]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
block: add BLK_MQ_POLL_CLASSIC for hybrid poll and return EINVAL for unexpected value
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         const int bit = ctx->index_hw[hctx->type];
78
79         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80                 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         const int bit = ctx->index_hw[hctx->type];
87
88         sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92         struct hd_struct *part;
93         unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97                                   struct request *rq, void *priv,
98                                   bool reserved)
99 {
100         struct mq_inflight *mi = priv;
101
102         /*
103          * index[0] counts the specific partition that was asked for.
104          */
105         if (rq->part == mi->part)
106                 mi->inflight[0]++;
107
108         return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113         unsigned inflight[2];
114         struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
116         inflight[0] = inflight[1] = 0;
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119         return inflight[0];
120 }
121
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123                                      struct request *rq, void *priv,
124                                      bool reserved)
125 {
126         struct mq_inflight *mi = priv;
127
128         if (rq->part == mi->part)
129                 mi->inflight[rq_data_dir(rq)]++;
130
131         return true;
132 }
133
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135                          unsigned int inflight[2])
136 {
137         struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139         inflight[0] = inflight[1] = 0;
140         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145         int freeze_depth;
146
147         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148         if (freeze_depth == 1) {
149                 percpu_ref_kill(&q->q_usage_counter);
150                 if (queue_is_mq(q))
151                         blk_mq_run_hw_queues(q, false);
152         }
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163                                      unsigned long timeout)
164 {
165         return wait_event_timeout(q->mq_freeze_wq,
166                                         percpu_ref_is_zero(&q->q_usage_counter),
167                                         timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170
171 /*
172  * Guarantee no request is in use, so we can change any data structure of
173  * the queue afterward.
174  */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177         /*
178          * In the !blk_mq case we are only calling this to kill the
179          * q_usage_counter, otherwise this increases the freeze depth
180          * and waits for it to return to zero.  For this reason there is
181          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182          * exported to drivers as the only user for unfreeze is blk_mq.
183          */
184         blk_freeze_queue_start(q);
185         blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190         /*
191          * ...just an alias to keep freeze and unfreeze actions balanced
192          * in the blk_mq_* namespace
193          */
194         blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200         int freeze_depth;
201
202         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203         WARN_ON_ONCE(freeze_depth < 0);
204         if (!freeze_depth) {
205                 percpu_ref_resurrect(&q->q_usage_counter);
206                 wake_up_all(&q->mq_freeze_wq);
207         }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277         return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280
281 /*
282  * Only need start/end time stamping if we have stats enabled, or using
283  * an IO scheduler.
284  */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287         return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291                 unsigned int tag, unsigned int op)
292 {
293         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294         struct request *rq = tags->static_rqs[tag];
295         req_flags_t rq_flags = 0;
296
297         if (data->flags & BLK_MQ_REQ_INTERNAL) {
298                 rq->tag = -1;
299                 rq->internal_tag = tag;
300         } else {
301                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302                         rq_flags = RQF_MQ_INFLIGHT;
303                         atomic_inc(&data->hctx->nr_active);
304                 }
305                 rq->tag = tag;
306                 rq->internal_tag = -1;
307                 data->hctx->tags->rqs[rq->tag] = rq;
308         }
309
310         /* csd/requeue_work/fifo_time is initialized before use */
311         rq->q = data->q;
312         rq->mq_ctx = data->ctx;
313         rq->mq_hctx = data->hctx;
314         rq->rq_flags = rq_flags;
315         rq->cmd_flags = op;
316         if (data->flags & BLK_MQ_REQ_PREEMPT)
317                 rq->rq_flags |= RQF_PREEMPT;
318         if (blk_queue_io_stat(data->q))
319                 rq->rq_flags |= RQF_IO_STAT;
320         INIT_LIST_HEAD(&rq->queuelist);
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->rq_disk = NULL;
324         rq->part = NULL;
325         if (blk_mq_need_time_stamp(rq))
326                 rq->start_time_ns = ktime_get_ns();
327         else
328                 rq->start_time_ns = 0;
329         rq->io_start_time_ns = 0;
330         rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332         rq->nr_integrity_segments = 0;
333 #endif
334         /* tag was already set */
335         rq->extra_len = 0;
336         WRITE_ONCE(rq->deadline, 0);
337
338         rq->timeout = 0;
339
340         rq->end_io = NULL;
341         rq->end_io_data = NULL;
342
343         data->ctx->rq_dispatched[op_is_sync(op)]++;
344         refcount_set(&rq->ref, 1);
345         return rq;
346 }
347
348 static struct request *blk_mq_get_request(struct request_queue *q,
349                                           struct bio *bio,
350                                           struct blk_mq_alloc_data *data)
351 {
352         struct elevator_queue *e = q->elevator;
353         struct request *rq;
354         unsigned int tag;
355         bool put_ctx_on_error = false;
356
357         blk_queue_enter_live(q);
358         data->q = q;
359         if (likely(!data->ctx)) {
360                 data->ctx = blk_mq_get_ctx(q);
361                 put_ctx_on_error = true;
362         }
363         if (likely(!data->hctx))
364                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
365                                                 data->ctx);
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 data->flags |= BLK_MQ_REQ_INTERNAL;
371
372                 /*
373                  * Flush requests are special and go directly to the
374                  * dispatch list. Don't include reserved tags in the
375                  * limiting, as it isn't useful.
376                  */
377                 if (!op_is_flush(data->cmd_flags) &&
378                     e->type->ops.limit_depth &&
379                     !(data->flags & BLK_MQ_REQ_RESERVED))
380                         e->type->ops.limit_depth(data->cmd_flags, data);
381         } else {
382                 blk_mq_tag_busy(data->hctx);
383         }
384
385         tag = blk_mq_get_tag(data);
386         if (tag == BLK_MQ_TAG_FAIL) {
387                 if (put_ctx_on_error) {
388                         blk_mq_put_ctx(data->ctx);
389                         data->ctx = NULL;
390                 }
391                 blk_queue_exit(q);
392                 return NULL;
393         }
394
395         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
396         if (!op_is_flush(data->cmd_flags)) {
397                 rq->elv.icq = NULL;
398                 if (e && e->type->ops.prepare_request) {
399                         if (e->type->icq_cache)
400                                 blk_mq_sched_assign_ioc(rq);
401
402                         e->type->ops.prepare_request(rq, bio);
403                         rq->rq_flags |= RQF_ELVPRIV;
404                 }
405         }
406         data->hctx->queued++;
407         return rq;
408 }
409
410 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
411                 blk_mq_req_flags_t flags)
412 {
413         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
414         struct request *rq;
415         int ret;
416
417         ret = blk_queue_enter(q, flags);
418         if (ret)
419                 return ERR_PTR(ret);
420
421         rq = blk_mq_get_request(q, NULL, &alloc_data);
422         blk_queue_exit(q);
423
424         if (!rq)
425                 return ERR_PTR(-EWOULDBLOCK);
426
427         blk_mq_put_ctx(alloc_data.ctx);
428
429         rq->__data_len = 0;
430         rq->__sector = (sector_t) -1;
431         rq->bio = rq->biotail = NULL;
432         return rq;
433 }
434 EXPORT_SYMBOL(blk_mq_alloc_request);
435
436 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
437         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
438 {
439         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
440         struct request *rq;
441         unsigned int cpu;
442         int ret;
443
444         /*
445          * If the tag allocator sleeps we could get an allocation for a
446          * different hardware context.  No need to complicate the low level
447          * allocator for this for the rare use case of a command tied to
448          * a specific queue.
449          */
450         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
451                 return ERR_PTR(-EINVAL);
452
453         if (hctx_idx >= q->nr_hw_queues)
454                 return ERR_PTR(-EIO);
455
456         ret = blk_queue_enter(q, flags);
457         if (ret)
458                 return ERR_PTR(ret);
459
460         /*
461          * Check if the hardware context is actually mapped to anything.
462          * If not tell the caller that it should skip this queue.
463          */
464         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
465         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
466                 blk_queue_exit(q);
467                 return ERR_PTR(-EXDEV);
468         }
469         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
470         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
471
472         rq = blk_mq_get_request(q, NULL, &alloc_data);
473         blk_queue_exit(q);
474
475         if (!rq)
476                 return ERR_PTR(-EWOULDBLOCK);
477
478         return rq;
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
481
482 static void __blk_mq_free_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485         struct blk_mq_ctx *ctx = rq->mq_ctx;
486         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
487         const int sched_tag = rq->internal_tag;
488
489         blk_pm_mark_last_busy(rq);
490         rq->mq_hctx = NULL;
491         if (rq->tag != -1)
492                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
493         if (sched_tag != -1)
494                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
495         blk_mq_sched_restart(hctx);
496         blk_queue_exit(q);
497 }
498
499 void blk_mq_free_request(struct request *rq)
500 {
501         struct request_queue *q = rq->q;
502         struct elevator_queue *e = q->elevator;
503         struct blk_mq_ctx *ctx = rq->mq_ctx;
504         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
505
506         if (rq->rq_flags & RQF_ELVPRIV) {
507                 if (e && e->type->ops.finish_request)
508                         e->type->ops.finish_request(rq);
509                 if (rq->elv.icq) {
510                         put_io_context(rq->elv.icq->ioc);
511                         rq->elv.icq = NULL;
512                 }
513         }
514
515         ctx->rq_completed[rq_is_sync(rq)]++;
516         if (rq->rq_flags & RQF_MQ_INFLIGHT)
517                 atomic_dec(&hctx->nr_active);
518
519         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
520                 laptop_io_completion(q->backing_dev_info);
521
522         rq_qos_done(q, rq);
523
524         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
525         if (refcount_dec_and_test(&rq->ref))
526                 __blk_mq_free_request(rq);
527 }
528 EXPORT_SYMBOL_GPL(blk_mq_free_request);
529
530 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
531 {
532         u64 now = 0;
533
534         if (blk_mq_need_time_stamp(rq))
535                 now = ktime_get_ns();
536
537         if (rq->rq_flags & RQF_STATS) {
538                 blk_mq_poll_stats_start(rq->q);
539                 blk_stat_add(rq, now);
540         }
541
542         if (rq->internal_tag != -1)
543                 blk_mq_sched_completed_request(rq, now);
544
545         blk_account_io_done(rq, now);
546
547         if (rq->end_io) {
548                 rq_qos_done(rq->q, rq);
549                 rq->end_io(rq, error);
550         } else {
551                 blk_mq_free_request(rq);
552         }
553 }
554 EXPORT_SYMBOL(__blk_mq_end_request);
555
556 void blk_mq_end_request(struct request *rq, blk_status_t error)
557 {
558         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
559                 BUG();
560         __blk_mq_end_request(rq, error);
561 }
562 EXPORT_SYMBOL(blk_mq_end_request);
563
564 static void __blk_mq_complete_request_remote(void *data)
565 {
566         struct request *rq = data;
567         struct request_queue *q = rq->q;
568
569         q->mq_ops->complete(rq);
570 }
571
572 static void __blk_mq_complete_request(struct request *rq)
573 {
574         struct blk_mq_ctx *ctx = rq->mq_ctx;
575         struct request_queue *q = rq->q;
576         bool shared = false;
577         int cpu;
578
579         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
580         /*
581          * Most of single queue controllers, there is only one irq vector
582          * for handling IO completion, and the only irq's affinity is set
583          * as all possible CPUs. On most of ARCHs, this affinity means the
584          * irq is handled on one specific CPU.
585          *
586          * So complete IO reqeust in softirq context in case of single queue
587          * for not degrading IO performance by irqsoff latency.
588          */
589         if (q->nr_hw_queues == 1) {
590                 __blk_complete_request(rq);
591                 return;
592         }
593
594         /*
595          * For a polled request, always complete locallly, it's pointless
596          * to redirect the completion.
