]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/acpi/processor_idle.c
Merge tag 'microblaze-v5.5-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[linux.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 safe_halt();
112                 local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165                                        struct acpi_processor_cx *cx,
166                                        int broadcast)
167 {
168         int state = cx - pr->power.states;
169
170         if (state >= pr->power.timer_broadcast_on_state) {
171                 if (broadcast)
172                         tick_broadcast_enter();
173                 else
174                         tick_broadcast_exit();
175         }
176 }
177
178 #else
179
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181                                    struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184                                        struct acpi_processor_cx *cx,
185                                        int broadcast)
186 {
187 }
188
189 #endif
190
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194         switch (boot_cpu_data.x86_vendor) {
195         case X86_VENDOR_HYGON:
196         case X86_VENDOR_AMD:
197         case X86_VENDOR_INTEL:
198         case X86_VENDOR_CENTAUR:
199         case X86_VENDOR_ZHAOXIN:
200                 /*
201                  * AMD Fam10h TSC will tick in all
202                  * C/P/S0/S1 states when this bit is set.
203                  */
204                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205                         return;
206
207                 /*FALL THROUGH*/
208         default:
209                 /* TSC could halt in idle, so notify users */
210                 if (state > ACPI_STATE_C1)
211                         mark_tsc_unstable("TSC halts in idle");
212         }
213 }
214 #else
215 static void tsc_check_state(int state) { return; }
216 #endif
217
218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220
221         if (!pr->pblk)
222                 return -ENODEV;
223
224         /* if info is obtained from pblk/fadt, type equals state */
225         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227
228 #ifndef CONFIG_HOTPLUG_CPU
229         /*
230          * Check for P_LVL2_UP flag before entering C2 and above on
231          * an SMP system.
232          */
233         if ((num_online_cpus() > 1) &&
234             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235                 return -ENODEV;
236 #endif
237
238         /* determine C2 and C3 address from pblk */
239         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241
242         /* determine latencies from FADT */
243         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245
246         /*
247          * FADT specified C2 latency must be less than or equal to
248          * 100 microseconds.
249          */
250         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
252                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
253                 /* invalidate C2 */
254                 pr->power.states[ACPI_STATE_C2].address = 0;
255         }
256
257         /*
258          * FADT supplied C3 latency must be less than or equal to
259          * 1000 microseconds.
260          */
261         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
264                 /* invalidate C3 */
265                 pr->power.states[ACPI_STATE_C3].address = 0;
266         }
267
268         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269                           "lvl2[0x%08x] lvl3[0x%08x]\n",
270                           pr->power.states[ACPI_STATE_C2].address,
271                           pr->power.states[ACPI_STATE_C3].address));
272
273         snprintf(pr->power.states[ACPI_STATE_C2].desc,
274                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
275                          pr->power.states[ACPI_STATE_C2].address);
276         snprintf(pr->power.states[ACPI_STATE_C3].desc,
277                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
278                          pr->power.states[ACPI_STATE_C3].address);
279
280         return 0;
281 }
282
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285         if (!pr->power.states[ACPI_STATE_C1].valid) {
286                 /* set the first C-State to C1 */
287                 /* all processors need to support C1 */
288                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289                 pr->power.states[ACPI_STATE_C1].valid = 1;
290                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291
292                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
293                          ACPI_CX_DESC_LEN, "ACPI HLT");
294         }
295         /* the C0 state only exists as a filler in our array */
296         pr->power.states[ACPI_STATE_C0].valid = 1;
297         return 0;
298 }
299
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
301 {
302         acpi_status status;
303         u64 count;
304         int current_count;
305         int i, ret = 0;
306         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
307         union acpi_object *cst;
308
309         if (nocst)
310                 return -ENODEV;
311
312         current_count = 0;
313
314         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
315         if (ACPI_FAILURE(status)) {
316                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
317                 return -ENODEV;
318         }
319
320         cst = buffer.pointer;
321
322         /* There must be at least 2 elements */
323         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
324                 pr_err("not enough elements in _CST\n");
325                 ret = -EFAULT;
326                 goto end;
327         }
328
329         count = cst->package.elements[0].integer.value;
330
331         /* Validate number of power states. */
332         if (count < 1 || count != cst->package.count - 1) {
333                 pr_err("count given by _CST is not valid\n");
334                 ret = -EFAULT;
335                 goto end;
336         }
337
338         /* Tell driver that at least _CST is supported. */
339         pr->flags.has_cst = 1;
340
341         for (i = 1; i <= count; i++) {
342                 union acpi_object *element;
343                 union acpi_object *obj;
344                 struct acpi_power_register *reg;
345                 struct acpi_processor_cx cx;
346
347                 memset(&cx, 0, sizeof(cx));
348
349                 element = &(cst->package.elements[i]);
350                 if (element->type != ACPI_TYPE_PACKAGE)
351                         continue;
352
353                 if (element->package.count != 4)
354                         continue;
355
356                 obj = &(element->package.elements[0]);
357
358                 if (obj->type != ACPI_TYPE_BUFFER)
359                         continue;
360
361                 reg = (struct acpi_power_register *)obj->buffer.pointer;
362
363                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
364                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
365                         continue;
366
367                 /* There should be an easy way to extract an integer... */
368                 obj = &(element->package.elements[1]);
369                 if (obj->type != ACPI_TYPE_INTEGER)
370                         continue;
371
372                 cx.type = obj->integer.value;
373                 /*
374                  * Some buggy BIOSes won't list C1 in _CST -
375                  * Let acpi_processor_get_power_info_default() handle them later
376                  */
377                 if (i == 1 && cx.type != ACPI_STATE_C1)
378                         current_count++;
379
380                 cx.address = reg->address;
381                 cx.index = current_count + 1;
382
383                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
384                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
385                         if (acpi_processor_ffh_cstate_probe
386                                         (pr->id, &cx, reg) == 0) {
387                                 cx.entry_method = ACPI_CSTATE_FFH;
388                         } else if (cx.type == ACPI_STATE_C1) {
389                                 /*
390                                  * C1 is a special case where FIXED_HARDWARE
391                                  * can be handled in non-MWAIT way as well.
