]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/skd_main.c
a732bb8040f482547f7c3089ddcaae1258678f77
[linux.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41
42 #include "skd_s1120.h"
43
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46
47 #define SKD_ASSERT(expr) \
48         do { \
49                 if (unlikely(!(expr))) { \
50                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
51                                # expr, __FILE__, __func__, __LINE__); \
52                 } \
53         } while (0)
54
55 #define DRV_NAME "skd"
56 #define DRV_VERSION "2.2.1"
57 #define DRV_BUILD_ID "0260"
58 #define PFX DRV_NAME ": "
59
60 MODULE_LICENSE("GPL");
61
62 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
63 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
64
65 #define PCI_VENDOR_ID_STEC      0x1B39
66 #define PCI_DEVICE_ID_S1120     0x0001
67
68 #define SKD_FUA_NV              (1 << 1)
69 #define SKD_MINORS_PER_DEVICE   16
70
71 #define SKD_MAX_QUEUE_DEPTH     200u
72
73 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
74
75 #define SKD_N_FITMSG_BYTES      (512u)
76 #define SKD_MAX_REQ_PER_MSG     14
77
78 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
79
80 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
81  * 128KB limit.  That allows 4096*4K = 16M xfer size
82  */
83 #define SKD_N_SG_PER_REQ_DEFAULT 256u
84
85 #define SKD_N_COMPLETION_ENTRY  256u
86 #define SKD_N_READ_CAP_BYTES    (8u)
87
88 #define SKD_N_INTERNAL_BYTES    (512u)
89
90 #define SKD_SKCOMP_SIZE                                                 \
91         ((sizeof(struct fit_completion_entry_v1) +                      \
92           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
93
94 /* 5 bits of uniqifier, 0xF800 */
95 #define SKD_ID_INCR             (0x400)
96 #define SKD_ID_TABLE_MASK       (3u << 8u)
97 #define  SKD_ID_RW_REQUEST      (0u << 8u)
98 #define  SKD_ID_INTERNAL        (1u << 8u)
99 #define  SKD_ID_FIT_MSG         (3u << 8u)
100 #define SKD_ID_SLOT_MASK        0x00FFu
101 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
102
103 #define SKD_N_MAX_SECTORS 2048u
104
105 #define SKD_MAX_RETRIES 2u
106
107 #define SKD_TIMER_SECONDS(seconds) (seconds)
108 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
109
110 #define INQ_STD_NBYTES 36
111
112 enum skd_drvr_state {
113         SKD_DRVR_STATE_LOAD,
114         SKD_DRVR_STATE_IDLE,
115         SKD_DRVR_STATE_BUSY,
116         SKD_DRVR_STATE_STARTING,
117         SKD_DRVR_STATE_ONLINE,
118         SKD_DRVR_STATE_PAUSING,
119         SKD_DRVR_STATE_PAUSED,
120         SKD_DRVR_STATE_RESTARTING,
121         SKD_DRVR_STATE_RESUMING,
122         SKD_DRVR_STATE_STOPPING,
123         SKD_DRVR_STATE_FAULT,
124         SKD_DRVR_STATE_DISAPPEARED,
125         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
126         SKD_DRVR_STATE_BUSY_ERASE,
127         SKD_DRVR_STATE_BUSY_SANITIZE,
128         SKD_DRVR_STATE_BUSY_IMMINENT,
129         SKD_DRVR_STATE_WAIT_BOOT,
130         SKD_DRVR_STATE_SYNCING,
131 };
132
133 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
134 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
135 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
136 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
137 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
138 #define SKD_START_WAIT_SECONDS  90u
139
140 enum skd_req_state {
141         SKD_REQ_STATE_IDLE,
142         SKD_REQ_STATE_SETUP,
143         SKD_REQ_STATE_BUSY,
144         SKD_REQ_STATE_COMPLETED,
145         SKD_REQ_STATE_TIMEOUT,
146 };
147
148 enum skd_check_status_action {
149         SKD_CHECK_STATUS_REPORT_GOOD,
150         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
151         SKD_CHECK_STATUS_REQUEUE_REQUEST,
152         SKD_CHECK_STATUS_REPORT_ERROR,
153         SKD_CHECK_STATUS_BUSY_IMMINENT,
154 };
155
156 struct skd_msg_buf {
157         struct fit_msg_hdr      fmh;
158         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
159 };
160
161 struct skd_fitmsg_context {
162         u32 id;
163
164         u32 length;
165
166         struct skd_msg_buf *msg_buf;
167         dma_addr_t mb_dma_address;
168 };
169
170 struct skd_request_context {
171         enum skd_req_state state;
172
173         u16 id;
174         u32 fitmsg_id;
175
176         u8 flush_cmd;
177
178         enum dma_data_direction data_dir;
179         struct scatterlist *sg;
180         u32 n_sg;
181         u32 sg_byte_count;
