]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/null_blk_main.c
Merge tag 'drm-misc-fixes-2019-08-28' of git://anongit.freedesktop.org/drm/drm-misc...
[linux.git] / drivers / block / null_blk_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK             (PAGE_SECTORS - 1)
17
18 #define FREE_BATCH              16
19
20 #define TICKS_PER_SEC           50ULL
21 #define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
22
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 #endif
27
28 static inline u64 mb_per_tick(int mbps)
29 {
30         return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
37  * UP:          Device is currently on and visible in userspace.
38  * THROTTLED:   Device is being throttled.
39  * CACHE:       Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42         NULLB_DEV_FL_CONFIGURED = 0,
43         NULLB_DEV_FL_UP         = 1,
44         NULLB_DEV_FL_THROTTLED  = 2,
45         NULLB_DEV_FL_CACHE      = 3,
46 };
47
48 #define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:       The page holding the data.
53  * @bitmap:     The bitmap represents which sector in the page has data.
54  *              Each bit represents one block size. For example, sector 8
55  *              will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62         struct page *page;
63         DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75         NULL_IRQ_NONE           = 0,
76         NULL_IRQ_SOFTIRQ        = 1,
77         NULL_IRQ_TIMER          = 2,
78 };
79
80 enum {
81         NULL_Q_BIO              = 0,
82         NULL_Q_RQ               = 1,
83         NULL_Q_MQ               = 2,
84 };
85
86 static int g_no_sched;
87 module_param_named(no_sched, g_no_sched, int, 0444);
88 MODULE_PARM_DESC(no_sched, "No io scheduler");
89
90 static int g_submit_queues = 1;
91 module_param_named(submit_queues, g_submit_queues, int, 0444);
92 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
93
94 static int g_home_node = NUMA_NO_NODE;
95 module_param_named(home_node, g_home_node, int, 0444);
96 MODULE_PARM_DESC(home_node, "Home node for the device");
97
98 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
99 static char g_timeout_str[80];
100 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
101
102 static char g_requeue_str[80];
103 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
104 #endif
105
106 static int g_queue_mode = NULL_Q_MQ;
107
108 static int null_param_store_val(const char *str, int *val, int min, int max)
109 {
110         int ret, new_val;
111
112         ret = kstrtoint(str, 10, &new_val);
113         if (ret)
114                 return -EINVAL;
115
116         if (new_val < min || new_val > max)
117                 return -EINVAL;
118
119         *val = new_val;
120         return 0;
121 }
122
123 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
124 {
125         return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
126 }
127
128 static const struct kernel_param_ops null_queue_mode_param_ops = {
129         .set    = null_set_queue_mode,
130         .get    = param_get_int,
131 };
132
133 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
134 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
135
136 static int g_gb = 250;
137 module_param_named(gb, g_gb, int, 0444);
138 MODULE_PARM_DESC(gb, "Size in GB");
139
140 static int g_bs = 512;
141 module_param_named(bs, g_bs, int, 0444);
142 MODULE_PARM_DESC(bs, "Block size (in bytes)");
143
144 static int nr_devices = 1;
145 module_param(nr_devices, int, 0444);
146 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
147
148 static bool g_blocking;
149 module_param_named(blocking, g_blocking, bool, 0444);
150 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
151
152 static bool shared_tags;
153 module_param(shared_tags, bool, 0444);
154 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
155
156 static int g_irqmode = NULL_IRQ_SOFTIRQ;
157
158 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
159 {
160         return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
161                                         NULL_IRQ_TIMER);
162 }
163
164 static const struct kernel_param_ops null_irqmode_param_ops = {
165         .set    = null_set_irqmode,
166         .get    = param_get_int,
167 };
168
169 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
170 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
171
172 static unsigned long g_completion_nsec = 10000;
173 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
174 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
175
176 static int g_hw_queue_depth = 64;
177 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
178 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
179
180 static bool g_use_per_node_hctx;
181 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
182 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
183
184 static bool g_zoned;
185 module_param_named(zoned, g_zoned, bool, S_IRUGO);
186 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
187
188 static unsigned long g_zone_size = 256;
189 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
190 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
191
192 static unsigned int g_zone_nr_conv;
193 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
194 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
195
196 static struct nullb_device *null_alloc_dev(void);
197 static void null_free_dev(struct nullb_device *dev);
198 static void null_del_dev(struct nullb *nullb);
199 static int null_add_dev(struct nullb_device *dev);
200 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
201
202 static inline struct nullb_device *to_nullb_device(struct config_item *item)
203 {
204         return item ? container_of(item, struct nullb_device, item) : NULL;
205 }
206
207 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
208 {
209         return snprintf(page, PAGE_SIZE, "%u\n", val);
210 }
211
212 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
213         char *page)
214 {
215         return snprintf(page, PAGE_SIZE, "%lu\n", val);
216 }
217
218 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
219 {
220         return snprintf(page, PAGE_SIZE, "%u\n", val);
221 }
222
223 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
224         const char *page, size_t count)
225 {
226         unsigned int tmp;
227         int result;
228
229         result = kstrtouint(page, 0, &tmp);
230         if (result)
231                 return result;
232
233         *val = tmp;
234         return count;
235 }
236
237 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
238         const char *page, size_t count)
239 {
240         int result;
241         unsigned long tmp;
242
243         result = kstrtoul(page, 0, &tmp);
244         if (result)
245                 return result;
246
247         *val = tmp;
248         return count;
249 }
250
251 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
252         size_t count)
253 {
254         bool tmp;
255         int result;
256
257         result = kstrtobool(page,  &tmp);
258         if (result)
259                 return result;
260
261         *val = tmp;
262         return count;
263 }
264
265 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
266 #define NULLB_DEVICE_ATTR(NAME, TYPE)                                           \
267 static ssize_t                                                                  \
268 nullb_device_##NAME##_show(struct config_item *item, char *page)                \
269 {                                                                               \
270         return nullb_device_##TYPE##_attr_show(                                 \
271                                 to_nullb_device(item)->NAME, page);             \
272 }                                                                               \
273 static ssize_t                                                                  \
274 nullb_device_##NAME##_store(struct config_item *item, const char *page,         \
275                             size_t count)                                       \
276 {                                                                               \
277         if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags))   \
