]> asedeno.scripts.mit.edu Git - linux.git/blob - block/blk-mq.c
blk-mq: avoid to write intermediate result to hctx->next_cpu
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99                 /*
100                  * index[0] counts the specific partition that was asked
101                  * for. index[1] counts the ones that are active on the
102                  * whole device, so increment that if mi->part is indeed
103                  * a partition, and not a whole device.
104                  */
105                 if (rq->part == mi->part)
106                         mi->inflight[0]++;
107                 if (mi->part->partno)
108                         mi->inflight[1]++;
109         }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113                       unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117         inflight[0] = inflight[1] = 0;
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123         int freeze_depth;
124
125         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126         if (freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 if (q->mq_ops)
129                         blk_mq_run_hw_queues(q, false);
130         }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141                                      unsigned long timeout)
142 {
143         return wait_event_timeout(q->mq_freeze_wq,
144                                         percpu_ref_is_zero(&q->q_usage_counter),
145                                         timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155         /*
156          * In the !blk_mq case we are only calling this to kill the
157          * q_usage_counter, otherwise this increases the freeze depth
158          * and waits for it to return to zero.  For this reason there is
159          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160          * exported to drivers as the only user for unfreeze is blk_mq.
161          */
162         blk_freeze_queue_start(q);
163         if (!q->mq_ops)
164                 blk_drain_queue(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180         int freeze_depth;
181
182         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183         WARN_ON_ONCE(freeze_depth < 0);
184         if (!freeze_depth) {
185                 percpu_ref_reinit(&q->q_usage_counter);
186                 wake_up_all(&q->mq_freeze_wq);
187         }
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
200
201 /**
202  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203  * @q: request queue.
204  *
205  * Note: this function does not prevent that the struct request end_io()
206  * callback function is invoked. Once this function is returned, we make
207  * sure no dispatch can happen until the queue is unquiesced via
208  * blk_mq_unquiesce_queue().
209  */
210 void blk_mq_quiesce_queue(struct request_queue *q)
211 {
212         struct blk_mq_hw_ctx *hctx;
213         unsigned int i;
214         bool rcu = false;
215
216         blk_mq_quiesce_queue_nowait(q);
217
218         queue_for_each_hw_ctx(q, hctx, i) {
219                 if (hctx->flags & BLK_MQ_F_BLOCKING)
220                         synchronize_srcu(hctx->srcu);
221                 else
222                         rcu = true;
223         }
224         if (rcu)
225                 synchronize_rcu();
226 }
227 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
228
229 /*
230  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
231  * @q: request queue.
232  *
233  * This function recovers queue into the state before quiescing
234  * which is done by blk_mq_quiesce_queue.
235  */
236 void blk_mq_unquiesce_queue(struct request_queue *q)
237 {
238         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239
240         /* dispatch requests which are inserted during quiescing */
241         blk_mq_run_hw_queues(q, true);
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
244
245 void blk_mq_wake_waiters(struct request_queue *q)
246 {
247         struct blk_mq_hw_ctx *hctx;
248         unsigned int i;
249
250         queue_for_each_hw_ctx(q, hctx, i)
251                 if (blk_mq_hw_queue_mapped(hctx))
252                         blk_mq_tag_wakeup_all(hctx->tags, true);
253 }
254
255 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
256 {
257         return blk_mq_has_free_tags(hctx->tags);
258 }
259 EXPORT_SYMBOL(blk_mq_can_queue);
260
261 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
262                 unsigned int tag, unsigned int op)
263 {
264         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
265         struct request *rq = tags->static_rqs[tag];
266         req_flags_t rq_flags = 0;
267
268         if (data->flags & BLK_MQ_REQ_INTERNAL) {
269                 rq->tag = -1;
270                 rq->internal_tag = tag;
271         } else {
272                 if (blk_mq_tag_busy(data->hctx)) {
273                         rq_flags = RQF_MQ_INFLIGHT;
274                         atomic_inc(&data->hctx->nr_active);
275                 }
276                 rq->tag = tag;
277                 rq->internal_tag = -1;
278                 data->hctx->tags->rqs[rq->tag] = rq;
279         }
280
281         /* csd/requeue_work/fifo_time is initialized before use */
282         rq->q = data->q;
283         rq->mq_ctx = data->ctx;
284         rq->rq_flags = rq_flags;
285         rq->cpu = -1;
286         rq->cmd_flags = op;
287         if (data->flags & BLK_MQ_REQ_PREEMPT)
288                 rq->rq_flags |= RQF_PREEMPT;
289         if (blk_queue_io_stat(data->q))
290                 rq->rq_flags |= RQF_IO_STAT;
291         INIT_LIST_HEAD(&rq->queuelist);
292         INIT_HLIST_NODE(&rq->hash);
293         RB_CLEAR_NODE(&rq->rb_node);
294         rq->rq_disk = NULL;
295         rq->part = NULL;
296         rq->start_time = jiffies;
297         rq->nr_phys_segments = 0;
298 #if defined(CONFIG_BLK_DEV_INTEGRITY)
299         rq->nr_integrity_segments = 0;
300 #endif
301         rq->special = NULL;
302         /* tag was already set */
303         rq->extra_len = 0;
304         rq->__deadline = 0;
305
306         INIT_LIST_HEAD(&rq->timeout_list);
307         rq->timeout = 0;
308
309         rq->end_io = NULL;
310         rq->end_io_data = NULL;
311         rq->next_rq = NULL;
312
313 #ifdef CONFIG_BLK_CGROUP
314         rq->rl = NULL;
315         set_start_time_ns(rq);
316         rq->io_start_time_ns = 0;
317 #endif
318
319         data->ctx->rq_dispatched[op_is_sync(op)]++;
320         return rq;
321 }
322
323 static struct request *blk_mq_get_request(struct request_queue *q,
324                 struct bio *bio, unsigned int op,
325                 struct blk_mq_alloc_data *data)
326 {
327         struct elevator_queue *e = q->elevator;
328         struct request *rq;
329         unsigned int tag;
330         bool put_ctx_on_error = false;
331
332         blk_queue_enter_live(q);
333         data->q = q;
334         if (likely(!data->ctx)) {
335                 data->ctx = blk_mq_get_ctx(q);
336                 put_ctx_on_error = true;
337         }
338         if (likely(!data->hctx))
339                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340         if (op & REQ_NOWAIT)
341                 data->flags |= BLK_MQ_REQ_NOWAIT;
342
343         if (e) {
344                 data->flags |= BLK_MQ_REQ_INTERNAL;
345
346                 /*
347                  * Flush requests are special and go directly to the
348                  * dispatch list.
349                  */
350                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
351                         e->type->ops.mq.limit_depth(op, data);
352         }
353
354         tag = blk_mq_get_tag(data);
355         if (tag == BLK_MQ_TAG_FAIL) {
356                 if (put_ctx_on_error) {
357                         blk_mq_put_ctx(data->ctx);
358                         data->ctx = NULL;
359                 }
360                 blk_queue_exit(q);
361                 return NULL;
362         }
363
364         rq = blk_mq_rq_ctx_init(data, tag, op);
365         if (!op_is_flush(op)) {
366                 rq->elv.icq = NULL;
367                 if (e && e->type->ops.mq.prepare_request) {
368                         if (e->type->icq_cache && rq_ioc(bio))
369                                 blk_mq_sched_assign_ioc(rq, bio);
370
371                         e->type->ops.mq.prepare_request(rq, bio);
372                         rq->rq_flags |= RQF_ELVPRIV;
373                 }
374         }
375         data->hctx->queued++;
376         return rq;
377 }
378
379 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380                 blk_mq_req_flags_t flags)
381 {
382         struct blk_mq_alloc_data alloc_data = { .flags = flags };
383         struct request *rq;
384         int ret;
385
386         ret = blk_queue_enter(q, flags);
387         if (ret)
388                 return ERR_PTR(ret);
389
390         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391         blk_queue_exit(q);
392
393         if (!rq)
394                 return ERR_PTR(-EWOULDBLOCK);
395
396         blk_mq_put_ctx(alloc_data.ctx);
397
398         rq->__data_len = 0;
399         rq->__sector = (sector_t) -1;
400         rq->bio = rq->biotail = NULL;
401         return rq;
402 }
403 EXPORT_SYMBOL(blk_mq_alloc_request);
404
405 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
407 {
408         struct blk_mq_alloc_data alloc_data = { .flags = flags };
409         struct request *rq;
410         unsigned int cpu;
411         int ret;
412
413         /*
414          * If the tag allocator sleeps we could get an allocation for a
415          * different hardware context.  No need to complicate the low level
416          * allocator for this for the rare use case of a command tied to
417          * a specific queue.
418          */
419         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
420                 return ERR_PTR(-EINVAL);
421
422         if (hctx_idx >= q->nr_hw_queues)
423                 return ERR_PTR(-EIO);
424
425         ret = blk_queue_enter(q, flags);
426         if (ret)
427                 return ERR_PTR(ret);
428
429         /*
430          * Check if the hardware context is actually mapped to anything.
431          * If not tell the caller that it should skip this queue.
432          */
433         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
434         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
435                 blk_queue_exit(q);
436                 return ERR_PTR(-EXDEV);
437         }
438         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
440
441         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442         blk_queue_exit(q);
443
444         if (!rq)
445                 return ERR_PTR(-EWOULDBLOCK);
446
447         return rq;
448 }
449 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
450
451 void blk_mq_free_request(struct request *rq)
452 {
453         struct request_queue *q = rq->q;
454         struct elevator_queue *e = q->elevator;
455         struct blk_mq_ctx *ctx = rq->mq_ctx;
456         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
457         const int sched_tag = rq->internal_tag;
458
459         if (rq->rq_flags & RQF_ELVPRIV) {
460                 if (e && e->type->ops.mq.finish_request)
461                         e->type->ops.mq.finish_request(rq);
462                 if (rq->elv.icq) {
463                         put_io_context(rq->elv.icq->ioc);
464                         rq->elv.icq = NULL;
465                 }
466         }
467
468         ctx->rq_completed[rq_is_sync(rq)]++;
469         if (rq->rq_flags & RQF_MQ_INFLIGHT)
470                 atomic_dec(&hctx->nr_active);
471
472         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
473                 laptop_io_completion(q->backing_dev_info);
474
475         wbt_done(q->rq_wb, &rq->issue_stat);
476
477         if (blk_rq_rl(rq))
478                 blk_put_rl(blk_rq_rl(rq));
479
480         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481         if (rq->tag != -1)
482                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
483         if (sched_tag != -1)
484                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485         blk_mq_sched_restart(hctx);
486         blk_queue_exit(q);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_free_request);
489
490 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491 {
492         blk_account_io_done(rq);
493
494         if (rq->end_io) {
495                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
496                 rq->end_io(rq, error);
497         } else {
498                 if (unlikely(blk_bidi_rq(rq)))
499                         blk_mq_free_request(rq->next_rq);
500                 blk_mq_free_request(rq);
501         }
502 }
503 EXPORT_SYMBOL(__blk_mq_end_request);
504
505 void blk_mq_end_request(struct request *rq, blk_status_t error)
506 {
507         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
508                 BUG();
509         __blk_mq_end_request(rq, error);
510 }
511 EXPORT_SYMBOL(blk_mq_end_request);
512
513 static void __blk_mq_complete_request_remote(void *data)
514 {
515         struct request *rq = data;
516
517         rq->q->softirq_done_fn(rq);
518 }
519
520 static void __blk_mq_complete_request(struct request *rq)
521 {
522         struct blk_mq_ctx *ctx = rq->mq_ctx;
523         bool shared = false;
524         int cpu;
525
526         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
527         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528
529         if (rq->internal_tag != -1)
530                 blk_mq_sched_completed_request(rq);
531         if (rq->rq_flags & RQF_STATS) {
532                 blk_mq_poll_stats_start(rq->q);
533                 blk_stat_add(rq);
534         }
535
536         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537                 rq->q->softirq_done_fn(rq);
538                 return;
539         }
540
541         cpu = get_cpu();
542         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
543                 shared = cpus_share_cache(cpu, ctx->cpu);
544
545         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546                 rq->csd.func = __blk_mq_complete_request_remote;
547                 rq->csd.info = rq;
548                 rq->csd.flags = 0;
549                 smp_call_function_single_async(ctx->cpu, &rq->csd);
550         } else {
551                 rq->q->softirq_done_fn(rq);
552         }
553         put_cpu();
554 }
555
556 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557         __releases(hctx->srcu)
558 {
559         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
560                 rcu_read_unlock();
561         else
562                 srcu_read_unlock(hctx->srcu, srcu_idx);
563 }
564
565 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566         __acquires(hctx->srcu)
567 {
568         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
569                 /* shut up gcc false positive */
570                 *srcu_idx = 0;
571                 rcu_read_lock();
572         } else
573                 *srcu_idx = srcu_read_lock(hctx->srcu);
574 }
575
576 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
577 {
578         unsigned long flags;
579
580         /*
581          * blk_mq_rq_aborted_gstate() is used from the completion path and
582          * can thus be called from irq context.  u64_stats_fetch in the
583          * middle of update on the same CPU leads to lockup.  Disable irq
584          * while updating.
