);
2227         return 0;
2228 }
2229
2230 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2231 {
2232         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2233                                             &hctx->cpuhp_dead);
2234 }
2235
2236 /* hctx->ctxs will be freed in queue's release handler */
2237 static void blk_mq_exit_hctx(struct request_queue *q,
2238                 struct blk_mq_tag_set *set,
2239                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2240 {
2241         if (blk_mq_hw_queue_mapped(hctx))
2242                 blk_mq_tag_idle(hctx);
2243
2244         if (set->ops->exit_request)
2245                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2246
2247         if (set->ops->exit_hctx)
2248                 set->ops->exit_hctx(hctx, hctx_idx);
2249
2250         if (hctx->flags & BLK_MQ_F_BLOCKING)
2251                 cleanup_srcu_struct(hctx->srcu);
2252
2253         blk_mq_remove_cpuhp(hctx);
2254         blk_free_flush_queue(hctx->fq);
2255         sbitmap_free(&hctx->ctx_map);
2256 }
2257
2258 static void blk_mq_exit_hw_queues(struct request_queue *q,
2259                 struct blk_mq_tag_set *set, int nr_queue)
2260 {
2261         struct blk_mq_hw_ctx *hctx;
2262         unsigned int i;
2263
2264         queue_for_each_hw_ctx(q, hctx, i) {
2265                 if (i == nr_queue)
2266                         break;
2267                 blk_mq_debugfs_unregister_hctx(hctx);
2268                 blk_mq_exit_hctx(q, set, hctx, i);
2269         }
2270 }
2271
2272 static int blk_mq_init_hctx(struct request_queue *q,
2273                 struct blk_mq_tag_set *set,
2274                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2275 {
2276         int node;
2277
2278         node = hctx->numa_node;
2279         if (node == NUMA_NO_NODE)
2280                 node = hctx->numa_node = set->numa_node;
2281
2282         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2283         spin_lock_init(&hctx->lock);
2284         INIT_LIST_HEAD(&hctx->dispatch);
2285         hctx->queue = q;
2286         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2287
2288         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2289
2290         hctx->tags = set->tags[hctx_idx];
2291
2292         /*
2293          * Allocate space for all possible cpus to avoid allocation at
2294          * runtime
2295          */
2296         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2297                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2298         if (!hctx->ctxs)
2299                 goto unregister_cpu_notifier;
2300
2301         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2302                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2303                 goto free_ctxs;
2304
2305         hctx->nr_ctx = 0;
2306
2307         spin_lock_init(&hctx->dispatch_wait_lock);
2308         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2309         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2310
2311         if (set->ops->init_hctx &&
2312             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2313                 goto free_bitmap;
2314
2315         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2316                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2317         if (!hctx->fq)
2318                 goto exit_hctx;
2319
2320         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2321                 goto free_fq;
2322
2323         if (hctx->flags & BLK_MQ_F_BLOCKING)
2324                 init_srcu_struct(hctx->srcu);
2325
2326         return 0;
2327
2328  free_fq:
2329         kfree(hctx->fq);
2330  exit_hctx:
2331         if (set->ops->exit_hctx)
2332                 set->ops->exit_hctx(hctx, hctx_idx);
2333  free_bitmap:
2334         sbitmap_free(&hctx->ctx_map);
2335  free_ctxs:
2336         kfree(hctx->ctxs);
2337  unregister_cpu_notifier:
2338         blk_mq_remove_cpuhp(hctx);
2339         return -1;
2340 }
2341
2342 static void blk_mq_init_cpu_queues(struct request_queue *q,
2343                                    unsigned int nr_hw_queues)
2344 {
2345         struct blk_mq_tag_set *set = q->tag_set;
2346         unsigned int i, j;
2347
2348         for_each_possible_cpu(i) {
2349                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2350                 struct blk_mq_hw_ctx *hctx;
2351
2352                 __ctx->cpu = i;
2353                 spin_lock_init(&__ctx->lock);
2354                 INIT_LIST_HEAD(&__ctx->rq_list);
2355                 __ctx->queue = q;
2356
2357                 /*
2358                  * Set local node, IFF we have more than one hw queue. If
2359                  * not, we remain on the home node of the device
2360                  */
2361                 for (j = 0; j < set->nr_maps; j++) {
2362                         hctx = blk_mq_map_queue_type(q, j, i);
2363                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2364                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2365                 }
2366         }
2367 }
2368
2369 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2370 {
2371         int ret = 0;
2372
2373         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2374                                         set->queue_depth, set->reserved_tags);
2375         if (!set->tags[hctx_idx])
2376                 return false;
2377
2378         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2379                                 set->queue_depth);
2380         if (!ret)
2381                 return true;
2382
2383         blk_mq_free_rq_map(set->tags[hctx_idx]);
2384         set->tags[hctx_idx] = NULL;
2385         return false;
2386 }
2387
2388 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2389                                          unsigned int hctx_idx)
2390 {
2391         if (set->tags && set->tags[hctx_idx]) {
2392                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2393                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2394                 set->tags[hctx_idx] = NULL;
2395         }
2396 }
2397
2398 static void blk_mq_map_swqueue(struct request_queue *q)
2399 {
2400         unsigned int i, j, hctx_idx;
2401         struct blk_mq_hw_ctx *hctx;
2402         struct blk_mq_ctx *ctx;
2403         struct blk_mq_tag_set *set = q->tag_set;
2404
2405         /*
2406          * Avoid others reading imcomplete hctx->cpumask through sysfs
2407          */
2408         mutex_lock(&q->sysfs_lock);
2409
2410         queue_for_each_hw_ctx(q, hctx, i) {
2411                 cpumask_clear(hctx->cpumask);
2412                 hctx->nr_ctx = 0;
2413                 hctx->dispatch_from = NULL;
2414         }
2415
2416         /*
2417          * Map software to hardware queues.
