]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/base/cacheinfo.c
drivers: base: cacheinfo: setup DT cache properties early
[linux.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31         return ci_cacheinfo(cpu);
32 }
33
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36                                            struct cacheinfo *sib_leaf)
37 {
38         return sib_leaf->of_node == this_leaf->of_node;
39 }
40
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43         const char *size_prop;
44         const char *line_size_props[2];
45         const char *nr_sets_prop;
46 };
47
48 static const struct cache_type_info cache_type_info[] = {
49         {
50                 .size_prop       = "cache-size",
51                 .line_size_props = { "cache-line-size",
52                                      "cache-block-size", },
53                 .nr_sets_prop    = "cache-sets",
54         }, {
55                 .size_prop       = "i-cache-size",
56                 .line_size_props = { "i-cache-line-size",
57                                      "i-cache-block-size", },
58                 .nr_sets_prop    = "i-cache-sets",
59         }, {
60                 .size_prop       = "d-cache-size",
61                 .line_size_props = { "d-cache-line-size",
62                                      "d-cache-block-size", },
63                 .nr_sets_prop    = "d-cache-sets",
64         },
65 };
66
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69         if (type == CACHE_TYPE_UNIFIED)
70                 return 0;
71         return type;
72 }
73
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76         const char *propname;
77         const __be32 *cache_size;
78         int ct_idx;
79
80         ct_idx = get_cacheinfo_idx(this_leaf->type);
81         propname = cache_type_info[ct_idx].size_prop;
82
83         cache_size = of_get_property(np, propname, NULL);
84         if (cache_size)
85                 this_leaf->size = of_read_number(cache_size, 1);
86 }
87
88 /* not cache_line_size() because that's a macro in include/linux/cache.h */
89 static void cache_get_line_size(struct cacheinfo *this_leaf,
90                                 struct device_node *np)
91 {
92         const __be32 *line_size;
93         int i, lim, ct_idx;
94
95         ct_idx = get_cacheinfo_idx(this_leaf->type);
96         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
97
98         for (i = 0; i < lim; i++) {
99                 const char *propname;
100
101                 propname = cache_type_info[ct_idx].line_size_props[i];
102                 line_size = of_get_property(np, propname, NULL);
103                 if (line_size)
104                         break;
105         }
106
107         if (line_size)
108                 this_leaf->coherency_line_size = of_read_number(line_size, 1);
109 }
110
111 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
112 {
113         const char *propname;
114         const __be32 *nr_sets;
115         int ct_idx;
116
117         ct_idx = get_cacheinfo_idx(this_leaf->type);
118         propname = cache_type_info[ct_idx].nr_sets_prop;
119
120         nr_sets = of_get_property(np, propname, NULL);
121         if (nr_sets)
122                 this_leaf->number_of_sets = of_read_number(nr_sets, 1);
123 }
124
125 static void cache_associativity(struct cacheinfo *this_leaf)
126 {
127         unsigned int line_size = this_leaf->coherency_line_size;
128         unsigned int nr_sets = this_leaf->number_of_sets;
129         unsigned int size = this_leaf->size;
130
131         /*
132          * If the cache is fully associative, there is no need to
133          * check the other properties.