278                 return -EBUSY;                                                  \
279         return nullb_device_##TYPE##_attr_store(                                \
280                         &to_nullb_device(item)->NAME, page, count);             \
281 }                                                                               \
282 CONFIGFS_ATTR(nullb_device_, NAME);
283
284 NULLB_DEVICE_ATTR(size, ulong);
285 NULLB_DEVICE_ATTR(completion_nsec, ulong);
286 NULLB_DEVICE_ATTR(submit_queues, uint);
287 NULLB_DEVICE_ATTR(home_node, uint);
288 NULLB_DEVICE_ATTR(queue_mode, uint);
289 NULLB_DEVICE_ATTR(blocksize, uint);
290 NULLB_DEVICE_ATTR(irqmode, uint);
291 NULLB_DEVICE_ATTR(hw_queue_depth, uint);
292 NULLB_DEVICE_ATTR(index, uint);
293 NULLB_DEVICE_ATTR(blocking, bool);
294 NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
295 NULLB_DEVICE_ATTR(memory_backed, bool);
296 NULLB_DEVICE_ATTR(discard, bool);
297 NULLB_DEVICE_ATTR(mbps, uint);
298 NULLB_DEVICE_ATTR(cache_size, ulong);
299 NULLB_DEVICE_ATTR(zoned, bool);
300 NULLB_DEVICE_ATTR(zone_size, ulong);
301 NULLB_DEVICE_ATTR(zone_nr_conv, uint);
302
303 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
304 {
305         return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
306 }
307
308 static ssize_t nullb_device_power_store(struct config_item *item,
309                                      const char *page, size_t count)
310 {
311         struct nullb_device *dev = to_nullb_device(item);
312         bool newp = false;
313         ssize_t ret;
314
315         ret = nullb_device_bool_attr_store(&newp, page, count);
316         if (ret < 0)
317                 return ret;
318
319         if (!dev->power && newp) {
320                 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
321                         return count;
322                 if (null_add_dev(dev)) {
323                         clear_bit(NULLB_DEV_FL_UP, &dev->flags);
324                         return -ENOMEM;
325                 }
326
327                 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
328                 dev->power = newp;
329         } else if (dev->power && !newp) {
330                 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
331                         mutex_lock(&lock);
332                         dev->power = newp;
333                         null_del_dev(dev->nullb);
334                         mutex_unlock(&lock);
335                 }
336                 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
337         }
338
339         return count;
340 }
341
342 CONFIGFS_ATTR(nullb_device_, power);
343
344 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
345 {
346         struct nullb_device *t_dev = to_nullb_device(item);
347
348         return badblocks_show(&t_dev->badblocks, page, 0);
349 }
350
351 static ssize_t nullb_device_badblocks_store(struct config_item *item,
352                                      const char *page, size_t count)
353 {
354         struct nullb_device *t_dev = to_nullb_device(item);
355         char *orig, *buf, *tmp;
356         u64 start, end;
357         int ret;
358
359         orig = kstrndup(page, count, GFP_KERNEL);
360         if (!orig)
361                 return -ENOMEM;
362
363         buf = strstrip(orig);
364
365         ret = -EINVAL;
366         if (buf[0] != '+' && buf[0] != '-')
367                 goto out;
368         tmp = strchr(&buf[1], '-');
369         if (!tmp)
370                 goto out;
371         *tmp = '\0';
372         ret = kstrtoull(buf + 1, 0, &start);
373         if (ret)
374                 goto out;
375         ret = kstrtoull(tmp + 1, 0, &end);
376         if (ret)
377                 goto out;
378         ret = -EINVAL;
379         if (start > end)
380                 goto out;
381         /* enable badblocks */
382         cmpxchg(&t_dev->badblocks.shift, -1, 0);
383         if (buf[0] == '+')
384                 ret = badblocks_set(&t_dev->badblocks, start,
385                         end - start + 1, 1);
386         else
387                 ret = badblocks_clear(&t_dev->badblocks, start,
388                         end - start + 1);
389         if (ret == 0)
390                 ret = count;
391 out:
392         kfree(orig);
393         return ret;
394 }
395 CONFIGFS_ATTR(nullb_device_, badblocks);
396
397 static struct configfs_attribute *nullb_device_attrs[] = {
398         &nullb_device_attr_size,
399         &nullb_device_attr_completion_nsec,
400         &nullb_device_attr_submit_queues,
401         &nullb_device_attr_home_node,
402         &nullb_device_attr_queue_mode,
403         &nullb_device_attr_blocksize,
404         &nullb_device_attr_irqmode,
405         &nullb_device_attr_hw_queue_depth,
406         &nullb_device_attr_index,
407         &nullb_device_attr_blocking,
408         &nullb_device_attr_use_per_node_hctx,
409         &nullb_device_attr_power,
410         &nullb_device_attr_memory_backed,
411         &nullb_device_attr_discard,
412         &nullb_device_attr_mbps,
413         &nullb_device_attr_cache_size,
414         &nullb_device_attr_badblocks,
415         &nullb_device_attr_zoned,
416         &nullb_device_attr_zone_size,
417         &nullb_device_attr_zone_nr_conv,
418         NULL,
419 };
420
421 static void nullb_device_release(struct config_item *item)
422 {
423         struct nullb_device *dev = to_nullb_device(item);
424
425         null_free_device_storage(dev, false);
426         null_free_dev(dev);
427 }
428
429 static struct configfs_item_operations nullb_device_ops = {
430         .release        = nullb_device_release,
431 };
432
433 static const struct config_item_type nullb_device_type = {
434         .ct_item_ops    = &nullb_device_ops,
435         .ct_attrs       = nullb_device_attrs,
436         .ct_owner       = THIS_MODULE,
437 };
438
439 static struct
440 config_item *nullb_group_make_item(struct config_group *group, const char *name)
441 {
442         struct nullb_device *dev;
443
444         dev = null_alloc_dev();
445         if (!dev)
446                 return ERR_PTR(-ENOMEM);
447
448         config_item_init_type_name(&dev->item, name, &nullb_device_type);
449
450         return &dev->item;
451 }
452
453 static void
454 nullb_group_drop_item(struct config_group *group, struct config_item *item)
455 {
456         struct nullb_device *dev = to_nullb_device(item);
457
458         if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
459                 mutex_lock(&lock);
460                 dev->power = false;
461                 null_del_dev(dev->nullb);
462                 mutex_unlock(&lock);
463         }
464
465         config_item_put(item);
466 }
467
468 static ssize_t memb_group_features_show(struct config_item *item, char *page)
469 {
470         return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
471 }
472
473 CONFIGFS_ATTR_RO(memb_group_, features);
474
475 static struct configfs_attribute *nullb_group_attrs[] = {
476         &memb_group_attr_features,
477         NULL,
478 };
479
480 static struct configfs_group_operations nullb_group_ops = {
481         .make_item      = nullb_group_make_item,
482         .drop_item      = nullb_group_drop_item,
483 };
484
485 static const struct config_item_type nullb_group_type = {
486         .ct_group_ops   = &nullb_group_ops,
487         .ct_attrs       = nullb_group_attrs,
488         .ct_owner       = THIS_MODULE,
489 };
490
491 static struct configfs_subsystem nullb_subsys = {
492         .su_group = {
493                 .cg_item = {
494                         .ci_namebuf = "nullb",
495                         .ci_type = &nullb_group_type,
496                 },
497         },
498 };
499
500 static inline int null_cache_active(struct nullb *nullb)
501 {
502         return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
503 }
504
505 static struct nullb_device *null_alloc_dev(void)
506 {
507         struct nullb_device *dev;
508
509         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
510         if (!dev)
511                 return NULL;
512         INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
513         INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