182
183         struct fit_sg_descriptor *sksg_list;
184         dma_addr_t sksg_dma_address;
185
186         struct fit_completion_entry_v1 completion;
187
188         struct fit_comp_error_info err_info;
189
190 };
191
192 struct skd_special_context {
193         struct skd_request_context req;
194
195         void *data_buf;
196         dma_addr_t db_dma_address;
197
198         struct skd_msg_buf *msg_buf;
199         dma_addr_t mb_dma_address;
200 };
201
202 typedef enum skd_irq_type {
203         SKD_IRQ_LEGACY,
204         SKD_IRQ_MSI,
205         SKD_IRQ_MSIX
206 } skd_irq_type_t;
207
208 #define SKD_MAX_BARS                    2
209
210 struct skd_device {
211         void __iomem *mem_map[SKD_MAX_BARS];
212         resource_size_t mem_phys[SKD_MAX_BARS];
213         u32 mem_size[SKD_MAX_BARS];
214
215         struct skd_msix_entry *msix_entries;
216
217         struct pci_dev *pdev;
218         int pcie_error_reporting_is_enabled;
219
220         spinlock_t lock;
221         struct gendisk *disk;
222         struct blk_mq_tag_set tag_set;
223         struct request_queue *queue;
224         struct skd_fitmsg_context *skmsg;
225         struct device *class_dev;
226         int gendisk_on;
227         int sync_done;
228
229         u32 devno;
230         u32 major;
231         char isr_name[30];
232
233         enum skd_drvr_state state;
234         u32 drive_state;
235
236         u32 cur_max_queue_depth;
237         u32 queue_low_water_mark;
238         u32 dev_max_queue_depth;
239
240         u32 num_fitmsg_context;
241         u32 num_req_context;
242
243         struct skd_fitmsg_context *skmsg_table;
244
245         struct skd_special_context internal_skspcl;
246         u32 read_cap_blocksize;
247         u32 read_cap_last_lba;
248         int read_cap_is_valid;
249         int inquiry_is_valid;
250         u8 inq_serial_num[13];  /*12 chars plus null term */
251
252         u8 skcomp_cycle;
253         u32 skcomp_ix;
254         struct kmem_cache *msgbuf_cache;
255         struct kmem_cache *sglist_cache;
256         struct kmem_cache *databuf_cache;
257         struct fit_completion_entry_v1 *skcomp_table;
258         struct fit_comp_error_info *skerr_table;
259         dma_addr_t cq_dma_address;
260
261         wait_queue_head_t waitq;
262
263         struct timer_list timer;
264         u32 timer_countdown;
265         u32 timer_substate;
266
267         int sgs_per_request;
268         u32 last_mtd;
269
270         u32 proto_ver;
271
272         int dbg_level;
273         u32 connect_time_stamp;
274         int connect_retries;
275 #define SKD_MAX_CONNECT_RETRIES 16
276         u32 drive_jiffies;
277
278         u32 timo_slot;
279
280         struct work_struct start_queue;
281         struct work_struct completion_worker;
282 };
283
284 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
285 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
286 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
287
288 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
289 {
290         u32 val = readl(skdev->mem_map[1] + offset);
291
292         if (unlikely(skdev->dbg_level >= 2))
293                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
294         return val;
295 }
296
297 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
298                                    u32 offset)
299 {
300         writel(val, skdev->mem_map[1] + offset);
301         if (unlikely(skdev->dbg_level >= 2))
302                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
303 }
304
305 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
306                                    u32 offset)
307 {
308         writeq(val, skdev->mem_map[1] + offset);
309         if (unlikely(skdev->dbg_level >= 2))
310                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
311                         val);
312 }
313
314
315 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
316 static int skd_isr_type = SKD_IRQ_DEFAULT;
317
318 module_param(skd_isr_type, int, 0444);
319 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
320                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
321
322 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
323 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
324
325 module_param(skd_max_req_per_msg, int, 0444);
326 MODULE_PARM_DESC(skd_max_req_per_msg,
327                  "Maximum SCSI requests packed in a single message."