134          */
135         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
136                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
137 }
138
139 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
140                                   struct device_node *np)
141 {
142         return of_property_read_bool(np, "cache-unified");
143 }
144
145 static void cache_of_set_props(struct cacheinfo *this_leaf,
146                                struct device_node *np)
147 {
148         /*
149          * init_cache_level must setup the cache level correctly
150          * overriding the architecturally specified levels, so
151          * if type is NONE at this stage, it should be unified
152          */
153         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
154             cache_node_is_unified(this_leaf, np))
155                 this_leaf->type = CACHE_TYPE_UNIFIED;
156         cache_size(this_leaf, np);
157         cache_get_line_size(this_leaf, np);
158         cache_nr_sets(this_leaf, np);
159         cache_associativity(this_leaf);
160 }
161
162 static int cache_setup_of_node(unsigned int cpu)
163 {
164         struct device_node *np;
165         struct cacheinfo *this_leaf;
166         struct device *cpu_dev = get_cpu_device(cpu);
167         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
168         unsigned int index = 0;
169
170         /* skip if of_node is already populated */
171         if (this_cpu_ci->info_list->of_node)
172                 return 0;
173
174         if (!cpu_dev) {
175                 pr_err("No cpu device for CPU %d\n", cpu);
176                 return -ENODEV;
177         }
178         np = cpu_dev->of_node;
179         if (!np) {
180                 pr_err("Failed to find cpu%d device node\n", cpu);
181                 return -ENOENT;
182         }
183
184         while (index < cache_leaves(cpu)) {
185                 this_leaf = this_cpu_ci->info_list + index;
186                 if (this_leaf->level != 1)
187                         np = of_find_next_cache_node(np);
188                 else
189                         np = of_node_get(np);/* cpu node itself */
190                 if (!np)
191                         break;
192                 cache_of_set_props(this_leaf, np);
193                 this_leaf->of_node = np;
194                 index++;
195         }
196
197         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
198                 return -ENOENT;
199
200         return 0;
201 }
202 #else
203 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
204 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
205                                            struct cacheinfo *sib_leaf)
206 {
207         /*
208          * For non-DT systems, assume unique level 1 cache, system-wide
209          * shared caches for all other levels. This will be used only if
210          * arch specific code has not populated shared_cpu_map
211          */
212         return !(this_leaf->level == 1);
213 }
214 #endif
215
216 static int cache_shared_cpu_map_setup(unsigned int cpu)
217 {
218         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
219         struct cacheinfo *this_leaf, *sib_leaf;
220         unsigned int index;
221         int ret = 0;
222
223         if (this_cpu_ci->cpu_map_populated)
224                 return 0;
225
226         if (of_have_populated_dt())
227                 ret = cache_setup_of_node(cpu);
228         else if (!acpi_disabled)
229                 /* No cache property/hierarchy support yet in ACPI */
230                 ret = -ENOTSUPP;
231         if (ret)
232                 return ret;
233
234         for (index = 0; index < cache_leaves(cpu); index++) {
235                 unsigned int i;
236
237                 this_leaf = this_cpu_ci->info_list + index;
238                 /* skip if shared_cpu_map is already populated */
239                 if (!cpumask_empty(&this_leaf->shared_cpu_map))
240                         continue;
241
242                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
243                 for_each_online_cpu(i) {
244                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
245
246                         if (i == cpu || !sib_cpu_ci->info_list)
247                                 continue;/* skip if itself or no cacheinfo */
248                         sib_leaf = sib_cpu_ci->info_list + index;
249                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
250                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
251                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
252                         }
253                 }
254         }
255
256         return 0;
257 }
258
259 static void cache_shared_cpu_map_remove(unsigned int cpu)
260 {
261         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
262         struct cacheinfo *this_leaf, *sib_leaf;
263         unsigned int sibling, index;
264
265         for (index = 0; index < cache_leaves(cpu); index++) {
266                 this_leaf = this_cpu_ci->info_list + index;
267                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
268                         struct cpu_cacheinfo *sib_cpu_ci;
269
270                         if (sibling == cpu) /* skip itself */
271                                 continue;
272
273                         sib_cpu_ci = get_cpu_cacheinfo(sibling);
274                         if (!sib_cpu_ci->info_list)
275                                 continue;
276
277                         sib_leaf = sib_cpu_ci->info_list + index;
278                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
279                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
280                 }
281                 of_node_put(this_leaf->of_node);
282         }
283 }
284
285 static void free_cache_attributes(unsigned int cpu)
286 {
287         if (!per_cpu_cacheinfo(cpu))
288                 return;
289
290         cache_shared_cpu_map_remove(cpu);
291
292         kfree(per_cpu_cacheinfo(cpu));
293         per_cpu_cacheinfo(cpu) = NULL;
294 }
295
296 int __weak init_cache_level(unsigned int cpu)
297 {
298         return -ENOENT;
299 }
300
301 int __weak populate_cache_leaves(unsigned int cpu)
302 {
303         return -ENOENT;
304 }
305
306 static int detect_cache_attributes(unsigned int cpu)
307 {
308         int ret;
309
310         if (init_cache_level(cpu) || !cache_leaves(cpu))
311                 return -ENOENT;
312
313         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
314                                          sizeof(struct cacheinfo), GFP_KERNEL);
315         if (per_cpu_cacheinfo(cpu) == NULL)
316                 return -ENOMEM;
317
318         /*
319          * populate_cache_leaves() may completely setup the cache leaves and
320          * shared_cpu_map or it may leave it partially setup.