514         if (badblocks_init(&dev->badblocks, 0)) {
515                 kfree(dev);
516                 return NULL;
517         }
518
519         dev->size = g_gb * 1024;
520         dev->completion_nsec = g_completion_nsec;
521         dev->submit_queues = g_submit_queues;
522         dev->home_node = g_home_node;
523         dev->queue_mode = g_queue_mode;
524         dev->blocksize = g_bs;
525         dev->irqmode = g_irqmode;
526         dev->hw_queue_depth = g_hw_queue_depth;
527         dev->blocking = g_blocking;
528         dev->use_per_node_hctx = g_use_per_node_hctx;
529         dev->zoned = g_zoned;
530         dev->zone_size = g_zone_size;
531         dev->zone_nr_conv = g_zone_nr_conv;
532         return dev;
533 }
534
535 static void null_free_dev(struct nullb_device *dev)
536 {
537         if (!dev)
538                 return;
539
540         null_zone_exit(dev);
541         badblocks_exit(&dev->badblocks);
542         kfree(dev);
543 }
544
545 static void put_tag(struct nullb_queue *nq, unsigned int tag)
546 {
547         clear_bit_unlock(tag, nq->tag_map);
548
549         if (waitqueue_active(&nq->wait))
550                 wake_up(&nq->wait);
551 }
552
553 static unsigned int get_tag(struct nullb_queue *nq)
554 {
555         unsigned int tag;
556
557         do {
558                 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
559                 if (tag >= nq->queue_depth)
560                         return -1U;
561         } while (test_and_set_bit_lock(tag, nq->tag_map));
562
563         return tag;
564 }
565
566 static void free_cmd(struct nullb_cmd *cmd)
567 {
568         put_tag(cmd->nq, cmd->tag);
569 }
570
571 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
572
573 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
574 {
575         struct nullb_cmd *cmd;
576         unsigned int tag;
577
578         tag = get_tag(nq);
579         if (tag != -1U) {
580                 cmd = &nq->cmds[tag];
581                 cmd->tag = tag;
582                 cmd->nq = nq;
583                 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
584                         hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
585                                      HRTIMER_MODE_REL);
586                         cmd->timer.function = null_cmd_timer_expired;
587                 }
588                 return cmd;
589         }
590
591         return NULL;
592 }
593
594 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
595 {
596         struct nullb_cmd *cmd;
597         DEFINE_WAIT(wait);
598
599         cmd = __alloc_cmd(nq);
600         if (cmd || !can_wait)
601                 return cmd;
602
603         do {
604                 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
605                 cmd = __alloc_cmd(nq);
606                 if (cmd)
607                         break;
608
609                 io_schedule();
610         } while (1);
611
612         finish_wait(&nq->wait, &wait);
613         return cmd;
614 }
615
616 static void end_cmd(struct nullb_cmd *cmd)
617 {
618         int queue_mode = cmd->nq->dev->queue_mode;
619
620         switch (queue_mode)  {
621         case NULL_Q_MQ:
622                 blk_mq_end_request(cmd->rq, cmd->error);
623                 return;
624         case NULL_Q_BIO:
625                 cmd->bio->bi_status = cmd->error;
626                 bio_endio(cmd->bio);
627                 break;
628         }
629
630         free_cmd(cmd);
631 }
632
633 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
634 {
635         end_cmd(container_of(timer, struct nullb_cmd, timer));
636
637         return HRTIMER_NORESTART;
638 }
639
640 static void null_cmd_end_timer(struct nullb_cmd *cmd)
641 {
642         ktime_t kt = cmd->nq->dev->completion_nsec;
643
644         hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
645 }
646
647 static void null_complete_rq(struct request *rq)
648 {
649         end_cmd(blk_mq_rq_to_pdu(rq));
650 }
651
652 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
653 {
654         struct nullb_page *t_page;
655
656         t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
657         if (!t_page)
658                 goto out;
659
660         t_page->page = alloc_pages(gfp_flags, 0);
661         if (!t_page->page)
662                 goto out_freepage;
663
664         memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
665         return t_page;
666 out_freepage:
667         kfree(t_page);
668 out:
669         return NULL;
670 }
671
672 static void null_free_page(struct nullb_page *t_page)
673 {
674         __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
675         if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
676                 return;
677         __free_page(t_page->page);
678         kfree(t_page);
679 }
680
681 static bool null_page_empty(struct nullb_page *page)
682 {
683         int size = MAP_SZ - 2;
684
685         return find_first_bit(page->bitmap, size) == size;
686 }
687
688 static void null_free_sector(struct nullb *nullb, sector_t sector,
689         bool is_cache)
690 {
691         unsigned int sector_bit;
692         u64 idx;
693         struct nullb_page *t_page, *ret;
694         struct radix_tree_root *root;
695
696         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
697         idx = sector >> PAGE_SECTORS_SHIFT;
698         sector_bit = (sector & SECTOR_MASK);
699
700         t_page = radix_tree_lookup(root, idx);
701         if (t_page) {
702                 __clear_bit(sector_bit, t_page->bitmap);
703
704                 if (null_page_empty(t_page)) {
705                         ret = radix_tree_delete_item(root, idx, t_page);
706                         WARN_ON(ret != t_page);
707                         null_free_page(ret);
708                         if (is_cache)
709                                 nullb->dev->curr_cache -= PAGE_SIZE;
710                 }
711         }
712 }
713
714 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
715         struct nullb_page *t_page, bool is_cache)
716 {
717         struct radix_tree_root *root;
718
719         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
720
721         if (radix_tree_insert(root, idx, t_page)) {
722                 null_free_page(t_page);
723                 t_page = radix_tree_lookup(root, idx);
724                 WARN_ON(!t_page || t_page->page->index != idx);
725         } else if (is_cache)
726                 nullb->dev->curr_cache += PAGE_SIZE;
727
728         return t_page;
729 }
730
731 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
732 {
733         unsigned long pos = 0;
734         int nr_pages;
735         struct nullb_page *ret, *t_pages[FREE_BATCH];
736         struct radix_tree_root *root;
737
738         root = is_cache ? &dev->cache : &dev->data;
739
740         do {
741                 int i;
742
743                 nr_pages = radix_tree_gang_lookup(root,
744                                 (void **)t_pages, pos, FREE_BATCH);
745
746                 for (i = 0; i < nr_pages; i++) {
747                         pos = t_pages[i]->page->index;
748                         ret = radix_tree_delete_item(root, pos, t_pages[i]);
749                         WARN_ON(ret != t_pages[i]);
750                         null_free_page(ret);
751                 }
752
753                 pos++;
754         } while (nr_pages == FREE_BATCH);
755
756         if (is_cache)
757                 dev->curr_cache = 0;
758 }
759
760 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
761         sector_t sector, bool for_write, bool is_cache)
762 {
763         unsigned int sector_bit;
764         u64 idx;
765         struct nullb_page *t_page;
766         struct radix_tree_root *root;
767
768         idx = sector >> PAGE_SECTORS_SHIFT;
769         sector_bit = (sector & SECTOR_MASK);
770
771         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
772         t_page = radix_tree_lookup(root, idx);
773         WARN_ON(t_page && t_page->page->index != idx);
774
775         if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
776                 return t_page;
777
778         return NULL;
779 }
780
781 static struct nullb_page *null_lookup_page(struct nullb *nullb,
782         sector_t sector, bool for_write, bool ignore_cache)