392                                  * In that case, save this _CST entry info.
393                                  * Otherwise, ignore this info and continue.
394                                  */
395                                 cx.entry_method = ACPI_CSTATE_HALT;
396                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
397                         } else {
398                                 continue;
399                         }
400                         if (cx.type == ACPI_STATE_C1 &&
401                             (boot_option_idle_override == IDLE_NOMWAIT)) {
402                                 /*
403                                  * In most cases the C1 space_id obtained from
404                                  * _CST object is FIXED_HARDWARE access mode.
405                                  * But when the option of idle=halt is added,
406                                  * the entry_method type should be changed from
407                                  * CSTATE_FFH to CSTATE_HALT.
408                                  * When the option of idle=nomwait is added,
409                                  * the C1 entry_method type should be
410                                  * CSTATE_HALT.
411                                  */
412                                 cx.entry_method = ACPI_CSTATE_HALT;
413                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
414                         }
415                 } else {
416                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
417                                  cx.address);
418                 }
419
420                 if (cx.type == ACPI_STATE_C1) {
421                         cx.valid = 1;
422                 }
423
424                 obj = &(element->package.elements[2]);
425                 if (obj->type != ACPI_TYPE_INTEGER)
426                         continue;
427
428                 cx.latency = obj->integer.value;
429
430                 obj = &(element->package.elements[3]);
431                 if (obj->type != ACPI_TYPE_INTEGER)
432                         continue;
433
434                 current_count++;
435                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
436
437                 /*
438                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
439                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
440                  */
441                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
442                         pr_warn("Limiting number of power states to max (%d)\n",
443                                 ACPI_PROCESSOR_MAX_POWER);
444                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
445                         break;
446                 }
447         }
448
449         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
450                           current_count));
451
452         /* Validate number of power states discovered */
453         if (current_count < 2)
454                 ret = -EFAULT;
455
456       end:
457         kfree(buffer.pointer);
458
459         return ret;
460 }
461
462 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
463                                            struct acpi_processor_cx *cx)
464 {
465         static int bm_check_flag = -1;
466         static int bm_control_flag = -1;
467
468
469         if (!cx->address)
470                 return;
471
472         /*
473          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
474          * DMA transfers are used by any ISA device to avoid livelock.
475          * Note that we could disable Type-F DMA (as recommended by
476          * the erratum), but this is known to disrupt certain ISA
477          * devices thus we take the conservative approach.
478          */
479         else if (errata.piix4.fdma) {
480                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
481                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
482                 return;
483         }
484
485         /* All the logic here assumes flags.bm_check is same across all CPUs */
486         if (bm_check_flag == -1) {
487                 /* Determine whether bm_check is needed based on CPU  */
488                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
489                 bm_check_flag = pr->flags.bm_check;
490                 bm_control_flag = pr->flags.bm_control;
491         } else {
492                 pr->flags.bm_check = bm_check_flag;
493                 pr->flags.bm_control = bm_control_flag;
494         }
495
496         if (pr->flags.bm_check) {
497                 if (!pr->flags.bm_control) {
498                         if (pr->flags.has_cst != 1) {
499                                 /* bus mastering control is necessary */
500                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
501                                         "C3 support requires BM control\n"));
502                                 return;
503                         } else {
504                                 /* Here we enter C3 without bus mastering */
505                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
506                                         "C3 support without BM control\n"));
507                         }
508                 }
509         } else {
510                 /*
511                  * WBINVD should be set in fadt, for C3 state to be
512                  * supported on when bm_check is not required.