328                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
329
330 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
331 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
332 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
333
334 module_param(skd_max_queue_depth, int, 0444);
335 MODULE_PARM_DESC(skd_max_queue_depth,
336                  "Maximum SCSI requests issued to s1120."
337                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
338
339 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
340 module_param(skd_sgs_per_request, int, 0444);
341 MODULE_PARM_DESC(skd_sgs_per_request,
342                  "Maximum SG elements per block request."
343                  " (1-4096, default==256)");
344
345 static int skd_max_pass_thru = 1;
346 module_param(skd_max_pass_thru, int, 0444);
347 MODULE_PARM_DESC(skd_max_pass_thru,
348                  "Maximum SCSI pass-thru at a time. IGNORED");
349
350 module_param(skd_dbg_level, int, 0444);
351 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
352
353 module_param(skd_isr_comp_limit, int, 0444);
354 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
355
356 /* Major device number dynamically assigned. */
357 static u32 skd_major;
358
359 static void skd_destruct(struct skd_device *skdev);
360 static const struct block_device_operations skd_blockdev_ops;
361 static void skd_send_fitmsg(struct skd_device *skdev,
362                             struct skd_fitmsg_context *skmsg);
363 static void skd_send_special_fitmsg(struct skd_device *skdev,
364                                     struct skd_special_context *skspcl);
365 static void skd_end_request(struct skd_device *skdev, struct request *req,
366                             blk_status_t status);
367 static bool skd_preop_sg_list(struct skd_device *skdev,
368                              struct skd_request_context *skreq);
369 static void skd_postop_sg_list(struct skd_device *skdev,
370                                struct skd_request_context *skreq);
371
372 static void skd_restart_device(struct skd_device *skdev);
373 static int skd_quiesce_dev(struct skd_device *skdev);
374 static int skd_unquiesce_dev(struct skd_device *skdev);
375 static void skd_disable_interrupts(struct skd_device *skdev);
376 static void skd_isr_fwstate(struct skd_device *skdev);
377 static void skd_recover_requests(struct skd_device *skdev);
378 static void skd_soft_reset(struct skd_device *skdev);
379
380 const char *skd_drive_state_to_str(int state);
381 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
382 static void skd_log_skdev(struct skd_device *skdev, const char *event);
383 static void skd_log_skreq(struct skd_device *skdev,
384                           struct skd_request_context *skreq, const char *event);
385
386 /*
387  *****************************************************************************
388  * READ/WRITE REQUESTS
389  *****************************************************************************
390  */
391 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
392 {
393         int *count = data;
394
395         count++;
396 }
397
398 static int skd_in_flight(struct skd_device *skdev)
399 {
400         int count = 0;
401
402         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
403
404         return count;
405 }
406
407 static void
408 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
409                 int data_dir, unsigned lba,
410                 unsigned count)
411 {
412         if (data_dir == READ)
413                 scsi_req->cdb[0] = READ_10;
414         else
415                 scsi_req->cdb[0] = WRITE_10;
416
417         scsi_req->cdb[1] = 0;
418         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
419         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
420         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
421         scsi_req->cdb[5] = (lba & 0xff);
422         scsi_req->cdb[6] = 0;
423         scsi_req->cdb[7] = (count & 0xff00) >> 8;
424         scsi_req->cdb[8] = count & 0xff;
425         scsi_req->cdb[9] = 0;
426 }
427
428 static void
429 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
430                             struct skd_request_context *skreq)
431 {
432         skreq->flush_cmd = 1;
433
434         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
435         scsi_req->cdb[1] = 0;
436         scsi_req->cdb[2] = 0;
437         scsi_req->cdb[3] = 0;
438         scsi_req->cdb[4] = 0;
439         scsi_req->cdb[5] = 0;
440         scsi_req->cdb[6] = 0;
441         scsi_req->cdb[7] = 0;
442         scsi_req->cdb[8] = 0;
443         scsi_req->cdb[9] = 0;
444 }
445
446 /*
447  * Return true if and only if all pending requests should be failed.
