]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/skd_main.c
577618c579750e9e14a01f4a0b4023773d8fff84
[linux.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41
42 #include "skd_s1120.h"
43
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46
47 #define SKD_ASSERT(expr) \
48         do { \
49                 if (unlikely(!(expr))) { \
50                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
51                                # expr, __FILE__, __func__, __LINE__); \
52                 } \
53         } while (0)
54
55 #define DRV_NAME "skd"
56 #define PFX DRV_NAME ": "
57
58 MODULE_LICENSE("GPL");
59
60 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61
62 #define PCI_VENDOR_ID_STEC      0x1B39
63 #define PCI_DEVICE_ID_S1120     0x0001
64
65 #define SKD_FUA_NV              (1 << 1)
66 #define SKD_MINORS_PER_DEVICE   16
67
68 #define SKD_MAX_QUEUE_DEPTH     200u
69
70 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
71
72 #define SKD_N_FITMSG_BYTES      (512u)
73 #define SKD_MAX_REQ_PER_MSG     14
74
75 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
76
77 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
78  * 128KB limit.  That allows 4096*4K = 16M xfer size
79  */
80 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81
82 #define SKD_N_COMPLETION_ENTRY  256u
83 #define SKD_N_READ_CAP_BYTES    (8u)
84
85 #define SKD_N_INTERNAL_BYTES    (512u)
86
87 #define SKD_SKCOMP_SIZE                                                 \
88         ((sizeof(struct fit_completion_entry_v1) +                      \
89           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90
91 /* 5 bits of uniqifier, 0xF800 */
92 #define SKD_ID_INCR             (0x400)
93 #define SKD_ID_TABLE_MASK       (3u << 8u)
94 #define  SKD_ID_RW_REQUEST      (0u << 8u)
95 #define  SKD_ID_INTERNAL        (1u << 8u)
96 #define  SKD_ID_FIT_MSG         (3u << 8u)
97 #define SKD_ID_SLOT_MASK        0x00FFu
98 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
99
100 #define SKD_N_MAX_SECTORS 2048u
101
102 #define SKD_MAX_RETRIES 2u
103
104 #define SKD_TIMER_SECONDS(seconds) (seconds)
105 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
106
107 #define INQ_STD_NBYTES 36
108
109 enum skd_drvr_state {
110         SKD_DRVR_STATE_LOAD,
111         SKD_DRVR_STATE_IDLE,
112         SKD_DRVR_STATE_BUSY,
113         SKD_DRVR_STATE_STARTING,
114         SKD_DRVR_STATE_ONLINE,
115         SKD_DRVR_STATE_PAUSING,
116         SKD_DRVR_STATE_PAUSED,
117         SKD_DRVR_STATE_RESTARTING,
118         SKD_DRVR_STATE_RESUMING,
119         SKD_DRVR_STATE_STOPPING,
120         SKD_DRVR_STATE_FAULT,
121         SKD_DRVR_STATE_DISAPPEARED,
122         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
123         SKD_DRVR_STATE_BUSY_ERASE,
124         SKD_DRVR_STATE_BUSY_SANITIZE,
125         SKD_DRVR_STATE_BUSY_IMMINENT,
126         SKD_DRVR_STATE_WAIT_BOOT,
127         SKD_DRVR_STATE_SYNCING,
128 };
129
130 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
131 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
132 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
133 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
134 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
135 #define SKD_START_WAIT_SECONDS  90u
136
137 enum skd_req_state {
138         SKD_REQ_STATE_IDLE,
139         SKD_REQ_STATE_SETUP,
140         SKD_REQ_STATE_BUSY,
141         SKD_REQ_STATE_COMPLETED,
142         SKD_REQ_STATE_TIMEOUT,
143 };
144
145 enum skd_check_status_action {
146         SKD_CHECK_STATUS_REPORT_GOOD,
147         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
148         SKD_CHECK_STATUS_REQUEUE_REQUEST,
149         SKD_CHECK_STATUS_REPORT_ERROR,
150         SKD_CHECK_STATUS_BUSY_IMMINENT,
151 };
152
153 struct skd_msg_buf {
154         struct fit_msg_hdr      fmh;
155         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
156 };
157
158 struct skd_fitmsg_context {
159         u32 id;
160
161         u32 length;
162
163         struct skd_msg_buf *msg_buf;
164         dma_addr_t mb_dma_address;
165 };
166
167 struct skd_request_context {
168         enum skd_req_state state;
169
170         u16 id;
171         u32 fitmsg_id;
172
173         u8 flush_cmd;
174
175         enum dma_data_direction data_dir;
176         struct scatterlist *sg;
177         u32 n_sg;
178         u32 sg_byte_count;
179
180         struct fit_sg_descriptor *sksg_list;
181         dma_addr_t sksg_dma_address;
182
183         struct fit_completion_entry_v1 completion;
184
185         struct fit_comp_error_info err_info;
186
187         blk_status_t status;
188 };
189
190 struct skd_special_context {
191         struct skd_request_context req;
192
193         void *data_buf;
194         dma_addr_t db_dma_address;
195
196         struct skd_msg_buf *msg_buf;
197         dma_addr_t mb_dma_address;
198 };
199
200 typedef enum skd_irq_type {
201         SKD_IRQ_LEGACY,
202         SKD_IRQ_MSI,
203         SKD_IRQ_MSIX
204 } skd_irq_type_t;
205
206 #define SKD_MAX_BARS                    2
207
208 struct skd_device {
209         void __iomem *mem_map[SKD_MAX_BARS];
210         resource_size_t mem_phys[SKD_MAX_BARS];
211         u32 mem_size[SKD_MAX_BARS];
212
213         struct skd_msix_entry *msix_entries;
214
215         struct pci_dev *pdev;
216         int pcie_error_reporting_is_enabled;
217
218         spinlock_t lock;
219         struct gendisk *disk;
220         struct blk_mq_tag_set tag_set;
221         struct request_queue *queue;
222         struct skd_fitmsg_context *skmsg;
223         struct device *class_dev;
224         int gendisk_on;
225         int sync_done;
226
227         u32 devno;
228         u32 major;
229         char isr_name[30];
230
231         enum skd_drvr_state state;
232         u32 drive_state;
233
234         u32 cur_max_queue_depth;
235         u32 queue_low_water_mark;
236         u32 dev_max_queue_depth;
237
238         u32 num_fitmsg_context;
239         u32 num_req_context;
240
241         struct skd_fitmsg_context *skmsg_table;
242
243         struct skd_special_context internal_skspcl;
244         u32 read_cap_blocksize;
245         u32 read_cap_last_lba;
246         int read_cap_is_valid;
247         int inquiry_is_valid;
248         u8 inq_serial_num[13];  /*12 chars plus null term */
249
250         u8 skcomp_cycle;
251         u32 skcomp_ix;
252         struct kmem_cache *msgbuf_cache;
253         struct kmem_cache *sglist_cache;
254         struct kmem_cache *databuf_cache;
255         struct fit_completion_entry_v1 *skcomp_table;
256         struct fit_comp_error_info *skerr_table;
257         dma_addr_t cq_dma_address;
258
259         wait_queue_head_t waitq;
260
261         struct timer_list timer;
262         u32 timer_countdown;
263         u32 timer_substate;
264
265         int sgs_per_request;
266         u32 last_mtd;
267
268         u32 proto_ver;
269
270         int dbg_level;
271         u32 connect_time_stamp;
272         int connect_retries;
273 #define SKD_MAX_CONNECT_RETRIES 16
274         u32 drive_jiffies;
275
276         u32 timo_slot;
277
278         struct work_struct start_queue;
279         struct work_struct completion_worker;
280 };
281
282 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
283 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
284 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
285
286 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
287 {
288         u32 val = readl(skdev->mem_map[1] + offset);
289
290         if (unlikely(skdev->dbg_level >= 2))
291                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
292         return val;
293 }
294
295 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
296                                    u32 offset)
297 {
298         writel(val, skdev->mem_map[1] + offset);
299         if (unlikely(skdev->dbg_level >= 2))
300                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
301 }
302
303 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
304                                    u32 offset)
305 {
306         writeq(val, skdev->mem_map[1] + offset);
307         if (unlikely(skdev->dbg_level >= 2))
308                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
309                         val);
310 }
311
312
313 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
314 static int skd_isr_type = SKD_IRQ_DEFAULT;
315
316 module_param(skd_isr_type, int, 0444);
317 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
318                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
319
320 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
321 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
322
323 module_param(skd_max_req_per_msg, int, 0444);
324 MODULE_PARM_DESC(skd_max_req_per_msg,
325                  "Maximum SCSI requests packed in a single message."
326                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
327
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
329 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
330 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
331
332 module_param(skd_max_queue_depth, int, 0444);
333 MODULE_PARM_DESC(skd_max_queue_depth,
334                  "Maximum SCSI requests issued to s1120."
335                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
336
337 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
338 module_param(skd_sgs_per_request, int, 0444);
339 MODULE_PARM_DESC(skd_sgs_per_request,
340                  "Maximum SG elements per block request."
341                  " (1-4096, default==256)");
342
343 static int skd_max_pass_thru = 1;
344 module_param(skd_max_pass_thru, int, 0444);
345 MODULE_PARM_DESC(skd_max_pass_thru,
346                  "Maximum SCSI pass-thru at a time. IGNORED");
347
348 module_param(skd_dbg_level, int, 0444);
349 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
350
351 module_param(skd_isr_comp_limit, int, 0444);
352 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
353
354 /* Major device number dynamically assigned. */
355 static u32 skd_major;
356
357 static void skd_destruct(struct skd_device *skdev);
358 static const struct block_device_operations skd_blockdev_ops;
359 static void skd_send_fitmsg(struct skd_device *skdev,
360                             struct skd_fitmsg_context *skmsg);
361 static void skd_send_special_fitmsg(struct skd_device *skdev,
362                                     struct skd_special_context *skspcl);
363 static void skd_end_request(struct skd_device *skdev, struct request *req,
364                             blk_status_t status);
365 static bool skd_preop_sg_list(struct skd_device *skdev,
366                              struct skd_request_context *skreq);
367 static void skd_postop_sg_list(struct skd_device *skdev,
368                                struct skd_request_context *skreq);
369
370 static void skd_restart_device(struct skd_device *skdev);
371 static int skd_quiesce_dev(struct skd_device *skdev);
372 static int skd_unquiesce_dev(struct skd_device *skdev);
373 static void skd_disable_interrupts(struct skd_device *skdev);
374 static void skd_isr_fwstate(struct skd_device *skdev);
375 static void skd_recover_requests(struct skd_device *skdev);
376 static void skd_soft_reset(struct skd_device *skdev);
377
378 const char *skd_drive_state_to_str(int state);
379 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
380 static void skd_log_skdev(struct skd_device *skdev, const char *event);
381 static void skd_log_skreq(struct skd_device *skdev,
382                           struct skd_request_context *skreq, const char *event);
383
384 /*
385  *****************************************************************************
386  * READ/WRITE REQUESTS
387  *****************************************************************************
388  */
389 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
390 {
391         int *count = data;
392
393         count++;
394 }
395
396 static int skd_in_flight(struct skd_device *skdev)
397 {
398         int count = 0;
399
400         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
401
402         return count;
403 }
404
405 static void
406 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
407                 int data_dir, unsigned lba,
408                 unsigned count)
409 {
410         if (data_dir == READ)
411                 scsi_req->cdb[0] = READ_10;
412         else
413                 scsi_req->cdb[0] = WRITE_10;
414
415         scsi_req->cdb[1] = 0;
416         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
417         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
418         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
419         scsi_req->cdb[5] = (lba & 0xff);
420         scsi_req->cdb[6] = 0;
421         scsi_req->cdb[7] = (count & 0xff00) >> 8;
422         scsi_req->cdb[8] = count & 0xff;
423         scsi_req->cdb[9] = 0;
424 }
425
426 static void
427 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
428                             struct skd_request_context *skreq)
429 {
430         skreq->flush_cmd = 1;
431
432         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
433         scsi_req->cdb[1] = 0;
434         scsi_req->cdb[2] = 0;
435         scsi_req->cdb[3] = 0;
436         scsi_req->cdb[4] = 0;
437         scsi_req->cdb[5] = 0;
438         scsi_req->cdb[6] = 0;
439         scsi_req->cdb[7] = 0;
440         scsi_req->cdb[8] = 0;
441         scsi_req->cdb[9] = 0;
442 }
443
444 /*
445  * Return true if and only if all pending requests should be failed.
446  */
447 static bool skd_fail_all(struct request_queue *q)
448 {
449         struct skd_device *skdev = q->queuedata;
450
451         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
452
453         skd_log_skdev(skdev, "req_not_online");
454         switch (skdev->state) {
455         case SKD_DRVR_STATE_PAUSING:
456         case SKD_DRVR_STATE_PAUSED:
457         case SKD_DRVR_STATE_STARTING:
458         case SKD_DRVR_STATE_RESTARTING:
459         case SKD_DRVR_STATE_WAIT_BOOT:
460         /* In case of starting, we haven't started the queue,
461          * so we can't get here... but requests are
462          * possibly hanging out waiting for us because we
463          * reported the dev/skd0 already.  They'll wait
464          * forever if connect doesn't complete.
465          * What to do??? delay dev/skd0 ??
