]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/skd_main.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
40
41 #include "skd_s1120.h"
42
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
45
46 #define SKD_ASSERT(expr) \
47         do { \
48                 if (unlikely(!(expr))) { \
49                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
50                                # expr, __FILE__, __func__, __LINE__); \
51                 } \
52         } while (0)
53
54 #define DRV_NAME "skd"
55 #define PFX DRV_NAME ": "
56
57 MODULE_LICENSE("GPL");
58
59 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
60
61 #define PCI_VENDOR_ID_STEC      0x1B39
62 #define PCI_DEVICE_ID_S1120     0x0001
63
64 #define SKD_FUA_NV              (1 << 1)
65 #define SKD_MINORS_PER_DEVICE   16
66
67 #define SKD_MAX_QUEUE_DEPTH     200u
68
69 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
70
71 #define SKD_N_FITMSG_BYTES      (512u)
72 #define SKD_MAX_REQ_PER_MSG     14
73
74 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
75
76 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
77  * 128KB limit.  That allows 4096*4K = 16M xfer size
78  */
79 #define SKD_N_SG_PER_REQ_DEFAULT 256u
80
81 #define SKD_N_COMPLETION_ENTRY  256u
82 #define SKD_N_READ_CAP_BYTES    (8u)
83
84 #define SKD_N_INTERNAL_BYTES    (512u)
85
86 #define SKD_SKCOMP_SIZE                                                 \
87         ((sizeof(struct fit_completion_entry_v1) +                      \
88           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
89
90 /* 5 bits of uniqifier, 0xF800 */
91 #define SKD_ID_TABLE_MASK       (3u << 8u)
92 #define  SKD_ID_RW_REQUEST      (0u << 8u)
93 #define  SKD_ID_INTERNAL        (1u << 8u)
94 #define  SKD_ID_FIT_MSG         (3u << 8u)
95 #define SKD_ID_SLOT_MASK        0x00FFu
96 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
97
98 #define SKD_N_MAX_SECTORS 2048u
99
100 #define SKD_MAX_RETRIES 2u
101
102 #define SKD_TIMER_SECONDS(seconds) (seconds)
103 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
104
105 #define INQ_STD_NBYTES 36
106
107 enum skd_drvr_state {
108         SKD_DRVR_STATE_LOAD,
109         SKD_DRVR_STATE_IDLE,
110         SKD_DRVR_STATE_BUSY,
111         SKD_DRVR_STATE_STARTING,
112         SKD_DRVR_STATE_ONLINE,
113         SKD_DRVR_STATE_PAUSING,
114         SKD_DRVR_STATE_PAUSED,
115         SKD_DRVR_STATE_RESTARTING,
116         SKD_DRVR_STATE_RESUMING,
117         SKD_DRVR_STATE_STOPPING,
118         SKD_DRVR_STATE_FAULT,
119         SKD_DRVR_STATE_DISAPPEARED,
120         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
121         SKD_DRVR_STATE_BUSY_ERASE,
122         SKD_DRVR_STATE_BUSY_SANITIZE,
123         SKD_DRVR_STATE_BUSY_IMMINENT,
124         SKD_DRVR_STATE_WAIT_BOOT,
125         SKD_DRVR_STATE_SYNCING,
126 };
127
128 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
129 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
130 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
131 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
132 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
133 #define SKD_START_WAIT_SECONDS  90u
134
135 enum skd_req_state {
136         SKD_REQ_STATE_IDLE,
137         SKD_REQ_STATE_SETUP,
138         SKD_REQ_STATE_BUSY,
139         SKD_REQ_STATE_COMPLETED,
140         SKD_REQ_STATE_TIMEOUT,
141 };
142
143 enum skd_check_status_action {
144         SKD_CHECK_STATUS_REPORT_GOOD,
145         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
146         SKD_CHECK_STATUS_REQUEUE_REQUEST,
147         SKD_CHECK_STATUS_REPORT_ERROR,
148         SKD_CHECK_STATUS_BUSY_IMMINENT,
149 };
150
151 struct skd_msg_buf {
152         struct fit_msg_hdr      fmh;
153         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
154 };
155
156 struct skd_fitmsg_context {
157         u32 id;
158
159         u32 length;
160
161         struct skd_msg_buf *msg_buf;
162         dma_addr_t mb_dma_address;
163 };
164
165 struct skd_request_context {
166         enum skd_req_state state;
167
168         u16 id;
169         u32 fitmsg_id;
170
171         u8 flush_cmd;
172
173         enum dma_data_direction data_dir;
174         struct scatterlist *sg;
175         u32 n_sg;
176         u32 sg_byte_count;
177
178         struct fit_sg_descriptor *sksg_list;
179         dma_addr_t sksg_dma_address;
180
181         struct fit_completion_entry_v1 completion;
182
183         struct fit_comp_error_info err_info;
184         int retries;
185
186         blk_status_t status;
187 };
188
189 struct skd_special_context {
190         struct skd_request_context req;
191
192         void *data_buf;
193         dma_addr_t db_dma_address;
194
195         struct skd_msg_buf *msg_buf;
196         dma_addr_t mb_dma_address;
197 };
198
199 typedef enum skd_irq_type {
200         SKD_IRQ_LEGACY,
201         SKD_IRQ_MSI,
202         SKD_IRQ_MSIX
203 } skd_irq_type_t;
204
205 #define SKD_MAX_BARS                    2
206
207 struct skd_device {
208         void __iomem *mem_map[SKD_MAX_BARS];
209         resource_size_t mem_phys[SKD_MAX_BARS];
210         u32 mem_size[SKD_MAX_BARS];
211
212         struct skd_msix_entry *msix_entries;
213
214         struct pci_dev *pdev;
215         int pcie_error_reporting_is_enabled;
216
217         spinlock_t lock;
218         struct gendisk *disk;
219         struct blk_mq_tag_set tag_set;
220         struct request_queue *queue;
221         struct skd_fitmsg_context *skmsg;
222         struct device *class_dev;
223         int gendisk_on;
224         int sync_done;
225
226         u32 devno;
227         u32 major;
228         char isr_name[30];
229
230         enum skd_drvr_state state;
231         u32 drive_state;
232
233         u32 cur_max_queue_depth;
234         u32 queue_low_water_mark;
235         u32 dev_max_queue_depth;
236
237         u32 num_fitmsg_context;
238         u32 num_req_context;
239
240         struct skd_fitmsg_context *skmsg_table;
241
242         struct skd_special_context internal_skspcl;
243         u32 read_cap_blocksize;
244         u32 read_cap_last_lba;
245         int read_cap_is_valid;
246         int inquiry_is_valid;
247         u8 inq_serial_num[13];  /*12 chars plus null term */
248
249         u8 skcomp_cycle;
250         u32 skcomp_ix;
251         struct kmem_cache *msgbuf_cache;
252         struct kmem_cache *sglist_cache;
253         struct kmem_cache *databuf_cache;
254         struct fit_completion_entry_v1 *skcomp_table;
255         struct fit_comp_error_info *skerr_table;
256         dma_addr_t cq_dma_address;
257
258         wait_queue_head_t waitq;
259
260         struct timer_list timer;
261         u32 timer_countdown;
262         u32 timer_substate;
263
264         int sgs_per_request;
265         u32 last_mtd;
266
267         u32 proto_ver;
268
269         int dbg_level;
270         u32 connect_time_stamp;
271         int connect_retries;
272 #define SKD_MAX_CONNECT_RETRIES 16
273         u32 drive_jiffies;
274
275         u32 timo_slot;
276
277         struct work_struct start_queue;
278         struct work_struct completion_worker;
279 };
280
281 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
282 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
283 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284
285 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 {
287         u32 val = readl(skdev->mem_map[1] + offset);
288
289         if (unlikely(skdev->dbg_level >= 2))
290                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
291         return val;
292 }
293
294 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
295                                    u32 offset)
296 {
297         writel(val, skdev->mem_map[1] + offset);
298         if (unlikely(skdev->dbg_level >= 2))
299                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
300 }
301
302 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
303                                    u32 offset)
304 {
305         writeq(val, skdev->mem_map[1] + offset);
306         if (unlikely(skdev->dbg_level >= 2))
307                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
308                         val);
309 }
310
311
312 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
313 static int skd_isr_type = SKD_IRQ_DEFAULT;
314
315 module_param(skd_isr_type, int, 0444);
316 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
317                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318
319 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
320 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321
322 module_param(skd_max_req_per_msg, int, 0444);
323 MODULE_PARM_DESC(skd_max_req_per_msg,
324                  "Maximum SCSI requests packed in a single message."
325                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
329 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330
331 module_param(skd_max_queue_depth, int, 0444);
332 MODULE_PARM_DESC(skd_max_queue_depth,
333                  "Maximum SCSI requests issued to s1120."
334                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335
336 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
337 module_param(skd_sgs_per_request, int, 0444);
338 MODULE_PARM_DESC(skd_sgs_per_request,
339                  "Maximum SG elements per block request."
340                  " (1-4096, default==256)");
341
342 static int skd_max_pass_thru = 1;
343 module_param(skd_max_pass_thru, int, 0444);
344 MODULE_PARM_DESC(skd_max_pass_thru,
345                  "Maximum SCSI pass-thru at a time. IGNORED");
346
347 module_param(skd_dbg_level, int, 0444);
348 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349
350 module_param(skd_isr_comp_limit, int, 0444);
351 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352
353 /* Major device number dynamically assigned. */
354 static u32 skd_major;
355
356 static void skd_destruct(struct skd_device *skdev);
357 static const struct block_device_operations skd_blockdev_ops;
358 static void skd_send_fitmsg(struct skd_device *skdev,
359                             struct skd_fitmsg_context *skmsg);
360 static void skd_send_special_fitmsg(struct skd_device *skdev,
361                                     struct skd_special_context *skspcl);
362 static bool skd_preop_sg_list(struct skd_device *skdev,
363                              struct skd_request_context *skreq);
364 static void skd_postop_sg_list(struct skd_device *skdev,
365                                struct skd_request_context *skreq);
366
367 static void skd_restart_device(struct skd_device *skdev);
368 static int skd_quiesce_dev(struct skd_device *skdev);
369 static int skd_unquiesce_dev(struct skd_device *skdev);
370 static void skd_disable_interrupts(struct skd_device *skdev);
371 static void skd_isr_fwstate(struct skd_device *skdev);
372 static void skd_recover_requests(struct skd_device *skdev);
373 static void skd_soft_reset(struct skd_device *skdev);
374
375 const char *skd_drive_state_to_str(int state);
376 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
377 static void skd_log_skdev(struct skd_device *skdev, const char *event);
378 static void skd_log_skreq(struct skd_device *skdev,
379                           struct skd_request_context *skreq, const char *event);
380
381 /*
382  *****************************************************************************
383  * READ/WRITE REQUESTS
384  *****************************************************************************
385  */
386 static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
387 {
388         int *count = data;
389
390         count++;
391         return true;
392 }
393
394 static int skd_in_flight(struct skd_device *skdev)
395 {
396         int count = 0;
397
398         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
399
400         return count;
401 }
402
403 static void
404 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
405                 int data_dir, unsigned lba,
406                 unsigned count)
407 {
408         if (data_dir == READ)
409                 scsi_req->cdb[0] = READ_10;
410         else
411                 scsi_req->cdb[0] = WRITE_10;
412
413         scsi_req->cdb[1] = 0;
414         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
415         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
416         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
417         scsi_req->cdb[5] = (lba & 0xff);
418         scsi_req->cdb[6] = 0;
419         scsi_req->cdb[7] = (count & 0xff00) >> 8;
420         scsi_req->cdb[8] = count & 0xff;
421         scsi_req->cdb[9] = 0;
422 }
423
424 static void
425 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
426                             struct skd_request_context *skreq)
427 {
428         skreq->flush_cmd = 1;
429
430         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
431         scsi_req->cdb[1] = 0;
432         scsi_req->cdb[2] = 0;
433         scsi_req->cdb[3] = 0;
434         scsi_req->cdb[4] = 0;
435         scsi_req->cdb[5] = 0;
436         scsi_req->cdb[6] = 0;
437         scsi_req->cdb[7] = 0;
438         scsi_req->cdb[8] = 0;
439         scsi_req->cdb[9] = 0;
440 }
441
442 /*
443  * Return true if and only if all pending requests should be failed.
444  */
445 static bool skd_fail_all(struct request_queue *q)
446 {
447         struct skd_device *skdev = q->queuedata;
448
449         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
450
451         skd_log_skdev(skdev, "req_not_online");
452         switch (skdev->state) {
453         case SKD_DRVR_STATE_PAUSING:
454         case SKD_DRVR_STATE_PAUSED:
455         case SKD_DRVR_STATE_STARTING:
456         case SKD_DRVR_STATE_RESTARTING:
457         case SKD_DRVR_STATE_WAIT_BOOT:
458         /* In case of starting, we haven't started the queue,
459          * so we can't get here... but requests are
460          * possibly hanging out waiting for us because we
461          * reported the dev/skd0 already.  They'll wait
462          * forever if connect doesn't complete.
463          * What to do??? delay dev/skd0 ??
