]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/base/node.c
Merge branch 'akpm' (patches from Andrew)
[linux.git] / drivers / base / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Basic Node interface support
4  */
5
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/memory.h>
10 #include <linux/vmstat.h>
11 #include <linux/notifier.h>
12 #include <linux/node.h>
13 #include <linux/hugetlb.h>
14 #include <linux/compaction.h>
15 #include <linux/cpumask.h>
16 #include <linux/topology.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23
24 static struct bus_type node_subsys = {
25         .name = "node",
26         .dev_name = "node",
27 };
28
29
30 static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
31 {
32         ssize_t n;
33         cpumask_var_t mask;
34         struct node *node_dev = to_node(dev);
35
36         /* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
37         BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
38
39         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
40                 return 0;
41
42         cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
43         n = cpumap_print_to_pagebuf(list, buf, mask);
44         free_cpumask_var(mask);
45
46         return n;
47 }
48
49 static inline ssize_t node_read_cpumask(struct device *dev,
50                                 struct device_attribute *attr, char *buf)
51 {
52         return node_read_cpumap(dev, false, buf);
53 }
54 static inline ssize_t node_read_cpulist(struct device *dev,
55                                 struct device_attribute *attr, char *buf)
56 {
57         return node_read_cpumap(dev, true, buf);
58 }
59
60 static DEVICE_ATTR(cpumap,  S_IRUGO, node_read_cpumask, NULL);
61 static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
62
63 /**
64  * struct node_access_nodes - Access class device to hold user visible
65  *                            relationships to other nodes.
66  * @dev:        Device for this memory access class
67  * @list_node:  List element in the node's access list
68  * @access:     The access class rank
69  * @hmem_attrs: Heterogeneous memory performance attributes
70  */
71 struct node_access_nodes {
72         struct device           dev;
73         struct list_head        list_node;
74         unsigned                access;
75 #ifdef CONFIG_HMEM_REPORTING
76         struct node_hmem_attrs  hmem_attrs;
77 #endif
78 };
79 #define to_access_nodes(dev) container_of(dev, struct node_access_nodes, dev)
80
81 static struct attribute *node_init_access_node_attrs[] = {
82         NULL,
83 };
84
85 static struct attribute *node_targ_access_node_attrs[] = {
86         NULL,
87 };
88
89 static const struct attribute_group initiators = {
90         .name   = "initiators",
91         .attrs  = node_init_access_node_attrs,
92 };
93
94 static const struct attribute_group targets = {
95         .name   = "targets",
96         .attrs  = node_targ_access_node_attrs,
97 };
98
99 static const struct attribute_group *node_access_node_groups[] = {
100         &initiators,
101         &targets,
102         NULL,
103 };
104
105 static void node_remove_accesses(struct node *node)
106 {
107         struct node_access_nodes *c, *cnext;
108
109         list_for_each_entry_safe(c, cnext, &node->access_list, list_node) {
110                 list_del(&c->list_node);
111                 device_unregister(&c->dev);
112         }
113 }
114
115 static void node_access_release(struct device *dev)
116 {
117         kfree(to_access_nodes(dev));
118 }
119
120 static struct node_access_nodes *node_init_node_access(struct node *node,
121                                                        unsigned access)
122 {
123         struct node_access_nodes *access_node;
124         struct device *dev;
125
126         list_for_each_entry(access_node, &node->access_list, list_node)
127                 if (access_node->access == access)
128                         return access_node;
129
130         access_node = kzalloc(sizeof(*access_node), GFP_KERNEL);
131         if (!access_node)
132                 return NULL;
133
134         access_node->access = access;
135         dev = &access_node->dev;
136         dev->parent = &node->dev;
137         dev->release = node_access_release;
138         dev->groups = node_access_node_groups;
139         if (dev_set_name(dev, "access%u", access))
140                 goto free;
141
142         if (device_register(dev))
143                 goto free_name;
144
145         pm_runtime_no_callbacks(dev);
146         list_add_tail(&access_node->list_node, &node->access_list);
147         return access_node;
148 free_name:
149         kfree_const(dev->kobj.name);
150 free:
151         kfree(access_node);
152         return NULL;
153 }
154
155 #ifdef CONFIG_HMEM_REPORTING
156 #define ACCESS_ATTR(name)                                                  \
157 static ssize_t name##_show(struct device *dev,                             \
158                            struct device_attribute *attr,                  \
159                            char *buf)                                      \