466          */
467         case SKD_DRVR_STATE_BUSY:
468         case SKD_DRVR_STATE_BUSY_IMMINENT:
469         case SKD_DRVR_STATE_BUSY_ERASE:
470                 return false;
471
472         case SKD_DRVR_STATE_BUSY_SANITIZE:
473         case SKD_DRVR_STATE_STOPPING:
474         case SKD_DRVR_STATE_SYNCING:
475         case SKD_DRVR_STATE_FAULT:
476         case SKD_DRVR_STATE_DISAPPEARED:
477         default:
478                 return true;
479         }
480 }
481
482 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
483                                     const struct blk_mq_queue_data *mqd)
484 {
485         struct request *const req = mqd->rq;
486         struct request_queue *const q = req->q;
487         struct skd_device *skdev = q->queuedata;
488         struct skd_fitmsg_context *skmsg;
489         struct fit_msg_hdr *fmh;
490         const u32 tag = blk_mq_unique_tag(req);
491         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
492         struct skd_scsi_request *scsi_req;
493         unsigned long flags = 0;
494         const u32 lba = blk_rq_pos(req);
495         const u32 count = blk_rq_sectors(req);
496         const int data_dir = rq_data_dir(req);
497
498         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
499                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
500
501         blk_mq_start_request(req);
502
503         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
504                   tag, skd_max_queue_depth, q->nr_requests);
505
506         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
507
508         dev_dbg(&skdev->pdev->dev,
509                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
510                 lba, count, count, data_dir);
511
512         skreq->id = tag + SKD_ID_RW_REQUEST;
513         skreq->flush_cmd = 0;
514         skreq->n_sg = 0;
515         skreq->sg_byte_count = 0;
516
517         skreq->fitmsg_id = 0;
518
519         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
520
521         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
522                 dev_dbg(&skdev->pdev->dev, "error Out\n");
523                 skd_end_request(skdev, blk_mq_rq_from_pdu(skreq),
524                                 BLK_STS_RESOURCE);
525                 return BLK_STS_OK;
526         }
527
528         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
529                                    skreq->n_sg *
530                                    sizeof(struct fit_sg_descriptor),
531                                    DMA_TO_DEVICE);
532
533         /* Either a FIT msg is in progress or we have to start one. */
534         if (skd_max_req_per_msg == 1) {
535                 skmsg = NULL;
536         } else {
537                 spin_lock_irqsave(&skdev->lock, flags);
538                 skmsg = skdev->skmsg;
539         }
540         if (!skmsg) {
541                 skmsg = &skdev->skmsg_table[tag];
542                 skdev->skmsg = skmsg;
543
544                 /* Initialize the FIT msg header */
545                 fmh = &skmsg->msg_buf->fmh;
546                 memset(fmh, 0, sizeof(*fmh));
547                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
548                 skmsg->length = sizeof(*fmh);
549         } else {
550                 fmh = &skmsg->msg_buf->fmh;
551         }
552
553         skreq->fitmsg_id = skmsg->id;
554
555         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
556         memset(scsi_req, 0, sizeof(*scsi_req));
557
558         scsi_req->hdr.tag = skreq->id;
559         scsi_req->hdr.sg_list_dma_address =
560                 cpu_to_be64(skreq->sksg_dma_address);
561
562         if (req_op(req) == REQ_OP_FLUSH) {
563                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
564                 SKD_ASSERT(skreq->flush_cmd == 1);
565         } else {
566                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
567         }
568
569         if (req->cmd_flags & REQ_FUA)
570                 scsi_req->cdb[1] |= SKD_FUA_NV;
571
572         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
573
574         /* Complete resource allocations. */
575         skreq->state = SKD_REQ_STATE_BUSY;
576
577         skmsg->length += sizeof(struct skd_scsi_request);
578         fmh->num_protocol_cmds_coalesced++;
579
580         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
581                 skd_in_flight(skdev));
582
583         /*
584          * If the FIT msg buffer is full send it.
585          */
586         if (skd_max_req_per_msg == 1) {
587                 skd_send_fitmsg(skdev, skmsg);
588         } else {
589                 if (mqd->last ||
590                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
591                         skd_send_fitmsg(skdev, skmsg);
592                         skdev->skmsg = NULL;
593                 }
594                 spin_unlock_irqrestore(&skdev->lock, flags);
595         }
596
597         return BLK_STS_OK;
598 }
599
600 static enum blk_eh_timer_return skd_timed_out(struct request *req,
601                                               bool reserved)
602 {
603         struct skd_device *skdev = req->q->queuedata;
604
605         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
606                 blk_mq_unique_tag(req));
607
608         return BLK_EH_RESET_TIMER;
609 }
610
611 static void skd_end_request(struct skd_device *skdev, struct request *req,
612                             blk_status_t error)
613 {
614         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
615
616         if (unlikely(error)) {
617                 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
618                 u32 lba = (u32)blk_rq_pos(req);
619                 u32 count = blk_rq_sectors(req);
620
621                 dev_err(&skdev->pdev->dev,
622                         "Error cmd=%s sect=%u count=%u id=0x%x\n", cmd, lba,
623                         count, req->tag);
624         } else
625                 dev_dbg(&skdev->pdev->dev, "id=0x%x error=%d\n", req->tag,
626                         error);
627
628         skreq->status = error;
629         blk_mq_complete_request(req);
630 }
631
632 static void skd_softirq_done(struct request *req)
633 {
634         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
635
636         blk_mq_end_request(req, skreq->status);
637 }
638
639 static bool skd_preop_sg_list(struct skd_device *skdev,
640                              struct skd_request_context *skreq)
641 {
642         struct request *req = blk_mq_rq_from_pdu(skreq);
643         struct scatterlist *sgl = &skreq->sg[0], *sg;
644         int n_sg;
645         int i;
646
647         skreq->sg_byte_count = 0;
648
649         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
650                      skreq->data_dir != DMA_FROM_DEVICE);
651
652         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
653         if (n_sg <= 0)
654                 return false;
655
656         /*
657          * Map scatterlist to PCI bus addresses.
658          * Note PCI might change the number of entries.
659          */
660         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
661         if (n_sg <= 0)
662                 return false;
663
664         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
665
666         skreq->n_sg = n_sg;
667
668         for_each_sg(sgl, sg, n_sg, i) {
669                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
670                 u32 cnt = sg_dma_len(sg);
671                 uint64_t dma_addr = sg_dma_address(sg);
672
673                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
674                 sgd->byte_count = cnt;
675                 skreq->sg_byte_count += cnt;
676                 sgd->host_side_addr = dma_addr;
677                 sgd->dev_side_addr = 0;
678         }
679
680         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
681         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
682
683         if (unlikely(skdev->dbg_level > 1)) {
684                 dev_dbg(&skdev->pdev->dev,
685                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
686                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
687                 for (i = 0; i < n_sg; i++) {
688                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
689
690                         dev_dbg(&skdev->pdev->dev,
691                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
692                                 i, sgd->byte_count, sgd->control,
693                                 sgd->host_side_addr, sgd->next_desc_ptr);
694                 }
695         }
696
697         return true;
698 }
699
700 static void skd_postop_sg_list(struct skd_device *skdev,
701                                struct skd_request_context *skreq)
702 {
703         /*
704          * restore the next ptr for next IO request so we
705          * don't have to set it every time.
706          */
707         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
708                 skreq->sksg_dma_address +
709                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
710         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
711 }
712
713 /*
714  *****************************************************************************
715  * TIMER
716  *****************************************************************************
717  */
718
719 static void skd_timer_tick_not_online(struct skd_device *skdev);
720
721 static void skd_start_queue(struct work_struct *work)
722 {
723         struct skd_device *skdev = container_of(work, typeof(*skdev),
724                                                 start_queue);
725
726         /*
727          * Although it is safe to call blk_start_queue() from interrupt
728          * context, blk_mq_start_hw_queues() must not be called from
729          * interrupt context.
730          */
731         blk_mq_start_hw_queues(skdev->queue);
732 }
733
734 static void skd_timer_tick(ulong arg)
735 {
736         struct skd_device *skdev = (struct skd_device *)arg;
737         unsigned long reqflags;
738         u32 state;
739
740         if (skdev->state == SKD_DRVR_STATE_FAULT)
741                 /* The driver has declared fault, and we want it to
742                  * stay that way until driver is reloaded.
743                  */
744                 return;
745
746         spin_lock_irqsave(&skdev->lock, reqflags);
747
748         state = SKD_READL(skdev, FIT_STATUS);
749         state &= FIT_SR_DRIVE_STATE_MASK;
750         if (state != skdev->drive_state)
751                 skd_isr_fwstate(skdev);
752
753         if (skdev->state != SKD_DRVR_STATE_ONLINE)
754                 skd_timer_tick_not_online(skdev);
755
756         mod_timer(&skdev->timer, (jiffies + HZ));
757
758         spin_unlock_irqrestore(&skdev->lock, reqflags);
759 }
760
761 static void skd_timer_tick_not_online(struct skd_device *skdev)
762 {
763         switch (skdev->state) {
764         case SKD_DRVR_STATE_IDLE:
765         case SKD_DRVR_STATE_LOAD:
766                 break;
767         case SKD_DRVR_STATE_BUSY_SANITIZE:
768                 dev_dbg(&skdev->pdev->dev,
769                         "drive busy sanitize[%x], driver[%x]\n",
770                         skdev->drive_state, skdev->state);
771                 /* If we've been in sanitize for 3 seconds, we figure we're not
772                  * going to get anymore completions, so recover requests now
773                  */
774                 if (skdev->timer_countdown > 0) {
775                         skdev->timer_countdown--;
776                         return;
777                 }
778                 skd_recover_requests(skdev);
779                 break;
780
781         case SKD_DRVR_STATE_BUSY:
782         case SKD_DRVR_STATE_BUSY_IMMINENT:
783         case SKD_DRVR_STATE_BUSY_ERASE:
784                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
785                         skdev->state, skdev->timer_countdown);
786                 if (skdev->timer_countdown > 0) {
787                         skdev->timer_countdown--;
788                         return;
789                 }
790                 dev_dbg(&skdev->pdev->dev,
791                         "busy[%x], timedout=%d, restarting device.",
792                         skdev->state, skdev->timer_countdown);
793                 skd_restart_device(skdev);
794                 break;
795
796         case SKD_DRVR_STATE_WAIT_BOOT:
797         case SKD_DRVR_STATE_STARTING:
798                 if (skdev->timer_countdown > 0) {
799                         skdev->timer_countdown--;
800                         return;
801                 }
802                 /* For now, we fault the drive.  Could attempt resets to
803                  * revcover at some point. */
804                 skdev->state = SKD_DRVR_STATE_FAULT;
805
806                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
807                         skdev->drive_state);
808
809                 /*start the queue so we can respond with error to requests */
810                 /* wakeup anyone waiting for startup complete */
811                 schedule_work(&skdev->start_queue);
812                 skdev->gendisk_on = -1;
813                 wake_up_interruptible(&skdev->waitq);
814                 break;
815
816         case SKD_DRVR_STATE_ONLINE:
817                 /* shouldn't get here. */
818                 break;
819
820         case SKD_DRVR_STATE_PAUSING:
821         case SKD_DRVR_STATE_PAUSED:
822                 break;
823
824         case SKD_DRVR_STATE_RESTARTING:
825                 if (skdev->timer_countdown > 0) {
826                         skdev->timer_countdown--;
827                         return;
828                 }
829                 /* For now, we fault the drive. Could attempt resets to
830                  * revcover at some point. */
831                 skdev->state = SKD_DRVR_STATE_FAULT;
832                 dev_err(&skdev->pdev->dev,
833                         "DriveFault Reconnect Timeout (%x)\n",
834                         skdev->drive_state);
835
836                 /*
837                  * Recovering does two things:
838                  * 1. completes IO with error
839                  * 2. reclaims dma resources
840                  * When is it safe to recover requests?
841                  * - if the drive state is faulted
842                  * - if the state is still soft reset after out timeout
843                  * - if the drive registers are dead (state = FF)
844                  * If it is "unsafe", we still need to recover, so we will
845                  * disable pci bus mastering and disable our interrupts.
846                  */
847
848                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
849                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
850                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
851                         /* It never came out of soft reset. Try to
852                          * recover the requests and then let them
853                          * fail. This is to mitigate hung processes. */
854                         skd_recover_requests(skdev);
855                 else {
856                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
857                                 skdev->drive_state);
858                         pci_disable_device(skdev->pdev);
859                         skd_disable_interrupts(skdev);
860                         skd_recover_requests(skdev);
861                 }
862
863                 /*start the queue so we can respond with error to requests */
864                 /* wakeup anyone waiting for startup complete */
865                 schedule_work(&skdev->start_queue);
866                 skdev->gendisk_on = -1;
867                 wake_up_interruptible(&skdev->waitq);
868                 break;
869
870         case SKD_DRVR_STATE_RESUMING:
871         case SKD_DRVR_STATE_STOPPING:
872         case SKD_DRVR_STATE_SYNCING:
873         case SKD_DRVR_STATE_FAULT:
874         case SKD_DRVR_STATE_DISAPPEARED:
875         default:
876                 break;
877         }
878 }
879
880 static int skd_start_timer(struct skd_device *skdev)
881 {
882         int rc;
883
884         setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
885
886         rc = mod_timer(&skdev->timer, (jiffies + HZ));
887         if (rc)
888                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
889         return rc;
890 }
891
892 static void skd_kill_timer(struct skd_device *skdev)
893 {
894         del_timer_sync(&skdev->timer);
895 }
896
897 /*
898  *****************************************************************************
899  * INTERNAL REQUESTS -- generated by driver itself
900  *****************************************************************************
901  */
902
903 static int skd_format_internal_skspcl(struct skd_device *skdev)
904 {
905         struct skd_special_context *skspcl = &skdev->internal_skspcl;
906         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
907         struct fit_msg_hdr *fmh;
908         uint64_t dma_address;
909         struct skd_scsi_request *scsi;
910
911         fmh = &skspcl->msg_buf->fmh;
912         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
913         fmh->num_protocol_cmds_coalesced = 1;
914
915         scsi = &skspcl->msg_buf->scsi[0];
916         memset(scsi, 0, sizeof(*scsi));
917         dma_address = skspcl->req.sksg_dma_address;
918         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
919         skspcl->req.n_sg = 1;
920         sgd->control = FIT_SGD_CONTROL_LAST;
921         sgd->byte_count = 0;
922         sgd->host_side_addr = skspcl->db_dma_address;
923         sgd->dev_side_addr = 0;
924         sgd->next_desc_ptr = 0LL;
925
926         return 1;
927 }
928
929 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
930
931 static void skd_send_internal_skspcl(struct skd_device *skdev,
932                                      struct skd_special_context *skspcl,
933                                      u8 opcode)
934 {
935         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
936         struct skd_scsi_request *scsi;
937         unsigned char *buf = skspcl->data_buf;
938         int i;
939
940         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
941                 /*
942                  * A refresh is already in progress.