464          */
465         case SKD_DRVR_STATE_BUSY:
466         case SKD_DRVR_STATE_BUSY_IMMINENT:
467         case SKD_DRVR_STATE_BUSY_ERASE:
468                 return false;
469
470         case SKD_DRVR_STATE_BUSY_SANITIZE:
471         case SKD_DRVR_STATE_STOPPING:
472         case SKD_DRVR_STATE_SYNCING:
473         case SKD_DRVR_STATE_FAULT:
474         case SKD_DRVR_STATE_DISAPPEARED:
475         default:
476                 return true;
477         }
478 }
479
480 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
481                                     const struct blk_mq_queue_data *mqd)
482 {
483         struct request *const req = mqd->rq;
484         struct request_queue *const q = req->q;
485         struct skd_device *skdev = q->queuedata;
486         struct skd_fitmsg_context *skmsg;
487         struct fit_msg_hdr *fmh;
488         const u32 tag = blk_mq_unique_tag(req);
489         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
490         struct skd_scsi_request *scsi_req;
491         unsigned long flags = 0;
492         const u32 lba = blk_rq_pos(req);
493         const u32 count = blk_rq_sectors(req);
494         const int data_dir = rq_data_dir(req);
495
496         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
497                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
498
499         if (!(req->rq_flags & RQF_DONTPREP)) {
500                 skreq->retries = 0;
501                 req->rq_flags |= RQF_DONTPREP;
502         }
503
504         blk_mq_start_request(req);
505
506         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
507                   tag, skd_max_queue_depth, q->nr_requests);
508
509         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
510
511         dev_dbg(&skdev->pdev->dev,
512                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
513                 lba, count, count, data_dir);
514
515         skreq->id = tag + SKD_ID_RW_REQUEST;
516         skreq->flush_cmd = 0;
517         skreq->n_sg = 0;
518         skreq->sg_byte_count = 0;
519
520         skreq->fitmsg_id = 0;
521
522         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
523
524         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
525                 dev_dbg(&skdev->pdev->dev, "error Out\n");
526                 skreq->status = BLK_STS_RESOURCE;
527                 blk_mq_complete_request(req);
528                 return BLK_STS_OK;
529         }
530
531         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
532                                    skreq->n_sg *
533                                    sizeof(struct fit_sg_descriptor),
534                                    DMA_TO_DEVICE);
535
536         /* Either a FIT msg is in progress or we have to start one. */
537         if (skd_max_req_per_msg == 1) {
538                 skmsg = NULL;
539         } else {
540                 spin_lock_irqsave(&skdev->lock, flags);
541                 skmsg = skdev->skmsg;
542         }
543         if (!skmsg) {
544                 skmsg = &skdev->skmsg_table[tag];
545                 skdev->skmsg = skmsg;
546
547                 /* Initialize the FIT msg header */
548                 fmh = &skmsg->msg_buf->fmh;
549                 memset(fmh, 0, sizeof(*fmh));
550                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
551                 skmsg->length = sizeof(*fmh);
552         } else {
553                 fmh = &skmsg->msg_buf->fmh;
554         }
555
556         skreq->fitmsg_id = skmsg->id;
557
558         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
559         memset(scsi_req, 0, sizeof(*scsi_req));
560
561         scsi_req->hdr.tag = skreq->id;
562         scsi_req->hdr.sg_list_dma_address =
563                 cpu_to_be64(skreq->sksg_dma_address);
564
565         if (req_op(req) == REQ_OP_FLUSH) {
566                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
567                 SKD_ASSERT(skreq->flush_cmd == 1);
568         } else {
569                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
570         }
571
572         if (req->cmd_flags & REQ_FUA)
573                 scsi_req->cdb[1] |= SKD_FUA_NV;
574
575         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
576
577         /* Complete resource allocations. */
578         skreq->state = SKD_REQ_STATE_BUSY;
579
580         skmsg->length += sizeof(struct skd_scsi_request);
581         fmh->num_protocol_cmds_coalesced++;
582
583         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
584                 skd_in_flight(skdev));
585
586         /*
587          * If the FIT msg buffer is full send it.
588          */
589         if (skd_max_req_per_msg == 1) {
590                 skd_send_fitmsg(skdev, skmsg);
591         } else {
592                 if (mqd->last ||
593                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
594                         skd_send_fitmsg(skdev, skmsg);
595                         skdev->skmsg = NULL;
596                 }
597                 spin_unlock_irqrestore(&skdev->lock, flags);
598         }
599
600         return BLK_STS_OK;
601 }
602
603 static enum blk_eh_timer_return skd_timed_out(struct request *req,
604                                               bool reserved)
605 {
606         struct skd_device *skdev = req->q->queuedata;
607
608         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
609                 blk_mq_unique_tag(req));
610
611         return BLK_EH_RESET_TIMER;
612 }
613
614 static void skd_complete_rq(struct request *req)
615 {
616         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
617
618         blk_mq_end_request(req, skreq->status);
619 }
620
621 static bool skd_preop_sg_list(struct skd_device *skdev,
622                              struct skd_request_context *skreq)
623 {
624         struct request *req = blk_mq_rq_from_pdu(skreq);
625         struct scatterlist *sgl = &skreq->sg[0], *sg;
626         int n_sg;
627         int i;
628
629         skreq->sg_byte_count = 0;
630
631         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
632                      skreq->data_dir != DMA_FROM_DEVICE);
633
634         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
635         if (n_sg <= 0)
636                 return false;
637
638         /*
639          * Map scatterlist to PCI bus addresses.
640          * Note PCI might change the number of entries.
641          */
642         n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
643         if (n_sg <= 0)
644                 return false;
645
646         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
647
648         skreq->n_sg = n_sg;
649
650         for_each_sg(sgl, sg, n_sg, i) {
651                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
652                 u32 cnt = sg_dma_len(sg);
653                 uint64_t dma_addr = sg_dma_address(sg);
654
655                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
656                 sgd->byte_count = cnt;
657                 skreq->sg_byte_count += cnt;
658                 sgd->host_side_addr = dma_addr;
659                 sgd->dev_side_addr = 0;
660         }
661
662         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
663         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
664
665         if (unlikely(skdev->dbg_level > 1)) {
666                 dev_dbg(&skdev->pdev->dev,
667                         "skreq=%x sksg_list=%p sksg_dma=%pad\n",
668                         skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
669                 for (i = 0; i < n_sg; i++) {
670                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
671
672                         dev_dbg(&skdev->pdev->dev,
673                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
674                                 i, sgd->byte_count, sgd->control,
675                                 sgd->host_side_addr, sgd->next_desc_ptr);
676                 }
677         }
678
679         return true;
680 }
681
682 static void skd_postop_sg_list(struct skd_device *skdev,
683                                struct skd_request_context *skreq)
684 {
685         /*
686          * restore the next ptr for next IO request so we
687          * don't have to set it every time.
688          */
689         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
690                 skreq->sksg_dma_address +
691                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
692         dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
693                      skreq->data_dir);
694 }
695
696 /*
697  *****************************************************************************
698  * TIMER
699  *****************************************************************************
700  */
701
702 static void skd_timer_tick_not_online(struct skd_device *skdev);
703
704 static void skd_start_queue(struct work_struct *work)
705 {
706         struct skd_device *skdev = container_of(work, typeof(*skdev),
707                                                 start_queue);
708
709         /*
710          * Although it is safe to call blk_start_queue() from interrupt
711          * context, blk_mq_start_hw_queues() must not be called from
712          * interrupt context.
713          */
714         blk_mq_start_hw_queues(skdev->queue);
715 }
716
717 static void skd_timer_tick(struct timer_list *t)
718 {
719         struct skd_device *skdev = from_timer(skdev, t, timer);
720         unsigned long reqflags;
721         u32 state;
722
723         if (skdev->state == SKD_DRVR_STATE_FAULT)
724                 /* The driver has declared fault, and we want it to
725                  * stay that way until driver is reloaded.
726                  */
727                 return;
728
729         spin_lock_irqsave(&skdev->lock, reqflags);
730
731         state = SKD_READL(skdev, FIT_STATUS);
732         state &= FIT_SR_DRIVE_STATE_MASK;
733         if (state != skdev->drive_state)
734                 skd_isr_fwstate(skdev);
735
736         if (skdev->state != SKD_DRVR_STATE_ONLINE)
737                 skd_timer_tick_not_online(skdev);
738
739         mod_timer(&skdev->timer, (jiffies + HZ));
740
741         spin_unlock_irqrestore(&skdev->lock, reqflags);
742 }
743
744 static void skd_timer_tick_not_online(struct skd_device *skdev)
745 {
746         switch (skdev->state) {
747         case SKD_DRVR_STATE_IDLE:
748         case SKD_DRVR_STATE_LOAD:
749                 break;
750         case SKD_DRVR_STATE_BUSY_SANITIZE:
751                 dev_dbg(&skdev->pdev->dev,
752                         "drive busy sanitize[%x], driver[%x]\n",
753                         skdev->drive_state, skdev->state);
754                 /* If we've been in sanitize for 3 seconds, we figure we're not
755                  * going to get anymore completions, so recover requests now
756                  */
757                 if (skdev->timer_countdown > 0) {
758                         skdev->timer_countdown--;
759                         return;
760                 }
761                 skd_recover_requests(skdev);
762                 break;
763
764         case SKD_DRVR_STATE_BUSY:
765         case SKD_DRVR_STATE_BUSY_IMMINENT:
766         case SKD_DRVR_STATE_BUSY_ERASE:
767                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
768                         skdev->state, skdev->timer_countdown);
769                 if (skdev->timer_countdown > 0) {
770                         skdev->timer_countdown--;
771                         return;
772                 }
773                 dev_dbg(&skdev->pdev->dev,
774                         "busy[%x], timedout=%d, restarting device.",
775                         skdev->state, skdev->timer_countdown);
776                 skd_restart_device(skdev);
777                 break;
778
779         case SKD_DRVR_STATE_WAIT_BOOT:
780         case SKD_DRVR_STATE_STARTING:
781                 if (skdev->timer_countdown > 0) {
782                         skdev->timer_countdown--;
783                         return;
784                 }
785                 /* For now, we fault the drive.  Could attempt resets to
786                  * revcover at some point. */
787                 skdev->state = SKD_DRVR_STATE_FAULT;
788
789                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
790                         skdev->drive_state);
791
792                 /*start the queue so we can respond with error to requests */
793                 /* wakeup anyone waiting for startup complete */
794                 schedule_work(&skdev->start_queue);
795                 skdev->gendisk_on = -1;
796                 wake_up_interruptible(&skdev->waitq);
797                 break;
798
799         case SKD_DRVR_STATE_ONLINE:
800                 /* shouldn't get here. */
801                 break;
802
803         case SKD_DRVR_STATE_PAUSING:
804         case SKD_DRVR_STATE_PAUSED:
805                 break;
806
807         case SKD_DRVR_STATE_RESTARTING:
808                 if (skdev->timer_countdown > 0) {
809                         skdev->timer_countdown--;
810                         return;
811                 }
812                 /* For now, we fault the drive. Could attempt resets to
813                  * revcover at some point. */
814                 skdev->state = SKD_DRVR_STATE_FAULT;
815                 dev_err(&skdev->pdev->dev,
816                         "DriveFault Reconnect Timeout (%x)\n",
817                         skdev->drive_state);
818
819                 /*
820                  * Recovering does two things:
821                  * 1. completes IO with error
822                  * 2. reclaims dma resources
823                  * When is it safe to recover requests?
824                  * - if the drive state is faulted
825                  * - if the state is still soft reset after out timeout
826                  * - if the drive registers are dead (state = FF)
827                  * If it is "unsafe", we still need to recover, so we will
828                  * disable pci bus mastering and disable our interrupts.
829                  */
830
831                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
832                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
833                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
834                         /* It never came out of soft reset. Try to
835                          * recover the requests and then let them
836                          * fail. This is to mitigate hung processes. */
837                         skd_recover_requests(skdev);
838                 else {
839                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
840                                 skdev->drive_state);
841                         pci_disable_device(skdev->pdev);
842                         skd_disable_interrupts(skdev);
843                         skd_recover_requests(skdev);
844                 }
845
846                 /*start the queue so we can respond with error to requests */
847                 /* wakeup anyone waiting for startup complete */
848                 schedule_work(&skdev->start_queue);
849                 skdev->gendisk_on = -1;
850                 wake_up_interruptible(&skdev->waitq);
851                 break;
852
853         case SKD_DRVR_STATE_RESUMING:
854         case SKD_DRVR_STATE_STOPPING:
855         case SKD_DRVR_STATE_SYNCING:
856         case SKD_DRVR_STATE_FAULT:
857         case SKD_DRVR_STATE_DISAPPEARED:
858         default:
859                 break;
860         }
861 }
862
863 static int skd_start_timer(struct skd_device *skdev)
864 {
865         int rc;
866
867         timer_setup(&skdev->timer, skd_timer_tick, 0);
868
869         rc = mod_timer(&skdev->timer, (jiffies + HZ));
870         if (rc)
871                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
872         return rc;
873 }
874
875 static void skd_kill_timer(struct skd_device *skdev)
876 {
877         del_timer_sync(&skdev->timer);
878 }
879
880 /*
881  *****************************************************************************
882  * INTERNAL REQUESTS -- generated by driver itself
883  *****************************************************************************
884  */
885
886 static int skd_format_internal_skspcl(struct skd_device *skdev)
887 {
888         struct skd_special_context *skspcl = &skdev->internal_skspcl;
889         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
890         struct fit_msg_hdr *fmh;
891         uint64_t dma_address;
892         struct skd_scsi_request *scsi;
893
894         fmh = &skspcl->msg_buf->fmh;
895         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
896         fmh->num_protocol_cmds_coalesced = 1;
897
898         scsi = &skspcl->msg_buf->scsi[0];
899         memset(scsi, 0, sizeof(*scsi));
900         dma_address = skspcl->req.sksg_dma_address;
901         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
902         skspcl->req.n_sg = 1;
903         sgd->control = FIT_SGD_CONTROL_LAST;
904         sgd->byte_count = 0;
905         sgd->host_side_addr = skspcl->db_dma_address;
906         sgd->dev_side_addr = 0;
907         sgd->next_desc_ptr = 0LL;
908
909         return 1;
910 }
911
912 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
913
914 static void skd_send_internal_skspcl(struct skd_device *skdev,
915                                      struct skd_special_context *skspcl,
916                                      u8 opcode)
917 {
918         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
919         struct skd_scsi_request *scsi;
920         unsigned char *buf = skspcl->data_buf;
921         int i;
922
923         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
924                 /*
925                  * A refresh is already in progress.