2418          *
2419          * If the cpu isn't present, the cpu is mapped to first hctx.
2420          */
2421         for_each_possible_cpu(i) {
2422                 hctx_idx = set->map[0].mq_map[i];
2423                 /* unmapped hw queue can be remapped after CPU topo changed */
2424                 if (!set->tags[hctx_idx] &&
2425                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2426                         /*
2427                          * If tags initialization fail for some hctx,
2428                          * that hctx won't be brought online.  In this
2429                          * case, remap the current ctx to hctx[0] which
2430                          * is guaranteed to always have tags allocated
2431                          */
2432                         set->map[0].mq_map[i] = 0;
2433                 }
2434
2435                 ctx = per_cpu_ptr(q->queue_ctx, i);
2436                 for (j = 0; j < set->nr_maps; j++) {
2437                         hctx = blk_mq_map_queue_type(q, j, i);
2438
2439                         /*
2440                          * If the CPU is already set in the mask, then we've
2441                          * mapped this one already. This can happen if
2442                          * devices share queues across queue maps.
2443                          */
2444                         if (cpumask_test_cpu(i, hctx->cpumask))
2445                                 continue;
2446
2447                         cpumask_set_cpu(i, hctx->cpumask);
2448                         hctx->type = j;
2449                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2450                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2451
2452                         /*
2453                          * If the nr_ctx type overflows, we have exceeded the
2454                          * amount of sw queues we can support.
2455                          */
2456                         BUG_ON(!hctx->nr_ctx);
2457                 }
2458         }
2459
2460         mutex_unlock(&q->sysfs_lock);
2461
2462         queue_for_each_hw_ctx(q, hctx, i) {
2463                 /*
2464                  * If no software queues are mapped to this hardware queue,
2465                  * disable it and free the request entries.
2466                  */
2467                 if (!hctx->nr_ctx) {
2468                         /* Never unmap queue 0.  We need it as a
2469                          * fallback in case of a new remap fails
2470                          * allocation
2471                          */
2472                         if (i && set->tags[i])
2473                                 blk_mq_free_map_and_requests(set, i);
2474
2475                         hctx->tags = NULL;
2476                         continue;
2477                 }
2478
2479                 hctx->tags = set->tags[i];
2480                 WARN_ON(!hctx->tags);
2481
2482                 /*
2483                  * Set the map size to the number of mapped software queues.
2484                  * This is more accurate and more efficient than looping
2485                  * over all possibly mapped software queues.
2486                  */
2487                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2488
2489                 /*
2490                  * Initialize batch roundrobin counts
2491                  */
2492                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2493                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2494         }
2495 }
2496
2497 /*
2498  * Caller needs to ensure that we're either frozen/quiesced, or that
2499  * the queue isn't live yet.