160 {                                                                          \
161         return sprintf(buf, "%u\n", to_access_nodes(dev)->hmem_attrs.name); \
162 }                                                                          \
163 static DEVICE_ATTR_RO(name);
164
165 ACCESS_ATTR(read_bandwidth)
166 ACCESS_ATTR(read_latency)
167 ACCESS_ATTR(write_bandwidth)
168 ACCESS_ATTR(write_latency)
169
170 static struct attribute *access_attrs[] = {
171         &dev_attr_read_bandwidth.attr,
172         &dev_attr_read_latency.attr,
173         &dev_attr_write_bandwidth.attr,
174         &dev_attr_write_latency.attr,
175         NULL,
176 };
177
178 /**
179  * node_set_perf_attrs - Set the performance values for given access class
180  * @nid: Node identifier to be set
181  * @hmem_attrs: Heterogeneous memory performance attributes
182  * @access: The access class the for the given attributes
183  */
184 void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs *hmem_attrs,
185                          unsigned access)
186 {
187         struct node_access_nodes *c;
188         struct node *node;
189         int i;
190
191         if (WARN_ON_ONCE(!node_online(nid)))
192                 return;
193
194         node = node_devices[nid];
195         c = node_init_node_access(node, access);
196         if (!c)
197                 return;
198
199         c->hmem_attrs = *hmem_attrs;
200         for (i = 0; access_attrs[i] != NULL; i++) {
201                 if (sysfs_add_file_to_group(&c->dev.kobj, access_attrs[i],
202                                             "initiators")) {
203                         pr_info("failed to add performance attribute to node %d\n",
204                                 nid);
205                         break;
206                 }
207         }
208 }
209
210 /**
211  * struct node_cache_info - Internal tracking for memory node caches
212  * @dev:        Device represeting the cache level
213  * @node:       List element for tracking in the node
214  * @cache_attrs:Attributes for this cache level
215  */
216 struct node_cache_info {
217         struct device dev;
218         struct list_head node;
219         struct node_cache_attrs cache_attrs;
220 };
221 #define to_cache_info(device) container_of(device, struct node_cache_info, dev)
222
223 #define CACHE_ATTR(name, fmt)                                           \
224 static ssize_t name##_show(struct device *dev,                          \
225                            struct device_attribute *attr,               \
226                            char *buf)                                   \
227 {                                                                       \
228         return sprintf(buf, fmt "\n", to_cache_info(dev)->cache_attrs.name);\
229 }                                                                       \
230 DEVICE_ATTR_RO(name);
231
232 CACHE_ATTR(size, "%llu")
233 CACHE_ATTR(line_size, "%u")
234 CACHE_ATTR(indexing, "%u")
235 CACHE_ATTR(write_policy, "%u")
236
237 static struct attribute *cache_attrs[] = {
238         &dev_attr_indexing.attr,
239         &dev_attr_size.attr,
240         &dev_attr_line_size.attr,
241         &dev_attr_write_policy.attr,
242         NULL,
243 };
244 ATTRIBUTE_GROUPS(cache);
245
246 static void node_cache_release(struct device *dev)
247 {
248         kfree(dev);
249 }
250
251 static void node_cacheinfo_release(struct device *dev)
252 {
253         struct node_cache_info *info = to_cache_info(dev);
254         kfree(info);
255 }
256
257 static void node_init_cache_dev(struct node *node)
258 {
259         struct device *dev;
260
261         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
262         if (!dev)
263                 return;
264
265         dev->parent = &node->dev;
266         dev->release = node_cache_release;
267         if (dev_set_name(dev, "memory_side_cache"))
268                 goto free_dev;
269
270         if (device_register(dev))
271                 goto free_name;
272
273         pm_runtime_no_callbacks(dev);
274         node->cache_dev = dev;
275         return;
276 free_name:
277         kfree_const(dev->kobj.name);
278 free_dev:
279         kfree(dev);
280 }
281
282 /**
283  * node_add_cache() - add cache attribute to a memory node
284  * @nid: Node identifier that has new cache attributes
285  * @cache_attrs: Attributes for the cache being added
286  */
287 void node_add_cache(unsigned int nid, struct node_cache_attrs *cache_attrs)
288 {
289         struct node_cache_info *info;
290         struct device *dev;
291         struct node *node;
292
293         if (!node_online(nid) || !node_devices[nid])
294                 return;
295
296         node = node_devices[nid];
297         list_for_each_entry(info, &node->cache_attrs, node) {
298                 if (info->cache_attrs.level == cache_attrs->level) {
299                         dev_warn(&node->dev,
300                                 "attempt to add duplicate cache level:%d\n",
301                                 cache_attrs->level);
302                         return;
303                 }
304         }
305
306         if (!node->cache_dev)