926                  * Just wait for it to finish.
927                  */
928                 return;
929
930         skspcl->req.state = SKD_REQ_STATE_BUSY;
931
932         scsi = &skspcl->msg_buf->scsi[0];
933         scsi->hdr.tag = skspcl->req.id;
934
935         memset(scsi->cdb, 0, sizeof(scsi->cdb));
936
937         switch (opcode) {
938         case TEST_UNIT_READY:
939                 scsi->cdb[0] = TEST_UNIT_READY;
940                 sgd->byte_count = 0;
941                 scsi->hdr.sg_list_len_bytes = 0;
942                 break;
943
944         case READ_CAPACITY:
945                 scsi->cdb[0] = READ_CAPACITY;
946                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
947                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
948                 break;
949
950         case INQUIRY:
951                 scsi->cdb[0] = INQUIRY;
952                 scsi->cdb[1] = 0x01;    /* evpd */
953                 scsi->cdb[2] = 0x80;    /* serial number page */
954                 scsi->cdb[4] = 0x10;
955                 sgd->byte_count = 16;
956                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
957                 break;
958
959         case SYNCHRONIZE_CACHE:
960                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
961                 sgd->byte_count = 0;
962                 scsi->hdr.sg_list_len_bytes = 0;
963                 break;
964
965         case WRITE_BUFFER:
966                 scsi->cdb[0] = WRITE_BUFFER;
967                 scsi->cdb[1] = 0x02;
968                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
969                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
970                 sgd->byte_count = WR_BUF_SIZE;
971                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
972                 /* fill incrementing byte pattern */
973                 for (i = 0; i < sgd->byte_count; i++)
974                         buf[i] = i & 0xFF;
975                 break;
976
977         case READ_BUFFER:
978                 scsi->cdb[0] = READ_BUFFER;
979                 scsi->cdb[1] = 0x02;
980                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
981                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
982                 sgd->byte_count = WR_BUF_SIZE;
983                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
984                 memset(skspcl->data_buf, 0, sgd->byte_count);
985                 break;
986
987         default:
988                 SKD_ASSERT("Don't know what to send");
989                 return;
990
991         }
992         skd_send_special_fitmsg(skdev, skspcl);
993 }
994
995 static void skd_refresh_device_data(struct skd_device *skdev)
996 {
997         struct skd_special_context *skspcl = &skdev->internal_skspcl;
998
999         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1000 }
1001
1002 static int skd_chk_read_buf(struct skd_device *skdev,
1003                             struct skd_special_context *skspcl)
1004 {
1005         unsigned char *buf = skspcl->data_buf;
1006         int i;
1007
1008         /* check for incrementing byte pattern */
1009         for (i = 0; i < WR_BUF_SIZE; i++)
1010                 if (buf[i] != (i & 0xFF))
1011                         return 1;
1012
1013         return 0;
1014 }
1015
1016 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1017                                  u8 code, u8 qual, u8 fruc)
1018 {
1019         /* If the check condition is of special interest, log a message */
1020         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1021             && (code == 0x04) && (qual == 0x06)) {
1022                 dev_err(&skdev->pdev->dev,
1023                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1024                         key, code, qual, fruc);
1025         }
1026 }
1027
1028 static void skd_complete_internal(struct skd_device *skdev,
1029                                   struct fit_completion_entry_v1 *skcomp,
1030                                   struct fit_comp_error_info *skerr,
1031                                   struct skd_special_context *skspcl)
1032 {
1033         u8 *buf = skspcl->data_buf;
1034         u8 status;
1035         int i;
1036         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1037
1038         lockdep_assert_held(&skdev->lock);
1039
1040         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1041
1042         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1043
1044         dma_sync_single_for_cpu(&skdev->pdev->dev,
1045                                 skspcl->db_dma_address,
1046                                 skspcl->req.sksg_list[0].byte_count,
1047                                 DMA_BIDIRECTIONAL);
1048
1049         skspcl->req.completion = *skcomp;
1050         skspcl->req.state = SKD_REQ_STATE_IDLE;
1051
1052         status = skspcl->req.completion.status;
1053
1054         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1055                              skerr->qual, skerr->fruc);
1056
1057         switch (scsi->cdb[0]) {
1058         case TEST_UNIT_READY:
1059                 if (status == SAM_STAT_GOOD)
1060                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1061                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1062                          (skerr->key == MEDIUM_ERROR))
1063                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1064                 else {
1065                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1066                                 dev_dbg(&skdev->pdev->dev,
1067                                         "TUR failed, don't send anymore state 0x%x\n",
1068                                         skdev->state);
1069                                 return;
1070                         }
1071                         dev_dbg(&skdev->pdev->dev,
1072                                 "**** TUR failed, retry skerr\n");
1073                         skd_send_internal_skspcl(skdev, skspcl,
1074                                                  TEST_UNIT_READY);
1075                 }
1076                 break;
1077
1078         case WRITE_BUFFER:
1079                 if (status == SAM_STAT_GOOD)
1080                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1081                 else {
1082                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1083                                 dev_dbg(&skdev->pdev->dev,
1084                                         "write buffer failed, don't send anymore state 0x%x\n",
1085                                         skdev->state);
1086                                 return;
1087                         }
1088                         dev_dbg(&skdev->pdev->dev,
1089                                 "**** write buffer failed, retry skerr\n");
1090                         skd_send_internal_skspcl(skdev, skspcl,
1091                                                  TEST_UNIT_READY);
1092                 }
1093                 break;
1094
1095         case READ_BUFFER:
1096                 if (status == SAM_STAT_GOOD) {
1097                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1098                                 skd_send_internal_skspcl(skdev, skspcl,
1099                                                          READ_CAPACITY);
1100                         else {
1101                                 dev_err(&skdev->pdev->dev,
1102                                         "*** W/R Buffer mismatch %d ***\n",
1103                                         skdev->connect_retries);
1104                                 if (skdev->connect_retries <
1105                                     SKD_MAX_CONNECT_RETRIES) {
1106                                         skdev->connect_retries++;
1107                                         skd_soft_reset(skdev);
1108                                 } else {
1109                                         dev_err(&skdev->pdev->dev,
1110                                                 "W/R Buffer Connect Error\n");
1111                                         return;
1112                                 }
1113                         }
1114
1115                 } else {
1116                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1117                                 dev_dbg(&skdev->pdev->dev,
1118                                         "read buffer failed, don't send anymore state 0x%x\n",
1119                                         skdev->state);
1120                                 return;
1121                         }
1122                         dev_dbg(&skdev->pdev->dev,
1123                                 "**** read buffer failed, retry skerr\n");
1124                         skd_send_internal_skspcl(skdev, skspcl,
1125                                                  TEST_UNIT_READY);
1126                 }
1127                 break;
1128
1129         case READ_CAPACITY:
1130                 skdev->read_cap_is_valid = 0;
1131                 if (status == SAM_STAT_GOOD) {
1132                         skdev->read_cap_last_lba =
1133                                 (buf[0] << 24) | (buf[1] << 16) |
1134                                 (buf[2] << 8) | buf[3];
1135                         skdev->read_cap_blocksize =
1136                                 (buf[4] << 24) | (buf[5] << 16) |
1137                                 (buf[6] << 8) | buf[7];
1138
1139                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1140                                 skdev->read_cap_last_lba,
1141                                 skdev->read_cap_blocksize);
1142
1143                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1144
1145                         skdev->read_cap_is_valid = 1;
1146
1147                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1148                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1149                            (skerr->key == MEDIUM_ERROR)) {
1150                         skdev->read_cap_last_lba = ~0;
1151                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1152                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1153                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1154                 } else {
1155                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1156                         skd_send_internal_skspcl(skdev, skspcl,
1157                                                  TEST_UNIT_READY);
1158                 }
1159                 break;
1160
1161         case INQUIRY:
1162                 skdev->inquiry_is_valid = 0;
1163                 if (status == SAM_STAT_GOOD) {
1164                         skdev->inquiry_is_valid = 1;
1165
1166                         for (i = 0; i < 12; i++)
1167                                 skdev->inq_serial_num[i] = buf[i + 4];
1168                         skdev->inq_serial_num[12] = 0;
1169                 }
1170
1171                 if (skd_unquiesce_dev(skdev) < 0)
1172                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1173                  /* connection is complete */
1174                 skdev->connect_retries = 0;
1175                 break;
1176
1177         case SYNCHRONIZE_CACHE:
1178                 if (status == SAM_STAT_GOOD)
1179                         skdev->sync_done = 1;
1180                 else
1181                         skdev->sync_done = -1;
1182                 wake_up_interruptible(&skdev->waitq);
1183                 break;
1184
1185         default:
1186                 SKD_ASSERT("we didn't send this");
1187         }
1188 }
1189
1190 /*
1191  *****************************************************************************
1192  * FIT MESSAGES
1193  *****************************************************************************
1194  */
1195
1196 static void skd_send_fitmsg(struct skd_device *skdev,
1197                             struct skd_fitmsg_context *skmsg)
1198 {
1199         u64 qcmd;
1200
1201         dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1202                 &skmsg->mb_dma_address, skd_in_flight(skdev));
1203         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1204
1205         qcmd = skmsg->mb_dma_address;
1206         qcmd |= FIT_QCMD_QID_NORMAL;
1207
1208         if (unlikely(skdev->dbg_level > 1)) {
1209                 u8 *bp = (u8 *)skmsg->msg_buf;
1210                 int i;
1211                 for (i = 0; i < skmsg->length; i += 8) {
1212                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1213                                 &bp[i]);
1214                         if (i == 0)
1215                                 i = 64 - 8;
1216                 }
1217         }
1218
1219         if (skmsg->length > 256)
1220                 qcmd |= FIT_QCMD_MSGSIZE_512;
1221         else if (skmsg->length > 128)
1222                 qcmd |= FIT_QCMD_MSGSIZE_256;
1223         else if (skmsg->length > 64)
1224                 qcmd |= FIT_QCMD_MSGSIZE_128;
1225         else
1226                 /*
1227                  * This makes no sense because the FIT msg header is
1228                  * 64 bytes. If the msg is only 64 bytes long it has
1229                  * no payload.
1230                  */
1231                 qcmd |= FIT_QCMD_MSGSIZE_64;
1232
1233         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1234                                    skmsg->length, DMA_TO_DEVICE);
1235
1236         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1237         smp_wmb();
1238
1239         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1240 }
1241
1242 static void skd_send_special_fitmsg(struct skd_device *skdev,
1243                                     struct skd_special_context *skspcl)
1244 {
1245         u64 qcmd;
1246
1247         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1248
1249         if (unlikely(skdev->dbg_level > 1)) {
1250                 u8 *bp = (u8 *)skspcl->msg_buf;
1251                 int i;
1252
1253                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1254                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1255                                 &bp[i]);
1256                         if (i == 0)
1257                                 i = 64 - 8;
1258                 }
1259
1260                 dev_dbg(&skdev->pdev->dev,
1261                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1262                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1263                         &skspcl->req.sksg_dma_address);
1264                 for (i = 0; i < skspcl->req.n_sg; i++) {
1265                         struct fit_sg_descriptor *sgd =
1266                                 &skspcl->req.sksg_list[i];
1267
1268                         dev_dbg(&skdev->pdev->dev,
1269                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1270                                 i, sgd->byte_count, sgd->control,
1271                                 sgd->host_side_addr, sgd->next_desc_ptr);
1272                 }
1273         }
1274
1275         /*
1276          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1277          * and one 64-byte SSDI command.
1278          */
1279         qcmd = skspcl->mb_dma_address;
1280         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1281
1282         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1283                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1284         dma_sync_single_for_device(&skdev->pdev->dev,
1285                                    skspcl->req.sksg_dma_address,
1286                                    1 * sizeof(struct fit_sg_descriptor),
1287                                    DMA_TO_DEVICE);
1288         dma_sync_single_for_device(&skdev->pdev->dev,
1289                                    skspcl->db_dma_address,
1290                                    skspcl->req.sksg_list[0].byte_count,
1291                                    DMA_BIDIRECTIONAL);
1292
1293         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1294         smp_wmb();
1295
1296         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1297 }
1298
1299 /*
1300  *****************************************************************************
1301  * COMPLETION QUEUE
1302  *****************************************************************************
1303  */
1304
1305 static void skd_complete_other(struct skd_device *skdev,
1306                                struct fit_completion_entry_v1 *skcomp,
1307                                struct fit_comp_error_info *skerr);
1308
1309 struct sns_info {
1310         u8 type;
1311         u8 stat;
1312         u8 key;
1313         u8 asc;
1314         u8 ascq;
1315         u8 mask;
1316         enum skd_check_status_action action;
1317 };
1318
1319 static struct sns_info skd_chkstat_table[] = {
1320         /* Good */
1321         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1322           SKD_CHECK_STATUS_REPORT_GOOD },
1323
1324         /* Smart alerts */
1325         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1326           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1327         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1328           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1329         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1330           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1331
1332         /* Retry (with limits) */
1333         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1334           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1335         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1336           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1337         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1338           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1339         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1340           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1341
1342         /* Busy (or about to be) */
1343         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1344           SKD_CHECK_STATUS_BUSY_IMMINENT },
1345 };
1346
1347 /*
1348  * Look up status and sense data to decide how to handle the error
1349  * from the device.