943                  * Just wait for it to finish.
944                  */
945                 return;
946
947         SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
948         skspcl->req.state = SKD_REQ_STATE_BUSY;
949         skspcl->req.id += SKD_ID_INCR;
950
951         scsi = &skspcl->msg_buf->scsi[0];
952         scsi->hdr.tag = skspcl->req.id;
953
954         memset(scsi->cdb, 0, sizeof(scsi->cdb));
955
956         switch (opcode) {
957         case TEST_UNIT_READY:
958                 scsi->cdb[0] = TEST_UNIT_READY;
959                 sgd->byte_count = 0;
960                 scsi->hdr.sg_list_len_bytes = 0;
961                 break;
962
963         case READ_CAPACITY:
964                 scsi->cdb[0] = READ_CAPACITY;
965                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
966                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
967                 break;
968
969         case INQUIRY:
970                 scsi->cdb[0] = INQUIRY;
971                 scsi->cdb[1] = 0x01;    /* evpd */
972                 scsi->cdb[2] = 0x80;    /* serial number page */
973                 scsi->cdb[4] = 0x10;
974                 sgd->byte_count = 16;
975                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
976                 break;
977
978         case SYNCHRONIZE_CACHE:
979                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
980                 sgd->byte_count = 0;
981                 scsi->hdr.sg_list_len_bytes = 0;
982                 break;
983
984         case WRITE_BUFFER:
985                 scsi->cdb[0] = WRITE_BUFFER;
986                 scsi->cdb[1] = 0x02;
987                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
988                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
989                 sgd->byte_count = WR_BUF_SIZE;
990                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
991                 /* fill incrementing byte pattern */
992                 for (i = 0; i < sgd->byte_count; i++)
993                         buf[i] = i & 0xFF;
994                 break;
995
996         case READ_BUFFER:
997                 scsi->cdb[0] = READ_BUFFER;
998                 scsi->cdb[1] = 0x02;
999                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1000                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1001                 sgd->byte_count = WR_BUF_SIZE;
1002                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1003                 memset(skspcl->data_buf, 0, sgd->byte_count);
1004                 break;
1005
1006         default:
1007                 SKD_ASSERT("Don't know what to send");
1008                 return;
1009
1010         }
1011         skd_send_special_fitmsg(skdev, skspcl);
1012 }
1013
1014 static void skd_refresh_device_data(struct skd_device *skdev)
1015 {
1016         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1017
1018         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1019 }
1020
1021 static int skd_chk_read_buf(struct skd_device *skdev,
1022                             struct skd_special_context *skspcl)
1023 {
1024         unsigned char *buf = skspcl->data_buf;
1025         int i;
1026
1027         /* check for incrementing byte pattern */
1028         for (i = 0; i < WR_BUF_SIZE; i++)
1029                 if (buf[i] != (i & 0xFF))
1030                         return 1;
1031
1032         return 0;
1033 }
1034
1035 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1036                                  u8 code, u8 qual, u8 fruc)
1037 {
1038         /* If the check condition is of special interest, log a message */
1039         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1040             && (code == 0x04) && (qual == 0x06)) {
1041                 dev_err(&skdev->pdev->dev,
1042                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1043                         key, code, qual, fruc);
1044         }
1045 }
1046
1047 static void skd_complete_internal(struct skd_device *skdev,
1048                                   struct fit_completion_entry_v1 *skcomp,
1049                                   struct fit_comp_error_info *skerr,
1050                                   struct skd_special_context *skspcl)
1051 {
1052         u8 *buf = skspcl->data_buf;
1053         u8 status;
1054         int i;
1055         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1056
1057         lockdep_assert_held(&skdev->lock);
1058
1059         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1060
1061         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1062
1063         dma_sync_single_for_cpu(&skdev->pdev->dev,
1064                                 skspcl->db_dma_address,
1065                                 skspcl->req.sksg_list[0].byte_count,
1066                                 DMA_BIDIRECTIONAL);
1067
1068         skspcl->req.completion = *skcomp;
1069         skspcl->req.state = SKD_REQ_STATE_IDLE;
1070         skspcl->req.id += SKD_ID_INCR;
1071
1072         status = skspcl->req.completion.status;
1073
1074         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1075                              skerr->qual, skerr->fruc);
1076
1077         switch (scsi->cdb[0]) {
1078         case TEST_UNIT_READY:
1079                 if (status == SAM_STAT_GOOD)
1080                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1081                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1082                          (skerr->key == MEDIUM_ERROR))
1083                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1084                 else {
1085                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1086                                 dev_dbg(&skdev->pdev->dev,
1087                                         "TUR failed, don't send anymore state 0x%x\n",
1088                                         skdev->state);
1089                                 return;
1090                         }
1091                         dev_dbg(&skdev->pdev->dev,
1092                                 "**** TUR failed, retry skerr\n");
1093                         skd_send_internal_skspcl(skdev, skspcl,
1094                                                  TEST_UNIT_READY);
1095                 }
1096                 break;
1097
1098         case WRITE_BUFFER:
1099                 if (status == SAM_STAT_GOOD)
1100                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1101                 else {
1102                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1103                                 dev_dbg(&skdev->pdev->dev,
1104                                         "write buffer failed, don't send anymore state 0x%x\n",
1105                                         skdev->state);
1106                                 return;
1107                         }
1108                         dev_dbg(&skdev->pdev->dev,
1109                                 "**** write buffer failed, retry skerr\n");
1110                         skd_send_internal_skspcl(skdev, skspcl,
1111                                                  TEST_UNIT_READY);
1112                 }
1113                 break;
1114
1115         case READ_BUFFER:
1116                 if (status == SAM_STAT_GOOD) {
1117                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1118                                 skd_send_internal_skspcl(skdev, skspcl,
1119                                                          READ_CAPACITY);
1120                         else {
1121                                 dev_err(&skdev->pdev->dev,
1122                                         "*** W/R Buffer mismatch %d ***\n",
1123                                         skdev->connect_retries);
1124                                 if (skdev->connect_retries <
1125                                     SKD_MAX_CONNECT_RETRIES) {
1126                                         skdev->connect_retries++;
1127                                         skd_soft_reset(skdev);
1128                                 } else {
1129                                         dev_err(&skdev->pdev->dev,
1130                                                 "W/R Buffer Connect Error\n");
1131                                         return;
1132                                 }
1133                         }
1134
1135                 } else {
1136                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1137                                 dev_dbg(&skdev->pdev->dev,
1138                                         "read buffer failed, don't send anymore state 0x%x\n",
1139                                         skdev->state);
1140                                 return;
1141                         }
1142                         dev_dbg(&skdev->pdev->dev,
1143                                 "**** read buffer failed, retry skerr\n");
1144                         skd_send_internal_skspcl(skdev, skspcl,
1145                                                  TEST_UNIT_READY);
1146                 }
1147                 break;
1148
1149         case READ_CAPACITY:
1150                 skdev->read_cap_is_valid = 0;
1151                 if (status == SAM_STAT_GOOD) {
1152                         skdev->read_cap_last_lba =
1153                                 (buf[0] << 24) | (buf[1] << 16) |
1154                                 (buf[2] << 8) | buf[3];
1155                         skdev->read_cap_blocksize =
1156                                 (buf[4] << 24) | (buf[5] << 16) |
1157                                 (buf[6] << 8) | buf[7];
1158
1159                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1160                                 skdev->read_cap_last_lba,
1161                                 skdev->read_cap_blocksize);
1162
1163                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1164
1165                         skdev->read_cap_is_valid = 1;
1166
1167                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1168                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1169                            (skerr->key == MEDIUM_ERROR)) {
1170                         skdev->read_cap_last_lba = ~0;
1171                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1172                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1173                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1174                 } else {
1175                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1176                         skd_send_internal_skspcl(skdev, skspcl,
1177                                                  TEST_UNIT_READY);
1178                 }
1179                 break;
1180
1181         case INQUIRY:
1182                 skdev->inquiry_is_valid = 0;
1183                 if (status == SAM_STAT_GOOD) {
1184                         skdev->inquiry_is_valid = 1;
1185
1186                         for (i = 0; i < 12; i++)
1187                                 skdev->inq_serial_num[i] = buf[i + 4];
1188                         skdev->inq_serial_num[12] = 0;
1189                 }
1190
1191                 if (skd_unquiesce_dev(skdev) < 0)
1192                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1193                  /* connection is complete */
1194                 skdev->connect_retries = 0;
1195                 break;
1196
1197         case SYNCHRONIZE_CACHE:
1198                 if (status == SAM_STAT_GOOD)
1199                         skdev->sync_done = 1;
1200                 else
1201                         skdev->sync_done = -1;
1202                 wake_up_interruptible(&skdev->waitq);
1203                 break;
1204
1205         default:
1206                 SKD_ASSERT("we didn't send this");
1207         }
1208 }
1209
1210 /*
1211  *****************************************************************************
1212  * FIT MESSAGES
1213  *****************************************************************************
1214  */
1215
1216 static void skd_send_fitmsg(struct skd_device *skdev,
1217                             struct skd_fitmsg_context *skmsg)
1218 {
1219         u64 qcmd;
1220
1221         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1222                 skmsg->mb_dma_address, skd_in_flight(skdev));
1223         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1224
1225         qcmd = skmsg->mb_dma_address;
1226         qcmd |= FIT_QCMD_QID_NORMAL;
1227
1228         if (unlikely(skdev->dbg_level > 1)) {
1229                 u8 *bp = (u8 *)skmsg->msg_buf;
1230                 int i;
1231                 for (i = 0; i < skmsg->length; i += 8) {
1232                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1233                                 &bp[i]);
1234                         if (i == 0)
1235                                 i = 64 - 8;
1236                 }
1237         }
1238
1239         if (skmsg->length > 256)
1240                 qcmd |= FIT_QCMD_MSGSIZE_512;
1241         else if (skmsg->length > 128)
1242                 qcmd |= FIT_QCMD_MSGSIZE_256;
1243         else if (skmsg->length > 64)
1244                 qcmd |= FIT_QCMD_MSGSIZE_128;
1245         else
1246                 /*
1247                  * This makes no sense because the FIT msg header is
1248                  * 64 bytes. If the msg is only 64 bytes long it has
1249                  * no payload.
1250                  */
1251                 qcmd |= FIT_QCMD_MSGSIZE_64;
1252
1253         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1254                                    skmsg->length, DMA_TO_DEVICE);
1255
1256         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1257         smp_wmb();
1258
1259         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1260 }
1261
1262 static void skd_send_special_fitmsg(struct skd_device *skdev,
1263                                     struct skd_special_context *skspcl)
1264 {
1265         u64 qcmd;
1266
1267         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1268
1269         if (unlikely(skdev->dbg_level > 1)) {
1270                 u8 *bp = (u8 *)skspcl->msg_buf;
1271                 int i;
1272
1273                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1274                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1275                                 &bp[i]);
1276                         if (i == 0)
1277                                 i = 64 - 8;
1278                 }
1279
1280                 dev_dbg(&skdev->pdev->dev,
1281                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1282                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1283                         skspcl->req.sksg_dma_address);
1284                 for (i = 0; i < skspcl->req.n_sg; i++) {
1285                         struct fit_sg_descriptor *sgd =
1286                                 &skspcl->req.sksg_list[i];
1287
1288                         dev_dbg(&skdev->pdev->dev,
1289                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1290                                 i, sgd->byte_count, sgd->control,
1291                                 sgd->host_side_addr, sgd->next_desc_ptr);
1292                 }
1293         }
1294
1295         /*
1296          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1297          * and one 64-byte SSDI command.
1298          */
1299         qcmd = skspcl->mb_dma_address;
1300         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1301
1302         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1303                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1304         dma_sync_single_for_device(&skdev->pdev->dev,
1305                                    skspcl->req.sksg_dma_address,
1306                                    1 * sizeof(struct fit_sg_descriptor),
1307                                    DMA_TO_DEVICE);
1308         dma_sync_single_for_device(&skdev->pdev->dev,
1309                                    skspcl->db_dma_address,
1310                                    skspcl->req.sksg_list[0].byte_count,
1311                                    DMA_BIDIRECTIONAL);
1312
1313         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1314         smp_wmb();
1315
1316         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1317 }
1318
1319 /*
1320  *****************************************************************************
1321  * COMPLETION QUEUE
1322  *****************************************************************************
1323  */
1324
1325 static void skd_complete_other(struct skd_device *skdev,
1326                                struct fit_completion_entry_v1 *skcomp,
1327                                struct fit_comp_error_info *skerr);
1328
1329 struct sns_info {
1330         u8 type;
1331         u8 stat;
1332         u8 key;
1333         u8 asc;
1334         u8 ascq;
1335         u8 mask;
1336         enum skd_check_status_action action;
1337 };
1338
1339 static struct sns_info skd_chkstat_table[] = {
1340         /* Good */
1341         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1342           SKD_CHECK_STATUS_REPORT_GOOD },
1343
1344         /* Smart alerts */
1345         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1346           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1347         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1348           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1349         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1350           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1351
1352         /* Retry (with limits) */
1353         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1354           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1355         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1356           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1357         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1358           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1359         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1360           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1361
1362         /* Busy (or about to be) */
1363         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1364           SKD_CHECK_STATUS_BUSY_IMMINENT },
1365 };
1366
1367 /*
1368  * Look up status and sense data to decide how to handle the error
1369  * from the device.
