]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/rbd.c
f2fe692dda40485d282541680b20f8fdc85f256f
[linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
120
121 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
122                                  RBD_FEATURE_STRIPINGV2 |       \
123                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
124                                  RBD_FEATURE_DATA_POOL |        \
125                                  RBD_FEATURE_OPERATIONS)
126
127 /* Features supported by this (client software) implementation. */
128
129 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
130
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN            32
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         u64 stripe_unit;
145         u64 stripe_count;
146         s64 data_pool_id;
147         u64 features;           /* Might be changeable someday? */
148
149         /* The remaining fields need to be updated occasionally */
150         u64 image_size;
151         struct ceph_snap_context *snapc;
152         char *snap_names;       /* format 1 only */
153         u64 *snap_sizes;        /* format 1 only */
154 };
155
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182         u64             pool_id;
183         const char      *pool_name;
184         const char      *pool_ns;       /* NULL if default, never "" */
185
186         const char      *image_id;
187         const char      *image_name;
188
189         u64             snap_id;
190         const char      *snap_name;
191
192         struct kref     kref;
193 };
194
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199         struct ceph_client      *client;
200         struct kref             kref;
201         struct list_head        node;
202 };
203
204 struct rbd_img_request;
205
206 enum obj_request_type {
207         OBJ_REQUEST_NODATA = 1,
208         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
209         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
210         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_READ = 1,
215         OBJ_OP_WRITE,
216         OBJ_OP_DISCARD,
217 };
218
219 /*
220  * Writes go through the following state machine to deal with
221  * layering:
222  *
223  *                       need copyup
224  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
225  *        |     ^                              |
226  *        v     \------------------------------/
227  *      done
228  *        ^
229  *        |
230  * RBD_OBJ_WRITE_FLAT
231  *
232  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
233  * there is a parent or not.
234  */
235 enum rbd_obj_write_state {
236         RBD_OBJ_WRITE_FLAT = 1,
237         RBD_OBJ_WRITE_GUARD,
238         RBD_OBJ_WRITE_COPYUP,
239 };
240
241 struct rbd_obj_request {
242         struct ceph_object_extent ex;
243         union {
244                 bool                    tried_parent;   /* for reads */
245                 enum rbd_obj_write_state write_state;   /* for writes */
246         };
247
248         struct rbd_img_request  *img_request;
249         struct ceph_file_extent *img_extents;
250         u32                     num_img_extents;
251
252         union {
253                 struct ceph_bio_iter    bio_pos;
254                 struct {
255                         struct ceph_bvec_iter   bvec_pos;
256                         u32                     bvec_count;
257                         u32                     bvec_idx;
258                 };
259         };
260         struct bio_vec          *copyup_bvecs;
261         u32                     copyup_bvec_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         struct kref             kref;
269 };
270
271 enum img_req_flags {
272         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
273         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
274 };
275
276 struct rbd_img_request {
277         struct rbd_device       *rbd_dev;
278         enum obj_operation_type op_type;
279         enum obj_request_type   data_type;
280         unsigned long           flags;
281         union {
282                 u64                     snap_id;        /* for reads */
283                 struct ceph_snap_context *snapc;        /* for writes */
284         };
285         union {
286                 struct request          *rq;            /* block request */
287                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
288         };
289         spinlock_t              completion_lock;
290         u64                     xferred;/* aggregate bytes transferred */
291         int                     result; /* first nonzero obj_request result */
292
293         struct list_head        object_extents; /* obj_req.ex structs */
294         u32                     obj_request_count;
295         u32                     pending_count;
296
297         struct kref             kref;
298 };
299
300 #define for_each_obj_request(ireq, oreq) \
301         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
302 #define for_each_obj_request_safe(ireq, oreq, n) \
303         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
304
305 enum rbd_watch_state {
306         RBD_WATCH_STATE_UNREGISTERED,
307         RBD_WATCH_STATE_REGISTERED,
308         RBD_WATCH_STATE_ERROR,
309 };
310
311 enum rbd_lock_state {
312         RBD_LOCK_STATE_UNLOCKED,
313         RBD_LOCK_STATE_LOCKED,
314         RBD_LOCK_STATE_RELEASING,
315 };
316
317 /* WatchNotify::ClientId */
318 struct rbd_client_id {
319         u64 gid;
320         u64 handle;
321 };
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         spinlock_t              lock;           /* queue, flags, open_count */
344
345         struct rbd_image_header header;
346         unsigned long           flags;          /* possibly lock protected */
347         struct rbd_spec         *spec;
348         struct rbd_options      *opts;
349         char                    *config_info;   /* add{,_single_major} string */
350
351         struct ceph_object_id   header_oid;
352         struct ceph_object_locator header_oloc;
353
354         struct ceph_file_layout layout;         /* used for all rbd requests */
355
356         struct mutex            watch_mutex;
357         enum rbd_watch_state    watch_state;
358         struct ceph_osd_linger_request *watch_handle;
359         u64                     watch_cookie;
360         struct delayed_work     watch_dwork;
361
362         struct rw_semaphore     lock_rwsem;
363         enum rbd_lock_state     lock_state;
364         char                    lock_cookie[32];
365         struct rbd_client_id    owner_cid;
366         struct work_struct      acquired_lock_work;
367         struct work_struct      released_lock_work;
368         struct delayed_work     lock_dwork;
369         struct work_struct      unlock_work;
370         wait_queue_head_t       lock_waitq;
371
372         struct workqueue_struct *task_wq;
373
374         struct rbd_spec         *parent_spec;
375         u64                     parent_overlap;
376         atomic_t                parent_ref;
377         struct rbd_device       *parent;
378
379         /* Block layer tags. */
380         struct blk_mq_tag_set   tag_set;
381
382         /* protects updating the header */
383         struct rw_semaphore     header_rwsem;
384
385         struct rbd_mapping      mapping;
386
387         struct list_head        node;
388
389         /* sysfs related */
390         struct device           dev;
391         unsigned long           open_count;     /* protected by lock */
392 };
393
394 /*
395  * Flag bits for rbd_dev->flags:
396  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
397  *   by rbd_dev->lock
398  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
399  */
400 enum rbd_dev_flags {
401         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
402         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
403         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
404 };
405
406 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
407
408 static LIST_HEAD(rbd_dev_list);    /* devices */
409 static DEFINE_SPINLOCK(rbd_dev_list_lock);
410
411 static LIST_HEAD(rbd_client_list);              /* clients */
412 static DEFINE_SPINLOCK(rbd_client_list_lock);
413
414 /* Slab caches for frequently-allocated structures */
415
416 static struct kmem_cache        *rbd_img_request_cache;
417 static struct kmem_cache        *rbd_obj_request_cache;
418
419 static int rbd_major;
420 static DEFINE_IDA(rbd_dev_id_ida);
421
422 static struct workqueue_struct *rbd_wq;
423
424 /*
425  * single-major requires >= 0.75 version of userspace rbd utility.
426  */
427 static bool single_major = true;
428 module_param(single_major, bool, 0444);
429 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
430
431 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
432                        size_t count);
433 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
434                           size_t count);
435 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
436                                     size_t count);
437 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
438                                        size_t count);
439 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
440
441 static int rbd_dev_id_to_minor(int dev_id)
442 {
443         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
444 }
445
446 static int minor_to_rbd_dev_id(int minor)
447 {
448         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
449 }
450
451 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
452 {
453         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
454                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
455 }
456
457 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
458 {
459         bool is_lock_owner;
460
461         down_read(&rbd_dev->lock_rwsem);
462         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
463         up_read(&rbd_dev->lock_rwsem);
464         return is_lock_owner;
465 }
466
467 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
468 {
469         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
470 }
471
472 static BUS_ATTR(add, 0200, NULL, rbd_add);
473 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
474 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
475 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
476 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
477
478 static struct attribute *rbd_bus_attrs[] = {
479         &bus_attr_add.attr,
480         &bus_attr_remove.attr,
481         &bus_attr_add_single_major.attr,
482         &bus_attr_remove_single_major.attr,
483         &bus_attr_supported_features.attr,
484         NULL,
485 };
486
487 static umode_t rbd_bus_is_visible(struct kobject *kobj,
488                                   struct attribute *attr, int index)
489 {
490         if (!single_major &&
491             (attr == &bus_attr_add_single_major.attr ||
492              attr == &bus_attr_remove_single_major.attr))
493                 return 0;
494
495         return attr->mode;
496 }
497
498 static const struct attribute_group rbd_bus_group = {
499         .attrs = rbd_bus_attrs,
500         .is_visible = rbd_bus_is_visible,
501 };
502 __ATTRIBUTE_GROUPS(rbd_bus);
503
504 static struct bus_type rbd_bus_type = {
505         .name           = "rbd",
506         .bus_groups     = rbd_bus_groups,
507 };
508
509 static void rbd_root_dev_release(struct device *dev)
510 {
511 }
512
513 static struct device rbd_root_dev = {
514         .init_name =    "rbd",
515         .release =      rbd_root_dev_release,
516 };
517
518 static __printf(2, 3)
519 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
520 {
521         struct va_format vaf;
522         va_list args;
523
524         va_start(args, fmt);
525         vaf.fmt = fmt;
526         vaf.va = &args;
527
528         if (!rbd_dev)
529                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
530         else if (rbd_dev->disk)
531                 printk(KERN_WARNING "%s: %s: %pV\n",
532                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
533         else if (rbd_dev->spec && rbd_dev->spec->image_name)
534                 printk(KERN_WARNING "%s: image %s: %pV\n",
535                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
536         else if (rbd_dev->spec && rbd_dev->spec->image_id)
537                 printk(KERN_WARNING "%s: id %s: %pV\n",
538                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
539         else    /* punt */
540                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
541                         RBD_DRV_NAME, rbd_dev, &vaf);
542         va_end(args);
543 }
544
545 #ifdef RBD_DEBUG
546 #define rbd_assert(expr)                                                \
547                 if (unlikely(!(expr))) {                                \
548                         printk(KERN_ERR "\nAssertion failure in %s() "  \
549                                                 "at line %d:\n\n"       \
550                                         "\trbd_assert(%s);\n\n",        \
551                                         __func__, __LINE__, #expr);     \
552                         BUG();                                          \
553                 }
554 #else /* !RBD_DEBUG */
555 #  define rbd_assert(expr)      ((void) 0)
556 #endif /* !RBD_DEBUG */
557
558 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
559
560 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
561 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
562 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
563 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
564 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
565                                         u64 snap_id);
566 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
567                                 u8 *order, u64 *snap_size);
568 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
569                 u64 *snap_features);
570
571 static int rbd_open(struct block_device *bdev, fmode_t mode)
572 {
573         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
574         bool removing = false;
575
576         spin_lock_irq(&rbd_dev->lock);
577         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
578                 removing = true;
579         else
580                 rbd_dev->open_count++;
581         spin_unlock_irq(&rbd_dev->lock);
582         if (removing)
583                 return -ENOENT;
584
585         (void) get_device(&rbd_dev->dev);
586
587         return 0;
588 }
589
590 static void rbd_release(struct gendisk *disk, fmode_t mode)
591 {
592         struct rbd_device *rbd_dev = disk->private_data;
593         unsigned long open_count_before;
594
595         spin_lock_irq(&rbd_dev->lock);
596         open_count_before = rbd_dev->open_count--;
597         spin_unlock_irq(&rbd_dev->lock);
598         rbd_assert(open_count_before > 0);
599
600         put_device(&rbd_dev->dev);
601 }
602
603 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
604 {
605         int ro;
606
607         if (get_user(ro, (int __user *)arg))
608                 return -EFAULT;
609
610         /* Snapshots can't be marked read-write */
611         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
612                 return -EROFS;
613
614         /* Let blkdev_roset() handle it */
615         return -ENOTTY;
616 }
617
618 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
619                         unsigned int cmd, unsigned long arg)
620 {
621         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
622         int ret;
623
624         switch (cmd) {
625         case BLKROSET:
626                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
627                 break;
628         default:
629                 ret = -ENOTTY;
630         }
631
632         return ret;
633 }
634
635 #ifdef CONFIG_COMPAT
636 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
637                                 unsigned int cmd, unsigned long arg)
638 {
639         return rbd_ioctl(bdev, mode, cmd, arg);
640 }
641 #endif /* CONFIG_COMPAT */
642
643 static const struct block_device_operations rbd_bd_ops = {
644         .owner                  = THIS_MODULE,
645         .open                   = rbd_open,
646         .release                = rbd_release,
647         .ioctl                  = rbd_ioctl,
648 #ifdef CONFIG_COMPAT
649         .compat_ioctl           = rbd_compat_ioctl,
650 #endif
651 };
652
653 /*
654  * Initialize an rbd client instance.  Success or not, this function
655  * consumes ceph_opts.  Caller holds client_mutex.
656  */
657 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
658 {
659         struct rbd_client *rbdc;
660         int ret = -ENOMEM;
661
662         dout("%s:\n", __func__);
663         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
664         if (!rbdc)
665                 goto out_opt;
666
667         kref_init(&rbdc->kref);
668         INIT_LIST_HEAD(&rbdc->node);
669
670         rbdc->client = ceph_create_client(ceph_opts, rbdc);
671         if (IS_ERR(rbdc->client))
672                 goto out_rbdc;
673         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
674
675         ret = ceph_open_session(rbdc->client);
676         if (ret < 0)
677                 goto out_client;
678
679         spin_lock(&rbd_client_list_lock);
680         list_add_tail(&rbdc->node, &rbd_client_list);
681         spin_unlock(&rbd_client_list_lock);
682
683         dout("%s: rbdc %p\n", __func__, rbdc);
684
685         return rbdc;
686 out_client:
687         ceph_destroy_client(rbdc->client);
688 out_rbdc:
689         kfree(rbdc);
690 out_opt:
691         if (ceph_opts)
692                 ceph_destroy_options(ceph_opts);
693         dout("%s: error %d\n", __func__, ret);
694
695         return ERR_PTR(ret);
696 }
697
698 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
699 {
700         kref_get(&rbdc->kref);
701
702         return rbdc;
703 }
704
705 /*
706  * Find a ceph client with specific addr and configuration.  If
707  * found, bump its reference count.
708  */
709 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
710 {
711         struct rbd_client *client_node;
712         bool found = false;
713
714         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
715                 return NULL;
716
717         spin_lock(&rbd_client_list_lock);
718         list_for_each_entry(client_node, &rbd_client_list, node) {
719                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
720                         __rbd_get_client(client_node);
721
722                         found = true;
723                         break;
724                 }
725         }
726         spin_unlock(&rbd_client_list_lock);
727
728         return found ? client_node : NULL;
729 }
730
731 /*
732  * (Per device) rbd map options
733  */
734 enum {
735         Opt_queue_depth,
736         Opt_lock_timeout,
737         Opt_last_int,
738         /* int args above */
739         Opt_pool_ns,
740         Opt_last_string,
741         /* string args above */
742         Opt_read_only,
743         Opt_read_write,
744         Opt_lock_on_read,
745         Opt_exclusive,
746         Opt_notrim,
747         Opt_err
748 };
749
750 static match_table_t rbd_opts_tokens = {
751         {Opt_queue_depth, "queue_depth=%d"},
752         {Opt_lock_timeout, "lock_timeout=%d"},
753         /* int args above */
754         {Opt_pool_ns, "_pool_ns=%s"},
755         /* string args above */
756         {Opt_read_only, "read_only"},
757         {Opt_read_only, "ro"},          /* Alternate spelling */
758         {Opt_read_write, "read_write"},
759         {Opt_read_write, "rw"},         /* Alternate spelling */
760         {Opt_lock_on_read, "lock_on_read"},
761         {Opt_exclusive, "exclusive"},
762         {Opt_notrim, "notrim"},
763         {Opt_err, NULL}
764 };
765
766 struct rbd_options {
767         int     queue_depth;
768         unsigned long   lock_timeout;
769         bool    read_only;
770         bool    lock_on_read;
771         bool    exclusive;
772         bool    trim;
773 };
774
775 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
776 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
777 #define RBD_READ_ONLY_DEFAULT   false
778 #define RBD_LOCK_ON_READ_DEFAULT false
779 #define RBD_EXCLUSIVE_DEFAULT   false
780 #define RBD_TRIM_DEFAULT        true
781
782 struct parse_rbd_opts_ctx {
783         struct rbd_spec         *spec;
784         struct rbd_options      *opts;
785 };
786
787 static int parse_rbd_opts_token(char *c, void *private)
788 {
789         struct parse_rbd_opts_ctx *pctx = private;
790         substring_t argstr[MAX_OPT_ARGS];
791         int token, intval, ret;
792
793         token = match_token(c, rbd_opts_tokens, argstr);
794         if (token < Opt_last_int) {
795                 ret = match_int(&argstr[0], &intval);
796                 if (ret < 0) {
797                         pr_err("bad option arg (not int) at '%s'\n", c);
798                         return ret;
799                 }
800                 dout("got int token %d val %d\n", token, intval);
801         } else if (token > Opt_last_int && token < Opt_last_string) {
802                 dout("got string token %d val %s\n", token, argstr[0].from);
803         } else {
804                 dout("got token %d\n", token);
805         }
806
807         switch (token) {
808         case Opt_queue_depth:
809                 if (intval < 1) {
810                         pr_err("queue_depth out of range\n");
811                         return -EINVAL;
812                 }
813                 pctx->opts->queue_depth = intval;
814                 break;
815         case Opt_lock_timeout:
816                 /* 0 is "wait forever" (i.e. infinite timeout) */
817                 if (intval < 0 || intval > INT_MAX / 1000) {
818                         pr_err("lock_timeout out of range\n");
819                         return -EINVAL;
820                 }
821                 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
822                 break;
823         case Opt_pool_ns:
824                 kfree(pctx->spec->pool_ns);
825                 pctx->spec->pool_ns = match_strdup(argstr);
826                 if (!pctx->spec->pool_ns)
827                         return -ENOMEM;
828                 break;
829         case Opt_read_only:
830                 pctx->opts->read_only = true;
831                 break;
832         case Opt_read_write:
833                 pctx->opts->read_only = false;
834                 break;
835         case Opt_lock_on_read:
836                 pctx->opts->lock_on_read = true;
837                 break;
838         case Opt_exclusive:
839                 pctx->opts->exclusive = true;
840                 break;
841         case Opt_notrim:
842                 pctx->opts->trim = false;
843                 break;
844         default:
845                 /* libceph prints "bad option" msg */
846                 return -EINVAL;
847         }
848
849         return 0;
850 }
851
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854         switch (op_type) {
855         case OBJ_OP_READ:
856                 return "read";
857         case OBJ_OP_WRITE:
858                 return "write";
859         case OBJ_OP_DISCARD:
860                 return "discard";
861         default:
862                 return "???";
863         }
864 }
865
866 /*
867  * Destroy ceph client
868  *
869  * Caller must hold rbd_client_list_lock.
870  */
871 static void rbd_client_release(struct kref *kref)
872 {
873         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
874
875         dout("%s: rbdc %p\n", __func__, rbdc);
876         spin_lock(&rbd_client_list_lock);
877         list_del(&rbdc->node);
878         spin_unlock(&rbd_client_list_lock);
879
880         ceph_destroy_client(rbdc->client);
881         kfree(rbdc);
882 }
883
884 /*
885  * Drop reference to ceph client node. If it's not referenced anymore, release
886  * it.
887  */
888 static void rbd_put_client(struct rbd_client *rbdc)
889 {
890         if (rbdc)
891                 kref_put(&rbdc->kref, rbd_client_release);
892 }
893
894 static int wait_for_latest_osdmap(struct ceph_client *client)
895 {
896         u64 newest_epoch;
897         int ret;
898
899         ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
900         if (ret)
901                 return ret;
902
903         if (client->osdc.osdmap->epoch >= newest_epoch)
904                 return 0;
905
906         ceph_osdc_maybe_request_map(&client->osdc);
907         return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
908                                      client->options->mount_timeout);
909 }
910
911 /*
912  * Get a ceph client with specific addr and configuration, if one does
913  * not exist create it.  Either way, ceph_opts is consumed by this
914  * function.
915  */
916 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
917 {
918         struct rbd_client *rbdc;
919         int ret;
920
921         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
922         rbdc = rbd_client_find(ceph_opts);
923         if (rbdc) {
924                 ceph_destroy_options(ceph_opts);
925
926                 /*
927                  * Using an existing client.  Make sure ->pg_pools is up to
928                  * date before we look up the pool id in do_rbd_add().
929                  */
930                 ret = wait_for_latest_osdmap(rbdc->client);
931                 if (ret) {
932                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
933                         rbd_put_client(rbdc);
934                         rbdc = ERR_PTR(ret);
935                 }
936         } else {
937                 rbdc = rbd_client_create(ceph_opts);
938         }
939         mutex_unlock(&client_mutex);
940
941         return rbdc;
942 }
943
944 static bool rbd_image_format_valid(u32 image_format)
945 {
946         return image_format == 1 || image_format == 2;
947 }
948
949 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
950 {
951         size_t size;
952         u32 snap_count;
953
954         /* The header has to start with the magic rbd header text */
955         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
956                 return false;
957
958         /* The bio layer requires at least sector-sized I/O */
959
960         if (ondisk->options.order < SECTOR_SHIFT)
961                 return false;
962
963         /* If we use u64 in a few spots we may be able to loosen this */
964
965         if (ondisk->options.order > 8 * sizeof (int) - 1)
966                 return false;
967
968         /*
969          * The size of a snapshot header has to fit in a size_t, and
970          * that limits the number of snapshots.