597          */
598         if ((rq->cmd_flags & REQ_HIPRI) ||
599             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
600                 q->mq_ops->complete(rq);
601                 return;
602         }
603
604         cpu = get_cpu();
605         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
606                 shared = cpus_share_cache(cpu, ctx->cpu);
607
608         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
609                 rq->csd.func = __blk_mq_complete_request_remote;
610                 rq->csd.info = rq;
611                 rq->csd.flags = 0;
612                 smp_call_function_single_async(ctx->cpu, &rq->csd);
613         } else {
614                 q->mq_ops->complete(rq);
615         }
616         put_cpu();
617 }
618
619 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
620         __releases(hctx->srcu)
621 {
622         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
623                 rcu_read_unlock();
624         else
625                 srcu_read_unlock(hctx->srcu, srcu_idx);
626 }
627
628 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
629         __acquires(hctx->srcu)
630 {
631         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
632                 /* shut up gcc false positive */
633                 *srcu_idx = 0;
634                 rcu_read_lock();
635         } else
636                 *srcu_idx = srcu_read_lock(hctx->srcu);
637 }
638
639 /**
640  * blk_mq_complete_request - end I/O on a request
641  * @rq:         the request being processed
642  *
643  * Description:
644  *      Ends all I/O on a request. It does not handle partial completions.
645  *      The actual completion happens out-of-order, through a IPI handler.
646  **/
647 bool blk_mq_complete_request(struct request *rq)
648 {
649         if (unlikely(blk_should_fake_timeout(rq->q)))
650                 return false;
651         __blk_mq_complete_request(rq);
652         return true;
653 }
654 EXPORT_SYMBOL(blk_mq_complete_request);
655
656 int blk_mq_request_started(struct request *rq)
657 {
658         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_request_started);
661
662 void blk_mq_start_request(struct request *rq)
663 {
664         struct request_queue *q = rq->q;
665
666         blk_mq_sched_started_request(rq);
667
668         trace_block_rq_issue(q, rq);
669
670         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
671                 rq->io_start_time_ns = ktime_get_ns();
672 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
673                 rq->throtl_size = blk_rq_sectors(rq);
674 #endif
675                 rq->rq_flags |= RQF_STATS;
676                 rq_qos_issue(q, rq);
677         }
678
679         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
680
681         blk_add_timer(rq);
682         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
683
684         if (q->dma_drain_size && blk_rq_bytes(rq)) {
685                 /*
686                  * Make sure space for the drain appears.  We know we can do
687                  * this because max_hw_segments has been adjusted to be one
688                  * fewer than the device can handle.
689                  */
690                 rq->nr_phys_segments++;
691         }
692 }
693 EXPORT_SYMBOL(blk_mq_start_request);
694
695 static void __blk_mq_requeue_request(struct request *rq)
696 {
697         struct request_queue *q = rq->q;
698
699         blk_mq_put_driver_tag(rq);
700
701         trace_block_rq_requeue(q, rq);
702         rq_qos_requeue(q, rq);
703
704         if (blk_mq_request_started(rq)) {
705                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
706                 rq->rq_flags &= ~RQF_TIMED_OUT;
707                 if (q->dma_drain_size && blk_rq_bytes(rq))
708                         rq->nr_phys_segments--;
709         }
710 }
711
712 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
713 {
714         __blk_mq_requeue_request(rq);
715
716         /* this request will be re-inserted to io scheduler queue */
717         blk_mq_sched_requeue_request(rq);
718
719         BUG_ON(!list_empty(&rq->queuelist));
720         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
721 }
722 EXPORT_SYMBOL(blk_mq_requeue_request);
723
724 static void blk_mq_requeue_work(struct work_struct *work)
725 {
726         struct request_queue *q =
727                 container_of(work, struct request_queue, requeue_work.work);
728         LIST_HEAD(rq_list);
729         struct request *rq, *next;
730
731         spin_lock_irq(&q->requeue_lock);
732         list_splice_init(&q->requeue_list, &rq_list);
733         spin_unlock_irq(&q->requeue_lock);
734
735         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
736                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
737                         continue;
738
739                 rq->rq_flags &= ~RQF_SOFTBARRIER;
740                 list_del_init(&rq->queuelist);
741                 /*
742                  * If RQF_DONTPREP, rq has contained some driver specific
743                  * data, so insert it to hctx dispatch list to avoid any
744                  * merge.
745                  */
746                 if (rq->rq_flags & RQF_DONTPREP)
747                         blk_mq_request_bypass_insert(rq, false);
748                 else
749                         blk_mq_sched_insert_request(rq, true, false, false);
750         }
751
752         while (!list_empty(&rq_list)) {
753                 rq = list_entry(rq_list.next, struct request, queuelist);
754                 list_del_init(&rq->queuelist);
755                 blk_mq_sched_insert_request(rq, false, false, false);
756         }
757
758         blk_mq_run_hw_queues(q, false);
759 }
760
761 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
762                                 bool kick_requeue_list)
763 {
764         struct request_queue *q = rq->q;
765         unsigned long flags;
766
767         /*
768          * We abuse this flag that is otherwise used by the I/O scheduler to
769          * request head insertion from the workqueue.
770          */
771         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
772
773         spin_lock_irqsave(&q->requeue_lock, flags);
774         if (at_head) {
775                 rq->rq_flags |= RQF_SOFTBARRIER;
776                 list_add(&rq->queuelist, &q->requeue_list);
777         } else {
778                 list_add_tail(&rq->queuelist, &q->requeue_list);
779         }
780         spin_unlock_irqrestore(&q->requeue_lock, flags);
781
782         if (kick_requeue_list)
783                 blk_mq_kick_requeue_list(q);
784 }
785 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
786
787 void blk_mq_kick_requeue_list(struct request_queue *q)
788 {
789         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
790 }
791 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
792
793 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
794                                     unsigned long msecs)
795 {
796         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
797                                     msecs_to_jiffies(msecs));
798 }
799 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
800
801 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
802 {
803         if (tag < tags->nr_tags) {
804                 prefetch(tags->rqs[tag]);
805                 return tags->rqs[tag];
806         }
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(blk_mq_tag_to_rq);
811
812 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
813                                void *priv, bool reserved)
814 {
815         /*
816          * If we find a request that is inflight and the queue matches,
817          * we know the queue is busy. Return false to stop the iteration.
818          */
819         if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
820                 bool *busy = priv;
821
822                 *busy = true;
823                 return false;
824         }
825
826         return true;
827 }
828
829 bool blk_mq_queue_inflight(struct request_queue *q)
830 {
831         bool busy = false;
832
833         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
834         return busy;
835 }
836 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
837
838 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
839 {
840         req->rq_flags |= RQF_TIMED_OUT;
841         if (req->q->mq_ops->timeout) {
842                 enum blk_eh_timer_return ret;
843
844                 ret = req->q->mq_ops->timeout(req, reserved);
845                 if (ret == BLK_EH_DONE)
846                         return;
847                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
848         }
849
850         blk_add_timer(req);
851 }
852
853 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
854 {
855         unsigned long deadline;
856
857         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
858                 return false;
859         if (rq->rq_flags & RQF_TIMED_OUT)
860                 return false;
861
862         deadline = READ_ONCE(rq->deadline);
863         if (time_after_eq(jiffies, deadline))
864                 return true;
865
866         if (*next == 0)
867                 *next = deadline;
868         else if (time_after(*next, deadline))
869                 *next = deadline;
870         return false;
871 }
872
873 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
874                 struct request *rq, void *priv, bool reserved)
875 {
876         unsigned long *next = priv;
877
878         /*
879          * Just do a quick check if it is expired before locking the request in
880          * so we're not unnecessarilly synchronizing across CPUs.
881          */
882         if (!blk_mq_req_expired(rq, next))
883                 return true;
884
885         /*
886          * We have reason to believe the request may be expired. Take a
887          * reference on the request to lock this request lifetime into its
888          * currently allocated context to prevent it from being reallocated in
889          * the event the completion by-passes this timeout handler.
890          *
891          * If the reference was already released, then the driver beat the
892          * timeout handler to posting a natural completion.
893          */
894         if (!refcount_inc_not_zero(&rq->ref))
895                 return true;
896
897         /*
898          * The request is now locked and cannot be reallocated underneath the
899          * timeout handler's processing. Re-verify this exact request is truly
900          * expired; if it is not expired, then the request was completed and
901          * reallocated as a new request.
902          */
903         if (blk_mq_req_expired(rq, next))
904                 blk_mq_rq_timed_out(rq, reserved);
905         if (refcount_dec_and_test(&rq->ref))
906                 __blk_mq_free_request(rq);
907
908         return true;
909 }
910
911 static void blk_mq_timeout_work(struct work_struct *work)
912 {
913         struct request_queue *q =
914                 container_of(work, struct request_queue, timeout_work);
915         unsigned long next = 0;
916         struct blk_mq_hw_ctx *hctx;
917         int i;
918
919         /* A deadlock might occur if a request is stuck requiring a
920          * timeout at the same time a queue freeze is waiting
921          * completion, since the timeout code would not be able to
922          * acquire the queue reference here.
923          *
924          * That's why we don't use blk_queue_enter here; instead, we use
925          * percpu_ref_tryget directly, because we need to be able to
926          * obtain a reference even in the short window between the queue
927          * starting to freeze, by dropping the first reference in
928          * blk_freeze_queue_start, and the moment the last request is
929          * consumed, marked by the instant q_usage_counter reaches
930          * zero.
931          */
932         if (!percpu_ref_tryget(&q->q_usage_counter))
933                 return;
934
935         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
936
937         if (next != 0) {
938                 mod_timer(&q->timeout, next);
939         } else {
940                 /*
941                  * Request timeouts are handled as a forward rolling timer. If
942                  * we end up here it means that no requests are pending and
943                  * also that no request has been pending for a while. Mark
944                  * each hctx as idle.
945                  */
946                 queue_for_each_hw_ctx(q, hctx, i) {
947                         /* the hctx may be unmapped, so check it here */
948                         if (blk_mq_hw_queue_mapped(hctx))
949                                 blk_mq_tag_idle(hctx);
950                 }
951         }
952         blk_queue_exit(q);
953 }
954
955 struct flush_busy_ctx_data {
956         struct blk_mq_hw_ctx *hctx;
957         struct list_head *list;
958 };
959
960 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
961 {
962         struct flush_busy_ctx_data *flush_data = data;
963         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
964         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
965         enum hctx_type type = hctx->type;
966
967         spin_lock(&ctx->lock);
968         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
969         sbitmap_clear_bit(sb, bitnr);
970         spin_unlock(&ctx->lock);
971         return true;
972 }
973
974 /*
975  * Process software queues that have been marked busy, splicing them
976  * to the for-dispatch
977  */
978 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
979 {
980         struct flush_busy_ctx_data data = {
981                 .hctx = hctx,
982                 .list = list,
983         };
984
985         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
986 }
987 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
988
989 struct dispatch_rq_data {
990         struct blk_mq_hw_ctx *hctx;
991         struct request *rq;
992 };
993
994 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
995                 void *data)
996 {
997         struct dispatch_rq_data *dispatch_data = data;
998         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
999         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1000         enum hctx_type type = hctx->type;
1001
1002         spin_lock(&ctx->lock);
1003         if (!list_empty(&ctx->rq_lists[type])) {
1004                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1005                 list_del_init(&dispatch_data->rq->queuelist);
1006                 if (list_empty(&ctx->rq_lists[type]))
1007                         sbitmap_clear_bit(sb, bitnr);
1008         }
1009         spin_unlock(&ctx->lock);
1010
1011         return !dispatch_data->rq;
1012 }
1013
1014 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1015                                         struct blk_mq_ctx *start)
1016 {
1017         unsigned off = start ? start->index_hw[hctx->type] : 0;
1018         struct dispatch_rq_data data = {
1019                 .hctx = hctx,
1020                 .rq   = NULL,
1021         };
1022
1023         __sbitmap_for_each_set(&hctx->ctx_map, off,
1024                                dispatch_rq_from_ctx, &data);
1025
1026         return data.rq;
1027 }
1028
1029 static inline unsigned int queued_to_index(unsigned int queued)
1030 {
1031         if (!queued)
1032                 return 0;
1033
1034         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1035 }
1036
1037 bool blk_mq_get_driver_tag(struct request *rq)
1038 {
1039         struct blk_mq_alloc_data data = {
1040                 .q = rq->q,
1041                 .hctx = rq->mq_hctx,
1042                 .flags = BLK_MQ_REQ_NOWAIT,
1043                 .cmd_flags = rq->cmd_flags,
1044         };
1045         bool shared;
1046
1047         if (rq->tag != -1)
1048                 goto done;
1049
1050         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1051                 data.flags |= BLK_MQ_REQ_RESERVED;
1052
1053         shared = blk_mq_tag_busy(data.hctx);
1054         rq->tag = blk_mq_get_tag(&data);
1055         if (rq->tag >= 0) {
1056                 if (shared) {
1057                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1058                         atomic_inc(&data.hctx->nr_active);
1059                 }
1060                 data.hctx->tags->rqs[rq->tag] = rq;
1061         }
1062
1063 done:
1064         return rq->tag != -1;
1065 }
1066
1067 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1068                                 int flags, void *key)
1069 {
1070         struct blk_mq_hw_ctx *hctx;
1071
1072         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1073
1074         spin_lock(&hctx->dispatch_wait_lock);
1075         list_del_init(&wait->entry);
1076         spin_unlock(&hctx->dispatch_wait_lock);
1077
1078         blk_mq_run_hw_queue(hctx, true);
1079         return 1;
1080 }
1081
1082 /*
1083  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1084  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1085  * restart. For both cases, take care to check the condition again after
1086  * marking us as waiting.