585          */
586         local_irq_save(flags);
587         u64_stats_update_begin(&rq->aborted_gstate_sync);
588         rq->aborted_gstate = gstate;
589         u64_stats_update_end(&rq->aborted_gstate_sync);
590         local_irq_restore(flags);
591 }
592
593 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
594 {
595         unsigned int start;
596         u64 aborted_gstate;
597
598         do {
599                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
600                 aborted_gstate = rq->aborted_gstate;
601         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
602
603         return aborted_gstate;
604 }
605
606 /**
607  * blk_mq_complete_request - end I/O on a request
608  * @rq:         the request being processed
609  *
610  * Description:
611  *      Ends all I/O on a request. It does not handle partial completions.
612  *      The actual completion happens out-of-order, through a IPI handler.
613  **/
614 void blk_mq_complete_request(struct request *rq)
615 {
616         struct request_queue *q = rq->q;
617         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
618         int srcu_idx;
619
620         if (unlikely(blk_should_fake_timeout(q)))
621                 return;
622
623         /*
624          * If @rq->aborted_gstate equals the current instance, timeout is
625          * claiming @rq and we lost.  This is synchronized through
626          * hctx_lock().  See blk_mq_timeout_work() for details.
627          *
628          * Completion path never blocks and we can directly use RCU here
629          * instead of hctx_lock() which can be either RCU or SRCU.
630          * However, that would complicate paths which want to synchronize
631          * against us.  Let stay in sync with the issue path so that
632          * hctx_lock() covers both issue and completion paths.
633          */
634         hctx_lock(hctx, &srcu_idx);
635         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636                 __blk_mq_complete_request(rq);
637         hctx_unlock(hctx, srcu_idx);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640
641 int blk_mq_request_started(struct request *rq)
642 {
643         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
647 void blk_mq_start_request(struct request *rq)
648 {
649         struct request_queue *q = rq->q;
650
651         blk_mq_sched_started_request(rq);
652
653         trace_block_rq_issue(q, rq);
654
655         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657                 rq->rq_flags |= RQF_STATS;
658                 wbt_issue(q->rq_wb, &rq->issue_stat);
659         }
660
661         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662
663         /*
664          * Mark @rq in-flight which also advances the generation number,
665          * and register for timeout.  Protect with a seqcount to allow the
666          * timeout path to read both @rq->gstate and @rq->deadline
667          * coherently.
668          *
669          * This is the only place where a request is marked in-flight.  If
670          * the timeout path reads an in-flight @rq->gstate, the
671          * @rq->deadline it reads together under @rq->gstate_seq is
672          * guaranteed to be the matching one.
673          */
674         preempt_disable();
675         write_seqcount_begin(&rq->gstate_seq);
676
677         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
678         blk_add_timer(rq);
679
680         write_seqcount_end(&rq->gstate_seq);
681         preempt_enable();
682
683         if (q->dma_drain_size && blk_rq_bytes(rq)) {
684                 /*
685                  * Make sure space for the drain appears.  We know we can do
686                  * this because max_hw_segments has been adjusted to be one
687                  * fewer than the device can handle.
688                  */
689                 rq->nr_phys_segments++;
690         }
691 }
692 EXPORT_SYMBOL(blk_mq_start_request);
693
694 /*
695  * When we reach here because queue is busy, it's safe to change the state
696  * to IDLE without checking @rq->aborted_gstate because we should still be
697  * holding the RCU read lock and thus protected against timeout.
698  */
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702
703         blk_mq_put_driver_tag(rq);
704
705         trace_block_rq_requeue(q, rq);
706         wbt_requeue(q->rq_wb, &rq->issue_stat);
707
708         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710                 if (q->dma_drain_size && blk_rq_bytes(rq))
711                         rq->nr_phys_segments--;
712         }
713 }
714
715 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 {
717         __blk_mq_requeue_request(rq);
718
719         /* this request will be re-inserted to io scheduler queue */
720         blk_mq_sched_requeue_request(rq);
721
722         BUG_ON(blk_queued_rq(rq));
723         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 }
725 EXPORT_SYMBOL(blk_mq_requeue_request);
726
727 static void blk_mq_requeue_work(struct work_struct *work)
728 {
729         struct request_queue *q =
730                 container_of(work, struct request_queue, requeue_work.work);
731         LIST_HEAD(rq_list);
732         struct request *rq, *next;
733
734         spin_lock_irq(&q->requeue_lock);
735         list_splice_init(&q->requeue_list, &rq_list);
736         spin_unlock_irq(&q->requeue_lock);
737
738         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
740                         continue;
741
742                 rq->rq_flags &= ~RQF_SOFTBARRIER;
743                 list_del_init(&rq->queuelist);
744                 blk_mq_sched_insert_request(rq, true, false, false);
745         }
746
747         while (!list_empty(&rq_list)) {
748                 rq = list_entry(rq_list.next, struct request, queuelist);
749                 list_del_init(&rq->queuelist);
750                 blk_mq_sched_insert_request(rq, false, false, false);
751         }
752
753         blk_mq_run_hw_queues(q, false);
754 }
755
756 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757                                 bool kick_requeue_list)
758 {
759         struct request_queue *q = rq->q;
760         unsigned long flags;
761
762         /*
763          * We abuse this flag that is otherwise used by the I/O scheduler to
764          * request head insertion from the workqueue.
765          */
766         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767
768         spin_lock_irqsave(&q->requeue_lock, flags);
769         if (at_head) {
770                 rq->rq_flags |= RQF_SOFTBARRIER;
771                 list_add(&rq->queuelist, &q->requeue_list);
772         } else {
773                 list_add_tail(&rq->queuelist, &q->requeue_list);
774         }
775         spin_unlock_irqrestore(&q->requeue_lock, flags);
776
777         if (kick_requeue_list)
778                 blk_mq_kick_requeue_list(q);
779 }
780 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781
782 void blk_mq_kick_requeue_list(struct request_queue *q)
783 {
784         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 }
786 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787
788 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789                                     unsigned long msecs)
790 {
791         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792                                     msecs_to_jiffies(msecs));
793 }
794 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795
796 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797 {
798         if (tag < tags->nr_tags) {
799                 prefetch(tags->rqs[tag]);
800                 return tags->rqs[tag];
801         }
802
803         return NULL;
804 }
805 EXPORT_SYMBOL(blk_mq_tag_to_rq);
806
807 struct blk_mq_timeout_data {
808         unsigned long next;
809         unsigned int next_set;
810         unsigned int nr_expired;
811 };
812
813 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814 {
815         const struct blk_mq_ops *ops = req->q->mq_ops;
816         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817
818         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819
820         if (ops->timeout)
821                 ret = ops->timeout(req, reserved);
822
823         switch (ret) {
824         case BLK_EH_HANDLED:
825                 __blk_mq_complete_request(req);
826                 break;
827         case BLK_EH_RESET_TIMER:
828                 /*
829                  * As nothing prevents from completion happening while
830                  * ->aborted_gstate is set, this may lead to ignored
831                  * completions and further spurious timeouts.
832                  */
833                 blk_mq_rq_update_aborted_gstate(req, 0);
834                 blk_add_timer(req);
835                 break;
836         case BLK_EH_NOT_HANDLED:
837                 break;
838         default:
839                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
840                 break;
841         }
842 }
843
844 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845                 struct request *rq, void *priv, bool reserved)
846 {
847         struct blk_mq_timeout_data *data = priv;
848         unsigned long gstate, deadline;
849         int start;
850
851         might_sleep();
852
853         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854                 return;
855
856         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
857         while (true) {
858                 start = read_seqcount_begin(&rq->gstate_seq);
859                 gstate = READ_ONCE(rq->gstate);
860                 deadline = blk_rq_deadline(rq);
861                 if (!read_seqcount_retry(&rq->gstate_seq, start))
862                         break;
863                 cond_resched();
864         }
865
866         /* if in-flight && overdue, mark for abortion */
867         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868             time_after_eq(jiffies, deadline)) {
869                 blk_mq_rq_update_aborted_gstate(rq, gstate);
870                 data->nr_expired++;
871                 hctx->nr_expired++;
872         } else if (!data->next_set || time_after(data->next, deadline)) {
873                 data->next = deadline;
874                 data->next_set = 1;
875         }
876 }
877
878 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879                 struct request *rq, void *priv, bool reserved)
880 {
881         /*
882          * We marked @rq->aborted_gstate and waited for RCU.  If there were
883          * completions that we lost to, they would have finished and
884          * updated @rq->gstate by now; otherwise, the completion path is
885          * now guaranteed to see @rq->aborted_gstate and yield.  If
886          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887          */
888         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889             READ_ONCE(rq->gstate) == rq->aborted_gstate)
890                 blk_mq_rq_timed_out(rq, reserved);
891 }
892
893 static void blk_mq_timeout_work(struct work_struct *work)
894 {
895         struct request_queue *q =
896                 container_of(work, struct request_queue, timeout_work);
897         struct blk_mq_timeout_data data = {
898                 .next           = 0,
899                 .next_set       = 0,
900                 .nr_expired     = 0,
901         };
902         struct blk_mq_hw_ctx *hctx;
903         int i;
904
905         /* A deadlock might occur if a request is stuck requiring a
906          * timeout at the same time a queue freeze is waiting
907          * completion, since the timeout code would not be able to
908          * acquire the queue reference here.