2500  */
2501 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2502 {
2503         struct blk_mq_hw_ctx *hctx;
2504         int i;
2505
2506         queue_for_each_hw_ctx(q, hctx, i) {
2507                 if (shared)
2508                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2509                 else
2510                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2511         }
2512 }
2513
2514 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2515                                         bool shared)
2516 {
2517         struct request_queue *q;
2518
2519         lockdep_assert_held(&set->tag_list_lock);
2520
2521         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2522                 blk_mq_freeze_queue(q);
2523                 queue_set_hctx_shared(q, shared);
2524                 blk_mq_unfreeze_queue(q);
2525         }
2526 }
2527
2528 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2529 {
2530         struct blk_mq_tag_set *set = q->tag_set;
2531
2532         mutex_lock(&set->tag_list_lock);
2533         list_del_rcu(&q->tag_set_list);
2534         if (list_is_singular(&set->tag_list)) {
2535                 /* just transitioned to unshared */
2536                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2537                 /* update existing queue */
2538                 blk_mq_update_tag_set_depth(set, false);
2539         }
2540         mutex_unlock(&set->tag_list_lock);
2541         INIT_LIST_HEAD(&q->tag_set_list);
2542 }
2543
2544 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2545                                      struct request_queue *q)
2546 {
2547         mutex_lock(&set->tag_list_lock);
2548
2549         /*
2550          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2551          */
2552         if (!list_empty(&set->tag_list) &&
2553             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2554                 set->flags |= BLK_MQ_F_TAG_SHARED;
2555                 /* update existing queue */
2556                 blk_mq_update_tag_set_depth(set, true);
2557         }
2558         if (set->flags & BLK_MQ_F_TAG_SHARED)
2559                 queue_set_hctx_shared(q, true);
2560         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2561
2562         mutex_unlock(&set->tag_list_lock);
2563 }
2564
2565 /* All allocations will be freed in release handler of q->mq_kobj */
2566 static int blk_mq_alloc_ctxs(struct request_queue *q)
2567 {
2568         struct blk_mq_ctxs *ctxs;
2569         int cpu;
2570
2571         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2572         if (!ctxs)
2573                 return -ENOMEM;
2574
2575         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2576         if (!ctxs->queue_ctx)
2577                 goto fail;
2578
2579         for_each_possible_cpu(cpu) {
2580                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2581                 ctx->ctxs = ctxs;
2582         }
2583
2584         q->mq_kobj = &ctxs->kobj;
2585         q->queue_ctx = ctxs->queue_ctx;
2586
2587         return 0;
2588  fail:
2589         kfree(ctxs);
2590         return -ENOMEM;
2591 }
2592
2593 /*
2594  * It is the actual release handler for mq, but we do it from
2595  * request queue's release handler for avoiding use-after-free
2596  * and headache because q->mq_kobj shouldn't have been introduced,
2597  * but we can't group ctx/kctx kobj without it.
2598  */
2599 void blk_mq_release(struct request_queue *q)
2600 {
2601         struct blk_mq_hw_ctx *hctx;
2602         unsigned int i;
2603
2604         /* hctx kobj stays in hctx */
2605         queue_for_each_hw_ctx(q, hctx, i) {
2606                 if (!hctx)
2607                         continue;
2608                 kobject_put(&hctx->kobj);
2609         }
2610
2611         kfree(q->queue_hw_ctx);
2612
2613         /*
2614          * release .mq_kobj and sw queue's kobject now because
2615          * both share lifetime with request queue.
2616          */
2617         blk_mq_sysfs_deinit(q);
2618 }
2619
2620 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2621 {
2622         struct request_queue *uninit_q, *q;
2623
2624         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2625         if (!uninit_q)
2626                 return ERR_PTR(-ENOMEM);
2627
2628         q = blk_mq_init_allocated_queue(set, uninit_q);
2629         if (IS_ERR(q))
2630                 blk_cleanup_queue(uninit_q);
2631
2632         return q;
2633 }
2634 EXPORT_SYMBOL(blk_mq_init_queue);
2635
2636 /*
2637  * Helper for setting up a queue with mq ops, given queue depth, and
2638  * the passed in mq ops flags.
2639  */
2640 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2641                                            const struct blk_mq_ops *ops,
2642                                            unsigned int queue_depth,
2643                                            unsigned int set_flags)
2644 {
2645         struct request_queue *q;
2646         int ret;
2647
2648         memset(set, 0, sizeof(*set));
2649         set->ops = ops;
2650         set->nr_hw_queues = 1;
2651         set->nr_maps = 1;
2652         set->queue_depth = queue_depth;
2653         set->numa_node = NUMA_NO_NODE;
2654         set->flags = set_flags;
2655
2656         ret = blk_mq_alloc_tag_set(set);
2657         if (ret)
2658                 return ERR_PTR(ret);
2659
2660         q = blk_mq_init_queue(set);
2661         if (IS_ERR(q)) {
2662                 blk_mq_free_tag_set(set);
2663                 return q;
2664         }
2665
2666         return q;
2667 }
2668 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2669
2670 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2671 {
2672         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2673
2674         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2675                            __alignof__(struct blk_mq_hw_ctx)) !=
2676                      sizeof(struct blk_mq_hw_ctx));
2677
2678         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2679                 hw_ctx_size += sizeof(struct srcu_struct);
2680
2681         return hw_ctx_size;
2682 }
2683
2684 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2685                 struct blk_mq_tag_set *set, struct request_queue *q,
2686                 int hctx_idx, int node)
2687 {
2688         struct blk_mq_hw_ctx *hctx;
2689
2690         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2691                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2692                         node);
2693         if (!hctx)
2694                 return NULL;
2695
2696         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2697                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2698                                 node)) {
2699                 kfree(hctx);
2700                 return NULL;
2701         }
2702
2703         atomic_set(&hctx->nr_active, 0);
2704         hctx->numa_node = node;
2705         hctx->queue_num = hctx_idx;
2706
2707         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2708                 free_cpumask_var(hctx->cpumask);
2709                 kfree(hctx);
2710                 return NULL;
2711         }
2712         blk_mq_hctx_kobj_init(hctx);
2713
2714         return hctx;
2715 }
2716
2717 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2718                                                 struct request_queue *q)
2719 {
2720         int i, j, end;
2721         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2722
2723         /* protect against switching io scheduler  */
2724         mutex_lock(&q->sysfs_lock);
2725         for (i = 0; i < set->nr_hw_queues; i++) {
2726                 int node;
2727                 struct blk_mq_hw_ctx *hctx;
2728
2729                 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2730                 /*
2731                  * If the hw queue has been mapped to another numa node,
2732                  * we need to realloc the hctx. If allocation fails, fallback
2733                  * to use the previous one.