307                 node_init_cache_dev(node);
308         if (!node->cache_dev)
309                 return;
310
311         info = kzalloc(sizeof(*info), GFP_KERNEL);
312         if (!info)
313                 return;
314
315         dev = &info->dev;
316         dev->parent = node->cache_dev;
317         dev->release = node_cacheinfo_release;
318         dev->groups = cache_groups;
319         if (dev_set_name(dev, "index%d", cache_attrs->level))
320                 goto free_cache;
321
322         info->cache_attrs = *cache_attrs;
323         if (device_register(dev)) {
324                 dev_warn(&node->dev, "failed to add cache level:%d\n",
325                          cache_attrs->level);
326                 goto free_name;
327         }
328         pm_runtime_no_callbacks(dev);
329         list_add_tail(&info->node, &node->cache_attrs);
330         return;
331 free_name:
332         kfree_const(dev->kobj.name);
333 free_cache:
334         kfree(info);
335 }
336
337 static void node_remove_caches(struct node *node)
338 {
339         struct node_cache_info *info, *next;
340
341         if (!node->cache_dev)
342                 return;
343
344         list_for_each_entry_safe(info, next, &node->cache_attrs, node) {
345                 list_del(&info->node);
346                 device_unregister(&info->dev);
347         }
348         device_unregister(node->cache_dev);
349 }
350
351 static void node_init_caches(unsigned int nid)
352 {
353         INIT_LIST_HEAD(&node_devices[nid]->cache_attrs);
354 }
355 #else
356 static void node_init_caches(unsigned int nid) { }
357 static void node_remove_caches(struct node *node) { }
358 #endif
359
360 #define K(x) ((x) << (PAGE_SHIFT - 10))
361 static ssize_t node_read_meminfo(struct device *dev,
362                         struct device_attribute *attr, char *buf)
363 {
364         int n;
365         int nid = dev->id;
366         struct pglist_data *pgdat = NODE_DATA(nid);
367         struct sysinfo i;
368         unsigned long sreclaimable, sunreclaimable;
369
370         si_meminfo_node(&i, nid);
371         sreclaimable = node_page_state(pgdat, NR_SLAB_RECLAIMABLE);
372         sunreclaimable = node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE);
373         n = sprintf(buf,
374                        "Node %d MemTotal:       %8lu kB\n"
375                        "Node %d MemFree:        %8lu kB\n"
376                        "Node %d MemUsed:        %8lu kB\n"
377                        "Node %d Active:         %8lu kB\n"
378                        "Node %d Inactive:       %8lu kB\n"
379                        "Node %d Active(anon):   %8lu kB\n"
380                        "Node %d Inactive(anon): %8lu kB\n"
381                        "Node %d Active(file):   %8lu kB\n"
382                        "Node %d Inactive(file): %8lu kB\n"
383                        "Node %d Unevictable:    %8lu kB\n"
384                        "Node %d Mlocked:        %8lu kB\n",
385                        nid, K(i.totalram),
386                        nid, K(i.freeram),
387                        nid, K(i.totalram - i.freeram),
388                        nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
389                                 node_page_state(pgdat, NR_ACTIVE_FILE)),
390                        nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
391                                 node_page_state(pgdat, NR_INACTIVE_FILE)),
392                        nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
393                        nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
394                        nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
395                        nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
396                        nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
397                        nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
398
399 #ifdef CONFIG_HIGHMEM
400         n += sprintf(buf + n,
401                        "Node %d HighTotal:      %8lu kB\n"
402                        "Node %d HighFree:       %8lu kB\n"
403                        "Node %d LowTotal:       %8lu kB\n"
404                        "Node %d LowFree:        %8lu kB\n",
405                        nid, K(i.totalhigh),
406                        nid, K(i.freehigh),
407                        nid, K(i.totalram - i.totalhigh),
408                        nid, K(i.freeram - i.freehigh));
409 #endif
410         n += sprintf(buf + n,
411                        "Node %d Dirty:          %8lu kB\n"
412                        "Node %d Writeback:      %8lu kB\n"
413                        "Node %d FilePages:      %8lu kB\n"
414                        "Node %d Mapped:         %8lu kB\n"
415                        "Node %d AnonPages:      %8lu kB\n"
416                        "Node %d Shmem:          %8lu kB\n"
417                        "Node %d KernelStack:    %8lu kB\n"
418                        "Node %d PageTables:     %8lu kB\n"
419                        "Node %d NFS_Unstable:   %8lu kB\n"
420                        "Node %d Bounce:         %8lu kB\n"
421                        "Node %d WritebackTmp:   %8lu kB\n"