909          *
910          * That's why we don't use blk_queue_enter here; instead, we use
911          * percpu_ref_tryget directly, because we need to be able to
912          * obtain a reference even in the short window between the queue
913          * starting to freeze, by dropping the first reference in
914          * blk_freeze_queue_start, and the moment the last request is
915          * consumed, marked by the instant q_usage_counter reaches
916          * zero.
917          */
918         if (!percpu_ref_tryget(&q->q_usage_counter))
919                 return;
920
921         /* scan for the expired ones and set their ->aborted_gstate */
922         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923
924         if (data.nr_expired) {
925                 bool has_rcu = false;
926
927                 /*
928                  * Wait till everyone sees ->aborted_gstate.  The
929                  * sequential waits for SRCUs aren't ideal.  If this ever
930                  * becomes a problem, we can add per-hw_ctx rcu_head and
931                  * wait in parallel.
932                  */
933                 queue_for_each_hw_ctx(q, hctx, i) {
934                         if (!hctx->nr_expired)
935                                 continue;
936
937                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938                                 has_rcu = true;
939                         else
940                                 synchronize_srcu(hctx->srcu);
941
942                         hctx->nr_expired = 0;
943                 }
944                 if (has_rcu)
945                         synchronize_rcu();
946
947                 /* terminate the ones we won */
948                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949         }
950
951         if (data.next_set) {
952                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
953                 mod_timer(&q->timeout, data.next);
954         } else {
955                 /*
956                  * Request timeouts are handled as a forward rolling timer. If
957                  * we end up here it means that no requests are pending and
958                  * also that no request has been pending for a while. Mark
959                  * each hctx as idle.
960                  */
961                 queue_for_each_hw_ctx(q, hctx, i) {
962                         /* the hctx may be unmapped, so check it here */
963                         if (blk_mq_hw_queue_mapped(hctx))
964                                 blk_mq_tag_idle(hctx);
965                 }
966         }
967         blk_queue_exit(q);
968 }
969
970 struct flush_busy_ctx_data {
971         struct blk_mq_hw_ctx *hctx;
972         struct list_head *list;
973 };
974
975 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
976 {
977         struct flush_busy_ctx_data *flush_data = data;
978         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
979         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
980
981         spin_lock(&ctx->lock);
982         list_splice_tail_init(&ctx->rq_list, flush_data->list);
983         sbitmap_clear_bit(sb, bitnr);
984         spin_unlock(&ctx->lock);
985         return true;
986 }
987
988 /*
989  * Process software queues that have been marked busy, splicing them
990  * to the for-dispatch
991  */
992 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993 {
994         struct flush_busy_ctx_data data = {
995                 .hctx = hctx,
996                 .list = list,
997         };
998
999         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000 }
1001 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002
1003 struct dispatch_rq_data {
1004         struct blk_mq_hw_ctx *hctx;
1005         struct request *rq;
1006 };
1007
1008 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1009                 void *data)
1010 {
1011         struct dispatch_rq_data *dispatch_data = data;
1012         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1013         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1014
1015         spin_lock(&ctx->lock);
1016         if (unlikely(!list_empty(&ctx->rq_list))) {
1017                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1018                 list_del_init(&dispatch_data->rq->queuelist);
1019                 if (list_empty(&ctx->rq_list))
1020                         sbitmap_clear_bit(sb, bitnr);
1021         }
1022         spin_unlock(&ctx->lock);
1023
1024         return !dispatch_data->rq;
1025 }
1026
1027 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1028                                         struct blk_mq_ctx *start)
1029 {
1030         unsigned off = start ? start->index_hw : 0;
1031         struct dispatch_rq_data data = {
1032                 .hctx = hctx,
1033                 .rq   = NULL,
1034         };
1035
1036         __sbitmap_for_each_set(&hctx->ctx_map, off,
1037                                dispatch_rq_from_ctx, &data);
1038
1039         return data.rq;
1040 }
1041
1042 static inline unsigned int queued_to_index(unsigned int queued)
1043 {
1044         if (!queued)
1045                 return 0;
1046
1047         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 }
1049
1050 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1051                            bool wait)
1052 {
1053         struct blk_mq_alloc_data data = {
1054                 .q = rq->q,
1055                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1056                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1057         };
1058
1059         might_sleep_if(wait);
1060
1061         if (rq->tag != -1)
1062                 goto done;
1063
1064         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1065                 data.flags |= BLK_MQ_REQ_RESERVED;
1066
1067         rq->tag = blk_mq_get_tag(&data);
1068         if (rq->tag >= 0) {
1069                 if (blk_mq_tag_busy(data.hctx)) {
1070                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1071                         atomic_inc(&data.hctx->nr_active);
1072                 }
1073                 data.hctx->tags->rqs[rq->tag] = rq;
1074         }
1075
1076 done:
1077         if (hctx)
1078                 *hctx = data.hctx;
1079         return rq->tag != -1;
1080 }
1081
1082 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1083                                 int flags, void *key)
1084 {
1085         struct blk_mq_hw_ctx *hctx;
1086
1087         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1088
1089         list_del_init(&wait->entry);
1090         blk_mq_run_hw_queue(hctx, true);
1091         return 1;
1092 }
1093
1094 /*
1095  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1097  * restart. For both cases, take care to check the condition again after
1098  * marking us as waiting.
1099  */
1100 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1101                                  struct request *rq)
1102 {
1103         struct blk_mq_hw_ctx *this_hctx = *hctx;
1104         struct sbq_wait_state *ws;
1105         wait_queue_entry_t *wait;
1106         bool ret;
1107
1108         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1110                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1111
1112                 /*
1113                  * It's possible that a tag was freed in the window between the
1114                  * allocation failure and adding the hardware queue to the wait
1115                  * queue.
1116                  *
1117                  * Don't clear RESTART here, someone else could have set it.
1118                  * At most this will cost an extra queue run.
1119                  */
1120                 return blk_mq_get_driver_tag(rq, hctx, false);
1121         }
1122
1123         wait = &this_hctx->dispatch_wait;
1124         if (!list_empty_careful(&wait->entry))
1125                 return false;
1126
1127         spin_lock(&this_hctx->lock);
1128         if (!list_empty(&wait->entry)) {
1129                 spin_unlock(&this_hctx->lock);
1130                 return false;
1131         }
1132
1133         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1134         add_wait_queue(&ws->wait, wait);
1135
1136         /*
1137          * It's possible that a tag was freed in the window between the
1138          * allocation failure and adding the hardware queue to the wait
1139          * queue.
1140          */
1141         ret = blk_mq_get_driver_tag(rq, hctx, false);
1142         if (!ret) {
1143                 spin_unlock(&this_hctx->lock);
1144                 return false;
1145         }
1146
1147         /*
1148          * We got a tag, remove ourselves from the wait queue to ensure
1149          * someone else gets the wakeup.
1150          */
1151         spin_lock_irq(&ws->wait.lock);
1152         list_del_init(&wait->entry);
1153         spin_unlock_irq(&ws->wait.lock);
1154         spin_unlock(&this_hctx->lock);
1155
1156         return true;
1157 }
1158
1159 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1160
1161 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162                              bool got_budget)
1163 {
1164         struct blk_mq_hw_ctx *hctx;
1165         struct request *rq, *nxt;
1166         bool no_tag = false;
1167         int errors, queued;
1168         blk_status_t ret = BLK_STS_OK;
1169
1170         if (list_empty(list))
1171                 return false;
1172
1173         WARN_ON(!list_is_singular(list) && got_budget);
1174
1175         /*
1176          * Now process all the entries, sending them to the driver.
1177          */
1178         errors = queued = 0;
1179         do {
1180                 struct blk_mq_queue_data bd;
1181
1182                 rq = list_first_entry(list, struct request, queuelist);
1183
1184                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1185                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1186                         break;
1187
1188                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1189                         /*
1190                          * The initial allocation attempt failed, so we need to
1191                          * rerun the hardware queue when a tag is freed. The
1192                          * waitqueue takes care of that. If the queue is run
1193                          * before we add this entry back on the dispatch list,
1194                          * we'll re-run it below.
1195                          */
1196                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1197                                 blk_mq_put_dispatch_budget(hctx);
1198                                 /*
1199                                  * For non-shared tags, the RESTART check
1200                                  * will suffice.
1201                                  */
1202                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1203                                         no_tag = true;
1204                                 break;
1205                         }
1206                 }
1207
1208                 list_del_init(&rq->queuelist);
1209
1210                 bd.rq = rq;
1211
1212                 /*
1213                  * Flag last if we have no more requests, or if we have more
1214                  * but can't assign a driver tag to it.
1215                  */
1216                 if (list_empty(list))
1217                         bd.last = true;
1218                 else {
1219                         nxt = list_first_entry(list, struct request, queuelist);
1220                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1221                 }
1222
1223                 ret = q->mq_ops->queue_rq(hctx, &bd);
1224                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225                         /*
1226                          * If an I/O scheduler has been configured and we got a
1227                          * driver tag for the next request already, free it
1228                          * again.
1229                          */
1230                         if (!list_empty(list)) {
1231                                 nxt = list_first_entry(list, struct request, queuelist);
1232                                 blk_mq_put_driver_tag(nxt);
1233                         }
1234                         list_add(&rq->queuelist, list);
1235                         __blk_mq_requeue_request(rq);
1236                         break;
1237                 }
1238
1239                 if (unlikely(ret != BLK_STS_OK)) {
1240                         errors++;
1241                         blk_mq_end_request(rq, BLK_STS_IOERR);
1242                         continue;
1243                 }
1244
1245                 queued++;
1246         } while (!list_empty(list));
1247
1248         hctx->dispatched[queued_to_index(queued)]++;
1249
1250         /*
1251          * Any items that need requeuing? Stuff them into hctx->dispatch,
1252          * that is where we will continue on next queue run.
1253          */
1254         if (!list_empty(list)) {
1255                 bool needs_restart;
1256
1257                 spin_lock(&hctx->lock);
1258                 list_splice_init(list, &hctx->dispatch);
1259                 spin_unlock(&hctx->lock);
1260
1261                 /*
1262                  * If SCHED_RESTART was set by the caller of this function and
1263                  * it is no longer set that means that it was cleared by another
1264                  * thread and hence that a queue rerun is needed.
1265                  *
1266                  * If 'no_tag' is set, that means that we failed getting
1267                  * a driver tag with an I/O scheduler attached. If our dispatch
1268                  * waitqueue is no longer active, ensure that we run the queue
1269                  * AFTER adding our entries back to the list.
1270                  *
1271                  * If no I/O scheduler has been configured it is possible that
1272                  * the hardware queue got stopped and restarted before requests
1273                  * were pushed back onto the dispatch list. Rerun the queue to
1274                  * avoid starvation. Notes:
1275                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1276                  *   been stopped before rerunning a queue.
1277                  * - Some but not all block drivers stop a queue before
1278                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279                  *   and dm-rq.