971          */
972         snap_count = le32_to_cpu(ondisk->snap_count);
973         size = SIZE_MAX - sizeof (struct ceph_snap_context);
974         if (snap_count > size / sizeof (__le64))
975                 return false;
976
977         /*
978          * Not only that, but the size of the entire the snapshot
979          * header must also be representable in a size_t.
980          */
981         size -= snap_count * sizeof (__le64);
982         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
983                 return false;
984
985         return true;
986 }
987
988 /*
989  * returns the size of an object in the image
990  */
991 static u32 rbd_obj_bytes(struct rbd_image_header *header)
992 {
993         return 1U << header->obj_order;
994 }
995
996 static void rbd_init_layout(struct rbd_device *rbd_dev)
997 {
998         if (rbd_dev->header.stripe_unit == 0 ||
999             rbd_dev->header.stripe_count == 0) {
1000                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1001                 rbd_dev->header.stripe_count = 1;
1002         }
1003
1004         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1005         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1006         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1007         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1008                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1009         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1010 }
1011
1012 /*
1013  * Fill an rbd image header with information from the given format 1
1014  * on-disk header.
1015  */
1016 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1017                                  struct rbd_image_header_ondisk *ondisk)
1018 {
1019         struct rbd_image_header *header = &rbd_dev->header;
1020         bool first_time = header->object_prefix == NULL;
1021         struct ceph_snap_context *snapc;
1022         char *object_prefix = NULL;
1023         char *snap_names = NULL;
1024         u64 *snap_sizes = NULL;
1025         u32 snap_count;
1026         int ret = -ENOMEM;
1027         u32 i;
1028
1029         /* Allocate this now to avoid having to handle failure below */
1030
1031         if (first_time) {
1032                 object_prefix = kstrndup(ondisk->object_prefix,
1033                                          sizeof(ondisk->object_prefix),
1034                                          GFP_KERNEL);
1035                 if (!object_prefix)
1036                         return -ENOMEM;
1037         }
1038
1039         /* Allocate the snapshot context and fill it in */
1040
1041         snap_count = le32_to_cpu(ondisk->snap_count);
1042         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1043         if (!snapc)
1044                 goto out_err;
1045         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1046         if (snap_count) {
1047                 struct rbd_image_snap_ondisk *snaps;
1048                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1049
1050                 /* We'll keep a copy of the snapshot names... */
1051
1052                 if (snap_names_len > (u64)SIZE_MAX)
1053                         goto out_2big;
1054                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1055                 if (!snap_names)
1056                         goto out_err;
1057
1058                 /* ...as well as the array of their sizes. */
1059                 snap_sizes = kmalloc_array(snap_count,
1060                                            sizeof(*header->snap_sizes),
1061                                            GFP_KERNEL);
1062                 if (!snap_sizes)
1063                         goto out_err;
1064
1065                 /*
1066                  * Copy the names, and fill in each snapshot's id
1067                  * and size.
1068                  *
1069                  * Note that rbd_dev_v1_header_info() guarantees the
1070                  * ondisk buffer we're working with has
1071                  * snap_names_len bytes beyond the end of the
1072                  * snapshot id array, this memcpy() is safe.
1073                  */
1074                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1075                 snaps = ondisk->snaps;
1076                 for (i = 0; i < snap_count; i++) {
1077                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1078                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1079                 }
1080         }
1081
1082         /* We won't fail any more, fill in the header */
1083
1084         if (first_time) {
1085                 header->object_prefix = object_prefix;
1086                 header->obj_order = ondisk->options.order;
1087                 rbd_init_layout(rbd_dev);
1088         } else {
1089                 ceph_put_snap_context(header->snapc);
1090                 kfree(header->snap_names);
1091                 kfree(header->snap_sizes);
1092         }
1093
1094         /* The remaining fields always get updated (when we refresh) */
1095
1096         header->image_size = le64_to_cpu(ondisk->image_size);
1097         header->snapc = snapc;
1098         header->snap_names = snap_names;
1099         header->snap_sizes = snap_sizes;
1100
1101         return 0;
1102 out_2big:
1103         ret = -EIO;
1104 out_err:
1105         kfree(snap_sizes);
1106         kfree(snap_names);
1107         ceph_put_snap_context(snapc);
1108         kfree(object_prefix);
1109
1110         return ret;
1111 }
1112
1113 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1114 {
1115         const char *snap_name;
1116
1117         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1118
1119         /* Skip over names until we find the one we are looking for */
1120
1121         snap_name = rbd_dev->header.snap_names;
1122         while (which--)
1123                 snap_name += strlen(snap_name) + 1;
1124
1125         return kstrdup(snap_name, GFP_KERNEL);
1126 }
1127
1128 /*
1129  * Snapshot id comparison function for use with qsort()/bsearch().
1130  * Note that result is for snapshots in *descending* order.
1131  */
1132 static int snapid_compare_reverse(const void *s1, const void *s2)
1133 {
1134         u64 snap_id1 = *(u64 *)s1;
1135         u64 snap_id2 = *(u64 *)s2;
1136
1137         if (snap_id1 < snap_id2)
1138                 return 1;
1139         return snap_id1 == snap_id2 ? 0 : -1;
1140 }
1141
1142 /*
1143  * Search a snapshot context to see if the given snapshot id is
1144  * present.
1145  *
1146  * Returns the position of the snapshot id in the array if it's found,
1147  * or BAD_SNAP_INDEX otherwise.
1148  *
1149  * Note: The snapshot array is in kept sorted (by the osd) in
1150  * reverse order, highest snapshot id first.
1151  */
1152 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1153 {
1154         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1155         u64 *found;
1156
1157         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1158                                 sizeof (snap_id), snapid_compare_reverse);
1159
1160         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1161 }
1162
1163 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1164                                         u64 snap_id)
1165 {
1166         u32 which;
1167         const char *snap_name;
1168
1169         which = rbd_dev_snap_index(rbd_dev, snap_id);
1170         if (which == BAD_SNAP_INDEX)
1171                 return ERR_PTR(-ENOENT);
1172
1173         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1174         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1175 }
1176
1177 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1178 {
1179         if (snap_id == CEPH_NOSNAP)
1180                 return RBD_SNAP_HEAD_NAME;
1181
1182         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183         if (rbd_dev->image_format == 1)
1184                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1185
1186         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1187 }
1188
1189 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1190                                 u64 *snap_size)
1191 {
1192         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1193         if (snap_id == CEPH_NOSNAP) {
1194                 *snap_size = rbd_dev->header.image_size;
1195         } else if (rbd_dev->image_format == 1) {
1196                 u32 which;
1197
1198                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1199                 if (which == BAD_SNAP_INDEX)
1200                         return -ENOENT;
1201
1202                 *snap_size = rbd_dev->header.snap_sizes[which];
1203         } else {
1204                 u64 size = 0;
1205                 int ret;
1206
1207                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1208                 if (ret)
1209                         return ret;
1210
1211                 *snap_size = size;
1212         }
1213         return 0;
1214 }
1215
1216 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1217                         u64 *snap_features)
1218 {
1219         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1220         if (snap_id == CEPH_NOSNAP) {
1221                 *snap_features = rbd_dev->header.features;
1222         } else if (rbd_dev->image_format == 1) {
1223                 *snap_features = 0;     /* No features for format 1 */
1224         } else {
1225                 u64 features = 0;
1226                 int ret;
1227
1228                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1229                 if (ret)
1230                         return ret;
1231
1232                 *snap_features = features;
1233         }
1234         return 0;
1235 }
1236
1237 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1238 {
1239         u64 snap_id = rbd_dev->spec->snap_id;
1240         u64 size = 0;
1241         u64 features = 0;
1242         int ret;
1243
1244         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1245         if (ret)
1246                 return ret;
1247         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1248         if (ret)
1249                 return ret;
1250
1251         rbd_dev->mapping.size = size;
1252         rbd_dev->mapping.features = features;
1253
1254         return 0;
1255 }
1256
1257 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1258 {
1259         rbd_dev->mapping.size = 0;
1260         rbd_dev->mapping.features = 0;
1261 }
1262
1263 static void zero_bvec(struct bio_vec *bv)
1264 {
1265         void *buf;
1266         unsigned long flags;
1267
1268         buf = bvec_kmap_irq(bv, &flags);
1269         memset(buf, 0, bv->bv_len);
1270         flush_dcache_page(bv->bv_page);
1271         bvec_kunmap_irq(buf, &flags);
1272 }
1273
1274 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1275 {
1276         struct ceph_bio_iter it = *bio_pos;
1277
1278         ceph_bio_iter_advance(&it, off);
1279         ceph_bio_iter_advance_step(&it, bytes, ({
1280                 zero_bvec(&bv);
1281         }));
1282 }
1283
1284 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1285 {
1286         struct ceph_bvec_iter it = *bvec_pos;
1287
1288         ceph_bvec_iter_advance(&it, off);
1289         ceph_bvec_iter_advance_step(&it, bytes, ({
1290                 zero_bvec(&bv);
1291         }));
1292 }
1293
1294 /*
1295  * Zero a range in @obj_req data buffer defined by a bio (list) or
1296  * (private) bio_vec array.
1297  *
1298  * @off is relative to the start of the data buffer.
1299  */
1300 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1301                                u32 bytes)
1302 {
1303         switch (obj_req->img_request->data_type) {
1304         case OBJ_REQUEST_BIO:
1305                 zero_bios(&obj_req->bio_pos, off, bytes);
1306                 break;
1307         case OBJ_REQUEST_BVECS:
1308         case OBJ_REQUEST_OWN_BVECS:
1309                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1310                 break;
1311         default:
1312                 rbd_assert(0);
1313         }
1314 }
1315
1316 static void rbd_obj_request_destroy(struct kref *kref);
1317 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1318 {
1319         rbd_assert(obj_request != NULL);
1320         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1321                 kref_read(&obj_request->kref));
1322         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1323 }
1324
1325 static void rbd_img_request_get(struct rbd_img_request *img_request)
1326 {
1327         dout("%s: img %p (was %d)\n", __func__, img_request,
1328              kref_read(&img_request->kref));
1329         kref_get(&img_request->kref);
1330 }
1331
1332 static void rbd_img_request_destroy(struct kref *kref);
1333 static void rbd_img_request_put(struct rbd_img_request *img_request)
1334 {
1335         rbd_assert(img_request != NULL);
1336         dout("%s: img %p (was %d)\n", __func__, img_request,
1337                 kref_read(&img_request->kref));
1338         kref_put(&img_request->kref, rbd_img_request_destroy);
1339 }
1340
1341 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1342                                         struct rbd_obj_request *obj_request)
1343 {
1344         rbd_assert(obj_request->img_request == NULL);
1345
1346         /* Image request now owns object's original reference */
1347         obj_request->img_request = img_request;
1348         img_request->obj_request_count++;
1349         img_request->pending_count++;
1350         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 }
1352
1353 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1354                                         struct rbd_obj_request *obj_request)
1355 {
1356         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1357         list_del(&obj_request->ex.oe_item);
1358         rbd_assert(img_request->obj_request_count > 0);
1359         img_request->obj_request_count--;
1360         rbd_assert(obj_request->img_request == img_request);
1361         rbd_obj_request_put(obj_request);
1362 }
1363
1364 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1365 {
1366         struct ceph_osd_request *osd_req = obj_request->osd_req;
1367
1368         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1369              obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1370              obj_request->ex.oe_len, osd_req);
1371         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1372 }
1373
1374 /*
1375  * The default/initial value for all image request flags is 0.  Each
1376  * is conditionally set to 1 at image request initialization time
1377  * and currently never change thereafter.
1378  */
1379 static void img_request_layered_set(struct rbd_img_request *img_request)
1380 {
1381         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1382         smp_mb();
1383 }
1384
1385 static void img_request_layered_clear(struct rbd_img_request *img_request)
1386 {
1387         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1388         smp_mb();
1389 }
1390
1391 static bool img_request_layered_test(struct rbd_img_request *img_request)
1392 {
1393         smp_mb();
1394         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1395 }
1396
1397 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1398 {
1399         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1400
1401         return !obj_req->ex.oe_off &&
1402                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1403 }
1404
1405 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1406 {
1407         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1408
1409         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1410                                         rbd_dev->layout.object_size;
1411 }
1412
1413 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1414 {
1415         return ceph_file_extents_bytes(obj_req->img_extents,
1416                                        obj_req->num_img_extents);
1417 }
1418
1419 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1420 {
1421         switch (img_req->op_type) {
1422         case OBJ_OP_READ:
1423                 return false;
1424         case OBJ_OP_WRITE:
1425         case OBJ_OP_DISCARD:
1426                 return true;
1427         default:
1428                 BUG();
1429         }
1430 }
1431
1432 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1433
1434 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1435 {
1436         struct rbd_obj_request *obj_req = osd_req->r_priv;
1437
1438         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1439              osd_req->r_result, obj_req);
1440         rbd_assert(osd_req == obj_req->osd_req);
1441
1442         obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1443         if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1444                 obj_req->xferred = osd_req->r_result;
1445         else
1446                 /*
1447                  * Writes aren't allowed to return a data payload.  In some
1448                  * guarded write cases (e.g. stat + zero on an empty object)
1449                  * a stat response makes it through, but we don't care.
1450                  */
1451                 obj_req->xferred = 0;
1452
1453         rbd_obj_handle_request(obj_req);
1454 }
1455
1456 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1457 {
1458         struct ceph_osd_request *osd_req = obj_request->osd_req;
1459
1460         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1461         osd_req->r_snapid = obj_request->img_request->snap_id;
1462 }
1463
1464 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1465 {
1466         struct ceph_osd_request *osd_req = obj_request->osd_req;
1467
1468         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1469         ktime_get_real_ts64(&osd_req->r_mtime);
1470         osd_req->r_data_offset = obj_request->ex.oe_off;
1471 }
1472
1473 static struct ceph_osd_request *
1474 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1475 {
1476         struct rbd_img_request *img_req = obj_req->img_request;
1477         struct rbd_device *rbd_dev = img_req->rbd_dev;
1478         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1479         struct ceph_osd_request *req;
1480         const char *name_format = rbd_dev->image_format == 1 ?
1481                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1482
1483         req = ceph_osdc_alloc_request(osdc,
1484                         (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1485                         num_ops, false, GFP_NOIO);
1486         if (!req)
1487                 return NULL;
1488
1489         req->r_callback = rbd_osd_req_callback;
1490         req->r_priv = obj_req;
1491
1492         /*
1493          * Data objects may be stored in a separate pool, but always in
1494          * the same namespace in that pool as the header in its pool.
1495          */
1496         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1497         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1498
1499         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1500                         rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1501                 goto err_req;
1502
1503         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1504                 goto err_req;
1505
1506         return req;
1507
1508 err_req:
1509         ceph_osdc_put_request(req);
1510         return NULL;
1511 }
1512
1513 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1514 {
1515         ceph_osdc_put_request(osd_req);
1516 }
1517
1518 static struct rbd_obj_request *rbd_obj_request_create(void)
1519 {
1520         struct rbd_obj_request *obj_request;
1521
1522         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1523         if (!obj_request)
1524                 return NULL;
1525
1526         ceph_object_extent_init(&obj_request->ex);
1527         kref_init(&obj_request->kref);
1528
1529         dout("%s %p\n", __func__, obj_request);
1530         return obj_request;
1531 }
1532
1533 static void rbd_obj_request_destroy(struct kref *kref)
1534 {
1535         struct rbd_obj_request *obj_request;
1536         u32 i;
1537
1538         obj_request = container_of(kref, struct rbd_obj_request, kref);
1539
1540         dout("%s: obj %p\n", __func__, obj_request);
1541
1542         if (obj_request->osd_req)
1543                 rbd_osd_req_destroy(obj_request->osd_req);
1544
1545         switch (obj_request->img_request->data_type) {
1546         case OBJ_REQUEST_NODATA:
1547         case OBJ_REQUEST_BIO:
1548         case OBJ_REQUEST_BVECS:
1549                 break;          /* Nothing to do */
1550         case OBJ_REQUEST_OWN_BVECS:
1551                 kfree(obj_request->bvec_pos.bvecs);
1552                 break;
1553         default:
1554                 rbd_assert(0);
1555         }
1556
1557         kfree(obj_request->img_extents);
1558         if (obj_request->copyup_bvecs) {
1559                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1560                         if (obj_request->copyup_bvecs[i].bv_page)
1561                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1562                 }
1563                 kfree(obj_request->copyup_bvecs);
1564         }
1565
1566         kmem_cache_free(rbd_obj_request_cache, obj_request);
1567 }
1568
1569 /* It's OK to call this for a device with no parent */
1570
1571 static void rbd_spec_put(struct rbd_spec *spec);
1572 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1573 {
1574         rbd_dev_remove_parent(rbd_dev);
1575         rbd_spec_put(rbd_dev->parent_spec);
1576         rbd_dev->parent_spec = NULL;
1577         rbd_dev->parent_overlap = 0;
1578 }
1579
1580 /*
1581  * Parent image reference counting is used to determine when an
1582  * image's parent fields can be safely torn down--after there are no
1583  * more in-flight requests to the parent image.  When the last
1584  * reference is dropped, cleaning them up is safe.
1585  */
1586 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1587 {
1588         int counter;
1589
1590         if (!rbd_dev->parent_spec)
1591                 return;
1592
1593         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1594         if (counter > 0)
1595                 return;
1596
1597         /* Last reference; clean up parent data structures */
1598
1599         if (!counter)
1600                 rbd_dev_unparent(rbd_dev);
1601         else
1602                 rbd_warn(rbd_dev, "parent reference underflow");
1603 }
1604
1605 /*
1606  * If an image has a non-zero parent overlap, get a reference to its
1607  * parent.
1608  *
1609  * Returns true if the rbd device has a parent with a non-zero
1610  * overlap and a reference for it was successfully taken, or
1611  * false otherwise.
1612  */
1613 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1614 {
1615         int counter = 0;
1616
1617         if (!rbd_dev->parent_spec)
1618                 return false;
1619
1620         down_read(&rbd_dev->header_rwsem);
1621         if (rbd_dev->parent_overlap)
1622                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623         up_read(&rbd_dev->header_rwsem);
1624
1625         if (counter < 0)
1626                 rbd_warn(rbd_dev, "parent reference overflow");
1627
1628         return counter > 0;
1629 }
1630
1631 /*
1632  * Caller is responsible for filling in the list of object requests
1633  * that comprises the image request, and the Linux request pointer
1634  * (if there is one).
1635  */
1636 static struct rbd_img_request *rbd_img_request_create(
1637                                         struct rbd_device *rbd_dev,
1638                                         enum obj_operation_type op_type,
1639                                         struct ceph_snap_context *snapc)
1640 {
1641         struct rbd_img_request *img_request;
1642
1643         img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1644         if (!img_request)
1645                 return NULL;
1646
1647         img_request->rbd_dev = rbd_dev;
1648         img_request->op_type = op_type;
1649         if (!rbd_img_is_write(img_request))
1650                 img_request->snap_id = rbd_dev->spec->snap_id;
1651         else
1652                 img_request->snapc = snapc;
1653
1654         if (rbd_dev_parent_get(rbd_dev))
1655                 img_request_layered_set(img_request);
1656
1657         spin_lock_init(&img_request->completion_lock);
1658         INIT_LIST_HEAD(&img_request->object_extents);
1659         kref_init(&img_request->kref);
1660
1661         dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1662              obj_op_name(op_type), img_request);
1663         return img_request;
1664 }
1665
1666 static void rbd_img_request_destroy(struct kref *kref)
1667 {
1668         struct rbd_img_request *img_request;
1669         struct rbd_obj_request *obj_request;
1670         struct rbd_obj_request *next_obj_request;
1671
1672         img_request = container_of(kref, struct rbd_img_request, kref);
1673
1674         dout("%s: img %p\n", __func__, img_request);
1675
1676         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1677                 rbd_img_obj_request_del(img_request, obj_request);
1678         rbd_assert(img_request->obj_request_count == 0);
1679
1680         if (img_request_layered_test(img_request)) {
1681                 img_request_layered_clear(img_request);
1682                 rbd_dev_parent_put(img_request->rbd_dev);
1683         }
1684
1685         if (rbd_img_is_write(img_request))
1686                 ceph_put_snap_context(img_request->snapc);
1687
1688         kmem_cache_free(rbd_img_request_cache, img_request);
1689 }
1690
1691 static void prune_extents(struct ceph_file_extent *img_extents,
1692                           u32 *num_img_extents, u64 overlap)
1693 {
1694         u32 cnt = *num_img_extents;
1695
1696         /* drop extents completely beyond the overlap */
1697         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1698                 cnt--;
1699
1700         if (cnt) {
1701                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1702
1703                 /* trim final overlapping extent */
1704                 if (ex->fe_off + ex->fe_len > overlap)
1705                         ex->fe_len = overlap - ex->fe_off;
1706         }
1707
1708         *num_img_extents = cnt;
1709 }
1710
1711 /*
1712  * Determine the byte range(s) covered by either just the object extent
1713  * or the entire object in the parent image.