2734                  */
2735                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2736                         continue;
2737
2738                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2739                 if (hctx) {
2740                         if (hctxs[i]) {
2741                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2742                                 kobject_put(&hctxs[i]->kobj);
2743                         }
2744                         hctxs[i] = hctx;
2745                 } else {
2746                         if (hctxs[i])
2747                                 pr_warn("Allocate new hctx on node %d fails,\
2748                                                 fallback to previous one on node %d\n",
2749                                                 node, hctxs[i]->numa_node);
2750                         else
2751                                 break;
2752                 }
2753         }
2754         /*
2755          * Increasing nr_hw_queues fails. Free the newly allocated
2756          * hctxs and keep the previous q->nr_hw_queues.
2757          */
2758         if (i != set->nr_hw_queues) {
2759                 j = q->nr_hw_queues;
2760                 end = i;
2761         } else {
2762                 j = i;
2763                 end = q->nr_hw_queues;
2764                 q->nr_hw_queues = set->nr_hw_queues;
2765         }
2766
2767         for (; j < end; j++) {
2768                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2769
2770                 if (hctx) {
2771                         if (hctx->tags)
2772                                 blk_mq_free_map_and_requests(set, j);
2773                         blk_mq_exit_hctx(q, set, hctx, j);
2774                         kobject_put(&hctx->kobj);
2775                         hctxs[j] = NULL;
2776
2777                 }
2778         }
2779         mutex_unlock(&q->sysfs_lock);
2780 }
2781
2782 /*
2783  * Maximum number of hardware queues we support. For single sets, we'll never
2784  * have more than the CPUs (software queues). For multiple sets, the tag_set
2785  * user may have set ->nr_hw_queues larger.
2786  */
2787 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2788 {
2789         if (set->nr_maps == 1)
2790                 return nr_cpu_ids;
2791
2792         return max(set->nr_hw_queues, nr_cpu_ids);
2793 }
2794
2795 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2796                                                   struct request_queue *q)
2797 {
2798         /* mark the queue as mq asap */
2799         q->mq_ops = set->ops;
2800
2801         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2802                                              blk_mq_poll_stats_bkt,
2803                                              BLK_MQ_POLL_STATS_BKTS, q);
2804         if (!q->poll_cb)
2805                 goto err_exit;
2806
2807         if (blk_mq_alloc_ctxs(q))
2808                 goto err_exit;
2809
2810         /* init q->mq_kobj and sw queues' kobjects */
2811         blk_mq_sysfs_init(q);
2812
2813         q->nr_queues = nr_hw_queues(set);
2814         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2815                                                 GFP_KERNEL, set->numa_node);
2816         if (!q->queue_hw_ctx)
2817                 goto err_sys_init;
2818
2819         blk_mq_realloc_hw_ctxs(set, q);
2820         if (!q->nr_hw_queues)
2821                 goto err_hctxs;
2822
2823         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2824         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2825
2826         q->tag_set = set;
2827
2828         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2829         if (set->nr_maps > HCTX_TYPE_POLL)
2830                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2831
2832         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2833                 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2834
2835         q->sg_reserved_size = INT_MAX;
2836
2837         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2838         INIT_LIST_HEAD(&q->requeue_list);
2839         spin_lock_init(&q->requeue_lock);
2840
2841         blk_queue_make_request(q, blk_mq_make_request);
2842
2843         /*
2844          * Do this after blk_queue_make_request() overrides it...