1280                  *
1281                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1282                  * bit is set, run queue after a delay to avoid IO stalls
1283                  * that could otherwise occur if the queue is idle.
1284                  */
1285                 needs_restart = blk_mq_sched_needs_restart(hctx);
1286                 if (!needs_restart ||
1287                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288                         blk_mq_run_hw_queue(hctx, true);
1289                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1290                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291         }
1292
1293         return (queued + errors) != 0;
1294 }
1295
1296 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1297 {
1298         int srcu_idx;
1299
1300         /*
1301          * We should be running this queue from one of the CPUs that
1302          * are mapped to it.
1303          *
1304          * There are at least two related races now between setting
1305          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1306          * __blk_mq_run_hw_queue():
1307          *
1308          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1309          *   but later it becomes online, then this warning is harmless
1310          *   at all
1311          *
1312          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1313          *   but later it becomes offline, then the warning can't be
1314          *   triggered, and we depend on blk-mq timeout handler to
1315          *   handle dispatched requests to this hctx
1316          */
1317         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1318                 cpu_online(hctx->next_cpu)) {
1319                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1320                         raw_smp_processor_id(),
1321                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1322                 dump_stack();
1323         }
1324
1325         /*
1326          * We can't run the queue inline with ints disabled. Ensure that
1327          * we catch bad users of this early.
1328          */
1329         WARN_ON_ONCE(in_interrupt());
1330
1331         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1332
1333         hctx_lock(hctx, &srcu_idx);
1334         blk_mq_sched_dispatch_requests(hctx);
1335         hctx_unlock(hctx, srcu_idx);
1336 }
1337
1338 /*
1339  * It'd be great if the workqueue API had a way to pass
1340  * in a mask and had some smarts for more clever placement.
1341  * For now we just round-robin here, switching for every
1342  * BLK_MQ_CPU_WORK_BATCH queued items.
1343  */
1344 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1345 {
1346         bool tried = false;
1347         int next_cpu = hctx->next_cpu;
1348
1349         if (hctx->queue->nr_hw_queues == 1)
1350                 return WORK_CPU_UNBOUND;
1351
1352         if (--hctx->next_cpu_batch <= 0) {
1353 select_cpu:
1354                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1355                                 cpu_online_mask);
1356                 if (next_cpu >= nr_cpu_ids)
1357                         next_cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1358
1359                 /*
1360                  * No online CPU is found, so have to make sure hctx->next_cpu
1361                  * is set correctly for not breaking workqueue.
1362                  */
1363                 if (next_cpu >= nr_cpu_ids)
1364                         next_cpu = cpumask_first(hctx->cpumask);
1365                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1366         }
1367
1368         /*
1369          * Do unbound schedule if we can't find a online CPU for this hctx,
1370          * and it should only happen in the path of handling CPU DEAD.
1371          */
1372         if (!cpu_online(next_cpu)) {
1373                 if (!tried) {
1374                         tried = true;
1375                         goto select_cpu;
1376                 }
1377
1378                 /*
1379                  * Make sure to re-select CPU next time once after CPUs
1380                  * in hctx->cpumask become online again.
1381                  */
1382                 hctx->next_cpu = next_cpu;
1383                 hctx->next_cpu_batch = 1;
1384                 return WORK_CPU_UNBOUND;
1385         }
1386
1387         hctx->next_cpu = next_cpu;
1388         return next_cpu;
1389 }
1390
1391 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1392                                         unsigned long msecs)
1393 {
1394         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1395                 return;
1396
1397         if (unlikely(blk_mq_hctx_stopped(hctx)))
1398                 return;
1399
1400         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1401                 int cpu = get_cpu();
1402                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1403                         __blk_mq_run_hw_queue(hctx);
1404                         put_cpu();
1405                         return;
1406                 }
1407
1408                 put_cpu();
1409         }
1410
1411         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1412                                     msecs_to_jiffies(msecs));
1413 }
1414
1415 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1416 {
1417         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1418 }
1419 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1420
1421 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1422 {
1423         int srcu_idx;
1424         bool need_run;
1425
1426         /*
1427          * When queue is quiesced, we may be switching io scheduler, or
1428          * updating nr_hw_queues, or other things, and we can't run queue
1429          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1430          *
1431          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1432          * quiesced.
1433          */
1434         hctx_lock(hctx, &srcu_idx);
1435         need_run = !blk_queue_quiesced(hctx->queue) &&
1436                 blk_mq_hctx_has_pending(hctx);
1437         hctx_unlock(hctx, srcu_idx);
1438
1439         if (need_run) {
1440                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1441                 return true;
1442         }
1443
1444         return false;
1445 }
1446 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1447
1448 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1449 {
1450         struct blk_mq_hw_ctx *hctx;
1451         int i;
1452
1453         queue_for_each_hw_ctx(q, hctx, i) {
1454                 if (blk_mq_hctx_stopped(hctx))
1455                         continue;
1456
1457                 blk_mq_run_hw_queue(hctx, async);
1458         }
1459 }
1460 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1461
1462 /**
1463  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1464  * @q: request queue.
1465  *
1466  * The caller is responsible for serializing this function against
1467  * blk_mq_{start,stop}_hw_queue().
1468  */
1469 bool blk_mq_queue_stopped(struct request_queue *q)
1470 {
1471         struct blk_mq_hw_ctx *hctx;
1472         int i;
1473
1474         queue_for_each_hw_ctx(q, hctx, i)
1475                 if (blk_mq_hctx_stopped(hctx))
1476                         return true;
1477
1478         return false;
1479 }
1480 EXPORT_SYMBOL(blk_mq_queue_stopped);
1481
1482 /*
1483  * This function is often used for pausing .queue_rq() by driver when
1484  * there isn't enough resource or some conditions aren't satisfied, and
1485  * BLK_STS_RESOURCE is usually returned.
1486  *
1487  * We do not guarantee that dispatch can be drained or blocked
1488  * after blk_mq_stop_hw_queue() returns. Please use
1489  * blk_mq_quiesce_queue() for that requirement.
1490  */
1491 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1492 {
1493         cancel_delayed_work(&hctx->run_work);
1494
1495         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1496 }
1497 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1498
1499 /*
1500  * This function is often used for pausing .queue_rq() by driver when
1501  * there isn't enough resource or some conditions aren't satisfied, and
1502  * BLK_STS_RESOURCE is usually returned.
1503  *
1504  * We do not guarantee that dispatch can be drained or blocked
1505  * after blk_mq_stop_hw_queues() returns. Please use
1506  * blk_mq_quiesce_queue() for that requirement.
1507  */
1508 void blk_mq_stop_hw_queues(struct request_queue *q)
1509 {
1510         struct blk_mq_hw_ctx *hctx;
1511         int i;
1512
1513         queue_for_each_hw_ctx(q, hctx, i)
1514                 blk_mq_stop_hw_queue(hctx);
1515 }
1516 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1517
1518 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1519 {
1520         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521
1522         blk_mq_run_hw_queue(hctx, false);
1523 }
1524 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1525
1526 void blk_mq_start_hw_queues(struct request_queue *q)
1527 {
1528         struct blk_mq_hw_ctx *hctx;
1529         int i;
1530
1531         queue_for_each_hw_ctx(q, hctx, i)
1532                 blk_mq_start_hw_queue(hctx);
1533 }
1534 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1535
1536 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1537 {
1538         if (!blk_mq_hctx_stopped(hctx))
1539                 return;
1540
1541         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1542         blk_mq_run_hw_queue(hctx, async);
1543 }
1544 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1545
1546 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1547 {
1548         struct blk_mq_hw_ctx *hctx;
1549         int i;
1550
1551         queue_for_each_hw_ctx(q, hctx, i)
1552                 blk_mq_start_stopped_hw_queue(hctx, async);
1553 }
1554 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1555
1556 static void blk_mq_run_work_fn(struct work_struct *work)
1557 {
1558         struct blk_mq_hw_ctx *hctx;
1559
1560         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1561
1562         /*
1563          * If we are stopped, don't run the queue. The exception is if
1564          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1565          * the STOPPED bit and run it.
1566          */
1567         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1568                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1569                         return;
1570
1571                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1572                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1573         }
1574
1575         __blk_mq_run_hw_queue(hctx);
1576 }
1577
1578
1579 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1580 {
1581         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1582                 return;
1583
1584         /*
1585          * Stop the hw queue, then modify currently delayed work.
1586          * This should prevent us from running the queue prematurely.
1587          * Mark the queue as auto-clearing STOPPED when it runs.
1588          */
1589         blk_mq_stop_hw_queue(hctx);
1590         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1591         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1592                                         &hctx->run_work,
1593                                         msecs_to_jiffies(msecs));
1594 }
1595 EXPORT_SYMBOL(blk_mq_delay_queue);
1596
1597 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1598                                             struct request *rq,
1599                                             bool at_head)
1600 {
1601         struct blk_mq_ctx *ctx = rq->mq_ctx;
1602
1603         lockdep_assert_held(&ctx->lock);
1604
1605         trace_block_rq_insert(hctx->queue, rq);
1606
1607         if (at_head)
1608                 list_add(&rq->queuelist, &ctx->rq_list);
1609         else
1610                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1611 }
1612
1613 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1614                              bool at_head)
1615 {
1616         struct blk_mq_ctx *ctx = rq->mq_ctx;
1617
1618         lockdep_assert_held(&ctx->lock);
1619
1620         __blk_mq_insert_req_list(hctx, rq, at_head);
1621         blk_mq_hctx_mark_pending(hctx, ctx);
1622 }
1623
1624 /*
1625  * Should only be used carefully, when the caller knows we want to
1626  * bypass a potential IO scheduler on the target device.
1627  */
1628 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1629 {
1630         struct blk_mq_ctx *ctx = rq->mq_ctx;
1631         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1632
1633         spin_lock(&hctx->lock);
1634         list_add_tail(&rq->queuelist, &hctx->dispatch);
1635         spin_unlock(&hctx->lock);
1636
1637         if (run_queue)
1638                 blk_mq_run_hw_queue(hctx, false);
1639 }
1640
1641 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1642                             struct list_head *list)
1643
1644 {
1645         /*
1646          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1647          * offline now
1648          */
1649         spin_lock(&ctx->lock);
1650         while (!list_empty(list)) {
1651                 struct request *rq;
1652
1653                 rq = list_first_entry(list, struct request, queuelist);
1654                 BUG_ON(rq->mq_ctx != ctx);
1655                 list_del_init(&rq->queuelist);
1656                 __blk_mq_insert_req_list(hctx, rq, false);
1657         }
1658         blk_mq_hctx_mark_pending(hctx, ctx);
1659         spin_unlock(&ctx->lock);
1660 }
1661
1662 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1663 {
1664         struct request *rqa = container_of(a, struct request, queuelist);
1665         struct request *rqb = container_of(b, struct request, queuelist);
1666
1667         return !(rqa->mq_ctx < rqb->mq_ctx ||
1668                  (rqa->mq_ctx == rqb->mq_ctx &&
1669                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1670 }
1671
1672 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1673 {
1674         struct blk_mq_ctx *this_ctx;
1675         struct request_queue *this_q;
1676         struct request *rq;
1677         LIST_HEAD(list);
1678         LIST_HEAD(ctx_list);
1679         unsigned int depth;
1680
1681         list_splice_init(&plug->mq_list, &list);
1682
1683         list_sort(NULL, &list, plug_ctx_cmp);
1684
1685         this_q = NULL;
1686         this_ctx = NULL;
1687         depth = 0;
1688
1689         while (!list_empty(&list)) {
1690                 rq = list_entry_rq(list.next);
1691                 list_del_init(&rq->queuelist);
1692                 BUG_ON(!rq->q);
1693                 if (rq->mq_ctx != this_ctx) {
1694                         if (this_ctx) {
1695                                 trace_block_unplug(this_q, depth, from_schedule);
1696                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1697                                                                 &ctx_list,
1698                                                                 from_schedule);
1699                         }
1700
1701                         this_ctx = rq->mq_ctx;
1702                         this_q = rq->q;
1703                         depth = 0;
1704                 }
1705
1706                 depth++;
1707                 list_add_tail(&rq->queuelist, &ctx_list);
1708         }
1709
1710         /*
1711          * If 'this_ctx' is set, we know we have entries to complete
1712          * on 'ctx_list'. Do those.