1714  */
1715 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1716                                     bool entire)
1717 {
1718         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1719         int ret;
1720
1721         if (!rbd_dev->parent_overlap)
1722                 return 0;
1723
1724         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1725                                   entire ? 0 : obj_req->ex.oe_off,
1726                                   entire ? rbd_dev->layout.object_size :
1727                                                         obj_req->ex.oe_len,
1728                                   &obj_req->img_extents,
1729                                   &obj_req->num_img_extents);
1730         if (ret)
1731                 return ret;
1732
1733         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1734                       rbd_dev->parent_overlap);
1735         return 0;
1736 }
1737
1738 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1739 {
1740         switch (obj_req->img_request->data_type) {
1741         case OBJ_REQUEST_BIO:
1742                 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1743                                                &obj_req->bio_pos,
1744                                                obj_req->ex.oe_len);
1745                 break;
1746         case OBJ_REQUEST_BVECS:
1747         case OBJ_REQUEST_OWN_BVECS:
1748                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1749                                                         obj_req->ex.oe_len);
1750                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1751                 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1752                                                     &obj_req->bvec_pos);
1753                 break;
1754         default:
1755                 rbd_assert(0);
1756         }
1757 }
1758
1759 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1760 {
1761         obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1762         if (!obj_req->osd_req)
1763                 return -ENOMEM;
1764
1765         osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1766                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1767         rbd_osd_req_setup_data(obj_req, 0);
1768
1769         rbd_osd_req_format_read(obj_req);
1770         return 0;
1771 }
1772
1773 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1774                                 unsigned int which)
1775 {
1776         struct page **pages;
1777
1778         /*
1779          * The response data for a STAT call consists of:
1780          *     le64 length;
1781          *     struct {
1782          *         le32 tv_sec;
1783          *         le32 tv_nsec;
1784          *     } mtime;
1785          */
1786         pages = ceph_alloc_page_vector(1, GFP_NOIO);
1787         if (IS_ERR(pages))
1788                 return PTR_ERR(pages);
1789
1790         osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1791         osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1792                                      8 + sizeof(struct ceph_timespec),
1793                                      0, false, true);
1794         return 0;
1795 }
1796
1797 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1798                                   unsigned int which)
1799 {
1800         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1801         u16 opcode;
1802
1803         osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1804                                    rbd_dev->layout.object_size,
1805                                    rbd_dev->layout.object_size);
1806
1807         if (rbd_obj_is_entire(obj_req))
1808                 opcode = CEPH_OSD_OP_WRITEFULL;
1809         else
1810                 opcode = CEPH_OSD_OP_WRITE;
1811
1812         osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1813                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1814         rbd_osd_req_setup_data(obj_req, which++);
1815
1816         rbd_assert(which == obj_req->osd_req->r_num_ops);
1817         rbd_osd_req_format_write(obj_req);
1818 }
1819
1820 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1821 {
1822         unsigned int num_osd_ops, which = 0;
1823         int ret;
1824
1825         /* reverse map the entire object onto the parent */
1826         ret = rbd_obj_calc_img_extents(obj_req, true);
1827         if (ret)
1828                 return ret;
1829
1830         if (obj_req->num_img_extents) {
1831                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1832                 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1833         } else {
1834                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1835                 num_osd_ops = 2; /* setallochint + write/writefull */
1836         }
1837
1838         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1839         if (!obj_req->osd_req)
1840                 return -ENOMEM;
1841
1842         if (obj_req->num_img_extents) {
1843                 ret = __rbd_obj_setup_stat(obj_req, which++);
1844                 if (ret)
1845                         return ret;
1846         }
1847
1848         __rbd_obj_setup_write(obj_req, which);
1849         return 0;
1850 }
1851
1852 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1853                                     unsigned int which)
1854 {
1855         u16 opcode;
1856
1857         if (rbd_obj_is_entire(obj_req)) {
1858                 if (obj_req->num_img_extents) {
1859                         osd_req_op_init(obj_req->osd_req, which++,
1860                                         CEPH_OSD_OP_CREATE, 0);
1861                         opcode = CEPH_OSD_OP_TRUNCATE;
1862                 } else {
1863                         osd_req_op_init(obj_req->osd_req, which++,
1864                                         CEPH_OSD_OP_DELETE, 0);
1865                         opcode = 0;
1866                 }
1867         } else if (rbd_obj_is_tail(obj_req)) {
1868                 opcode = CEPH_OSD_OP_TRUNCATE;
1869         } else {
1870                 opcode = CEPH_OSD_OP_ZERO;
1871         }
1872
1873         if (opcode)
1874                 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1875                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
1876                                        0, 0);
1877
1878         rbd_assert(which == obj_req->osd_req->r_num_ops);
1879         rbd_osd_req_format_write(obj_req);
1880 }
1881
1882 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1883 {
1884         unsigned int num_osd_ops, which = 0;
1885         int ret;
1886
1887         /* reverse map the entire object onto the parent */
1888         ret = rbd_obj_calc_img_extents(obj_req, true);
1889         if (ret)
1890                 return ret;
1891
1892         if (rbd_obj_is_entire(obj_req)) {
1893                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1894                 if (obj_req->num_img_extents)
1895                         num_osd_ops = 2; /* create + truncate */
1896                 else
1897                         num_osd_ops = 1; /* delete */
1898         } else {
1899                 if (obj_req->num_img_extents) {
1900                         obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1901                         num_osd_ops = 2; /* stat + truncate/zero */
1902                 } else {
1903                         obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1904                         num_osd_ops = 1; /* truncate/zero */
1905                 }
1906         }
1907
1908         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1909         if (!obj_req->osd_req)
1910                 return -ENOMEM;
1911
1912         if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1913                 ret = __rbd_obj_setup_stat(obj_req, which++);
1914                 if (ret)
1915                         return ret;
1916         }
1917
1918         __rbd_obj_setup_discard(obj_req, which);
1919         return 0;
1920 }
1921
1922 /*
1923  * For each object request in @img_req, allocate an OSD request, add
1924  * individual OSD ops and prepare them for submission.  The number of
1925  * OSD ops depends on op_type and the overlap point (if any).
1926  */
1927 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1928 {
1929         struct rbd_obj_request *obj_req;
1930         int ret;
1931
1932         for_each_obj_request(img_req, obj_req) {
1933                 switch (img_req->op_type) {
1934                 case OBJ_OP_READ:
1935                         ret = rbd_obj_setup_read(obj_req);
1936                         break;
1937                 case OBJ_OP_WRITE:
1938                         ret = rbd_obj_setup_write(obj_req);
1939                         break;
1940                 case OBJ_OP_DISCARD:
1941                         ret = rbd_obj_setup_discard(obj_req);
1942                         break;
1943                 default:
1944                         rbd_assert(0);
1945                 }
1946                 if (ret)
1947                         return ret;
1948         }
1949
1950         return 0;
1951 }
1952
1953 union rbd_img_fill_iter {
1954         struct ceph_bio_iter    bio_iter;
1955         struct ceph_bvec_iter   bvec_iter;
1956 };
1957
1958 struct rbd_img_fill_ctx {
1959         enum obj_request_type   pos_type;
1960         union rbd_img_fill_iter *pos;
1961         union rbd_img_fill_iter iter;
1962         ceph_object_extent_fn_t set_pos_fn;
1963         ceph_object_extent_fn_t count_fn;
1964         ceph_object_extent_fn_t copy_fn;
1965 };
1966
1967 static struct ceph_object_extent *alloc_object_extent(void *arg)
1968 {
1969         struct rbd_img_request *img_req = arg;
1970         struct rbd_obj_request *obj_req;
1971
1972         obj_req = rbd_obj_request_create();
1973         if (!obj_req)
1974                 return NULL;
1975
1976         rbd_img_obj_request_add(img_req, obj_req);
1977         return &obj_req->ex;
1978 }
1979
1980 /*
1981  * While su != os && sc == 1 is technically not fancy (it's the same
1982  * layout as su == os && sc == 1), we can't use the nocopy path for it
1983  * because ->set_pos_fn() should be called only once per object.
1984  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1985  * treat su != os && sc == 1 as fancy.
1986  */
1987 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1988 {
1989         return l->stripe_unit != l->object_size;
1990 }
1991
1992 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1993                                        struct ceph_file_extent *img_extents,
1994                                        u32 num_img_extents,
1995                                        struct rbd_img_fill_ctx *fctx)
1996 {
1997         u32 i;
1998         int ret;
1999
2000         img_req->data_type = fctx->pos_type;
2001
2002         /*
2003          * Create object requests and set each object request's starting
2004          * position in the provided bio (list) or bio_vec array.
2005          */
2006         fctx->iter = *fctx->pos;
2007         for (i = 0; i < num_img_extents; i++) {
2008                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2009                                            img_extents[i].fe_off,
2010                                            img_extents[i].fe_len,
2011                                            &img_req->object_extents,
2012                                            alloc_object_extent, img_req,
2013                                            fctx->set_pos_fn, &fctx->iter);
2014                 if (ret)
2015                         return ret;
2016         }
2017
2018         return __rbd_img_fill_request(img_req);
2019 }
2020
2021 /*
2022  * Map a list of image extents to a list of object extents, create the
2023  * corresponding object requests (normally each to a different object,
2024  * but not always) and add them to @img_req.  For each object request,
2025  * set up its data descriptor to point to the corresponding chunk(s) of
2026  * @fctx->pos data buffer.
2027  *
2028  * Because ceph_file_to_extents() will merge adjacent object extents
2029  * together, each object request's data descriptor may point to multiple
2030  * different chunks of @fctx->pos data buffer.
2031  *
2032  * @fctx->pos data buffer is assumed to be large enough.
2033  */
2034 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2035                                 struct ceph_file_extent *img_extents,
2036                                 u32 num_img_extents,
2037                                 struct rbd_img_fill_ctx *fctx)
2038 {
2039         struct rbd_device *rbd_dev = img_req->rbd_dev;
2040         struct rbd_obj_request *obj_req;
2041         u32 i;
2042         int ret;
2043
2044         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2045             !rbd_layout_is_fancy(&rbd_dev->layout))
2046                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2047                                                    num_img_extents, fctx);
2048
2049         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2050
2051         /*
2052          * Create object requests and determine ->bvec_count for each object
2053          * request.  Note that ->bvec_count sum over all object requests may
2054          * be greater than the number of bio_vecs in the provided bio (list)
2055          * or bio_vec array because when mapped, those bio_vecs can straddle
2056          * stripe unit boundaries.
2057          */
2058         fctx->iter = *fctx->pos;
2059         for (i = 0; i < num_img_extents; i++) {
2060                 ret = ceph_file_to_extents(&rbd_dev->layout,
2061                                            img_extents[i].fe_off,
2062                                            img_extents[i].fe_len,
2063                                            &img_req->object_extents,
2064                                            alloc_object_extent, img_req,
2065                                            fctx->count_fn, &fctx->iter);
2066                 if (ret)
2067                         return ret;
2068         }
2069
2070         for_each_obj_request(img_req, obj_req) {
2071                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2072                                               sizeof(*obj_req->bvec_pos.bvecs),
2073                                               GFP_NOIO);
2074                 if (!obj_req->bvec_pos.bvecs)
2075                         return -ENOMEM;
2076         }
2077
2078         /*
2079          * Fill in each object request's private bio_vec array, splitting and
2080          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2081          */
2082         fctx->iter = *fctx->pos;
2083         for (i = 0; i < num_img_extents; i++) {
2084                 ret = ceph_iterate_extents(&rbd_dev->layout,
2085                                            img_extents[i].fe_off,
2086                                            img_extents[i].fe_len,
2087                                            &img_req->object_extents,
2088                                            fctx->copy_fn, &fctx->iter);
2089                 if (ret)
2090                         return ret;
2091         }
2092
2093         return __rbd_img_fill_request(img_req);
2094 }
2095
2096 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2097                                u64 off, u64 len)
2098 {
2099         struct ceph_file_extent ex = { off, len };
2100         union rbd_img_fill_iter dummy;
2101         struct rbd_img_fill_ctx fctx = {
2102                 .pos_type = OBJ_REQUEST_NODATA,
2103                 .pos = &dummy,
2104         };
2105
2106         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2107 }
2108
2109 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2110 {
2111         struct rbd_obj_request *obj_req =
2112             container_of(ex, struct rbd_obj_request, ex);
2113         struct ceph_bio_iter *it = arg;
2114
2115         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2116         obj_req->bio_pos = *it;
2117         ceph_bio_iter_advance(it, bytes);
2118 }
2119
2120 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2121 {
2122         struct rbd_obj_request *obj_req =
2123             container_of(ex, struct rbd_obj_request, ex);
2124         struct ceph_bio_iter *it = arg;
2125
2126         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2127         ceph_bio_iter_advance_step(it, bytes, ({
2128                 obj_req->bvec_count++;
2129         }));
2130
2131 }
2132
2133 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2134 {
2135         struct rbd_obj_request *obj_req =
2136             container_of(ex, struct rbd_obj_request, ex);
2137         struct ceph_bio_iter *it = arg;
2138
2139         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2140         ceph_bio_iter_advance_step(it, bytes, ({
2141                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2142                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2143         }));
2144 }
2145
2146 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2147                                    struct ceph_file_extent *img_extents,
2148                                    u32 num_img_extents,
2149                                    struct ceph_bio_iter *bio_pos)
2150 {
2151         struct rbd_img_fill_ctx fctx = {
2152                 .pos_type = OBJ_REQUEST_BIO,
2153                 .pos = (union rbd_img_fill_iter *)bio_pos,
2154                 .set_pos_fn = set_bio_pos,
2155                 .count_fn = count_bio_bvecs,
2156                 .copy_fn = copy_bio_bvecs,
2157         };
2158
2159         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2160                                     &fctx);
2161 }
2162
2163 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2164                                  u64 off, u64 len, struct bio *bio)
2165 {
2166         struct ceph_file_extent ex = { off, len };
2167         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2168
2169         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2170 }
2171
2172 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2173 {
2174         struct rbd_obj_request *obj_req =
2175             container_of(ex, struct rbd_obj_request, ex);
2176         struct ceph_bvec_iter *it = arg;
2177
2178         obj_req->bvec_pos = *it;
2179         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2180         ceph_bvec_iter_advance(it, bytes);
2181 }
2182
2183 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2184 {
2185         struct rbd_obj_request *obj_req =
2186             container_of(ex, struct rbd_obj_request, ex);
2187         struct ceph_bvec_iter *it = arg;
2188
2189         ceph_bvec_iter_advance_step(it, bytes, ({
2190                 obj_req->bvec_count++;
2191         }));
2192 }
2193
2194 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2195 {
2196         struct rbd_obj_request *obj_req =
2197             container_of(ex, struct rbd_obj_request, ex);
2198         struct ceph_bvec_iter *it = arg;
2199
2200         ceph_bvec_iter_advance_step(it, bytes, ({
2201                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2202                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2203         }));
2204 }
2205
2206 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2207                                      struct ceph_file_extent *img_extents,
2208                                      u32 num_img_extents,
2209                                      struct ceph_bvec_iter *bvec_pos)
2210 {
2211         struct rbd_img_fill_ctx fctx = {
2212                 .pos_type = OBJ_REQUEST_BVECS,
2213                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2214                 .set_pos_fn = set_bvec_pos,
2215                 .count_fn = count_bvecs,
2216                 .copy_fn = copy_bvecs,
2217         };
2218
2219         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2220                                     &fctx);
2221 }
2222
2223 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2224                                    struct ceph_file_extent *img_extents,
2225                                    u32 num_img_extents,
2226                                    struct bio_vec *bvecs)
2227 {
2228         struct ceph_bvec_iter it = {
2229                 .bvecs = bvecs,
2230                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2231                                                              num_img_extents) },
2232         };
2233
2234         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2235                                          &it);
2236 }
2237
2238 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2239 {
2240         struct rbd_obj_request *obj_request;
2241
2242         dout("%s: img %p\n", __func__, img_request);
2243
2244         rbd_img_request_get(img_request);
2245         for_each_obj_request(img_request, obj_request)
2246                 rbd_obj_request_submit(obj_request);
2247
2248         rbd_img_request_put(img_request);
2249 }
2250
2251 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2252 {
2253         struct rbd_img_request *img_req = obj_req->img_request;
2254         struct rbd_img_request *child_img_req;
2255         int ret;
2256
2257         child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2258                                                OBJ_OP_READ, NULL);
2259         if (!child_img_req)
2260                 return -ENOMEM;
2261
2262         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2263         child_img_req->obj_request = obj_req;
2264
2265         if (!rbd_img_is_write(img_req)) {
2266                 switch (img_req->data_type) {
2267                 case OBJ_REQUEST_BIO:
2268                         ret = __rbd_img_fill_from_bio(child_img_req,
2269                                                       obj_req->img_extents,
2270                                                       obj_req->num_img_extents,
2271                                                       &obj_req->bio_pos);
2272                         break;
2273                 case OBJ_REQUEST_BVECS:
2274                 case OBJ_REQUEST_OWN_BVECS:
2275                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2276                                                       obj_req->img_extents,
2277                                                       obj_req->num_img_extents,
2278                                                       &obj_req->bvec_pos);
2279                         break;
2280                 default:
2281                         rbd_assert(0);
2282                 }
2283         } else {
2284                 ret = rbd_img_fill_from_bvecs(child_img_req,
2285                                               obj_req->img_extents,
2286                                               obj_req->num_img_extents,
2287                                               obj_req->copyup_bvecs);
2288         }
2289         if (ret) {
2290                 rbd_img_request_put(child_img_req);
2291                 return ret;
2292         }
2293
2294         rbd_img_request_submit(child_img_req);
2295         return 0;
2296 }
2297
2298 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2299 {
2300         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2301         int ret;
2302
2303         if (obj_req->result == -ENOENT &&
2304             rbd_dev->parent_overlap && !obj_req->tried_parent) {
2305                 /* reverse map this object extent onto the parent */
2306                 ret = rbd_obj_calc_img_extents(obj_req, false);
2307                 if (ret) {
2308                         obj_req->result = ret;
2309                         return true;
2310                 }
2311
2312                 if (obj_req->num_img_extents) {
2313                         obj_req->tried_parent = true;
2314                         ret = rbd_obj_read_from_parent(obj_req);
2315                         if (ret) {
2316                                 obj_req->result = ret;
2317                                 return true;
2318                         }
2319                         return false;
2320                 }
2321         }
2322
2323         /*
2324          * -ENOENT means a hole in the image -- zero-fill the entire
2325          * length of the request.  A short read also implies zero-fill
2326          * to the end of the request.  In both cases we update xferred
2327          * count to indicate the whole request was satisfied.
2328          */
2329         if (obj_req->result == -ENOENT ||
2330             (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2331                 rbd_assert(!obj_req->xferred || !obj_req->result);
2332                 rbd_obj_zero_range(obj_req, obj_req->xferred,
2333                                    obj_req->ex.oe_len - obj_req->xferred);
2334                 obj_req->result = 0;
2335                 obj_req->xferred = obj_req->ex.oe_len;
2336         }
2337
2338         return true;
2339 }
2340
2341 /*
2342  * copyup_bvecs pages are never highmem pages
2343  */
2344 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2345 {
2346         struct ceph_bvec_iter it = {
2347                 .bvecs = bvecs,
2348                 .iter = { .bi_size = bytes },
2349         };
2350
2351         ceph_bvec_iter_advance_step(&it, bytes, ({
2352                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2353                                bv.bv_len))
2354                         return false;
2355         }));
2356         return true;
2357 }
2358
2359 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2360 {
2361         unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2362         int ret;
2363
2364         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2365         rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2366         rbd_osd_req_destroy(obj_req->osd_req);
2367
2368         /*
2369          * Create a copyup request with the same number of OSD ops as
2370          * the original request.  The original request was stat + op(s),
2371          * the new copyup request will be copyup + the same op(s).
2372          */
2373         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2374         if (!obj_req->osd_req)
2375                 return -ENOMEM;
2376
2377         ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2378                                   "copyup");
2379         if (ret)
2380                 return ret;
2381
2382         /*
2383          * Only send non-zero copyup data to save some I/O and network
2384          * bandwidth -- zero copyup data is equivalent to the object not
2385          * existing.
2386          */
2387         if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2388                 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2389                 bytes = 0;
2390         }
2391         osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2392                                           obj_req->copyup_bvecs,
2393                                           obj_req->copyup_bvec_count,
2394                                           bytes);
2395
2396         switch (obj_req->img_request->op_type) {
2397         case OBJ_OP_WRITE:
2398                 __rbd_obj_setup_write(obj_req, 1);
2399                 break;
2400         case OBJ_OP_DISCARD:
2401                 rbd_assert(!rbd_obj_is_entire(obj_req));
2402                 __rbd_obj_setup_discard(obj_req, 1);
2403                 break;
2404         default:
2405                 rbd_assert(0);
2406         }
2407
2408         rbd_obj_request_submit(obj_req);
2409         return 0;
2410 }
2411
2412 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2413 {
2414         u32 i;
2415
2416         rbd_assert(!obj_req->copyup_bvecs);
2417         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2418         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2419                                         sizeof(*obj_req->copyup_bvecs),
2420                                         GFP_NOIO);
2421         if (!obj_req->copyup_bvecs)
2422                 return -ENOMEM;
2423
2424         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2425                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2426
2427                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2428                 if (!obj_req->copyup_bvecs[i].bv_page)
2429                         return -ENOMEM;
2430
2431                 obj_req->copyup_bvecs[i].bv_offset = 0;
2432                 obj_req->copyup_bvecs[i].bv_len = len;
2433                 obj_overlap -= len;
2434         }
2435
2436         rbd_assert(!obj_overlap);
2437         return 0;
2438 }
2439
2440 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2441 {
2442         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2443         int ret;
2444
2445         rbd_assert(obj_req->num_img_extents);
2446         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2447                       rbd_dev->parent_overlap);
2448         if (!obj_req->num_img_extents) {
2449                 /*
2450                  * The overlap has become 0 (most likely because the
2451                  * image has been flattened).  Use rbd_obj_issue_copyup()
2452                  * to re-submit the original write request -- the copyup
2453                  * operation itself will be a no-op, since someone must
2454                  * have populated the child object while we weren't
2455                  * looking.  Move to WRITE_FLAT state as we'll be done
2456                  * with the operation once the null copyup completes.