783 {
784         struct nullb_page *page = NULL;
785
786         if (!ignore_cache)
787                 page = __null_lookup_page(nullb, sector, for_write, true);
788         if (page)
789                 return page;
790         return __null_lookup_page(nullb, sector, for_write, false);
791 }
792
793 static struct nullb_page *null_insert_page(struct nullb *nullb,
794                                            sector_t sector, bool ignore_cache)
795         __releases(&nullb->lock)
796         __acquires(&nullb->lock)
797 {
798         u64 idx;
799         struct nullb_page *t_page;
800
801         t_page = null_lookup_page(nullb, sector, true, ignore_cache);
802         if (t_page)
803                 return t_page;
804
805         spin_unlock_irq(&nullb->lock);
806
807         t_page = null_alloc_page(GFP_NOIO);
808         if (!t_page)
809                 goto out_lock;
810
811         if (radix_tree_preload(GFP_NOIO))
812                 goto out_freepage;
813
814         spin_lock_irq(&nullb->lock);
815         idx = sector >> PAGE_SECTORS_SHIFT;
816         t_page->page->index = idx;
817         t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
818         radix_tree_preload_end();
819
820         return t_page;
821 out_freepage:
822         null_free_page(t_page);
823 out_lock:
824         spin_lock_irq(&nullb->lock);
825         return null_lookup_page(nullb, sector, true, ignore_cache);
826 }
827
828 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
829 {
830         int i;
831         unsigned int offset;
832         u64 idx;
833         struct nullb_page *t_page, *ret;
834         void *dst, *src;
835
836         idx = c_page->page->index;
837
838         t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
839
840         __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
841         if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
842                 null_free_page(c_page);
843                 if (t_page && null_page_empty(t_page)) {
844                         ret = radix_tree_delete_item(&nullb->dev->data,
845                                 idx, t_page);
846                         null_free_page(t_page);
847                 }
848                 return 0;
849         }
850
851         if (!t_page)
852                 return -ENOMEM;
853
854         src = kmap_atomic(c_page->page);
855         dst = kmap_atomic(t_page->page);
856
857         for (i = 0; i < PAGE_SECTORS;
858                         i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
859                 if (test_bit(i, c_page->bitmap)) {
860                         offset = (i << SECTOR_SHIFT);
861                         memcpy(dst + offset, src + offset,
862                                 nullb->dev->blocksize);
863                         __set_bit(i, t_page->bitmap);
864                 }
865         }
866
867         kunmap_atomic(dst);
868         kunmap_atomic(src);
869
870         ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
871         null_free_page(ret);
872         nullb->dev->curr_cache -= PAGE_SIZE;
873
874         return 0;
875 }
876
877 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
878 {
879         int i, err, nr_pages;
880         struct nullb_page *c_pages[FREE_BATCH];
881         unsigned long flushed = 0, one_round;
882
883 again:
884         if ((nullb->dev->cache_size * 1024 * 1024) >
885              nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
886                 return 0;
887
888         nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
889                         (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
890         /*
891          * nullb_flush_cache_page could unlock before using the c_pages. To
892          * avoid race, we don't allow page free
893          */
894         for (i = 0; i < nr_pages; i++) {
895                 nullb->cache_flush_pos = c_pages[i]->page->index;
896                 /*
897                  * We found the page which is being flushed to disk by other
898                  * threads
899                  */
900                 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
901                         c_pages[i] = NULL;
902                 else
903                         __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
904         }
905
906         one_round = 0;
907         for (i = 0; i < nr_pages; i++) {
908                 if (c_pages[i] == NULL)
909                         continue;
910                 err = null_flush_cache_page(nullb, c_pages[i]);
911                 if (err)
912                         return err;
913                 one_round++;
914         }
915         flushed += one_round << PAGE_SHIFT;
916
917         if (n > flushed) {
918                 if (nr_pages == 0)
919                         nullb->cache_flush_pos = 0;
920                 if (one_round == 0) {
921                         /* give other threads a chance */
922                         spin_unlock_irq(&nullb->lock);
923                         spin_lock_irq(&nullb->lock);
924                 }
925                 goto again;
926         }
927         return 0;
928 }
929
930 static int copy_to_nullb(struct nullb *nullb, struct page *source,
931         unsigned int off, sector_t sector, size_t n, bool is_fua)
932 {
933         size_t temp, count = 0;
934         unsigned int offset;
935         struct nullb_page *t_page;
936         void *dst, *src;
937
938         while (count < n) {
939                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
940
941                 if (null_cache_active(nullb) && !is_fua)
942                         null_make_cache_space(nullb, PAGE_SIZE);
943
944                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
945                 t_page = null_insert_page(nullb, sector,
946                         !null_cache_active(nullb) || is_fua);
947                 if (!t_page)
948                         return -ENOSPC;
949
950                 src = kmap_atomic(source);
951                 dst = kmap_atomic(t_page->page);
952                 memcpy(dst + offset, src + off + count, temp);
953                 kunmap_atomic(dst);
954                 kunmap_atomic(src);
955
956                 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
957
958                 if (is_fua)
959                         null_free_sector(nullb, sector, true);
960
961                 count += temp;
962                 sector += temp >> SECTOR_SHIFT;
963         }
964         return 0;
965 }
966
967 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
968         unsigned int off, sector_t sector, size_t n)
969 {
970         size_t temp, count = 0;
971         unsigned int offset;
972         struct nullb_page *t_page;
973         void *dst, *src;
974
975         while (count < n) {
976                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
977
978                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
979                 t_page = null_lookup_page(nullb, sector, false,
980                         !null_cache_active(nullb));
981
982                 dst = kmap_atomic(dest);
983                 if (!t_page) {
984                         memset(dst + off + count, 0, temp);
985                         goto next;
986                 }
987                 src = kmap_atomic(t_page->page);
988                 memcpy(dst + off + count, src + offset, temp);
989                 kunmap_atomic(src);
990 next:
991                 kunmap_atomic(dst);
992
993                 count += temp;
994                 sector += temp >> SECTOR_SHIFT;
995         }
996         return 0;
997 }
998
999 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1000 {
1001         size_t temp;
1002
1003         spin_lock_irq(&nullb->lock);
1004         while (n > 0) {
1005                 temp = min_t(size_t, n, nullb->dev->blocksize);
1006                 null_free_sector(nullb, sector, false);
1007                 if (null_cache_active(nullb))
1008                         null_free_sector(nullb, sector, true);
1009                 sector += temp >> SECTOR_SHIFT;
1010                 n -= temp;
1011         }
1012         spin_unlock_irq(&nullb->lock);
1013 }
1014