1713          */
1714         if (this_ctx) {
1715                 trace_block_unplug(this_q, depth, from_schedule);
1716                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1717                                                 from_schedule);
1718         }
1719 }
1720
1721 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1722 {
1723         blk_init_request_from_bio(rq, bio);
1724
1725         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1726
1727         blk_account_io_start(rq, true);
1728 }
1729
1730 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1731                                    struct blk_mq_ctx *ctx,
1732                                    struct request *rq)
1733 {
1734         spin_lock(&ctx->lock);
1735         __blk_mq_insert_request(hctx, rq, false);
1736         spin_unlock(&ctx->lock);
1737 }
1738
1739 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1740 {
1741         if (rq->tag != -1)
1742                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1743
1744         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1745 }
1746
1747 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1748                                             struct request *rq,
1749                                             blk_qc_t *cookie)
1750 {
1751         struct request_queue *q = rq->q;
1752         struct blk_mq_queue_data bd = {
1753                 .rq = rq,
1754                 .last = true,
1755         };
1756         blk_qc_t new_cookie;
1757         blk_status_t ret;
1758
1759         new_cookie = request_to_qc_t(hctx, rq);
1760
1761         /*
1762          * For OK queue, we are done. For error, caller may kill it.
1763          * Any other error (busy), just add it to our list as we
1764          * previously would have done.
1765          */
1766         ret = q->mq_ops->queue_rq(hctx, &bd);
1767         switch (ret) {
1768         case BLK_STS_OK:
1769                 *cookie = new_cookie;
1770                 break;
1771         case BLK_STS_RESOURCE:
1772         case BLK_STS_DEV_RESOURCE:
1773                 __blk_mq_requeue_request(rq);
1774                 break;
1775         default:
1776                 *cookie = BLK_QC_T_NONE;
1777                 break;
1778         }
1779
1780         return ret;
1781 }
1782
1783 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1784                                                 struct request *rq,
1785                                                 blk_qc_t *cookie,
1786                                                 bool bypass_insert)
1787 {
1788         struct request_queue *q = rq->q;
1789         bool run_queue = true;
1790
1791         /*
1792          * RCU or SRCU read lock is needed before checking quiesced flag.
1793          *
1794          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1795          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1796          * and avoid driver to try to dispatch again.
1797          */
1798         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1799                 run_queue = false;
1800                 bypass_insert = false;
1801                 goto insert;
1802         }
1803
1804         if (q->elevator && !bypass_insert)
1805                 goto insert;
1806
1807         if (!blk_mq_get_dispatch_budget(hctx))
1808                 goto insert;
1809
1810         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1811                 blk_mq_put_dispatch_budget(hctx);
1812                 goto insert;
1813         }
1814
1815         return __blk_mq_issue_directly(hctx, rq, cookie);
1816 insert:
1817         if (bypass_insert)
1818                 return BLK_STS_RESOURCE;
1819
1820         blk_mq_sched_insert_request(rq, false, run_queue, false);
1821         return BLK_STS_OK;
1822 }
1823
1824 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1825                 struct request *rq, blk_qc_t *cookie)
1826 {
1827         blk_status_t ret;
1828         int srcu_idx;
1829
1830         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1831
1832         hctx_lock(hctx, &srcu_idx);
1833
1834         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1835         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1836                 blk_mq_sched_insert_request(rq, false, true, false);
1837         else if (ret != BLK_STS_OK)
1838                 blk_mq_end_request(rq, ret);
1839
1840         hctx_unlock(hctx, srcu_idx);
1841 }
1842
1843 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1844 {
1845         blk_status_t ret;
1846         int srcu_idx;
1847         blk_qc_t unused_cookie;
1848         struct blk_mq_ctx *ctx = rq->mq_ctx;
1849         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1850
1851         hctx_lock(hctx, &srcu_idx);
1852         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1853         hctx_unlock(hctx, srcu_idx);
1854
1855         return ret;
1856 }
1857
1858 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1859 {
1860         const int is_sync = op_is_sync(bio->bi_opf);
1861         const int is_flush_fua = op_is_flush(bio->bi_opf);
1862         struct blk_mq_alloc_data data = { .flags = 0 };
1863         struct request *rq;
1864         unsigned int request_count = 0;
1865         struct blk_plug *plug;
1866         struct request *same_queue_rq = NULL;
1867         blk_qc_t cookie;
1868         unsigned int wb_acct;
1869
1870         blk_queue_bounce(q, &bio);
1871
1872         blk_queue_split(q, &bio);
1873
1874         if (!bio_integrity_prep(bio))
1875                 return BLK_QC_T_NONE;
1876
1877         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1878             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1879                 return BLK_QC_T_NONE;
1880
1881         if (blk_mq_sched_bio_merge(q, bio))
1882                 return BLK_QC_T_NONE;
1883
1884         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1885
1886         trace_block_getrq(q, bio, bio->bi_opf);
1887
1888         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1889         if (unlikely(!rq)) {
1890                 __wbt_done(q->rq_wb, wb_acct);
1891                 if (bio->bi_opf & REQ_NOWAIT)
1892                         bio_wouldblock_error(bio);
1893                 return BLK_QC_T_NONE;
1894         }
1895
1896         wbt_track(&rq->issue_stat, wb_acct);
1897
1898         cookie = request_to_qc_t(data.hctx, rq);
1899
1900         plug = current->plug;
1901         if (unlikely(is_flush_fua)) {
1902                 blk_mq_put_ctx(data.ctx);
1903                 blk_mq_bio_to_request(rq, bio);
1904
1905                 /* bypass scheduler for flush rq */
1906                 blk_insert_flush(rq);
1907                 blk_mq_run_hw_queue(data.hctx, true);
1908         } else if (plug && q->nr_hw_queues == 1) {
1909                 struct request *last = NULL;
1910
1911                 blk_mq_put_ctx(data.ctx);
1912                 blk_mq_bio_to_request(rq, bio);
1913
1914                 /*
1915                  * @request_count may become stale because of schedule
1916                  * out, so check the list again.
1917                  */
1918                 if (list_empty(&plug->mq_list))
1919                         request_count = 0;
1920                 else if (blk_queue_nomerges(q))
1921                         request_count = blk_plug_queued_count(q);
1922
1923                 if (!request_count)
1924                         trace_block_plug(q);
1925                 else
1926                         last = list_entry_rq(plug->mq_list.prev);
1927
1928                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1929                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1930                         blk_flush_plug_list(plug, false);
1931                         trace_block_plug(q);
1932                 }
1933
1934                 list_add_tail(&rq->queuelist, &plug->mq_list);
1935         } else if (plug && !blk_queue_nomerges(q)) {
1936                 blk_mq_bio_to_request(rq, bio);
1937
1938                 /*
1939                  * We do limited plugging. If the bio can be merged, do that.
1940                  * Otherwise the existing request in the plug list will be
1941                  * issued. So the plug list will have one request at most
1942                  * The plug list might get flushed before this. If that happens,
1943                  * the plug list is empty, and same_queue_rq is invalid.
1944                  */
1945                 if (list_empty(&plug->mq_list))
1946                         same_queue_rq = NULL;
1947                 if (same_queue_rq)
1948                         list_del_init(&same_queue_rq->queuelist);
1949                 list_add_tail(&rq->queuelist, &plug->mq_list);
1950
1951                 blk_mq_put_ctx(data.ctx);
1952
1953                 if (same_queue_rq) {
1954                         data.hctx = blk_mq_map_queue(q,
1955                                         same_queue_rq->mq_ctx->cpu);
1956                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1957                                         &cookie);
1958                 }
1959         } else if (q->nr_hw_queues > 1 && is_sync) {
1960                 blk_mq_put_ctx(data.ctx);
1961                 blk_mq_bio_to_request(rq, bio);
1962                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1963         } else if (q->elevator) {
1964                 blk_mq_put_ctx(data.ctx);
1965                 blk_mq_bio_to_request(rq, bio);
1966                 blk_mq_sched_insert_request(rq, false, true, true);
1967         } else {
1968                 blk_mq_put_ctx(data.ctx);
1969                 blk_mq_bio_to_request(rq, bio);
1970                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1971                 blk_mq_run_hw_queue(data.hctx, true);
1972         }
1973
1974         return cookie;
1975 }
1976
1977 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1978                      unsigned int hctx_idx)
1979 {
1980         struct page *page;
1981
1982         if (tags->rqs && set->ops->exit_request) {
1983                 int i;
1984
1985                 for (i = 0; i < tags->nr_tags; i++) {
1986                         struct request *rq = tags->static_rqs[i];
1987
1988                         if (!rq)
1989                                 continue;
1990                         set->ops->exit_request(set, rq, hctx_idx);
1991                         tags->static_rqs[i] = NULL;
1992                 }
1993         }
1994
1995         while (!list_empty(&tags->page_list)) {
1996                 page = list_first_entry(&tags->page_list, struct page, lru);
1997                 list_del_init(&page->lru);
1998                 /*
1999                  * Remove kmemleak object previously allocated in
2000                  * blk_mq_init_rq_map().