2457                  */
2458                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2459                 return rbd_obj_issue_copyup(obj_req, 0);
2460         }
2461
2462         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2463         if (ret)
2464                 return ret;
2465
2466         obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2467         return rbd_obj_read_from_parent(obj_req);
2468 }
2469
2470 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2471 {
2472         int ret;
2473
2474 again:
2475         switch (obj_req->write_state) {
2476         case RBD_OBJ_WRITE_GUARD:
2477                 rbd_assert(!obj_req->xferred);
2478                 if (obj_req->result == -ENOENT) {
2479                         /*
2480                          * The target object doesn't exist.  Read the data for
2481                          * the entire target object up to the overlap point (if
2482                          * any) from the parent, so we can use it for a copyup.
2483                          */
2484                         ret = rbd_obj_handle_write_guard(obj_req);
2485                         if (ret) {
2486                                 obj_req->result = ret;
2487                                 return true;
2488                         }
2489                         return false;
2490                 }
2491                 /* fall through */
2492         case RBD_OBJ_WRITE_FLAT:
2493                 if (!obj_req->result)
2494                         /*
2495                          * There is no such thing as a successful short
2496                          * write -- indicate the whole request was satisfied.
2497                          */
2498                         obj_req->xferred = obj_req->ex.oe_len;
2499                 return true;
2500         case RBD_OBJ_WRITE_COPYUP:
2501                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2502                 if (obj_req->result)
2503                         goto again;
2504
2505                 rbd_assert(obj_req->xferred);
2506                 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2507                 if (ret) {
2508                         obj_req->result = ret;
2509                         return true;
2510                 }
2511                 return false;
2512         default:
2513                 BUG();
2514         }
2515 }
2516
2517 /*
2518  * Returns true if @obj_req is completed, or false otherwise.
2519  */
2520 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2521 {
2522         switch (obj_req->img_request->op_type) {
2523         case OBJ_OP_READ:
2524                 return rbd_obj_handle_read(obj_req);
2525         case OBJ_OP_WRITE:
2526                 return rbd_obj_handle_write(obj_req);
2527         case OBJ_OP_DISCARD:
2528                 if (rbd_obj_handle_write(obj_req)) {
2529                         /*
2530                          * Hide -ENOENT from delete/truncate/zero -- discarding
2531                          * a non-existent object is not a problem.
2532                          */
2533                         if (obj_req->result == -ENOENT) {
2534                                 obj_req->result = 0;
2535                                 obj_req->xferred = obj_req->ex.oe_len;
2536                         }
2537                         return true;
2538                 }
2539                 return false;
2540         default:
2541                 BUG();
2542         }
2543 }
2544
2545 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2546 {
2547         struct rbd_img_request *img_req = obj_req->img_request;
2548
2549         rbd_assert((!obj_req->result &&
2550                     obj_req->xferred == obj_req->ex.oe_len) ||
2551                    (obj_req->result < 0 && !obj_req->xferred));
2552         if (!obj_req->result) {
2553                 img_req->xferred += obj_req->xferred;
2554                 return;
2555         }
2556
2557         rbd_warn(img_req->rbd_dev,
2558                  "%s at objno %llu %llu~%llu result %d xferred %llu",
2559                  obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2560                  obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2561                  obj_req->xferred);
2562         if (!img_req->result) {
2563                 img_req->result = obj_req->result;
2564                 img_req->xferred = 0;
2565         }
2566 }
2567
2568 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2569 {
2570         struct rbd_obj_request *obj_req = img_req->obj_request;
2571
2572         rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2573         rbd_assert((!img_req->result &&
2574                     img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2575                    (img_req->result < 0 && !img_req->xferred));
2576
2577         obj_req->result = img_req->result;
2578         obj_req->xferred = img_req->xferred;
2579         rbd_img_request_put(img_req);
2580 }
2581
2582 static void rbd_img_end_request(struct rbd_img_request *img_req)
2583 {
2584         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2585         rbd_assert((!img_req->result &&
2586                     img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2587                    (img_req->result < 0 && !img_req->xferred));
2588
2589         blk_mq_end_request(img_req->rq,
2590                            errno_to_blk_status(img_req->result));
2591         rbd_img_request_put(img_req);
2592 }
2593
2594 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2595 {
2596         struct rbd_img_request *img_req;
2597
2598 again:
2599         if (!__rbd_obj_handle_request(obj_req))
2600                 return;
2601
2602         img_req = obj_req->img_request;
2603         spin_lock(&img_req->completion_lock);
2604         rbd_obj_end_request(obj_req);
2605         rbd_assert(img_req->pending_count);
2606         if (--img_req->pending_count) {
2607                 spin_unlock(&img_req->completion_lock);
2608                 return;
2609         }
2610
2611         spin_unlock(&img_req->completion_lock);
2612         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2613                 obj_req = img_req->obj_request;
2614                 rbd_img_end_child_request(img_req);
2615                 goto again;
2616         }
2617         rbd_img_end_request(img_req);
2618 }
2619
2620 static const struct rbd_client_id rbd_empty_cid;
2621
2622 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2623                           const struct rbd_client_id *rhs)
2624 {
2625         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2626 }
2627
2628 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2629 {
2630         struct rbd_client_id cid;
2631
2632         mutex_lock(&rbd_dev->watch_mutex);
2633         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2634         cid.handle = rbd_dev->watch_cookie;
2635         mutex_unlock(&rbd_dev->watch_mutex);
2636         return cid;
2637 }
2638
2639 /*
2640  * lock_rwsem must be held for write
2641  */
2642 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2643                               const struct rbd_client_id *cid)
2644 {
2645         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2646              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2647              cid->gid, cid->handle);
2648         rbd_dev->owner_cid = *cid; /* struct */
2649 }
2650
2651 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2652 {
2653         mutex_lock(&rbd_dev->watch_mutex);
2654         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2655         mutex_unlock(&rbd_dev->watch_mutex);
2656 }
2657
2658 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2659 {
2660         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2661
2662         strcpy(rbd_dev->lock_cookie, cookie);
2663         rbd_set_owner_cid(rbd_dev, &cid);
2664         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2665 }
2666
2667 /*
2668  * lock_rwsem must be held for write
2669  */
2670 static int rbd_lock(struct rbd_device *rbd_dev)
2671 {
2672         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2673         char cookie[32];
2674         int ret;
2675
2676         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2677                 rbd_dev->lock_cookie[0] != '\0');
2678
2679         format_lock_cookie(rbd_dev, cookie);
2680         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2681                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2682                             RBD_LOCK_TAG, "", 0);
2683         if (ret)
2684                 return ret;
2685
2686         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2687         __rbd_lock(rbd_dev, cookie);
2688         return 0;
2689 }
2690
2691 /*
2692  * lock_rwsem must be held for write
2693  */
2694 static void rbd_unlock(struct rbd_device *rbd_dev)
2695 {
2696         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2697         int ret;
2698
2699         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2700                 rbd_dev->lock_cookie[0] == '\0');
2701
2702         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2703                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
2704         if (ret && ret != -ENOENT)
2705                 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2706
2707         /* treat errors as the image is unlocked */
2708         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2709         rbd_dev->lock_cookie[0] = '\0';
2710         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2711         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2712 }
2713
2714 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2715                                 enum rbd_notify_op notify_op,
2716                                 struct page ***preply_pages,
2717                                 size_t *preply_len)
2718 {
2719         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2720         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2721         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2722         int buf_size = sizeof(buf);
2723         void *p = buf;
2724
2725         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2726
2727         /* encode *LockPayload NotifyMessage (op + ClientId) */
2728         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2729         ceph_encode_32(&p, notify_op);
2730         ceph_encode_64(&p, cid.gid);
2731         ceph_encode_64(&p, cid.handle);
2732
2733         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2734                                 &rbd_dev->header_oloc, buf, buf_size,
2735                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2736 }
2737
2738 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2739                                enum rbd_notify_op notify_op)
2740 {
2741         struct page **reply_pages;
2742         size_t reply_len;
2743
2744         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2745         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2746 }
2747
2748 static void rbd_notify_acquired_lock(struct work_struct *work)
2749 {
2750         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2751                                                   acquired_lock_work);
2752
2753         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2754 }
2755
2756 static void rbd_notify_released_lock(struct work_struct *work)
2757 {
2758         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2759                                                   released_lock_work);
2760
2761         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2762 }
2763
2764 static int rbd_request_lock(struct rbd_device *rbd_dev)
2765 {
2766         struct page **reply_pages;
2767         size_t reply_len;
2768         bool lock_owner_responded = false;
2769         int ret;
2770
2771         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2772
2773         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2774                                    &reply_pages, &reply_len);
2775         if (ret && ret != -ETIMEDOUT) {
2776                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2777                 goto out;
2778         }
2779
2780         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2781                 void *p = page_address(reply_pages[0]);
2782                 void *const end = p + reply_len;
2783                 u32 n;
2784
2785                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2786                 while (n--) {
2787                         u8 struct_v;
2788                         u32 len;
2789
2790                         ceph_decode_need(&p, end, 8 + 8, e_inval);
2791                         p += 8 + 8; /* skip gid and cookie */
2792
2793                         ceph_decode_32_safe(&p, end, len, e_inval);
2794                         if (!len)
2795                                 continue;
2796
2797                         if (lock_owner_responded) {
2798                                 rbd_warn(rbd_dev,
2799                                          "duplicate lock owners detected");
2800                                 ret = -EIO;
2801                                 goto out;
2802                         }
2803
2804                         lock_owner_responded = true;
2805                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2806                                                   &struct_v, &len);
2807                         if (ret) {
2808                                 rbd_warn(rbd_dev,
2809                                          "failed to decode ResponseMessage: %d",
2810                                          ret);
2811                                 goto e_inval;
2812                         }
2813
2814                         ret = ceph_decode_32(&p);
2815                 }
2816         }
2817
2818         if (!lock_owner_responded) {
2819                 rbd_warn(rbd_dev, "no lock owners detected");
2820                 ret = -ETIMEDOUT;
2821         }
2822
2823 out:
2824         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2825         return ret;
2826
2827 e_inval:
2828         ret = -EINVAL;
2829         goto out;
2830 }
2831
2832 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2833 {
2834         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2835
2836         cancel_delayed_work(&rbd_dev->lock_dwork);
2837         if (wake_all)
2838                 wake_up_all(&rbd_dev->lock_waitq);
2839         else
2840                 wake_up(&rbd_dev->lock_waitq);
2841 }
2842
2843 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2844                                struct ceph_locker **lockers, u32 *num_lockers)
2845 {
2846         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2847         u8 lock_type;
2848         char *lock_tag;
2849         int ret;
2850
2851         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2852
2853         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2854                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2855                                  &lock_type, &lock_tag, lockers, num_lockers);
2856         if (ret)
2857                 return ret;
2858
2859         if (*num_lockers == 0) {
2860                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2861                 goto out;
2862         }
2863
2864         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2865                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2866                          lock_tag);
2867                 ret = -EBUSY;
2868                 goto out;
2869         }
2870
2871         if (lock_type == CEPH_CLS_LOCK_SHARED) {
2872                 rbd_warn(rbd_dev, "shared lock type detected");
2873                 ret = -EBUSY;
2874                 goto out;
2875         }
2876
2877         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2878                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
2879                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2880                          (*lockers)[0].id.cookie);
2881                 ret = -EBUSY;
2882                 goto out;
2883         }
2884
2885 out:
2886         kfree(lock_tag);
2887         return ret;
2888 }
2889
2890 static int find_watcher(struct rbd_device *rbd_dev,
2891                         const struct ceph_locker *locker)
2892 {
2893         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2894         struct ceph_watch_item *watchers;
2895         u32 num_watchers;
2896         u64 cookie;
2897         int i;
2898         int ret;
2899
2900         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2901                                       &rbd_dev->header_oloc, &watchers,
2902                                       &num_watchers);
2903         if (ret)
2904                 return ret;
2905
2906         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2907         for (i = 0; i < num_watchers; i++) {
2908                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2909                             sizeof(locker->info.addr)) &&
2910                     watchers[i].cookie == cookie) {
2911                         struct rbd_client_id cid = {
2912                                 .gid = le64_to_cpu(watchers[i].name.num),
2913                                 .handle = cookie,
2914                         };
2915
2916                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2917                              rbd_dev, cid.gid, cid.handle);
2918                         rbd_set_owner_cid(rbd_dev, &cid);
2919                         ret = 1;
2920                         goto out;
2921                 }
2922         }
2923
2924         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2925         ret = 0;
2926 out:
2927         kfree(watchers);
2928         return ret;
2929 }
2930
2931 /*
2932  * lock_rwsem must be held for write
2933  */
2934 static int rbd_try_lock(struct rbd_device *rbd_dev)
2935 {
2936         struct ceph_client *client = rbd_dev->rbd_client->client;
2937         struct ceph_locker *lockers;
2938         u32 num_lockers;
2939         int ret;
2940
2941         for (;;) {
2942                 ret = rbd_lock(rbd_dev);
2943                 if (ret != -EBUSY)
2944                         return ret;
2945
2946                 /* determine if the current lock holder is still alive */
2947                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2948                 if (ret)
2949                         return ret;
2950
2951                 if (num_lockers == 0)
2952                         goto again;
2953
2954                 ret = find_watcher(rbd_dev, lockers);
2955                 if (ret) {
2956                         if (ret > 0)
2957                                 ret = 0; /* have to request lock */
2958                         goto out;
2959                 }
2960
2961                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2962                          ENTITY_NAME(lockers[0].id.name));
2963
2964                 ret = ceph_monc_blacklist_add(&client->monc,
2965                                               &lockers[0].info.addr);
2966                 if (ret) {
2967                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2968                                  ENTITY_NAME(lockers[0].id.name), ret);
2969                         goto out;
2970                 }
2971
2972                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2973                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
2974                                           lockers[0].id.cookie,
2975                                           &lockers[0].id.name);
2976                 if (ret && ret != -ENOENT)
2977                         goto out;
2978
2979 again:
2980                 ceph_free_lockers(lockers, num_lockers);
2981         }
2982
2983 out:
2984         ceph_free_lockers(lockers, num_lockers);
2985         return ret;
2986 }
2987
2988 /*
2989  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2990  */
2991 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2992                                                 int *pret)
2993 {
2994         enum rbd_lock_state lock_state;
2995
2996         down_read(&rbd_dev->lock_rwsem);
2997         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2998              rbd_dev->lock_state);
2999         if (__rbd_is_lock_owner(rbd_dev)) {
3000                 lock_state = rbd_dev->lock_state;
3001                 up_read(&rbd_dev->lock_rwsem);
3002                 return lock_state;
3003         }
3004
3005         up_read(&rbd_dev->lock_rwsem);
3006         down_write(&rbd_dev->lock_rwsem);
3007         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3008              rbd_dev->lock_state);
3009         if (!__rbd_is_lock_owner(rbd_dev)) {
3010                 *pret = rbd_try_lock(rbd_dev);
3011                 if (*pret)
3012                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3013         }
3014
3015         lock_state = rbd_dev->lock_state;
3016         up_write(&rbd_dev->lock_rwsem);
3017         return lock_state;
3018 }
3019
3020 static void rbd_acquire_lock(struct work_struct *work)
3021 {
3022         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3023                                             struct rbd_device, lock_dwork);
3024         enum rbd_lock_state lock_state;
3025         int ret = 0;
3026
3027         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3028 again:
3029         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3030         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3031                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3032                         wake_requests(rbd_dev, true);
3033                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3034                      rbd_dev, lock_state, ret);
3035                 return;
3036         }
3037
3038         ret = rbd_request_lock(rbd_dev);
3039         if (ret == -ETIMEDOUT) {
3040                 goto again; /* treat this as a dead client */
3041         } else if (ret == -EROFS) {
3042                 rbd_warn(rbd_dev, "peer will not release lock");
3043                 /*
3044                  * If this is rbd_add_acquire_lock(), we want to fail
3045                  * immediately -- reuse BLACKLISTED flag.  Otherwise we
3046                  * want to block.
3047                  */
3048                 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3049                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3050                         /* wake "rbd map --exclusive" process */
3051                         wake_requests(rbd_dev, false);
3052                 }
3053         } else if (ret < 0) {
3054                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3055                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3056                                  RBD_RETRY_DELAY);
3057         } else {
3058                 /*
3059                  * lock owner acked, but resend if we don't see them
3060                  * release the lock
3061                  */
3062                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3063                      rbd_dev);
3064                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3065                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3066         }
3067 }
3068
3069 /*
3070  * lock_rwsem must be held for write
3071  */
3072 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3073 {
3074         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3075              rbd_dev->lock_state);
3076         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3077                 return false;
3078
3079         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3080         downgrade_write(&rbd_dev->lock_rwsem);
3081         /*
3082          * Ensure that all in-flight IO is flushed.
3083          *
3084          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3085          * may be shared with other devices.
3086          */
3087         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3088         up_read(&rbd_dev->lock_rwsem);
3089
3090         down_write(&rbd_dev->lock_rwsem);
3091         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3092              rbd_dev->lock_state);
3093         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3094                 return false;
3095
3096         rbd_unlock(rbd_dev);
3097         /*
3098          * Give others a chance to grab the lock - we would re-acquire
3099          * almost immediately if we got new IO during ceph_osdc_sync()
3100          * otherwise.  We need to ack our own notifications, so this
3101          * lock_dwork will be requeued from rbd_wait_state_locked()
3102          * after wake_requests() in rbd_handle_released_lock().
3103          */
3104         cancel_delayed_work(&rbd_dev->lock_dwork);
3105         return true;
3106 }
3107
3108 static void rbd_release_lock_work(struct work_struct *work)
3109 {
3110         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3111                                                   unlock_work);
3112
3113         down_write(&rbd_dev->lock_rwsem);
3114         rbd_release_lock(rbd_dev);
3115         up_write(&rbd_dev->lock_rwsem);
3116 }
3117
3118 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3119                                      void **p)
3120 {
3121         struct rbd_client_id cid = { 0 };
3122
3123         if (struct_v >= 2) {
3124                 cid.gid = ceph_decode_64(p);
3125                 cid.handle = ceph_decode_64(p);
3126         }
3127
3128         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3129              cid.handle);
3130         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3131                 down_write(&rbd_dev->lock_rwsem);
3132                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3133                         /*
3134                          * we already know that the remote client is
3135                          * the owner
3136                          */
3137                         up_write(&rbd_dev->lock_rwsem);
3138                         return;
3139                 }
3140
3141                 rbd_set_owner_cid(rbd_dev, &cid);
3142                 downgrade_write(&rbd_dev->lock_rwsem);
3143         } else {
3144                 down_read(&rbd_dev->lock_rwsem);
3145         }
3146
3147         if (!__rbd_is_lock_owner(rbd_dev))
3148                 wake_requests(rbd_dev, false);
3149         up_read(&rbd_dev->lock_rwsem);
3150 }
3151
3152 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3153                                      void **p)
3154 {
3155         struct rbd_client_id cid = { 0 };
3156
3157         if (struct_v >= 2) {
3158                 cid.gid = ceph_decode_64(p);
3159                 cid.handle = ceph_decode_64(p);
3160         }
3161
3162         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3163              cid.handle);
3164         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3165                 down_write(&rbd_dev->lock_rwsem);
3166                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3167                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3168                              __func__, rbd_dev, cid.gid, cid.handle,
3169                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3170                         up_write(&rbd_dev->lock_rwsem);
3171                         return;
3172                 }
3173
3174                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3175                 downgrade_write(&rbd_dev->lock_rwsem);
3176         } else {
3177                 down_read(&rbd_dev->lock_rwsem);
3178         }
3179
3180         if (!__rbd_is_lock_owner(rbd_dev))
3181                 wake_requests(rbd_dev, false);
3182         up_read(&rbd_dev->lock_rwsem);
3183 }
3184
3185 /*
3186  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3187  * ResponseMessage is needed.