2845          */
2846         q->nr_requests = set->queue_depth;
2847
2848         /*
2849          * Default to classic polling
2850          */
2851         q->poll_nsec = -1;
2852
2853         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2854         blk_mq_add_queue_tag_set(set, q);
2855         blk_mq_map_swqueue(q);
2856
2857         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2858                 int ret;
2859
2860                 ret = elevator_init_mq(q);
2861                 if (ret)
2862                         return ERR_PTR(ret);
2863         }
2864
2865         return q;
2866
2867 err_hctxs:
2868         kfree(q->queue_hw_ctx);
2869 err_sys_init:
2870         blk_mq_sysfs_deinit(q);
2871 err_exit:
2872         q->mq_ops = NULL;
2873         return ERR_PTR(-ENOMEM);
2874 }
2875 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2876
2877 void blk_mq_free_queue(struct request_queue *q)
2878 {
2879         struct blk_mq_tag_set   *set = q->tag_set;
2880
2881         blk_mq_del_queue_tag_set(q);
2882         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2883 }
2884
2885 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2886 {
2887         int i;
2888
2889         for (i = 0; i < set->nr_hw_queues; i++)
2890                 if (!__blk_mq_alloc_rq_map(set, i))
2891                         goto out_unwind;
2892
2893         return 0;
2894
2895 out_unwind:
2896         while (--i >= 0)
2897                 blk_mq_free_rq_map(set->tags[i]);
2898
2899         return -ENOMEM;
2900 }
2901
2902 /*
2903  * Allocate the request maps associated with this tag_set. Note that this
2904  * may reduce the depth asked for, if memory is tight. set->queue_depth
2905  * will be updated to reflect the allocated depth.
2906  */
2907 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2908 {
2909         unsigned int depth;
2910         int err;
2911
2912         depth = set->queue_depth;
2913         do {
2914                 err = __blk_mq_alloc_rq_maps(set);
2915                 if (!err)
2916                         break;
2917
2918                 set->queue_depth >>= 1;
2919                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2920                         err = -ENOMEM;
2921                         break;
2922                 }
2923         } while (set->queue_depth);
2924
2925         if (!set->queue_depth || err) {
2926                 pr_err("blk-mq: failed to allocate request map\n");
2927                 return -ENOMEM;
2928         }
2929
2930         if (depth != set->queue_depth)
2931                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2932                                                 depth, set->queue_depth);
2933
2934         return 0;
2935 }
2936
2937 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2938 {
2939         if (set->ops->map_queues) {
2940                 int i;
2941
2942                 /*
2943                  * transport .map_queues is usually done in the following
2944                  * way:
2945                  *
2946                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2947                  *      mask = get_cpu_mask(queue)
2948                  *      for_each_cpu(cpu, mask)
2949                  *              set->map[x].mq_map[cpu] = queue;
2950                  * }
2951                  *
2952                  * When we need to remap, the table has to be cleared for
2953                  * killing stale mapping since one CPU may not be mapped
2954                  * to any hw queue.
2955                  */
2956                 for (i = 0; i < set->nr_maps; i++)
2957                         blk_mq_clear_mq_map(&set->map[i]);
2958
2959                 return set->ops->map_queues(set);
2960         } else {
2961                 BUG_ON(set->nr_maps > 1);
2962                 return blk_mq_map_queues(&set->map[0]);
2963         }
2964 }
2965
2966 /*
2967  * Alloc a tag set to be associated with one or more request queues.
2968  * May fail with EINVAL for various error conditions. May adjust the
2969  * requested depth down, if it's too large. In that case, the set
2970  * value will be stored in set->queue_depth.
2971  */
2972 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2973 {
2974         int i, ret;
2975
2976         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2977
2978         if (!set->nr_hw_queues)
2979                 return -EINVAL;
2980         if (!set->queue_depth)
2981                 return -EINVAL;
2982         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2983                 return -EINVAL;
2984
2985         if (!set->ops->queue_rq)
2986                 return -EINVAL;
2987
2988         if (!set->ops->get_budget ^ !set->ops->put_budget)
2989                 return -EINVAL;
2990
2991         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2992                 pr_info("blk-mq: reduced tag depth to %u\n",
2993                         BLK_MQ_MAX_DEPTH);
2994                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2995         }
2996
2997         if (!set->nr_maps)
2998                 set->nr_maps = 1;
2999         else if (set->nr_maps > HCTX_MAX_TYPES)
3000                 return -EINVAL;
3001
3002         /*
3003          * If a crashdump is active, then we are potentially in a very
3004          * memory constrained environment. Limit us to 1 queue and
3005          * 64 tags to prevent using too much memory.