1370  * mask says which fields must match e.g., mask=0x18 means check
1371  * type and stat, ignore key, asc, ascq.
1372  */
1373
1374 static enum skd_check_status_action
1375 skd_check_status(struct skd_device *skdev,
1376                  u8 cmp_status, struct fit_comp_error_info *skerr)
1377 {
1378         int i;
1379
1380         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1381                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1382
1383         dev_dbg(&skdev->pdev->dev,
1384                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1385                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1386                 skerr->fruc);
1387
1388         /* Does the info match an entry in the good category? */
1389         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1390                 struct sns_info *sns = &skd_chkstat_table[i];
1391
1392                 if (sns->mask & 0x10)
1393                         if (skerr->type != sns->type)
1394                                 continue;
1395
1396                 if (sns->mask & 0x08)
1397                         if (cmp_status != sns->stat)
1398                                 continue;
1399
1400                 if (sns->mask & 0x04)
1401                         if (skerr->key != sns->key)
1402                                 continue;
1403
1404                 if (sns->mask & 0x02)
1405                         if (skerr->code != sns->asc)
1406                                 continue;
1407
1408                 if (sns->mask & 0x01)
1409                         if (skerr->qual != sns->ascq)
1410                                 continue;
1411
1412                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1413                         dev_err(&skdev->pdev->dev,
1414                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1415                                 skerr->key, skerr->code, skerr->qual);
1416                 }
1417                 return sns->action;
1418         }
1419
1420         /* No other match, so nonzero status means error,
1421          * zero status means good
1422          */
1423         if (cmp_status) {
1424                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1425                 return SKD_CHECK_STATUS_REPORT_ERROR;
1426         }
1427
1428         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1429         return SKD_CHECK_STATUS_REPORT_GOOD;
1430 }
1431
1432 static void skd_resolve_req_exception(struct skd_device *skdev,
1433                                       struct skd_request_context *skreq,
1434                                       struct request *req)
1435 {
1436         u8 cmp_status = skreq->completion.status;
1437
1438         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1439         case SKD_CHECK_STATUS_REPORT_GOOD:
1440         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1441                 skd_end_request(skdev, req, BLK_STS_OK);
1442                 break;
1443
1444         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1445                 skd_log_skreq(skdev, skreq, "retry(busy)");
1446                 blk_requeue_request(skdev->queue, req);
1447                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1448                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1449                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1450                 skd_quiesce_dev(skdev);
1451                 break;
1452
1453         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1454                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1455                         skd_log_skreq(skdev, skreq, "retry");
1456                         blk_requeue_request(skdev->queue, req);
1457                         break;
1458                 }
1459                 /* fall through */
1460
1461         case SKD_CHECK_STATUS_REPORT_ERROR:
1462         default:
1463                 skd_end_request(skdev, req, BLK_STS_IOERR);
1464                 break;
1465         }
1466 }
1467
1468 static void skd_release_skreq(struct skd_device *skdev,
1469                               struct skd_request_context *skreq)
1470 {
1471         /*
1472          * Reclaim the skd_request_context
1473          */
1474         skreq->state = SKD_REQ_STATE_IDLE;
1475         skreq->id += SKD_ID_INCR;
1476 }
1477
1478 static int skd_isr_completion_posted(struct skd_device *skdev,
1479                                         int limit, int *enqueued)
1480 {
1481         struct fit_completion_entry_v1 *skcmp;
1482         struct fit_comp_error_info *skerr;
1483         u16 req_id;
1484         u32 tag;
1485         u16 hwq = 0;
1486         struct request *rq;
1487         struct skd_request_context *skreq;
1488         u16 cmp_cntxt;
1489         u8 cmp_status;
1490         u8 cmp_cycle;
1491         u32 cmp_bytes;
1492         int rc = 0;
1493         int processed = 0;
1494
1495         lockdep_assert_held(&skdev->lock);
1496
1497         for (;; ) {
1498                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1499
1500                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1501                 cmp_cycle = skcmp->cycle;
1502                 cmp_cntxt = skcmp->tag;
1503                 cmp_status = skcmp->status;
1504                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1505
1506                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1507
1508                 dev_dbg(&skdev->pdev->dev,
1509                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1510                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1511                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1512                         cmp_bytes, skdev->proto_ver);
1513
1514                 if (cmp_cycle != skdev->skcomp_cycle) {
1515                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1516                         break;
1517                 }
1518                 /*
1519                  * Update the completion queue head index and possibly
1520                  * the completion cycle count. 8-bit wrap-around.
1521                  */
1522                 skdev->skcomp_ix++;
1523                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1524                         skdev->skcomp_ix = 0;
1525                         skdev->skcomp_cycle++;
1526                 }
1527
1528                 /*
1529                  * The command context is a unique 32-bit ID. The low order
1530                  * bits help locate the request. The request is usually a
1531                  * r/w request (see skd_start() above) or a special request.
1532                  */
1533                 req_id = cmp_cntxt;
1534                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1535
1536                 /* Is this other than a r/w request? */
1537                 if (tag >= skdev->num_req_context) {
1538                         /*
1539                          * This is not a completion for a r/w request.
1540                          */
1541                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1542                                                       tag));
1543                         skd_complete_other(skdev, skcmp, skerr);
1544                         continue;
1545                 }
1546
1547                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1548                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1549                          tag))
1550                         continue;
1551                 skreq = blk_mq_rq_to_pdu(rq);
1552
1553                 /*
1554                  * Make sure the request ID for the slot matches.
1555                  */
1556                 if (skreq->id != req_id) {
1557                         dev_err(&skdev->pdev->dev,
1558                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1559                                 req_id, skreq->id, cmp_cntxt);
1560
1561                         continue;
1562                 }
1563
1564                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1565
1566                 skreq->completion = *skcmp;
1567                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1568                         skreq->err_info = *skerr;
1569                         skd_log_check_status(skdev, cmp_status, skerr->key,
1570                                              skerr->code, skerr->qual,
1571                                              skerr->fruc);
1572                 }
1573                 /* Release DMA resources for the request. */
1574                 if (skreq->n_sg > 0)
1575                         skd_postop_sg_list(skdev, skreq);
1576
1577                 skd_release_skreq(skdev, skreq);
1578
1579                 /*
1580                  * Capture the outcome and post it back to the native request.
1581                  */
1582                 if (likely(cmp_status == SAM_STAT_GOOD))
1583                         skd_end_request(skdev, rq, BLK_STS_OK);
1584                 else
1585                         skd_resolve_req_exception(skdev, skreq, rq);
1586
1587                 /* skd_isr_comp_limit equal zero means no limit */
1588                 if (limit) {
1589                         if (++processed >= limit) {
1590                                 rc = 1;
1591                                 break;
1592                         }
1593                 }
1594         }
1595
1596         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1597             skd_in_flight(skdev) == 0) {
1598                 skdev->state = SKD_DRVR_STATE_PAUSED;
1599                 wake_up_interruptible(&skdev->waitq);
1600         }
1601
1602         return rc;
1603 }
1604
1605 static void skd_complete_other(struct skd_device *skdev,
1606                                struct fit_completion_entry_v1 *skcomp,
1607                                struct fit_comp_error_info *skerr)
1608 {
1609         u32 req_id = 0;
1610         u32 req_table;
1611         u32 req_slot;
1612         struct skd_special_context *skspcl;
1613
1614         lockdep_assert_held(&skdev->lock);
1615
1616         req_id = skcomp->tag;
1617         req_table = req_id & SKD_ID_TABLE_MASK;
1618         req_slot = req_id & SKD_ID_SLOT_MASK;
1619
1620         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1621                 req_id, req_slot);
1622
1623         /*
1624          * Based on the request id, determine how to dispatch this completion.
1625          * This swich/case is finding the good cases and forwarding the
1626          * completion entry. Errors are reported below the switch.
1627          */
1628         switch (req_table) {
1629         case SKD_ID_RW_REQUEST:
1630                 /*
1631                  * The caller, skd_isr_completion_posted() above,
1632                  * handles r/w requests. The only way we get here
1633                  * is if the req_slot is out of bounds.
1634                  */
1635                 break;
1636
1637         case SKD_ID_INTERNAL:
1638                 if (req_slot == 0) {
1639                         skspcl = &skdev->internal_skspcl;
1640                         if (skspcl->req.id == req_id &&
1641                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1642                                 skd_complete_internal(skdev,
1643                                                       skcomp, skerr, skspcl);
1644                                 return;
1645                         }
1646                 }
1647                 break;
1648
1649         case SKD_ID_FIT_MSG:
1650                 /*
1651                  * These id's should never appear in a completion record.
1652                  */
1653                 break;
1654
1655         default:
1656                 /*
1657                  * These id's should never appear anywhere;
1658                  */
1659                 break;
1660         }
1661
1662         /*
1663          * If we get here it is a bad or stale id.
1664          */
1665 }
1666
1667 static void skd_reset_skcomp(struct skd_device *skdev)
1668 {
1669         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1670
1671         skdev->skcomp_ix = 0;
1672         skdev->skcomp_cycle = 1;
1673 }
1674
1675 /*
1676  *****************************************************************************
1677  * INTERRUPTS
1678  *****************************************************************************
1679  */
1680 static void skd_completion_worker(struct work_struct *work)
1681 {
1682         struct skd_device *skdev =
1683                 container_of(work, struct skd_device, completion_worker);
1684         unsigned long flags;
1685         int flush_enqueued = 0;
1686
1687         spin_lock_irqsave(&skdev->lock, flags);
1688
1689         /*
1690          * pass in limit=0, which means no limit..
1691          * process everything in compq
1692          */
1693         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1694         schedule_work(&skdev->start_queue);
1695
1696         spin_unlock_irqrestore(&skdev->lock, flags);
1697 }
1698
1699 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1700
1701 static irqreturn_t
1702 skd_isr(int irq, void *ptr)
1703 {
1704         struct skd_device *skdev = ptr;
1705         u32 intstat;
1706         u32 ack;
1707         int rc = 0;
1708         int deferred = 0;
1709         int flush_enqueued = 0;
1710
1711         spin_lock(&skdev->lock);
1712
1713         for (;; ) {
1714                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1715
1716                 ack = FIT_INT_DEF_MASK;
1717                 ack &= intstat;
1718
1719                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1720                         ack);
1721
1722                 /* As long as there is an int pending on device, keep
1723                  * running loop.  When none, get out, but if we've never
1724                  * done any processing, call completion handler?
1725                  */
1726                 if (ack == 0) {
1727                         /* No interrupts on device, but run the completion
1728                          * processor anyway?
1729                          */
1730                         if (rc == 0)
1731                                 if (likely (skdev->state
1732                                         == SKD_DRVR_STATE_ONLINE))
1733                                         deferred = 1;
1734                         break;
1735                 }
1736
1737                 rc = IRQ_HANDLED;
1738
1739                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1740
1741                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1742                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1743                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1744                                 /*
1745                                  * If we have already deferred completion
1746                                  * processing, don't bother running it again
1747                                  */
1748                                 if (deferred == 0)
1749                                         deferred =
1750                                                 skd_isr_completion_posted(skdev,
1751                                                 skd_isr_comp_limit, &flush_enqueued);
1752                         }
1753
1754                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1755                                 skd_isr_fwstate(skdev);
1756                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1757                                     skdev->state ==
1758                                     SKD_DRVR_STATE_DISAPPEARED) {
1759                                         spin_unlock(&skdev->lock);
1760                                         return rc;
1761                                 }
1762                         }
1763
1764                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1765                                 skd_isr_msg_from_dev(skdev);
1766                 }
1767         }
1768
1769         if (unlikely(flush_enqueued))
1770                 schedule_work(&skdev->start_queue);
1771
1772         if (deferred)
1773                 schedule_work(&skdev->completion_worker);
1774         else if (!flush_enqueued)
1775                 schedule_work(&skdev->start_queue);
1776
1777         spin_unlock(&skdev->lock);
1778
1779         return rc;
1780 }
1781
1782 static void skd_drive_fault(struct skd_device *skdev)
1783 {
1784         skdev->state = SKD_DRVR_STATE_FAULT;
1785         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1786 }
1787
1788 static void skd_drive_disappeared(struct skd_device *skdev)
1789 {
1790         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1791         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1792 }
1793
1794 static void skd_isr_fwstate(struct skd_device *skdev)
1795 {
1796         u32 sense;
1797         u32 state;
1798         u32 mtd;
1799         int prev_driver_state = skdev->state;
1800
1801         sense = SKD_READL(skdev, FIT_STATUS);
1802         state = sense & FIT_SR_DRIVE_STATE_MASK;
1803
1804         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1805                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1806                 skd_drive_state_to_str(state), state);
1807
1808         skdev->drive_state = state;
1809
1810         switch (skdev->drive_state) {
1811         case FIT_SR_DRIVE_INIT:
1812                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1813                         skd_disable_interrupts(skdev);
1814                         break;
1815                 }
1816                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1817                         skd_recover_requests(skdev);
1818                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1819                         skdev->timer_countdown = SKD_STARTING_TIMO;
1820                         skdev->state = SKD_DRVR_STATE_STARTING;
1821                         skd_soft_reset(skdev);
1822                         break;
1823                 }
1824                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1825                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1826                 skdev->last_mtd = mtd;
1827                 break;
1828
1829         case FIT_SR_DRIVE_ONLINE:
1830                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1831                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1832                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1833
1834                 skdev->queue_low_water_mark =
1835                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1836                 if (skdev->queue_low_water_mark < 1)
1837                         skdev->queue_low_water_mark = 1;
1838                 dev_info(&skdev->pdev->dev,
1839                          "Queue depth limit=%d dev=%d lowat=%d\n",
1840                          skdev->cur_max_queue_depth,
1841                          skdev->dev_max_queue_depth,
1842                          skdev->queue_low_water_mark);
1843
1844                 skd_refresh_device_data(skdev);
1845                 break;
1846
1847         case FIT_SR_DRIVE_BUSY:
1848                 skdev->state = SKD_DRVR_STATE_BUSY;
1849                 skdev->timer_countdown = SKD_BUSY_TIMO;
1850                 skd_quiesce_dev(skdev);
1851                 break;
1852         case FIT_SR_DRIVE_BUSY_SANITIZE:
1853                 /* set timer for 3 seconds, we'll abort any unfinished
1854                  * commands after that expires
1855                  */
1856                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1857                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1858                 schedule_work(&skdev->start_queue);
1859                 break;
1860         case FIT_SR_DRIVE_BUSY_ERASE:
1861                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1862                 skdev->timer_countdown = SKD_BUSY_TIMO;
1863                 break;
1864         case FIT_SR_DRIVE_OFFLINE:
1865                 skdev->state = SKD_DRVR_STATE_IDLE;
1866                 break;
1867         case FIT_SR_DRIVE_SOFT_RESET:
1868                 switch (skdev->state) {
1869                 case SKD_DRVR_STATE_STARTING:
1870                 case SKD_DRVR_STATE_RESTARTING:
1871                         /* Expected by a caller of skd_soft_reset() */
1872                         break;
1873                 default:
1874                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1875                         break;
1876                 }
1877                 break;
1878         case FIT_SR_DRIVE_FW_BOOTING:
1879                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1880                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1881                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1882                 break;
1883
1884         case FIT_SR_DRIVE_DEGRADED:
1885         case FIT_SR_PCIE_LINK_DOWN:
1886         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1887                 break;
1888
1889         case FIT_SR_DRIVE_FAULT:
1890                 skd_drive_fault(skdev);
1891                 skd_recover_requests(skdev);
1892                 schedule_work(&skdev->start_queue);
1893                 break;
1894
1895         /* PCIe bus returned all Fs? */
1896         case 0xFF:
1897                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1898                          sense);
1899                 skd_drive_disappeared(skdev);
1900                 skd_recover_requests(skdev);
1901                 schedule_work(&skdev->start_queue);
1902                 break;
1903         default:
1904                 /*
1905                  * Uknown FW State. Wait for a state we recognize.