448  */
449 static bool skd_fail_all(struct request_queue *q)
450 {
451         struct skd_device *skdev = q->queuedata;
452
453         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
454
455         skd_log_skdev(skdev, "req_not_online");
456         switch (skdev->state) {
457         case SKD_DRVR_STATE_PAUSING:
458         case SKD_DRVR_STATE_PAUSED:
459         case SKD_DRVR_STATE_STARTING:
460         case SKD_DRVR_STATE_RESTARTING:
461         case SKD_DRVR_STATE_WAIT_BOOT:
462         /* In case of starting, we haven't started the queue,
463          * so we can't get here... but requests are
464          * possibly hanging out waiting for us because we
465          * reported the dev/skd0 already.  They'll wait
466          * forever if connect doesn't complete.
467          * What to do??? delay dev/skd0 ??
468          */
469         case SKD_DRVR_STATE_BUSY:
470         case SKD_DRVR_STATE_BUSY_IMMINENT:
471         case SKD_DRVR_STATE_BUSY_ERASE:
472                 return false;
473
474         case SKD_DRVR_STATE_BUSY_SANITIZE:
475         case SKD_DRVR_STATE_STOPPING:
476         case SKD_DRVR_STATE_SYNCING:
477         case SKD_DRVR_STATE_FAULT:
478         case SKD_DRVR_STATE_DISAPPEARED:
479         default:
480                 return true;
481         }
482 }
483
484 static void skd_process_request(struct request *req, bool last)
485 {
486         struct request_queue *const q = req->q;
487         struct skd_device *skdev = q->queuedata;
488         struct skd_fitmsg_context *skmsg;
489         struct fit_msg_hdr *fmh;
490         const u32 tag = blk_mq_unique_tag(req);
491         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
492         struct skd_scsi_request *scsi_req;
493         unsigned long flags;
494         const u32 lba = blk_rq_pos(req);
495         const u32 count = blk_rq_sectors(req);
496         const int data_dir = rq_data_dir(req);
497
498         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
499                   tag, skd_max_queue_depth, q->nr_requests);
500
501         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
502
503         dev_dbg(&skdev->pdev->dev,
504                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
505                 lba, count, count, data_dir);
506
507         skreq->id = tag + SKD_ID_RW_REQUEST;
508         skreq->flush_cmd = 0;
509         skreq->n_sg = 0;
510         skreq->sg_byte_count = 0;
511
512         skreq->fitmsg_id = 0;
513
514         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
515
516         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
517                 dev_dbg(&skdev->pdev->dev, "error Out\n");
518                 skd_end_request(skdev, blk_mq_rq_from_pdu(skreq),
519                                 BLK_STS_RESOURCE);
520                 return;
521         }
522
523         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
524                                    skreq->n_sg *
525                                    sizeof(struct fit_sg_descriptor),
526                                    DMA_TO_DEVICE);
527
528         spin_lock_irqsave(&skdev->lock, flags);
529         /* Either a FIT msg is in progress or we have to start one. */
530         skmsg = skdev->skmsg;
531         if (!skmsg) {
532                 skmsg = &skdev->skmsg_table[tag];
533                 skdev->skmsg = skmsg;
534
535                 /* Initialize the FIT msg header */
536                 fmh = &skmsg->msg_buf->fmh;
537                 memset(fmh, 0, sizeof(*fmh));
538                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
539                 skmsg->length = sizeof(*fmh);
540         } else {
541                 fmh = &skmsg->msg_buf->fmh;
542         }
543
544         skreq->fitmsg_id = skmsg->id;
545
546         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
547         memset(scsi_req, 0, sizeof(*scsi_req));
548
549         scsi_req->hdr.tag = skreq->id;
550         scsi_req->hdr.sg_list_dma_address =
551                 cpu_to_be64(skreq->sksg_dma_address);
552
553         if (req_op(req) == REQ_OP_FLUSH) {
554                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
555                 SKD_ASSERT(skreq->flush_cmd == 1);
556         } else {
557                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
558         }
559
560         if (req->cmd_flags & REQ_FUA)
561                 scsi_req->cdb[1] |= SKD_FUA_NV;
562
563         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
564
565         /* Complete resource allocations. */
566         skreq->state = SKD_REQ_STATE_BUSY;
567
568         skmsg->length += sizeof(struct skd_scsi_request);
569         fmh->num_protocol_cmds_coalesced++;
570
571         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
572                 skd_in_flight(skdev));
573
574         /*
575          * If the FIT msg buffer is full send it.