513                  */
514                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
515                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
516                                           "Cache invalidation should work properly"
517                                           " for C3 to be enabled on SMP systems\n"));
518                         return;
519                 }
520         }
521
522         /*
523          * Otherwise we've met all of our C3 requirements.
524          * Normalize the C3 latency to expidite policy.  Enable
525          * checking of bus mastering status (bm_check) so we can
526          * use this in our C3 policy
527          */
528         cx->valid = 1;
529
530         /*
531          * On older chipsets, BM_RLD needs to be set
532          * in order for Bus Master activity to wake the
533          * system from C3.  Newer chipsets handle DMA
534          * during C3 automatically and BM_RLD is a NOP.
535          * In either case, the proper way to
536          * handle BM_RLD is to set it and leave it set.
537          */
538         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
539
540         return;
541 }
542
543 static int acpi_processor_power_verify(struct acpi_processor *pr)
544 {
545         unsigned int i;
546         unsigned int working = 0;
547
548         pr->power.timer_broadcast_on_state = INT_MAX;
549
550         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
551                 struct acpi_processor_cx *cx = &pr->power.states[i];
552
553                 switch (cx->type) {
554                 case ACPI_STATE_C1:
555                         cx->valid = 1;
556                         break;
557
558                 case ACPI_STATE_C2:
559                         if (!cx->address)
560                                 break;
561                         cx->valid = 1;
562                         break;
563
564                 case ACPI_STATE_C3:
565                         acpi_processor_power_verify_c3(pr, cx);
566                         break;
567                 }
568                 if (!cx->valid)
569                         continue;
570
571                 lapic_timer_check_state(i, pr, cx);
572                 tsc_check_state(cx->type);
573                 working++;
574         }
575
576         lapic_timer_propagate_broadcast(pr);
577
578         return (working);
579 }
580
581 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
582 {
583         unsigned int i;
584         int result;
585
586
587         /* NOTE: the idle thread may not be running while calling
588          * this function */
589
590         /* Zero initialize all the C-states info. */
591         memset(pr->power.states, 0, sizeof(pr->power.states));
592
593         result = acpi_processor_get_power_info_cst(pr);
594         if (result == -ENODEV)
595                 result = acpi_processor_get_power_info_fadt(pr);
596
597         if (result)
598                 return result;
599
600         acpi_processor_get_power_info_default(pr);
601
602         pr->power.count = acpi_processor_power_verify(pr);
603
604         /*
605          * if one state of type C2 or C3 is available, mark this
606          * CPU as being "idle manageable"
607          */
608         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
609                 if (pr->power.states[i].valid) {
610                         pr->power.count = i;
611                         if (pr->power.states[i].type >= ACPI_STATE_C2)
612                                 pr->flags.power = 1;
613                 }
614         }
615
616         return 0;
617 }
618
619 /**
620  * acpi_idle_bm_check - checks if bus master activity was detected
621  */
622 static int acpi_idle_bm_check(void)
623 {
624         u32 bm_status = 0;
625
626         if (bm_check_disable)
627                 return 0;
628
629         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
630         if (bm_status)
631                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
632         /*
633          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
634          * the true state of bus mastering activity; forcing us to
635          * manually check the BMIDEA bit of each IDE channel.
636          */
637         else if (errata.piix4.bmisx) {
638                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
639                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
640                         bm_status = 1;
641         }
642         return bm_status;
643 }
644
645 static void wait_for_freeze(void)
646 {
647 #ifdef  CONFIG_X86
648         /* No delay is needed if we are in guest */
649         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
650                 return;
651 #endif
652         /* Dummy wait op - must do something useless after P_LVL2 read
653            because chipsets cannot guarantee that STPCLK# signal
654            gets asserted in time to freeze execution properly. */
655         inl(acpi_gbl_FADT.xpm_timer_block.address);
656 }
657
658 /**
659  * acpi_idle_do_entry - enter idle state using the appropriate method
660  * @cx: cstate data
661  *
662  * Caller disables interrupt before call and enables interrupt after return.