1906                  */
1907                 break;
1908         }
1909         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1910                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1911                 skd_skdev_state_to_str(skdev->state), skdev->state);
1912 }
1913
1914 static void skd_recover_request(struct request *req, void *data, bool reserved)
1915 {
1916         struct skd_device *const skdev = data;
1917         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1918
1919         if (skreq->state != SKD_REQ_STATE_BUSY)
1920                 return;
1921
1922         skd_log_skreq(skdev, skreq, "recover");
1923
1924         /* Release DMA resources for the request. */
1925         if (skreq->n_sg > 0)
1926                 skd_postop_sg_list(skdev, skreq);
1927
1928         skreq->state = SKD_REQ_STATE_IDLE;
1929
1930         skd_end_request(skdev, req, BLK_STS_IOERR);
1931 }
1932
1933 static void skd_recover_requests(struct skd_device *skdev)
1934 {
1935         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1936 }
1937
1938 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1939 {
1940         u32 mfd;
1941         u32 mtd;
1942         u32 data;
1943
1944         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1945
1946         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1947                 skdev->last_mtd);
1948
1949         /* ignore any mtd that is an ack for something we didn't send */
1950         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1951                 return;
1952
1953         switch (FIT_MXD_TYPE(mfd)) {
1954         case FIT_MTD_FITFW_INIT:
1955                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1956
1957                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1958                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1959                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1960                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1961                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1962                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1963                         skd_soft_reset(skdev);
1964                         break;
1965                 }
1966                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1967                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1968                 skdev->last_mtd = mtd;
1969                 break;
1970
1971         case FIT_MTD_GET_CMDQ_DEPTH:
1972                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1973                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1974                                    SKD_N_COMPLETION_ENTRY);
1975                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1976                 skdev->last_mtd = mtd;
1977                 break;
1978
1979         case FIT_MTD_SET_COMPQ_DEPTH:
1980                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1981                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1982                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983                 skdev->last_mtd = mtd;
1984                 break;
1985
1986         case FIT_MTD_SET_COMPQ_ADDR:
1987                 skd_reset_skcomp(skdev);
1988                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1989                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1990                 skdev->last_mtd = mtd;
1991                 break;
1992
1993         case FIT_MTD_CMD_LOG_HOST_ID:
1994                 skdev->connect_time_stamp = get_seconds();
1995                 data = skdev->connect_time_stamp & 0xFFFF;
1996                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1997                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1998                 skdev->last_mtd = mtd;
1999                 break;
2000
2001         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
2002                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
2003                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
2004                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
2005                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2006                 skdev->last_mtd = mtd;
2007                 break;
2008
2009         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
2010                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
2011                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
2012                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2013                 skdev->last_mtd = mtd;
2014
2015                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2016                         skdev->connect_time_stamp, skdev->drive_jiffies);
2017                 break;
2018
2019         case FIT_MTD_ARM_QUEUE:
2020                 skdev->last_mtd = 0;
2021                 /*
2022                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2023                  */
2024                 break;
2025
2026         default:
2027                 break;
2028         }
2029 }
2030
2031 static void skd_disable_interrupts(struct skd_device *skdev)
2032 {
2033         u32 sense;
2034
2035         sense = SKD_READL(skdev, FIT_CONTROL);
2036         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2037         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2038         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2039
2040         /* Note that the 1s is written. A 1-bit means
2041          * disable, a 0 means enable.
2042          */
2043         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2044 }
2045
2046 static void skd_enable_interrupts(struct skd_device *skdev)
2047 {
2048         u32 val;
2049
2050         /* unmask interrupts first */
2051         val = FIT_ISH_FW_STATE_CHANGE +
2052               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2053
2054         /* Note that the compliment of mask is written. A 1-bit means
2055          * disable, a 0 means enable. */
2056         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2057         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2058
2059         val = SKD_READL(skdev, FIT_CONTROL);
2060         val |= FIT_CR_ENABLE_INTERRUPTS;
2061         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2062         SKD_WRITEL(skdev, val, FIT_CONTROL);
2063 }
2064
2065 /*
2066  *****************************************************************************
2067  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2068  *****************************************************************************
2069  */
2070
2071 static void skd_soft_reset(struct skd_device *skdev)
2072 {
2073         u32 val;
2074
2075         val = SKD_READL(skdev, FIT_CONTROL);
2076         val |= (FIT_CR_SOFT_RESET);
2077         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2078         SKD_WRITEL(skdev, val, FIT_CONTROL);
2079 }
2080
2081 static void skd_start_device(struct skd_device *skdev)
2082 {
2083         unsigned long flags;
2084         u32 sense;
2085         u32 state;
2086
2087         spin_lock_irqsave(&skdev->lock, flags);
2088
2089         /* ack all ghost interrupts */
2090         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2091
2092         sense = SKD_READL(skdev, FIT_STATUS);
2093
2094         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2095
2096         state = sense & FIT_SR_DRIVE_STATE_MASK;
2097         skdev->drive_state = state;
2098         skdev->last_mtd = 0;
2099
2100         skdev->state = SKD_DRVR_STATE_STARTING;
2101         skdev->timer_countdown = SKD_STARTING_TIMO;
2102
2103         skd_enable_interrupts(skdev);
2104
2105         switch (skdev->drive_state) {
2106         case FIT_SR_DRIVE_OFFLINE:
2107                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2108                 break;
2109
2110         case FIT_SR_DRIVE_FW_BOOTING:
2111                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2112                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2113                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2114                 break;
2115
2116         case FIT_SR_DRIVE_BUSY_SANITIZE:
2117                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2118                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2119                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2120                 break;
2121
2122         case FIT_SR_DRIVE_BUSY_ERASE:
2123                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2124                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2125                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2126                 break;
2127
2128         case FIT_SR_DRIVE_INIT:
2129         case FIT_SR_DRIVE_ONLINE:
2130                 skd_soft_reset(skdev);
2131                 break;
2132
2133         case FIT_SR_DRIVE_BUSY:
2134                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2135                 skdev->state = SKD_DRVR_STATE_BUSY;
2136                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2137                 break;
2138
2139         case FIT_SR_DRIVE_SOFT_RESET:
2140                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2141                 break;
2142
2143         case FIT_SR_DRIVE_FAULT:
2144                 /* Fault state is bad...soft reset won't do it...
2145                  * Hard reset, maybe, but does it work on device?
2146                  * For now, just fault so the system doesn't hang.
2147                  */
2148                 skd_drive_fault(skdev);
2149                 /*start the queue so we can respond with error to requests */
2150                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2151                 schedule_work(&skdev->start_queue);
2152                 skdev->gendisk_on = -1;
2153                 wake_up_interruptible(&skdev->waitq);
2154                 break;
2155
2156         case 0xFF:
2157                 /* Most likely the device isn't there or isn't responding
2158                  * to the BAR1 addresses. */
2159                 skd_drive_disappeared(skdev);
2160                 /*start the queue so we can respond with error to requests */
2161                 dev_dbg(&skdev->pdev->dev,
2162                         "starting queue to error-out reqs\n");
2163                 schedule_work(&skdev->start_queue);
2164                 skdev->gendisk_on = -1;
2165                 wake_up_interruptible(&skdev->waitq);
2166                 break;
2167
2168         default:
2169                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2170                         skdev->drive_state);
2171                 break;
2172         }
2173
2174         state = SKD_READL(skdev, FIT_CONTROL);
2175         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2176
2177         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2178         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2179
2180         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2181         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2182
2183         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2184         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2185
2186         state = SKD_READL(skdev, FIT_HW_VERSION);
2187         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2188
2189         spin_unlock_irqrestore(&skdev->lock, flags);
2190 }
2191
2192 static void skd_stop_device(struct skd_device *skdev)
2193 {
2194         unsigned long flags;
2195         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2196         u32 dev_state;
2197         int i;
2198
2199         spin_lock_irqsave(&skdev->lock, flags);
2200
2201         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2202                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2203                 goto stop_out;
2204         }
2205
2206         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2207                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2208                 goto stop_out;
2209         }
2210
2211         skdev->state = SKD_DRVR_STATE_SYNCING;
2212         skdev->sync_done = 0;
2213
2214         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2215
2216         spin_unlock_irqrestore(&skdev->lock, flags);
2217
2218         wait_event_interruptible_timeout(skdev->waitq,
2219                                          (skdev->sync_done), (10 * HZ));
2220
2221         spin_lock_irqsave(&skdev->lock, flags);
2222
2223         switch (skdev->sync_done) {
2224         case 0:
2225                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2226                 break;
2227         case 1:
2228                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2229                 break;
2230         default:
2231                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2232         }
2233
2234 stop_out:
2235         skdev->state = SKD_DRVR_STATE_STOPPING;
2236         spin_unlock_irqrestore(&skdev->lock, flags);
2237
2238         skd_kill_timer(skdev);
2239
2240         spin_lock_irqsave(&skdev->lock, flags);
2241         skd_disable_interrupts(skdev);
2242
2243         /* ensure all ints on device are cleared */
2244         /* soft reset the device to unload with a clean slate */
2245         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2246         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2247
2248         spin_unlock_irqrestore(&skdev->lock, flags);
2249
2250         /* poll every 100ms, 1 second timeout */
2251         for (i = 0; i < 10; i++) {
2252                 dev_state =
2253                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2254                 if (dev_state == FIT_SR_DRIVE_INIT)
2255                         break;
2256                 set_current_state(TASK_INTERRUPTIBLE);
2257                 schedule_timeout(msecs_to_jiffies(100));
2258         }
2259
2260         if (dev_state != FIT_SR_DRIVE_INIT)
2261                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2262                         dev_state);
2263 }
2264
2265 /* assume spinlock is held */
2266 static void skd_restart_device(struct skd_device *skdev)
2267 {
2268         u32 state;
2269
2270         /* ack all ghost interrupts */
2271         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2272
2273         state = SKD_READL(skdev, FIT_STATUS);
2274
2275         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2276
2277         state &= FIT_SR_DRIVE_STATE_MASK;
2278         skdev->drive_state = state;
2279         skdev->last_mtd = 0;
2280
2281         skdev->state = SKD_DRVR_STATE_RESTARTING;
2282         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2283
2284         skd_soft_reset(skdev);
2285 }
2286
2287 /* assume spinlock is held */
2288 static int skd_quiesce_dev(struct skd_device *skdev)
2289 {
2290         int rc = 0;
2291
2292         switch (skdev->state) {
2293         case SKD_DRVR_STATE_BUSY:
2294         case SKD_DRVR_STATE_BUSY_IMMINENT:
2295                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2296                 blk_mq_stop_hw_queues(skdev->queue);
2297                 break;
2298         case SKD_DRVR_STATE_ONLINE:
2299         case SKD_DRVR_STATE_STOPPING:
2300         case SKD_DRVR_STATE_SYNCING:
2301         case SKD_DRVR_STATE_PAUSING:
2302         case SKD_DRVR_STATE_PAUSED:
2303         case SKD_DRVR_STATE_STARTING:
2304         case SKD_DRVR_STATE_RESTARTING:
2305         case SKD_DRVR_STATE_RESUMING:
2306         default:
2307                 rc = -EINVAL;
2308                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2309                         skdev->state);
2310         }
2311         return rc;
2312 }
2313
2314 /* assume spinlock is held */
2315 static int skd_unquiesce_dev(struct skd_device *skdev)
2316 {
2317         int prev_driver_state = skdev->state;
2318
2319         skd_log_skdev(skdev, "unquiesce");
2320         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2321                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2322                 return 0;
2323         }
2324         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2325                 /*
2326                  * If there has been an state change to other than
2327                  * ONLINE, we will rely on controller state change
2328                  * to come back online and restart the queue.