1087  */
1088 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1089                                  struct request *rq)
1090 {
1091         struct wait_queue_head *wq;
1092         wait_queue_entry_t *wait;
1093         bool ret;
1094
1095         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1096                 blk_mq_sched_mark_restart_hctx(hctx);
1097
1098                 /*
1099                  * It's possible that a tag was freed in the window between the
1100                  * allocation failure and adding the hardware queue to the wait
1101                  * queue.
1102                  *
1103                  * Don't clear RESTART here, someone else could have set it.
1104                  * At most this will cost an extra queue run.
1105                  */
1106                 return blk_mq_get_driver_tag(rq);
1107         }
1108
1109         wait = &hctx->dispatch_wait;
1110         if (!list_empty_careful(&wait->entry))
1111                 return false;
1112
1113         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1114
1115         spin_lock_irq(&wq->lock);
1116         spin_lock(&hctx->dispatch_wait_lock);
1117         if (!list_empty(&wait->entry)) {
1118                 spin_unlock(&hctx->dispatch_wait_lock);
1119                 spin_unlock_irq(&wq->lock);
1120                 return false;
1121         }
1122
1123         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1124         __add_wait_queue(wq, wait);
1125
1126         /*
1127          * It's possible that a tag was freed in the window between the
1128          * allocation failure and adding the hardware queue to the wait
1129          * queue.
1130          */
1131         ret = blk_mq_get_driver_tag(rq);
1132         if (!ret) {
1133                 spin_unlock(&hctx->dispatch_wait_lock);
1134                 spin_unlock_irq(&wq->lock);
1135                 return false;
1136         }
1137
1138         /*
1139          * We got a tag, remove ourselves from the wait queue to ensure
1140          * someone else gets the wakeup.
1141          */
1142         list_del_init(&wait->entry);
1143         spin_unlock(&hctx->dispatch_wait_lock);
1144         spin_unlock_irq(&wq->lock);
1145
1146         return true;
1147 }
1148
1149 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1151 /*
1152  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1153  * - EWMA is one simple way to compute running average value
1154  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1155  * - take 4 as factor for avoiding to get too small(0) result, and this
1156  *   factor doesn't matter because EWMA decreases exponentially
1157  */
1158 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1159 {
1160         unsigned int ewma;
1161
1162         if (hctx->queue->elevator)
1163                 return;
1164
1165         ewma = hctx->dispatch_busy;
1166
1167         if (!ewma && !busy)
1168                 return;
1169
1170         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1171         if (busy)
1172                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1173         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1174
1175         hctx->dispatch_busy = ewma;
1176 }
1177
1178 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1179
1180 /*
1181  * Returns true if we did some work AND can potentially do more.
1182  */
1183 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1184                              bool got_budget)
1185 {
1186         struct blk_mq_hw_ctx *hctx;
1187         struct request *rq, *nxt;
1188         bool no_tag = false;
1189         int errors, queued;
1190         blk_status_t ret = BLK_STS_OK;
1191
1192         if (list_empty(list))
1193                 return false;
1194
1195         WARN_ON(!list_is_singular(list) && got_budget);
1196
1197         /*
1198          * Now process all the entries, sending them to the driver.
1199          */
1200         errors = queued = 0;
1201         do {
1202                 struct blk_mq_queue_data bd;
1203
1204                 rq = list_first_entry(list, struct request, queuelist);
1205
1206                 hctx = rq->mq_hctx;
1207                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1208                         break;
1209
1210                 if (!blk_mq_get_driver_tag(rq)) {
1211                         /*
1212                          * The initial allocation attempt failed, so we need to
1213                          * rerun the hardware queue when a tag is freed. The
1214                          * waitqueue takes care of that. If the queue is run
1215                          * before we add this entry back on the dispatch list,
1216                          * we'll re-run it below.
1217                          */
1218                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1219                                 blk_mq_put_dispatch_budget(hctx);
1220                                 /*
1221                                  * For non-shared tags, the RESTART check
1222                                  * will suffice.
1223                                  */
1224                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1225                                         no_tag = true;
1226                                 break;
1227                         }
1228                 }
1229
1230                 list_del_init(&rq->queuelist);
1231
1232                 bd.rq = rq;
1233
1234                 /*
1235                  * Flag last if we have no more requests, or if we have more
1236                  * but can't assign a driver tag to it.
1237                  */
1238                 if (list_empty(list))
1239                         bd.last = true;
1240                 else {
1241                         nxt = list_first_entry(list, struct request, queuelist);
1242                         bd.last = !blk_mq_get_driver_tag(nxt);
1243                 }
1244
1245                 ret = q->mq_ops->queue_rq(hctx, &bd);
1246                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1247                         /*
1248                          * If an I/O scheduler has been configured and we got a
1249                          * driver tag for the next request already, free it
1250                          * again.
1251                          */
1252                         if (!list_empty(list)) {
1253                                 nxt = list_first_entry(list, struct request, queuelist);
1254                                 blk_mq_put_driver_tag(nxt);
1255                         }
1256                         list_add(&rq->queuelist, list);
1257                         __blk_mq_requeue_request(rq);
1258                         break;
1259                 }
1260
1261                 if (unlikely(ret != BLK_STS_OK)) {
1262                         errors++;
1263                         blk_mq_end_request(rq, BLK_STS_IOERR);
1264                         continue;
1265                 }
1266
1267                 queued++;
1268         } while (!list_empty(list));
1269
1270         hctx->dispatched[queued_to_index(queued)]++;
1271
1272         /*
1273          * Any items that need requeuing? Stuff them into hctx->dispatch,
1274          * that is where we will continue on next queue run.
1275          */
1276         if (!list_empty(list)) {
1277                 bool needs_restart;
1278
1279                 /*
1280                  * If we didn't flush the entire list, we could have told
1281                  * the driver there was more coming, but that turned out to
1282                  * be a lie.
1283                  */
1284                 if (q->mq_ops->commit_rqs)
1285                         q->mq_ops->commit_rqs(hctx);
1286
1287                 spin_lock(&hctx->lock);
1288                 list_splice_init(list, &hctx->dispatch);
1289                 spin_unlock(&hctx->lock);
1290
1291                 /*
1292                  * If SCHED_RESTART was set by the caller of this function and
1293                  * it is no longer set that means that it was cleared by another
1294                  * thread and hence that a queue rerun is needed.
1295                  *
1296                  * If 'no_tag' is set, that means that we failed getting
1297                  * a driver tag with an I/O scheduler attached. If our dispatch
1298                  * waitqueue is no longer active, ensure that we run the queue
1299                  * AFTER adding our entries back to the list.
1300                  *
1301                  * If no I/O scheduler has been configured it is possible that
1302                  * the hardware queue got stopped and restarted before requests
1303                  * were pushed back onto the dispatch list. Rerun the queue to
1304                  * avoid starvation. Notes:
1305                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1306                  *   been stopped before rerunning a queue.
1307                  * - Some but not all block drivers stop a queue before
1308                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1309                  *   and dm-rq.
1310                  *
1311                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1312                  * bit is set, run queue after a delay to avoid IO stalls
1313                  * that could otherwise occur if the queue is idle.
1314                  */
1315                 needs_restart = blk_mq_sched_needs_restart(hctx);
1316                 if (!needs_restart ||
1317                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1318                         blk_mq_run_hw_queue(hctx, true);
1319                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1320                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1321
1322                 blk_mq_update_dispatch_busy(hctx, true);
1323                 return false;
1324         } else
1325                 blk_mq_update_dispatch_busy(hctx, false);
1326
1327         /*
1328          * If the host/device is unable to accept more work, inform the
1329          * caller of that.
1330          */
1331         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1332                 return false;
1333
1334         return (queued + errors) != 0;
1335 }
1336
1337 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1338 {
1339         int srcu_idx;
1340
1341         /*
1342          * We should be running this queue from one of the CPUs that
1343          * are mapped to it.
1344          *
1345          * There are at least two related races now between setting
1346          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1347          * __blk_mq_run_hw_queue():
1348          *
1349          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1350          *   but later it becomes online, then this warning is harmless
1351          *   at all
1352          *
1353          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1354          *   but later it becomes offline, then the warning can't be
1355          *   triggered, and we depend on blk-mq timeout handler to
1356          *   handle dispatched requests to this hctx
1357          */
1358         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1359                 cpu_online(hctx->next_cpu)) {
1360                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1361                         raw_smp_processor_id(),
1362                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1363                 dump_stack();
1364         }
1365
1366         /*
1367          * We can't run the queue inline with ints disabled. Ensure that
1368          * we catch bad users of this early.
1369          */
1370         WARN_ON_ONCE(in_interrupt());
1371
1372         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1373
1374         hctx_lock(hctx, &srcu_idx);
1375         blk_mq_sched_dispatch_requests(hctx);
1376         hctx_unlock(hctx, srcu_idx);
1377 }
1378
1379 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1380 {
1381         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1382
1383         if (cpu >= nr_cpu_ids)
1384                 cpu = cpumask_first(hctx->cpumask);
1385         return cpu;
1386 }
1387
1388 /*
1389  * It'd be great if the workqueue API had a way to pass
1390  * in a mask and had some smarts for more clever placement.
1391  * For now we just round-robin here, switching for every
1392  * BLK_MQ_CPU_WORK_BATCH queued items.
1393  */
1394 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1395 {
1396         bool tried = false;
1397         int next_cpu = hctx->next_cpu;
1398
1399         if (hctx->queue->nr_hw_queues == 1)
1400                 return WORK_CPU_UNBOUND;
1401
1402         if (--hctx->next_cpu_batch <= 0) {
1403 select_cpu:
1404                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1405                                 cpu_online_mask);
1406                 if (next_cpu >= nr_cpu_ids)
1407                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1408                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1409         }
1410
1411         /*
1412          * Do unbound schedule if we can't find a online CPU for this hctx,
1413          * and it should only happen in the path of handling CPU DEAD.
1414          */
1415         if (!cpu_online(next_cpu)) {
1416                 if (!tried) {
1417                         tried = true;
1418                         goto select_cpu;
1419                 }
1420
1421                 /*
1422                  * Make sure to re-select CPU next time once after CPUs
1423                  * in hctx->cpumask become online again.
1424                  */
1425                 hctx->next_cpu = next_cpu;
1426                 hctx->next_cpu_batch = 1;
1427                 return WORK_CPU_UNBOUND;
1428         }
1429
1430         hctx->next_cpu = next_cpu;
1431         return next_cpu;
1432 }
1433
1434 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1435                                         unsigned long msecs)
1436 {
1437         if (unlikely(blk_mq_hctx_stopped(hctx)))
1438                 return;
1439
1440         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1441                 int cpu = get_cpu();
1442                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1443                         __blk_mq_run_hw_queue(hctx);
1444                         put_cpu();
1445                         return;
1446                 }
1447
1448                 put_cpu();
1449         }
1450
1451         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1452                                     msecs_to_jiffies(msecs));
1453 }
1454
1455 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1456 {
1457         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1458 }
1459 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1460
1461 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1462 {
1463         int srcu_idx;
1464         bool need_run;
1465
1466         /*
1467          * When queue is quiesced, we may be switching io scheduler, or
1468          * updating nr_hw_queues, or other things, and we can't run queue
1469          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1470          *
1471          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1472          * quiesced.