663  */
664 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
665 {
666         if (cx->entry_method == ACPI_CSTATE_FFH) {
667                 /* Call into architectural FFH based C-state */
668                 acpi_processor_ffh_cstate_enter(cx);
669         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
670                 acpi_safe_halt();
671         } else {
672                 /* IO port based C-state */
673                 inb(cx->address);
674                 wait_for_freeze();
675         }
676 }
677
678 /**
679  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
680  * @dev: the target CPU
681  * @index: the index of suggested state
682  */
683 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
684 {
685         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
686
687         ACPI_FLUSH_CPU_CACHE();
688
689         while (1) {
690
691                 if (cx->entry_method == ACPI_CSTATE_HALT)
692                         safe_halt();
693                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
694                         inb(cx->address);
695                         wait_for_freeze();
696                 } else
697                         return -ENODEV;
698         }
699
700         /* Never reached */
701         return 0;
702 }
703
704 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
705 {
706         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
707                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
708 }
709
710 static int c3_cpu_count;
711 static DEFINE_RAW_SPINLOCK(c3_lock);
712
713 /**
714  * acpi_idle_enter_bm - enters C3 with proper BM handling
715  * @pr: Target processor
716  * @cx: Target state context
717  * @timer_bc: Whether or not to change timer mode to broadcast
718  */
719 static void acpi_idle_enter_bm(struct acpi_processor *pr,
720                                struct acpi_processor_cx *cx, bool timer_bc)
721 {
722         acpi_unlazy_tlb(smp_processor_id());
723
724         /*
725          * Must be done before busmaster disable as we might need to
726          * access HPET !
727          */
728         if (timer_bc)
729                 lapic_timer_state_broadcast(pr, cx, 1);
730
731         /*
732          * disable bus master
733          * bm_check implies we need ARB_DIS
734          * bm_control implies whether we can do ARB_DIS
735          *
736          * That leaves a case where bm_check is set and bm_control is
737          * not set. In that case we cannot do much, we enter C3
738          * without doing anything.
739          */
740         if (pr->flags.bm_control) {
741                 raw_spin_lock(&c3_lock);
742                 c3_cpu_count++;
743                 /* Disable bus master arbitration when all CPUs are in C3 */
744                 if (c3_cpu_count == num_online_cpus())
745                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
746                 raw_spin_unlock(&c3_lock);
747         }
748
749         acpi_idle_do_entry(cx);
750
751         /* Re-enable bus master arbitration */
752         if (pr->flags.bm_control) {
753                 raw_spin_lock(&c3_lock);
754                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
755                 c3_cpu_count--;
756                 raw_spin_unlock(&c3_lock);
757         }
758
759         if (timer_bc)
760                 lapic_timer_state_broadcast(pr, cx, 0);
761 }
762
763 static int acpi_idle_enter(struct cpuidle_device *dev,
764                            struct cpuidle_driver *drv, int index)
765 {
766         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
767         struct acpi_processor *pr;
768
769         pr = __this_cpu_read(processors);
770         if (unlikely(!pr))
771                 return -EINVAL;
772
773         if (cx->type != ACPI_STATE_C1) {
774                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
775                         index = ACPI_IDLE_STATE_START;
776                         cx = per_cpu(acpi_cstate[index], dev->cpu);
777                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
778                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
779                                 acpi_idle_enter_bm(pr, cx, true);
780                                 return index;
781                         } else if (drv->safe_state_index >= 0) {
782                                 index = drv->safe_state_index;
783                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
784                         } else {
785                                 acpi_safe_halt();
786                                 return -EBUSY;
787                         }
788                 }
789         }
790
791         lapic_timer_state_broadcast(pr, cx, 1);
792
793         if (cx->type == ACPI_STATE_C3)
794                 ACPI_FLUSH_CPU_CACHE();
795
796         acpi_idle_do_entry(cx);
797
798         lapic_timer_state_broadcast(pr, cx, 0);
799
800         return index;
801 }
802
803 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
804                                    struct cpuidle_driver *drv, int index)
805 {
806         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
807
808         if (cx->type == ACPI_STATE_C3) {
809                 struct acpi_processor *pr = __this_cpu_read(processors);
810
811                 if (unlikely(!pr))
812                         return;
813
814                 if (pr->flags.bm_check) {
815                         acpi_idle_enter_bm(pr, cx, false);
816                         return;
817                 } else {
818                         ACPI_FLUSH_CPU_CACHE();
819                 }
820         }
821         acpi_idle_do_entry(cx);
822 }
823
824 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
825                                            struct cpuidle_device *dev)
826 {
827         int i, count = ACPI_IDLE_STATE_START;
828         struct acpi_processor_cx *cx;
829
830         if (max_cstate == 0)
831                 max_cstate = 1;
832
833         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
834                 cx = &pr->power.states[i];
835
836                 if (!cx->valid)
837                         continue;
838
839                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
840
841                 count++;
842                 if (count == CPUIDLE_STATE_MAX)
843                         break;
844         }
845
846         if (!count)
847                 return -EINVAL;
848
849         return 0;
850 }
851
852 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
853 {
854         int i, count;
855         struct acpi_processor_cx *cx;
856         struct cpuidle_state *state;
857         struct cpuidle_driver *drv = &acpi_idle_driver;
858
859         if (max_cstate == 0)
860                 max_cstate = 1;
861
862         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
863                 cpuidle_poll_state_init(drv);
864                 count = 1;
865         } else {
866                 count = 0;
867         }
868
869         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
870                 cx = &pr->power.states[i];
871
872                 if (!cx->valid)
873                         continue;
874
875                 state = &drv->states[count];
876                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
877                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
878                 state->exit_latency = cx->latency;
879                 state->target_residency = cx->latency * latency_factor;
880                 state->enter = acpi_idle_enter;
881
882                 state->flags = 0;
883                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
884                         state->enter_dead = acpi_idle_play_dead;
885                         drv->safe_state_index = count;
886                 }
887                 /*
888                  * Halt-induced C1 is not good for ->enter_s2idle, because it
889                  * re-enables interrupts on exit.  Moreover, C1 is generally not
890                  * particularly interesting from the suspend-to-idle angle, so
891                  * avoid C1 and the situations in which we may need to fall back
892                  * to it altogether.