1350  * mask says which fields must match e.g., mask=0x18 means check
1351  * type and stat, ignore key, asc, ascq.
1352  */
1353
1354 static enum skd_check_status_action
1355 skd_check_status(struct skd_device *skdev,
1356                  u8 cmp_status, struct fit_comp_error_info *skerr)
1357 {
1358         int i;
1359
1360         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1361                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1362
1363         dev_dbg(&skdev->pdev->dev,
1364                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1365                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1366                 skerr->fruc);
1367
1368         /* Does the info match an entry in the good category? */
1369         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1370                 struct sns_info *sns = &skd_chkstat_table[i];
1371
1372                 if (sns->mask & 0x10)
1373                         if (skerr->type != sns->type)
1374                                 continue;
1375
1376                 if (sns->mask & 0x08)
1377                         if (cmp_status != sns->stat)
1378                                 continue;
1379
1380                 if (sns->mask & 0x04)
1381                         if (skerr->key != sns->key)
1382                                 continue;
1383
1384                 if (sns->mask & 0x02)
1385                         if (skerr->code != sns->asc)
1386                                 continue;
1387
1388                 if (sns->mask & 0x01)
1389                         if (skerr->qual != sns->ascq)
1390                                 continue;
1391
1392                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1393                         dev_err(&skdev->pdev->dev,
1394                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1395                                 skerr->key, skerr->code, skerr->qual);
1396                 }
1397                 return sns->action;
1398         }
1399
1400         /* No other match, so nonzero status means error,
1401          * zero status means good
1402          */
1403         if (cmp_status) {
1404                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1405                 return SKD_CHECK_STATUS_REPORT_ERROR;
1406         }
1407
1408         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1409         return SKD_CHECK_STATUS_REPORT_GOOD;
1410 }
1411
1412 static void skd_resolve_req_exception(struct skd_device *skdev,
1413                                       struct skd_request_context *skreq,
1414                                       struct request *req)
1415 {
1416         u8 cmp_status = skreq->completion.status;
1417
1418         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1419         case SKD_CHECK_STATUS_REPORT_GOOD:
1420         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1421                 skreq->status = BLK_STS_OK;
1422                 blk_mq_complete_request(req);
1423                 break;
1424
1425         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1426                 skd_log_skreq(skdev, skreq, "retry(busy)");
1427                 blk_mq_requeue_request(req, true);
1428                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1429                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1430                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1431                 skd_quiesce_dev(skdev);
1432                 break;
1433
1434         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1435                 if (++skreq->retries < SKD_MAX_RETRIES) {
1436                         skd_log_skreq(skdev, skreq, "retry");
1437                         blk_mq_requeue_request(req, true);
1438                         break;
1439                 }
1440                 /* fall through */
1441
1442         case SKD_CHECK_STATUS_REPORT_ERROR:
1443         default:
1444                 skreq->status = BLK_STS_IOERR;
1445                 blk_mq_complete_request(req);
1446                 break;
1447         }
1448 }
1449
1450 static void skd_release_skreq(struct skd_device *skdev,
1451                               struct skd_request_context *skreq)
1452 {
1453         /*
1454          * Reclaim the skd_request_context
1455          */
1456         skreq->state = SKD_REQ_STATE_IDLE;
1457 }
1458
1459 static int skd_isr_completion_posted(struct skd_device *skdev,
1460                                         int limit, int *enqueued)
1461 {
1462         struct fit_completion_entry_v1 *skcmp;
1463         struct fit_comp_error_info *skerr;
1464         u16 req_id;
1465         u32 tag;
1466         u16 hwq = 0;
1467         struct request *rq;
1468         struct skd_request_context *skreq;
1469         u16 cmp_cntxt;
1470         u8 cmp_status;
1471         u8 cmp_cycle;
1472         u32 cmp_bytes;
1473         int rc = 0;
1474         int processed = 0;
1475
1476         lockdep_assert_held(&skdev->lock);
1477
1478         for (;; ) {
1479                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1480
1481                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1482                 cmp_cycle = skcmp->cycle;
1483                 cmp_cntxt = skcmp->tag;
1484                 cmp_status = skcmp->status;
1485                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1486
1487                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1488
1489                 dev_dbg(&skdev->pdev->dev,
1490                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1491                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1492                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1493                         cmp_bytes, skdev->proto_ver);
1494
1495                 if (cmp_cycle != skdev->skcomp_cycle) {
1496                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1497                         break;
1498                 }
1499                 /*
1500                  * Update the completion queue head index and possibly
1501                  * the completion cycle count. 8-bit wrap-around.
1502                  */
1503                 skdev->skcomp_ix++;
1504                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1505                         skdev->skcomp_ix = 0;
1506                         skdev->skcomp_cycle++;
1507                 }
1508
1509                 /*
1510                  * The command context is a unique 32-bit ID. The low order
1511                  * bits help locate the request. The request is usually a
1512                  * r/w request (see skd_start() above) or a special request.
1513                  */
1514                 req_id = cmp_cntxt;
1515                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1516
1517                 /* Is this other than a r/w request? */
1518                 if (tag >= skdev->num_req_context) {
1519                         /*
1520                          * This is not a completion for a r/w request.
1521                          */
1522                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1523                                                       tag));
1524                         skd_complete_other(skdev, skcmp, skerr);
1525                         continue;
1526                 }
1527
1528                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1529                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1530                          tag))
1531                         continue;
1532                 skreq = blk_mq_rq_to_pdu(rq);
1533
1534                 /*
1535                  * Make sure the request ID for the slot matches.
1536                  */
1537                 if (skreq->id != req_id) {
1538                         dev_err(&skdev->pdev->dev,
1539                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1540                                 req_id, skreq->id, cmp_cntxt);
1541
1542                         continue;
1543                 }
1544
1545                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1546
1547                 skreq->completion = *skcmp;
1548                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1549                         skreq->err_info = *skerr;
1550                         skd_log_check_status(skdev, cmp_status, skerr->key,
1551                                              skerr->code, skerr->qual,
1552                                              skerr->fruc);
1553                 }
1554                 /* Release DMA resources for the request. */
1555                 if (skreq->n_sg > 0)
1556                         skd_postop_sg_list(skdev, skreq);
1557
1558                 skd_release_skreq(skdev, skreq);
1559
1560                 /*
1561                  * Capture the outcome and post it back to the native request.
1562                  */
1563                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1564                         skreq->status = BLK_STS_OK;
1565                         blk_mq_complete_request(rq);
1566                 } else {
1567                         skd_resolve_req_exception(skdev, skreq, rq);
1568                 }
1569
1570                 /* skd_isr_comp_limit equal zero means no limit */
1571                 if (limit) {
1572                         if (++processed >= limit) {
1573                                 rc = 1;
1574                                 break;
1575                         }
1576                 }
1577         }
1578
1579         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1580             skd_in_flight(skdev) == 0) {
1581                 skdev->state = SKD_DRVR_STATE_PAUSED;
1582                 wake_up_interruptible(&skdev->waitq);
1583         }
1584
1585         return rc;
1586 }
1587
1588 static void skd_complete_other(struct skd_device *skdev,
1589                                struct fit_completion_entry_v1 *skcomp,
1590                                struct fit_comp_error_info *skerr)
1591 {
1592         u32 req_id = 0;
1593         u32 req_table;
1594         u32 req_slot;
1595         struct skd_special_context *skspcl;
1596
1597         lockdep_assert_held(&skdev->lock);
1598
1599         req_id = skcomp->tag;
1600         req_table = req_id & SKD_ID_TABLE_MASK;
1601         req_slot = req_id & SKD_ID_SLOT_MASK;
1602
1603         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1604                 req_id, req_slot);
1605
1606         /*
1607          * Based on the request id, determine how to dispatch this completion.
1608          * This swich/case is finding the good cases and forwarding the
1609          * completion entry. Errors are reported below the switch.
1610          */
1611         switch (req_table) {
1612         case SKD_ID_RW_REQUEST:
1613                 /*
1614                  * The caller, skd_isr_completion_posted() above,
1615                  * handles r/w requests. The only way we get here
1616                  * is if the req_slot is out of bounds.
1617                  */
1618                 break;
1619
1620         case SKD_ID_INTERNAL:
1621                 if (req_slot == 0) {
1622                         skspcl = &skdev->internal_skspcl;
1623                         if (skspcl->req.id == req_id &&
1624                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1625                                 skd_complete_internal(skdev,
1626                                                       skcomp, skerr, skspcl);
1627                                 return;
1628                         }
1629                 }
1630                 break;
1631
1632         case SKD_ID_FIT_MSG:
1633                 /*
1634                  * These id's should never appear in a completion record.
1635                  */
1636                 break;
1637
1638         default:
1639                 /*
1640                  * These id's should never appear anywhere;
1641                  */
1642                 break;
1643         }
1644
1645         /*
1646          * If we get here it is a bad or stale id.
1647          */
1648 }
1649
1650 static void skd_reset_skcomp(struct skd_device *skdev)
1651 {
1652         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1653
1654         skdev->skcomp_ix = 0;
1655         skdev->skcomp_cycle = 1;
1656 }
1657
1658 /*
1659  *****************************************************************************
1660  * INTERRUPTS
1661  *****************************************************************************
1662  */
1663 static void skd_completion_worker(struct work_struct *work)
1664 {
1665         struct skd_device *skdev =
1666                 container_of(work, struct skd_device, completion_worker);
1667         unsigned long flags;
1668         int flush_enqueued = 0;
1669
1670         spin_lock_irqsave(&skdev->lock, flags);
1671
1672         /*
1673          * pass in limit=0, which means no limit..
1674          * process everything in compq
1675          */
1676         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1677         schedule_work(&skdev->start_queue);
1678
1679         spin_unlock_irqrestore(&skdev->lock, flags);
1680 }
1681
1682 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1683
1684 static irqreturn_t
1685 skd_isr(int irq, void *ptr)
1686 {
1687         struct skd_device *skdev = ptr;
1688         u32 intstat;
1689         u32 ack;
1690         int rc = 0;
1691         int deferred = 0;
1692         int flush_enqueued = 0;
1693
1694         spin_lock(&skdev->lock);
1695
1696         for (;; ) {
1697                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1698
1699                 ack = FIT_INT_DEF_MASK;
1700                 ack &= intstat;
1701
1702                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1703                         ack);
1704
1705                 /* As long as there is an int pending on device, keep
1706                  * running loop.  When none, get out, but if we've never
1707                  * done any processing, call completion handler?
1708                  */
1709                 if (ack == 0) {
1710                         /* No interrupts on device, but run the completion
1711                          * processor anyway?
1712                          */
1713                         if (rc == 0)
1714                                 if (likely (skdev->state
1715                                         == SKD_DRVR_STATE_ONLINE))
1716                                         deferred = 1;
1717                         break;
1718                 }
1719
1720                 rc = IRQ_HANDLED;
1721
1722                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1723
1724                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1725                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1726                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1727                                 /*
1728                                  * If we have already deferred completion
1729                                  * processing, don't bother running it again
1730                                  */
1731                                 if (deferred == 0)
1732                                         deferred =
1733                                                 skd_isr_completion_posted(skdev,
1734                                                 skd_isr_comp_limit, &flush_enqueued);
1735                         }
1736
1737                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1738                                 skd_isr_fwstate(skdev);
1739                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1740                                     skdev->state ==
1741                                     SKD_DRVR_STATE_DISAPPEARED) {
1742                                         spin_unlock(&skdev->lock);
1743                                         return rc;
1744                                 }
1745                         }
1746
1747                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1748                                 skd_isr_msg_from_dev(skdev);
1749                 }
1750         }
1751
1752         if (unlikely(flush_enqueued))
1753                 schedule_work(&skdev->start_queue);
1754
1755         if (deferred)
1756                 schedule_work(&skdev->completion_worker);
1757         else if (!flush_enqueued)
1758                 schedule_work(&skdev->start_queue);
1759
1760         spin_unlock(&skdev->lock);
1761
1762         return rc;
1763 }
1764
1765 static void skd_drive_fault(struct skd_device *skdev)
1766 {
1767         skdev->state = SKD_DRVR_STATE_FAULT;
1768         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1769 }
1770
1771 static void skd_drive_disappeared(struct skd_device *skdev)
1772 {
1773         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1774         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1775 }
1776
1777 static void skd_isr_fwstate(struct skd_device *skdev)
1778 {
1779         u32 sense;
1780         u32 state;
1781         u32 mtd;
1782         int prev_driver_state = skdev->state;
1783
1784         sense = SKD_READL(skdev, FIT_STATUS);
1785         state = sense & FIT_SR_DRIVE_STATE_MASK;
1786
1787         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1788                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1789                 skd_drive_state_to_str(state), state);
1790
1791         skdev->drive_state = state;
1792
1793         switch (skdev->drive_state) {
1794         case FIT_SR_DRIVE_INIT:
1795                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1796                         skd_disable_interrupts(skdev);
1797                         break;
1798                 }
1799                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1800                         skd_recover_requests(skdev);
1801                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1802                         skdev->timer_countdown = SKD_STARTING_TIMO;
1803                         skdev->state = SKD_DRVR_STATE_STARTING;
1804                         skd_soft_reset(skdev);
1805                         break;
1806                 }
1807                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1808                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1809                 skdev->last_mtd = mtd;
1810                 break;
1811
1812         case FIT_SR_DRIVE_ONLINE:
1813                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1814                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1815                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1816
1817                 skdev->queue_low_water_mark =
1818                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1819                 if (skdev->queue_low_water_mark < 1)
1820                         skdev->queue_low_water_mark = 1;
1821                 dev_info(&skdev->pdev->dev,
1822                          "Queue depth limit=%d dev=%d lowat=%d\n",
1823                          skdev->cur_max_queue_depth,
1824                          skdev->dev_max_queue_depth,
1825                          skdev->queue_low_water_mark);
1826
1827                 skd_refresh_device_data(skdev);
1828                 break;
1829
1830         case FIT_SR_DRIVE_BUSY:
1831                 skdev->state = SKD_DRVR_STATE_BUSY;
1832                 skdev->timer_countdown = SKD_BUSY_TIMO;
1833                 skd_quiesce_dev(skdev);
1834                 break;
1835         case FIT_SR_DRIVE_BUSY_SANITIZE:
1836                 /* set timer for 3 seconds, we'll abort any unfinished
1837                  * commands after that expires
1838                  */
1839                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1840                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1841                 schedule_work(&skdev->start_queue);
1842                 break;
1843         case FIT_SR_DRIVE_BUSY_ERASE:
1844                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1845                 skdev->timer_countdown = SKD_BUSY_TIMO;
1846                 break;
1847         case FIT_SR_DRIVE_OFFLINE:
1848                 skdev->state = SKD_DRVR_STATE_IDLE;
1849                 break;
1850         case FIT_SR_DRIVE_SOFT_RESET:
1851                 switch (skdev->state) {
1852                 case SKD_DRVR_STATE_STARTING:
1853                 case SKD_DRVR_STATE_RESTARTING:
1854                         /* Expected by a caller of skd_soft_reset() */
1855                         break;
1856                 default:
1857                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1858                         break;
1859                 }
1860                 break;
1861         case FIT_SR_DRIVE_FW_BOOTING:
1862                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1863                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1864                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1865                 break;
1866
1867         case FIT_SR_DRIVE_DEGRADED:
1868         case FIT_SR_PCIE_LINK_DOWN:
1869         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1870                 break;
1871
1872         case FIT_SR_DRIVE_FAULT:
1873                 skd_drive_fault(skdev);
1874                 skd_recover_requests(skdev);
1875                 schedule_work(&skdev->start_queue);
1876                 break;
1877
1878         /* PCIe bus returned all Fs? */
1879         case 0xFF:
1880                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1881                          sense);
1882                 skd_drive_disappeared(skdev);
1883                 skd_recover_requests(skdev);
1884                 schedule_work(&skdev->start_queue);
1885                 break;
1886         default:
1887                 /*
1888                  * Uknown FW State. Wait for a state we recognize.