1015 static int null_handle_flush(struct nullb *nullb)
1016 {
1017         int err;
1018
1019         if (!null_cache_active(nullb))
1020                 return 0;
1021
1022         spin_lock_irq(&nullb->lock);
1023         while (true) {
1024                 err = null_make_cache_space(nullb,
1025                         nullb->dev->cache_size * 1024 * 1024);
1026                 if (err || nullb->dev->curr_cache == 0)
1027                         break;
1028         }
1029
1030         WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1031         spin_unlock_irq(&nullb->lock);
1032         return err;
1033 }
1034
1035 static int null_transfer(struct nullb *nullb, struct page *page,
1036         unsigned int len, unsigned int off, bool is_write, sector_t sector,
1037         bool is_fua)
1038 {
1039         int err = 0;
1040
1041         if (!is_write) {
1042                 err = copy_from_nullb(nullb, page, off, sector, len);
1043                 flush_dcache_page(page);
1044         } else {
1045                 flush_dcache_page(page);
1046                 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1047         }
1048
1049         return err;
1050 }
1051
1052 static int null_handle_rq(struct nullb_cmd *cmd)
1053 {
1054         struct request *rq = cmd->rq;
1055         struct nullb *nullb = cmd->nq->dev->nullb;
1056         int err;
1057         unsigned int len;
1058         sector_t sector;
1059         struct req_iterator iter;
1060         struct bio_vec bvec;
1061
1062         sector = blk_rq_pos(rq);
1063
1064         if (req_op(rq) == REQ_OP_DISCARD) {
1065                 null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1066                 return 0;
1067         }
1068
1069         spin_lock_irq(&nullb->lock);
1070         rq_for_each_segment(bvec, rq, iter) {
1071                 len = bvec.bv_len;
1072                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1073                                      op_is_write(req_op(rq)), sector,
1074                                      req_op(rq) & REQ_FUA);
1075                 if (err) {
1076                         spin_unlock_irq(&nullb->lock);
1077                         return err;
1078                 }
1079                 sector += len >> SECTOR_SHIFT;
1080         }
1081         spin_unlock_irq(&nullb->lock);
1082
1083         return 0;
1084 }
1085
1086 static int null_handle_bio(struct nullb_cmd *cmd)
1087 {
1088         struct bio *bio = cmd->bio;
1089         struct nullb *nullb = cmd->nq->dev->nullb;
1090         int err;
1091         unsigned int len;
1092         sector_t sector;
1093         struct bio_vec bvec;
1094         struct bvec_iter iter;
1095
1096         sector = bio->bi_iter.bi_sector;
1097
1098         if (bio_op(bio) == REQ_OP_DISCARD) {
1099                 null_handle_discard(nullb, sector,
1100                         bio_sectors(bio) << SECTOR_SHIFT);
1101                 return 0;
1102         }
1103
1104         spin_lock_irq(&nullb->lock);
1105         bio_for_each_segment(bvec, bio, iter) {
1106                 len = bvec.bv_len;
1107                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1108                                      op_is_write(bio_op(bio)), sector,
1109                                      bio->bi_opf & REQ_FUA);
1110                 if (err) {
1111                         spin_unlock_irq(&nullb->lock);
1112                         return err;
1113                 }
1114                 sector += len >> SECTOR_SHIFT;
1115         }
1116         spin_unlock_irq(&nullb->lock);
1117         return 0;
1118 }
1119
1120 static void null_stop_queue(struct nullb *nullb)
1121 {
1122         struct request_queue *q = nullb->q;
1123
1124         if (nullb->dev->queue_mode == NULL_Q_MQ)
1125                 blk_mq_stop_hw_queues(q);
1126 }
1127
1128 static void null_restart_queue_async(struct nullb *nullb)
1129 {
1130         struct request_queue *q = nullb->q;
1131
1132         if (nullb->dev->queue_mode == NULL_Q_MQ)
1133                 blk_mq_start_stopped_hw_queues(q, true);
1134 }
1135
1136 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
1137 {
1138         struct nullb_device *dev = cmd->nq->dev;
1139         struct nullb *nullb = dev->nullb;
1140         int err = 0;
1141
1142         if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1143                 struct request *rq = cmd->rq;
1144
1145                 if (!hrtimer_active(&nullb->bw_timer))
1146                         hrtimer_restart(&nullb->bw_timer);
1147
1148                 if (atomic_long_sub_return(blk_rq_bytes(rq),
1149                                 &nullb->cur_bytes) < 0) {
1150                         null_stop_queue(nullb);
1151                         /* race with timer */
1152                         if (atomic_long_read(&nullb->cur_bytes) > 0)
1153                                 null_restart_queue_async(nullb);
1154                         /* requeue request */
1155                         return BLK_STS_DEV_RESOURCE;
1156                 }
1157         }
1158
1159         if (nullb->dev->badblocks.shift != -1) {
1160                 int bad_sectors;
1161                 sector_t sector, size, first_bad;
1162                 bool is_flush = true;
1163
1164                 if (dev->queue_mode == NULL_Q_BIO &&
1165                                 bio_op(cmd->bio) != REQ_OP_FLUSH) {
1166                         is_flush = false;
1167                         sector = cmd->bio->bi_iter.bi_sector;
1168                         size = bio_sectors(cmd->bio);
1169                 }
1170                 if (dev->queue_mode != NULL_Q_BIO &&
1171                                 req_op(cmd->rq) != REQ_OP_FLUSH) {
1172                         is_flush = false;
1173                         sector = blk_rq_pos(cmd->rq);
1174                         size = blk_rq_sectors(cmd->rq);
1175                 }
1176                 if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
1177                                 size, &first_bad, &bad_sectors)) {
1178                         cmd->error = BLK_STS_IOERR;
1179                         goto out;
1180                 }
1181         }
1182
1183         if (dev->memory_backed) {
1184                 if (dev->queue_mode == NULL_Q_BIO) {
1185                         if (bio_op(cmd->bio) == REQ_OP_FLUSH)
1186                                 err = null_handle_flush(nullb);
1187                         else
1188                                 err = null_handle_bio(cmd);
1189                 } else {
1190                         if (req_op(cmd->rq) == REQ_OP_FLUSH)
1191                                 err = null_handle_flush(nullb);
1192                         else
1193                                 err = null_handle_rq(cmd);
1194                 }
1195         }
1196         cmd->error = errno_to_blk_status(err);
1197
1198         if (!cmd->error && dev->zoned) {
1199                 sector_t sector;
1200                 unsigned int nr_sectors;
1201                 enum req_opf op;
1202
1203                 if (dev->queue_mode == NULL_Q_BIO) {
1204                         op = bio_op(cmd->bio);
1205                         sector = cmd->bio->bi_iter.bi_sector;
1206                         nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
1207                 } else {
1208                         op = req_op(cmd->rq);
1209                         sector = blk_rq_pos(cmd->rq);
1210                         nr_sectors = blk_rq_sectors(cmd->rq);
1211                 }
1212
1213                 if (op == REQ_OP_WRITE)
1214                         null_zone_write(cmd, sector, nr_sectors);
1215                 else if (op == REQ_OP_ZONE_RESET)
1216                         null_zone_reset(cmd, sector);
1217         }
1218 out:
1219         /* Complete IO by inline, softirq or timer */
1220         switch (dev->irqmode) {
1221         case NULL_IRQ_SOFTIRQ:
1222                 switch (dev->queue_mode)  {
1223                 case NULL_Q_MQ:
1224                         blk_mq_complete_request(cmd->rq);
1225                         break;
1226                 case NULL_Q_BIO:
1227                         /*
1228                          * XXX: no proper submitting cpu information available.