576          */
577         if (last || fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
578                 skd_send_fitmsg(skdev, skmsg);
579                 skdev->skmsg = NULL;
580         }
581         spin_unlock_irqrestore(&skdev->lock, flags);
582 }
583
584 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
585                                     const struct blk_mq_queue_data *mqd)
586 {
587         struct request *req = mqd->rq;
588         struct request_queue *q = req->q;
589         struct skd_device *skdev = q->queuedata;
590
591         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
592                 blk_mq_start_request(req);
593                 skd_process_request(req, mqd->last);
594
595                 return BLK_STS_OK;
596         } else {
597                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
598         }
599
600         return BLK_STS_OK;
601 }
602
603 static enum blk_eh_timer_return skd_timed_out(struct request *req)
604 {
605         struct skd_device *skdev = req->q->queuedata;
606
607         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
608                 blk_mq_unique_tag(req));
609
610         return BLK_EH_HANDLED;
611 }
612
613 static void skd_end_request(struct skd_device *skdev, struct request *req,
614                             blk_status_t error)
615 {
616         if (unlikely(error)) {
617                 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
618                 u32 lba = (u32)blk_rq_pos(req);
619                 u32 count = blk_rq_sectors(req);
620
621                 dev_err(&skdev->pdev->dev,
622                         "Error cmd=%s sect=%u count=%u id=0x%x\n", cmd, lba,
623                         count, req->tag);
624         } else
625                 dev_dbg(&skdev->pdev->dev, "id=0x%x error=%d\n", req->tag,
626                         error);
627
628         blk_mq_end_request(req, error);
629 }
630
631 /* Only called in case of a request timeout */
632 static void skd_softirq_done(struct request *req)
633 {
634         struct skd_device *skdev = req->q->queuedata;
635         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
636         unsigned long flags;
637
638         spin_lock_irqsave(&skdev->lock, flags);
639         skd_end_request(skdev, blk_mq_rq_from_pdu(skreq), BLK_STS_TIMEOUT);
640         spin_unlock_irqrestore(&skdev->lock, flags);
641 }
642
643 static bool skd_preop_sg_list(struct skd_device *skdev,
644                              struct skd_request_context *skreq)
645 {
646         struct request *req = blk_mq_rq_from_pdu(skreq);
647         struct scatterlist *sgl = &skreq->sg[0], *sg;
648         int n_sg;
649         int i;
650
651         skreq->sg_byte_count = 0;
652
653         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
654                      skreq->data_dir != DMA_FROM_DEVICE);
655
656         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
657         if (n_sg <= 0)
658                 return false;
659
660         /*
661          * Map scatterlist to PCI bus addresses.
662          * Note PCI might change the number of entries.
663          */
664         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
665         if (n_sg <= 0)
666                 return false;
667
668         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
669
670         skreq->n_sg = n_sg;
671
672         for_each_sg(sgl, sg, n_sg, i) {
673                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
674                 u32 cnt = sg_dma_len(sg);
675                 uint64_t dma_addr = sg_dma_address(sg);
676
677                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
678                 sgd->byte_count = cnt;
679                 skreq->sg_byte_count += cnt;
680                 sgd->host_side_addr = dma_addr;
681                 sgd->dev_side_addr = 0;
682         }
683
684         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
685         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
686
687         if (unlikely(skdev->dbg_level > 1)) {
688                 dev_dbg(&skdev->pdev->dev,
689                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
690                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
691                 for (i = 0; i < n_sg; i++) {
692                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
693
694                         dev_dbg(&skdev->pdev->dev,
695                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
696                                 i, sgd->byte_count, sgd->control,
697                                 sgd->host_side_addr, sgd->next_desc_ptr);
698                 }
699         }
700
701         return true;
702 }
703
704 static void skd_postop_sg_list(struct skd_device *skdev,
705                                struct skd_request_context *skreq)
706 {
707         /*
708          * restore the next ptr for next IO request so we
709          * don't have to set it every time.
710          */
711         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
712                 skreq->sksg_dma_address +
713                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
714         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
715 }
716
717 /*
718  *****************************************************************************
719  * TIMER
720  *****************************************************************************
721  */
722
723 static void skd_timer_tick_not_online(struct skd_device *skdev);
724
725 static void skd_start_queue(struct work_struct *work)
726 {
727         struct skd_device *skdev = container_of(work, typeof(*skdev),
728                                                 start_queue);
729
730         /*
731          * Although it is safe to call blk_start_queue() from interrupt
732          * context, blk_mq_start_hw_queues() must not be called from
733          * interrupt context.