1889                  */
1890                 break;
1891         }
1892         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1893                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1894                 skd_skdev_state_to_str(skdev->state), skdev->state);
1895 }
1896
1897 static bool skd_recover_request(struct request *req, void *data, bool reserved)
1898 {
1899         struct skd_device *const skdev = data;
1900         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1901
1902         if (skreq->state != SKD_REQ_STATE_BUSY)
1903                 return true;
1904
1905         skd_log_skreq(skdev, skreq, "recover");
1906
1907         /* Release DMA resources for the request. */
1908         if (skreq->n_sg > 0)
1909                 skd_postop_sg_list(skdev, skreq);
1910
1911         skreq->state = SKD_REQ_STATE_IDLE;
1912         skreq->status = BLK_STS_IOERR;
1913         blk_mq_complete_request(req);
1914         return true;
1915 }
1916
1917 static void skd_recover_requests(struct skd_device *skdev)
1918 {
1919         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1920 }
1921
1922 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1923 {
1924         u32 mfd;
1925         u32 mtd;
1926         u32 data;
1927
1928         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1929
1930         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1931                 skdev->last_mtd);
1932
1933         /* ignore any mtd that is an ack for something we didn't send */
1934         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1935                 return;
1936
1937         switch (FIT_MXD_TYPE(mfd)) {
1938         case FIT_MTD_FITFW_INIT:
1939                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1940
1941                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1942                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1943                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1944                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1945                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1946                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1947                         skd_soft_reset(skdev);
1948                         break;
1949                 }
1950                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1951                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952                 skdev->last_mtd = mtd;
1953                 break;
1954
1955         case FIT_MTD_GET_CMDQ_DEPTH:
1956                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1957                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1958                                    SKD_N_COMPLETION_ENTRY);
1959                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1960                 skdev->last_mtd = mtd;
1961                 break;
1962
1963         case FIT_MTD_SET_COMPQ_DEPTH:
1964                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1965                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1966                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1967                 skdev->last_mtd = mtd;
1968                 break;
1969
1970         case FIT_MTD_SET_COMPQ_ADDR:
1971                 skd_reset_skcomp(skdev);
1972                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1973                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974                 skdev->last_mtd = mtd;
1975                 break;
1976
1977         case FIT_MTD_CMD_LOG_HOST_ID:
1978                 /* hardware interface overflows in y2106 */
1979                 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1980                 data = skdev->connect_time_stamp & 0xFFFF;
1981                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1982                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983                 skdev->last_mtd = mtd;
1984                 break;
1985
1986         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1987                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1988                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1989                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1990                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1991                 skdev->last_mtd = mtd;
1992                 break;
1993
1994         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1995                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1996                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1997                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1998                 skdev->last_mtd = mtd;
1999
2000                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2001                         skdev->connect_time_stamp, skdev->drive_jiffies);
2002                 break;
2003
2004         case FIT_MTD_ARM_QUEUE:
2005                 skdev->last_mtd = 0;
2006                 /*
2007                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2008                  */
2009                 break;
2010
2011         default:
2012                 break;
2013         }
2014 }
2015
2016 static void skd_disable_interrupts(struct skd_device *skdev)
2017 {
2018         u32 sense;
2019
2020         sense = SKD_READL(skdev, FIT_CONTROL);
2021         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2022         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2023         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2024
2025         /* Note that the 1s is written. A 1-bit means
2026          * disable, a 0 means enable.
2027          */
2028         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2029 }
2030
2031 static void skd_enable_interrupts(struct skd_device *skdev)
2032 {
2033         u32 val;
2034
2035         /* unmask interrupts first */
2036         val = FIT_ISH_FW_STATE_CHANGE +
2037               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2038
2039         /* Note that the compliment of mask is written. A 1-bit means
2040          * disable, a 0 means enable. */
2041         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2042         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2043
2044         val = SKD_READL(skdev, FIT_CONTROL);
2045         val |= FIT_CR_ENABLE_INTERRUPTS;
2046         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2047         SKD_WRITEL(skdev, val, FIT_CONTROL);
2048 }
2049
2050 /*
2051  *****************************************************************************
2052  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2053  *****************************************************************************
2054  */
2055
2056 static void skd_soft_reset(struct skd_device *skdev)
2057 {
2058         u32 val;
2059
2060         val = SKD_READL(skdev, FIT_CONTROL);
2061         val |= (FIT_CR_SOFT_RESET);
2062         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2063         SKD_WRITEL(skdev, val, FIT_CONTROL);
2064 }
2065
2066 static void skd_start_device(struct skd_device *skdev)
2067 {
2068         unsigned long flags;
2069         u32 sense;
2070         u32 state;
2071
2072         spin_lock_irqsave(&skdev->lock, flags);
2073
2074         /* ack all ghost interrupts */
2075         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2076
2077         sense = SKD_READL(skdev, FIT_STATUS);
2078
2079         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2080
2081         state = sense & FIT_SR_DRIVE_STATE_MASK;
2082         skdev->drive_state = state;
2083         skdev->last_mtd = 0;
2084
2085         skdev->state = SKD_DRVR_STATE_STARTING;
2086         skdev->timer_countdown = SKD_STARTING_TIMO;
2087
2088         skd_enable_interrupts(skdev);
2089
2090         switch (skdev->drive_state) {
2091         case FIT_SR_DRIVE_OFFLINE:
2092                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2093                 break;
2094
2095         case FIT_SR_DRIVE_FW_BOOTING:
2096                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2097                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2098                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2099                 break;
2100
2101         case FIT_SR_DRIVE_BUSY_SANITIZE:
2102                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2103                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2104                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2105                 break;
2106
2107         case FIT_SR_DRIVE_BUSY_ERASE:
2108                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2109                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2110                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2111                 break;
2112
2113         case FIT_SR_DRIVE_INIT:
2114         case FIT_SR_DRIVE_ONLINE:
2115                 skd_soft_reset(skdev);
2116                 break;
2117
2118         case FIT_SR_DRIVE_BUSY:
2119                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2120                 skdev->state = SKD_DRVR_STATE_BUSY;
2121                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2122                 break;
2123
2124         case FIT_SR_DRIVE_SOFT_RESET:
2125                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2126                 break;
2127
2128         case FIT_SR_DRIVE_FAULT:
2129                 /* Fault state is bad...soft reset won't do it...
2130                  * Hard reset, maybe, but does it work on device?
2131                  * For now, just fault so the system doesn't hang.
2132                  */
2133                 skd_drive_fault(skdev);
2134                 /*start the queue so we can respond with error to requests */
2135                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2136                 schedule_work(&skdev->start_queue);
2137                 skdev->gendisk_on = -1;
2138                 wake_up_interruptible(&skdev->waitq);
2139                 break;
2140
2141         case 0xFF:
2142                 /* Most likely the device isn't there or isn't responding
2143                  * to the BAR1 addresses. */
2144                 skd_drive_disappeared(skdev);
2145                 /*start the queue so we can respond with error to requests */
2146                 dev_dbg(&skdev->pdev->dev,
2147                         "starting queue to error-out reqs\n");
2148                 schedule_work(&skdev->start_queue);
2149                 skdev->gendisk_on = -1;
2150                 wake_up_interruptible(&skdev->waitq);
2151                 break;
2152
2153         default:
2154                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2155                         skdev->drive_state);
2156                 break;
2157         }
2158
2159         state = SKD_READL(skdev, FIT_CONTROL);
2160         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2161
2162         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2163         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2164
2165         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2166         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2167
2168         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2169         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2170
2171         state = SKD_READL(skdev, FIT_HW_VERSION);
2172         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2173
2174         spin_unlock_irqrestore(&skdev->lock, flags);
2175 }
2176
2177 static void skd_stop_device(struct skd_device *skdev)
2178 {
2179         unsigned long flags;
2180         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2181         u32 dev_state;
2182         int i;
2183
2184         spin_lock_irqsave(&skdev->lock, flags);
2185
2186         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2187                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2188                 goto stop_out;
2189         }
2190
2191         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2192                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2193                 goto stop_out;
2194         }
2195
2196         skdev->state = SKD_DRVR_STATE_SYNCING;
2197         skdev->sync_done = 0;
2198
2199         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2200
2201         spin_unlock_irqrestore(&skdev->lock, flags);
2202
2203         wait_event_interruptible_timeout(skdev->waitq,
2204                                          (skdev->sync_done), (10 * HZ));
2205
2206         spin_lock_irqsave(&skdev->lock, flags);
2207
2208         switch (skdev->sync_done) {
2209         case 0:
2210                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2211                 break;
2212         case 1:
2213                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2214                 break;
2215         default:
2216                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2217         }
2218
2219 stop_out:
2220         skdev->state = SKD_DRVR_STATE_STOPPING;
2221         spin_unlock_irqrestore(&skdev->lock, flags);
2222
2223         skd_kill_timer(skdev);
2224
2225         spin_lock_irqsave(&skdev->lock, flags);
2226         skd_disable_interrupts(skdev);
2227
2228         /* ensure all ints on device are cleared */
2229         /* soft reset the device to unload with a clean slate */
2230         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2231         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2232
2233         spin_unlock_irqrestore(&skdev->lock, flags);
2234
2235         /* poll every 100ms, 1 second timeout */
2236         for (i = 0; i < 10; i++) {
2237                 dev_state =
2238                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2239                 if (dev_state == FIT_SR_DRIVE_INIT)
2240                         break;
2241                 set_current_state(TASK_INTERRUPTIBLE);
2242                 schedule_timeout(msecs_to_jiffies(100));
2243         }
2244
2245         if (dev_state != FIT_SR_DRIVE_INIT)
2246                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2247                         dev_state);
2248 }
2249
2250 /* assume spinlock is held */
2251 static void skd_restart_device(struct skd_device *skdev)
2252 {
2253         u32 state;
2254
2255         /* ack all ghost interrupts */
2256         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2257
2258         state = SKD_READL(skdev, FIT_STATUS);
2259
2260         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2261
2262         state &= FIT_SR_DRIVE_STATE_MASK;
2263         skdev->drive_state = state;
2264         skdev->last_mtd = 0;
2265
2266         skdev->state = SKD_DRVR_STATE_RESTARTING;
2267         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2268
2269         skd_soft_reset(skdev);
2270 }
2271
2272 /* assume spinlock is held */
2273 static int skd_quiesce_dev(struct skd_device *skdev)
2274 {
2275         int rc = 0;
2276
2277         switch (skdev->state) {
2278         case SKD_DRVR_STATE_BUSY:
2279         case SKD_DRVR_STATE_BUSY_IMMINENT:
2280                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2281                 blk_mq_stop_hw_queues(skdev->queue);
2282                 break;
2283         case SKD_DRVR_STATE_ONLINE:
2284         case SKD_DRVR_STATE_STOPPING:
2285         case SKD_DRVR_STATE_SYNCING:
2286         case SKD_DRVR_STATE_PAUSING:
2287         case SKD_DRVR_STATE_PAUSED:
2288         case SKD_DRVR_STATE_STARTING:
2289         case SKD_DRVR_STATE_RESTARTING:
2290         case SKD_DRVR_STATE_RESUMING:
2291         default:
2292                 rc = -EINVAL;
2293                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2294                         skdev->state);
2295         }
2296         return rc;
2297 }
2298
2299 /* assume spinlock is held */
2300 static int skd_unquiesce_dev(struct skd_device *skdev)
2301 {
2302         int prev_driver_state = skdev->state;
2303
2304         skd_log_skdev(skdev, "unquiesce");
2305         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2306                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2307                 return 0;
2308         }
2309         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2310                 /*
2311                  * If there has been an state change to other than
2312                  * ONLINE, we will rely on controller state change
2313                  * to come back online and restart the queue.