1229                          */
1230                         end_cmd(cmd);
1231                         break;
1232                 }
1233                 break;
1234         case NULL_IRQ_NONE:
1235                 end_cmd(cmd);
1236                 break;
1237         case NULL_IRQ_TIMER:
1238                 null_cmd_end_timer(cmd);
1239                 break;
1240         }
1241         return BLK_STS_OK;
1242 }
1243
1244 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1245 {
1246         struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1247         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1248         unsigned int mbps = nullb->dev->mbps;
1249
1250         if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1251                 return HRTIMER_NORESTART;
1252
1253         atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1254         null_restart_queue_async(nullb);
1255
1256         hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1257
1258         return HRTIMER_RESTART;
1259 }
1260
1261 static void nullb_setup_bwtimer(struct nullb *nullb)
1262 {
1263         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1264
1265         hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1266         nullb->bw_timer.function = nullb_bwtimer_fn;
1267         atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1268         hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1269 }
1270
1271 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1272 {
1273         int index = 0;
1274
1275         if (nullb->nr_queues != 1)
1276                 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1277
1278         return &nullb->queues[index];
1279 }
1280
1281 static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1282 {
1283         struct nullb *nullb = q->queuedata;
1284         struct nullb_queue *nq = nullb_to_queue(nullb);
1285         struct nullb_cmd *cmd;
1286
1287         cmd = alloc_cmd(nq, 1);
1288         cmd->bio = bio;
1289
1290         null_handle_cmd(cmd);
1291         return BLK_QC_T_NONE;
1292 }
1293
1294 static bool should_timeout_request(struct request *rq)
1295 {
1296 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1297         if (g_timeout_str[0])
1298                 return should_fail(&null_timeout_attr, 1);
1299 #endif
1300         return false;
1301 }
1302
1303 static bool should_requeue_request(struct request *rq)
1304 {
1305 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1306         if (g_requeue_str[0])
1307                 return should_fail(&null_requeue_attr, 1);
1308 #endif
1309         return false;
1310 }
1311
1312 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1313 {
1314         pr_info("null: rq %p timed out\n", rq);
1315         blk_mq_complete_request(rq);
1316         return BLK_EH_DONE;
1317 }
1318
1319 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1320                          const struct blk_mq_queue_data *bd)
1321 {
1322         struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1323         struct nullb_queue *nq = hctx->driver_data;
1324
1325         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1326
1327         if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1328                 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1329                 cmd->timer.function = null_cmd_timer_expired;
1330         }
1331         cmd->rq = bd->rq;
1332         cmd->nq = nq;
1333
1334         blk_mq_start_request(bd->rq);
1335
1336         if (should_requeue_request(bd->rq)) {
1337                 /*
1338                  * Alternate between hitting the core BUSY path, and the
1339                  * driver driven requeue path
1340                  */
1341                 nq->requeue_selection++;
1342                 if (nq->requeue_selection & 1)
1343                         return BLK_STS_RESOURCE;
1344                 else {
1345                         blk_mq_requeue_request(bd->rq, true);
1346                         return BLK_STS_OK;
1347                 }
1348         }
1349         if (should_timeout_request(bd->rq))
1350                 return BLK_STS_OK;
1351
1352         return null_handle_cmd(cmd);
1353 }
1354
1355 static const struct blk_mq_ops null_mq_ops = {
1356         .queue_rq       = null_queue_rq,
1357         .complete       = null_complete_rq,
1358         .timeout        = null_timeout_rq,
1359 };
1360
1361 static void cleanup_queue(struct nullb_queue *nq)
1362 {
1363         kfree(nq->tag_map);
1364         kfree(nq->cmds);
1365 }
1366
1367 static void cleanup_queues(struct nullb *nullb)
1368 {
1369         int i;
1370
1371         for (i = 0; i < nullb->nr_queues; i++)
1372                 cleanup_queue(&nullb->queues[i]);
1373
1374         kfree(nullb->queues);
1375 }
1376
1377 static void null_del_dev(struct nullb *nullb)
1378 {
1379         struct nullb_device *dev = nullb->dev;
1380
1381         ida_simple_remove(&nullb_indexes, nullb->index);
1382
1383         list_del_init(&nullb->list);
1384
1385         del_gendisk(nullb->disk);
1386
1387         if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1388                 hrtimer_cancel(&nullb->bw_timer);
1389                 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1390                 null_restart_queue_async(nullb);
1391         }
1392
1393         blk_cleanup_queue(nullb->q);
1394         if (dev->queue_mode == NULL_Q_MQ &&
1395             nullb->tag_set == &nullb->__tag_set)
1396                 blk_mq_free_tag_set(nullb->tag_set);
1397         put_disk(nullb->disk);
1398         cleanup_queues(nullb);
1399         if (null_cache_active(nullb))
1400                 null_free_device_storage(nullb->dev, true);
1401         kfree(nullb);
1402         dev->nullb = NULL;
1403 }
1404
1405 static void null_config_discard(struct nullb *nullb)
1406 {
1407         if (nullb->dev->discard == false)
1408                 return;
1409         nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1410         nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1411         blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1412         blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1413 }
1414
1415 static int null_open(struct block_device *bdev, fmode_t mode)
1416 {
1417         return 0;
1418 }
1419
1420 static void null_release(struct gendisk *disk, fmode_t mode)
1421 {
1422 }
1423
1424 static const struct block_device_operations null_fops = {
1425         .owner =        THIS_MODULE,
1426         .open =         null_open,
1427         .release =      null_release,
1428         .report_zones = null_zone_report,
1429 };
1430
1431 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1432 {
1433         BUG_ON(!nullb);
1434         BUG_ON(!nq);
1435
1436         init_waitqueue_head(&nq->wait);
1437         nq->queue_depth = nullb->queue_depth;
1438         nq->dev = nullb->dev;
1439 }
1440
1441 static void null_init_queues(struct nullb *nullb)
1442 {
1443         struct request_queue *q = nullb->q;
1444         struct blk_mq_hw_ctx *hctx;
1445         struct nullb_queue *nq;