3188  */
3189 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3190                                    void **p)
3191 {
3192         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3193         struct rbd_client_id cid = { 0 };
3194         int result = 1;
3195
3196         if (struct_v >= 2) {
3197                 cid.gid = ceph_decode_64(p);
3198                 cid.handle = ceph_decode_64(p);
3199         }
3200
3201         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3202              cid.handle);
3203         if (rbd_cid_equal(&cid, &my_cid))
3204                 return result;
3205
3206         down_read(&rbd_dev->lock_rwsem);
3207         if (__rbd_is_lock_owner(rbd_dev)) {
3208                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3209                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3210                         goto out_unlock;
3211
3212                 /*
3213                  * encode ResponseMessage(0) so the peer can detect
3214                  * a missing owner
3215                  */
3216                 result = 0;
3217
3218                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3219                         if (!rbd_dev->opts->exclusive) {
3220                                 dout("%s rbd_dev %p queueing unlock_work\n",
3221                                      __func__, rbd_dev);
3222                                 queue_work(rbd_dev->task_wq,
3223                                            &rbd_dev->unlock_work);
3224                         } else {
3225                                 /* refuse to release the lock */
3226                                 result = -EROFS;
3227                         }
3228                 }
3229         }
3230
3231 out_unlock:
3232         up_read(&rbd_dev->lock_rwsem);
3233         return result;
3234 }
3235
3236 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3237                                      u64 notify_id, u64 cookie, s32 *result)
3238 {
3239         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3240         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3241         int buf_size = sizeof(buf);
3242         int ret;
3243
3244         if (result) {
3245                 void *p = buf;
3246
3247                 /* encode ResponseMessage */
3248                 ceph_start_encoding(&p, 1, 1,
3249                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3250                 ceph_encode_32(&p, *result);
3251         } else {
3252                 buf_size = 0;
3253         }
3254
3255         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3256                                    &rbd_dev->header_oloc, notify_id, cookie,
3257                                    buf, buf_size);
3258         if (ret)
3259                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3260 }
3261
3262 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3263                                    u64 cookie)
3264 {
3265         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3266         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3267 }
3268
3269 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3270                                           u64 notify_id, u64 cookie, s32 result)
3271 {
3272         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3273         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3274 }
3275
3276 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3277                          u64 notifier_id, void *data, size_t data_len)
3278 {
3279         struct rbd_device *rbd_dev = arg;
3280         void *p = data;
3281         void *const end = p + data_len;
3282         u8 struct_v = 0;
3283         u32 len;
3284         u32 notify_op;
3285         int ret;
3286
3287         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3288              __func__, rbd_dev, cookie, notify_id, data_len);
3289         if (data_len) {
3290                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3291                                           &struct_v, &len);
3292                 if (ret) {
3293                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3294                                  ret);
3295                         return;
3296                 }
3297
3298                 notify_op = ceph_decode_32(&p);
3299         } else {
3300                 /* legacy notification for header updates */
3301                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3302                 len = 0;
3303         }
3304
3305         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3306         switch (notify_op) {
3307         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3308                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3309                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3310                 break;
3311         case RBD_NOTIFY_OP_RELEASED_LOCK:
3312                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3313                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3314                 break;
3315         case RBD_NOTIFY_OP_REQUEST_LOCK:
3316                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3317                 if (ret <= 0)
3318                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3319                                                       cookie, ret);
3320                 else
3321                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3322                 break;
3323         case RBD_NOTIFY_OP_HEADER_UPDATE:
3324                 ret = rbd_dev_refresh(rbd_dev);
3325                 if (ret)
3326                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3327
3328                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3329                 break;
3330         default:
3331                 if (rbd_is_lock_owner(rbd_dev))
3332                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3333                                                       cookie, -EOPNOTSUPP);
3334                 else
3335                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3336                 break;
3337         }
3338 }
3339
3340 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3341
3342 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3343 {
3344         struct rbd_device *rbd_dev = arg;
3345
3346         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3347
3348         down_write(&rbd_dev->lock_rwsem);
3349         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3350         up_write(&rbd_dev->lock_rwsem);
3351
3352         mutex_lock(&rbd_dev->watch_mutex);
3353         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3354                 __rbd_unregister_watch(rbd_dev);
3355                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3356
3357                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3358         }
3359         mutex_unlock(&rbd_dev->watch_mutex);
3360 }
3361
3362 /*
3363  * watch_mutex must be locked
3364  */
3365 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3366 {
3367         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3368         struct ceph_osd_linger_request *handle;
3369
3370         rbd_assert(!rbd_dev->watch_handle);
3371         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3372
3373         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3374                                  &rbd_dev->header_oloc, rbd_watch_cb,
3375                                  rbd_watch_errcb, rbd_dev);
3376         if (IS_ERR(handle))
3377                 return PTR_ERR(handle);
3378
3379         rbd_dev->watch_handle = handle;
3380         return 0;
3381 }
3382
3383 /*
3384  * watch_mutex must be locked
3385  */
3386 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3387 {
3388         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3389         int ret;
3390
3391         rbd_assert(rbd_dev->watch_handle);
3392         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3393
3394         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3395         if (ret)
3396                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3397
3398         rbd_dev->watch_handle = NULL;
3399 }
3400
3401 static int rbd_register_watch(struct rbd_device *rbd_dev)
3402 {
3403         int ret;
3404
3405         mutex_lock(&rbd_dev->watch_mutex);
3406         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3407         ret = __rbd_register_watch(rbd_dev);
3408         if (ret)
3409                 goto out;
3410
3411         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3412         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3413
3414 out:
3415         mutex_unlock(&rbd_dev->watch_mutex);
3416         return ret;
3417 }
3418
3419 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3420 {
3421         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3422
3423         cancel_work_sync(&rbd_dev->acquired_lock_work);
3424         cancel_work_sync(&rbd_dev->released_lock_work);
3425         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3426         cancel_work_sync(&rbd_dev->unlock_work);
3427 }
3428
3429 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3430 {
3431         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3432         cancel_tasks_sync(rbd_dev);
3433
3434         mutex_lock(&rbd_dev->watch_mutex);
3435         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3436                 __rbd_unregister_watch(rbd_dev);
3437         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3438         mutex_unlock(&rbd_dev->watch_mutex);
3439
3440         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3441         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3442 }
3443
3444 /*
3445  * lock_rwsem must be held for write
3446  */
3447 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3448 {
3449         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3450         char cookie[32];
3451         int ret;
3452
3453         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3454
3455         format_lock_cookie(rbd_dev, cookie);
3456         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3457                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
3458                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3459                                   RBD_LOCK_TAG, cookie);
3460         if (ret) {
3461                 if (ret != -EOPNOTSUPP)
3462                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3463                                  ret);
3464
3465                 /*
3466                  * Lock cookie cannot be updated on older OSDs, so do
3467                  * a manual release and queue an acquire.
3468                  */
3469                 if (rbd_release_lock(rbd_dev))
3470                         queue_delayed_work(rbd_dev->task_wq,
3471                                            &rbd_dev->lock_dwork, 0);
3472         } else {
3473                 __rbd_lock(rbd_dev, cookie);
3474         }
3475 }
3476
3477 static void rbd_reregister_watch(struct work_struct *work)
3478 {
3479         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3480                                             struct rbd_device, watch_dwork);
3481         int ret;
3482
3483         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3484
3485         mutex_lock(&rbd_dev->watch_mutex);
3486         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3487                 mutex_unlock(&rbd_dev->watch_mutex);
3488                 return;
3489         }
3490
3491         ret = __rbd_register_watch(rbd_dev);
3492         if (ret) {
3493                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3494                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3495                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3496                         wake_requests(rbd_dev, true);
3497                 } else {
3498                         queue_delayed_work(rbd_dev->task_wq,
3499                                            &rbd_dev->watch_dwork,
3500                                            RBD_RETRY_DELAY);
3501                 }
3502                 mutex_unlock(&rbd_dev->watch_mutex);
3503                 return;
3504         }
3505
3506         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3507         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3508         mutex_unlock(&rbd_dev->watch_mutex);
3509
3510         down_write(&rbd_dev->lock_rwsem);
3511         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3512                 rbd_reacquire_lock(rbd_dev);
3513         up_write(&rbd_dev->lock_rwsem);
3514
3515         ret = rbd_dev_refresh(rbd_dev);
3516         if (ret)
3517                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3518 }
3519
3520 /*
3521  * Synchronous osd object method call.  Returns the number of bytes
3522  * returned in the outbound buffer, or a negative error code.
3523  */
3524 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3525                              struct ceph_object_id *oid,
3526                              struct ceph_object_locator *oloc,
3527                              const char *method_name,
3528                              const void *outbound,
3529                              size_t outbound_size,
3530                              void *inbound,
3531                              size_t inbound_size)
3532 {
3533         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3534         struct page *req_page = NULL;
3535         struct page *reply_page;
3536         int ret;
3537
3538         /*
3539          * Method calls are ultimately read operations.  The result
3540          * should placed into the inbound buffer provided.  They
3541          * also supply outbound data--parameters for the object
3542          * method.  Currently if this is present it will be a
3543          * snapshot id.
3544          */
3545         if (outbound) {
3546                 if (outbound_size > PAGE_SIZE)
3547                         return -E2BIG;
3548
3549                 req_page = alloc_page(GFP_KERNEL);
3550                 if (!req_page)
3551                         return -ENOMEM;
3552
3553                 memcpy(page_address(req_page), outbound, outbound_size);
3554         }
3555
3556         reply_page = alloc_page(GFP_KERNEL);
3557         if (!reply_page) {
3558                 if (req_page)
3559                         __free_page(req_page);
3560                 return -ENOMEM;
3561         }
3562
3563         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3564                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3565                              reply_page, &inbound_size);
3566         if (!ret) {
3567                 memcpy(inbound, page_address(reply_page), inbound_size);
3568                 ret = inbound_size;
3569         }
3570
3571         if (req_page)
3572                 __free_page(req_page);
3573         __free_page(reply_page);
3574         return ret;
3575 }
3576
3577 /*
3578  * lock_rwsem must be held for read
3579  */
3580 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3581 {
3582         DEFINE_WAIT(wait);
3583         unsigned long timeout;
3584         int ret = 0;
3585
3586         if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3587                 return -EBLACKLISTED;
3588
3589         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3590                 return 0;
3591
3592         if (!may_acquire) {
3593                 rbd_warn(rbd_dev, "exclusive lock required");
3594                 return -EROFS;
3595         }
3596
3597         do {
3598                 /*
3599                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3600                  * and cancel_delayed_work() in wake_requests().
3601                  */
3602                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3603                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3604                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3605                                           TASK_UNINTERRUPTIBLE);
3606                 up_read(&rbd_dev->lock_rwsem);
3607                 timeout = schedule_timeout(ceph_timeout_jiffies(
3608                                                 rbd_dev->opts->lock_timeout));
3609                 down_read(&rbd_dev->lock_rwsem);
3610                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3611                         ret = -EBLACKLISTED;
3612                         break;
3613                 }
3614                 if (!timeout) {
3615                         rbd_warn(rbd_dev, "timed out waiting for lock");
3616                         ret = -ETIMEDOUT;
3617                         break;
3618                 }
3619         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3620
3621         finish_wait(&rbd_dev->lock_waitq, &wait);
3622         return ret;
3623 }
3624
3625 static void rbd_queue_workfn(struct work_struct *work)
3626 {
3627         struct request *rq = blk_mq_rq_from_pdu(work);
3628         struct rbd_device *rbd_dev = rq->q->queuedata;
3629         struct rbd_img_request *img_request;
3630         struct ceph_snap_context *snapc = NULL;
3631         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3632         u64 length = blk_rq_bytes(rq);
3633         enum obj_operation_type op_type;
3634         u64 mapping_size;
3635         bool must_be_locked;
3636         int result;
3637
3638         switch (req_op(rq)) {
3639         case REQ_OP_DISCARD:
3640         case REQ_OP_WRITE_ZEROES:
3641                 op_type = OBJ_OP_DISCARD;
3642                 break;
3643         case REQ_OP_WRITE:
3644                 op_type = OBJ_OP_WRITE;
3645                 break;
3646         case REQ_OP_READ:
3647                 op_type = OBJ_OP_READ;
3648                 break;
3649         default:
3650                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3651                 result = -EIO;
3652                 goto err;
3653         }
3654
3655         /* Ignore/skip any zero-length requests */
3656
3657         if (!length) {
3658                 dout("%s: zero-length request\n", __func__);
3659                 result = 0;
3660                 goto err_rq;
3661         }
3662
3663         rbd_assert(op_type == OBJ_OP_READ ||
3664                    rbd_dev->spec->snap_id == CEPH_NOSNAP);
3665
3666         /*
3667          * Quit early if the mapped snapshot no longer exists.  It's
3668          * still possible the snapshot will have disappeared by the
3669          * time our request arrives at the osd, but there's no sense in
3670          * sending it if we already know.
3671          */
3672         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3673                 dout("request for non-existent snapshot");
3674                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3675                 result = -ENXIO;
3676                 goto err_rq;
3677         }
3678
3679         if (offset && length > U64_MAX - offset + 1) {
3680                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3681                          length);
3682                 result = -EINVAL;
3683                 goto err_rq;    /* Shouldn't happen */
3684         }
3685
3686         blk_mq_start_request(rq);
3687
3688         down_read(&rbd_dev->header_rwsem);
3689         mapping_size = rbd_dev->mapping.size;
3690         if (op_type != OBJ_OP_READ) {
3691                 snapc = rbd_dev->header.snapc;
3692                 ceph_get_snap_context(snapc);
3693         }
3694         up_read(&rbd_dev->header_rwsem);
3695
3696         if (offset + length > mapping_size) {
3697                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3698                          length, mapping_size);
3699                 result = -EIO;
3700                 goto err_rq;
3701         }
3702
3703         must_be_locked =
3704             (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3705             (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3706         if (must_be_locked) {
3707                 down_read(&rbd_dev->lock_rwsem);
3708                 result = rbd_wait_state_locked(rbd_dev,
3709                                                !rbd_dev->opts->exclusive);
3710                 if (result)
3711                         goto err_unlock;
3712         }
3713
3714         img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3715         if (!img_request) {
3716                 result = -ENOMEM;
3717                 goto err_unlock;
3718         }
3719         img_request->rq = rq;
3720         snapc = NULL; /* img_request consumes a ref */
3721
3722         if (op_type == OBJ_OP_DISCARD)
3723                 result = rbd_img_fill_nodata(img_request, offset, length);
3724         else
3725                 result = rbd_img_fill_from_bio(img_request, offset, length,
3726                                                rq->bio);
3727         if (result)
3728                 goto err_img_request;
3729
3730         rbd_img_request_submit(img_request);
3731         if (must_be_locked)
3732                 up_read(&rbd_dev->lock_rwsem);
3733         return;
3734
3735 err_img_request:
3736         rbd_img_request_put(img_request);
3737 err_unlock:
3738         if (must_be_locked)
3739                 up_read(&rbd_dev->lock_rwsem);
3740 err_rq:
3741         if (result)
3742                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3743                          obj_op_name(op_type), length, offset, result);
3744         ceph_put_snap_context(snapc);
3745 err:
3746         blk_mq_end_request(rq, errno_to_blk_status(result));
3747 }
3748
3749 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3750                 const struct blk_mq_queue_data *bd)
3751 {
3752         struct request *rq = bd->rq;
3753         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3754
3755         queue_work(rbd_wq, work);
3756         return BLK_STS_OK;
3757 }
3758
3759 static void rbd_free_disk(struct rbd_device *rbd_dev)
3760 {
3761         blk_cleanup_queue(rbd_dev->disk->queue);
3762         blk_mq_free_tag_set(&rbd_dev->tag_set);
3763         put_disk(rbd_dev->disk);
3764         rbd_dev->disk = NULL;
3765 }
3766
3767 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3768                              struct ceph_object_id *oid,
3769                              struct ceph_object_locator *oloc,
3770                              void *buf, int buf_len)
3771
3772 {
3773         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3774         struct ceph_osd_request *req;
3775         struct page **pages;
3776         int num_pages = calc_pages_for(0, buf_len);
3777         int ret;
3778
3779         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3780         if (!req)
3781                 return -ENOMEM;
3782
3783         ceph_oid_copy(&req->r_base_oid, oid);
3784         ceph_oloc_copy(&req->r_base_oloc, oloc);
3785         req->r_flags = CEPH_OSD_FLAG_READ;
3786
3787         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3788         if (ret)
3789                 goto out_req;
3790
3791         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3792         if (IS_ERR(pages)) {
3793                 ret = PTR_ERR(pages);
3794                 goto out_req;
3795         }
3796
3797         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3798         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3799                                          true);
3800
3801         ceph_osdc_start_request(osdc, req, false);
3802         ret = ceph_osdc_wait_request(osdc, req);
3803         if (ret >= 0)
3804                 ceph_copy_from_page_vector(pages, buf, 0, ret);
3805
3806 out_req:
3807         ceph_osdc_put_request(req);
3808         return ret;
3809 }
3810
3811 /*
3812  * Read the complete header for the given rbd device.  On successful
3813  * return, the rbd_dev->header field will contain up-to-date
3814  * information about the image.
3815  */
3816 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3817 {
3818         struct rbd_image_header_ondisk *ondisk = NULL;
3819         u32 snap_count = 0;
3820         u64 names_size = 0;
3821         u32 want_count;
3822         int ret;
3823
3824         /*
3825          * The complete header will include an array of its 64-bit
3826          * snapshot ids, followed by the names of those snapshots as
3827          * a contiguous block of NUL-terminated strings.  Note that
3828          * the number of snapshots could change by the time we read
3829          * it in, in which case we re-read it.
3830          */
3831         do {
3832                 size_t size;
3833
3834                 kfree(ondisk);
3835
3836                 size = sizeof (*ondisk);
3837                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3838                 size += names_size;
3839                 ondisk = kmalloc(size, GFP_KERNEL);
3840                 if (!ondisk)
3841                         return -ENOMEM;
3842
3843                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3844                                         &rbd_dev->header_oloc, ondisk, size);
3845                 if (ret < 0)
3846                         goto out;
3847                 if ((size_t)ret < size) {
3848                         ret = -ENXIO;
3849                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3850                                 size, ret);
3851                         goto out;
3852                 }
3853                 if (!rbd_dev_ondisk_valid(ondisk)) {
3854                         ret = -ENXIO;
3855                         rbd_warn(rbd_dev, "invalid header");
3856                         goto out;
3857                 }
3858
3859                 names_size = le64_to_cpu(ondisk->snap_names_len);
3860                 want_count = snap_count;
3861                 snap_count = le32_to_cpu(ondisk->snap_count);
3862         } while (snap_count != want_count);
3863
3864         ret = rbd_header_from_disk(rbd_dev, ondisk);
3865 out:
3866         kfree(ondisk);
3867
3868         return ret;
3869 }
3870
3871 /*
3872  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3873  * has disappeared from the (just updated) snapshot context.
3874  */
3875 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3876 {
3877         u64 snap_id;
3878
3879         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3880                 return;
3881
3882         snap_id = rbd_dev->spec->snap_id;
3883         if (snap_id == CEPH_NOSNAP)
3884                 return;
3885
3886         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3887                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3888 }
3889
3890 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3891 {
3892         sector_t size;
3893
3894         /*
3895          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3896          * try to update its size.  If REMOVING is set, updating size
3897          * is just useless work since the device can't be opened.
3898          */
3899         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3900             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3901                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3902                 dout("setting size to %llu sectors", (unsigned long long)size);
3903                 set_capacity(rbd_dev->disk, size);
3904                 revalidate_disk(rbd_dev->disk);
3905         }
3906 }
3907
3908 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3909 {
3910         u64 mapping_size;
3911         int ret;
3912
3913         down_write(&rbd_dev->header_rwsem);
3914         mapping_size = rbd_dev->mapping.size;
3915
3916         ret = rbd_dev_header_info(rbd_dev);
3917         if (ret)
3918                 goto out;
3919
3920         /*
3921          * If there is a parent, see if it has disappeared due to the
3922          * mapped image getting flattened.
3923          */
3924         if (rbd_dev->parent) {
3925                 ret = rbd_dev_v2_parent_info(rbd_dev);
3926                 if (ret)
3927                         goto out;
3928         }
3929
3930         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3931                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3932         } else {
3933                 /* validate mapped snapshot's EXISTS flag */
3934                 rbd_exists_validate(rbd_dev);
3935         }
3936
3937 out:
3938         up_write(&rbd_dev->header_rwsem);
3939         if (!ret && mapping_size != rbd_dev->mapping.size)
3940                 rbd_dev_update_size(rbd_dev);
3941
3942         return ret;
3943 }
3944
3945 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3946                 unsigned int hctx_idx, unsigned int numa_node)
3947 {
3948         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3949
3950         INIT_WORK(work, rbd_queue_workfn);
3951         return 0;
3952 }
3953
3954 static const struct blk_mq_ops rbd_mq_ops = {
3955         .queue_rq       = rbd_queue_rq,
3956         .init_request   = rbd_init_request,
3957 };
3958
3959 static int rbd_init_disk(struct rbd_device *rbd_dev)
3960 {
3961         struct gendisk *disk;
3962         struct request_queue *q;
3963         unsigned int objset_bytes =
3964             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3965         int err;
3966
3967         /* create gendisk info */
3968         disk = alloc_disk(single_major ?