422                        "Node %d KReclaimable:   %8lu kB\n"
423                        "Node %d Slab:           %8lu kB\n"
424                        "Node %d SReclaimable:   %8lu kB\n"
425                        "Node %d SUnreclaim:     %8lu kB\n"
426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
427                        "Node %d AnonHugePages:  %8lu kB\n"
428                        "Node %d ShmemHugePages: %8lu kB\n"
429                        "Node %d ShmemPmdMapped: %8lu kB\n"
430                        "Node %d FileHugePages: %8lu kB\n"
431                        "Node %d FilePmdMapped: %8lu kB\n"
432 #endif
433                         ,
434                        nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
435                        nid, K(node_page_state(pgdat, NR_WRITEBACK)),
436                        nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
437                        nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
438                        nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
439                        nid, K(i.sharedram),
440                        nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
441                        nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
442                        nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
443                        nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
444                        nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
445                        nid, K(sreclaimable +
446                               node_page_state(pgdat, NR_KERNEL_MISC_RECLAIMABLE)),
447                        nid, K(sreclaimable + sunreclaimable),
448                        nid, K(sreclaimable),
449                        nid, K(sunreclaimable)
450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
451                        ,
452                        nid, K(node_page_state(pgdat, NR_ANON_THPS) *
453                                        HPAGE_PMD_NR),
454                        nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
455                                        HPAGE_PMD_NR),
456                        nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
457                                        HPAGE_PMD_NR),
458                        nid, K(node_page_state(pgdat, NR_FILE_THPS) *
459                                        HPAGE_PMD_NR),
460                        nid, K(node_page_state(pgdat, NR_FILE_PMDMAPPED) *
461                                        HPAGE_PMD_NR)
462 #endif
463                        );
464         n += hugetlb_report_node_meminfo(nid, buf + n);
465         return n;
466 }
467
468 #undef K
469 static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
470
471 static ssize_t node_read_numastat(struct device *dev,
472                                 struct device_attribute *attr, char *buf)
473 {
474         return sprintf(buf,
475                        "numa_hit %lu\n"
476                        "numa_miss %lu\n"
477                        "numa_foreign %lu\n"
478                        "interleave_hit %lu\n"
479                        "local_node %lu\n"
480                        "other_node %lu\n",
481                        sum_zone_numa_state(dev->id, NUMA_HIT),
482                        sum_zone_numa_state(dev->id, NUMA_MISS),
483                        sum_zone_numa_state(dev->id, NUMA_FOREIGN),
484                        sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
485                        sum_zone_numa_state(dev->id, NUMA_LOCAL),
486                        sum_zone_numa_state(dev->id, NUMA_OTHER));
487 }
488 static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
489
490 static ssize_t node_read_vmstat(struct device *dev,
491                                 struct device_attribute *attr, char *buf)
492 {
493         int nid = dev->id;
494         struct pglist_data *pgdat = NODE_DATA(nid);
495         int i;
496         int n = 0;
497
498         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
499                 n += sprintf(buf+n, "%s %lu\n", zone_stat_name(i),
500                              sum_zone_node_page_state(nid, i));
501
502 #ifdef CONFIG_NUMA
503         for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
504                 n += sprintf(buf+n, "%s %lu\n", numa_stat_name(i),
505                              sum_zone_numa_state(nid, i));
506 #endif
507
508         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
509                 n += sprintf(buf+n, "%s %lu\n", node_stat_name(i),
510                              node_page_state(pgdat, i));
511
512         return n;
513 }
514 static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
515
516 static ssize_t node_read_distance(struct device *dev,
517                         struct device_attribute *attr, char *buf)
518 {
519         int nid = dev->id;
520         int len = 0;
521         int i;
522
523         /*
524          * buf is currently PAGE_SIZE in length and each node needs 4 chars
525          * at the most (distance + space or newline).