893                  */
894                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
895                         state->enter_s2idle = acpi_idle_enter_s2idle;
896
897                 count++;
898                 if (count == CPUIDLE_STATE_MAX)
899                         break;
900         }
901
902         drv->state_count = count;
903
904         if (!count)
905                 return -EINVAL;
906
907         return 0;
908 }
909
910 static inline void acpi_processor_cstate_first_run_checks(void)
911 {
912         acpi_status status;
913         static int first_run;
914
915         if (first_run)
916                 return;
917         dmi_check_system(processor_power_dmi_table);
918         max_cstate = acpi_processor_cstate_check(max_cstate);
919         if (max_cstate < ACPI_C_STATES_MAX)
920                 pr_notice("ACPI: processor limited to max C-state %d\n",
921                           max_cstate);
922         first_run++;
923
924         if (acpi_gbl_FADT.cst_control && !nocst) {
925                 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
926                                             acpi_gbl_FADT.cst_control, 8);
927                 if (ACPI_FAILURE(status))
928                         ACPI_EXCEPTION((AE_INFO, status,
929                                         "Notifying BIOS of _CST ability failed"));
930         }
931 }
932 #else
933
934 static inline int disabled_by_idle_boot_param(void) { return 0; }
935 static inline void acpi_processor_cstate_first_run_checks(void) { }
936 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
937 {
938         return -ENODEV;
939 }
940
941 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
942                                            struct cpuidle_device *dev)
943 {
944         return -EINVAL;
945 }
946
947 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
948 {
949         return -EINVAL;
950 }
951
952 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
953
954 struct acpi_lpi_states_array {
955         unsigned int size;
956         unsigned int composite_states_size;
957         struct acpi_lpi_state *entries;
958         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
959 };
960
961 static int obj_get_integer(union acpi_object *obj, u32 *value)
962 {
963         if (obj->type != ACPI_TYPE_INTEGER)
964                 return -EINVAL;
965
966         *value = obj->integer.value;
967         return 0;
968 }
969
970 static int acpi_processor_evaluate_lpi(acpi_handle handle,
971                                        struct acpi_lpi_states_array *info)
972 {
973         acpi_status status;
974         int ret = 0;
975         int pkg_count, state_idx = 1, loop;
976         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
977         union acpi_object *lpi_data;
978         struct acpi_lpi_state *lpi_state;
979
980         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
981         if (ACPI_FAILURE(status)) {
982                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
983                 return -ENODEV;
984         }
985
986         lpi_data = buffer.pointer;
987
988         /* There must be at least 4 elements = 3 elements + 1 package */
989         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
990             lpi_data->package.count < 4) {
991                 pr_debug("not enough elements in _LPI\n");
992                 ret = -ENODATA;
993                 goto end;
994         }
995
996         pkg_count = lpi_data->package.elements[2].integer.value;
997
998         /* Validate number of power states. */
999         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
1000                 pr_debug("count given by _LPI is not valid\n");
1001                 ret = -ENODATA;
1002                 goto end;
1003         }
1004
1005         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1006         if (!lpi_state) {
1007                 ret = -ENOMEM;
1008                 goto end;
1009         }
1010
1011         info->size = pkg_count;
1012         info->entries = lpi_state;
1013
1014         /* LPI States start at index 3 */
1015         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1016                 union acpi_object *element, *pkg_elem, *obj;
1017
1018                 element = &lpi_data->package.elements[loop];
1019                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1020                         continue;
1021
1022                 pkg_elem = element->package.elements;
1023
1024                 obj = pkg_elem + 6;
1025                 if (obj->type == ACPI_TYPE_BUFFER) {
1026                         struct acpi_power_register *reg;
1027
1028                         reg = (struct acpi_power_register *)obj->buffer.pointer;
1029                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1030                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1031                                 continue;
1032
1033                         lpi_state->address = reg->address;
1034                         lpi_state->entry_method =
1035                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1036                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1037                 } else if (obj->type == ACPI_TYPE_INTEGER) {
1038                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1039                         lpi_state->address = obj->integer.value;
1040                 } else {
1041                         continue;
1042                 }
1043
1044                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1045
1046                 obj = pkg_elem + 9;
1047                 if (obj->type == ACPI_TYPE_STRING)
1048                         strlcpy(lpi_state->desc, obj->string.pointer,
1049                                 ACPI_CX_DESC_LEN);
1050
1051                 lpi_state->index = state_idx;
1052                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1053                         pr_debug("No min. residency found, assuming 10 us\n");