321          */
322         ret = populate_cache_leaves(cpu);
323         if (ret)
324                 goto free_ci;
325         /*
326          * For systems using DT for cache hierarchy, of_node and shared_cpu_map
327          * will be set up here only if they are not populated already
328          */
329         ret = cache_shared_cpu_map_setup(cpu);
330         if (ret) {
331                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
332                 goto free_ci;
333         }
334
335         return 0;
336
337 free_ci:
338         free_cache_attributes(cpu);
339         return ret;
340 }
341
342 /* pointer to cpuX/cache device */
343 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
344 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
345
346 static cpumask_t cache_dev_map;
347
348 /* pointer to array of devices for cpuX/cache/indexY */
349 static DEFINE_PER_CPU(struct device **, ci_index_dev);
350 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
351 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
352
353 #define show_one(file_name, object)                             \
354 static ssize_t file_name##_show(struct device *dev,             \
355                 struct device_attribute *attr, char *buf)       \
356 {                                                               \
357         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
358         return sprintf(buf, "%u\n", this_leaf->object);         \
359 }
360
361 show_one(id, id);
362 show_one(level, level);
363 show_one(coherency_line_size, coherency_line_size);
364 show_one(number_of_sets, number_of_sets);
365 show_one(physical_line_partition, physical_line_partition);
366 show_one(ways_of_associativity, ways_of_associativity);
367
368 static ssize_t size_show(struct device *dev,
369                          struct device_attribute *attr, char *buf)
370 {
371         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
372
373         return sprintf(buf, "%uK\n", this_leaf->size >> 10);
374 }
375
376 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
377 {
378         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
379         const struct cpumask *mask = &this_leaf->shared_cpu_map;
380
381         return cpumap_print_to_pagebuf(list, buf, mask);
382 }
383
384 static ssize_t shared_cpu_map_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         return shared_cpumap_show_func(dev, false, buf);
388 }
389
390 static ssize_t shared_cpu_list_show(struct device *dev,
391                                     struct device_attribute *attr, char *buf)
392 {
393         return shared_cpumap_show_func(dev, true, buf);
394 }
395
396 static ssize_t type_show(struct device *dev,
397                          struct device_attribute *attr, char *buf)
398 {
399         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
400
401         switch (this_leaf->type) {
402         case CACHE_TYPE_DATA:
403                 return sprintf(buf, "Data\n");
404         case CACHE_TYPE_INST:
405                 return sprintf(buf, "Instruction\n");
406         case CACHE_TYPE_UNIFIED:
407                 return sprintf(buf, "Unified\n");
408         default:
409                 return -EINVAL;
410         }
411 }
412
413 static ssize_t allocation_policy_show(struct device *dev,
414                                       struct device_attribute *attr, char *buf)
415 {
416         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
417         unsigned int ci_attr = this_leaf->attributes;
418         int n = 0;
419
420         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
421                 n = sprintf(buf, "ReadWriteAllocate\n");
422         else if (ci_attr & CACHE_READ_ALLOCATE)
423                 n = sprintf(buf, "ReadAllocate\n");
424         else if (ci_attr & CACHE_WRITE_ALLOCATE)
425                 n = sprintf(buf, "WriteAllocate\n");
426         return n;
427 }
428
429 static ssize_t write_policy_show(struct device *dev,
430                                  struct device_attribute *attr, char *buf)