1473          */
1474         hctx_lock(hctx, &srcu_idx);
1475         need_run = !blk_queue_quiesced(hctx->queue) &&
1476                 blk_mq_hctx_has_pending(hctx);
1477         hctx_unlock(hctx, srcu_idx);
1478
1479         if (need_run) {
1480                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1481                 return true;
1482         }
1483
1484         return false;
1485 }
1486 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1487
1488 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1489 {
1490         struct blk_mq_hw_ctx *hctx;
1491         int i;
1492
1493         queue_for_each_hw_ctx(q, hctx, i) {
1494                 if (blk_mq_hctx_stopped(hctx))
1495                         continue;
1496
1497                 blk_mq_run_hw_queue(hctx, async);
1498         }
1499 }
1500 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1501
1502 /**
1503  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1504  * @q: request queue.
1505  *
1506  * The caller is responsible for serializing this function against
1507  * blk_mq_{start,stop}_hw_queue().
1508  */
1509 bool blk_mq_queue_stopped(struct request_queue *q)
1510 {
1511         struct blk_mq_hw_ctx *hctx;
1512         int i;
1513
1514         queue_for_each_hw_ctx(q, hctx, i)
1515                 if (blk_mq_hctx_stopped(hctx))
1516                         return true;
1517
1518         return false;
1519 }
1520 EXPORT_SYMBOL(blk_mq_queue_stopped);
1521
1522 /*
1523  * This function is often used for pausing .queue_rq() by driver when
1524  * there isn't enough resource or some conditions aren't satisfied, and
1525  * BLK_STS_RESOURCE is usually returned.
1526  *
1527  * We do not guarantee that dispatch can be drained or blocked
1528  * after blk_mq_stop_hw_queue() returns. Please use
1529  * blk_mq_quiesce_queue() for that requirement.
1530  */
1531 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1532 {
1533         cancel_delayed_work(&hctx->run_work);
1534
1535         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536 }
1537 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1538
1539 /*
1540  * This function is often used for pausing .queue_rq() by driver when
1541  * there isn't enough resource or some conditions aren't satisfied, and
1542  * BLK_STS_RESOURCE is usually returned.
1543  *
1544  * We do not guarantee that dispatch can be drained or blocked
1545  * after blk_mq_stop_hw_queues() returns. Please use
1546  * blk_mq_quiesce_queue() for that requirement.
1547  */
1548 void blk_mq_stop_hw_queues(struct request_queue *q)
1549 {
1550         struct blk_mq_hw_ctx *hctx;
1551         int i;
1552
1553         queue_for_each_hw_ctx(q, hctx, i)
1554                 blk_mq_stop_hw_queue(hctx);
1555 }
1556 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1557
1558 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1559 {
1560         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1561
1562         blk_mq_run_hw_queue(hctx, false);
1563 }
1564 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1565
1566 void blk_mq_start_hw_queues(struct request_queue *q)
1567 {
1568         struct blk_mq_hw_ctx *hctx;
1569         int i;
1570
1571         queue_for_each_hw_ctx(q, hctx, i)
1572                 blk_mq_start_hw_queue(hctx);
1573 }
1574 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1575
1576 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1577 {
1578         if (!blk_mq_hctx_stopped(hctx))
1579                 return;
1580
1581         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582         blk_mq_run_hw_queue(hctx, async);
1583 }
1584 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1585
1586 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1587 {
1588         struct blk_mq_hw_ctx *hctx;
1589         int i;
1590
1591         queue_for_each_hw_ctx(q, hctx, i)
1592                 blk_mq_start_stopped_hw_queue(hctx, async);
1593 }
1594 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1595
1596 static void blk_mq_run_work_fn(struct work_struct *work)
1597 {
1598         struct blk_mq_hw_ctx *hctx;
1599
1600         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1601
1602         /*
1603          * If we are stopped, don't run the queue.
1604          */
1605         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1606                 return;
1607
1608         __blk_mq_run_hw_queue(hctx);
1609 }
1610
1611 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1612                                             struct request *rq,
1613                                             bool at_head)
1614 {
1615         struct blk_mq_ctx *ctx = rq->mq_ctx;
1616         enum hctx_type type = hctx->type;
1617
1618         lockdep_assert_held(&ctx->lock);
1619
1620         trace_block_rq_insert(hctx->queue, rq);
1621
1622         if (at_head)
1623                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1624         else
1625                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1626 }
1627
1628 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1629                              bool at_head)
1630 {
1631         struct blk_mq_ctx *ctx = rq->mq_ctx;
1632
1633         lockdep_assert_held(&ctx->lock);
1634
1635         __blk_mq_insert_req_list(hctx, rq, at_head);
1636         blk_mq_hctx_mark_pending(hctx, ctx);
1637 }
1638
1639 /*
1640  * Should only be used carefully, when the caller knows we want to
1641  * bypass a potential IO scheduler on the target device.
1642  */
1643 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1644 {
1645         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1646
1647         spin_lock(&hctx->lock);
1648         list_add_tail(&rq->queuelist, &hctx->dispatch);
1649         spin_unlock(&hctx->lock);
1650
1651         if (run_queue)
1652                 blk_mq_run_hw_queue(hctx, false);
1653 }
1654
1655 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1656                             struct list_head *list)
1657
1658 {
1659         struct request *rq;
1660         enum hctx_type type = hctx->type;
1661
1662         /*
1663          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1664          * offline now
1665          */
1666         list_for_each_entry(rq, list, queuelist) {
1667                 BUG_ON(rq->mq_ctx != ctx);
1668                 trace_block_rq_insert(hctx->queue, rq);
1669         }
1670
1671         spin_lock(&ctx->lock);
1672         list_splice_tail_init(list, &ctx->rq_lists[type]);
1673         blk_mq_hctx_mark_pending(hctx, ctx);
1674         spin_unlock(&ctx->lock);
1675 }
1676
1677 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1678 {
1679         struct request *rqa = container_of(a, struct request, queuelist);
1680         struct request *rqb = container_of(b, struct request, queuelist);
1681
1682         if (rqa->mq_ctx < rqb->mq_ctx)
1683                 return -1;
1684         else if (rqa->mq_ctx > rqb->mq_ctx)
1685                 return 1;
1686         else if (rqa->mq_hctx < rqb->mq_hctx)
1687                 return -1;
1688         else if (rqa->mq_hctx > rqb->mq_hctx)
1689                 return 1;
1690
1691         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1692 }
1693
1694 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1695 {
1696         struct blk_mq_hw_ctx *this_hctx;
1697         struct blk_mq_ctx *this_ctx;
1698         struct request_queue *this_q;
1699         struct request *rq;
1700         LIST_HEAD(list);
1701         LIST_HEAD(rq_list);
1702         unsigned int depth;
1703
1704         list_splice_init(&plug->mq_list, &list);
1705         plug->rq_count = 0;
1706
1707         if (plug->rq_count > 2 && plug->multiple_queues)
1708                 list_sort(NULL, &list, plug_rq_cmp);
1709
1710         this_q = NULL;
1711         this_hctx = NULL;
1712         this_ctx = NULL;
1713         depth = 0;
1714
1715         while (!list_empty(&list)) {
1716                 rq = list_entry_rq(list.next);
1717                 list_del_init(&rq->queuelist);
1718                 BUG_ON(!rq->q);
1719                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1720                         if (this_hctx) {
1721                                 trace_block_unplug(this_q, depth, !from_schedule);
1722                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1723                                                                 &rq_list,
1724                                                                 from_schedule);
1725                         }
1726
1727                         this_q = rq->q;
1728                         this_ctx = rq->mq_ctx;
1729                         this_hctx = rq->mq_hctx;
1730                         depth = 0;
1731                 }
1732
1733                 depth++;
1734                 list_add_tail(&rq->queuelist, &rq_list);
1735         }
1736
1737         /*
1738          * If 'this_hctx' is set, we know we have entries to complete
1739          * on 'rq_list'. Do those.
1740          */
1741         if (this_hctx) {
1742                 trace_block_unplug(this_q, depth, !from_schedule);
1743                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1744                                                 from_schedule);
1745         }
1746 }
1747
1748 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1749 {
1750         blk_init_request_from_bio(rq, bio);
1751
1752         blk_account_io_start(rq, true);
1753 }
1754
1755 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1756                                             struct request *rq,
1757                                             blk_qc_t *cookie, bool last)
1758 {
1759         struct request_queue *q = rq->q;
1760         struct blk_mq_queue_data bd = {
1761                 .rq = rq,
1762                 .last = last,
1763         };
1764         blk_qc_t new_cookie;
1765         blk_status_t ret;
1766
1767         new_cookie = request_to_qc_t(hctx, rq);
1768
1769         /*
1770          * For OK queue, we are done. For error, caller may kill it.
1771          * Any other error (busy), just add it to our list as we
1772          * previously would have done.
1773          */
1774         ret = q->mq_ops->queue_rq(hctx, &bd);
1775         switch (ret) {
1776         case BLK_STS_OK:
1777                 blk_mq_update_dispatch_busy(hctx, false);
1778                 *cookie = new_cookie;
1779                 break;
1780         case BLK_STS_RESOURCE:
1781         case BLK_STS_DEV_RESOURCE:
1782                 blk_mq_update_dispatch_busy(hctx, true);
1783                 __blk_mq_requeue_request(rq);
1784                 break;
1785         default:
1786                 blk_mq_update_dispatch_busy(hctx, false);
1787                 *cookie = BLK_QC_T_NONE;
1788                 break;
1789         }
1790
1791         return ret;
1792 }
1793
1794 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1795                                                 struct request *rq,
1796                                                 blk_qc_t *cookie,
1797                                                 bool bypass, bool last)
1798 {
1799         struct request_queue *q = rq->q;
1800         bool run_queue = true;
1801         blk_status_t ret = BLK_STS_RESOURCE;
1802         int srcu_idx;
1803         bool force = false;
1804
1805         hctx_lock(hctx, &srcu_idx);
1806         /*
1807          * hctx_lock is needed before checking quiesced flag.
1808          *
1809          * When queue is stopped or quiesced, ignore 'bypass', insert
1810          * and return BLK_STS_OK to caller, and avoid driver to try to
1811          * dispatch again.
1812          */
1813         if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1814                 run_queue = false;
1815                 bypass = false;
1816                 goto out_unlock;
1817         }
1818
1819         if (unlikely(q->elevator && !bypass))
1820                 goto out_unlock;
1821
1822         if (!blk_mq_get_dispatch_budget(hctx))
1823                 goto out_unlock;
1824
1825         if (!blk_mq_get_driver_tag(rq)) {
1826                 blk_mq_put_dispatch_budget(hctx);
1827                 goto out_unlock;
1828         }
1829
1830         /*
1831          * Always add a request that has been through
1832          *.queue_rq() to the hardware dispatch list.
1833          */
1834         force = true;
1835         ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1836 out_unlock:
1837         hctx_unlock(hctx, srcu_idx);
1838         switch (ret) {
1839         case BLK_STS_OK:
1840                 break;
1841         case BLK_STS_DEV_RESOURCE:
1842         case BLK_STS_RESOURCE:
1843                 if (force) {
1844                         blk_mq_request_bypass_insert(rq, run_queue);
1845                         /*
1846                          * We have to return BLK_STS_OK for the DM
1847                          * to avoid livelock. Otherwise, we return
1848                          * the real result to indicate whether the
1849                          * request is direct-issued successfully.