1054                         lpi_state->min_residency = 10;
1055                 }
1056
1057                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1058                         pr_debug("No wakeup residency found, assuming 10 us\n");
1059                         lpi_state->wake_latency = 10;
1060                 }
1061
1062                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1063                         lpi_state->flags = 0;
1064
1065                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1066                         lpi_state->arch_flags = 0;
1067
1068                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1069                         lpi_state->res_cnt_freq = 1;
1070
1071                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1072                         lpi_state->enable_parent_state = 0;
1073         }
1074
1075         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1076 end:
1077         kfree(buffer.pointer);
1078         return ret;
1079 }
1080
1081 /*
1082  * flat_state_cnt - the number of composite LPI states after the process of flattening
1083  */
1084 static int flat_state_cnt;
1085
1086 /**
1087  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1088  *
1089  * @local: local LPI state
1090  * @parent: parent LPI state
1091  * @result: composite LPI state
1092  */
1093 static bool combine_lpi_states(struct acpi_lpi_state *local,
1094                                struct acpi_lpi_state *parent,
1095                                struct acpi_lpi_state *result)
1096 {
1097         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1098                 if (!parent->address) /* 0 means autopromotable */
1099                         return false;
1100                 result->address = local->address + parent->address;
1101         } else {
1102                 result->address = parent->address;
1103         }
1104
1105         result->min_residency = max(local->min_residency, parent->min_residency);
1106         result->wake_latency = local->wake_latency + parent->wake_latency;
1107         result->enable_parent_state = parent->enable_parent_state;
1108         result->entry_method = local->entry_method;
1109
1110         result->flags = parent->flags;
1111         result->arch_flags = parent->arch_flags;
1112         result->index = parent->index;
1113
1114         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1115         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1116         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1117         return true;
1118 }
1119
1120 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1121
1122 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1123                                   struct acpi_lpi_state *t)
1124 {
1125         curr_level->composite_states[curr_level->composite_states_size++] = t;
1126 }
1127
1128 static int flatten_lpi_states(struct acpi_processor *pr,
1129                               struct acpi_lpi_states_array *curr_level,
1130                               struct acpi_lpi_states_array *prev_level)
1131 {
1132         int i, j, state_count = curr_level->size;
1133         struct acpi_lpi_state *p, *t = curr_level->entries;
1134
1135         curr_level->composite_states_size = 0;
1136         for (j = 0; j < state_count; j++, t++) {
1137                 struct acpi_lpi_state *flpi;
1138
1139                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1140                         continue;
1141
1142                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1143                         pr_warn("Limiting number of LPI states to max (%d)\n",
1144                                 ACPI_PROCESSOR_MAX_POWER);
1145                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1146                         break;
1147                 }
1148
1149                 flpi = &pr->power.lpi_states[flat_state_cnt];
1150
1151                 if (!prev_level) { /* leaf/processor node */
1152                         memcpy(flpi, t, sizeof(*t));
1153                         stash_composite_state(curr_level, flpi);
1154                         flat_state_cnt++;
1155                         continue;
1156                 }
1157
1158                 for (i = 0; i < prev_level->composite_states_size; i++) {
1159                         p = prev_level->composite_states[i];
1160                         if (t->index <= p->enable_parent_state &&
1161                             combine_lpi_states(p, t, flpi)) {
1162                                 stash_composite_state(curr_level, flpi);
1163                                 flat_state_cnt++;
1164                                 flpi++;
1165                         }
1166                 }
1167         }
1168
1169         kfree(curr_level->entries);
1170         return 0;
1171 }
1172
1173 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1174 {
1175         int ret, i;
1176         acpi_status status;
1177         acpi_handle handle = pr->handle, pr_ahandle;
1178         struct acpi_device *d = NULL;
1179         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1180
1181         if (!osc_pc_lpi_support_confirmed)
1182                 return -EOPNOTSUPP;
1183
1184         if (!acpi_has_method(handle, "_LPI"))
1185                 return -EINVAL;
1186
1187         flat_state_cnt = 0;
1188         prev = &info[0];
1189         curr = &info[1];
1190         handle = pr->handle;
1191         ret = acpi_processor_evaluate_lpi(handle, prev);
1192         if (ret)
1193                 return ret;
1194         flatten_lpi_states(pr, prev, NULL);
1195
1196         status = acpi_get_parent(handle, &pr_ahandle);
1197         while (ACPI_SUCCESS(status)) {
1198                 acpi_bus_get_device(pr_ahandle, &d);
1199                 handle = pr_ahandle;
1200
1201                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1202                         break;
1203
1204                 /* can be optional ? */
1205                 if (!acpi_has_method(handle, "_LPI"))