1446         int i;
1447
1448         queue_for_each_hw_ctx(q, hctx, i) {
1449                 if (!hctx->nr_ctx || !hctx->tags)
1450                         continue;
1451                 nq = &nullb->queues[i];
1452                 hctx->driver_data = nq;
1453                 null_init_queue(nullb, nq);
1454                 nullb->nr_queues++;
1455         }
1456 }
1457
1458 static int setup_commands(struct nullb_queue *nq)
1459 {
1460         struct nullb_cmd *cmd;
1461         int i, tag_size;
1462
1463         nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1464         if (!nq->cmds)
1465                 return -ENOMEM;
1466
1467         tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1468         nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1469         if (!nq->tag_map) {
1470                 kfree(nq->cmds);
1471                 return -ENOMEM;
1472         }
1473
1474         for (i = 0; i < nq->queue_depth; i++) {
1475                 cmd = &nq->cmds[i];
1476                 INIT_LIST_HEAD(&cmd->list);
1477                 cmd->ll_list.next = NULL;
1478                 cmd->tag = -1U;
1479         }
1480
1481         return 0;
1482 }
1483
1484 static int setup_queues(struct nullb *nullb)
1485 {
1486         nullb->queues = kcalloc(nullb->dev->submit_queues,
1487                                 sizeof(struct nullb_queue),
1488                                 GFP_KERNEL);
1489         if (!nullb->queues)
1490                 return -ENOMEM;
1491
1492         nullb->queue_depth = nullb->dev->hw_queue_depth;
1493
1494         return 0;
1495 }
1496
1497 static int init_driver_queues(struct nullb *nullb)
1498 {
1499         struct nullb_queue *nq;
1500         int i, ret = 0;
1501
1502         for (i = 0; i < nullb->dev->submit_queues; i++) {
1503                 nq = &nullb->queues[i];
1504
1505                 null_init_queue(nullb, nq);
1506
1507                 ret = setup_commands(nq);
1508                 if (ret)
1509                         return ret;
1510                 nullb->nr_queues++;
1511         }
1512         return 0;
1513 }
1514
1515 static int null_gendisk_register(struct nullb *nullb)
1516 {
1517         struct gendisk *disk;
1518         sector_t size;
1519
1520         disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1521         if (!disk)
1522                 return -ENOMEM;
1523         size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1524         set_capacity(disk, size >> 9);
1525
1526         disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1527         disk->major             = null_major;
1528         disk->first_minor       = nullb->index;
1529         disk->fops              = &null_fops;
1530         disk->private_data      = nullb;
1531         disk->queue             = nullb->q;
1532         strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1533
1534         if (nullb->dev->zoned) {
1535                 int ret = blk_revalidate_disk_zones(disk);
1536
1537                 if (ret != 0)
1538                         return ret;
1539         }
1540
1541         add_disk(disk);
1542         return 0;
1543 }
1544
1545 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1546 {
1547         set->ops = &null_mq_ops;
1548         set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1549                                                 g_submit_queues;
1550         set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1551                                                 g_hw_queue_depth;
1552         set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1553         set->cmd_size   = sizeof(struct nullb_cmd);
1554         set->flags = BLK_MQ_F_SHOULD_MERGE;
1555         if (g_no_sched)
1556                 set->flags |= BLK_MQ_F_NO_SCHED;
1557         set->driver_data = NULL;
1558
1559         if ((nullb && nullb->dev->blocking) || g_blocking)
1560                 set->flags |= BLK_MQ_F_BLOCKING;
1561
1562         return blk_mq_alloc_tag_set(set);
1563 }
1564
1565 static void null_validate_conf(struct nullb_device *dev)
1566 {
1567         dev->blocksize = round_down(dev->blocksize, 512);
1568         dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1569
1570         if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1571                 if (dev->submit_queues != nr_online_nodes)
1572                         dev->submit_queues = nr_online_nodes;
1573         } else if (dev->submit_queues > nr_cpu_ids)
1574                 dev->submit_queues = nr_cpu_ids;
1575         else if (dev->submit_queues == 0)
1576                 dev->submit_queues = 1;
1577
1578         dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1579         dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1580
1581         /* Do memory allocation, so set blocking */
1582         if (dev->memory_backed)
1583                 dev->blocking = true;
1584         else /* cache is meaningless */
1585                 dev->cache_size = 0;
1586         dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1587                                                 dev->cache_size);
1588         dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1589         /* can not stop a queue */
1590         if (dev->queue_mode == NULL_Q_BIO)
1591                 dev->mbps = 0;
1592 }
1593
1594 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1595 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1596 {
1597         if (!str[0])
1598                 return true;
1599
1600         if (!setup_fault_attr(attr, str))
1601                 return false;
1602
1603         attr->verbose = 0;
1604         return true;
1605 }
1606 #endif
1607
1608 static bool null_setup_fault(void)
1609 {
1610 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1611         if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1612                 return false;
1613         if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1614                 return false;
1615 #endif
1616         return true;
1617 }
1618
1619 static int null_add_dev(struct nullb_device *dev)
1620 {
1621         struct nullb *nullb;
1622         int rv;
1623
1624         null_validate_conf(dev);
1625
1626         nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1627         if (!nullb) {
1628                 rv = -ENOMEM;
1629                 goto out;
1630         }
1631         nullb->dev = dev;
1632         dev->nullb = nullb;
1633
1634         spin_lock_init(&nullb->lock);
1635
1636         rv = setup_queues(nullb);
1637         if (rv)
1638                 goto out_free_nullb;
1639
1640         if (dev->queue_mode == NULL_Q_MQ) {
1641                 if (shared_tags) {
1642                         nullb->tag_set = &tag_set;
1643                         rv = 0;
1644                 } else {
1645                         nullb->tag_set = &nullb->__tag_set;
1646                         rv = null_init_tag_set(nullb, nullb->tag_set);
1647                 }
1648
1649                 if (rv)
1650                         goto out_cleanup_queues;
1651
1652                 if (!null_setup_fault())