526          */
527         BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
528
529         for_each_online_node(i)
530                 len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
531
532         len += sprintf(buf + len, "\n");
533         return len;
534 }
535 static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
536
537 static struct attribute *node_dev_attrs[] = {
538         &dev_attr_cpumap.attr,
539         &dev_attr_cpulist.attr,
540         &dev_attr_meminfo.attr,
541         &dev_attr_numastat.attr,
542         &dev_attr_distance.attr,
543         &dev_attr_vmstat.attr,
544         NULL
545 };
546 ATTRIBUTE_GROUPS(node_dev);
547
548 #ifdef CONFIG_HUGETLBFS
549 /*
550  * hugetlbfs per node attributes registration interface:
551  * When/if hugetlb[fs] subsystem initializes [sometime after this module],
552  * it will register its per node attributes for all online nodes with
553  * memory.  It will also call register_hugetlbfs_with_node(), below, to
554  * register its attribute registration functions with this node driver.
555  * Once these hooks have been initialized, the node driver will call into
556  * the hugetlb module to [un]register attributes for hot-plugged nodes.
557  */
558 static node_registration_func_t __hugetlb_register_node;
559 static node_registration_func_t __hugetlb_unregister_node;
560
561 static inline bool hugetlb_register_node(struct node *node)
562 {
563         if (__hugetlb_register_node &&
564                         node_state(node->dev.id, N_MEMORY)) {
565                 __hugetlb_register_node(node);
566                 return true;
567         }
568         return false;
569 }
570
571 static inline void hugetlb_unregister_node(struct node *node)
572 {
573         if (__hugetlb_unregister_node)
574                 __hugetlb_unregister_node(node);
575 }
576
577 void register_hugetlbfs_with_node(node_registration_func_t doregister,
578                                   node_registration_func_t unregister)
579 {
580         __hugetlb_register_node   = doregister;
581         __hugetlb_unregister_node = unregister;
582 }
583 #else
584 static inline void hugetlb_register_node(struct node *node) {}
585
586 static inline void hugetlb_unregister_node(struct node *node) {}
587 #endif
588
589 static void node_device_release(struct device *dev)
590 {
591         struct node *node = to_node(dev);
592
593 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
594         /*
595          * We schedule the work only when a memory section is
596          * onlined/offlined on this node. When we come here,
597          * all the memory on this node has been offlined,
598          * so we won't enqueue new work to this work.
599          *
600          * The work is using node->node_work, so we should
601          * flush work before freeing the memory.
602          */
603         flush_work(&node->node_work);
604 #endif
605         kfree(node);
606 }
607
608 /*
609  * register_node - Setup a sysfs device for a node.
610  * @num - Node number to use when creating the device.
611  *
612  * Initialize and register the node device.