3969                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3970                           RBD_MINORS_PER_MAJOR);
3971         if (!disk)
3972                 return -ENOMEM;
3973
3974         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3975                  rbd_dev->dev_id);
3976         disk->major = rbd_dev->major;
3977         disk->first_minor = rbd_dev->minor;
3978         if (single_major)
3979                 disk->flags |= GENHD_FL_EXT_DEVT;
3980         disk->fops = &rbd_bd_ops;
3981         disk->private_data = rbd_dev;
3982
3983         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3984         rbd_dev->tag_set.ops = &rbd_mq_ops;
3985         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3986         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3987         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3988         rbd_dev->tag_set.nr_hw_queues = 1;
3989         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3990
3991         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3992         if (err)
3993                 goto out_disk;
3994
3995         q = blk_mq_init_queue(&rbd_dev->tag_set);
3996         if (IS_ERR(q)) {
3997                 err = PTR_ERR(q);
3998                 goto out_tag_set;
3999         }
4000
4001         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4002         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4003
4004         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4005         q->limits.max_sectors = queue_max_hw_sectors(q);
4006         blk_queue_max_segments(q, USHRT_MAX);
4007         blk_queue_max_segment_size(q, UINT_MAX);
4008         blk_queue_io_min(q, objset_bytes);
4009         blk_queue_io_opt(q, objset_bytes);
4010
4011         if (rbd_dev->opts->trim) {
4012                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4013                 q->limits.discard_granularity = objset_bytes;
4014                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4015                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4016         }
4017
4018         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4019                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4020
4021         /*
4022          * disk_release() expects a queue ref from add_disk() and will
4023          * put it.  Hold an extra ref until add_disk() is called.
4024          */
4025         WARN_ON(!blk_get_queue(q));
4026         disk->queue = q;
4027         q->queuedata = rbd_dev;
4028
4029         rbd_dev->disk = disk;
4030
4031         return 0;
4032 out_tag_set:
4033         blk_mq_free_tag_set(&rbd_dev->tag_set);
4034 out_disk:
4035         put_disk(disk);
4036         return err;
4037 }
4038
4039 /*
4040   sysfs
4041 */
4042
4043 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4044 {
4045         return container_of(dev, struct rbd_device, dev);
4046 }
4047
4048 static ssize_t rbd_size_show(struct device *dev,
4049                              struct device_attribute *attr, char *buf)
4050 {
4051         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4052
4053         return sprintf(buf, "%llu\n",
4054                 (unsigned long long)rbd_dev->mapping.size);
4055 }
4056
4057 /*
4058  * Note this shows the features for whatever's mapped, which is not
4059  * necessarily the base image.
4060  */
4061 static ssize_t rbd_features_show(struct device *dev,
4062                              struct device_attribute *attr, char *buf)
4063 {
4064         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4065
4066         return sprintf(buf, "0x%016llx\n",
4067                         (unsigned long long)rbd_dev->mapping.features);
4068 }
4069
4070 static ssize_t rbd_major_show(struct device *dev,
4071                               struct device_attribute *attr, char *buf)
4072 {
4073         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4074
4075         if (rbd_dev->major)
4076                 return sprintf(buf, "%d\n", rbd_dev->major);
4077
4078         return sprintf(buf, "(none)\n");
4079 }
4080
4081 static ssize_t rbd_minor_show(struct device *dev,
4082                               struct device_attribute *attr, char *buf)
4083 {
4084         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4085
4086         return sprintf(buf, "%d\n", rbd_dev->minor);
4087 }
4088
4089 static ssize_t rbd_client_addr_show(struct device *dev,
4090                                     struct device_attribute *attr, char *buf)
4091 {
4092         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4093         struct ceph_entity_addr *client_addr =
4094             ceph_client_addr(rbd_dev->rbd_client->client);
4095
4096         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4097                        le32_to_cpu(client_addr->nonce));
4098 }
4099
4100 static ssize_t rbd_client_id_show(struct device *dev,
4101                                   struct device_attribute *attr, char *buf)
4102 {
4103         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4104
4105         return sprintf(buf, "client%lld\n",
4106                        ceph_client_gid(rbd_dev->rbd_client->client));
4107 }
4108
4109 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4110                                      struct device_attribute *attr, char *buf)
4111 {
4112         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4113
4114         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4115 }
4116
4117 static ssize_t rbd_config_info_show(struct device *dev,
4118                                     struct device_attribute *attr, char *buf)
4119 {
4120         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4121
4122         return sprintf(buf, "%s\n", rbd_dev->config_info);
4123 }
4124
4125 static ssize_t rbd_pool_show(struct device *dev,
4126                              struct device_attribute *attr, char *buf)
4127 {
4128         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4129
4130         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4131 }
4132
4133 static ssize_t rbd_pool_id_show(struct device *dev,
4134                              struct device_attribute *attr, char *buf)
4135 {
4136         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4137
4138         return sprintf(buf, "%llu\n",
4139                         (unsigned long long) rbd_dev->spec->pool_id);
4140 }
4141
4142 static ssize_t rbd_pool_ns_show(struct device *dev,
4143                                 struct device_attribute *attr, char *buf)
4144 {
4145         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4146
4147         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4148 }
4149
4150 static ssize_t rbd_name_show(struct device *dev,
4151                              struct device_attribute *attr, char *buf)
4152 {
4153         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4154
4155         if (rbd_dev->spec->image_name)
4156                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4157
4158         return sprintf(buf, "(unknown)\n");
4159 }
4160
4161 static ssize_t rbd_image_id_show(struct device *dev,
4162                              struct device_attribute *attr, char *buf)
4163 {
4164         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4165
4166         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4167 }
4168
4169 /*
4170  * Shows the name of the currently-mapped snapshot (or
4171  * RBD_SNAP_HEAD_NAME for the base image).
4172  */
4173 static ssize_t rbd_snap_show(struct device *dev,
4174                              struct device_attribute *attr,
4175                              char *buf)
4176 {
4177         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4178
4179         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4180 }
4181
4182 static ssize_t rbd_snap_id_show(struct device *dev,
4183                                 struct device_attribute *attr, char *buf)
4184 {
4185         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4186
4187         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4188 }
4189
4190 /*
4191  * For a v2 image, shows the chain of parent images, separated by empty
4192  * lines.  For v1 images or if there is no parent, shows "(no parent
4193  * image)".
4194  */
4195 static ssize_t rbd_parent_show(struct device *dev,
4196                                struct device_attribute *attr,
4197                                char *buf)
4198 {
4199         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4200         ssize_t count = 0;
4201
4202         if (!rbd_dev->parent)
4203                 return sprintf(buf, "(no parent image)\n");
4204
4205         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4206                 struct rbd_spec *spec = rbd_dev->parent_spec;
4207
4208                 count += sprintf(&buf[count], "%s"
4209                             "pool_id %llu\npool_name %s\n"
4210                             "pool_ns %s\n"
4211                             "image_id %s\nimage_name %s\n"
4212                             "snap_id %llu\nsnap_name %s\n"
4213                             "overlap %llu\n",
4214                             !count ? "" : "\n", /* first? */
4215                             spec->pool_id, spec->pool_name,
4216                             spec->pool_ns ?: "",
4217                             spec->image_id, spec->image_name ?: "(unknown)",
4218                             spec->snap_id, spec->snap_name,
4219                             rbd_dev->parent_overlap);
4220         }
4221
4222         return count;
4223 }
4224
4225 static ssize_t rbd_image_refresh(struct device *dev,
4226                                  struct device_attribute *attr,
4227                                  const char *buf,
4228                                  size_t size)
4229 {
4230         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4231         int ret;
4232
4233         ret = rbd_dev_refresh(rbd_dev);
4234         if (ret)
4235                 return ret;
4236
4237         return size;
4238 }
4239
4240 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4241 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4242 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4243 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4244 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4245 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4246 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4247 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4248 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4249 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4250 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4251 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4252 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4253 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4254 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4255 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4256 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4257
4258 static struct attribute *rbd_attrs[] = {
4259         &dev_attr_size.attr,
4260         &dev_attr_features.attr,
4261         &dev_attr_major.attr,
4262         &dev_attr_minor.attr,
4263         &dev_attr_client_addr.attr,
4264         &dev_attr_client_id.attr,
4265         &dev_attr_cluster_fsid.attr,
4266         &dev_attr_config_info.attr,
4267         &dev_attr_pool.attr,
4268         &dev_attr_pool_id.attr,
4269         &dev_attr_pool_ns.attr,
4270         &dev_attr_name.attr,
4271         &dev_attr_image_id.attr,
4272         &dev_attr_current_snap.attr,
4273         &dev_attr_snap_id.attr,
4274         &dev_attr_parent.attr,
4275         &dev_attr_refresh.attr,
4276         NULL
4277 };
4278
4279 static struct attribute_group rbd_attr_group = {
4280         .attrs = rbd_attrs,
4281 };
4282
4283 static const struct attribute_group *rbd_attr_groups[] = {
4284         &rbd_attr_group,
4285         NULL
4286 };
4287
4288 static void rbd_dev_release(struct device *dev);
4289
4290 static const struct device_type rbd_device_type = {
4291         .name           = "rbd",
4292         .groups         = rbd_attr_groups,
4293         .release        = rbd_dev_release,
4294 };
4295
4296 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4297 {
4298         kref_get(&spec->kref);
4299
4300         return spec;
4301 }
4302
4303 static void rbd_spec_free(struct kref *kref);
4304 static void rbd_spec_put(struct rbd_spec *spec)
4305 {
4306         if (spec)
4307                 kref_put(&spec->kref, rbd_spec_free);
4308 }
4309
4310 static struct rbd_spec *rbd_spec_alloc(void)
4311 {
4312         struct rbd_spec *spec;
4313
4314         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4315         if (!spec)
4316                 return NULL;
4317
4318         spec->pool_id = CEPH_NOPOOL;
4319         spec->snap_id = CEPH_NOSNAP;
4320         kref_init(&spec->kref);
4321
4322         return spec;
4323 }
4324
4325 static void rbd_spec_free(struct kref *kref)
4326 {
4327         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4328
4329         kfree(spec->pool_name);
4330         kfree(spec->pool_ns);
4331         kfree(spec->image_id);
4332         kfree(spec->image_name);
4333         kfree(spec->snap_name);
4334         kfree(spec);
4335 }
4336
4337 static void rbd_dev_free(struct rbd_device *rbd_dev)
4338 {
4339         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4340         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4341
4342         ceph_oid_destroy(&rbd_dev->header_oid);
4343         ceph_oloc_destroy(&rbd_dev->header_oloc);
4344         kfree(rbd_dev->config_info);
4345
4346         rbd_put_client(rbd_dev->rbd_client);
4347         rbd_spec_put(rbd_dev->spec);
4348         kfree(rbd_dev->opts);
4349         kfree(rbd_dev);
4350 }
4351
4352 static void rbd_dev_release(struct device *dev)
4353 {
4354         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4355         bool need_put = !!rbd_dev->opts;
4356
4357         if (need_put) {
4358                 destroy_workqueue(rbd_dev->task_wq);
4359                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4360         }
4361
4362         rbd_dev_free(rbd_dev);
4363
4364         /*
4365          * This is racy, but way better than putting module outside of
4366          * the release callback.  The race window is pretty small, so
4367          * doing something similar to dm (dm-builtin.c) is overkill.
4368          */
4369         if (need_put)
4370                 module_put(THIS_MODULE);
4371 }
4372
4373 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4374                                            struct rbd_spec *spec)
4375 {
4376         struct rbd_device *rbd_dev;
4377
4378         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4379         if (!rbd_dev)
4380                 return NULL;
4381
4382         spin_lock_init(&rbd_dev->lock);
4383         INIT_LIST_HEAD(&rbd_dev->node);
4384         init_rwsem(&rbd_dev->header_rwsem);
4385
4386         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4387         ceph_oid_init(&rbd_dev->header_oid);
4388         rbd_dev->header_oloc.pool = spec->pool_id;
4389         if (spec->pool_ns) {
4390                 WARN_ON(!*spec->pool_ns);
4391                 rbd_dev->header_oloc.pool_ns =
4392                     ceph_find_or_create_string(spec->pool_ns,
4393                                                strlen(spec->pool_ns));
4394         }
4395
4396         mutex_init(&rbd_dev->watch_mutex);
4397         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4398         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4399
4400         init_rwsem(&rbd_dev->lock_rwsem);
4401         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4402         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4403         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4404         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4405         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4406         init_waitqueue_head(&rbd_dev->lock_waitq);
4407
4408         rbd_dev->dev.bus = &rbd_bus_type;
4409         rbd_dev->dev.type = &rbd_device_type;
4410         rbd_dev->dev.parent = &rbd_root_dev;
4411         device_initialize(&rbd_dev->dev);
4412
4413         rbd_dev->rbd_client = rbdc;
4414         rbd_dev->spec = spec;
4415
4416         return rbd_dev;
4417 }
4418
4419 /*
4420  * Create a mapping rbd_dev.
4421  */
4422 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4423                                          struct rbd_spec *spec,
4424                                          struct rbd_options *opts)
4425 {
4426         struct rbd_device *rbd_dev;
4427
4428         rbd_dev = __rbd_dev_create(rbdc, spec);
4429         if (!rbd_dev)
4430                 return NULL;
4431
4432         rbd_dev->opts = opts;
4433
4434         /* get an id and fill in device name */
4435         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4436                                          minor_to_rbd_dev_id(1 << MINORBITS),
4437                                          GFP_KERNEL);
4438         if (rbd_dev->dev_id < 0)
4439                 goto fail_rbd_dev;
4440
4441         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4442         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4443                                                    rbd_dev->name);
4444         if (!rbd_dev->task_wq)
4445                 goto fail_dev_id;
4446
4447         /* we have a ref from do_rbd_add() */
4448         __module_get(THIS_MODULE);
4449
4450         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4451         return rbd_dev;
4452
4453 fail_dev_id:
4454         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4455 fail_rbd_dev:
4456         rbd_dev_free(rbd_dev);
4457         return NULL;
4458 }
4459
4460 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4461 {
4462         if (rbd_dev)
4463                 put_device(&rbd_dev->dev);
4464 }
4465
4466 /*
4467  * Get the size and object order for an image snapshot, or if
4468  * snap_id is CEPH_NOSNAP, gets this information for the base
4469  * image.
4470  */
4471 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4472                                 u8 *order, u64 *snap_size)
4473 {
4474         __le64 snapid = cpu_to_le64(snap_id);
4475         int ret;
4476         struct {
4477                 u8 order;
4478                 __le64 size;
4479         } __attribute__ ((packed)) size_buf = { 0 };
4480
4481         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4482                                   &rbd_dev->header_oloc, "get_size",
4483                                   &snapid, sizeof(snapid),
4484                                   &size_buf, sizeof(size_buf));
4485         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4486         if (ret < 0)
4487                 return ret;
4488         if (ret < sizeof (size_buf))
4489                 return -ERANGE;
4490
4491         if (order) {
4492                 *order = size_buf.order;
4493                 dout("  order %u", (unsigned int)*order);
4494         }
4495         *snap_size = le64_to_cpu(size_buf.size);
4496
4497         dout("  snap_id 0x%016llx snap_size = %llu\n",
4498                 (unsigned long long)snap_id,
4499                 (unsigned long long)*snap_size);
4500
4501         return 0;
4502 }
4503
4504 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4505 {
4506         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4507                                         &rbd_dev->header.obj_order,
4508                                         &rbd_dev->header.image_size);
4509 }
4510
4511 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4512 {
4513         void *reply_buf;
4514         int ret;
4515         void *p;
4516
4517         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4518         if (!reply_buf)
4519                 return -ENOMEM;
4520
4521         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4522                                   &rbd_dev->header_oloc, "get_object_prefix",
4523                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4524         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4525         if (ret < 0)
4526                 goto out;
4527
4528         p = reply_buf;
4529         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4530                                                 p + ret, NULL, GFP_NOIO);
4531         ret = 0;
4532
4533         if (IS_ERR(rbd_dev->header.object_prefix)) {
4534                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4535                 rbd_dev->header.object_prefix = NULL;
4536         } else {
4537                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4538         }
4539 out:
4540         kfree(reply_buf);
4541
4542         return ret;
4543 }
4544
4545 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4546                 u64 *snap_features)
4547 {
4548         __le64 snapid = cpu_to_le64(snap_id);
4549         struct {
4550                 __le64 features;
4551                 __le64 incompat;
4552         } __attribute__ ((packed)) features_buf = { 0 };
4553         u64 unsup;
4554         int ret;
4555
4556         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4557                                   &rbd_dev->header_oloc, "get_features",
4558                                   &snapid, sizeof(snapid),
4559                                   &features_buf, sizeof(features_buf));
4560         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4561         if (ret < 0)
4562                 return ret;
4563         if (ret < sizeof (features_buf))
4564                 return -ERANGE;
4565
4566         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4567         if (unsup) {
4568                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4569                          unsup);
4570                 return -ENXIO;
4571         }
4572
4573         *snap_features = le64_to_cpu(features_buf.features);
4574
4575         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4576                 (unsigned long long)snap_id,
4577                 (unsigned long long)*snap_features,
4578                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4579
4580         return 0;
4581 }
4582
4583 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4584 {
4585         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4586                                                 &rbd_dev->header.features);
4587 }
4588
4589 struct parent_image_info {
4590         u64             pool_id;
4591         const char      *pool_ns;
4592         const char      *image_id;
4593         u64             snap_id;
4594
4595         bool            has_overlap;
4596         u64             overlap;
4597 };
4598
4599 /*
4600  * The caller is responsible for @pii.
4601  */
4602 static int decode_parent_image_spec(void **p, void *end,
4603                                     struct parent_image_info *pii)
4604 {
4605         u8 struct_v;
4606         u32 struct_len;
4607         int ret;
4608
4609         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
4610                                   &struct_v, &struct_len);
4611         if (ret)
4612                 return ret;
4613
4614         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
4615         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4616         if (IS_ERR(pii->pool_ns)) {
4617                 ret = PTR_ERR(pii->pool_ns);
4618                 pii->pool_ns = NULL;
4619                 return ret;
4620         }
4621         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4622         if (IS_ERR(pii->image_id)) {
4623                 ret = PTR_ERR(pii->image_id);
4624                 pii->image_id = NULL;
4625                 return ret;
4626         }
4627         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
4628         return 0;
4629
4630 e_inval:
4631         return -EINVAL;
4632 }
4633
4634 static int __get_parent_info(struct rbd_device *rbd_dev,
4635                              struct page *req_page,
4636                              struct page *reply_page,
4637                              struct parent_image_info *pii)
4638 {
4639         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4640         size_t reply_len = PAGE_SIZE;
4641         void *p, *end;
4642         int ret;
4643
4644         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4645                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
4646                              req_page, sizeof(u64), reply_page, &reply_len);
4647         if (ret)
4648                 return ret == -EOPNOTSUPP ? 1 : ret;
4649
4650         p = page_address(reply_page);
4651         end = p + reply_len;
4652         ret = decode_parent_image_spec(&p, end, pii);
4653         if (ret)
4654                 return ret;
4655
4656         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4657                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
4658                              req_page, sizeof(u64), reply_page, &reply_len);
4659         if (ret)
4660                 return ret;
4661
4662         p = page_address(reply_page);
4663         end = p + reply_len;
4664         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
4665         if (pii->has_overlap)
4666                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4667
4668         return 0;
4669
4670 e_inval:
4671         return -EINVAL;
4672 }
4673
4674 /*
4675  * The caller is responsible for @pii.
4676  */
4677 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
4678                                     struct page *req_page,
4679                                     struct page *reply_page,
4680                                     struct parent_image_info *pii)
4681 {
4682         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4683         size_t reply_len = PAGE_SIZE;
4684         void *p, *end;
4685         int ret;
4686
4687         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4688                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
4689                              req_page, sizeof(u64), reply_page, &reply_len);
4690         if (ret)
4691                 return ret;
4692
4693         p = page_address(reply_page);
4694         end = p + reply_len;
4695         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
4696         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4697         if (IS_ERR(pii->image_id)) {
4698                 ret = PTR_ERR(pii->image_id);
4699                 pii->image_id = NULL;
4700                 return ret;
4701         }
4702         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
4703         pii->has_overlap = true;
4704         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4705
4706         return 0;
4707
4708 e_inval:
4709         return -EINVAL;
4710 }
4711
4712 static int get_parent_info(struct rbd_device *rbd_dev,
4713                            struct parent_image_info *pii)
4714 {
4715         struct page *req_page, *reply_page;
4716         void *p;
4717         int ret;
4718
4719         req_page = alloc_page(GFP_KERNEL);
4720         if (!req_page)
4721                 return -ENOMEM;
4722
4723         reply_page = alloc_page(GFP_KERNEL);
4724         if (!reply_page) {
4725                 __free_page(req_page);
4726                 return -ENOMEM;
4727         }
4728
4729         p = page_address(req_page);
4730         ceph_encode_64(&p, rbd_dev->spec->snap_id);
4731         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
4732         if (ret > 0)
4733                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
4734                                                pii);
4735
4736         __free_page(req_page);
4737         __free_page(reply_page);
4738         return ret;
4739 }
4740
4741 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4742 {
4743         struct rbd_spec *parent_spec;
4744         struct parent_image_info pii = { 0 };
4745         int ret;
4746
4747         parent_spec = rbd_spec_alloc();
4748         if (!parent_spec)
4749                 return -ENOMEM;
4750
4751         ret = get_parent_info(rbd_dev, &pii);
4752         if (ret)
4753                 goto out_err;
4754
4755         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
4756              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
4757              pii.has_overlap, pii.overlap);
4758
4759         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
4760                 /*
4761                  * Either the parent never existed, or we have
4762                  * record of it but the image got flattened so it no
4763                  * longer has a parent.  When the parent of a
4764                  * layered image disappears we immediately set the
4765                  * overlap to 0.  The effect of this is that all new
4766                  * requests will be treated as if the image had no
4767                  * parent.