431 {
432         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
433         unsigned int ci_attr = this_leaf->attributes;
434         int n = 0;
435
436         if (ci_attr & CACHE_WRITE_THROUGH)
437                 n = sprintf(buf, "WriteThrough\n");
438         else if (ci_attr & CACHE_WRITE_BACK)
439                 n = sprintf(buf, "WriteBack\n");
440         return n;
441 }
442
443 static DEVICE_ATTR_RO(id);
444 static DEVICE_ATTR_RO(level);
445 static DEVICE_ATTR_RO(type);
446 static DEVICE_ATTR_RO(coherency_line_size);
447 static DEVICE_ATTR_RO(ways_of_associativity);
448 static DEVICE_ATTR_RO(number_of_sets);
449 static DEVICE_ATTR_RO(size);
450 static DEVICE_ATTR_RO(allocation_policy);
451 static DEVICE_ATTR_RO(write_policy);
452 static DEVICE_ATTR_RO(shared_cpu_map);
453 static DEVICE_ATTR_RO(shared_cpu_list);
454 static DEVICE_ATTR_RO(physical_line_partition);
455
456 static struct attribute *cache_default_attrs[] = {
457         &dev_attr_id.attr,
458         &dev_attr_type.attr,
459         &dev_attr_level.attr,
460         &dev_attr_shared_cpu_map.attr,
461         &dev_attr_shared_cpu_list.attr,
462         &dev_attr_coherency_line_size.attr,
463         &dev_attr_ways_of_associativity.attr,
464         &dev_attr_number_of_sets.attr,
465         &dev_attr_size.attr,
466         &dev_attr_allocation_policy.attr,
467         &dev_attr_write_policy.attr,
468         &dev_attr_physical_line_partition.attr,
469         NULL
470 };
471
472 static umode_t
473 cache_default_attrs_is_visible(struct kobject *kobj,
474                                struct attribute *attr, int unused)
475 {
476         struct device *dev = kobj_to_dev(kobj);
477         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
478         const struct cpumask *mask = &this_leaf->shared_cpu_map;
479         umode_t mode = attr->mode;
480
481         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
482                 return mode;
483         if ((attr == &dev_attr_type.attr) && this_leaf->type)
484                 return mode;
485         if ((attr == &dev_attr_level.attr) && this_leaf->level)
486                 return mode;
487         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
488                 return mode;
489         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
490                 return mode;
491         if ((attr == &dev_attr_coherency_line_size.attr) &&
492             this_leaf->coherency_line_size)
493                 return mode;
494         if ((attr == &dev_attr_ways_of_associativity.attr) &&
495             this_leaf->size) /* allow 0 = full associativity */
496                 return mode;
497         if ((attr == &dev_attr_number_of_sets.attr) &&
498             this_leaf->number_of_sets)
499                 return mode;
500         if ((attr == &dev_attr_size.attr) && this_leaf->size)
501                 return mode;
502         if ((attr == &dev_attr_write_policy.attr) &&
503             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
504                 return mode;
505         if ((attr == &dev_attr_allocation_policy.attr) &&
506             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
507                 return mode;
508         if ((attr == &dev_attr_physical_line_partition.attr) &&
509             this_leaf->physical_line_partition)
510                 return mode;
511
512         return 0;
513 }
514
515 static const struct attribute_group cache_default_group = {
516         .attrs = cache_default_attrs,
517         .is_visible = cache_default_attrs_is_visible,
518 };
519
520 static const struct attribute_group *cache_default_groups[] = {
521         &cache_default_group,
522         NULL,
523 };
524
525 static const struct attribute_group *cache_private_groups[] = {
526         &cache_default_group,
527         NULL, /* Place holder for private group */
528         NULL,
529 };
530
531 const struct attribute_group *
532 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
533 {
534         return NULL;