613  */
614 static int register_node(struct node *node, int num)
615 {
616         int error;
617
618         node->dev.id = num;
619         node->dev.bus = &node_subsys;
620         node->dev.release = node_device_release;
621         node->dev.groups = node_dev_groups;
622         error = device_register(&node->dev);
623
624         if (error)
625                 put_device(&node->dev);
626         else {
627                 hugetlb_register_node(node);
628
629                 compaction_register_node(node);
630         }
631         return error;
632 }
633
634 /**
635  * unregister_node - unregister a node device
636  * @node: node going away
637  *
638  * Unregisters a node device @node.  All the devices on the node must be
639  * unregistered before calling this function.
640  */
641 void unregister_node(struct node *node)
642 {
643         hugetlb_unregister_node(node);          /* no-op, if memoryless node */
644         node_remove_accesses(node);
645         node_remove_caches(node);
646         device_unregister(&node->dev);
647 }
648
649 struct node *node_devices[MAX_NUMNODES];
650
651 /*
652  * register cpu under node
653  */
654 int register_cpu_under_node(unsigned int cpu, unsigned int nid)
655 {
656         int ret;
657         struct device *obj;
658
659         if (!node_online(nid))
660                 return 0;
661
662         obj = get_cpu_device(cpu);
663         if (!obj)
664                 return 0;
665
666         ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
667                                 &obj->kobj,
668                                 kobject_name(&obj->kobj));
669         if (ret)
670                 return ret;
671
672         return sysfs_create_link(&obj->kobj,
673                                  &node_devices[nid]->dev.kobj,
674                                  kobject_name(&node_devices[nid]->dev.kobj));
675 }
676
677 /**
678  * register_memory_node_under_compute_node - link memory node to its compute
679  *                                           node for a given access class.
680  * @mem_nid:    Memory node number
681  * @cpu_nid:    Cpu  node number
682  * @access:     Access class to register
683  *
684  * Description:
685  *      For use with platforms that may have separate memory and compute nodes.
686  *      This function will export node relationships linking which memory
687  *      initiator nodes can access memory targets at a given ranked access
688  *      class.
689  */
690 int register_memory_node_under_compute_node(unsigned int mem_nid,
691                                             unsigned int cpu_nid,
692                                             unsigned access)
693 {
694         struct node *init_node, *targ_node;
695         struct node_access_nodes *initiator, *target;
696         int ret;
697
698         if (!node_online(cpu_nid) || !node_online(mem_nid))
699                 return -ENODEV;
700
701         init_node = node_devices[cpu_nid];
702         targ_node = node_devices[mem_nid];
703         initiator = node_init_node_access(init_node, access);
704         target = node_init_node_access(targ_node, access);
705         if (!initiator || !target)
706                 return -ENOMEM;
707
708         ret = sysfs_add_link_to_group(&initiator->dev.kobj, "targets",
709                                       &targ_node->dev.kobj,
710                                       dev_name(&targ_node->dev));
711         if (ret)
712                 return ret;
713
714         ret = sysfs_add_link_to_group(&target->dev.kobj, "initiators",
715                                       &init_node->dev.kobj,
716                                       dev_name(&init_node->dev));
717         if (ret)
718                 goto err;
719
720         return 0;
721  err:
722         sysfs_remove_link_from_group(&initiator->dev.kobj, "targets",
723                                      dev_name(&targ_node->dev));
724         return ret;
725 }
726
727 int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
728 {
729         struct device *obj;
730
731         if (!node_online(nid))
732                 return 0;
733
734         obj = get_cpu_device(cpu);
735         if (!obj)
736                 return 0;
737
738         sysfs_remove_link(&node_devices[nid]->dev.kobj,
739                           kobject_name(&obj->kobj));
740         sysfs_remove_link(&obj->kobj,
741                           kobject_name(&node_devices[nid]->dev.kobj));
742
743         return 0;
744 }
745
746 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
747 static int __ref get_nid_for_pfn(unsigned long pfn)
748 {
749         if (!pfn_valid_within(pfn))
750                 return -1;
751 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
752         if (system_state < SYSTEM_RUNNING)
753                 return early_pfn_to_nid(pfn);
754 #endif
755         return pfn_to_nid(pfn);
756 }
757
758 /* register memory section under specified node if it spans that node */
759 static int register_mem_sect_under_node(struct memory_block *mem_blk,
760                                          void *arg)
761 {
762         unsigned long memory_block_pfns = memory_block_size_bytes() / PAGE_SIZE;
763         unsigned long start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
764         unsigned long end_pfn = start_pfn + memory_block_pfns - 1;
765         int ret, nid = *(int *)arg;
766         unsigned long pfn;
767
768         for (pfn = start_pfn; pfn <= end_pfn; pfn++) {
769                 int page_nid;
770
771                 /*
772                  * memory block could have several absent sections from start.