1850                          */
1851                         ret = bypass ? BLK_STS_OK : ret;
1852                 } else if (!bypass) {
1853                         blk_mq_sched_insert_request(rq, false,
1854                                                     run_queue, false);
1855                 }
1856                 break;
1857         default:
1858                 if (!bypass)
1859                         blk_mq_end_request(rq, ret);
1860                 break;
1861         }
1862
1863         return ret;
1864 }
1865
1866 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1867                 struct list_head *list)
1868 {
1869         blk_qc_t unused;
1870         blk_status_t ret = BLK_STS_OK;
1871
1872         while (!list_empty(list)) {
1873                 struct request *rq = list_first_entry(list, struct request,
1874                                 queuelist);
1875
1876                 list_del_init(&rq->queuelist);
1877                 if (ret == BLK_STS_OK)
1878                         ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1879                                                         false,
1880                                                         list_empty(list));
1881                 else
1882                         blk_mq_sched_insert_request(rq, false, true, false);
1883         }
1884
1885         /*
1886          * If we didn't flush the entire list, we could have told
1887          * the driver there was more coming, but that turned out to
1888          * be a lie.
1889          */
1890         if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1891                 hctx->queue->mq_ops->commit_rqs(hctx);
1892 }
1893
1894 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1895 {
1896         list_add_tail(&rq->queuelist, &plug->mq_list);
1897         plug->rq_count++;
1898         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1899                 struct request *tmp;
1900
1901                 tmp = list_first_entry(&plug->mq_list, struct request,
1902                                                 queuelist);
1903                 if (tmp->q != rq->q)
1904                         plug->multiple_queues = true;
1905         }
1906 }
1907
1908 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1909 {
1910         const int is_sync = op_is_sync(bio->bi_opf);
1911         const int is_flush_fua = op_is_flush(bio->bi_opf);
1912         struct blk_mq_alloc_data data = { .flags = 0};
1913         struct request *rq;
1914         struct blk_plug *plug;
1915         struct request *same_queue_rq = NULL;
1916         blk_qc_t cookie;
1917
1918         blk_queue_bounce(q, &bio);
1919
1920         blk_queue_split(q, &bio);
1921
1922         if (!bio_integrity_prep(bio))
1923                 return BLK_QC_T_NONE;
1924
1925         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1926             blk_attempt_plug_merge(q, bio, &same_queue_rq))
1927                 return BLK_QC_T_NONE;
1928
1929         if (blk_mq_sched_bio_merge(q, bio))
1930                 return BLK_QC_T_NONE;
1931
1932         rq_qos_throttle(q, bio);
1933
1934         data.cmd_flags = bio->bi_opf;
1935         rq = blk_mq_get_request(q, bio, &data);
1936         if (unlikely(!rq)) {
1937                 rq_qos_cleanup(q, bio);
1938                 if (bio->bi_opf & REQ_NOWAIT)
1939                         bio_wouldblock_error(bio);
1940                 return BLK_QC_T_NONE;
1941         }
1942
1943         trace_block_getrq(q, bio, bio->bi_opf);
1944
1945         rq_qos_track(q, rq, bio);
1946
1947         cookie = request_to_qc_t(data.hctx, rq);
1948
1949         plug = current->plug;
1950         if (unlikely(is_flush_fua)) {
1951                 blk_mq_put_ctx(data.ctx);
1952                 blk_mq_bio_to_request(rq, bio);
1953
1954                 /* bypass scheduler for flush rq */
1955                 blk_insert_flush(rq);
1956                 blk_mq_run_hw_queue(data.hctx, true);
1957         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1958                 /*
1959                  * Use plugging if we have a ->commit_rqs() hook as well, as
1960                  * we know the driver uses bd->last in a smart fashion.
1961                  */
1962                 unsigned int request_count = plug->rq_count;
1963                 struct request *last = NULL;
1964
1965                 blk_mq_put_ctx(data.ctx);
1966                 blk_mq_bio_to_request(rq, bio);
1967
1968                 if (!request_count)
1969                         trace_block_plug(q);
1970                 else
1971                         last = list_entry_rq(plug->mq_list.prev);
1972
1973                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1974                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1975                         blk_flush_plug_list(plug, false);
1976                         trace_block_plug(q);
1977                 }
1978
1979                 blk_add_rq_to_plug(plug, rq);
1980         } else if (plug && !blk_queue_nomerges(q)) {
1981                 blk_mq_bio_to_request(rq, bio);
1982
1983                 /*
1984                  * We do limited plugging. If the bio can be merged, do that.
1985                  * Otherwise the existing request in the plug list will be
1986                  * issued. So the plug list will have one request at most
1987                  * The plug list might get flushed before this. If that happens,
1988                  * the plug list is empty, and same_queue_rq is invalid.
1989                  */
1990                 if (list_empty(&plug->mq_list))
1991                         same_queue_rq = NULL;
1992                 if (same_queue_rq) {
1993                         list_del_init(&same_queue_rq->queuelist);
1994                         plug->rq_count--;
1995                 }
1996                 blk_add_rq_to_plug(plug, rq);
1997
1998                 blk_mq_put_ctx(data.ctx);
1999
2000                 if (same_queue_rq) {
2001                         data.hctx = same_queue_rq->mq_hctx;
2002                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2003                                         &cookie, false, true);
2004                 }
2005         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2006                         !data.hctx->dispatch_busy)) {
2007                 blk_mq_put_ctx(data.ctx);
2008                 blk_mq_bio_to_request(rq, bio);
2009                 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2010         } else {
2011                 blk_mq_put_ctx(data.ctx);
2012                 blk_mq_bio_to_request(rq, bio);
2013                 blk_mq_sched_insert_request(rq, false, true, true);
2014         }
2015
2016         return cookie;
2017 }
2018
2019 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2020                      unsigned int hctx_idx)
2021 {
2022         struct page *page;
2023
2024         if (tags->rqs && set->ops->exit_request) {
2025                 int i;
2026
2027                 for (i = 0; i < tags->nr_tags; i++) {
2028                         struct request *rq = tags->static_rqs[i];
2029
2030                         if (!rq)
2031                                 continue;
2032                         set->ops->exit_request(set, rq, hctx_idx);
2033                         tags->static_rqs[i] = NULL;
2034                 }
2035         }
2036
2037         while (!list_empty(&tags->page_list)) {
2038                 page = list_first_entry(&tags->page_list, struct page, lru);
2039                 list_del_init(&page->lru);
2040                 /*
2041                  * Remove kmemleak object previously allocated in
2042                  * blk_mq_init_rq_map().
2043                  */
2044                 kmemleak_free(page_address(page));
2045                 __free_pages(page, page->private);
2046         }
2047 }
2048
2049 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2050 {
2051         kfree(tags->rqs);
2052         tags->rqs = NULL;
2053         kfree(tags->static_rqs);
2054         tags->static_rqs = NULL;
2055
2056         blk_mq_free_tags(tags);
2057 }
2058
2059 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2060                                         unsigned int hctx_idx,
2061                                         unsigned int nr_tags,
2062                                         unsigned int reserved_tags)
2063 {
2064         struct blk_mq_tags *tags;
2065         int node;
2066
2067         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2068         if (node == NUMA_NO_NODE)
2069                 node = set->numa_node;
2070
2071         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2072                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2073         if (!tags)
2074                 return NULL;
2075
2076         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2077                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2078                                  node);
2079         if (!tags->rqs) {
2080                 blk_mq_free_tags(tags);
2081                 return NULL;
2082         }
2083
2084         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2085                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2086                                         node);
2087         if (!tags->static_rqs) {
2088                 kfree(tags->rqs);
2089                 blk_mq_free_tags(tags);
2090                 return NULL;
2091         }
2092
2093         return tags;
2094 }
2095
2096 static size_t order_to_size(unsigned int order)
2097 {
2098         return (size_t)PAGE_SIZE << order;
2099 }
2100
2101 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2102                                unsigned int hctx_idx, int node)
2103 {
2104         int ret;
2105
2106         if (set->ops->init_request) {
2107                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2108                 if (ret)
2109                         return ret;
2110         }
2111
2112         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2113         return 0;
2114 }
2115
2116 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2117                      unsigned int hctx_idx, unsigned int depth)
2118 {
2119         unsigned int i, j, entries_per_page, max_order = 4;
2120         size_t rq_size, left;
2121         int node;
2122
2123         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2124         if (node == NUMA_NO_NODE)
2125                 node = set->numa_node;
2126
2127         INIT_LIST_HEAD(&tags->page_list);
2128
2129         /*
2130          * rq_size is the size of the request plus driver payload, rounded
2131          * to the cacheline size
2132          */
2133         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2134                                 cache_line_size());
2135         left = rq_size * depth;
2136
2137         for (i = 0; i < depth; ) {
2138                 int this_order = max_order;
2139                 struct page *page;
2140                 int to_do;
2141                 void *p;
2142
2143                 while (this_order && left < order_to_size(this_order - 1))
2144                         this_order--;
2145
2146                 do {
2147                         page = alloc_pages_node(node,
2148                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2149                                 this_order);
2150                         if (page)
2151                                 break;
2152                         if (!this_order--)
2153                                 break;
2154                         if (order_to_size(this_order) < rq_size)
2155                                 break;
2156                 } while (1);
2157
2158                 if (!page)
2159                         goto fail;
2160
2161                 page->private = this_order;
2162                 list_add_tail(&page->lru, &tags->page_list);
2163
2164                 p = page_address(page);
2165                 /*
2166                  * Allow kmemleak to scan these pages as they contain pointers
2167                  * to additional allocations like via ops->init_request().
2168                  */
2169                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2170                 entries_per_page = order_to_size(this_order) / rq_size;
2171                 to_do = min(entries_per_page, depth - i);
2172                 left -= to_do * rq_size;
2173                 for (j = 0; j < to_do; j++) {
2174                         struct request *rq = p;
2175
2176                         tags->static_rqs[i] = rq;
2177                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2178                                 tags->static_rqs[i] = NULL;
2179                                 goto fail;
2180                         }
2181
2182                         p += rq_size;
2183                         i++;
2184                 }
2185         }
2186         return 0;
2187
2188 fail:
2189         blk_mq_free_rqs(set, tags, hctx_idx);
2190         return -ENOMEM;
2191 }
2192
2193 /*
2194  * 'cpu' is going away. splice any existing rq_list entries from this
2195  * software queue to the hw queue dispatch list, and ensure that it
2196  * gets run.