734          */
735         blk_mq_start_hw_queues(skdev->queue);
736 }
737
738 static void skd_timer_tick(ulong arg)
739 {
740         struct skd_device *skdev = (struct skd_device *)arg;
741         unsigned long reqflags;
742         u32 state;
743
744         if (skdev->state == SKD_DRVR_STATE_FAULT)
745                 /* The driver has declared fault, and we want it to
746                  * stay that way until driver is reloaded.
747                  */
748                 return;
749
750         spin_lock_irqsave(&skdev->lock, reqflags);
751
752         state = SKD_READL(skdev, FIT_STATUS);
753         state &= FIT_SR_DRIVE_STATE_MASK;
754         if (state != skdev->drive_state)
755                 skd_isr_fwstate(skdev);
756
757         if (skdev->state != SKD_DRVR_STATE_ONLINE)
758                 skd_timer_tick_not_online(skdev);
759
760         mod_timer(&skdev->timer, (jiffies + HZ));
761
762         spin_unlock_irqrestore(&skdev->lock, reqflags);
763 }
764
765 static void skd_timer_tick_not_online(struct skd_device *skdev)
766 {
767         switch (skdev->state) {
768         case SKD_DRVR_STATE_IDLE:
769         case SKD_DRVR_STATE_LOAD:
770                 break;
771         case SKD_DRVR_STATE_BUSY_SANITIZE:
772                 dev_dbg(&skdev->pdev->dev,
773                         "drive busy sanitize[%x], driver[%x]\n",
774                         skdev->drive_state, skdev->state);
775                 /* If we've been in sanitize for 3 seconds, we figure we're not
776                  * going to get anymore completions, so recover requests now
777                  */
778                 if (skdev->timer_countdown > 0) {
779                         skdev->timer_countdown--;
780                         return;
781                 }
782                 skd_recover_requests(skdev);
783                 break;
784
785         case SKD_DRVR_STATE_BUSY:
786         case SKD_DRVR_STATE_BUSY_IMMINENT:
787         case SKD_DRVR_STATE_BUSY_ERASE:
788                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
789                         skdev->state, skdev->timer_countdown);
790                 if (skdev->timer_countdown > 0) {
791                         skdev->timer_countdown--;
792                         return;
793                 }
794                 dev_dbg(&skdev->pdev->dev,
795                         "busy[%x], timedout=%d, restarting device.",
796                         skdev->state, skdev->timer_countdown);
797                 skd_restart_device(skdev);
798                 break;
799
800         case SKD_DRVR_STATE_WAIT_BOOT:
801         case SKD_DRVR_STATE_STARTING:
802                 if (skdev->timer_countdown > 0) {
803                         skdev->timer_countdown--;
804                         return;
805                 }
806                 /* For now, we fault the drive.  Could attempt resets to
807                  * revcover at some point. */
808                 skdev->state = SKD_DRVR_STATE_FAULT;
809
810                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
811                         skdev->drive_state);
812
813                 /*start the queue so we can respond with error to requests */
814                 /* wakeup anyone waiting for startup complete */
815                 schedule_work(&skdev->start_queue);
816                 skdev->gendisk_on = -1;
817                 wake_up_interruptible(&skdev->waitq);
818                 break;
819
820         case SKD_DRVR_STATE_ONLINE:
821                 /* shouldn't get here. */
822                 break;
823
824         case SKD_DRVR_STATE_PAUSING:
825         case SKD_DRVR_STATE_PAUSED:
826                 break;
827
828         case SKD_DRVR_STATE_RESTARTING:
829                 if (skdev->timer_countdown > 0) {
830                         skdev->timer_countdown--;
831                         return;
832                 }
833                 /* For now, we fault the drive. Could attempt resets to
834                  * revcover at some point. */
835                 skdev->state = SKD_DRVR_STATE_FAULT;
836                 dev_err(&skdev->pdev->dev,
837                         "DriveFault Reconnect Timeout (%x)\n",
838                         skdev->drive_state);
839
840                 /*
841                  * Recovering does two things:
842                  * 1. completes IO with error
843                  * 2. reclaims dma resources
844                  * When is it safe to recover requests?