1206                         break;
1207
1208                 ret = acpi_processor_evaluate_lpi(handle, curr);
1209                 if (ret)
1210                         break;
1211
1212                 /* flatten all the LPI states in this level of hierarchy */
1213                 flatten_lpi_states(pr, curr, prev);
1214
1215                 tmp = prev, prev = curr, curr = tmp;
1216
1217                 status = acpi_get_parent(handle, &pr_ahandle);
1218         }
1219
1220         pr->power.count = flat_state_cnt;
1221         /* reset the index after flattening */
1222         for (i = 0; i < pr->power.count; i++)
1223                 pr->power.lpi_states[i].index = i;
1224
1225         /* Tell driver that _LPI is supported. */
1226         pr->flags.has_lpi = 1;
1227         pr->flags.power = 1;
1228
1229         return 0;
1230 }
1231
1232 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1233 {
1234         return -ENODEV;
1235 }
1236
1237 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1238 {
1239         return -ENODEV;
1240 }
1241
1242 /**
1243  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1244  * @dev: the target CPU
1245  * @drv: cpuidle driver containing cpuidle state info
1246  * @index: index of target state
1247  *
1248  * Return: 0 for success or negative value for error
1249  */
1250 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1251                                struct cpuidle_driver *drv, int index)
1252 {
1253         struct acpi_processor *pr;
1254         struct acpi_lpi_state *lpi;
1255
1256         pr = __this_cpu_read(processors);
1257
1258         if (unlikely(!pr))
1259                 return -EINVAL;
1260
1261         lpi = &pr->power.lpi_states[index];
1262         if (lpi->entry_method == ACPI_CSTATE_FFH)
1263                 return acpi_processor_ffh_lpi_enter(lpi);
1264
1265         return -EINVAL;
1266 }
1267
1268 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1269 {
1270         int i;
1271         struct acpi_lpi_state *lpi;
1272         struct cpuidle_state *state;
1273         struct cpuidle_driver *drv = &acpi_idle_driver;
1274
1275         if (!pr->flags.has_lpi)
1276                 return -EOPNOTSUPP;
1277
1278         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1279                 lpi = &pr->power.lpi_states[i];
1280
1281                 state = &drv->states[i];
1282                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1283                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1284                 state->exit_latency = lpi->wake_latency;
1285                 state->target_residency = lpi->min_residency;
1286                 if (lpi->arch_flags)
1287                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1288                 state->enter = acpi_idle_lpi_enter;
1289                 drv->safe_state_index = i;
1290         }
1291
1292         drv->state_count = i;
1293
1294         return 0;
1295 }
1296
1297 /**
1298  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1299  * global state data i.e. idle routines
1300  *
1301  * @pr: the ACPI processor
1302  */
1303 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1304 {
1305         int i;
1306         struct cpuidle_driver *drv = &acpi_idle_driver;
1307
1308         if (!pr->flags.power_setup_done || !pr->flags.power)
1309                 return -EINVAL;
1310
1311         drv->safe_state_index = -1;
1312         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1313                 drv->states[i].name[0] = '\0';
1314                 drv->states[i].desc[0] = '\0';
1315         }
1316
1317         if (pr->flags.has_lpi)
1318                 return acpi_processor_setup_lpi_states(pr);
1319
1320         return acpi_processor_setup_cstates(pr);
1321 }
1322
1323 /**
1324  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1325  * device i.e. per-cpu data
1326  *
1327  * @pr: the ACPI processor
1328  * @dev : the cpuidle device
1329  */
1330 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1331                                             struct cpuidle_device *dev)
1332 {
1333         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1334                 return -EINVAL;
1335
1336         dev->cpu = pr->id;
1337         if (pr->flags.has_lpi)
1338                 return acpi_processor_ffh_lpi_probe(pr->id);
1339
1340         return acpi_processor_setup_cpuidle_cx(pr, dev);
1341 }
1342
1343 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1344 {
1345         int ret;
1346
1347         ret = acpi_processor_get_lpi_info(pr);
1348         if (ret)
1349                 ret = acpi_processor_get_cstate_info(pr);
1350
1351         return ret;
1352 }
1353
1354 int acpi_processor_hotplug(struct acpi_processor *pr)
1355 {
1356         int ret = 0;
1357         struct cpuidle_device *dev;
1358
1359         if (disabled_by_idle_boot_param())
1360                 return 0;
1361
1362         if (!pr->flags.power_setup_done)
1363                 return -ENODEV;
1364
1365         dev = per_cpu(acpi_cpuidle_device, pr->id);
1366         cpuidle_pause_and_lock();
1367         cpuidle_disable_device(dev);
1368         ret = acpi_processor_get_power_info(pr);
1369         if (!ret && pr->flags.power) {
1370                 acpi_processor_setup_cpuidle_dev(pr, dev);
1371                 ret = cpuidle_enable_device(dev);
1372         }
1373         cpuidle_resume_and_unlock();
1374
1375         return ret;
1376 }
1377
1378 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1379 {
1380         int cpu;
1381         struct acpi_processor *_pr;
1382         struct cpuidle_device *dev;
1383
1384         if (disabled_by_idle_boot_param())
1385                 return 0;
1386
1387         if (!pr->flags.power_setup_done)
1388                 return -ENODEV;
1389
1390         /*
1391          * FIXME:  Design the ACPI notification to make it once per
1392          * system instead of once per-cpu.  This condition is a hack
1393          * to make the code that updates C-States be called once.