2197  */
2198 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2199 {
2200         struct blk_mq_hw_ctx *hctx;
2201         struct blk_mq_ctx *ctx;
2202         LIST_HEAD(tmp);
2203         enum hctx_type type;
2204
2205         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2206         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2207         type = hctx->type;
2208
2209         spin_lock(&ctx->lock);
2210         if (!list_empty(&ctx->rq_lists[type])) {
2211                 list_splice_init(&ctx->rq_lists[type], &tmp);
2212                 blk_mq_hctx_clear_pending(hctx, ctx);
2213         }
2214         spin_unlock(&ctx->lock);
2215
2216         if (list_empty(&tmp))
2217                 return 0;
2218
2219         spin_lock(&hctx->lock);
2220         list_splice_tail_init(&tmp, &hctx->dispatch);
2221         spin_unlock(&hctx->lock);
2222
2223         blk_mq_run_hw_queue(hctx, true);
2224         return 0;
2225 }
2226
2227 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2228 {
2229         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2230                                             &hctx->cpuhp_dead);
2231 }
2232
2233 /* hctx->ctxs will be freed in queue's release handler */
2234 static void blk_mq_exit_hctx(struct request_queue *q,
2235                 struct blk_mq_tag_set *set,
2236                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2237 {
2238         if (blk_mq_hw_queue_mapped(hctx))
2239                 blk_mq_tag_idle(hctx);
2240
2241         if (set->ops->exit_request)
2242                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2243
2244         if (set->ops->exit_hctx)
2245                 set->ops->exit_hctx(hctx, hctx_idx);
2246
2247         if (hctx->flags & BLK_MQ_F_BLOCKING)
2248                 cleanup_srcu_struct(hctx->srcu);
2249
2250         blk_mq_remove_cpuhp(hctx);
2251         blk_free_flush_queue(hctx->fq);
2252         sbitmap_free(&hctx->ctx_map);
2253 }
2254
2255 static void blk_mq_exit_hw_queues(struct request_queue *q,
2256                 struct blk_mq_tag_set *set, int nr_queue)
2257 {
2258         struct blk_mq_hw_ctx *hctx;
2259         unsigned int i;
2260
2261         queue_for_each_hw_ctx(q, hctx, i) {
2262                 if (i == nr_queue)
2263                         break;
2264                 blk_mq_debugfs_unregister_hctx(hctx);
2265                 blk_mq_exit_hctx(q, set, hctx, i);
2266         }
2267 }
2268
2269 static int blk_mq_init_hctx(struct request_queue *q,
2270                 struct blk_mq_tag_set *set,
2271                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2272 {
2273         int node;
2274
2275         node = hctx->numa_node;
2276         if (node == NUMA_NO_NODE)
2277                 node = hctx->numa_node = set->numa_node;
2278
2279         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2280         spin_lock_init(&hctx->lock);
2281         INIT_LIST_HEAD(&hctx->dispatch);
2282         hctx->queue = q;
2283         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2284
2285         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2286
2287         hctx->tags = set->tags[hctx_idx];
2288
2289         /*
2290          * Allocate space for all possible cpus to avoid allocation at
2291          * runtime
2292          */
2293         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2294                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2295         if (!hctx->ctxs)
2296                 goto unregister_cpu_notifier;
2297
2298         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2299                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2300                 goto free_ctxs;
2301
2302         hctx->nr_ctx = 0;
2303
2304         spin_lock_init(&hctx->dispatch_wait_lock);
2305         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2306         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2307
2308         if (set->ops->init_hctx &&
2309             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2310                 goto free_bitmap;
2311
2312         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2313                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2314         if (!hctx->fq)
2315                 goto exit_hctx;
2316
2317         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2318                 goto free_fq;
2319
2320         if (hctx->flags & BLK_MQ_F_BLOCKING)
2321                 init_srcu_struct(hctx->srcu);
2322
2323         return 0;
2324
2325  free_fq:
2326         kfree(hctx->fq);
2327  exit_hctx:
2328         if (set->ops->exit_hctx)
2329                 set->ops->exit_hctx(hctx, hctx_idx);
2330  free_bitmap:
2331         sbitmap_free(&hctx->ctx_map);
2332  free_ctxs:
2333         kfree(hctx->ctxs);
2334  unregister_cpu_notifier:
2335         blk_mq_remove_cpuhp(hctx);
2336         return -1;
2337 }
2338
2339 static void blk_mq_init_cpu_queues(struct request_queue *q,
2340                                    unsigned int nr_hw_queues)
2341 {
2342         struct blk_mq_tag_set *set = q->tag_set;
2343         unsigned int i, j;
2344
2345         for_each_possible_cpu(i) {
2346                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2347                 struct blk_mq_hw_ctx *hctx;
2348                 int k;
2349
2350                 __ctx->cpu = i;
2351                 spin_lock_init(&__ctx->lock);
2352                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2353                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2354
2355                 __ctx->queue = q;
2356
2357                 /*
2358                  * Set local node, IFF we have more than one hw queue. If
2359                  * not, we remain on the home node of the device
2360                  */
2361                 for (j = 0; j < set->nr_maps; j++) {
2362                         hctx = blk_mq_map_queue_type(q, j, i);
2363                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2364                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2365                 }
2366         }
2367 }
2368
2369 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2370 {
2371         int ret = 0;
2372
2373         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2374                                         set->queue_depth, set->reserved_tags);
2375         if (!set->tags[hctx_idx])
2376                 return false;
2377
2378         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2379                                 set->queue_depth);
2380         if (!ret)
2381                 return true;
2382
2383         blk_mq_free_rq_map(set->tags[hctx_idx]);
2384         set->tags[hctx_idx] = NULL;
2385         return false;
2386 }
2387
2388 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2389                                          unsigned int hctx_idx)
2390 {
2391         if (set->tags && set->tags[hctx_idx]) {
2392                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2393                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2394                 set->tags[hctx_idx] = NULL;
2395         }
2396 }
2397
2398 static void blk_mq_map_swqueue(struct request_queue *q)
2399 {
2400         unsigned int i, j, hctx_idx;
2401         struct blk_mq_hw_ctx *hctx;
2402         struct blk_mq_ctx *ctx;
2403         struct blk_mq_tag_set *set = q->tag_set;
2404
2405         /*
2406          * Avoid others reading imcomplete hctx->cpumask through sysfs
2407          */
2408         mutex_lock(&q->sysfs_lock);
2409
2410         queue_for_each_hw_ctx(q, hctx, i) {
2411                 cpumask_clear(hctx->cpumask);
2412                 hctx->nr_ctx = 0;
2413                 hctx->dispatch_from = NULL;
2414         }
2415
2416         /*
2417          * Map software to hardware queues.
2418          *
2419          * If the cpu isn't present, the cpu is mapped to first hctx.
2420          */
2421         for_each_possible_cpu(i) {
2422                 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2423                 /* unmapped hw queue can be remapped after CPU topo changed */
2424                 if (!set->tags[hctx_idx] &&
2425                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2426                         /*
2427                          * If tags initialization fail for some hctx,
2428                          * that hctx won't be brought online.  In this
2429                          * case, remap the current ctx to hctx[0] which
2430                          * is guaranteed to always have tags allocated
2431                          */
2432                         set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2433                 }
2434
2435                 ctx = per_cpu_ptr(q->queue_ctx, i);
2436                 for (j = 0; j < set->nr_maps; j++) {
2437                         if (!set->map[j].nr_queues) {
2438                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2439                                                 HCTX_TYPE_DEFAULT, i);
2440                                 continue;
2441                         }
2442
2443                         hctx = blk_mq_map_queue_type(q, j, i);
2444                         ctx->hctxs[j] = hctx;
2445                         /*
2446                          * If the CPU is already set in the mask, then we've
2447                          * mapped this one already. This can happen if
2448                          * devices share queues across queue maps.
2449                          */
2450                         if (cpumask_test_cpu(i, hctx->cpumask))
2451                                 continue;
2452
2453                         cpumask_set_cpu(i, hctx->cpumask);
2454                         hctx->type = j;
2455                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2456                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2457
2458                         /*
2459                          * If the nr_ctx type overflows, we have exceeded the
2460                          * amount of sw queues we can support.
2461                          */
2462                         BUG_ON(!hctx->nr_ctx);
2463                 }
2464
2465                 for (; j < HCTX_MAX_TYPES; j++)
2466                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2467                                         HCTX_TYPE_DEFAULT, i);
2468         }
2469
2470         mutex_unlock(&q->sysfs_lock);
2471
2472         queue_for_each_hw_ctx(q, hctx, i) {
2473                 /*
2474                  * If no software queues are mapped to this hardware queue,
2475                  * disable it and free the request entries.
2476                  */
2477                 if (!hctx->nr_ctx) {
2478                         /* Never unmap queue 0.  We need it as a
2479                          * fallback in case of a new remap fails
2480                          * allocation
2481                          */
2482                         if (i && set->tags[i])
2483                                 blk_mq_free_map_and_requests(set, i);
2484
2485                         hctx->tags = NULL;
2486                         continue;
2487                 }
2488
2489                 hctx->tags = set->tags[i];
2490                 WARN_ON(!hctx->tags);
2491
2492                 /*
2493                  * Set the map size to the number of mapped software queues.
2494                  * This is more accurate and more efficient than looping
2495                  * over all possibly mapped software queues.
2496                  */
2497                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2498
2499                 /*
2500                  * Initialize batch roundrobin counts
2501                  */
2502                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2503                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2504         }
2505 }
2506
2507 /*
2508  * Caller needs to ensure that we're either frozen/quiesced, or that
2509  * the queue isn't live yet.
2510  */
2511 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2512 {
2513         struct blk_mq_hw_ctx *hctx;
2514         int i;
2515
2516         queue_for_each_hw_ctx(q, hctx, i) {
2517                 if (shared)
2518                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2519                 else
2520                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2521         }
2522 }
2523
2524 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2525                                         bool shared)
2526 {
2527         struct request_queue *q;
2528
2529         lockdep_assert_held(&set->tag_list_lock);
2530
2531         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2532                 blk_mq_freeze_queue(q);
2533                 queue_set_hctx_shared(q, shared);
2534                 blk_mq_unfreeze_queue(q);
2535         }
2536 }
2537
2538 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2539 {
2540         struct blk_mq_tag_set *set = q->tag_set;
2541
2542         mutex_lock(&set->tag_list_lock);
2543         list_del_rcu(&q->tag_set_list);
2544         if (list_is_singular(&set->tag_list)) {
2545                 /* just transitioned to unshared */
2546                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2547                 /* update existing queue */
2548                 blk_mq_update_tag_set_depth(set, false);
2549         }
2550         mutex_unlock(&set->tag_list_lock);
2551         INIT_LIST_HEAD(&q->tag_set_list);
2552 }
2553
2554 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2555                                      struct request_queue *q)
2556 {
2557         mutex_lock(&set->tag_list_lock);
2558
2559         /*
2560          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2561          */
2562         if (!list_empty(&set->tag_list) &&
2563             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2564                 set->flags |= BLK_MQ_F_TAG_SHARED;
2565                 /* update existing queue */
2566                 blk_mq_update_tag_set_depth(set, true);
2567         }
2568         if (set->flags & BLK_MQ_F_TAG_SHARED)
2569                 queue_set_hctx_shared(q, true);
2570         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2571
2572         mutex_unlock(&set->tag_list_lock);
2573 }
2574
2575 /* All allocations will be freed in release handler of q->mq_kobj */
2576 static int blk_mq_alloc_ctxs(struct request_queue *q)
2577 {
2578         struct blk_mq_ctxs *ctxs;
2579         int cpu;
2580
2581         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2582         if (!ctxs)
2583                 return -ENOMEM;
2584
2585         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2586         if (!ctxs->queue_ctx)
2587                 goto fail;
2588
2589         for_each_possible_cpu(cpu) {
2590                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2591                 ctx->ctxs = ctxs;
2592         }
2593
2594         q->mq_kobj = &ctxs->kobj;
2595         q->queue_ctx = ctxs->queue_ctx;
2596
2597         return 0;
2598  fail:
2599         kfree(ctxs);
2600         return -ENOMEM;
2601 }
2602
2603 /*
2604  * It is the actual release handler for mq, but we do it from
2605  * request queue's release handler for avoiding use-after-free
2606  * and headache because q->mq_kobj shouldn't have been introduced,
2607  * but we can't group ctx/kctx kobj without it.
2608  */
2609 void blk_mq_release(struct request_queue *q)
2610 {
2611         struct blk_mq_hw_ctx *hctx;
2612         unsigned int i;
2613
2614         /* hctx kobj stays in hctx */
2615         queue_for_each_hw_ctx(q, hctx, i) {
2616                 if (!hctx)
2617                         continue;
2618                 kobject_put(&hctx->kobj);
2619         }
2620
2621         kfree(q->queue_hw_ctx);
2622
2623         /*
2624          * release .mq_kobj and sw queue's kobject now because
2625          * both share lifetime with request queue.
2626          */
2627         blk_mq_sysfs_deinit(q);
2628 }
2629
2630 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2631 {
2632         struct request_queue *uninit_q, *q;
2633
2634         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2635         if (!uninit_q)
2636                 return ERR_PTR(-ENOMEM);
2637
2638         q = blk_mq_init_allocated_queue(set, uninit_q);
2639         if (IS_ERR(q))
2640                 blk_cleanup_queue(uninit_q);
2641
2642         return q;
2643 }
2644 EXPORT_SYMBOL(blk_mq_init_queue);
2645
2646 /*
2647  * Helper for setting up a queue with mq ops, given queue depth, and
2648  * the passed in mq ops flags.