773                  * skip pfn range from absent section
774                  */
775                 if (!pfn_present(pfn)) {
776                         pfn = round_down(pfn + PAGES_PER_SECTION,
777                                          PAGES_PER_SECTION) - 1;
778                         continue;
779                 }
780
781                 /*
782                  * We need to check if page belongs to nid only for the boot
783                  * case, during hotplug we know that all pages in the memory
784                  * block belong to the same node.
785                  */
786                 if (system_state == SYSTEM_BOOTING) {
787                         page_nid = get_nid_for_pfn(pfn);
788                         if (page_nid < 0)
789                                 continue;
790                         if (page_nid != nid)
791                                 continue;
792                 }
793
794                 /*
795                  * If this memory block spans multiple nodes, we only indicate
796                  * the last processed node.
797                  */
798                 mem_blk->nid = nid;
799
800                 ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
801                                         &mem_blk->dev.kobj,
802                                         kobject_name(&mem_blk->dev.kobj));
803                 if (ret)
804                         return ret;
805
806                 return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
807                                 &node_devices[nid]->dev.kobj,
808                                 kobject_name(&node_devices[nid]->dev.kobj));
809         }
810         /* mem section does not span the specified node */
811         return 0;
812 }
813
814 /*
815  * Unregister a memory block device under the node it spans. Memory blocks
816  * with multiple nodes cannot be offlined and therefore also never be removed.
817  */
818 void unregister_memory_block_under_nodes(struct memory_block *mem_blk)
819 {
820         if (mem_blk->nid == NUMA_NO_NODE)
821                 return;
822
823         sysfs_remove_link(&node_devices[mem_blk->nid]->dev.kobj,
824                           kobject_name(&mem_blk->dev.kobj));
825         sysfs_remove_link(&mem_blk->dev.kobj,
826                           kobject_name(&node_devices[mem_blk->nid]->dev.kobj));
827 }
828
829 int link_mem_sections(int nid, unsigned long start_pfn, unsigned long end_pfn)
830 {
831         return walk_memory_blocks(PFN_PHYS(start_pfn),
832                                   PFN_PHYS(end_pfn - start_pfn), (void *)&nid,
833                                   register_mem_sect_under_node);
834 }
835
836 #ifdef CONFIG_HUGETLBFS
837 /*
838  * Handle per node hstate attribute [un]registration on transistions
839  * to/from memoryless state.
840  */
841 static void node_hugetlb_work(struct work_struct *work)
842 {
843         struct node *node = container_of(work, struct node, node_work);
844
845         /*
846          * We only get here when a node transitions to/from memoryless state.
847          * We can detect which transition occurred by examining whether the
848          * node has memory now.  hugetlb_register_node() already check this
849          * so we try to register the attributes.  If that fails, then the
850          * node has transitioned to memoryless, try to unregister the
851          * attributes.
852          */
853         if (!hugetlb_register_node(node))
854                 hugetlb_unregister_node(node);
855 }
856
857 static void init_node_hugetlb_work(int nid)
858 {
859         INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
860 }
861
862 static int node_memory_callback(struct notifier_block *self,
863                                 unsigned long action, void *arg)
864 {
865         struct memory_notify *mnb = arg;
866         int nid = mnb->status_change_nid;
867
868         switch (action) {
869         case MEM_ONLINE:
870         case MEM_OFFLINE:
871                 /*
872                  * offload per node hstate [un]registration to a work thread
873                  * when transitioning to/from memoryless state.