3006          */
3007         if (is_kdump_kernel()) {
3008                 set->nr_hw_queues = 1;
3009                 set->queue_depth = min(64U, set->queue_depth);
3010         }
3011         /*
3012          * There is no use for more h/w queues than cpus if we just have
3013          * a single map
3014          */
3015         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3016                 set->nr_hw_queues = nr_cpu_ids;
3017
3018         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3019                                  GFP_KERNEL, set->numa_node);
3020         if (!set->tags)
3021                 return -ENOMEM;
3022
3023         ret = -ENOMEM;
3024         for (i = 0; i < set->nr_maps; i++) {
3025                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3026                                                   sizeof(struct blk_mq_queue_map),
3027                                                   GFP_KERNEL, set->numa_node);
3028                 if (!set->map[i].mq_map)
3029                         goto out_free_mq_map;
3030                 set->map[i].nr_queues = set->nr_hw_queues;
3031         }
3032
3033         ret = blk_mq_update_queue_map(set);
3034         if (ret)
3035                 goto out_free_mq_map;
3036
3037         ret = blk_mq_alloc_rq_maps(set);
3038         if (ret)
3039                 goto out_free_mq_map;
3040
3041         mutex_init(&set->tag_list_lock);
3042         INIT_LIST_HEAD(&set->tag_list);
3043
3044         return 0;
3045
3046 out_free_mq_map:
3047         for (i = 0; i < set->nr_maps; i++) {
3048                 kfree(set->map[i].mq_map);
3049                 set->map[i].mq_map = NULL;
3050         }
3051         kfree(set->tags);
3052         set->tags = NULL;
3053         return ret;
3054 }
3055 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3056
3057 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3058 {
3059         int i, j;
3060
3061         for (i = 0; i < nr_hw_queues(set); i++)
3062                 blk_mq_free_map_and_requests(set, i);
3063
3064         for (j = 0; j < set->nr_maps; j++) {
3065                 kfree(set->map[j].mq_map);
3066                 set->map[j].mq_map = NULL;
3067         }
3068
3069         kfree(set->tags);
3070         set->tags = NULL;
3071 }
3072 EXPORT_SYMBOL(blk_mq_free_tag_set);
3073
3074 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3075 {
3076         struct blk_mq_tag_set *set = q->tag_set;
3077         struct blk_mq_hw_ctx *hctx;
3078         int i, ret;
3079
3080         if (!set)
3081                 return -EINVAL;
3082
3083         blk_mq_freeze_queue(q);
3084         blk_mq_quiesce_queue(q);
3085
3086         ret = 0;
3087         queue_for_each_hw_ctx(q, hctx, i) {
3088                 if (!hctx->tags)
3089                         continue;
3090                 /*
3091                  * If we're using an MQ scheduler, just update the scheduler
3092                  * queue depth. This is similar to what the old code would do.
3093                  */
3094                 if (!hctx->sched_tags) {
3095                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3096                                                         false);
3097                 } else {
3098                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3099                                                         nr, true);
3100                 }
3101                 if (ret)
3102                         break;
3103         }
3104
3105         if (!ret)
3106                 q->nr_requests = nr;
3107
3108         blk_mq_unquiesce_queue(q);
3109         blk_mq_unfreeze_queue(q);
3110
3111         return ret;
3112 }
3113
3114 /*
3115  * request_queue and elevator_type pair.
3116  * It is just used by __blk_mq_update_nr_hw_queues to cache
3117  * the elevator_type associated with a request_queue.
3118  */
3119 struct blk_mq_qe_pair {
3120         struct list_head node;
3121         struct request_queue *q;
3122         struct elevator_type *type;
3123 };
3124
3125 /*
3126  * Cache the elevator_type in qe pair list and switch the
3127  * io scheduler to 'none'
3128  */
3129 static bool blk_mq_elv_switch_none(struct list_head *head,
3130                 struct request_queue *q)
3131 {
3132         struct blk_mq_qe_pair *qe;
3133
3134         if (!q->elevator)
3135                 return true;
3136
3137         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3138         if (!qe)
3139                 return false;
3140
3141         INIT_LIST_HEAD(&qe->node);
3142         qe->q = q;
3143         qe->type = q->elevator->type;
3144         list_add(&qe->node, head);
3145
3146         mutex_lock(&q->sysfs_lock);
3147         /*
3148          * After elevator_switch_mq, the previous elevator_queue will be
3149          * released by elevator_release. The reference of the io scheduler
3150          * module get by elevator_get will also be put. So we need to get
3151          * a reference of the io scheduler module here to prevent it to be
3152          * removed.