2314                  * The BUSY state means that driver is ready to
2315                  * continue normal processing but waiting for controller
2316                  * to become available.
2317                  */
2318                 skdev->state = SKD_DRVR_STATE_BUSY;
2319                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2320                 return 0;
2321         }
2322
2323         /*
2324          * Drive has just come online, driver is either in startup,
2325          * paused performing a task, or bust waiting for hardware.
2326          */
2327         switch (skdev->state) {
2328         case SKD_DRVR_STATE_PAUSED:
2329         case SKD_DRVR_STATE_BUSY:
2330         case SKD_DRVR_STATE_BUSY_IMMINENT:
2331         case SKD_DRVR_STATE_BUSY_ERASE:
2332         case SKD_DRVR_STATE_STARTING:
2333         case SKD_DRVR_STATE_RESTARTING:
2334         case SKD_DRVR_STATE_FAULT:
2335         case SKD_DRVR_STATE_IDLE:
2336         case SKD_DRVR_STATE_LOAD:
2337                 skdev->state = SKD_DRVR_STATE_ONLINE;
2338                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2339                         skd_skdev_state_to_str(prev_driver_state),
2340                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2341                         skdev->state);
2342                 dev_dbg(&skdev->pdev->dev,
2343                         "**** device ONLINE...starting block queue\n");
2344                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2345                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2346                 schedule_work(&skdev->start_queue);
2347                 skdev->gendisk_on = 1;
2348                 wake_up_interruptible(&skdev->waitq);
2349                 break;
2350
2351         case SKD_DRVR_STATE_DISAPPEARED:
2352         default:
2353                 dev_dbg(&skdev->pdev->dev,
2354                         "**** driver state %d, not implemented\n",
2355                         skdev->state);
2356                 return -EBUSY;
2357         }
2358         return 0;
2359 }
2360
2361 /*
2362  *****************************************************************************
2363  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2364  *****************************************************************************
2365  */
2366
2367 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2368 {
2369         struct skd_device *skdev = skd_host_data;
2370         unsigned long flags;
2371
2372         spin_lock_irqsave(&skdev->lock, flags);
2373         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2374                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2375         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2376                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2377         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2378         spin_unlock_irqrestore(&skdev->lock, flags);
2379         return IRQ_HANDLED;
2380 }
2381
2382 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2383 {
2384         struct skd_device *skdev = skd_host_data;
2385         unsigned long flags;
2386
2387         spin_lock_irqsave(&skdev->lock, flags);
2388         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2389                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2390         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2391         skd_isr_fwstate(skdev);
2392         spin_unlock_irqrestore(&skdev->lock, flags);
2393         return IRQ_HANDLED;
2394 }
2395
2396 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2397 {
2398         struct skd_device *skdev = skd_host_data;
2399         unsigned long flags;
2400         int flush_enqueued = 0;
2401         int deferred;
2402
2403         spin_lock_irqsave(&skdev->lock, flags);
2404         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2405                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2406         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2407         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2408                                                 &flush_enqueued);
2409         if (flush_enqueued)
2410                 schedule_work(&skdev->start_queue);
2411
2412         if (deferred)
2413                 schedule_work(&skdev->completion_worker);
2414         else if (!flush_enqueued)
2415                 schedule_work(&skdev->start_queue);
2416
2417         spin_unlock_irqrestore(&skdev->lock, flags);
2418
2419         return IRQ_HANDLED;
2420 }
2421
2422 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2423 {
2424         struct skd_device *skdev = skd_host_data;
2425         unsigned long flags;
2426
2427         spin_lock_irqsave(&skdev->lock, flags);
2428         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2429                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2430         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2431         skd_isr_msg_from_dev(skdev);
2432         spin_unlock_irqrestore(&skdev->lock, flags);
2433         return IRQ_HANDLED;
2434 }
2435
2436 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2437 {
2438         struct skd_device *skdev = skd_host_data;
2439         unsigned long flags;
2440
2441         spin_lock_irqsave(&skdev->lock, flags);
2442         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2443                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2444         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2445         spin_unlock_irqrestore(&skdev->lock, flags);
2446         return IRQ_HANDLED;
2447 }
2448
2449 /*
2450  *****************************************************************************
2451  * PCIe MSI/MSI-X SETUP
2452  *****************************************************************************
2453  */
2454
2455 struct skd_msix_entry {
2456         char isr_name[30];
2457 };
2458
2459 struct skd_init_msix_entry {
2460         const char *name;
2461         irq_handler_t handler;
2462 };
2463
2464 #define SKD_MAX_MSIX_COUNT              13
2465 #define SKD_MIN_MSIX_COUNT              7
2466 #define SKD_BASE_MSIX_IRQ               4
2467
2468 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2469         { "(DMA 0)",        skd_reserved_isr },
2470         { "(DMA 1)",        skd_reserved_isr },
2471         { "(DMA 2)",        skd_reserved_isr },
2472         { "(DMA 3)",        skd_reserved_isr },
2473         { "(State Change)", skd_statec_isr   },
2474         { "(COMPL_Q)",      skd_comp_q       },
2475         { "(MSG)",          skd_msg_isr      },
2476         { "(Reserved)",     skd_reserved_isr },
2477         { "(Reserved)",     skd_reserved_isr },
2478         { "(Queue Full 0)", skd_qfull_isr    },
2479         { "(Queue Full 1)", skd_qfull_isr    },
2480         { "(Queue Full 2)", skd_qfull_isr    },
2481         { "(Queue Full 3)", skd_qfull_isr    },
2482 };
2483
2484 static int skd_acquire_msix(struct skd_device *skdev)
2485 {
2486         int i, rc;
2487         struct pci_dev *pdev = skdev->pdev;
2488
2489         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2490                         PCI_IRQ_MSIX);
2491         if (rc < 0) {
2492                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2493                 goto out;
2494         }
2495
2496         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2497                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2498         if (!skdev->msix_entries) {
2499                 rc = -ENOMEM;
2500                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2501                 goto out;
2502         }
2503
2504         /* Enable MSI-X vectors for the base queue */
2505         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2506                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2507
2508                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2509                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2510                          msix_entries[i].name);
2511
2512                 rc = devm_request_irq(&skdev->pdev->dev,
2513                                 pci_irq_vector(skdev->pdev, i),
2514                                 msix_entries[i].handler, 0,
2515                                 qentry->isr_name, skdev);
2516                 if (rc) {
2517                         dev_err(&skdev->pdev->dev,
2518                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2519                                 rc, i, qentry->isr_name);
2520                         goto msix_out;
2521                 }
2522         }
2523
2524         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2525                 SKD_MAX_MSIX_COUNT);
2526         return 0;
2527
2528 msix_out:
2529         while (--i >= 0)
2530                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2531 out:
2532         kfree(skdev->msix_entries);
2533         skdev->msix_entries = NULL;
2534         return rc;
2535 }
2536
2537 static int skd_acquire_irq(struct skd_device *skdev)
2538 {
2539         struct pci_dev *pdev = skdev->pdev;
2540         unsigned int irq_flag = PCI_IRQ_LEGACY;
2541         int rc;
2542
2543         if (skd_isr_type == SKD_IRQ_MSIX) {
2544                 rc = skd_acquire_msix(skdev);
2545                 if (!rc)
2546                         return 0;
2547
2548                 dev_err(&skdev->pdev->dev,
2549                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2550         }
2551
2552         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2553                         skdev->devno);
2554
2555         if (skd_isr_type != SKD_IRQ_LEGACY)
2556                 irq_flag |= PCI_IRQ_MSI;
2557         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2558         if (rc < 0) {
2559                 dev_err(&skdev->pdev->dev,
2560                         "failed to allocate the MSI interrupt %d\n", rc);
2561                 return rc;
2562         }
2563
2564         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2565                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2566                         skdev->isr_name, skdev);
2567         if (rc) {
2568                 pci_free_irq_vectors(pdev);
2569                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2570                         rc);
2571                 return rc;
2572         }
2573
2574         return 0;
2575 }
2576
2577 static void skd_release_irq(struct skd_device *skdev)
2578 {
2579         struct pci_dev *pdev = skdev->pdev;
2580
2581         if (skdev->msix_entries) {
2582                 int i;
2583
2584                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2585                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2586                                         skdev);
2587                 }
2588
2589                 kfree(skdev->msix_entries);
2590                 skdev->msix_entries = NULL;
2591         } else {
2592                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2593         }
2594
2595         pci_free_irq_vectors(pdev);
2596 }
2597
2598 /*
2599  *****************************************************************************
2600  * CONSTRUCT
2601  *****************************************************************************
2602  */
2603
2604 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2605                            dma_addr_t *dma_handle, gfp_t gfp,
2606                            enum dma_data_direction dir)
2607 {
2608         struct device *dev = &skdev->pdev->dev;
2609         void *buf;
2610
2611         buf = kmem_cache_alloc(s, gfp);
2612         if (!buf)
2613                 return NULL;
2614         *dma_handle = dma_map_single(dev, buf,
2615                                      kmem_cache_size(s), dir);
2616         if (dma_mapping_error(dev, *dma_handle)) {
2617                 kmem_cache_free(s, buf);
2618                 buf = NULL;
2619         }
2620         return buf;
2621 }
2622
2623 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2624                          void *vaddr, dma_addr_t dma_handle,
2625                          enum dma_data_direction dir)
2626 {
2627         if (!vaddr)
2628                 return;
2629
2630         dma_unmap_single(&skdev->pdev->dev, dma_handle,
2631                          kmem_cache_size(s), dir);
2632         kmem_cache_free(s, vaddr);
2633 }
2634
2635 static int skd_cons_skcomp(struct skd_device *skdev)
2636 {
2637         int rc = 0;
2638         struct fit_completion_entry_v1 *skcomp;
2639
2640         dev_dbg(&skdev->pdev->dev,
2641                 "comp pci_alloc, total bytes %zd entries %d\n",
2642                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2643
2644         skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2645                                     &skdev->cq_dma_address, GFP_KERNEL);
2646
2647         if (skcomp == NULL) {
2648                 rc = -ENOMEM;
2649                 goto err_out;
2650         }
2651
2652         skdev->skcomp_table = skcomp;
2653         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2654                                                            sizeof(*skcomp) *
2655                                                            SKD_N_COMPLETION_ENTRY);
2656
2657 err_out:
2658         return rc;
2659 }
2660
2661 static int skd_cons_skmsg(struct skd_device *skdev)
2662 {
2663         int rc = 0;
2664         u32 i;
2665
2666         dev_dbg(&skdev->pdev->dev,
2667                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2668                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2669                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2670
2671         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2672                                      sizeof(struct skd_fitmsg_context),
2673                                      GFP_KERNEL);
2674         if (skdev->skmsg_table == NULL) {
2675                 rc = -ENOMEM;
2676                 goto err_out;
2677         }
2678
2679         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2680                 struct skd_fitmsg_context *skmsg;
2681
2682                 skmsg = &skdev->skmsg_table[i];
2683
2684                 skmsg->id = i + SKD_ID_FIT_MSG;
2685
2686                 skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2687                                                     SKD_N_FITMSG_BYTES,
2688                                                     &skmsg->mb_dma_address,
2689                                                     GFP_KERNEL);
2690                 if (skmsg->msg_buf == NULL) {
2691                         rc = -ENOMEM;
2692                         goto err_out;
2693                 }
2694
2695                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2696                      (FIT_QCMD_ALIGN - 1),
2697                      "not aligned: msg_buf %p mb_dma_address %pad\n",
2698                      skmsg->msg_buf, &skmsg->mb_dma_address);
2699                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2700         }
2701
2702 err_out:
2703         return rc;
2704 }
2705
2706 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2707                                                   u32 n_sg,
2708                                                   dma_addr_t *ret_dma_addr)
2709 {
2710         struct fit_sg_descriptor *sg_list;
2711
2712         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2713                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2714
2715         if (sg_list != NULL) {
2716                 uint64_t dma_address = *ret_dma_addr;
2717                 u32 i;
2718
2719                 for (i = 0; i < n_sg - 1; i++) {
2720                         uint64_t ndp_off;
2721                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2722
2723                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2724                 }
2725                 sg_list[i].next_desc_ptr = 0LL;
2726         }
2727
2728         return sg_list;
2729 }
2730
2731 static void skd_free_sg_list(struct skd_device *skdev,
2732                              struct fit_sg_descriptor *sg_list,
2733                              dma_addr_t dma_addr)
2734 {
2735         if (WARN_ON_ONCE(!sg_list))
2736                 return;
2737
2738         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2739                      DMA_TO_DEVICE);
2740 }
2741
2742 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2743                             unsigned int hctx_idx, unsigned int numa_node)
2744 {
2745         struct skd_device *skdev = set->driver_data;
2746         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2747