2649  */
2650 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2651                                            const struct blk_mq_ops *ops,
2652                                            unsigned int queue_depth,
2653                                            unsigned int set_flags)
2654 {
2655         struct request_queue *q;
2656         int ret;
2657
2658         memset(set, 0, sizeof(*set));
2659         set->ops = ops;
2660         set->nr_hw_queues = 1;
2661         set->nr_maps = 1;
2662         set->queue_depth = queue_depth;
2663         set->numa_node = NUMA_NO_NODE;
2664         set->flags = set_flags;
2665
2666         ret = blk_mq_alloc_tag_set(set);
2667         if (ret)
2668                 return ERR_PTR(ret);
2669
2670         q = blk_mq_init_queue(set);
2671         if (IS_ERR(q)) {
2672                 blk_mq_free_tag_set(set);
2673                 return q;
2674         }
2675
2676         return q;
2677 }
2678 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2679
2680 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2681 {
2682         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2683
2684         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2685                            __alignof__(struct blk_mq_hw_ctx)) !=
2686                      sizeof(struct blk_mq_hw_ctx));
2687
2688         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2689                 hw_ctx_size += sizeof(struct srcu_struct);
2690
2691         return hw_ctx_size;
2692 }
2693
2694 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2695                 struct blk_mq_tag_set *set, struct request_queue *q,
2696                 int hctx_idx, int node)
2697 {
2698         struct blk_mq_hw_ctx *hctx;
2699
2700         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2701                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2702                         node);
2703         if (!hctx)
2704                 return NULL;
2705
2706         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2707                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2708                                 node)) {
2709                 kfree(hctx);
2710                 return NULL;
2711         }
2712
2713         atomic_set(&hctx->nr_active, 0);
2714         hctx->numa_node = node;
2715         hctx->queue_num = hctx_idx;
2716
2717         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2718                 free_cpumask_var(hctx->cpumask);
2719                 kfree(hctx);
2720                 return NULL;
2721         }
2722         blk_mq_hctx_kobj_init(hctx);
2723
2724         return hctx;
2725 }
2726
2727 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2728                                                 struct request_queue *q)
2729 {
2730         int i, j, end;
2731         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2732
2733         /* protect against switching io scheduler  */
2734         mutex_lock(&q->sysfs_lock);
2735         for (i = 0; i < set->nr_hw_queues; i++) {
2736                 int node;
2737                 struct blk_mq_hw_ctx *hctx;
2738
2739                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2740                 /*
2741                  * If the hw queue has been mapped to another numa node,
2742                  * we need to realloc the hctx. If allocation fails, fallback
2743                  * to use the previous one.
2744                  */
2745                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2746                         continue;
2747
2748                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2749                 if (hctx) {
2750                         if (hctxs[i]) {
2751                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2752                                 kobject_put(&hctxs[i]->kobj);
2753                         }
2754                         hctxs[i] = hctx;
2755                 } else {
2756                         if (hctxs[i])
2757                                 pr_warn("Allocate new hctx on node %d fails,\
2758                                                 fallback to previous one on node %d\n",
2759                                                 node, hctxs[i]->numa_node);
2760                         else
2761                                 break;
2762                 }
2763         }
2764         /*
2765          * Increasing nr_hw_queues fails. Free the newly allocated
2766          * hctxs and keep the previous q->nr_hw_queues.
2767          */
2768         if (i != set->nr_hw_queues) {
2769                 j = q->nr_hw_queues;
2770                 end = i;
2771         } else {
2772                 j = i;
2773                 end = q->nr_hw_queues;
2774                 q->nr_hw_queues = set->nr_hw_queues;
2775         }
2776
2777         for (; j < end; j++) {
2778                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2779
2780                 if (hctx) {
2781                         if (hctx->tags)
2782                                 blk_mq_free_map_and_requests(set, j);
2783                         blk_mq_exit_hctx(q, set, hctx, j);
2784                         kobject_put(&hctx->kobj);
2785                         hctxs[j] = NULL;
2786
2787                 }
2788         }
2789         mutex_unlock(&q->sysfs_lock);
2790 }
2791
2792 /*
2793  * Maximum number of hardware queues we support. For single sets, we'll never
2794  * have more than the CPUs (software queues). For multiple sets, the tag_set
2795  * user may have set ->nr_hw_queues larger.
2796  */
2797 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2798 {
2799         if (set->nr_maps == 1)
2800                 return nr_cpu_ids;
2801
2802         return max(set->nr_hw_queues, nr_cpu_ids);
2803 }
2804
2805 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2806                                                   struct request_queue *q)
2807 {
2808         /* mark the queue as mq asap */
2809         q->mq_ops = set->ops;
2810
2811         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2812                                              blk_mq_poll_stats_bkt,
2813                                              BLK_MQ_POLL_STATS_BKTS, q);
2814         if (!q->poll_cb)
2815                 goto err_exit;
2816
2817         if (blk_mq_alloc_ctxs(q))
2818                 goto err_exit;
2819
2820         /* init q->mq_kobj and sw queues' kobjects */
2821         blk_mq_sysfs_init(q);
2822
2823         q->nr_queues = nr_hw_queues(set);
2824         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2825                                                 GFP_KERNEL, set->numa_node);
2826         if (!q->queue_hw_ctx)
2827                 goto err_sys_init;
2828
2829         blk_mq_realloc_hw_ctxs(set, q);
2830         if (!q->nr_hw_queues)
2831                 goto err_hctxs;
2832
2833         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2834         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2835
2836         q->tag_set = set;
2837
2838         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2839         if (set->nr_maps > HCTX_TYPE_POLL &&
2840             set->map[HCTX_TYPE_POLL].nr_queues)
2841                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2842
2843         q->sg_reserved_size = INT_MAX;
2844
2845         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2846         INIT_LIST_HEAD(&q->requeue_list);
2847         spin_lock_init(&q->requeue_lock);
2848
2849         blk_queue_make_request(q, blk_mq_make_request);
2850
2851         /*
2852          * Do this after blk_queue_make_request() overrides it...
2853          */
2854         q->nr_requests = set->queue_depth;
2855
2856         /*
2857          * Default to classic polling
2858          */
2859         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2860
2861         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2862         blk_mq_add_queue_tag_set(set, q);
2863         blk_mq_map_swqueue(q);
2864
2865         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2866                 int ret;
2867
2868                 ret = elevator_init_mq(q);
2869                 if (ret)
2870                         return ERR_PTR(ret);
2871         }
2872
2873         return q;
2874
2875 err_hctxs:
2876         kfree(q->queue_hw_ctx);
2877 err_sys_init:
2878         blk_mq_sysfs_deinit(q);
2879 err_exit:
2880         q->mq_ops = NULL;
2881         return ERR_PTR(-ENOMEM);
2882 }
2883 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2884
2885 void blk_mq_free_queue(struct request_queue *q)
2886 {
2887         struct blk_mq_tag_set   *set = q->tag_set;
2888
2889         blk_mq_del_queue_tag_set(q);
2890         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2891 }
2892
2893 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2894 {
2895         int i;
2896
2897         for (i = 0; i < set->nr_hw_queues; i++)
2898                 if (!__blk_mq_alloc_rq_map(set, i))
2899                         goto out_unwind;
2900
2901         return 0;
2902
2903 out_unwind:
2904         while (--i >= 0)
2905                 blk_mq_free_rq_map(set->tags[i]);
2906
2907         return -ENOMEM;
2908 }
2909
2910 /*
2911  * Allocate the request maps associated with this tag_set. Note that this
2912  * may reduce the depth asked for, if memory is tight. set->queue_depth
2913  * will be updated to reflect the allocated depth.
2914  */
2915 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2916 {
2917         unsigned int depth;
2918         int err;
2919
2920         depth = set->queue_depth;
2921         do {
2922                 err = __blk_mq_alloc_rq_maps(set);
2923                 if (!err)
2924                         break;
2925
2926                 set->queue_depth >>= 1;
2927                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2928                         err = -ENOMEM;
2929                         break;
2930                 }
2931         } while (set->queue_depth);
2932
2933         if (!set->queue_depth || err) {
2934                 pr_err("blk-mq: failed to allocate request map\n");
2935                 return -ENOMEM;
2936         }
2937
2938         if (depth != set->queue_depth)
2939                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2940                                                 depth, set->queue_depth);
2941
2942         return 0;
2943 }
2944
2945 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2946 {
2947         if (set->ops->map_queues && !is_kdump_kernel()) {
2948                 int i;
2949
2950                 /*
2951                  * transport .map_queues is usually done in the following
2952                  * way:
2953                  *
2954                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2955                  *      mask = get_cpu_mask(queue)
2956                  *      for_each_cpu(cpu, mask)
2957                  *              set->map[x].mq_map[cpu] = queue;
2958                  * }
2959                  *
2960                  * When we need to remap, the table has to be cleared for
2961                  * killing stale mapping since one CPU may not be mapped
2962                  * to any hw queue.
2963                  */
2964                 for (i = 0; i < set->nr_maps; i++)
2965                         blk_mq_clear_mq_map(&set->map[i]);
2966
2967                 return set->ops->map_queues(set);
2968         } else {
2969                 BUG_ON(set->nr_maps > 1);
2970                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2971         }
2972 }
2973
2974 /*
2975  * Alloc a tag set to be associated with one or more request queues.
2976  * May fail with EINVAL for various error conditions. May adjust the
2977  * requested depth down, if it's too large. In that case, the set
2978  * value will be stored in set->queue_depth.
2979  */
2980 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2981 {
2982         int i, ret;
2983
2984         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2985
2986         if (!set->nr_hw_queues)
2987                 return -EINVAL;
2988         if (!set->queue_depth)
2989                 return -EINVAL;
2990         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2991                 return -EINVAL;
2992
2993         if (!set->ops->queue_rq)
2994                 return -EINVAL;
2995
2996         if (!set->ops->get_budget ^ !set->ops->put_budget)
2997                 return -EINVAL;
2998
2999         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3000                 pr_info("blk-mq: reduced tag depth to %u\n",
3001                         BLK_MQ_MAX_DEPTH);
3002                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3003         }
3004
3005         if (!set->nr_maps)
3006                 set->nr_maps = 1;
3007         else if (set->nr_maps > HCTX_MAX_TYPES)
3008                 return -EINVAL;
3009
3010         /*
3011          * If a crashdump is active, then we are potentially in a very
3012          * memory constrained environment. Limit us to 1 queue and
3013          * 64 tags to prevent using too much memory.
3014          */
3015         if (is_kdump_kernel()) {
3016                 set->nr_hw_queues = 1;
3017                 set->nr_maps = 1;
3018                 set->queue_depth = min(64U, set->queue_depth);
3019         }
3020         /*
3021          * There is no use for more h/w queues than cpus if we just have
3022          * a single map
3023          */
3024         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3025                 set->nr_hw_queues = nr_cpu_ids;
3026
3027         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3028                                  GFP_KERNEL, set->numa_node);
3029         if (!set->tags)
3030                 return -ENOMEM;
3031
3032         ret = -ENOMEM;
3033         for (i = 0; i < set->nr_maps; i++) {
3034                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3035                                                   sizeof(set->map[i].mq_map[0]),
3036                                                   GFP_KERNEL, set->numa_node);
3037                 if (!set->map[i].mq_map)
3038                         goto out_free_mq_map;
3039                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3040         }
3041
3042         ret = blk_mq_update_queue_map(set);
3043         if (ret)
3044                 goto out_free_mq_map;
3045
3046         ret = blk_mq_alloc_rq_maps(set);
3047         if (ret)
3048                 goto out_free_mq_map;
3049
3050         mutex_init(&set->tag_list_lock);
3051         INIT_LIST_HEAD(&set->tag_list);
3052
3053         return 0;
3054
3055 out_free_mq_map:
3056         for (i = 0; i < set->nr_maps; i++) {
3057                 kfree(set->map[i].mq_map);
3058                 set->map[i].mq_map = NULL;
3059         }
3060         kfree(set->tags);
3061         set->tags = NULL;
3062         return ret;
3063 }
3064 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3065
3066 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3067 {
3068         int i, j;
3069
3070         for (i = 0; i < nr_hw_queues(set); i++)
3071                 blk_mq_free_map_and_requests(set, i);
3072
3073         for (j = 0; j < set->nr_maps; j++) {
3074                 kfree(set->map[j].mq_map);
3075                 set->map[j].mq_map = NULL;
3076         }
3077
3078         kfree(set->tags);
3079         set->tags = NULL;
3080 }
3081 EXPORT_SYMBOL(blk_mq_free_tag_set);
3082
3083 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3084 {
3085         struct blk_mq_tag_set *set = q->tag_set;
3086         struct blk_mq_hw_ctx *hctx;
3087         int i, ret;
3088
3089         if (!set)
3090                 return -EINVAL;
3091
3092         if (q->nr_requests == nr)
3093                 return 0;
3094
3095         blk_mq_freeze_queue(q);
3096         blk_mq_quiesce_queue(q);
3097
3098         ret = 0;
3099         queue_for_each_hw_ctx(q, hctx, i) {
3100                 if (!hctx->tags)
3101                         continue;
3102                 /*
3103                  * If we're using an MQ scheduler, just update the scheduler
3104                  * queue depth. This is similar to what the old code would do.