535 }
536
537 static const struct attribute_group **
538 cache_get_attribute_groups(struct cacheinfo *this_leaf)
539 {
540         const struct attribute_group *priv_group =
541                         cache_get_priv_group(this_leaf);
542
543         if (!priv_group)
544                 return cache_default_groups;
545
546         if (!cache_private_groups[1])
547                 cache_private_groups[1] = priv_group;
548
549         return cache_private_groups;
550 }
551
552 /* Add/Remove cache interface for CPU device */
553 static void cpu_cache_sysfs_exit(unsigned int cpu)
554 {
555         int i;
556         struct device *ci_dev;
557
558         if (per_cpu_index_dev(cpu)) {
559                 for (i = 0; i < cache_leaves(cpu); i++) {
560                         ci_dev = per_cache_index_dev(cpu, i);
561                         if (!ci_dev)
562                                 continue;
563                         device_unregister(ci_dev);
564                 }
565                 kfree(per_cpu_index_dev(cpu));
566                 per_cpu_index_dev(cpu) = NULL;
567         }
568         device_unregister(per_cpu_cache_dev(cpu));
569         per_cpu_cache_dev(cpu) = NULL;
570 }
571
572 static int cpu_cache_sysfs_init(unsigned int cpu)
573 {
574         struct device *dev = get_cpu_device(cpu);
575
576         if (per_cpu_cacheinfo(cpu) == NULL)
577                 return -ENOENT;
578
579         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
580         if (IS_ERR(per_cpu_cache_dev(cpu)))
581                 return PTR_ERR(per_cpu_cache_dev(cpu));
582
583         /* Allocate all required memory */
584         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
585                                          sizeof(struct device *), GFP_KERNEL);
586         if (unlikely(per_cpu_index_dev(cpu) == NULL))
587                 goto err_out;
588
589         return 0;
590
591 err_out:
592         cpu_cache_sysfs_exit(cpu);
593         return -ENOMEM;
594 }
595
596 static int cache_add_dev(unsigned int cpu)
597 {
598         unsigned int i;
599         int rc;
600         struct device *ci_dev, *parent;
601         struct cacheinfo *this_leaf;
602         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
603         const struct attribute_group **cache_groups;
604
605         rc = cpu_cache_sysfs_init(cpu);
606         if (unlikely(rc < 0))
607                 return rc;
608
609         parent = per_cpu_cache_dev(cpu);
610         for (i = 0; i < cache_leaves(cpu); i++) {
611                 this_leaf = this_cpu_ci->info_list + i;
612                 if (this_leaf->disable_sysfs)
613                         continue;
614                 cache_groups = cache_get_attribute_groups(this_leaf);
615                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
616                                            "index%1u", i);
617                 if (IS_ERR(ci_dev)) {
618                         rc = PTR_ERR(ci_dev);
619                         goto err;
620                 }
621                 per_cache_index_dev(cpu, i) = ci_dev;
622         }
623         cpumask_set_cpu(cpu, &cache_dev_map);
624
625         return 0;
626 err:
627         cpu_cache_sysfs_exit(cpu);
628         return rc;
629 }
630
631 static int cacheinfo_cpu_online(unsigned int cpu)
632 {
633         int rc = detect_cache_attributes(cpu);
634
635         if (rc)
636                 return rc;
637         rc = cache_add_dev(cpu);
638         if (rc)
639                 free_cache_attributes(cpu);
640         return rc;
641 }
642
643 static int cacheinfo_cpu_pre_down(unsigned int cpu)
644 {
645         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
646                 cpu_cache_sysfs_exit(cpu);
647
648         free_cache_attributes(cpu);
649         return 0;
650 }
651
652 static int __init cacheinfo_sysfs_init(void)
653 {
654         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
655                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
656 }
657 device_initcall(cacheinfo_sysfs_init);