4768                  *
4769                  * If !pii.has_overlap, the parent image spec is not
4770                  * applicable.  It's there to avoid duplication in each
4771                  * snapshot record.
4772                  */
4773                 if (rbd_dev->parent_overlap) {
4774                         rbd_dev->parent_overlap = 0;
4775                         rbd_dev_parent_put(rbd_dev);
4776                         pr_info("%s: clone image has been flattened\n",
4777                                 rbd_dev->disk->disk_name);
4778                 }
4779
4780                 goto out;       /* No parent?  No problem. */
4781         }
4782
4783         /* The ceph file layout needs to fit pool id in 32 bits */
4784
4785         ret = -EIO;
4786         if (pii.pool_id > (u64)U32_MAX) {
4787                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4788                         (unsigned long long)pii.pool_id, U32_MAX);
4789                 goto out_err;
4790         }
4791
4792         /*
4793          * The parent won't change (except when the clone is
4794          * flattened, already handled that).  So we only need to
4795          * record the parent spec we have not already done so.
4796          */
4797         if (!rbd_dev->parent_spec) {
4798                 parent_spec->pool_id = pii.pool_id;
4799                 if (pii.pool_ns && *pii.pool_ns) {
4800                         parent_spec->pool_ns = pii.pool_ns;
4801                         pii.pool_ns = NULL;
4802                 }
4803                 parent_spec->image_id = pii.image_id;
4804                 pii.image_id = NULL;
4805                 parent_spec->snap_id = pii.snap_id;
4806
4807                 rbd_dev->parent_spec = parent_spec;
4808                 parent_spec = NULL;     /* rbd_dev now owns this */
4809         }
4810
4811         /*
4812          * We always update the parent overlap.  If it's zero we issue
4813          * a warning, as we will proceed as if there was no parent.
4814          */
4815         if (!pii.overlap) {
4816                 if (parent_spec) {
4817                         /* refresh, careful to warn just once */
4818                         if (rbd_dev->parent_overlap)
4819                                 rbd_warn(rbd_dev,
4820                                     "clone now standalone (overlap became 0)");
4821                 } else {
4822                         /* initial probe */
4823                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4824                 }
4825         }
4826         rbd_dev->parent_overlap = pii.overlap;
4827
4828 out:
4829         ret = 0;
4830 out_err:
4831         kfree(pii.pool_ns);
4832         kfree(pii.image_id);
4833         rbd_spec_put(parent_spec);
4834         return ret;
4835 }
4836
4837 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4838 {
4839         struct {
4840                 __le64 stripe_unit;
4841                 __le64 stripe_count;
4842         } __attribute__ ((packed)) striping_info_buf = { 0 };
4843         size_t size = sizeof (striping_info_buf);
4844         void *p;
4845         int ret;
4846
4847         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4848                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
4849                                 NULL, 0, &striping_info_buf, size);
4850         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4851         if (ret < 0)
4852                 return ret;
4853         if (ret < size)
4854                 return -ERANGE;
4855
4856         p = &striping_info_buf;
4857         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4858         rbd_dev->header.stripe_count = ceph_decode_64(&p);
4859         return 0;
4860 }
4861
4862 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4863 {
4864         __le64 data_pool_id;
4865         int ret;
4866
4867         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4868                                   &rbd_dev->header_oloc, "get_data_pool",
4869                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
4870         if (ret < 0)
4871                 return ret;
4872         if (ret < sizeof(data_pool_id))
4873                 return -EBADMSG;
4874
4875         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4876         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4877         return 0;
4878 }
4879
4880 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4881 {
4882         CEPH_DEFINE_OID_ONSTACK(oid);
4883         size_t image_id_size;
4884         char *image_id;
4885         void *p;
4886         void *end;
4887         size_t size;
4888         void *reply_buf = NULL;
4889         size_t len = 0;
4890         char *image_name = NULL;
4891         int ret;
4892
4893         rbd_assert(!rbd_dev->spec->image_name);
4894
4895         len = strlen(rbd_dev->spec->image_id);
4896         image_id_size = sizeof (__le32) + len;
4897         image_id = kmalloc(image_id_size, GFP_KERNEL);
4898         if (!image_id)
4899                 return NULL;
4900
4901         p = image_id;
4902         end = image_id + image_id_size;
4903         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4904
4905         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4906         reply_buf = kmalloc(size, GFP_KERNEL);
4907         if (!reply_buf)
4908                 goto out;
4909
4910         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4911         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4912                                   "dir_get_name", image_id, image_id_size,
4913                                   reply_buf, size);
4914         if (ret < 0)
4915                 goto out;
4916         p = reply_buf;
4917         end = reply_buf + ret;
4918
4919         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4920         if (IS_ERR(image_name))
4921                 image_name = NULL;
4922         else
4923                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4924 out:
4925         kfree(reply_buf);
4926         kfree(image_id);
4927
4928         return image_name;
4929 }
4930
4931 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4932 {
4933         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4934         const char *snap_name;
4935         u32 which = 0;
4936
4937         /* Skip over names until we find the one we are looking for */
4938
4939         snap_name = rbd_dev->header.snap_names;
4940         while (which < snapc->num_snaps) {
4941                 if (!strcmp(name, snap_name))
4942                         return snapc->snaps[which];
4943                 snap_name += strlen(snap_name) + 1;
4944                 which++;
4945         }
4946         return CEPH_NOSNAP;
4947 }
4948
4949 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4950 {
4951         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4952         u32 which;
4953         bool found = false;
4954         u64 snap_id;
4955
4956         for (which = 0; !found && which < snapc->num_snaps; which++) {
4957                 const char *snap_name;
4958
4959                 snap_id = snapc->snaps[which];
4960                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4961                 if (IS_ERR(snap_name)) {
4962                         /* ignore no-longer existing snapshots */
4963                         if (PTR_ERR(snap_name) == -ENOENT)
4964                                 continue;
4965                         else
4966                                 break;
4967                 }
4968                 found = !strcmp(name, snap_name);
4969                 kfree(snap_name);
4970         }
4971         return found ? snap_id : CEPH_NOSNAP;
4972 }
4973
4974 /*
4975  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4976  * no snapshot by that name is found, or if an error occurs.
4977  */
4978 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4979 {
4980         if (rbd_dev->image_format == 1)
4981                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4982
4983         return rbd_v2_snap_id_by_name(rbd_dev, name);
4984 }
4985
4986 /*
4987  * An image being mapped will have everything but the snap id.
4988  */
4989 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4990 {
4991         struct rbd_spec *spec = rbd_dev->spec;
4992
4993         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4994         rbd_assert(spec->image_id && spec->image_name);
4995         rbd_assert(spec->snap_name);
4996
4997         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4998                 u64 snap_id;
4999
5000                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5001                 if (snap_id == CEPH_NOSNAP)
5002                         return -ENOENT;
5003
5004                 spec->snap_id = snap_id;
5005         } else {
5006                 spec->snap_id = CEPH_NOSNAP;
5007         }
5008
5009         return 0;
5010 }
5011
5012 /*
5013  * A parent image will have all ids but none of the names.
5014  *
5015  * All names in an rbd spec are dynamically allocated.  It's OK if we
5016  * can't figure out the name for an image id.
5017  */
5018 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5019 {
5020         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5021         struct rbd_spec *spec = rbd_dev->spec;
5022         const char *pool_name;
5023         const char *image_name;
5024         const char *snap_name;
5025         int ret;
5026
5027         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5028         rbd_assert(spec->image_id);
5029         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5030
5031         /* Get the pool name; we have to make our own copy of this */
5032
5033         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5034         if (!pool_name) {
5035                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5036                 return -EIO;
5037         }
5038         pool_name = kstrdup(pool_name, GFP_KERNEL);
5039         if (!pool_name)
5040                 return -ENOMEM;
5041
5042         /* Fetch the image name; tolerate failure here */
5043
5044         image_name = rbd_dev_image_name(rbd_dev);
5045         if (!image_name)
5046                 rbd_warn(rbd_dev, "unable to get image name");
5047
5048         /* Fetch the snapshot name */
5049
5050         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5051         if (IS_ERR(snap_name)) {
5052                 ret = PTR_ERR(snap_name);
5053                 goto out_err;
5054         }
5055
5056         spec->pool_name = pool_name;
5057         spec->image_name = image_name;
5058         spec->snap_name = snap_name;
5059
5060         return 0;
5061
5062 out_err:
5063         kfree(image_name);
5064         kfree(pool_name);
5065         return ret;
5066 }
5067
5068 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5069 {
5070         size_t size;
5071         int ret;
5072         void *reply_buf;
5073         void *p;
5074         void *end;
5075         u64 seq;
5076         u32 snap_count;
5077         struct ceph_snap_context *snapc;
5078         u32 i;
5079
5080         /*
5081          * We'll need room for the seq value (maximum snapshot id),
5082          * snapshot count, and array of that many snapshot ids.
5083          * For now we have a fixed upper limit on the number we're
5084          * prepared to receive.
5085          */
5086         size = sizeof (__le64) + sizeof (__le32) +
5087                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5088         reply_buf = kzalloc(size, GFP_KERNEL);
5089         if (!reply_buf)
5090                 return -ENOMEM;
5091
5092         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5093                                   &rbd_dev->header_oloc, "get_snapcontext",
5094                                   NULL, 0, reply_buf, size);
5095         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5096         if (ret < 0)
5097                 goto out;
5098
5099         p = reply_buf;
5100         end = reply_buf + ret;
5101         ret = -ERANGE;
5102         ceph_decode_64_safe(&p, end, seq, out);
5103         ceph_decode_32_safe(&p, end, snap_count, out);
5104
5105         /*
5106          * Make sure the reported number of snapshot ids wouldn't go
5107          * beyond the end of our buffer.  But before checking that,
5108          * make sure the computed size of the snapshot context we
5109          * allocate is representable in a size_t.
5110          */
5111         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5112                                  / sizeof (u64)) {
5113                 ret = -EINVAL;
5114                 goto out;
5115         }
5116         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5117                 goto out;
5118         ret = 0;
5119
5120         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5121         if (!snapc) {
5122                 ret = -ENOMEM;
5123                 goto out;
5124         }
5125         snapc->seq = seq;
5126         for (i = 0; i < snap_count; i++)
5127                 snapc->snaps[i] = ceph_decode_64(&p);
5128
5129         ceph_put_snap_context(rbd_dev->header.snapc);
5130         rbd_dev->header.snapc = snapc;
5131
5132         dout("  snap context seq = %llu, snap_count = %u\n",
5133                 (unsigned long long)seq, (unsigned int)snap_count);
5134 out:
5135         kfree(reply_buf);
5136
5137         return ret;
5138 }
5139
5140 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5141                                         u64 snap_id)
5142 {
5143         size_t size;
5144         void *reply_buf;
5145         __le64 snapid;
5146         int ret;
5147         void *p;
5148         void *end;
5149         char *snap_name;
5150
5151         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5152         reply_buf = kmalloc(size, GFP_KERNEL);
5153         if (!reply_buf)
5154                 return ERR_PTR(-ENOMEM);
5155
5156         snapid = cpu_to_le64(snap_id);
5157         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5158                                   &rbd_dev->header_oloc, "get_snapshot_name",
5159                                   &snapid, sizeof(snapid), reply_buf, size);
5160         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5161         if (ret < 0) {
5162                 snap_name = ERR_PTR(ret);
5163                 goto out;
5164         }
5165
5166         p = reply_buf;
5167         end = reply_buf + ret;
5168         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5169         if (IS_ERR(snap_name))
5170                 goto out;
5171
5172         dout("  snap_id 0x%016llx snap_name = %s\n",
5173                 (unsigned long long)snap_id, snap_name);
5174 out:
5175         kfree(reply_buf);
5176
5177         return snap_name;
5178 }
5179
5180 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5181 {
5182         bool first_time = rbd_dev->header.object_prefix == NULL;
5183         int ret;
5184
5185         ret = rbd_dev_v2_image_size(rbd_dev);
5186         if (ret)
5187                 return ret;
5188
5189         if (first_time) {
5190                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5191                 if (ret)
5192                         return ret;
5193         }
5194
5195         ret = rbd_dev_v2_snap_context(rbd_dev);
5196         if (ret && first_time) {
5197                 kfree(rbd_dev->header.object_prefix);
5198                 rbd_dev->header.object_prefix = NULL;
5199         }
5200
5201         return ret;
5202 }
5203
5204 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5205 {
5206         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5207
5208         if (rbd_dev->image_format == 1)
5209                 return rbd_dev_v1_header_info(rbd_dev);
5210
5211         return rbd_dev_v2_header_info(rbd_dev);
5212 }
5213
5214 /*
5215  * Skips over white space at *buf, and updates *buf to point to the
5216  * first found non-space character (if any). Returns the length of
5217  * the token (string of non-white space characters) found.  Note
5218  * that *buf must be terminated with '\0'.
5219  */
5220 static inline size_t next_token(const char **buf)
5221 {
5222         /*
5223         * These are the characters that produce nonzero for
5224         * isspace() in the "C" and "POSIX" locales.
5225         */
5226         const char *spaces = " \f\n\r\t\v";
5227
5228         *buf += strspn(*buf, spaces);   /* Find start of token */
5229
5230         return strcspn(*buf, spaces);   /* Return token length */
5231 }
5232
5233 /*
5234  * Finds the next token in *buf, dynamically allocates a buffer big
5235  * enough to hold a copy of it, and copies the token into the new
5236  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5237  * that a duplicate buffer is created even for a zero-length token.
5238  *
5239  * Returns a pointer to the newly-allocated duplicate, or a null
5240  * pointer if memory for the duplicate was not available.  If
5241  * the lenp argument is a non-null pointer, the length of the token
5242  * (not including the '\0') is returned in *lenp.
5243  *
5244  * If successful, the *buf pointer will be updated to point beyond
5245  * the end of the found token.
5246  *
5247  * Note: uses GFP_KERNEL for allocation.
5248  */
5249 static inline char *dup_token(const char **buf, size_t *lenp)
5250 {
5251         char *dup;
5252         size_t len;
5253
5254         len = next_token(buf);
5255         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5256         if (!dup)
5257                 return NULL;
5258         *(dup + len) = '\0';
5259         *buf += len;
5260
5261         if (lenp)
5262                 *lenp = len;
5263
5264         return dup;
5265 }
5266
5267 /*
5268  * Parse the options provided for an "rbd add" (i.e., rbd image
5269  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5270  * and the data written is passed here via a NUL-terminated buffer.
5271  * Returns 0 if successful or an error code otherwise.
5272  *
5273  * The information extracted from these options is recorded in
5274  * the other parameters which return dynamically-allocated
5275  * structures:
5276  *  ceph_opts
5277  *      The address of a pointer that will refer to a ceph options
5278  *      structure.  Caller must release the returned pointer using
5279  *      ceph_destroy_options() when it is no longer needed.
5280  *  rbd_opts
5281  *      Address of an rbd options pointer.  Fully initialized by
5282  *      this function; caller must release with kfree().
5283  *  spec
5284  *      Address of an rbd image specification pointer.  Fully
5285  *      initialized by this function based on parsed options.
5286  *      Caller must release with rbd_spec_put().
5287  *
5288  * The options passed take this form:
5289  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5290  * where:
5291  *  <mon_addrs>
5292  *      A comma-separated list of one or more monitor addresses.
5293  *      A monitor address is an ip address, optionally followed
5294  *      by a port number (separated by a colon).
5295  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5296  *  <options>
5297  *      A comma-separated list of ceph and/or rbd options.
5298  *  <pool_name>
5299  *      The name of the rados pool containing the rbd image.
5300  *  <image_name>
5301  *      The name of the image in that pool to map.
5302  *  <snap_id>
5303  *      An optional snapshot id.  If provided, the mapping will
5304  *      present data from the image at the time that snapshot was
5305  *      created.  The image head is used if no snapshot id is
5306  *      provided.  Snapshot mappings are always read-only.
5307  */
5308 static int rbd_add_parse_args(const char *buf,
5309                                 struct ceph_options **ceph_opts,
5310                                 struct rbd_options **opts,
5311                                 struct rbd_spec **rbd_spec)
5312 {
5313         size_t len;
5314         char *options;
5315         const char *mon_addrs;
5316         char *snap_name;
5317         size_t mon_addrs_size;
5318         struct parse_rbd_opts_ctx pctx = { 0 };
5319         struct ceph_options *copts;
5320         int ret;
5321
5322         /* The first four tokens are required */
5323
5324         len = next_token(&buf);
5325         if (!len) {
5326                 rbd_warn(NULL, "no monitor address(es) provided");
5327                 return -EINVAL;
5328         }
5329         mon_addrs = buf;
5330         mon_addrs_size = len + 1;
5331         buf += len;
5332
5333         ret = -EINVAL;
5334         options = dup_token(&buf, NULL);
5335         if (!options)
5336                 return -ENOMEM;
5337         if (!*options) {
5338                 rbd_warn(NULL, "no options provided");
5339                 goto out_err;
5340         }
5341
5342         pctx.spec = rbd_spec_alloc();
5343         if (!pctx.spec)
5344                 goto out_mem;
5345
5346         pctx.spec->pool_name = dup_token(&buf, NULL);
5347         if (!pctx.spec->pool_name)
5348                 goto out_mem;
5349         if (!*pctx.spec->pool_name) {
5350                 rbd_warn(NULL, "no pool name provided");
5351                 goto out_err;
5352         }
5353
5354         pctx.spec->image_name = dup_token(&buf, NULL);
5355         if (!pctx.spec->image_name)
5356                 goto out_mem;
5357         if (!*pctx.spec->image_name) {
5358                 rbd_warn(NULL, "no image name provided");
5359                 goto out_err;
5360         }
5361
5362         /*
5363          * Snapshot name is optional; default is to use "-"
5364          * (indicating the head/no snapshot).
5365          */
5366         len = next_token(&buf);
5367         if (!len) {
5368                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5369                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5370         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5371                 ret = -ENAMETOOLONG;
5372                 goto out_err;
5373         }
5374         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5375         if (!snap_name)
5376                 goto out_mem;
5377         *(snap_name + len) = '\0';
5378         pctx.spec->snap_name = snap_name;
5379
5380         /* Initialize all rbd options to the defaults */
5381
5382         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5383         if (!pctx.opts)
5384                 goto out_mem;
5385
5386         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5387         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5388         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5389         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5390         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5391         pctx.opts->trim = RBD_TRIM_DEFAULT;
5392
5393         copts = ceph_parse_options(options, mon_addrs,
5394                                    mon_addrs + mon_addrs_size - 1,
5395                                    parse_rbd_opts_token, &pctx);
5396         if (IS_ERR(copts)) {
5397                 ret = PTR_ERR(copts);
5398                 goto out_err;
5399         }
5400         kfree(options);
5401
5402         *ceph_opts = copts;
5403         *opts = pctx.opts;
5404         *rbd_spec = pctx.spec;
5405
5406         return 0;
5407 out_mem:
5408         ret = -ENOMEM;
5409 out_err:
5410         kfree(pctx.opts);
5411         rbd_spec_put(pctx.spec);
5412         kfree(options);
5413
5414         return ret;
5415 }
5416
5417 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5418 {
5419         down_write(&rbd_dev->lock_rwsem);
5420         if (__rbd_is_lock_owner(rbd_dev))
5421                 rbd_unlock(rbd_dev);
5422         up_write(&rbd_dev->lock_rwsem);
5423 }
5424
5425 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5426 {
5427         int ret;
5428
5429         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5430                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5431                 return -EINVAL;
5432         }
5433
5434         /* FIXME: "rbd map --exclusive" should be in interruptible */
5435         down_read(&rbd_dev->lock_rwsem);
5436         ret = rbd_wait_state_locked(rbd_dev, true);
5437         up_read(&rbd_dev->lock_rwsem);
5438         if (ret) {
5439                 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5440                 return -EROFS;
5441         }
5442
5443         return 0;
5444 }
5445
5446 /*
5447  * An rbd format 2 image has a unique identifier, distinct from the
5448  * name given to it by the user.  Internally, that identifier is
5449  * what's used to specify the names of objects related to the image.
5450  *
5451  * A special "rbd id" object is used to map an rbd image name to its
5452  * id.  If that object doesn't exist, then there is no v2 rbd image
5453  * with the supplied name.
5454  *
5455  * This function will record the given rbd_dev's image_id field if
5456  * it can be determined, and in that case will return 0.  If any
5457  * errors occur a negative errno will be returned and the rbd_dev's
5458  * image_id field will be unchanged (and should be NULL).
5459  */
5460 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5461 {
5462         int ret;
5463         size_t size;
5464         CEPH_DEFINE_OID_ONSTACK(oid);
5465         void *response;
5466         char *image_id;
5467
5468         /*
5469          * When probing a parent image, the image id is already
5470          * known (and the image name likely is not).  There's no
5471          * need to fetch the image id again in this case.  We
5472          * do still need to set the image format though.
5473          */
5474         if (rbd_dev->spec->image_id) {
5475                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5476
5477                 return 0;
5478         }
5479
5480         /*
5481          * First, see if the format 2 image id file exists, and if
5482          * so, get the image's persistent id from it.