3153          */
3154         __module_get(qe->type->elevator_owner);
3155         elevator_switch_mq(q, NULL);
3156         mutex_unlock(&q->sysfs_lock);
3157
3158         return true;
3159 }
3160
3161 static void blk_mq_elv_switch_back(struct list_head *head,
3162                 struct request_queue *q)
3163 {
3164         struct blk_mq_qe_pair *qe;
3165         struct elevator_type *t = NULL;
3166
3167         list_for_each_entry(qe, head, node)
3168                 if (qe->q == q) {
3169                         t = qe->type;
3170                         break;
3171                 }
3172
3173         if (!t)
3174                 return;
3175
3176         list_del(&qe->node);
3177         kfree(qe);
3178
3179         mutex_lock(&q->sysfs_lock);
3180         elevator_switch_mq(q, t);
3181         mutex_unlock(&q->sysfs_lock);
3182 }
3183
3184 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3185                                                         int nr_hw_queues)
3186 {
3187         struct request_queue *q;
3188         LIST_HEAD(head);
3189         int prev_nr_hw_queues;
3190
3191         lockdep_assert_held(&set->tag_list_lock);
3192
3193         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3194                 nr_hw_queues = nr_cpu_ids;
3195         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3196                 return;
3197
3198         list_for_each_entry(q, &set->tag_list, tag_set_list)
3199                 blk_mq_freeze_queue(q);
3200         /*
3201          * Sync with blk_mq_queue_tag_busy_iter.
3202          */
3203         synchronize_rcu();
3204         /*
3205          * Switch IO scheduler to 'none', cleaning up the data associated
3206          * with the previous scheduler. We will switch back once we are done
3207          * updating the new sw to hw queue mappings.
3208          */
3209         list_for_each_entry(q, &set->tag_list, tag_set_list)
3210                 if (!blk_mq_elv_switch_none(&head, q))
3211                         goto switch_back;
3212
3213         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3214                 blk_mq_debugfs_unregister_hctxs(q);
3215                 blk_mq_sysfs_unregister(q);
3216         }
3217
3218         prev_nr_hw_queues = set->nr_hw_queues;
3219         set->nr_hw_queues = nr_hw_queues;
3220         blk_mq_update_queue_map(set);
3221 fallback:
3222         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3223                 blk_mq_realloc_hw_ctxs(set, q);
3224                 if (q->nr_hw_queues != set->nr_hw_queues) {
3225                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3226                                         nr_hw_queues, prev_nr_hw_queues);
3227                         set->nr_hw_queues = prev_nr_hw_queues;
3228                         blk_mq_map_queues(&set->map[0]);
3229                         goto fallback;
3230                 }
3231                 blk_mq_map_swqueue(q);
3232         }
3233
3234         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3235                 blk_mq_sysfs_register(q);
3236                 blk_mq_debugfs_register_hctxs(q);
3237         }
3238
3239 switch_back:
3240         list_for_each_entry(q, &set->tag_list, tag_set_list)
3241                 blk_mq_elv_switch_back(&head, q);
3242
3243         list_for_each_entry(q, &set->tag_list, tag_set_list)
3244                 blk_mq_unfreeze_queue(q);
3245 }
3246
3247 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3248 {
3249         mutex_lock(&set->tag_list_lock);
3250         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3251         mutex_unlock(&set->tag_list_lock);
3252 }
3253 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3254
3255 /* Enable polling stats and return whether they were already enabled. */
3256 static bool blk_poll_stats_enable(struct request_queue *q)
3257 {
3258         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3259             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3260                 return true;
3261         blk_stat_add_callback(q, q->poll_cb);
3262         return false;
3263 }
3264
3265 static void blk_mq_poll_stats_start(struct request_queue *q)
3266 {
3267         /*
3268          * We don't arm the callback if polling stats are not enabled or the
3269          * callback is already active.
3270          */
3271         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3272             blk_stat_is_active(q->poll_cb))
3273                 return;
3274
3275         blk_stat_activate_msecs(q->poll_cb, 100);
3276 }
3277
3278 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3279 {
3280         struct request_queue *q = cb->data;
3281         int bucket;
3282
3283         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3284                 if (cb->stat[bucket].nr_samples)
3285                         q->poll_stat[bucket] = cb->stat[bucket];
3286         }
3287 }
3288
3289 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3290                                        struct blk_mq_hw_ctx *hctx,
3291                                        struct request *rq)
3292 {
3293         unsigned long ret = 0;
3294         int bucket;
3295
3296         /*
3297          * If stats collection isn't on, don't sleep but turn it on for
3298          * future users
3299          */
3300         if (!blk_poll_stats_enable(q))
3301                 return 0;
3302
3303         /*
3304          * As an optimistic guess, use half of the mean service time
3305          * for this type of request. We can (and should) make this smarter.
3306          * For instance, if the completion latencies are tight, we can
3307          * get closer than just half the mean. This is especially
3308          * important on devices where the completion latencies are longer
3309          * than ~10 usec. We do use the stats for the relevant IO size
3310          * if available which does lead to better estimates.