1394          */
1395
1396         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1397
1398                 /* Protect against cpu-hotplug */
1399                 get_online_cpus();
1400                 cpuidle_pause_and_lock();
1401
1402                 /* Disable all cpuidle devices */
1403                 for_each_online_cpu(cpu) {
1404                         _pr = per_cpu(processors, cpu);
1405                         if (!_pr || !_pr->flags.power_setup_done)
1406                                 continue;
1407                         dev = per_cpu(acpi_cpuidle_device, cpu);
1408                         cpuidle_disable_device(dev);
1409                 }
1410
1411                 /* Populate Updated C-state information */
1412                 acpi_processor_get_power_info(pr);
1413                 acpi_processor_setup_cpuidle_states(pr);
1414
1415                 /* Enable all cpuidle devices */
1416                 for_each_online_cpu(cpu) {
1417                         _pr = per_cpu(processors, cpu);
1418                         if (!_pr || !_pr->flags.power_setup_done)
1419                                 continue;
1420                         acpi_processor_get_power_info(_pr);
1421                         if (_pr->flags.power) {
1422                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1423                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1424                                 cpuidle_enable_device(dev);
1425                         }
1426                 }
1427                 cpuidle_resume_and_unlock();
1428                 put_online_cpus();
1429         }
1430
1431         return 0;
1432 }
1433
1434 static int acpi_processor_registered;
1435
1436 int acpi_processor_power_init(struct acpi_processor *pr)
1437 {
1438         int retval;
1439         struct cpuidle_device *dev;
1440
1441         if (disabled_by_idle_boot_param())
1442                 return 0;
1443
1444         acpi_processor_cstate_first_run_checks();
1445
1446         if (!acpi_processor_get_power_info(pr))
1447                 pr->flags.power_setup_done = 1;
1448
1449         /*
1450          * Install the idle handler if processor power management is supported.
1451          * Note that we use previously set idle handler will be used on
1452          * platforms that only support C1.
1453          */
1454         if (pr->flags.power) {
1455                 /* Register acpi_idle_driver if not already registered */
1456                 if (!acpi_processor_registered) {
1457                         acpi_processor_setup_cpuidle_states(pr);
1458                         retval = cpuidle_register_driver(&acpi_idle_driver);
1459                         if (retval)
1460                                 return retval;
1461                         pr_debug("%s registered with cpuidle\n",
1462                                  acpi_idle_driver.name);
1463                 }
1464
1465                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1466                 if (!dev)
1467                         return -ENOMEM;
1468                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1469
1470                 acpi_processor_setup_cpuidle_dev(pr, dev);
1471
1472                 /* Register per-cpu cpuidle_device. Cpuidle driver
1473                  * must already be registered before registering device
1474                  */
1475                 retval = cpuidle_register_device(dev);
1476                 if (retval) {
1477                         if (acpi_processor_registered == 0)
1478                                 cpuidle_unregister_driver(&acpi_idle_driver);
1479                         return retval;
1480                 }
1481                 acpi_processor_registered++;
1482         }
1483         return 0;
1484 }
1485
1486 int acpi_processor_power_exit(struct acpi_processor *pr)
1487 {
1488         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1489
1490         if (disabled_by_idle_boot_param())
1491                 return 0;
1492
1493         if (pr->flags.power) {
1494                 cpuidle_unregister_device(dev);
1495                 acpi_processor_registered--;
1496                 if (acpi_processor_registered == 0)
1497                         cpuidle_unregister_driver(&acpi_idle_driver);
1498         }
1499
1500         pr->flags.power_setup_done = 0;
1501         return 0;
1502 }