2001                  */
2002                 kmemleak_free(page_address(page));
2003                 __free_pages(page, page->private);
2004         }
2005 }
2006
2007 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2008 {
2009         kfree(tags->rqs);
2010         tags->rqs = NULL;
2011         kfree(tags->static_rqs);
2012         tags->static_rqs = NULL;
2013
2014         blk_mq_free_tags(tags);
2015 }
2016
2017 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2018                                         unsigned int hctx_idx,
2019                                         unsigned int nr_tags,
2020                                         unsigned int reserved_tags)
2021 {
2022         struct blk_mq_tags *tags;
2023         int node;
2024
2025         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2026         if (node == NUMA_NO_NODE)
2027                 node = set->numa_node;
2028
2029         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2030                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2031         if (!tags)
2032                 return NULL;
2033
2034         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2035                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2036                                  node);
2037         if (!tags->rqs) {
2038                 blk_mq_free_tags(tags);
2039                 return NULL;
2040         }
2041
2042         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2043                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044                                  node);
2045         if (!tags->static_rqs) {
2046                 kfree(tags->rqs);
2047                 blk_mq_free_tags(tags);
2048                 return NULL;
2049         }
2050
2051         return tags;
2052 }
2053
2054 static size_t order_to_size(unsigned int order)
2055 {
2056         return (size_t)PAGE_SIZE << order;
2057 }
2058
2059 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2060                                unsigned int hctx_idx, int node)
2061 {
2062         int ret;
2063
2064         if (set->ops->init_request) {
2065                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2066                 if (ret)
2067                         return ret;
2068         }
2069
2070         seqcount_init(&rq->gstate_seq);
2071         u64_stats_init(&rq->aborted_gstate_sync);
2072         return 0;
2073 }
2074
2075 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2076                      unsigned int hctx_idx, unsigned int depth)
2077 {
2078         unsigned int i, j, entries_per_page, max_order = 4;
2079         size_t rq_size, left;
2080         int node;
2081
2082         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2083         if (node == NUMA_NO_NODE)
2084                 node = set->numa_node;
2085
2086         INIT_LIST_HEAD(&tags->page_list);
2087
2088         /*
2089          * rq_size is the size of the request plus driver payload, rounded
2090          * to the cacheline size
2091          */
2092         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2093                                 cache_line_size());
2094         left = rq_size * depth;
2095
2096         for (i = 0; i < depth; ) {
2097                 int this_order = max_order;
2098                 struct page *page;
2099                 int to_do;
2100                 void *p;
2101
2102                 while (this_order && left < order_to_size(this_order - 1))
2103                         this_order--;
2104
2105                 do {
2106                         page = alloc_pages_node(node,
2107                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2108                                 this_order);
2109                         if (page)
2110                                 break;
2111                         if (!this_order--)
2112                                 break;
2113                         if (order_to_size(this_order) < rq_size)
2114                                 break;
2115                 } while (1);
2116
2117                 if (!page)
2118                         goto fail;
2119
2120                 page->private = this_order;
2121                 list_add_tail(&page->lru, &tags->page_list);
2122
2123                 p = page_address(page);
2124                 /*
2125                  * Allow kmemleak to scan these pages as they contain pointers
2126                  * to additional allocations like via ops->init_request().
2127                  */
2128                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2129                 entries_per_page = order_to_size(this_order) / rq_size;
2130                 to_do = min(entries_per_page, depth - i);
2131                 left -= to_do * rq_size;
2132                 for (j = 0; j < to_do; j++) {
2133                         struct request *rq = p;
2134
2135                         tags->static_rqs[i] = rq;
2136                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2137                                 tags->static_rqs[i] = NULL;
2138                                 goto fail;
2139                         }
2140
2141                         p += rq_size;
2142                         i++;
2143                 }
2144         }
2145         return 0;
2146
2147 fail:
2148         blk_mq_free_rqs(set, tags, hctx_idx);
2149         return -ENOMEM;
2150 }
2151
2152 /*
2153  * 'cpu' is going away. splice any existing rq_list entries from this
2154  * software queue to the hw queue dispatch list, and ensure that it
2155  * gets run.
2156  */
2157 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2158 {
2159         struct blk_mq_hw_ctx *hctx;
2160         struct blk_mq_ctx *ctx;
2161         LIST_HEAD(tmp);
2162
2163         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2164         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2165
2166         spin_lock(&ctx->lock);
2167         if (!list_empty(&ctx->rq_list)) {
2168                 list_splice_init(&ctx->rq_list, &tmp);
2169                 blk_mq_hctx_clear_pending(hctx, ctx);
2170         }
2171         spin_unlock(&ctx->lock);
2172
2173         if (list_empty(&tmp))
2174                 return 0;
2175
2176         spin_lock(&hctx->lock);
2177         list_splice_tail_init(&tmp, &hctx->dispatch);
2178         spin_unlock(&hctx->lock);
2179
2180         blk_mq_run_hw_queue(hctx, true);
2181         return 0;
2182 }
2183
2184 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2185 {
2186         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2187                                             &hctx->cpuhp_dead);
2188 }
2189
2190 /* hctx->ctxs will be freed in queue's release handler */
2191 static void blk_mq_exit_hctx(struct request_queue *q,
2192                 struct blk_mq_tag_set *set,
2193                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2194 {
2195         blk_mq_debugfs_unregister_hctx(hctx);
2196
2197         if (blk_mq_hw_queue_mapped(hctx))
2198                 blk_mq_tag_idle(hctx);
2199
2200         if (set->ops->exit_request)
2201                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2202
2203         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2204
2205         if (set->ops->exit_hctx)
2206                 set->ops->exit_hctx(hctx, hctx_idx);
2207
2208         if (hctx->flags & BLK_MQ_F_BLOCKING)
2209                 cleanup_srcu_struct(hctx->srcu);
2210
2211         blk_mq_remove_cpuhp(hctx);
2212         blk_free_flush_queue(hctx->fq);
2213         sbitmap_free(&hctx->ctx_map);
2214 }
2215
2216 static void blk_mq_exit_hw_queues(struct request_queue *q,
2217                 struct blk_mq_tag_set *set, int nr_queue)
2218 {
2219         struct blk_mq_hw_ctx *hctx;
2220         unsigned int i;
2221
2222         queue_for_each_hw_ctx(q, hctx, i) {
2223                 if (i == nr_queue)
2224                         break;
2225                 blk_mq_exit_hctx(q, set, hctx, i);
2226         }
2227 }
2228
2229 static int blk_mq_init_hctx(struct request_queue *q,
2230                 struct blk_mq_tag_set *set,
2231                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2232 {
2233         int node;
2234
2235         node = hctx->numa_node;
2236         if (node == NUMA_NO_NODE)
2237                 node = hctx->numa_node = set->numa_node;
2238
2239         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2240         spin_lock_init(&hctx->lock);
2241         INIT_LIST_HEAD(&hctx->dispatch);
2242         hctx->queue = q;
2243         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2244
2245         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2246
2247         hctx->tags = set->tags[hctx_idx];
2248
2249         /*
2250          * Allocate space for all possible cpus to avoid allocation at
2251          * runtime
2252          */
2253         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2254                                         GFP_KERNEL, node);
2255         if (!hctx->ctxs)
2256                 goto unregister_cpu_notifier;
2257
2258         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2259                               node))
2260                 goto free_ctxs;
2261
2262         hctx->nr_ctx = 0;
2263
2264         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2265         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2266
2267         if (set->ops->init_hctx &&
2268             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2269                 goto free_bitmap;
2270
2271         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2272                 goto exit_hctx;
2273
2274         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2275         if (!hctx->fq)
2276                 goto sched_exit_hctx;
2277
2278         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2279                 goto free_fq;
2280
2281         if (hctx->flags & BLK_MQ_F_BLOCKING)
2282                 init_srcu_struct(hctx->srcu);
2283
2284         blk_mq_debugfs_register_hctx(q, hctx);
2285
2286         return 0;
2287
2288  free_fq:
2289         kfree(hctx->fq);
2290  sched_exit_hctx:
2291         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2292  exit_hctx:
2293         if (set->ops->exit_hctx)
2294                 set->ops->exit_hctx(hctx, hctx_idx);
2295  free_bitmap:
2296         sbitmap_free(&hctx->ctx_map);
2297  free_ctxs:
2298         kfree(hctx->ctxs);
2299  unregister_cpu_notifier:
2300         blk_mq_remove_cpuhp(hctx);
2301         return -1;
2302 }
2303
2304 static void blk_mq_init_cpu_queues(struct request_queue *q,
2305                                    unsigned int nr_hw_queues)
2306 {
2307         unsigned int i;
2308
2309         for_each_possible_cpu(i) {
2310                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2311                 struct blk_mq_hw_ctx *hctx;
2312
2313                 __ctx->cpu = i;
2314                 spin_lock_init(&__ctx->lock);
2315                 INIT_LIST_HEAD(&__ctx->rq_list);
2316                 __ctx->queue = q;
2317
2318                 /*
2319                  * Set local node, IFF we have more than one hw queue. If
2320                  * not, we remain on the home node of the device
2321                  */
2322                 hctx = blk_mq_map_queue(q, i);
2323                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2324                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2325         }
2326 }
2327
2328 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2329 {
2330         int ret = 0;
2331
2332         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2333                                         set->queue_depth, set->reserved_tags);
2334         if (!set->tags[hctx_idx])
2335                 return false;
2336
2337         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2338                                 set->queue_depth);
2339         if (!ret)
2340                 return true;
2341
2342         blk_mq_free_rq_map(set->tags[hctx_idx]);
2343         set->tags[hctx_idx] = NULL;
2344         return false;
2345 }
2346
2347 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2348                                          unsigned int hctx_idx)
2349 {
2350         if (set->tags[hctx_idx]) {
2351                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2352                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2353                 set->tags[hctx_idx] = NULL;
2354         }
2355 }
2356
2357 static void blk_mq_map_swqueue(struct request_queue *q)
2358 {
2359         unsigned int i, hctx_idx;
2360         struct blk_mq_hw_ctx *hctx;
2361         struct blk_mq_ctx *ctx;
2362         struct blk_mq_tag_set *set = q->tag_set;
2363
2364         /*
2365          * Avoid others reading imcomplete hctx->cpumask through sysfs
2366          */
2367         mutex_lock(&q->sysfs_lock);
2368
2369         queue_for_each_hw_ctx(q, hctx, i) {
2370                 cpumask_clear(hctx->cpumask);
2371                 hctx->nr_ctx = 0;
2372         }
2373
2374         /*
2375          * Map software to hardware queues.
2376          *
2377          * If the cpu isn't present, the cpu is mapped to first hctx.
2378          */
2379         for_each_possible_cpu(i) {
2380                 hctx_idx = q->mq_map[i];
2381                 /* unmapped hw queue can be remapped after CPU topo changed */
2382                 if (!set->tags[hctx_idx] &&
2383                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2384                         /*
2385                          * If tags initialization fail for some hctx,
2386                          * that hctx won't be brought online.  In this
2387                          * case, remap the current ctx to hctx[0] which
2388                          * is guaranteed to always have tags allocated
2389                          */
2390                         q->mq_map[i] = 0;
2391                 }
2392
2393                 ctx = per_cpu_ptr(q->queue_ctx, i);
2394                 hctx = blk_mq_map_queue(q, i);
2395
2396                 cpumask_set_cpu(i, hctx->cpumask);
2397                 ctx->index_hw = hctx->nr_ctx;
2398                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2399         }
2400
2401         mutex_unlock(&q->sysfs_lock);
2402
2403         queue_for_each_hw_ctx(q, hctx, i) {
2404                 /*
2405                  * If no software queues are mapped to this hardware queue,
2406                  * disable it and free the request entries.
2407                  */
2408                 if (!hctx->nr_ctx) {
2409                         /* Never unmap queue 0.  We need it as a
2410                          * fallback in case of a new remap fails
2411                          * allocation
2412                          */
2413                         if (i && set->tags[i])
2414                                 blk_mq_free_map_and_requests(set, i);
2415
2416                         hctx->tags = NULL;
2417                         continue;
2418                 }
2419
2420                 hctx->tags = set->tags[i];
2421                 WARN_ON(!hctx->tags);
2422
2423                 /*
2424                  * Set the map size to the number of mapped software queues.