3311          */
3312         bucket = blk_mq_poll_stats_bkt(rq);
3313         if (bucket < 0)
3314                 return ret;
3315
3316         if (q->poll_stat[bucket].nr_samples)
3317                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3318
3319         return ret;
3320 }
3321
3322 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3323                                      struct blk_mq_hw_ctx *hctx,
3324                                      struct request *rq)
3325 {
3326         struct hrtimer_sleeper hs;
3327         enum hrtimer_mode mode;
3328         unsigned int nsecs;
3329         ktime_t kt;
3330
3331         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3332                 return false;
3333
3334         /*
3335          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3336          *
3337          *  0:  use half of prev avg
3338          * >0:  use this specific value
3339          */
3340         if (q->poll_nsec > 0)
3341                 nsecs = q->poll_nsec;
3342         else
3343                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3344
3345         if (!nsecs)
3346                 return false;
3347
3348         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3349
3350         /*
3351          * This will be replaced with the stats tracking code, using
3352          * 'avg_completion_time / 2' as the pre-sleep target.
3353          */
3354         kt = nsecs;
3355
3356         mode = HRTIMER_MODE_REL;
3357         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3358         hrtimer_set_expires(&hs.timer, kt);
3359
3360         hrtimer_init_sleeper(&hs, current);
3361         do {
3362                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3363                         break;
3364                 set_current_state(TASK_UNINTERRUPTIBLE);
3365                 hrtimer_start_expires(&hs.timer, mode);
3366                 if (hs.task)
3367                         io_schedule();
3368                 hrtimer_cancel(&hs.timer);
3369                 mode = HRTIMER_MODE_ABS;
3370         } while (hs.task && !signal_pending(current));
3371
3372         __set_current_state(TASK_RUNNING);
3373         destroy_hrtimer_on_stack(&hs.timer);
3374         return true;
3375 }
3376
3377 static bool blk_mq_poll_hybrid(struct request_queue *q,
3378                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3379 {
3380         struct request *rq;
3381
3382         if (q->poll_nsec == -1)
3383                 return false;
3384
3385         if (!blk_qc_t_is_internal(cookie))
3386                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3387         else {
3388                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3389                 /*
3390                  * With scheduling, if the request has completed, we'll
3391                  * get a NULL return here, as we clear the sched tag when
3392                  * that happens. The request still remains valid, like always,
3393                  * so we should be safe with just the NULL check.
3394                  */
3395                 if (!rq)
3396                         return false;
3397         }
3398
3399         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3400 }
3401
3402 /**
3403  * blk_poll - poll for IO completions
3404  * @q:  the queue
3405  * @cookie: cookie passed back at IO submission time
3406  * @spin: whether to spin for completions
3407  *
3408  * Description:
3409  *    Poll for completions on the passed in queue. Returns number of
3410  *    completed entries found. If @spin is true, then blk_poll will continue
3411  *    looping until at least one completion is found, unless the task is
3412  *    otherwise marked running (or we need to reschedule).
3413  */
3414 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3415 {
3416         struct blk_mq_hw_ctx *hctx;
3417         long state;
3418
3419         if (!blk_qc_t_valid(cookie) ||
3420             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3421                 return 0;
3422
3423         if (current->plug)
3424                 blk_flush_plug_list(current->plug, false);
3425
3426         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3427
3428         /*
3429          * If we sleep, have the caller restart the poll loop to reset
3430          * the state. Like for the other success return cases, the
3431          * caller is responsible for checking if the IO completed. If
3432          * the IO isn't complete, we'll get called again and will go
3433          * straight to the busy poll loop.
3434          */
3435         if (blk_mq_poll_hybrid(q, hctx, cookie))
3436                 return 1;
3437
3438         hctx->poll_considered++;
3439
3440         state = current->state;
3441         do {
3442                 int ret;
3443
3444                 hctx->poll_invoked++;
3445
3446                 ret = q->mq_ops->poll(hctx);
3447                 if (ret > 0) {
3448                         hctx->poll_success++;
3449                         __set_current_state(TASK_RUNNING);
3450                         return ret;
3451                 }
3452
3453                 if (signal_pending_state(state, current))
3454                         __set_current_state(TASK_RUNNING);
3455
3456                 if (current->state == TASK_RUNNING)
3457                         return 1;
3458                 if (ret < 0 || !spin)
3459                         break;
3460                 cpu_relax();
3461         } while (!need_resched());
3462
3463         __set_current_state(TASK_RUNNING);
3464         return 0;
3465 }
3466 EXPORT_SYMBOL_GPL(blk_poll);
3467
3468 unsigned int blk_mq_rq_cpu(struct request *rq)
3469 {
3470         return rq->mq_ctx->cpu;
3471 }
3472 EXPORT_SYMBOL(blk_mq_rq_cpu);
3473
3474 static int __init blk_mq_init(void)
3475 {
3476         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3477                                 blk_mq_hctx_notify_dead);
3478         return 0;
3479 }
3480 subsys_initcall(blk_mq_init);