874                  */
875                 if (nid != NUMA_NO_NODE)
876                         schedule_work(&node_devices[nid]->node_work);
877                 break;
878
879         case MEM_GOING_ONLINE:
880         case MEM_GOING_OFFLINE:
881         case MEM_CANCEL_ONLINE:
882         case MEM_CANCEL_OFFLINE:
883         default:
884                 break;
885         }
886
887         return NOTIFY_OK;
888 }
889 #endif  /* CONFIG_HUGETLBFS */
890 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
891
892 #if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
893     !defined(CONFIG_HUGETLBFS)
894 static inline int node_memory_callback(struct notifier_block *self,
895                                 unsigned long action, void *arg)
896 {
897         return NOTIFY_OK;
898 }
899
900 static void init_node_hugetlb_work(int nid) { }
901
902 #endif
903
904 int __register_one_node(int nid)
905 {
906         int error;
907         int cpu;
908
909         node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
910         if (!node_devices[nid])
911                 return -ENOMEM;
912
913         error = register_node(node_devices[nid], nid);
914
915         /* link cpu under this node */
916         for_each_present_cpu(cpu) {
917                 if (cpu_to_node(cpu) == nid)
918                         register_cpu_under_node(cpu, nid);
919         }
920
921         INIT_LIST_HEAD(&node_devices[nid]->access_list);
922         /* initialize work queue for memory hot plug */
923         init_node_hugetlb_work(nid);
924         node_init_caches(nid);
925
926         return error;
927 }
928
929 void unregister_one_node(int nid)
930 {
931         if (!node_devices[nid])
932                 return;
933
934         unregister_node(node_devices[nid]);
935         node_devices[nid] = NULL;
936 }
937
938 /*
939  * node states attributes
940  */
941
942 static ssize_t print_nodes_state(enum node_states state, char *buf)
943 {
944         int n;
945
946         n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
947                       nodemask_pr_args(&node_states[state]));
948         buf[n++] = '\n';
949         buf[n] = '\0';
950         return n;
951 }
952
953 struct node_attr {
954         struct device_attribute attr;
955         enum node_states state;
956 };
957
958 static ssize_t show_node_state(struct device *dev,
959                                struct device_attribute *attr, char *buf)
960 {
961         struct node_attr *na = container_of(attr, struct node_attr, attr);
962         return print_nodes_state(na->state, buf);
963 }
964
965 #define _NODE_ATTR(name, state) \
966         { __ATTR(name, 0444, show_node_state, NULL), state }
967
968 static struct node_attr node_state_attr[] = {
969         [N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
970         [N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
971         [N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
972 #ifdef CONFIG_HIGHMEM
973         [N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
974 #endif
975         [N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
976         [N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
977 };
978
979 static struct attribute *node_state_attrs[] = {
980         &node_state_attr[N_POSSIBLE].attr.attr,
981         &node_state_attr[N_ONLINE].attr.attr,
982         &node_state_attr[N_NORMAL_MEMORY].attr.attr,
983 #ifdef CONFIG_HIGHMEM
984         &node_state_attr[N_HIGH_MEMORY].attr.attr,
985 #endif
986         &node_state_attr[N_MEMORY].attr.attr,
987         &node_state_attr[N_CPU].attr.attr,
988         NULL
989 };
990
991 static struct attribute_group memory_root_attr_group = {
992         .attrs = node_state_attrs,
993 };
994
995 static const struct attribute_group *cpu_root_attr_groups[] = {
996         &memory_root_attr_group,
997         NULL,
998 };
999
1000 #define NODE_CALLBACK_PRI       2       /* lower than SLAB */
1001 static int __init register_node_type(void)
1002 {
1003         int ret;
1004
1005         BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
1006         BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
1007
1008         ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
1009         if (!ret) {
1010                 static struct notifier_block node_memory_callback_nb = {
1011                         .notifier_call = node_memory_callback,
1012                         .priority = NODE_CALLBACK_PRI,
1013                 };
1014                 register_hotmemory_notifier(&node_memory_callback_nb);
1015         }
1016
1017         /*
1018          * Note:  we're not going to unregister the node class if we fail
1019          * to register the node state class attribute files.
1020          */
1021         return ret;
1022 }
1023 postcore_initcall(register_node_type);