2329                  * The BUSY state means that driver is ready to
2330                  * continue normal processing but waiting for controller
2331                  * to become available.
2332                  */
2333                 skdev->state = SKD_DRVR_STATE_BUSY;
2334                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2335                 return 0;
2336         }
2337
2338         /*
2339          * Drive has just come online, driver is either in startup,
2340          * paused performing a task, or bust waiting for hardware.
2341          */
2342         switch (skdev->state) {
2343         case SKD_DRVR_STATE_PAUSED:
2344         case SKD_DRVR_STATE_BUSY:
2345         case SKD_DRVR_STATE_BUSY_IMMINENT:
2346         case SKD_DRVR_STATE_BUSY_ERASE:
2347         case SKD_DRVR_STATE_STARTING:
2348         case SKD_DRVR_STATE_RESTARTING:
2349         case SKD_DRVR_STATE_FAULT:
2350         case SKD_DRVR_STATE_IDLE:
2351         case SKD_DRVR_STATE_LOAD:
2352                 skdev->state = SKD_DRVR_STATE_ONLINE;
2353                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2354                         skd_skdev_state_to_str(prev_driver_state),
2355                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2356                         skdev->state);
2357                 dev_dbg(&skdev->pdev->dev,
2358                         "**** device ONLINE...starting block queue\n");
2359                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2360                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2361                 schedule_work(&skdev->start_queue);
2362                 skdev->gendisk_on = 1;
2363                 wake_up_interruptible(&skdev->waitq);
2364                 break;
2365
2366         case SKD_DRVR_STATE_DISAPPEARED:
2367         default:
2368                 dev_dbg(&skdev->pdev->dev,
2369                         "**** driver state %d, not implemented\n",
2370                         skdev->state);
2371                 return -EBUSY;
2372         }
2373         return 0;
2374 }
2375
2376 /*
2377  *****************************************************************************
2378  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2379  *****************************************************************************
2380  */
2381
2382 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2383 {
2384         struct skd_device *skdev = skd_host_data;
2385         unsigned long flags;
2386
2387         spin_lock_irqsave(&skdev->lock, flags);
2388         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2389                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2390         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2391                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2392         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2393         spin_unlock_irqrestore(&skdev->lock, flags);
2394         return IRQ_HANDLED;
2395 }
2396
2397 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2398 {
2399         struct skd_device *skdev = skd_host_data;
2400         unsigned long flags;
2401
2402         spin_lock_irqsave(&skdev->lock, flags);
2403         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2404                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2405         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2406         skd_isr_fwstate(skdev);
2407         spin_unlock_irqrestore(&skdev->lock, flags);
2408         return IRQ_HANDLED;
2409 }
2410
2411 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2412 {
2413         struct skd_device *skdev = skd_host_data;
2414         unsigned long flags;
2415         int flush_enqueued = 0;
2416         int deferred;
2417
2418         spin_lock_irqsave(&skdev->lock, flags);
2419         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2422         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2423                                                 &flush_enqueued);
2424         if (flush_enqueued)
2425                 schedule_work(&skdev->start_queue);
2426
2427         if (deferred)
2428                 schedule_work(&skdev->completion_worker);
2429         else if (!flush_enqueued)
2430                 schedule_work(&skdev->start_queue);
2431
2432         spin_unlock_irqrestore(&skdev->lock, flags);
2433
2434         return IRQ_HANDLED;
2435 }
2436
2437 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2438 {
2439         struct skd_device *skdev = skd_host_data;
2440         unsigned long flags;
2441
2442         spin_lock_irqsave(&skdev->lock, flags);
2443         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2444                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2445         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2446         skd_isr_msg_from_dev(skdev);
2447         spin_unlock_irqrestore(&skdev->lock, flags);
2448         return IRQ_HANDLED;
2449 }
2450
2451 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2452 {
2453         struct skd_device *skdev = skd_host_data;
2454         unsigned long flags;
2455
2456         spin_lock_irqsave(&skdev->lock, flags);
2457         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2458                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2459         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2460         spin_unlock_irqrestore(&skdev->lock, flags);
2461         return IRQ_HANDLED;
2462 }
2463
2464 /*
2465  *****************************************************************************
2466  * PCIe MSI/MSI-X SETUP
2467  *****************************************************************************
2468  */
2469
2470 struct skd_msix_entry {
2471         char isr_name[30];
2472 };
2473
2474 struct skd_init_msix_entry {
2475         const char *name;
2476         irq_handler_t handler;
2477 };
2478
2479 #define SKD_MAX_MSIX_COUNT              13
2480 #define SKD_MIN_MSIX_COUNT              7
2481 #define SKD_BASE_MSIX_IRQ               4
2482
2483 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2484         { "(DMA 0)",        skd_reserved_isr },
2485         { "(DMA 1)",        skd_reserved_isr },
2486         { "(DMA 2)",        skd_reserved_isr },
2487         { "(DMA 3)",        skd_reserved_isr },
2488         { "(State Change)", skd_statec_isr   },
2489         { "(COMPL_Q)",      skd_comp_q       },
2490         { "(MSG)",          skd_msg_isr      },
2491         { "(Reserved)",     skd_reserved_isr },
2492         { "(Reserved)",     skd_reserved_isr },
2493         { "(Queue Full 0)", skd_qfull_isr    },
2494         { "(Queue Full 1)", skd_qfull_isr    },
2495         { "(Queue Full 2)", skd_qfull_isr    },
2496         { "(Queue Full 3)", skd_qfull_isr    },
2497 };
2498
2499 static int skd_acquire_msix(struct skd_device *skdev)
2500 {
2501         int i, rc;
2502         struct pci_dev *pdev = skdev->pdev;
2503
2504         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2505                         PCI_IRQ_MSIX);
2506         if (rc < 0) {
2507                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2508                 goto out;
2509         }
2510
2511         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2512                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2513         if (!skdev->msix_entries) {
2514                 rc = -ENOMEM;
2515                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2516                 goto out;
2517         }
2518
2519         /* Enable MSI-X vectors for the base queue */
2520         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2521                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2522
2523                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2524                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2525                          msix_entries[i].name);
2526
2527                 rc = devm_request_irq(&skdev->pdev->dev,
2528                                 pci_irq_vector(skdev->pdev, i),
2529                                 msix_entries[i].handler, 0,
2530                                 qentry->isr_name, skdev);
2531                 if (rc) {
2532                         dev_err(&skdev->pdev->dev,
2533                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2534                                 rc, i, qentry->isr_name);
2535                         goto msix_out;
2536                 }
2537         }
2538
2539         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2540                 SKD_MAX_MSIX_COUNT);
2541         return 0;
2542
2543 msix_out:
2544         while (--i >= 0)
2545                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2546 out:
2547         kfree(skdev->msix_entries);
2548         skdev->msix_entries = NULL;
2549         return rc;
2550 }
2551
2552 static int skd_acquire_irq(struct skd_device *skdev)
2553 {
2554         struct pci_dev *pdev = skdev->pdev;
2555         unsigned int irq_flag = PCI_IRQ_LEGACY;
2556         int rc;
2557
2558         if (skd_isr_type == SKD_IRQ_MSIX) {
2559                 rc = skd_acquire_msix(skdev);
2560                 if (!rc)
2561                         return 0;
2562
2563                 dev_err(&skdev->pdev->dev,
2564                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2565         }
2566
2567         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2568                         skdev->devno);
2569
2570         if (skd_isr_type != SKD_IRQ_LEGACY)
2571                 irq_flag |= PCI_IRQ_MSI;
2572         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2573         if (rc < 0) {
2574                 dev_err(&skdev->pdev->dev,
2575                         "failed to allocate the MSI interrupt %d\n", rc);
2576                 return rc;
2577         }
2578
2579         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2580                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2581                         skdev->isr_name, skdev);
2582         if (rc) {
2583                 pci_free_irq_vectors(pdev);
2584                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2585                         rc);
2586                 return rc;
2587         }
2588
2589         return 0;
2590 }
2591
2592 static void skd_release_irq(struct skd_device *skdev)
2593 {
2594         struct pci_dev *pdev = skdev->pdev;
2595
2596         if (skdev->msix_entries) {
2597                 int i;
2598
2599                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2600                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2601                                         skdev);
2602                 }
2603
2604                 kfree(skdev->msix_entries);
2605                 skdev->msix_entries = NULL;
2606         } else {
2607                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2608         }
2609
2610         pci_free_irq_vectors(pdev);
2611 }
2612
2613 /*
2614  *****************************************************************************
2615  * CONSTRUCT
2616  *****************************************************************************
2617  */
2618
2619 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2620                            dma_addr_t *dma_handle, gfp_t gfp,
2621                            enum dma_data_direction dir)
2622 {
2623         struct device *dev = &skdev->pdev->dev;
2624         void *buf;
2625
2626         buf = kmem_cache_alloc(s, gfp);
2627         if (!buf)
2628                 return NULL;
2629         *dma_handle = dma_map_single(dev, buf, s->size, dir);
2630         if (dma_mapping_error(dev, *dma_handle)) {
2631                 kfree(buf);
2632                 buf = NULL;
2633         }
2634         return buf;
2635 }
2636
2637 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2638                          void *vaddr, dma_addr_t dma_handle,
2639                          enum dma_data_direction dir)
2640 {
2641         if (!vaddr)
2642                 return;
2643
2644         dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2645         kmem_cache_free(s, vaddr);
2646 }
2647
2648 static int skd_cons_skcomp(struct skd_device *skdev)
2649 {
2650         int rc = 0;
2651         struct fit_completion_entry_v1 *skcomp;
2652
2653         dev_dbg(&skdev->pdev->dev,
2654                 "comp pci_alloc, total bytes %zd entries %d\n",
2655                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2656
2657         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2658                                        &skdev->cq_dma_address);
2659
2660         if (skcomp == NULL) {
2661                 rc = -ENOMEM;
2662                 goto err_out;
2663         }
2664
2665         skdev->skcomp_table = skcomp;
2666         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2667                                                            sizeof(*skcomp) *
2668                                                            SKD_N_COMPLETION_ENTRY);
2669
2670 err_out:
2671         return rc;
2672 }
2673
2674 static int skd_cons_skmsg(struct skd_device *skdev)
2675 {
2676         int rc = 0;
2677         u32 i;
2678
2679         dev_dbg(&skdev->pdev->dev,
2680                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2681                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2682                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2683
2684         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2685                                      sizeof(struct skd_fitmsg_context),
2686                                      GFP_KERNEL);
2687         if (skdev->skmsg_table == NULL) {
2688                 rc = -ENOMEM;
2689                 goto err_out;
2690         }
2691
2692         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2693                 struct skd_fitmsg_context *skmsg;
2694
2695                 skmsg = &skdev->skmsg_table[i];
2696
2697                 skmsg->id = i + SKD_ID_FIT_MSG;
2698
2699                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2700                                                       SKD_N_FITMSG_BYTES,
2701                                                       &skmsg->mb_dma_address);
2702
2703                 if (skmsg->msg_buf == NULL) {
2704                         rc = -ENOMEM;
2705                         goto err_out;
2706                 }
2707
2708                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2709                      (FIT_QCMD_ALIGN - 1),
2710                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2711                      skmsg->msg_buf, skmsg->mb_dma_address);
2712                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2713         }
2714
2715 err_out:
2716         return rc;
2717 }
2718
2719 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2720                                                   u32 n_sg,
2721                                                   dma_addr_t *ret_dma_addr)
2722 {
2723         struct fit_sg_descriptor *sg_list;
2724
2725         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2726                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2727
2728         if (sg_list != NULL) {
2729                 uint64_t dma_address = *ret_dma_addr;
2730                 u32 i;
2731
2732                 for (i = 0; i < n_sg - 1; i++) {
2733                         uint64_t ndp_off;
2734                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2735
2736                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2737                 }
2738                 sg_list[i].next_desc_ptr = 0LL;
2739         }
2740
2741         return sg_list;
2742 }
2743
2744 static void skd_free_sg_list(struct skd_device *skdev,
2745                              struct fit_sg_descriptor *sg_list,
2746                              dma_addr_t dma_addr)
2747 {
2748         if (WARN_ON_ONCE(!sg_list))
2749                 return;
2750
2751         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2752                      DMA_TO_DEVICE);
2753 }
2754
2755 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2756                             unsigned int hctx_idx, unsigned int numa_node)
2757 {
2758         struct skd_device *skdev = set->driver_data;
2759         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2760
2761         skreq->state = SKD_REQ_STATE_IDLE;
2762         skreq->sg = (void *)(skreq + 1);
2763         sg_init_table(skreq->sg, skd_sgs_per_request);
2764         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2765                                             &skreq->sksg_dma_address);
2766
2767         return skreq->sksg_list ? 0 : -ENOMEM;
2768 }
2769
2770 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2771                              unsigned int hctx_idx)