2425                  * This is more accurate and more efficient than looping
2426                  * over all possibly mapped software queues.
2427                  */
2428                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2429
2430                 /*
2431                  * Initialize batch roundrobin counts
2432                  */
2433                 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2434                                 cpu_online_mask);
2435                 if (hctx->next_cpu >= nr_cpu_ids)
2436                         hctx->next_cpu = cpumask_first(hctx->cpumask);
2437                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2438         }
2439 }
2440
2441 /*
2442  * Caller needs to ensure that we're either frozen/quiesced, or that
2443  * the queue isn't live yet.
2444  */
2445 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2446 {
2447         struct blk_mq_hw_ctx *hctx;
2448         int i;
2449
2450         queue_for_each_hw_ctx(q, hctx, i) {
2451                 if (shared) {
2452                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2453                                 atomic_inc(&q->shared_hctx_restart);
2454                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2455                 } else {
2456                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2457                                 atomic_dec(&q->shared_hctx_restart);
2458                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2459                 }
2460         }
2461 }
2462
2463 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2464                                         bool shared)
2465 {
2466         struct request_queue *q;
2467
2468         lockdep_assert_held(&set->tag_list_lock);
2469
2470         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2471                 blk_mq_freeze_queue(q);
2472                 queue_set_hctx_shared(q, shared);
2473                 blk_mq_unfreeze_queue(q);
2474         }
2475 }
2476
2477 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2478 {
2479         struct blk_mq_tag_set *set = q->tag_set;
2480
2481         mutex_lock(&set->tag_list_lock);
2482         list_del_rcu(&q->tag_set_list);
2483         INIT_LIST_HEAD(&q->tag_set_list);
2484         if (list_is_singular(&set->tag_list)) {
2485                 /* just transitioned to unshared */
2486                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2487                 /* update existing queue */
2488                 blk_mq_update_tag_set_depth(set, false);
2489         }
2490         mutex_unlock(&set->tag_list_lock);
2491
2492         synchronize_rcu();
2493 }
2494
2495 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2496                                      struct request_queue *q)
2497 {
2498         q->tag_set = set;
2499
2500         mutex_lock(&set->tag_list_lock);
2501
2502         /*
2503          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2504          */
2505         if (!list_empty(&set->tag_list) &&
2506             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2507                 set->flags |= BLK_MQ_F_TAG_SHARED;
2508                 /* update existing queue */
2509                 blk_mq_update_tag_set_depth(set, true);
2510         }
2511         if (set->flags & BLK_MQ_F_TAG_SHARED)
2512                 queue_set_hctx_shared(q, true);
2513         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2514
2515         mutex_unlock(&set->tag_list_lock);
2516 }
2517
2518 /*
2519  * It is the actual release handler for mq, but we do it from
2520  * request queue's release handler for avoiding use-after-free
2521  * and headache because q->mq_kobj shouldn't have been introduced,
2522  * but we can't group ctx/kctx kobj without it.
2523  */
2524 void blk_mq_release(struct request_queue *q)
2525 {
2526         struct blk_mq_hw_ctx *hctx;
2527         unsigned int i;
2528
2529         /* hctx kobj stays in hctx */
2530         queue_for_each_hw_ctx(q, hctx, i) {
2531                 if (!hctx)
2532                         continue;
2533                 kobject_put(&hctx->kobj);
2534         }
2535
2536         q->mq_map = NULL;
2537
2538         kfree(q->queue_hw_ctx);
2539
2540         /*
2541          * release .mq_kobj and sw queue's kobject now because
2542          * both share lifetime with request queue.
2543          */
2544         blk_mq_sysfs_deinit(q);
2545
2546         free_percpu(q->queue_ctx);
2547 }
2548
2549 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2550 {
2551         struct request_queue *uninit_q, *q;
2552
2553         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2554         if (!uninit_q)
2555                 return ERR_PTR(-ENOMEM);
2556
2557         q = blk_mq_init_allocated_queue(set, uninit_q);
2558         if (IS_ERR(q))
2559                 blk_cleanup_queue(uninit_q);
2560
2561         return q;
2562 }
2563 EXPORT_SYMBOL(blk_mq_init_queue);
2564
2565 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2566 {
2567         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2568
2569         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2570                            __alignof__(struct blk_mq_hw_ctx)) !=
2571                      sizeof(struct blk_mq_hw_ctx));
2572
2573         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2574                 hw_ctx_size += sizeof(struct srcu_struct);
2575
2576         return hw_ctx_size;
2577 }
2578
2579 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2580                                                 struct request_queue *q)
2581 {
2582         int i, j;
2583         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2584
2585         blk_mq_sysfs_unregister(q);
2586
2587         /* protect against switching io scheduler  */
2588         mutex_lock(&q->sysfs_lock);
2589         for (i = 0; i < set->nr_hw_queues; i++) {
2590                 int node;
2591
2592                 if (hctxs[i])
2593                         continue;
2594
2595                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2596                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2597                                         GFP_KERNEL, node);
2598                 if (!hctxs[i])
2599                         break;
2600
2601                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2602                                                 node)) {
2603                         kfree(hctxs[i]);
2604                         hctxs[i] = NULL;
2605                         break;
2606                 }
2607
2608                 atomic_set(&hctxs[i]->nr_active, 0);
2609                 hctxs[i]->numa_node = node;
2610                 hctxs[i]->queue_num = i;
2611
2612                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2613                         free_cpumask_var(hctxs[i]->cpumask);
2614                         kfree(hctxs[i]);
2615                         hctxs[i] = NULL;
2616                         break;
2617                 }
2618                 blk_mq_hctx_kobj_init(hctxs[i]);
2619         }
2620         for (j = i; j < q->nr_hw_queues; j++) {
2621                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2622
2623                 if (hctx) {
2624                         if (hctx->tags)
2625                                 blk_mq_free_map_and_requests(set, j);
2626                         blk_mq_exit_hctx(q, set, hctx, j);
2627                         kobject_put(&hctx->kobj);
2628                         hctxs[j] = NULL;
2629
2630                 }
2631         }
2632         q->nr_hw_queues = i;
2633         mutex_unlock(&q->sysfs_lock);
2634         blk_mq_sysfs_register(q);
2635 }
2636
2637 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2638                                                   struct request_queue *q)
2639 {
2640         /* mark the queue as mq asap */
2641         q->mq_ops = set->ops;
2642
2643         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2644                                              blk_mq_poll_stats_bkt,
2645                                              BLK_MQ_POLL_STATS_BKTS, q);
2646         if (!q->poll_cb)
2647                 goto err_exit;
2648
2649         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2650         if (!q->queue_ctx)
2651                 goto err_exit;
2652
2653         /* init q->mq_kobj and sw queues' kobjects */
2654         blk_mq_sysfs_init(q);
2655
2656         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2657                                                 GFP_KERNEL, set->numa_node);
2658         if (!q->queue_hw_ctx)
2659                 goto err_percpu;
2660
2661         q->mq_map = set->mq_map;
2662
2663         blk_mq_realloc_hw_ctxs(set, q);
2664         if (!q->nr_hw_queues)
2665                 goto err_hctxs;
2666
2667         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2668         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2669
2670         q->nr_queues = nr_cpu_ids;
2671
2672         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2673
2674         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2675                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2676
2677         q->sg_reserved_size = INT_MAX;
2678
2679         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2680         INIT_LIST_HEAD(&q->requeue_list);
2681         spin_lock_init(&q->requeue_lock);
2682
2683         blk_queue_make_request(q, blk_mq_make_request);
2684         if (q->mq_ops->poll)
2685                 q->poll_fn = blk_mq_poll;
2686
2687         /*
2688          * Do this after blk_queue_make_request() overrides it...
2689          */
2690         q->nr_requests = set->queue_depth;
2691
2692         /*
2693          * Default to classic polling
2694          */
2695         q->poll_nsec = -1;
2696
2697         if (set->ops->complete)
2698                 blk_queue_softirq_done(q, set->ops->complete);
2699
2700         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2701         blk_mq_add_queue_tag_set(set, q);
2702         blk_mq_map_swqueue(q);
2703
2704         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2705                 int ret;
2706
2707                 ret = blk_mq_sched_init(q);
2708                 if (ret)
2709                         return ERR_PTR(ret);
2710         }
2711
2712         return q;
2713
2714 err_hctxs:
2715         kfree(q->queue_hw_ctx);
2716 err_percpu:
2717         free_percpu(q->queue_ctx);
2718 err_exit:
2719         q->mq_ops = NULL;
2720         return ERR_PTR(-ENOMEM);
2721 }
2722 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2723
2724 void blk_mq_free_queue(struct request_queue *q)
2725 {
2726         struct blk_mq_tag_set   *set = q->tag_set;
2727
2728         blk_mq_del_queue_tag_set(q);
2729         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2730 }
2731
2732 /* Basically redo blk_mq_init_queue with queue frozen */
2733 static void blk_mq_queue_reinit(struct request_queue *q)
2734 {
2735         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2736
2737         blk_mq_debugfs_unregister_hctxs(q);
2738         blk_mq_sysfs_unregister(q);
2739
2740         /*
2741          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2742          * we should change hctx numa_node according to the new topology (this
2743          * involves freeing and re-allocating memory, worth doing?)
2744          */
2745         blk_mq_map_swqueue(q);
2746
2747         blk_mq_sysfs_register(q);
2748         blk_mq_debugfs_register_hctxs(q);
2749 }
2750
2751 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2752 {
2753         int i;
2754
2755         for (i = 0; i < set->nr_hw_queues; i++)
2756                 if (!__blk_mq_alloc_rq_map(set, i))
2757                         goto out_unwind;
2758
2759         return 0;
2760
2761 out_unwind:
2762         while (--i >= 0)
2763                 blk_mq_free_rq_map(set->tags[i]);
2764
2765         return -ENOMEM;
2766 }
2767
2768 /*
2769  * Allocate the request maps associated with this tag_set. Note that this
2770  * may reduce the depth asked for, if memory is tight. set->queue_depth
2771  * will be updated to reflect the allocated depth.
2772  */
2773 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2774 {
2775         unsigned int depth;
2776         int err;
2777
2778         depth = set->queue_depth;
2779         do {
2780                 err = __blk_mq_alloc_rq_maps(set);
2781                 if (!err)
2782                         break;
2783
2784                 set->queue_depth >>= 1;
2785                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2786                         err = -ENOMEM;
2787                         break;
2788                 }
2789         } while (set->queue_depth);
2790
2791         if (!set->queue_depth || err) {
2792                 pr_err("blk-mq: failed to allocate request map\n");
2793                 return -ENOMEM;
2794         }
2795
2796         if (depth != set->queue_depth)
2797                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2798                                                 depth, set->queue_depth);
2799
2800         return 0;
2801 }
2802
2803 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2804 {
2805         if (set->ops->map_queues) {
2806                 int cpu;
2807                 /*
2808                  * transport .map_queues is usually done in the following
2809                  * way:
2810                  *
2811                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2812                  *      mask = get_cpu_mask(queue)
2813                  *      for_each_cpu(cpu, mask)
2814                  *              set->mq_map[cpu] = queue;
2815                  * }
2816                  *
2817                  * When we need to remap, the table has to be cleared for
2818                  * killing stale mapping since one CPU may not be mapped
2819                  * to any hw queue.