3105                  */
3106                 if (!hctx->sched_tags) {
3107                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3108                                                         false);
3109                 } else {
3110                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3111                                                         nr, true);
3112                 }
3113                 if (ret)
3114                         break;
3115         }
3116
3117         if (!ret)
3118                 q->nr_requests = nr;
3119
3120         blk_mq_unquiesce_queue(q);
3121         blk_mq_unfreeze_queue(q);
3122
3123         return ret;
3124 }
3125
3126 /*
3127  * request_queue and elevator_type pair.
3128  * It is just used by __blk_mq_update_nr_hw_queues to cache
3129  * the elevator_type associated with a request_queue.
3130  */
3131 struct blk_mq_qe_pair {
3132         struct list_head node;
3133         struct request_queue *q;
3134         struct elevator_type *type;
3135 };
3136
3137 /*
3138  * Cache the elevator_type in qe pair list and switch the
3139  * io scheduler to 'none'
3140  */
3141 static bool blk_mq_elv_switch_none(struct list_head *head,
3142                 struct request_queue *q)
3143 {
3144         struct blk_mq_qe_pair *qe;
3145
3146         if (!q->elevator)
3147                 return true;
3148
3149         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3150         if (!qe)
3151                 return false;
3152
3153         INIT_LIST_HEAD(&qe->node);
3154         qe->q = q;
3155         qe->type = q->elevator->type;
3156         list_add(&qe->node, head);
3157
3158         mutex_lock(&q->sysfs_lock);
3159         /*
3160          * After elevator_switch_mq, the previous elevator_queue will be
3161          * released by elevator_release. The reference of the io scheduler
3162          * module get by elevator_get will also be put. So we need to get
3163          * a reference of the io scheduler module here to prevent it to be
3164          * removed.
3165          */
3166         __module_get(qe->type->elevator_owner);
3167         elevator_switch_mq(q, NULL);
3168         mutex_unlock(&q->sysfs_lock);
3169
3170         return true;
3171 }
3172
3173 static void blk_mq_elv_switch_back(struct list_head *head,
3174                 struct request_queue *q)
3175 {
3176         struct blk_mq_qe_pair *qe;
3177         struct elevator_type *t = NULL;
3178
3179         list_for_each_entry(qe, head, node)
3180                 if (qe->q == q) {
3181                         t = qe->type;
3182                         break;
3183                 }
3184
3185         if (!t)
3186                 return;
3187
3188         list_del(&qe->node);
3189         kfree(qe);
3190
3191         mutex_lock(&q->sysfs_lock);
3192         elevator_switch_mq(q, t);
3193         mutex_unlock(&q->sysfs_lock);
3194 }
3195
3196 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3197                                                         int nr_hw_queues)
3198 {
3199         struct request_queue *q;
3200         LIST_HEAD(head);
3201         int prev_nr_hw_queues;
3202
3203         lockdep_assert_held(&set->tag_list_lock);
3204
3205         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3206                 nr_hw_queues = nr_cpu_ids;
3207         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3208                 return;
3209
3210         list_for_each_entry(q, &set->tag_list, tag_set_list)
3211                 blk_mq_freeze_queue(q);
3212         /*
3213          * Sync with blk_mq_queue_tag_busy_iter.
3214          */
3215         synchronize_rcu();
3216         /*
3217          * Switch IO scheduler to 'none', cleaning up the data associated
3218          * with the previous scheduler. We will switch back once we are done
3219          * updating the new sw to hw queue mappings.
3220          */
3221         list_for_each_entry(q, &set->tag_list, tag_set_list)
3222                 if (!blk_mq_elv_switch_none(&head, q))
3223                         goto switch_back;
3224
3225         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3226                 blk_mq_debugfs_unregister_hctxs(q);
3227                 blk_mq_sysfs_unregister(q);
3228         }
3229
3230         prev_nr_hw_queues = set->nr_hw_queues;
3231         set->nr_hw_queues = nr_hw_queues;
3232         blk_mq_update_queue_map(set);
3233 fallback:
3234         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3235                 blk_mq_realloc_hw_ctxs(set, q);
3236                 if (q->nr_hw_queues != set->nr_hw_queues) {
3237                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3238                                         nr_hw_queues, prev_nr_hw_queues);
3239                         set->nr_hw_queues = prev_nr_hw_queues;
3240                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3241                         goto fallback;
3242                 }
3243                 blk_mq_map_swqueue(q);
3244         }
3245
3246         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3247                 blk_mq_sysfs_register(q);
3248                 blk_mq_debugfs_register_hctxs(q);
3249         }
3250
3251 switch_back:
3252         list_for_each_entry(q, &set->tag_list, tag_set_list)
3253                 blk_mq_elv_switch_back(&head, q);
3254
3255         list_for_each_entry(q, &set->tag_list, tag_set_list)
3256                 blk_mq_unfreeze_queue(q);
3257 }
3258
3259 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3260 {
3261         mutex_lock(&set->tag_list_lock);
3262         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3263         mutex_unlock(&set->tag_list_lock);
3264 }
3265 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3266
3267 /* Enable polling stats and return whether they were already enabled. */
3268 static bool blk_poll_stats_enable(struct request_queue *q)
3269 {
3270         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3271             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3272                 return true;
3273         blk_stat_add_callback(q, q->poll_cb);
3274         return false;
3275 }
3276
3277 static void blk_mq_poll_stats_start(struct request_queue *q)
3278 {
3279         /*
3280          * We don't arm the callback if polling stats are not enabled or the
3281          * callback is already active.
3282          */
3283         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3284             blk_stat_is_active(q->poll_cb))
3285                 return;
3286
3287         blk_stat_activate_msecs(q->poll_cb, 100);
3288 }
3289
3290 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3291 {
3292         struct request_queue *q = cb->data;
3293         int bucket;
3294
3295         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3296                 if (cb->stat[bucket].nr_samples)
3297                         q->poll_stat[bucket] = cb->stat[bucket];
3298         }
3299 }
3300
3301 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3302                                        struct blk_mq_hw_ctx *hctx,
3303                                        struct request *rq)
3304 {
3305         unsigned long ret = 0;
3306         int bucket;
3307
3308         /*
3309          * If stats collection isn't on, don't sleep but turn it on for
3310          * future users
3311          */
3312         if (!blk_poll_stats_enable(q))
3313                 return 0;
3314
3315         /*
3316          * As an optimistic guess, use half of the mean service time
3317          * for this type of request. We can (and should) make this smarter.
3318          * For instance, if the completion latencies are tight, we can
3319          * get closer than just half the mean. This is especially
3320          * important on devices where the completion latencies are longer
3321          * than ~10 usec. We do use the stats for the relevant IO size
3322          * if available which does lead to better estimates.
3323          */
3324         bucket = blk_mq_poll_stats_bkt(rq);
3325         if (bucket < 0)
3326                 return ret;
3327
3328         if (q->poll_stat[bucket].nr_samples)
3329                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3330
3331         return ret;
3332 }
3333
3334 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3335                                      struct blk_mq_hw_ctx *hctx,
3336                                      struct request *rq)
3337 {
3338         struct hrtimer_sleeper hs;
3339         enum hrtimer_mode mode;
3340         unsigned int nsecs;
3341         ktime_t kt;
3342
3343         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3344                 return false;
3345
3346         /*
3347          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3348          *
3349          *  0:  use half of prev avg
3350          * >0:  use this specific value
3351          */
3352         if (q->poll_nsec > 0)
3353                 nsecs = q->poll_nsec;
3354         else
3355                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3356
3357         if (!nsecs)
3358                 return false;
3359
3360         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3361
3362         /*
3363          * This will be replaced with the stats tracking code, using
3364          * 'avg_completion_time / 2' as the pre-sleep target.
3365          */
3366         kt = nsecs;
3367
3368         mode = HRTIMER_MODE_REL;
3369         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3370         hrtimer_set_expires(&hs.timer, kt);
3371
3372         hrtimer_init_sleeper(&hs, current);
3373         do {
3374                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3375                         break;
3376                 set_current_state(TASK_UNINTERRUPTIBLE);
3377                 hrtimer_start_expires(&hs.timer, mode);
3378                 if (hs.task)
3379                         io_schedule();
3380                 hrtimer_cancel(&hs.timer);
3381                 mode = HRTIMER_MODE_ABS;
3382         } while (hs.task && !signal_pending(current));
3383
3384         __set_current_state(TASK_RUNNING);
3385         destroy_hrtimer_on_stack(&hs.timer);
3386         return true;
3387 }
3388
3389 static bool blk_mq_poll_hybrid(struct request_queue *q,
3390                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3391 {
3392         struct request *rq;
3393
3394         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3395                 return false;
3396
3397         if (!blk_qc_t_is_internal(cookie))
3398                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3399         else {
3400                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3401                 /*
3402                  * With scheduling, if the request has completed, we'll
3403                  * get a NULL return here, as we clear the sched tag when
3404                  * that happens. The request still remains valid, like always,
3405                  * so we should be safe with just the NULL check.
3406                  */
3407                 if (!rq)
3408                         return false;
3409         }
3410
3411         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3412 }
3413
3414 /**
3415  * blk_poll - poll for IO completions
3416  * @q:  the queue
3417  * @cookie: cookie passed back at IO submission time
3418  * @spin: whether to spin for completions
3419  *
3420  * Description:
3421  *    Poll for completions on the passed in queue. Returns number of
3422  *    completed entries found. If @spin is true, then blk_poll will continue
3423  *    looping until at least one completion is found, unless the task is
3424  *    otherwise marked running (or we need to reschedule).
3425  */
3426 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3427 {
3428         struct blk_mq_hw_ctx *hctx;
3429         long state;
3430
3431         if (!blk_qc_t_valid(cookie) ||
3432             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3433                 return 0;
3434
3435         if (current->plug)
3436                 blk_flush_plug_list(current->plug, false);
3437
3438         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3439
3440         /*
3441          * If we sleep, have the caller restart the poll loop to reset
3442          * the state. Like for the other success return cases, the
3443          * caller is responsible for checking if the IO completed. If
3444          * the IO isn't complete, we'll get called again and will go
3445          * straight to the busy poll loop.
3446          */
3447         if (blk_mq_poll_hybrid(q, hctx, cookie))
3448                 return 1;
3449
3450         hctx->poll_considered++;
3451
3452         state = current->state;
3453         do {
3454                 int ret;
3455
3456                 hctx->poll_invoked++;
3457
3458                 ret = q->mq_ops->poll(hctx);
3459                 if (ret > 0) {
3460                         hctx->poll_success++;
3461                         __set_current_state(TASK_RUNNING);
3462                         return ret;
3463                 }
3464
3465                 if (signal_pending_state(state, current))
3466                         __set_current_state(TASK_RUNNING);
3467
3468                 if (current->state == TASK_RUNNING)
3469                         return 1;
3470                 if (ret < 0 || !spin)
3471                         break;
3472                 cpu_relax();
3473         } while (!need_resched());
3474
3475         __set_current_state(TASK_RUNNING);
3476         return 0;
3477 }
3478 EXPORT_SYMBOL_GPL(blk_poll);
3479
3480 unsigned int blk_mq_rq_cpu(struct request *rq)
3481 {
3482         return rq->mq_ctx->cpu;
3483 }
3484 EXPORT_SYMBOL(blk_mq_rq_cpu);
3485
3486 static int __init blk_mq_init(void)
3487 {
3488         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3489                                 blk_mq_hctx_notify_dead);
3490         return 0;
3491 }
3492 subsys_initcall(blk_mq_init);