2772 {
2773         struct skd_device *skdev = set->driver_data;
2774         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2775
2776         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2777 }
2778
2779 static int skd_cons_sksb(struct skd_device *skdev)
2780 {
2781         int rc = 0;
2782         struct skd_special_context *skspcl;
2783
2784         skspcl = &skdev->internal_skspcl;
2785
2786         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2787         skspcl->req.state = SKD_REQ_STATE_IDLE;
2788
2789         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2790                                          &skspcl->db_dma_address,
2791                                          GFP_DMA | __GFP_ZERO,
2792                                          DMA_BIDIRECTIONAL);
2793         if (skspcl->data_buf == NULL) {
2794                 rc = -ENOMEM;
2795                 goto err_out;
2796         }
2797
2798         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2799                                         &skspcl->mb_dma_address,
2800                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2801         if (skspcl->msg_buf == NULL) {
2802                 rc = -ENOMEM;
2803                 goto err_out;
2804         }
2805
2806         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2807                                                  &skspcl->req.sksg_dma_address);
2808         if (skspcl->req.sksg_list == NULL) {
2809                 rc = -ENOMEM;
2810                 goto err_out;
2811         }
2812
2813         if (!skd_format_internal_skspcl(skdev)) {
2814                 rc = -EINVAL;
2815                 goto err_out;
2816         }
2817
2818 err_out:
2819         return rc;
2820 }
2821
2822 static const struct blk_mq_ops skd_mq_ops = {
2823         .queue_rq       = skd_mq_queue_rq,
2824         .complete       = skd_softirq_done,
2825         .timeout        = skd_timed_out,
2826         .init_request   = skd_init_request,
2827         .exit_request   = skd_exit_request,
2828 };
2829
2830 static int skd_cons_disk(struct skd_device *skdev)
2831 {
2832         int rc = 0;
2833         struct gendisk *disk;
2834         struct request_queue *q;
2835         unsigned long flags;
2836
2837         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2838         if (!disk) {
2839                 rc = -ENOMEM;
2840                 goto err_out;
2841         }
2842
2843         skdev->disk = disk;
2844         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2845
2846         disk->major = skdev->major;
2847         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2848         disk->fops = &skd_blockdev_ops;
2849         disk->private_data = skdev;
2850
2851         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2852         skdev->tag_set.ops = &skd_mq_ops;
2853         skdev->tag_set.nr_hw_queues = 1;
2854         skdev->tag_set.queue_depth = skd_max_queue_depth;
2855         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2856                 skdev->sgs_per_request * sizeof(struct scatterlist);
2857         skdev->tag_set.numa_node = NUMA_NO_NODE;
2858         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2859                 BLK_MQ_F_SG_MERGE |
2860                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2861         skdev->tag_set.driver_data = skdev;
2862         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2863         if (rc)
2864                 goto err_out;
2865         q = blk_mq_init_queue(&skdev->tag_set);
2866         if (IS_ERR(q)) {
2867                 blk_mq_free_tag_set(&skdev->tag_set);
2868                 rc = PTR_ERR(q);
2869                 goto err_out;
2870         }
2871         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2872         q->queuedata = skdev;
2873         q->nr_requests = skd_max_queue_depth / 2;
2874
2875         skdev->queue = q;
2876         disk->queue = q;
2877
2878         blk_queue_write_cache(q, true, true);
2879         blk_queue_max_segments(q, skdev->sgs_per_request);
2880         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2881
2882         /* set optimal I/O size to 8KB */
2883         blk_queue_io_opt(q, 8192);
2884
2885         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2886         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2887
2888         blk_queue_rq_timeout(q, 8 * HZ);
2889
2890         spin_lock_irqsave(&skdev->lock, flags);
2891         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2892         blk_mq_stop_hw_queues(skdev->queue);
2893         spin_unlock_irqrestore(&skdev->lock, flags);
2894
2895 err_out:
2896         return rc;
2897 }
2898
2899 #define SKD_N_DEV_TABLE         16u
2900 static u32 skd_next_devno;
2901
2902 static struct skd_device *skd_construct(struct pci_dev *pdev)
2903 {
2904         struct skd_device *skdev;
2905         int blk_major = skd_major;
2906         size_t size;
2907         int rc;
2908
2909         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2910
2911         if (!skdev) {
2912                 dev_err(&pdev->dev, "memory alloc failure\n");
2913                 return NULL;
2914         }
2915
2916         skdev->state = SKD_DRVR_STATE_LOAD;
2917         skdev->pdev = pdev;
2918         skdev->devno = skd_next_devno++;
2919         skdev->major = blk_major;
2920         skdev->dev_max_queue_depth = 0;
2921
2922         skdev->num_req_context = skd_max_queue_depth;
2923         skdev->num_fitmsg_context = skd_max_queue_depth;
2924         skdev->cur_max_queue_depth = 1;
2925         skdev->queue_low_water_mark = 1;
2926         skdev->proto_ver = 99;
2927         skdev->sgs_per_request = skd_sgs_per_request;
2928         skdev->dbg_level = skd_dbg_level;
2929
2930         spin_lock_init(&skdev->lock);
2931
2932         INIT_WORK(&skdev->start_queue, skd_start_queue);
2933         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2934
2935         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2936         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2937                                                 SLAB_HWCACHE_ALIGN, NULL);
2938         if (!skdev->msgbuf_cache)
2939                 goto err_out;
2940         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2941                   "skd-msgbuf: %d < %zd\n",
2942                   kmem_cache_size(skdev->msgbuf_cache), size);
2943         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2944         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2945                                                 SLAB_HWCACHE_ALIGN, NULL);
2946         if (!skdev->sglist_cache)
2947                 goto err_out;
2948         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2949                   "skd-sglist: %d < %zd\n",
2950                   kmem_cache_size(skdev->sglist_cache), size);
2951         size = SKD_N_INTERNAL_BYTES;
2952         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2953                                                  SLAB_HWCACHE_ALIGN, NULL);
2954         if (!skdev->databuf_cache)
2955                 goto err_out;
2956         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2957                   "skd-databuf: %d < %zd\n",
2958                   kmem_cache_size(skdev->databuf_cache), size);
2959
2960         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2961         rc = skd_cons_skcomp(skdev);
2962         if (rc < 0)
2963                 goto err_out;
2964
2965         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2966         rc = skd_cons_skmsg(skdev);
2967         if (rc < 0)
2968                 goto err_out;
2969
2970         dev_dbg(&skdev->pdev->dev, "sksb\n");
2971         rc = skd_cons_sksb(skdev);
2972         if (rc < 0)
2973                 goto err_out;
2974
2975         dev_dbg(&skdev->pdev->dev, "disk\n");
2976         rc = skd_cons_disk(skdev);
2977         if (rc < 0)
2978                 goto err_out;
2979
2980         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2981         return skdev;
2982
2983 err_out:
2984         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2985         skd_destruct(skdev);
2986         return NULL;
2987 }
2988
2989 /*
2990  *****************************************************************************
2991  * DESTRUCT (FREE)
2992  *****************************************************************************
2993  */
2994
2995 static void skd_free_skcomp(struct skd_device *skdev)
2996 {
2997         if (skdev->skcomp_table)
2998                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2999                                     skdev->skcomp_table, skdev->cq_dma_address);
3000
3001         skdev->skcomp_table = NULL;
3002         skdev->cq_dma_address = 0;
3003 }
3004
3005 static void skd_free_skmsg(struct skd_device *skdev)
3006 {
3007         u32 i;
3008
3009         if (skdev->skmsg_table == NULL)
3010                 return;
3011
3012         for (i = 0; i < skdev->num_fitmsg_context; i++) {
3013                 struct skd_fitmsg_context *skmsg;
3014
3015                 skmsg = &skdev->skmsg_table[i];
3016
3017                 if (skmsg->msg_buf != NULL) {
3018                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
3019                                             skmsg->msg_buf,
3020                                             skmsg->mb_dma_address);
3021                 }
3022                 skmsg->msg_buf = NULL;
3023                 skmsg->mb_dma_address = 0;
3024         }
3025
3026         kfree(skdev->skmsg_table);
3027         skdev->skmsg_table = NULL;
3028 }
3029
3030 static void skd_free_sksb(struct skd_device *skdev)
3031 {
3032         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3033
3034         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3035                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3036
3037         skspcl->data_buf = NULL;
3038         skspcl->db_dma_address = 0;
3039
3040         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3041                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3042
3043         skspcl->msg_buf = NULL;
3044         skspcl->mb_dma_address = 0;
3045
3046         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3047                          skspcl->req.sksg_dma_address);
3048
3049         skspcl->req.sksg_list = NULL;
3050         skspcl->req.sksg_dma_address = 0;
3051 }
3052
3053 static void skd_free_disk(struct skd_device *skdev)
3054 {
3055         struct gendisk *disk = skdev->disk;
3056
3057         if (disk && (disk->flags & GENHD_FL_UP))
3058                 del_gendisk(disk);
3059
3060         if (skdev->queue) {
3061                 blk_cleanup_queue(skdev->queue);
3062                 skdev->queue = NULL;
3063                 disk->queue = NULL;
3064         }
3065
3066         if (skdev->tag_set.tags)
3067                 blk_mq_free_tag_set(&skdev->tag_set);
3068
3069         put_disk(disk);
3070         skdev->disk = NULL;
3071 }
3072
3073 static void skd_destruct(struct skd_device *skdev)
3074 {
3075         if (skdev == NULL)
3076                 return;
3077
3078         cancel_work_sync(&skdev->start_queue);
3079
3080         dev_dbg(&skdev->pdev->dev, "disk\n");
3081         skd_free_disk(skdev);
3082
3083         dev_dbg(&skdev->pdev->dev, "sksb\n");
3084         skd_free_sksb(skdev);
3085
3086         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3087         skd_free_skmsg(skdev);
3088
3089         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3090         skd_free_skcomp(skdev);
3091
3092         kmem_cache_destroy(skdev->databuf_cache);
3093         kmem_cache_destroy(skdev->sglist_cache);
3094         kmem_cache_destroy(skdev->msgbuf_cache);
3095
3096         dev_dbg(&skdev->pdev->dev, "skdev\n");
3097         kfree(skdev);
3098 }
3099
3100 /*
3101  *****************************************************************************
3102  * BLOCK DEVICE (BDEV) GLUE
3103  *****************************************************************************
3104  */
3105
3106 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3107 {
3108         struct skd_device *skdev;
3109         u64 capacity;
3110
3111         skdev = bdev->bd_disk->private_data;
3112
3113         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3114                 bdev->bd_disk->disk_name, current->comm);
3115
3116         if (skdev->read_cap_is_valid) {
3117                 capacity = get_capacity(skdev->disk);
3118                 geo->heads = 64;
3119                 geo->sectors = 255;
3120                 geo->cylinders = (capacity) / (255 * 64);
3121
3122                 return 0;
3123         }
3124         return -EIO;
3125 }
3126
3127 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3128 {
3129         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3130         device_add_disk(parent, skdev->disk);
3131         return 0;
3132 }
3133
3134 static const struct block_device_operations skd_blockdev_ops = {
3135         .owner          = THIS_MODULE,
3136         .getgeo         = skd_bdev_getgeo,
3137 };
3138
3139 /*
3140  *****************************************************************************
3141  * PCIe DRIVER GLUE
3142  *****************************************************************************
3143  */
3144
3145 static const struct pci_device_id skd_pci_tbl[] = {
3146         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3147           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3148         { 0 }                     /* terminate list */
3149 };
3150
3151 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3152
3153 static char *skd_pci_info(struct skd_device *skdev, char *str)
3154 {
3155         int pcie_reg;
3156
3157         strcpy(str, "PCIe (");
3158         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3159
3160         if (pcie_reg) {
3161
3162                 char lwstr[6];
3163                 uint16_t pcie_lstat, lspeed, lwidth;
3164
3165                 pcie_reg += 0x12;
3166                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3167                 lspeed = pcie_lstat & (0xF);
3168                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3169
3170                 if (lspeed == 1)
3171                         strcat(str, "2.5GT/s ");
3172                 else if (lspeed == 2)
3173                         strcat(str, "5.0GT/s ");
3174                 else
3175                         strcat(str, "<unknown> ");
3176                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3177                 strcat(str, lwstr);
3178         }
3179         return str;
3180 }
3181
3182 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3183 {
3184         int i;
3185         int rc = 0;
3186         char pci_str[32];
3187         struct skd_device *skdev;
3188
3189         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3190                 pdev->device);
3191
3192         rc = pci_enable_device(pdev);
3193         if (rc)
3194                 return rc;
3195         rc = pci_request_regions(pdev, DRV_NAME);
3196         if (rc)
3197                 goto err_out;
3198         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3199         if (!rc) {
3200                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3201                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3202                                 rc);
3203                 }
3204         } else {
3205                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3206                 if (rc) {
3207                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3208                         goto err_out_regions;
3209                 }
3210         }
3211
3212         if (!skd_major) {
3213                 rc = register_blkdev(0, DRV_NAME);
3214                 if (rc < 0)
3215                         goto err_out_regions;
3216                 BUG_ON(!rc);
3217                 skd_major = rc;
3218         }
3219
3220         skdev = skd_construct(pdev);
3221         if (skdev == NULL) {
3222                 rc = -ENOMEM;
3223                 goto err_out_regions;
3224         }
3225
3226         skd_pci_info(skdev, pci_str);
3227         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3228
3229         pci_set_master(pdev);
3230         rc = pci_enable_pcie_error_reporting(pdev);
3231         if (rc) {
3232                 dev_err(&pdev->dev,
3233                         "bad enable of PCIe error reporting rc=%d\n", rc);
3234                 skdev->pcie_error_reporting_is_enabled = 0;
3235         } else
3236                 skdev->pcie_error_reporting_is_enabled = 1;
3237
3238         pci_set_drvdata(pdev, skdev);
3239
3240         for (i = 0; i < SKD_MAX_BARS; i++) {