2820                  */
2821                 for_each_possible_cpu(cpu)
2822                         set->mq_map[cpu] = 0;
2823
2824                 return set->ops->map_queues(set);
2825         } else
2826                 return blk_mq_map_queues(set);
2827 }
2828
2829 /*
2830  * Alloc a tag set to be associated with one or more request queues.
2831  * May fail with EINVAL for various error conditions. May adjust the
2832  * requested depth down, if if it too large. In that case, the set
2833  * value will be stored in set->queue_depth.
2834  */
2835 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2836 {
2837         int ret;
2838
2839         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2840
2841         if (!set->nr_hw_queues)
2842                 return -EINVAL;
2843         if (!set->queue_depth)
2844                 return -EINVAL;
2845         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2846                 return -EINVAL;
2847
2848         if (!set->ops->queue_rq)
2849                 return -EINVAL;
2850
2851         if (!set->ops->get_budget ^ !set->ops->put_budget)
2852                 return -EINVAL;
2853
2854         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2855                 pr_info("blk-mq: reduced tag depth to %u\n",
2856                         BLK_MQ_MAX_DEPTH);
2857                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2858         }
2859
2860         /*
2861          * If a crashdump is active, then we are potentially in a very
2862          * memory constrained environment. Limit us to 1 queue and
2863          * 64 tags to prevent using too much memory.
2864          */
2865         if (is_kdump_kernel()) {
2866                 set->nr_hw_queues = 1;
2867                 set->queue_depth = min(64U, set->queue_depth);
2868         }
2869         /*
2870          * There is no use for more h/w queues than cpus.
2871          */
2872         if (set->nr_hw_queues > nr_cpu_ids)
2873                 set->nr_hw_queues = nr_cpu_ids;
2874
2875         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2876                                  GFP_KERNEL, set->numa_node);
2877         if (!set->tags)
2878                 return -ENOMEM;
2879
2880         ret = -ENOMEM;
2881         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2882                         GFP_KERNEL, set->numa_node);
2883         if (!set->mq_map)
2884                 goto out_free_tags;
2885
2886         ret = blk_mq_update_queue_map(set);
2887         if (ret)
2888                 goto out_free_mq_map;
2889
2890         ret = blk_mq_alloc_rq_maps(set);
2891         if (ret)
2892                 goto out_free_mq_map;
2893
2894         mutex_init(&set->tag_list_lock);
2895         INIT_LIST_HEAD(&set->tag_list);
2896
2897         return 0;
2898
2899 out_free_mq_map:
2900         kfree(set->mq_map);
2901         set->mq_map = NULL;
2902 out_free_tags:
2903         kfree(set->tags);
2904         set->tags = NULL;
2905         return ret;
2906 }
2907 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2908
2909 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2910 {
2911         int i;
2912
2913         for (i = 0; i < nr_cpu_ids; i++)
2914                 blk_mq_free_map_and_requests(set, i);
2915
2916         kfree(set->mq_map);
2917         set->mq_map = NULL;
2918
2919         kfree(set->tags);
2920         set->tags = NULL;
2921 }
2922 EXPORT_SYMBOL(blk_mq_free_tag_set);
2923
2924 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2925 {
2926         struct blk_mq_tag_set *set = q->tag_set;
2927         struct blk_mq_hw_ctx *hctx;
2928         int i, ret;
2929
2930         if (!set)
2931                 return -EINVAL;
2932
2933         blk_mq_freeze_queue(q);
2934         blk_mq_quiesce_queue(q);
2935
2936         ret = 0;
2937         queue_for_each_hw_ctx(q, hctx, i) {
2938                 if (!hctx->tags)
2939                         continue;
2940                 /*
2941                  * If we're using an MQ scheduler, just update the scheduler
2942                  * queue depth. This is similar to what the old code would do.
2943                  */
2944                 if (!hctx->sched_tags) {
2945                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2946                                                         false);
2947                 } else {
2948                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2949                                                         nr, true);
2950                 }
2951                 if (ret)
2952                         break;
2953         }
2954
2955         if (!ret)
2956                 q->nr_requests = nr;
2957
2958         blk_mq_unquiesce_queue(q);
2959         blk_mq_unfreeze_queue(q);
2960
2961         return ret;
2962 }
2963
2964 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2965                                                         int nr_hw_queues)
2966 {
2967         struct request_queue *q;
2968
2969         lockdep_assert_held(&set->tag_list_lock);
2970
2971         if (nr_hw_queues > nr_cpu_ids)
2972                 nr_hw_queues = nr_cpu_ids;
2973         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2974                 return;
2975
2976         list_for_each_entry(q, &set->tag_list, tag_set_list)
2977                 blk_mq_freeze_queue(q);
2978
2979         set->nr_hw_queues = nr_hw_queues;
2980         blk_mq_update_queue_map(set);
2981         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2982                 blk_mq_realloc_hw_ctxs(set, q);
2983                 blk_mq_queue_reinit(q);
2984         }
2985
2986         list_for_each_entry(q, &set->tag_list, tag_set_list)
2987                 blk_mq_unfreeze_queue(q);
2988 }
2989
2990 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2991 {
2992         mutex_lock(&set->tag_list_lock);
2993         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2994         mutex_unlock(&set->tag_list_lock);
2995 }
2996 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2997
2998 /* Enable polling stats and return whether they were already enabled. */
2999 static bool blk_poll_stats_enable(struct request_queue *q)
3000 {
3001         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3002             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3003                 return true;
3004         blk_stat_add_callback(q, q->poll_cb);
3005         return false;
3006 }
3007
3008 static void blk_mq_poll_stats_start(struct request_queue *q)
3009 {
3010         /*
3011          * We don't arm the callback if polling stats are not enabled or the
3012          * callback is already active.
3013          */
3014         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3015             blk_stat_is_active(q->poll_cb))
3016                 return;
3017
3018         blk_stat_activate_msecs(q->poll_cb, 100);
3019 }
3020
3021 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3022 {
3023         struct request_queue *q = cb->data;
3024         int bucket;
3025
3026         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3027                 if (cb->stat[bucket].nr_samples)
3028                         q->poll_stat[bucket] = cb->stat[bucket];
3029         }
3030 }
3031
3032 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3033                                        struct blk_mq_hw_ctx *hctx,
3034                                        struct request *rq)
3035 {
3036         unsigned long ret = 0;
3037         int bucket;
3038
3039         /*
3040          * If stats collection isn't on, don't sleep but turn it on for
3041          * future users
3042          */
3043         if (!blk_poll_stats_enable(q))
3044                 return 0;
3045
3046         /*
3047          * As an optimistic guess, use half of the mean service time
3048          * for this type of request. We can (and should) make this smarter.
3049          * For instance, if the completion latencies are tight, we can
3050          * get closer than just half the mean. This is especially
3051          * important on devices where the completion latencies are longer
3052          * than ~10 usec. We do use the stats for the relevant IO size
3053          * if available which does lead to better estimates.
3054          */
3055         bucket = blk_mq_poll_stats_bkt(rq);
3056         if (bucket < 0)
3057                 return ret;
3058
3059         if (q->poll_stat[bucket].nr_samples)
3060                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3061
3062         return ret;
3063 }
3064
3065 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3066                                      struct blk_mq_hw_ctx *hctx,
3067                                      struct request *rq)
3068 {
3069         struct hrtimer_sleeper hs;
3070         enum hrtimer_mode mode;
3071         unsigned int nsecs;
3072         ktime_t kt;
3073
3074         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3075                 return false;
3076
3077         /*
3078          * poll_nsec can be:
3079          *
3080          * -1:  don't ever hybrid sleep
3081          *  0:  use half of prev avg
3082          * >0:  use this specific value
3083          */
3084         if (q->poll_nsec == -1)
3085                 return false;
3086         else if (q->poll_nsec > 0)
3087                 nsecs = q->poll_nsec;
3088         else
3089                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3090
3091         if (!nsecs)
3092                 return false;
3093
3094         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3095
3096         /*
3097          * This will be replaced with the stats tracking code, using
3098          * 'avg_completion_time / 2' as the pre-sleep target.
3099          */
3100         kt = nsecs;
3101
3102         mode = HRTIMER_MODE_REL;
3103         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3104         hrtimer_set_expires(&hs.timer, kt);
3105
3106         hrtimer_init_sleeper(&hs, current);
3107         do {
3108                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3109                         break;
3110                 set_current_state(TASK_UNINTERRUPTIBLE);
3111                 hrtimer_start_expires(&hs.timer, mode);
3112                 if (hs.task)
3113                         io_schedule();
3114                 hrtimer_cancel(&hs.timer);
3115                 mode = HRTIMER_MODE_ABS;
3116         } while (hs.task && !signal_pending(current));
3117
3118         __set_current_state(TASK_RUNNING);
3119         destroy_hrtimer_on_stack(&hs.timer);
3120         return true;
3121 }
3122
3123 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3124 {
3125         struct request_queue *q = hctx->queue;
3126         long state;
3127
3128         /*
3129          * If we sleep, have the caller restart the poll loop to reset
3130          * the state. Like for the other success return cases, the
3131          * caller is responsible for checking if the IO completed. If
3132          * the IO isn't complete, we'll get called again and will go
3133          * straight to the busy poll loop.
3134          */
3135         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3136                 return true;
3137
3138         hctx->poll_considered++;
3139
3140         state = current->state;
3141         while (!need_resched()) {
3142                 int ret;
3143
3144                 hctx->poll_invoked++;
3145
3146                 ret = q->mq_ops->poll(hctx, rq->tag);
3147                 if (ret > 0) {
3148                         hctx->poll_success++;
3149                         set_current_state(TASK_RUNNING);
3150                         return true;
3151                 }
3152
3153                 if (signal_pending_state(state, current))
3154                         set_current_state(TASK_RUNNING);
3155
3156                 if (current->state == TASK_RUNNING)
3157                         return true;
3158                 if (ret < 0)
3159                         break;
3160                 cpu_relax();
3161         }
3162
3163         __set_current_state(TASK_RUNNING);
3164         return false;
3165 }
3166
3167 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3168 {
3169         struct blk_mq_hw_ctx *hctx;
3170         struct request *rq;
3171
3172         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3173                 return false;
3174
3175         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3176         if (!blk_qc_t_is_internal(cookie))
3177                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3178         else {
3179                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3180                 /*
3181                  * With scheduling, if the request has completed, we'll
3182                  * get a NULL return here, as we clear the sched tag when
3183                  * that happens. The request still remains valid, like always,
3184                  * so we should be safe with just the NULL check.
3185                  */
3186                 if (!rq)
3187                         return false;
3188         }
3189
3190         return __blk_mq_poll(hctx, rq);
3191 }
3192
3193 static int __init blk_mq_init(void)
3194 {
3195         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3196                                 blk_mq_hctx_notify_dead);
3197         return 0;
3198 }
3199 subsys_initcall(blk_mq_init);