5483          */
5484         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5485                                rbd_dev->spec->image_name);
5486         if (ret)
5487                 return ret;
5488
5489         dout("rbd id object name is %s\n", oid.name);
5490
5491         /* Response will be an encoded string, which includes a length */
5492
5493         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5494         response = kzalloc(size, GFP_NOIO);
5495         if (!response) {
5496                 ret = -ENOMEM;
5497                 goto out;
5498         }
5499
5500         /* If it doesn't exist we'll assume it's a format 1 image */
5501
5502         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5503                                   "get_id", NULL, 0,
5504                                   response, RBD_IMAGE_ID_LEN_MAX);
5505         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5506         if (ret == -ENOENT) {
5507                 image_id = kstrdup("", GFP_KERNEL);
5508                 ret = image_id ? 0 : -ENOMEM;
5509                 if (!ret)
5510                         rbd_dev->image_format = 1;
5511         } else if (ret >= 0) {
5512                 void *p = response;
5513
5514                 image_id = ceph_extract_encoded_string(&p, p + ret,
5515                                                 NULL, GFP_NOIO);
5516                 ret = PTR_ERR_OR_ZERO(image_id);
5517                 if (!ret)
5518                         rbd_dev->image_format = 2;
5519         }
5520
5521         if (!ret) {
5522                 rbd_dev->spec->image_id = image_id;
5523                 dout("image_id is %s\n", image_id);
5524         }
5525 out:
5526         kfree(response);
5527         ceph_oid_destroy(&oid);
5528         return ret;
5529 }
5530
5531 /*
5532  * Undo whatever state changes are made by v1 or v2 header info
5533  * call.
5534  */
5535 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5536 {
5537         struct rbd_image_header *header;
5538
5539         rbd_dev_parent_put(rbd_dev);
5540
5541         /* Free dynamic fields from the header, then zero it out */
5542
5543         header = &rbd_dev->header;
5544         ceph_put_snap_context(header->snapc);
5545         kfree(header->snap_sizes);
5546         kfree(header->snap_names);
5547         kfree(header->object_prefix);
5548         memset(header, 0, sizeof (*header));
5549 }
5550
5551 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5552 {
5553         int ret;
5554
5555         ret = rbd_dev_v2_object_prefix(rbd_dev);
5556         if (ret)
5557                 goto out_err;
5558
5559         /*
5560          * Get the and check features for the image.  Currently the
5561          * features are assumed to never change.
5562          */
5563         ret = rbd_dev_v2_features(rbd_dev);
5564         if (ret)
5565                 goto out_err;
5566
5567         /* If the image supports fancy striping, get its parameters */
5568
5569         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5570                 ret = rbd_dev_v2_striping_info(rbd_dev);
5571                 if (ret < 0)
5572                         goto out_err;
5573         }
5574
5575         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5576                 ret = rbd_dev_v2_data_pool(rbd_dev);
5577                 if (ret)
5578                         goto out_err;
5579         }
5580
5581         rbd_init_layout(rbd_dev);
5582         return 0;
5583
5584 out_err:
5585         rbd_dev->header.features = 0;
5586         kfree(rbd_dev->header.object_prefix);
5587         rbd_dev->header.object_prefix = NULL;
5588         return ret;
5589 }
5590
5591 /*
5592  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5593  * rbd_dev_image_probe() recursion depth, which means it's also the
5594  * length of the already discovered part of the parent chain.
5595  */
5596 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5597 {
5598         struct rbd_device *parent = NULL;
5599         int ret;
5600
5601         if (!rbd_dev->parent_spec)
5602                 return 0;
5603
5604         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5605                 pr_info("parent chain is too long (%d)\n", depth);
5606                 ret = -EINVAL;
5607                 goto out_err;
5608         }
5609
5610         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5611         if (!parent) {
5612                 ret = -ENOMEM;
5613                 goto out_err;
5614         }
5615
5616         /*
5617          * Images related by parent/child relationships always share
5618          * rbd_client and spec/parent_spec, so bump their refcounts.
5619          */
5620         __rbd_get_client(rbd_dev->rbd_client);
5621         rbd_spec_get(rbd_dev->parent_spec);
5622
5623         ret = rbd_dev_image_probe(parent, depth);
5624         if (ret < 0)
5625                 goto out_err;
5626
5627         rbd_dev->parent = parent;
5628         atomic_set(&rbd_dev->parent_ref, 1);
5629         return 0;
5630
5631 out_err:
5632         rbd_dev_unparent(rbd_dev);
5633         rbd_dev_destroy(parent);
5634         return ret;
5635 }
5636
5637 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5638 {
5639         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5640         rbd_dev_mapping_clear(rbd_dev);
5641         rbd_free_disk(rbd_dev);
5642         if (!single_major)
5643                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5644 }
5645
5646 /*
5647  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5648  * upon return.
5649  */
5650 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5651 {
5652         int ret;
5653
5654         /* Record our major and minor device numbers. */
5655
5656         if (!single_major) {
5657                 ret = register_blkdev(0, rbd_dev->name);
5658                 if (ret < 0)
5659                         goto err_out_unlock;
5660
5661                 rbd_dev->major = ret;
5662                 rbd_dev->minor = 0;
5663         } else {
5664                 rbd_dev->major = rbd_major;
5665                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5666         }
5667
5668         /* Set up the blkdev mapping. */
5669
5670         ret = rbd_init_disk(rbd_dev);
5671         if (ret)
5672                 goto err_out_blkdev;
5673
5674         ret = rbd_dev_mapping_set(rbd_dev);
5675         if (ret)
5676                 goto err_out_disk;
5677
5678         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5679         set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5680
5681         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5682         if (ret)
5683                 goto err_out_mapping;
5684
5685         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5686         up_write(&rbd_dev->header_rwsem);
5687         return 0;
5688
5689 err_out_mapping:
5690         rbd_dev_mapping_clear(rbd_dev);
5691 err_out_disk:
5692         rbd_free_disk(rbd_dev);
5693 err_out_blkdev:
5694         if (!single_major)
5695                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5696 err_out_unlock:
5697         up_write(&rbd_dev->header_rwsem);
5698         return ret;
5699 }
5700
5701 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5702 {
5703         struct rbd_spec *spec = rbd_dev->spec;
5704         int ret;
5705
5706         /* Record the header object name for this rbd image. */
5707
5708         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5709         if (rbd_dev->image_format == 1)
5710                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5711                                        spec->image_name, RBD_SUFFIX);
5712         else
5713                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5714                                        RBD_HEADER_PREFIX, spec->image_id);
5715
5716         return ret;
5717 }
5718
5719 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5720 {
5721         rbd_dev_unprobe(rbd_dev);
5722         if (rbd_dev->opts)
5723                 rbd_unregister_watch(rbd_dev);
5724         rbd_dev->image_format = 0;
5725         kfree(rbd_dev->spec->image_id);
5726         rbd_dev->spec->image_id = NULL;
5727 }
5728
5729 /*
5730  * Probe for the existence of the header object for the given rbd
5731  * device.  If this image is the one being mapped (i.e., not a
5732  * parent), initiate a watch on its header object before using that
5733  * object to get detailed information about the rbd image.
5734  */
5735 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5736 {
5737         int ret;
5738
5739         /*
5740          * Get the id from the image id object.  Unless there's an
5741          * error, rbd_dev->spec->image_id will be filled in with
5742          * a dynamically-allocated string, and rbd_dev->image_format
5743          * will be set to either 1 or 2.
5744          */
5745         ret = rbd_dev_image_id(rbd_dev);
5746         if (ret)
5747                 return ret;
5748
5749         ret = rbd_dev_header_name(rbd_dev);
5750         if (ret)
5751                 goto err_out_format;
5752
5753         if (!depth) {
5754                 ret = rbd_register_watch(rbd_dev);
5755                 if (ret) {
5756                         if (ret == -ENOENT)
5757                                 pr_info("image %s/%s%s%s does not exist\n",
5758                                         rbd_dev->spec->pool_name,
5759                                         rbd_dev->spec->pool_ns ?: "",
5760                                         rbd_dev->spec->pool_ns ? "/" : "",
5761                                         rbd_dev->spec->image_name);
5762                         goto err_out_format;
5763                 }
5764         }
5765
5766         ret = rbd_dev_header_info(rbd_dev);
5767         if (ret)
5768                 goto err_out_watch;
5769
5770         /*
5771          * If this image is the one being mapped, we have pool name and
5772          * id, image name and id, and snap name - need to fill snap id.
5773          * Otherwise this is a parent image, identified by pool, image
5774          * and snap ids - need to fill in names for those ids.
5775          */
5776         if (!depth)
5777                 ret = rbd_spec_fill_snap_id(rbd_dev);
5778         else
5779                 ret = rbd_spec_fill_names(rbd_dev);
5780         if (ret) {
5781                 if (ret == -ENOENT)
5782                         pr_info("snap %s/%s%s%s@%s does not exist\n",
5783                                 rbd_dev->spec->pool_name,
5784                                 rbd_dev->spec->pool_ns ?: "",
5785                                 rbd_dev->spec->pool_ns ? "/" : "",
5786                                 rbd_dev->spec->image_name,
5787                                 rbd_dev->spec->snap_name);
5788                 goto err_out_probe;
5789         }
5790
5791         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5792                 ret = rbd_dev_v2_parent_info(rbd_dev);
5793                 if (ret)
5794                         goto err_out_probe;
5795
5796                 /*
5797                  * Need to warn users if this image is the one being
5798                  * mapped and has a parent.
5799                  */
5800                 if (!depth && rbd_dev->parent_spec)
5801                         rbd_warn(rbd_dev,
5802                                  "WARNING: kernel layering is EXPERIMENTAL!");
5803         }
5804
5805         ret = rbd_dev_probe_parent(rbd_dev, depth);
5806         if (ret)
5807                 goto err_out_probe;
5808
5809         dout("discovered format %u image, header name is %s\n",
5810                 rbd_dev->image_format, rbd_dev->header_oid.name);
5811         return 0;
5812
5813 err_out_probe:
5814         rbd_dev_unprobe(rbd_dev);
5815 err_out_watch:
5816         if (!depth)
5817                 rbd_unregister_watch(rbd_dev);
5818 err_out_format:
5819         rbd_dev->image_format = 0;
5820         kfree(rbd_dev->spec->image_id);
5821         rbd_dev->spec->image_id = NULL;
5822         return ret;
5823 }
5824
5825 static ssize_t do_rbd_add(struct bus_type *bus,
5826                           const char *buf,
5827                           size_t count)
5828 {
5829         struct rbd_device *rbd_dev = NULL;
5830         struct ceph_options *ceph_opts = NULL;
5831         struct rbd_options *rbd_opts = NULL;
5832         struct rbd_spec *spec = NULL;
5833         struct rbd_client *rbdc;
5834         int rc;
5835
5836         if (!try_module_get(THIS_MODULE))
5837                 return -ENODEV;
5838
5839         /* parse add command */
5840         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5841         if (rc < 0)
5842                 goto out;
5843
5844         rbdc = rbd_get_client(ceph_opts);
5845         if (IS_ERR(rbdc)) {
5846                 rc = PTR_ERR(rbdc);
5847                 goto err_out_args;
5848         }
5849
5850         /* pick the pool */
5851         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5852         if (rc < 0) {
5853                 if (rc == -ENOENT)
5854                         pr_info("pool %s does not exist\n", spec->pool_name);
5855                 goto err_out_client;
5856         }
5857         spec->pool_id = (u64)rc;
5858
5859         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5860         if (!rbd_dev) {
5861                 rc = -ENOMEM;
5862                 goto err_out_client;
5863         }
5864         rbdc = NULL;            /* rbd_dev now owns this */
5865         spec = NULL;            /* rbd_dev now owns this */
5866         rbd_opts = NULL;        /* rbd_dev now owns this */
5867
5868         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5869         if (!rbd_dev->config_info) {
5870                 rc = -ENOMEM;
5871                 goto err_out_rbd_dev;
5872         }
5873
5874         down_write(&rbd_dev->header_rwsem);
5875         rc = rbd_dev_image_probe(rbd_dev, 0);
5876         if (rc < 0) {
5877                 up_write(&rbd_dev->header_rwsem);
5878                 goto err_out_rbd_dev;
5879         }
5880
5881         /* If we are mapping a snapshot it must be marked read-only */
5882         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5883                 rbd_dev->opts->read_only = true;
5884
5885         rc = rbd_dev_device_setup(rbd_dev);
5886         if (rc)
5887                 goto err_out_image_probe;
5888
5889         if (rbd_dev->opts->exclusive) {
5890                 rc = rbd_add_acquire_lock(rbd_dev);
5891                 if (rc)
5892                         goto err_out_device_setup;
5893         }
5894
5895         /* Everything's ready.  Announce the disk to the world. */
5896
5897         rc = device_add(&rbd_dev->dev);
5898         if (rc)
5899                 goto err_out_image_lock;
5900
5901         add_disk(rbd_dev->disk);
5902         /* see rbd_init_disk() */
5903         blk_put_queue(rbd_dev->disk->queue);
5904
5905         spin_lock(&rbd_dev_list_lock);
5906         list_add_tail(&rbd_dev->node, &rbd_dev_list);
5907         spin_unlock(&rbd_dev_list_lock);
5908
5909         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5910                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5911                 rbd_dev->header.features);
5912         rc = count;
5913 out:
5914         module_put(THIS_MODULE);
5915         return rc;
5916
5917 err_out_image_lock:
5918         rbd_dev_image_unlock(rbd_dev);
5919 err_out_device_setup:
5920         rbd_dev_device_release(rbd_dev);
5921 err_out_image_probe:
5922         rbd_dev_image_release(rbd_dev);
5923 err_out_rbd_dev:
5924         rbd_dev_destroy(rbd_dev);
5925 err_out_client:
5926         rbd_put_client(rbdc);
5927 err_out_args:
5928         rbd_spec_put(spec);
5929         kfree(rbd_opts);
5930         goto out;
5931 }
5932
5933 static ssize_t rbd_add(struct bus_type *bus,
5934                        const char *buf,
5935                        size_t count)
5936 {
5937         if (single_major)
5938                 return -EINVAL;
5939
5940         return do_rbd_add(bus, buf, count);
5941 }
5942
5943 static ssize_t rbd_add_single_major(struct bus_type *bus,
5944                                     const char *buf,
5945                                     size_t count)
5946 {
5947         return do_rbd_add(bus, buf, count);
5948 }
5949
5950 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5951 {
5952         while (rbd_dev->parent) {
5953                 struct rbd_device *first = rbd_dev;
5954                 struct rbd_device *second = first->parent;
5955                 struct rbd_device *third;
5956
5957                 /*
5958                  * Follow to the parent with no grandparent and
5959                  * remove it.
5960                  */
5961                 while (second && (third = second->parent)) {
5962                         first = second;
5963                         second = third;
5964                 }
5965                 rbd_assert(second);
5966                 rbd_dev_image_release(second);
5967                 rbd_dev_destroy(second);
5968                 first->parent = NULL;
5969                 first->parent_overlap = 0;
5970
5971                 rbd_assert(first->parent_spec);
5972                 rbd_spec_put(first->parent_spec);
5973                 first->parent_spec = NULL;
5974         }
5975 }
5976
5977 static ssize_t do_rbd_remove(struct bus_type *bus,
5978                              const char *buf,
5979                              size_t count)
5980 {
5981         struct rbd_device *rbd_dev = NULL;
5982         struct list_head *tmp;
5983         int dev_id;
5984         char opt_buf[6];
5985         bool already = false;
5986         bool force = false;
5987         int ret;
5988
5989         dev_id = -1;
5990         opt_buf[0] = '\0';
5991         sscanf(buf, "%d %5s", &dev_id, opt_buf);
5992         if (dev_id < 0) {
5993                 pr_err("dev_id out of range\n");
5994                 return -EINVAL;
5995         }
5996         if (opt_buf[0] != '\0') {
5997                 if (!strcmp(opt_buf, "force")) {
5998                         force = true;
5999                 } else {
6000                         pr_err("bad remove option at '%s'\n", opt_buf);
6001                         return -EINVAL;
6002                 }
6003         }
6004
6005         ret = -ENOENT;
6006         spin_lock(&rbd_dev_list_lock);
6007         list_for_each(tmp, &rbd_dev_list) {
6008                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6009                 if (rbd_dev->dev_id == dev_id) {
6010                         ret = 0;
6011                         break;
6012                 }
6013         }
6014         if (!ret) {
6015                 spin_lock_irq(&rbd_dev->lock);
6016                 if (rbd_dev->open_count && !force)
6017                         ret = -EBUSY;
6018                 else
6019                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6020                                                         &rbd_dev->flags);
6021                 spin_unlock_irq(&rbd_dev->lock);
6022         }
6023         spin_unlock(&rbd_dev_list_lock);
6024         if (ret < 0 || already)
6025                 return ret;
6026
6027         if (force) {
6028                 /*
6029                  * Prevent new IO from being queued and wait for existing
6030                  * IO to complete/fail.
6031                  */
6032                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6033                 blk_set_queue_dying(rbd_dev->disk->queue);
6034         }
6035
6036         del_gendisk(rbd_dev->disk);
6037         spin_lock(&rbd_dev_list_lock);
6038         list_del_init(&rbd_dev->node);
6039         spin_unlock(&rbd_dev_list_lock);
6040         device_del(&rbd_dev->dev);
6041
6042         rbd_dev_image_unlock(rbd_dev);
6043         rbd_dev_device_release(rbd_dev);
6044         rbd_dev_image_release(rbd_dev);
6045         rbd_dev_destroy(rbd_dev);
6046         return count;
6047 }
6048
6049 static ssize_t rbd_remove(struct bus_type *bus,
6050                           const char *buf,
6051                           size_t count)
6052 {
6053         if (single_major)
6054                 return -EINVAL;
6055
6056         return do_rbd_remove(bus, buf, count);
6057 }
6058
6059 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6060                                        const char *buf,
6061                                        size_t count)
6062 {
6063         return do_rbd_remove(bus, buf, count);
6064 }
6065
6066 /*
6067  * create control files in sysfs
6068  * /sys/bus/rbd/...
6069  */
6070 static int __init rbd_sysfs_init(void)
6071 {
6072         int ret;
6073
6074         ret = device_register(&rbd_root_dev);
6075         if (ret < 0)
6076                 return ret;
6077
6078         ret = bus_register(&rbd_bus_type);
6079         if (ret < 0)
6080                 device_unregister(&rbd_root_dev);
6081
6082         return ret;
6083 }
6084
6085 static void __exit rbd_sysfs_cleanup(void)
6086 {
6087         bus_unregister(&rbd_bus_type);
6088         device_unregister(&rbd_root_dev);
6089 }
6090
6091 static int __init rbd_slab_init(void)
6092 {
6093         rbd_assert(!rbd_img_request_cache);
6094         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6095         if (!rbd_img_request_cache)
6096                 return -ENOMEM;
6097
6098         rbd_assert(!rbd_obj_request_cache);
6099         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6100         if (!rbd_obj_request_cache)
6101                 goto out_err;
6102
6103         return 0;
6104
6105 out_err:
6106         kmem_cache_destroy(rbd_img_request_cache);
6107         rbd_img_request_cache = NULL;
6108         return -ENOMEM;
6109 }
6110
6111 static void rbd_slab_exit(void)
6112 {
6113         rbd_assert(rbd_obj_request_cache);
6114         kmem_cache_destroy(rbd_obj_request_cache);
6115         rbd_obj_request_cache = NULL;
6116
6117         rbd_assert(rbd_img_request_cache);
6118         kmem_cache_destroy(rbd_img_request_cache);
6119         rbd_img_request_cache = NULL;
6120 }
6121
6122 static int __init rbd_init(void)
6123 {
6124         int rc;
6125
6126         if (!libceph_compatible(NULL)) {
6127                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6128                 return -EINVAL;
6129         }
6130
6131         rc = rbd_slab_init();
6132         if (rc)
6133                 return rc;
6134
6135         /*
6136          * The number of active work items is limited by the number of
6137          * rbd devices * queue depth, so leave @max_active at default.
6138          */
6139         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6140         if (!rbd_wq) {
6141                 rc = -ENOMEM;
6142                 goto err_out_slab;
6143         }
6144
6145         if (single_major) {
6146                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6147                 if (rbd_major < 0) {
6148                         rc = rbd_major;
6149                         goto err_out_wq;
6150                 }
6151         }
6152
6153         rc = rbd_sysfs_init();
6154         if (rc)
6155                 goto err_out_blkdev;
6156
6157         if (single_major)
6158                 pr_info("loaded (major %d)\n", rbd_major);
6159         else
6160                 pr_info("loaded\n");
6161
6162         return 0;
6163
6164 err_out_blkdev:
6165         if (single_major)
6166                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6167 err_out_wq:
6168         destroy_workqueue(rbd_wq);
6169 err_out_slab:
6170         rbd_slab_exit();
6171         return rc;
6172 }
6173
6174 static void __exit rbd_exit(void)
6175 {
6176         ida_destroy(&rbd_dev_id_ida);
6177         rbd_sysfs_cleanup();
6178         if (single_major)
6179                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6180         destroy_workqueue(rbd_wq);
6181         rbd_slab_exit();
6182 }
6183
6184 module_init(rbd_init);
6185 module_exit(rbd_exit);
6186
6187 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6188 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6189 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6190 /* following authorship retained from original osdblk.c */
6191 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6192
6193 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6194 MODULE_LICENSE("GPL");