3241                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3242                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3243                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3244                                             skdev->mem_size[i]);
3245                 if (!skdev->mem_map[i]) {
3246                         dev_err(&pdev->dev,
3247                                 "Unable to map adapter memory!\n");
3248                         rc = -ENODEV;
3249                         goto err_out_iounmap;
3250                 }
3251                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3252                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3253                         skdev->mem_size[i]);
3254         }
3255
3256         rc = skd_acquire_irq(skdev);
3257         if (rc) {
3258                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3259                 goto err_out_iounmap;
3260         }
3261
3262         rc = skd_start_timer(skdev);
3263         if (rc)
3264                 goto err_out_timer;
3265
3266         init_waitqueue_head(&skdev->waitq);
3267
3268         skd_start_device(skdev);
3269
3270         rc = wait_event_interruptible_timeout(skdev->waitq,
3271                                               (skdev->gendisk_on),
3272                                               (SKD_START_WAIT_SECONDS * HZ));
3273         if (skdev->gendisk_on > 0) {
3274                 /* device came on-line after reset */
3275                 skd_bdev_attach(&pdev->dev, skdev);
3276                 rc = 0;
3277         } else {
3278                 /* we timed out, something is wrong with the device,
3279                    don't add the disk structure */
3280                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3281                         rc);
3282                 /* in case of no error; we timeout with ENXIO */
3283                 if (!rc)
3284                         rc = -ENXIO;
3285                 goto err_out_timer;
3286         }
3287
3288         return rc;
3289
3290 err_out_timer:
3291         skd_stop_device(skdev);
3292         skd_release_irq(skdev);
3293
3294 err_out_iounmap:
3295         for (i = 0; i < SKD_MAX_BARS; i++)
3296                 if (skdev->mem_map[i])
3297                         iounmap(skdev->mem_map[i]);
3298
3299         if (skdev->pcie_error_reporting_is_enabled)
3300                 pci_disable_pcie_error_reporting(pdev);
3301
3302         skd_destruct(skdev);
3303
3304 err_out_regions:
3305         pci_release_regions(pdev);
3306
3307 err_out:
3308         pci_disable_device(pdev);
3309         pci_set_drvdata(pdev, NULL);
3310         return rc;
3311 }
3312
3313 static void skd_pci_remove(struct pci_dev *pdev)
3314 {
3315         int i;
3316         struct skd_device *skdev;
3317
3318         skdev = pci_get_drvdata(pdev);
3319         if (!skdev) {
3320                 dev_err(&pdev->dev, "no device data for PCI\n");
3321                 return;
3322         }
3323         skd_stop_device(skdev);
3324         skd_release_irq(skdev);
3325
3326         for (i = 0; i < SKD_MAX_BARS; i++)
3327                 if (skdev->mem_map[i])
3328                         iounmap(skdev->mem_map[i]);
3329
3330         if (skdev->pcie_error_reporting_is_enabled)
3331                 pci_disable_pcie_error_reporting(pdev);
3332
3333         skd_destruct(skdev);
3334
3335         pci_release_regions(pdev);
3336         pci_disable_device(pdev);
3337         pci_set_drvdata(pdev, NULL);
3338
3339         return;
3340 }
3341
3342 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3343 {
3344         int i;
3345         struct skd_device *skdev;
3346
3347         skdev = pci_get_drvdata(pdev);
3348         if (!skdev) {
3349                 dev_err(&pdev->dev, "no device data for PCI\n");
3350                 return -EIO;
3351         }
3352
3353         skd_stop_device(skdev);
3354
3355         skd_release_irq(skdev);
3356
3357         for (i = 0; i < SKD_MAX_BARS; i++)
3358                 if (skdev->mem_map[i])
3359                         iounmap(skdev->mem_map[i]);
3360
3361         if (skdev->pcie_error_reporting_is_enabled)
3362                 pci_disable_pcie_error_reporting(pdev);
3363
3364         pci_release_regions(pdev);
3365         pci_save_state(pdev);
3366         pci_disable_device(pdev);
3367         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3368         return 0;
3369 }
3370
3371 static int skd_pci_resume(struct pci_dev *pdev)
3372 {
3373         int i;
3374         int rc = 0;
3375         struct skd_device *skdev;
3376
3377         skdev = pci_get_drvdata(pdev);
3378         if (!skdev) {
3379                 dev_err(&pdev->dev, "no device data for PCI\n");
3380                 return -1;
3381         }
3382
3383         pci_set_power_state(pdev, PCI_D0);
3384         pci_enable_wake(pdev, PCI_D0, 0);
3385         pci_restore_state(pdev);
3386
3387         rc = pci_enable_device(pdev);
3388         if (rc)
3389                 return rc;
3390         rc = pci_request_regions(pdev, DRV_NAME);
3391         if (rc)
3392                 goto err_out;
3393         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3394         if (!rc) {
3395                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3396
3397                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3398                                 rc);
3399                 }
3400         } else {
3401                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3402                 if (rc) {
3403
3404                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3405                         goto err_out_regions;
3406                 }
3407         }
3408
3409         pci_set_master(pdev);
3410         rc = pci_enable_pcie_error_reporting(pdev);
3411         if (rc) {
3412                 dev_err(&pdev->dev,
3413                         "bad enable of PCIe error reporting rc=%d\n", rc);
3414                 skdev->pcie_error_reporting_is_enabled = 0;
3415         } else
3416                 skdev->pcie_error_reporting_is_enabled = 1;
3417
3418         for (i = 0; i < SKD_MAX_BARS; i++) {
3419
3420                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3421                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3422                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3423                                             skdev->mem_size[i]);
3424                 if (!skdev->mem_map[i]) {
3425                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3426                         rc = -ENODEV;
3427                         goto err_out_iounmap;
3428                 }
3429                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3430                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3431                         skdev->mem_size[i]);
3432         }
3433         rc = skd_acquire_irq(skdev);
3434         if (rc) {
3435                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3436                 goto err_out_iounmap;
3437         }
3438
3439         rc = skd_start_timer(skdev);
3440         if (rc)
3441                 goto err_out_timer;
3442
3443         init_waitqueue_head(&skdev->waitq);
3444
3445         skd_start_device(skdev);
3446
3447         return rc;
3448
3449 err_out_timer:
3450         skd_stop_device(skdev);
3451         skd_release_irq(skdev);
3452
3453 err_out_iounmap:
3454         for (i = 0; i < SKD_MAX_BARS; i++)
3455                 if (skdev->mem_map[i])
3456                         iounmap(skdev->mem_map[i]);
3457
3458         if (skdev->pcie_error_reporting_is_enabled)
3459                 pci_disable_pcie_error_reporting(pdev);
3460
3461 err_out_regions:
3462         pci_release_regions(pdev);
3463
3464 err_out:
3465         pci_disable_device(pdev);
3466         return rc;
3467 }
3468
3469 static void skd_pci_shutdown(struct pci_dev *pdev)
3470 {
3471         struct skd_device *skdev;
3472
3473         dev_err(&pdev->dev, "%s called\n", __func__);
3474
3475         skdev = pci_get_drvdata(pdev);
3476         if (!skdev) {
3477                 dev_err(&pdev->dev, "no device data for PCI\n");
3478                 return;
3479         }
3480
3481         dev_err(&pdev->dev, "calling stop\n");
3482         skd_stop_device(skdev);
3483 }
3484
3485 static struct pci_driver skd_driver = {
3486         .name           = DRV_NAME,
3487         .id_table       = skd_pci_tbl,
3488         .probe          = skd_pci_probe,
3489         .remove         = skd_pci_remove,
3490         .suspend        = skd_pci_suspend,
3491         .resume         = skd_pci_resume,
3492         .shutdown       = skd_pci_shutdown,
3493 };
3494
3495 /*
3496  *****************************************************************************
3497  * LOGGING SUPPORT
3498  *****************************************************************************
3499  */
3500
3501 const char *skd_drive_state_to_str(int state)
3502 {
3503         switch (state) {
3504         case FIT_SR_DRIVE_OFFLINE:
3505                 return "OFFLINE";
3506         case FIT_SR_DRIVE_INIT:
3507                 return "INIT";
3508         case FIT_SR_DRIVE_ONLINE:
3509                 return "ONLINE";
3510         case FIT_SR_DRIVE_BUSY:
3511                 return "BUSY";
3512         case FIT_SR_DRIVE_FAULT:
3513                 return "FAULT";
3514         case FIT_SR_DRIVE_DEGRADED:
3515                 return "DEGRADED";
3516         case FIT_SR_PCIE_LINK_DOWN:
3517                 return "INK_DOWN";
3518         case FIT_SR_DRIVE_SOFT_RESET:
3519                 return "SOFT_RESET";
3520         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3521                 return "NEED_FW";
3522         case FIT_SR_DRIVE_INIT_FAULT:
3523                 return "INIT_FAULT";
3524         case FIT_SR_DRIVE_BUSY_SANITIZE:
3525                 return "BUSY_SANITIZE";
3526         case FIT_SR_DRIVE_BUSY_ERASE:
3527                 return "BUSY_ERASE";
3528         case FIT_SR_DRIVE_FW_BOOTING:
3529                 return "FW_BOOTING";
3530         default:
3531                 return "???";
3532         }
3533 }
3534
3535 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3536 {
3537         switch (state) {
3538         case SKD_DRVR_STATE_LOAD:
3539                 return "LOAD";
3540         case SKD_DRVR_STATE_IDLE:
3541                 return "IDLE";
3542         case SKD_DRVR_STATE_BUSY:
3543                 return "BUSY";
3544         case SKD_DRVR_STATE_STARTING:
3545                 return "STARTING";
3546         case SKD_DRVR_STATE_ONLINE:
3547                 return "ONLINE";
3548         case SKD_DRVR_STATE_PAUSING:
3549                 return "PAUSING";
3550         case SKD_DRVR_STATE_PAUSED:
3551                 return "PAUSED";
3552         case SKD_DRVR_STATE_RESTARTING:
3553                 return "RESTARTING";
3554         case SKD_DRVR_STATE_RESUMING:
3555                 return "RESUMING";
3556         case SKD_DRVR_STATE_STOPPING:
3557                 return "STOPPING";
3558         case SKD_DRVR_STATE_SYNCING:
3559                 return "SYNCING";
3560         case SKD_DRVR_STATE_FAULT:
3561                 return "FAULT";
3562         case SKD_DRVR_STATE_DISAPPEARED:
3563                 return "DISAPPEARED";
3564         case SKD_DRVR_STATE_BUSY_ERASE:
3565                 return "BUSY_ERASE";
3566         case SKD_DRVR_STATE_BUSY_SANITIZE:
3567                 return "BUSY_SANITIZE";
3568         case SKD_DRVR_STATE_BUSY_IMMINENT:
3569                 return "BUSY_IMMINENT";
3570         case SKD_DRVR_STATE_WAIT_BOOT:
3571                 return "WAIT_BOOT";
3572
3573         default:
3574                 return "???";
3575         }
3576 }
3577
3578 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3579 {
3580         switch (state) {
3581         case SKD_REQ_STATE_IDLE:
3582                 return "IDLE";
3583         case SKD_REQ_STATE_SETUP:
3584                 return "SETUP";
3585         case SKD_REQ_STATE_BUSY:
3586                 return "BUSY";
3587         case SKD_REQ_STATE_COMPLETED:
3588                 return "COMPLETED";
3589         case SKD_REQ_STATE_TIMEOUT:
3590                 return "TIMEOUT";
3591         default:
3592                 return "???";
3593         }
3594 }
3595
3596 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3597 {
3598         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3599         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3600                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3601                 skd_skdev_state_to_str(skdev->state), skdev->state);
3602         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3603                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3604                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3605         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3606                 skdev->skcomp_cycle, skdev->skcomp_ix);
3607 }
3608
3609 static void skd_log_skreq(struct skd_device *skdev,
3610                           struct skd_request_context *skreq, const char *event)
3611 {
3612         struct request *req = blk_mq_rq_from_pdu(skreq);
3613         u32 lba = blk_rq_pos(req);
3614         u32 count = blk_rq_sectors(req);
3615
3616         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3617         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3618                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3619                 skreq->fitmsg_id);
3620         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3621                 skreq->data_dir, skreq->n_sg);
3622
3623         dev_dbg(&skdev->pdev->dev,
3624                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3625                 count, count, (int)rq_data_dir(req));
3626 }
3627
3628 /*
3629  *****************************************************************************
3630  * MODULE GLUE
3631  *****************************************************************************
3632  */
3633
3634 static int __init skd_init(void)
3635 {
3636         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3637         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3638         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3639         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3640         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3641         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3642         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3643         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3644
3645         switch (skd_isr_type) {
3646         case SKD_IRQ_LEGACY:
3647         case SKD_IRQ_MSI:
3648         case SKD_IRQ_MSIX:
3649                 break;
3650         default:
3651                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3652                        skd_isr_type, SKD_IRQ_DEFAULT);
3653                 skd_isr_type = SKD_IRQ_DEFAULT;
3654         }
3655
3656         if (skd_max_queue_depth < 1 ||
3657             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3658                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3659                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3660                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3661         }
3662
3663         if (skd_max_req_per_msg < 1 ||
3664             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3665                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3666                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3667                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3668         }
3669
3670         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3671                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3672                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3673                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3674         }
3675
3676         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3677                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3678                        skd_dbg_level, 0);
3679                 skd_dbg_level = 0;
3680         }
3681
3682         if (skd_isr_comp_limit < 0) {
3683                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3684                        skd_isr_comp_limit, 0);
3685                 skd_isr_comp_limit = 0;
3686         }
3687
3688         return pci_register_driver(&skd_driver);
3689 }
3690
3691 static void __exit skd_exit(void)
3692 {
3693         pci_unregister_driver(&skd_driver);
3694
3695         if (skd_major)
3696                 unregister_blkdev(skd_major, DRV_NAME);
3697 }
3698
3699 module_init(skd_init);
3700 module_exit(skd_exit);