2748         skreq->state = SKD_REQ_STATE_IDLE;
2749         skreq->sg = (void *)(skreq + 1);
2750         sg_init_table(skreq->sg, skd_sgs_per_request);
2751         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2752                                             &skreq->sksg_dma_address);
2753
2754         return skreq->sksg_list ? 0 : -ENOMEM;
2755 }
2756
2757 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2758                              unsigned int hctx_idx)
2759 {
2760         struct skd_device *skdev = set->driver_data;
2761         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2762
2763         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2764 }
2765
2766 static int skd_cons_sksb(struct skd_device *skdev)
2767 {
2768         int rc = 0;
2769         struct skd_special_context *skspcl;
2770
2771         skspcl = &skdev->internal_skspcl;
2772
2773         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2774         skspcl->req.state = SKD_REQ_STATE_IDLE;
2775
2776         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2777                                          &skspcl->db_dma_address,
2778                                          GFP_DMA | __GFP_ZERO,
2779                                          DMA_BIDIRECTIONAL);
2780         if (skspcl->data_buf == NULL) {
2781                 rc = -ENOMEM;
2782                 goto err_out;
2783         }
2784
2785         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2786                                         &skspcl->mb_dma_address,
2787                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2788         if (skspcl->msg_buf == NULL) {
2789                 rc = -ENOMEM;
2790                 goto err_out;
2791         }
2792
2793         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2794                                                  &skspcl->req.sksg_dma_address);
2795         if (skspcl->req.sksg_list == NULL) {
2796                 rc = -ENOMEM;
2797                 goto err_out;
2798         }
2799
2800         if (!skd_format_internal_skspcl(skdev)) {
2801                 rc = -EINVAL;
2802                 goto err_out;
2803         }
2804
2805 err_out:
2806         return rc;
2807 }
2808
2809 static const struct blk_mq_ops skd_mq_ops = {
2810         .queue_rq       = skd_mq_queue_rq,
2811         .complete       = skd_complete_rq,
2812         .timeout        = skd_timed_out,
2813         .init_request   = skd_init_request,
2814         .exit_request   = skd_exit_request,
2815 };
2816
2817 static int skd_cons_disk(struct skd_device *skdev)
2818 {
2819         int rc = 0;
2820         struct gendisk *disk;
2821         struct request_queue *q;
2822         unsigned long flags;
2823
2824         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2825         if (!disk) {
2826                 rc = -ENOMEM;
2827                 goto err_out;
2828         }
2829
2830         skdev->disk = disk;
2831         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2832
2833         disk->major = skdev->major;
2834         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2835         disk->fops = &skd_blockdev_ops;
2836         disk->private_data = skdev;
2837
2838         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2839         skdev->tag_set.ops = &skd_mq_ops;
2840         skdev->tag_set.nr_hw_queues = 1;
2841         skdev->tag_set.queue_depth = skd_max_queue_depth;
2842         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2843                 skdev->sgs_per_request * sizeof(struct scatterlist);
2844         skdev->tag_set.numa_node = NUMA_NO_NODE;
2845         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2846                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2847         skdev->tag_set.driver_data = skdev;
2848         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2849         if (rc)
2850                 goto err_out;
2851         q = blk_mq_init_queue(&skdev->tag_set);
2852         if (IS_ERR(q)) {
2853                 blk_mq_free_tag_set(&skdev->tag_set);
2854                 rc = PTR_ERR(q);
2855                 goto err_out;
2856         }
2857         q->queuedata = skdev;
2858
2859         skdev->queue = q;
2860         disk->queue = q;
2861
2862         blk_queue_write_cache(q, true, true);
2863         blk_queue_max_segments(q, skdev->sgs_per_request);
2864         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2865
2866         /* set optimal I/O size to 8KB */
2867         blk_queue_io_opt(q, 8192);
2868
2869         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2870         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2871
2872         blk_queue_rq_timeout(q, 8 * HZ);
2873
2874         spin_lock_irqsave(&skdev->lock, flags);
2875         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2876         blk_mq_stop_hw_queues(skdev->queue);
2877         spin_unlock_irqrestore(&skdev->lock, flags);
2878
2879 err_out:
2880         return rc;
2881 }
2882
2883 #define SKD_N_DEV_TABLE         16u
2884 static u32 skd_next_devno;
2885
2886 static struct skd_device *skd_construct(struct pci_dev *pdev)
2887 {
2888         struct skd_device *skdev;
2889         int blk_major = skd_major;
2890         size_t size;
2891         int rc;
2892
2893         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2894
2895         if (!skdev) {
2896                 dev_err(&pdev->dev, "memory alloc failure\n");
2897                 return NULL;
2898         }
2899
2900         skdev->state = SKD_DRVR_STATE_LOAD;
2901         skdev->pdev = pdev;
2902         skdev->devno = skd_next_devno++;
2903         skdev->major = blk_major;
2904         skdev->dev_max_queue_depth = 0;
2905
2906         skdev->num_req_context = skd_max_queue_depth;
2907         skdev->num_fitmsg_context = skd_max_queue_depth;
2908         skdev->cur_max_queue_depth = 1;
2909         skdev->queue_low_water_mark = 1;
2910         skdev->proto_ver = 99;
2911         skdev->sgs_per_request = skd_sgs_per_request;
2912         skdev->dbg_level = skd_dbg_level;
2913
2914         spin_lock_init(&skdev->lock);
2915
2916         INIT_WORK(&skdev->start_queue, skd_start_queue);
2917         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2918
2919         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2920         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2921                                                 SLAB_HWCACHE_ALIGN, NULL);
2922         if (!skdev->msgbuf_cache)
2923                 goto err_out;
2924         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2925                   "skd-msgbuf: %d < %zd\n",
2926                   kmem_cache_size(skdev->msgbuf_cache), size);
2927         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2928         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2929                                                 SLAB_HWCACHE_ALIGN, NULL);
2930         if (!skdev->sglist_cache)
2931                 goto err_out;
2932         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2933                   "skd-sglist: %d < %zd\n",
2934                   kmem_cache_size(skdev->sglist_cache), size);
2935         size = SKD_N_INTERNAL_BYTES;
2936         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2937                                                  SLAB_HWCACHE_ALIGN, NULL);
2938         if (!skdev->databuf_cache)
2939                 goto err_out;
2940         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2941                   "skd-databuf: %d < %zd\n",
2942                   kmem_cache_size(skdev->databuf_cache), size);
2943
2944         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2945         rc = skd_cons_skcomp(skdev);
2946         if (rc < 0)
2947                 goto err_out;
2948
2949         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2950         rc = skd_cons_skmsg(skdev);
2951         if (rc < 0)
2952                 goto err_out;
2953
2954         dev_dbg(&skdev->pdev->dev, "sksb\n");
2955         rc = skd_cons_sksb(skdev);
2956         if (rc < 0)
2957                 goto err_out;
2958
2959         dev_dbg(&skdev->pdev->dev, "disk\n");
2960         rc = skd_cons_disk(skdev);
2961         if (rc < 0)
2962                 goto err_out;
2963
2964         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2965         return skdev;
2966
2967 err_out:
2968         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2969         skd_destruct(skdev);
2970         return NULL;
2971 }
2972
2973 /*
2974  *****************************************************************************
2975  * DESTRUCT (FREE)
2976  *****************************************************************************
2977  */
2978
2979 static void skd_free_skcomp(struct skd_device *skdev)
2980 {
2981         if (skdev->skcomp_table)
2982                 dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2983                                   skdev->skcomp_table, skdev->cq_dma_address);
2984
2985         skdev->skcomp_table = NULL;
2986         skdev->cq_dma_address = 0;
2987 }
2988
2989 static void skd_free_skmsg(struct skd_device *skdev)
2990 {
2991         u32 i;
2992
2993         if (skdev->skmsg_table == NULL)
2994                 return;
2995
2996         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2997                 struct skd_fitmsg_context *skmsg;
2998
2999                 skmsg = &skdev->skmsg_table[i];
3000
3001                 if (skmsg->msg_buf != NULL) {
3002                         dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
3003                                           skmsg->msg_buf,
3004                                             skmsg->mb_dma_address);
3005                 }
3006                 skmsg->msg_buf = NULL;
3007                 skmsg->mb_dma_address = 0;
3008         }
3009
3010         kfree(skdev->skmsg_table);
3011         skdev->skmsg_table = NULL;
3012 }
3013
3014 static void skd_free_sksb(struct skd_device *skdev)
3015 {
3016         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3017
3018         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3019                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3020
3021         skspcl->data_buf = NULL;
3022         skspcl->db_dma_address = 0;
3023
3024         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3025                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3026
3027         skspcl->msg_buf = NULL;
3028         skspcl->mb_dma_address = 0;
3029
3030         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3031                          skspcl->req.sksg_dma_address);
3032
3033         skspcl->req.sksg_list = NULL;
3034         skspcl->req.sksg_dma_address = 0;
3035 }
3036
3037 static void skd_free_disk(struct skd_device *skdev)
3038 {
3039         struct gendisk *disk = skdev->disk;
3040
3041         if (disk && (disk->flags & GENHD_FL_UP))
3042                 del_gendisk(disk);
3043
3044         if (skdev->queue) {
3045                 blk_cleanup_queue(skdev->queue);
3046                 skdev->queue = NULL;
3047                 if (disk)
3048                         disk->queue = NULL;
3049         }
3050
3051         if (skdev->tag_set.tags)
3052                 blk_mq_free_tag_set(&skdev->tag_set);
3053
3054         put_disk(disk);
3055         skdev->disk = NULL;
3056 }
3057
3058 static void skd_destruct(struct skd_device *skdev)
3059 {
3060         if (skdev == NULL)
3061                 return;
3062
3063         cancel_work_sync(&skdev->start_queue);
3064
3065         dev_dbg(&skdev->pdev->dev, "disk\n");
3066         skd_free_disk(skdev);
3067
3068         dev_dbg(&skdev->pdev->dev, "sksb\n");
3069         skd_free_sksb(skdev);
3070
3071         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3072         skd_free_skmsg(skdev);
3073
3074         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3075         skd_free_skcomp(skdev);
3076
3077         kmem_cache_destroy(skdev->databuf_cache);
3078         kmem_cache_destroy(skdev->sglist_cache);
3079         kmem_cache_destroy(skdev->msgbuf_cache);
3080
3081         dev_dbg(&skdev->pdev->dev, "skdev\n");
3082         kfree(skdev);
3083 }
3084
3085 /*
3086  *****************************************************************************
3087  * BLOCK DEVICE (BDEV) GLUE
3088  *****************************************************************************
3089  */
3090
3091 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3092 {
3093         struct skd_device *skdev;
3094         u64 capacity;
3095
3096         skdev = bdev->bd_disk->private_data;
3097
3098         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3099                 bdev->bd_disk->disk_name, current->comm);
3100
3101         if (skdev->read_cap_is_valid) {
3102                 capacity = get_capacity(skdev->disk);
3103                 geo->heads = 64;
3104                 geo->sectors = 255;
3105                 geo->cylinders = (capacity) / (255 * 64);
3106
3107                 return 0;
3108         }
3109         return -EIO;
3110 }
3111
3112 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3113 {
3114         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3115         device_add_disk(parent, skdev->disk, NULL);
3116         return 0;
3117 }
3118
3119 static const struct block_device_operations skd_blockdev_ops = {
3120         .owner          = THIS_MODULE,
3121         .getgeo         = skd_bdev_getgeo,
3122 };
3123
3124 /*
3125  *****************************************************************************
3126  * PCIe DRIVER GLUE
3127  *****************************************************************************
3128  */
3129
3130 static const struct pci_device_id skd_pci_tbl[] = {
3131         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3132           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3133         { 0 }                     /* terminate list */
3134 };
3135
3136 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3137
3138 static char *skd_pci_info(struct skd_device *skdev, char *str)
3139 {
3140         int pcie_reg;
3141
3142         strcpy(str, "PCIe (");
3143         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3144
3145         if (pcie_reg) {
3146
3147                 char lwstr[6];
3148                 uint16_t pcie_lstat, lspeed, lwidth;
3149
3150                 pcie_reg += 0x12;
3151                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3152                 lspeed = pcie_lstat & (0xF);
3153                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3154
3155                 if (lspeed == 1)
3156                         strcat(str, "2.5GT/s ");
3157                 else if (lspeed == 2)
3158                         strcat(str, "5.0GT/s ");
3159                 else
3160                         strcat(str, "<unknown> ");
3161                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3162                 strcat(str, lwstr);
3163         }
3164         return str;
3165 }
3166
3167 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3168 {
3169         int i;
3170         int rc = 0;
3171         char pci_str[32];
3172         struct skd_device *skdev;
3173
3174         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3175                 pdev->device);
3176
3177         rc = pci_enable_device(pdev);
3178         if (rc)
3179                 return rc;
3180         rc = pci_request_regions(pdev, DRV_NAME);
3181         if (rc)
3182                 goto err_out;
3183         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3184         if (rc)
3185                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3186         if (rc) {
3187                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3188                 goto err_out_regions;
3189         }
3190
3191         if (!skd_major) {
3192                 rc = register_blkdev(0, DRV_NAME);
3193                 if (rc < 0)
3194                         goto err_out_regions;
3195                 BUG_ON(!rc);
3196                 skd_major = rc;
3197         }
3198
3199         skdev = skd_construct(pdev);
3200         if (skdev == NULL) {
3201                 rc = -ENOMEM;
3202                 goto err_out_regions;
3203         }
3204
3205         skd_pci_info(skdev, pci_str);
3206         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3207
3208         pci_set_master(pdev);
3209         rc = pci_enable_pcie_error_reporting(pdev);
3210         if (rc) {
3211                 dev_err(&pdev->dev,
3212                         "bad enable of PCIe error reporting rc=%d\n", rc);
3213                 skdev->pcie_error_reporting_is_enabled = 0;