1653                         goto out_cleanup_queues;
1654
1655                 nullb->tag_set->timeout = 5 * HZ;
1656                 nullb->q = blk_mq_init_queue(nullb->tag_set);
1657                 if (IS_ERR(nullb->q)) {
1658                         rv = -ENOMEM;
1659                         goto out_cleanup_tags;
1660                 }
1661                 null_init_queues(nullb);
1662         } else if (dev->queue_mode == NULL_Q_BIO) {
1663                 nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node);
1664                 if (!nullb->q) {
1665                         rv = -ENOMEM;
1666                         goto out_cleanup_queues;
1667                 }
1668                 blk_queue_make_request(nullb->q, null_queue_bio);
1669                 rv = init_driver_queues(nullb);
1670                 if (rv)
1671                         goto out_cleanup_blk_queue;
1672         }
1673
1674         if (dev->mbps) {
1675                 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1676                 nullb_setup_bwtimer(nullb);
1677         }
1678
1679         if (dev->cache_size > 0) {
1680                 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1681                 blk_queue_write_cache(nullb->q, true, true);
1682         }
1683
1684         if (dev->zoned) {
1685                 rv = null_zone_init(dev);
1686                 if (rv)
1687                         goto out_cleanup_blk_queue;
1688
1689                 blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
1690                 nullb->q->limits.zoned = BLK_ZONED_HM;
1691         }
1692
1693         nullb->q->queuedata = nullb;
1694         blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1695         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1696
1697         mutex_lock(&lock);
1698         nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1699         dev->index = nullb->index;
1700         mutex_unlock(&lock);
1701
1702         blk_queue_logical_block_size(nullb->q, dev->blocksize);
1703         blk_queue_physical_block_size(nullb->q, dev->blocksize);
1704
1705         null_config_discard(nullb);
1706
1707         sprintf(nullb->disk_name, "nullb%d", nullb->index);
1708
1709         rv = null_gendisk_register(nullb);
1710         if (rv)
1711                 goto out_cleanup_zone;
1712
1713         mutex_lock(&lock);
1714         list_add_tail(&nullb->list, &nullb_list);
1715         mutex_unlock(&lock);
1716
1717         return 0;
1718 out_cleanup_zone:
1719         if (dev->zoned)
1720                 null_zone_exit(dev);
1721 out_cleanup_blk_queue:
1722         blk_cleanup_queue(nullb->q);
1723 out_cleanup_tags:
1724         if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1725                 blk_mq_free_tag_set(nullb->tag_set);
1726 out_cleanup_queues:
1727         cleanup_queues(nullb);
1728 out_free_nullb:
1729         kfree(nullb);
1730 out:
1731         return rv;
1732 }
1733
1734 static int __init null_init(void)
1735 {
1736         int ret = 0;
1737         unsigned int i;
1738         struct nullb *nullb;
1739         struct nullb_device *dev;
1740
1741         if (g_bs > PAGE_SIZE) {
1742                 pr_warn("null_blk: invalid block size\n");
1743                 pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
1744                 g_bs = PAGE_SIZE;
1745         }
1746
1747         if (!is_power_of_2(g_zone_size)) {
1748                 pr_err("null_blk: zone_size must be power-of-two\n");
1749                 return -EINVAL;
1750         }
1751
1752         if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1753                 pr_err("null_blk: invalid home_node value\n");
1754                 g_home_node = NUMA_NO_NODE;
1755         }
1756
1757         if (g_queue_mode == NULL_Q_RQ) {
1758                 pr_err("null_blk: legacy IO path no longer available\n");
1759                 return -EINVAL;
1760         }
1761         if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1762                 if (g_submit_queues != nr_online_nodes) {
1763                         pr_warn("null_blk: submit_queues param is set to %u.\n",
1764                                                         nr_online_nodes);
1765                         g_submit_queues = nr_online_nodes;
1766                 }
1767         } else if (g_submit_queues > nr_cpu_ids)
1768                 g_submit_queues = nr_cpu_ids;
1769         else if (g_submit_queues <= 0)
1770                 g_submit_queues = 1;
1771
1772         if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1773                 ret = null_init_tag_set(NULL, &tag_set);
1774                 if (ret)
1775                         return ret;
1776         }
1777
1778         config_group_init(&nullb_subsys.su_group);
1779         mutex_init(&nullb_subsys.su_mutex);
1780
1781         ret = configfs_register_subsystem(&nullb_subsys);
1782         if (ret)
1783                 goto err_tagset;
1784
1785         mutex_init(&lock);
1786
1787         null_major = register_blkdev(0, "nullb");
1788         if (null_major < 0) {
1789                 ret = null_major;
1790                 goto err_conf;
1791         }
1792
1793         for (i = 0; i < nr_devices; i++) {
1794                 dev = null_alloc_dev();
1795                 if (!dev) {
1796                         ret = -ENOMEM;
1797                         goto err_dev;
1798                 }
1799                 ret = null_add_dev(dev);
1800                 if (ret) {
1801                         null_free_dev(dev);
1802                         goto err_dev;
1803                 }
1804         }
1805
1806         pr_info("null: module loaded\n");
1807         return 0;
1808
1809 err_dev:
1810         while (!list_empty(&nullb_list)) {
1811                 nullb = list_entry(nullb_list.next, struct nullb, list);
1812                 dev = nullb->dev;
1813                 null_del_dev(nullb);
1814                 null_free_dev(dev);
1815         }
1816         unregister_blkdev(null_major, "nullb");
1817 err_conf:
1818         configfs_unregister_subsystem(&nullb_subsys);
1819 err_tagset:
1820         if (g_queue_mode == NULL_Q_MQ && shared_tags)
1821                 blk_mq_free_tag_set(&tag_set);
1822         return ret;
1823 }
1824
1825 static void __exit null_exit(void)
1826 {
1827         struct nullb *nullb;
1828
1829         configfs_unregister_subsystem(&nullb_subsys);
1830
1831         unregister_blkdev(null_major, "nullb");
1832
1833         mutex_lock(&lock);
1834         while (!list_empty(&nullb_list)) {
1835                 struct nullb_device *dev;
1836
1837                 nullb = list_entry(nullb_list.next, struct nullb, list);
1838                 dev = nullb->dev;
1839                 null_del_dev(nullb);
1840                 null_free_dev(dev);
1841         }
1842         mutex_unlock(&lock);
1843
1844         if (g_queue_mode == NULL_Q_MQ && shared_tags)
1845                 blk_mq_free_tag_set(&tag_set);
1846 }
1847
1848 module_init(null_init);
1849 module_exit(null_exit);
1850
1851 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1852 MODULE_LICENSE("GPL");