3214         } else
3215                 skdev->pcie_error_reporting_is_enabled = 1;
3216
3217         pci_set_drvdata(pdev, skdev);
3218
3219         for (i = 0; i < SKD_MAX_BARS; i++) {
3220                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3221                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3222                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3223                                             skdev->mem_size[i]);
3224                 if (!skdev->mem_map[i]) {
3225                         dev_err(&pdev->dev,
3226                                 "Unable to map adapter memory!\n");
3227                         rc = -ENODEV;
3228                         goto err_out_iounmap;
3229                 }
3230                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3231                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3232                         skdev->mem_size[i]);
3233         }
3234
3235         rc = skd_acquire_irq(skdev);
3236         if (rc) {
3237                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3238                 goto err_out_iounmap;
3239         }
3240
3241         rc = skd_start_timer(skdev);
3242         if (rc)
3243                 goto err_out_timer;
3244
3245         init_waitqueue_head(&skdev->waitq);
3246
3247         skd_start_device(skdev);
3248
3249         rc = wait_event_interruptible_timeout(skdev->waitq,
3250                                               (skdev->gendisk_on),
3251                                               (SKD_START_WAIT_SECONDS * HZ));
3252         if (skdev->gendisk_on > 0) {
3253                 /* device came on-line after reset */
3254                 skd_bdev_attach(&pdev->dev, skdev);
3255                 rc = 0;
3256         } else {
3257                 /* we timed out, something is wrong with the device,
3258                    don't add the disk structure */
3259                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3260                         rc);
3261                 /* in case of no error; we timeout with ENXIO */
3262                 if (!rc)
3263                         rc = -ENXIO;
3264                 goto err_out_timer;
3265         }
3266
3267         return rc;
3268
3269 err_out_timer:
3270         skd_stop_device(skdev);
3271         skd_release_irq(skdev);
3272
3273 err_out_iounmap:
3274         for (i = 0; i < SKD_MAX_BARS; i++)
3275                 if (skdev->mem_map[i])
3276                         iounmap(skdev->mem_map[i]);
3277
3278         if (skdev->pcie_error_reporting_is_enabled)
3279                 pci_disable_pcie_error_reporting(pdev);
3280
3281         skd_destruct(skdev);
3282
3283 err_out_regions:
3284         pci_release_regions(pdev);
3285
3286 err_out:
3287         pci_disable_device(pdev);
3288         pci_set_drvdata(pdev, NULL);
3289         return rc;
3290 }
3291
3292 static void skd_pci_remove(struct pci_dev *pdev)
3293 {
3294         int i;
3295         struct skd_device *skdev;
3296
3297         skdev = pci_get_drvdata(pdev);
3298         if (!skdev) {
3299                 dev_err(&pdev->dev, "no device data for PCI\n");
3300                 return;
3301         }
3302         skd_stop_device(skdev);
3303         skd_release_irq(skdev);
3304
3305         for (i = 0; i < SKD_MAX_BARS; i++)
3306                 if (skdev->mem_map[i])
3307                         iounmap(skdev->mem_map[i]);
3308
3309         if (skdev->pcie_error_reporting_is_enabled)
3310                 pci_disable_pcie_error_reporting(pdev);
3311
3312         skd_destruct(skdev);
3313
3314         pci_release_regions(pdev);
3315         pci_disable_device(pdev);
3316         pci_set_drvdata(pdev, NULL);
3317
3318         return;
3319 }
3320
3321 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3322 {
3323         int i;
3324         struct skd_device *skdev;
3325
3326         skdev = pci_get_drvdata(pdev);
3327         if (!skdev) {
3328                 dev_err(&pdev->dev, "no device data for PCI\n");
3329                 return -EIO;
3330         }
3331
3332         skd_stop_device(skdev);
3333
3334         skd_release_irq(skdev);
3335
3336         for (i = 0; i < SKD_MAX_BARS; i++)
3337                 if (skdev->mem_map[i])
3338                         iounmap(skdev->mem_map[i]);
3339
3340         if (skdev->pcie_error_reporting_is_enabled)
3341                 pci_disable_pcie_error_reporting(pdev);
3342
3343         pci_release_regions(pdev);
3344         pci_save_state(pdev);
3345         pci_disable_device(pdev);
3346         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3347         return 0;
3348 }
3349
3350 static int skd_pci_resume(struct pci_dev *pdev)
3351 {
3352         int i;
3353         int rc = 0;
3354         struct skd_device *skdev;
3355
3356         skdev = pci_get_drvdata(pdev);
3357         if (!skdev) {
3358                 dev_err(&pdev->dev, "no device data for PCI\n");
3359                 return -1;
3360         }
3361
3362         pci_set_power_state(pdev, PCI_D0);
3363         pci_enable_wake(pdev, PCI_D0, 0);
3364         pci_restore_state(pdev);
3365
3366         rc = pci_enable_device(pdev);
3367         if (rc)
3368                 return rc;
3369         rc = pci_request_regions(pdev, DRV_NAME);
3370         if (rc)
3371                 goto err_out;
3372         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3373         if (rc)
3374                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3375         if (rc) {
3376                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3377                 goto err_out_regions;
3378         }
3379
3380         pci_set_master(pdev);
3381         rc = pci_enable_pcie_error_reporting(pdev);
3382         if (rc) {
3383                 dev_err(&pdev->dev,
3384                         "bad enable of PCIe error reporting rc=%d\n", rc);
3385                 skdev->pcie_error_reporting_is_enabled = 0;
3386         } else
3387                 skdev->pcie_error_reporting_is_enabled = 1;
3388
3389         for (i = 0; i < SKD_MAX_BARS; i++) {
3390
3391                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3392                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3393                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3394                                             skdev->mem_size[i]);
3395                 if (!skdev->mem_map[i]) {
3396                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3397                         rc = -ENODEV;
3398                         goto err_out_iounmap;
3399                 }
3400                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3401                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3402                         skdev->mem_size[i]);
3403         }
3404         rc = skd_acquire_irq(skdev);
3405         if (rc) {
3406                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3407                 goto err_out_iounmap;
3408         }
3409
3410         rc = skd_start_timer(skdev);
3411         if (rc)
3412                 goto err_out_timer;
3413
3414         init_waitqueue_head(&skdev->waitq);
3415
3416         skd_start_device(skdev);
3417
3418         return rc;
3419
3420 err_out_timer:
3421         skd_stop_device(skdev);
3422         skd_release_irq(skdev);
3423
3424 err_out_iounmap:
3425         for (i = 0; i < SKD_MAX_BARS; i++)
3426                 if (skdev->mem_map[i])
3427                         iounmap(skdev->mem_map[i]);
3428
3429         if (skdev->pcie_error_reporting_is_enabled)
3430                 pci_disable_pcie_error_reporting(pdev);
3431
3432 err_out_regions:
3433         pci_release_regions(pdev);
3434
3435 err_out:
3436         pci_disable_device(pdev);
3437         return rc;
3438 }
3439
3440 static void skd_pci_shutdown(struct pci_dev *pdev)
3441 {
3442         struct skd_device *skdev;
3443
3444         dev_err(&pdev->dev, "%s called\n", __func__);
3445
3446         skdev = pci_get_drvdata(pdev);
3447         if (!skdev) {
3448                 dev_err(&pdev->dev, "no device data for PCI\n");
3449                 return;
3450         }
3451
3452         dev_err(&pdev->dev, "calling stop\n");
3453         skd_stop_device(skdev);
3454 }
3455
3456 static struct pci_driver skd_driver = {
3457         .name           = DRV_NAME,
3458         .id_table       = skd_pci_tbl,
3459         .probe          = skd_pci_probe,
3460         .remove         = skd_pci_remove,
3461         .suspend        = skd_pci_suspend,
3462         .resume         = skd_pci_resume,
3463         .shutdown       = skd_pci_shutdown,
3464 };
3465
3466 /*
3467  *****************************************************************************
3468  * LOGGING SUPPORT
3469  *****************************************************************************
3470  */
3471
3472 const char *skd_drive_state_to_str(int state)
3473 {
3474         switch (state) {
3475         case FIT_SR_DRIVE_OFFLINE:
3476                 return "OFFLINE";
3477         case FIT_SR_DRIVE_INIT:
3478                 return "INIT";
3479         case FIT_SR_DRIVE_ONLINE:
3480                 return "ONLINE";
3481         case FIT_SR_DRIVE_BUSY:
3482                 return "BUSY";
3483         case FIT_SR_DRIVE_FAULT:
3484                 return "FAULT";
3485         case FIT_SR_DRIVE_DEGRADED:
3486                 return "DEGRADED";
3487         case FIT_SR_PCIE_LINK_DOWN:
3488                 return "INK_DOWN";
3489         case FIT_SR_DRIVE_SOFT_RESET:
3490                 return "SOFT_RESET";
3491         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3492                 return "NEED_FW";
3493         case FIT_SR_DRIVE_INIT_FAULT:
3494                 return "INIT_FAULT";
3495         case FIT_SR_DRIVE_BUSY_SANITIZE:
3496                 return "BUSY_SANITIZE";
3497         case FIT_SR_DRIVE_BUSY_ERASE:
3498                 return "BUSY_ERASE";
3499         case FIT_SR_DRIVE_FW_BOOTING:
3500                 return "FW_BOOTING";
3501         default:
3502                 return "???";
3503         }
3504 }
3505
3506 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3507 {
3508         switch (state) {
3509         case SKD_DRVR_STATE_LOAD:
3510                 return "LOAD";
3511         case SKD_DRVR_STATE_IDLE:
3512                 return "IDLE";
3513         case SKD_DRVR_STATE_BUSY:
3514                 return "BUSY";
3515         case SKD_DRVR_STATE_STARTING:
3516                 return "STARTING";
3517         case SKD_DRVR_STATE_ONLINE:
3518                 return "ONLINE";
3519         case SKD_DRVR_STATE_PAUSING:
3520                 return "PAUSING";
3521         case SKD_DRVR_STATE_PAUSED:
3522                 return "PAUSED";
3523         case SKD_DRVR_STATE_RESTARTING:
3524                 return "RESTARTING";
3525         case SKD_DRVR_STATE_RESUMING:
3526                 return "RESUMING";
3527         case SKD_DRVR_STATE_STOPPING:
3528                 return "STOPPING";
3529         case SKD_DRVR_STATE_SYNCING:
3530                 return "SYNCING";
3531         case SKD_DRVR_STATE_FAULT:
3532                 return "FAULT";
3533         case SKD_DRVR_STATE_DISAPPEARED:
3534                 return "DISAPPEARED";
3535         case SKD_DRVR_STATE_BUSY_ERASE:
3536                 return "BUSY_ERASE";
3537         case SKD_DRVR_STATE_BUSY_SANITIZE:
3538                 return "BUSY_SANITIZE";
3539         case SKD_DRVR_STATE_BUSY_IMMINENT:
3540                 return "BUSY_IMMINENT";
3541         case SKD_DRVR_STATE_WAIT_BOOT:
3542                 return "WAIT_BOOT";
3543
3544         default:
3545                 return "???";
3546         }
3547 }
3548
3549 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3550 {
3551         switch (state) {
3552         case SKD_REQ_STATE_IDLE:
3553                 return "IDLE";
3554         case SKD_REQ_STATE_SETUP:
3555                 return "SETUP";
3556         case SKD_REQ_STATE_BUSY:
3557                 return "BUSY";
3558         case SKD_REQ_STATE_COMPLETED:
3559                 return "COMPLETED";
3560         case SKD_REQ_STATE_TIMEOUT:
3561                 return "TIMEOUT";
3562         default:
3563                 return "???";
3564         }
3565 }
3566
3567 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3568 {
3569         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3570         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3571                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3572                 skd_skdev_state_to_str(skdev->state), skdev->state);
3573         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3574                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3575                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3576         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3577                 skdev->skcomp_cycle, skdev->skcomp_ix);
3578 }
3579
3580 static void skd_log_skreq(struct skd_device *skdev,
3581                           struct skd_request_context *skreq, const char *event)
3582 {
3583         struct request *req = blk_mq_rq_from_pdu(skreq);
3584         u32 lba = blk_rq_pos(req);
3585         u32 count = blk_rq_sectors(req);
3586
3587         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3588         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3589                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3590                 skreq->fitmsg_id);
3591         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3592                 skreq->data_dir, skreq->n_sg);
3593
3594         dev_dbg(&skdev->pdev->dev,
3595                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3596                 count, count, (int)rq_data_dir(req));
3597 }
3598
3599 /*
3600  *****************************************************************************
3601  * MODULE GLUE
3602  *****************************************************************************
3603  */
3604
3605 static int __init skd_init(void)
3606 {
3607         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3608         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3609         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3610         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3611         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3612         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3613         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3614         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3615
3616         switch (skd_isr_type) {
3617         case SKD_IRQ_LEGACY:
3618         case SKD_IRQ_MSI:
3619         case SKD_IRQ_MSIX:
3620                 break;
3621         default:
3622                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3623                        skd_isr_type, SKD_IRQ_DEFAULT);
3624                 skd_isr_type = SKD_IRQ_DEFAULT;
3625         }
3626
3627         if (skd_max_queue_depth < 1 ||
3628             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3629                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3630                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3631                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3632         }
3633
3634         if (skd_max_req_per_msg < 1 ||
3635             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3636                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3637                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3638                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3639         }
3640
3641         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3642                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3643                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3644                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3645         }
3646
3647         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3648                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3649                        skd_dbg_level, 0);
3650                 skd_dbg_level = 0;
3651         }
3652
3653         if (skd_isr_comp_limit < 0) {
3654                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3655                        skd_isr_comp_limit, 0);
3656                 skd_isr_comp_limit = 0;
3657         }
3658
3659         return pci_register_driver(&skd_driver);
3660 }
3661
3662 static void __exit skd_exit(void)
3663 {
3664         pci_unregister_driver(&skd_driver);
3665
3666         if (skd_major)
3667                 unregister_blkdev(skd_major, DRV_NAME);
3668 }
3669
3670 module_init(skd_init);
3671 module_exit(skd_exit);