845                  * - if the drive state is faulted
846                  * - if the state is still soft reset after out timeout
847                  * - if the drive registers are dead (state = FF)
848                  * If it is "unsafe", we still need to recover, so we will
849                  * disable pci bus mastering and disable our interrupts.
850                  */
851
852                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
853                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
854                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
855                         /* It never came out of soft reset. Try to
856                          * recover the requests and then let them
857                          * fail. This is to mitigate hung processes. */
858                         skd_recover_requests(skdev);
859                 else {
860                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
861                                 skdev->drive_state);
862                         pci_disable_device(skdev->pdev);
863                         skd_disable_interrupts(skdev);
864                         skd_recover_requests(skdev);
865                 }
866
867                 /*start the queue so we can respond with error to requests */
868                 /* wakeup anyone waiting for startup complete */
869                 schedule_work(&skdev->start_queue);
870                 skdev->gendisk_on = -1;
871                 wake_up_interruptible(&skdev->waitq);
872                 break;
873
874         case SKD_DRVR_STATE_RESUMING:
875         case SKD_DRVR_STATE_STOPPING:
876         case SKD_DRVR_STATE_SYNCING:
877         case SKD_DRVR_STATE_FAULT:
878         case SKD_DRVR_STATE_DISAPPEARED:
879         default:
880                 break;
881         }
882 }
883
884 static int skd_start_timer(struct skd_device *skdev)
885 {
886         int rc;
887
888         setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
889
890         rc = mod_timer(&skdev->timer, (jiffies + HZ));
891         if (rc)
892                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
893         return rc;
894 }
895
896 static void skd_kill_timer(struct skd_device *skdev)
897 {
898         del_timer_sync(&skdev->timer);
899 }
900
901 /*
902  *****************************************************************************
903  * INTERNAL REQUESTS -- generated by driver itself
904  *****************************************************************************
905  */
906
907 static int skd_format_internal_skspcl(struct skd_device *skdev)
908 {
909         struct skd_special_context *skspcl = &skdev->internal_skspcl;
910         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
911         struct fit_msg_hdr *fmh;
912         uint64_t dma_address;
913         struct skd_scsi_request *scsi;
914
915         fmh = &skspcl->msg_buf->fmh;
916         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
917         fmh->num_protocol_cmds_coalesced = 1;
918
919         scsi = &skspcl->msg_buf->scsi[0];
920         memset(scsi, 0, sizeof(*scsi));
921         dma_address = skspcl->req.sksg_dma_address;
922         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
923         skspcl->req.n_sg = 1;
924         sgd->control = FIT_SGD_CONTROL_LAST;
925         sgd->byte_count = 0;
926         sgd->host_side_addr = skspcl->db_dma_address;
927         sgd->dev_side_addr = 0;
928         sgd->next_desc_ptr = 0LL;
929
930         return 1;
931 }
932
933 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
934
935 static void skd_send_internal_skspcl(struct skd_device *skdev,
936                                      struct skd_special_context *skspcl,
937                                      u8 opcode)
938 {
939         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
940         struct skd_scsi_request *scsi;
941         unsigned char *buf = skspcl->data_buf;
942         int i;
943
944         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
945                 /*
946                  * A refresh is already in progress.
947                  * Just wait for it to finish.
948                  */
949                 return;
950
951         SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
952         skspcl->req.state = SKD_REQ_STATE_BUSY;
953         skspcl->req.id += SKD_ID_INCR;
954
955         scsi = &skspcl->msg_buf->scsi[0];
956         scsi->hdr.tag = skspcl->req.id;
957
958         memset(scsi->cdb, 0, sizeof(scsi->cdb));
959
960         switch (opcode) {
961         case TEST_UNIT_READY:
962                 scsi->cdb[0] = TEST_UNIT_READY;
963                 sgd->byte_count = 0;
964                 scsi->hdr.sg_list_len_bytes = 0;
965                 break;
966
967         case READ_CAPACITY:
968                 scsi->cdb[0] = READ_CAPACITY;
969                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
970                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
971                 break;
972
973         case INQUIRY:
974                 scsi->cdb[0] = INQUIRY;
975                 scsi->cdb[1] = 0x01;    /* evpd */
976                 scsi->cdb[2] = 0x80;    /* serial number page */
977                 scsi->cdb[4] = 0x10;
978                 sgd->byte_count = 16;
979                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
980                 break;
981
982         case SYNCHRONIZE_CACHE:
983                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
984                 sgd->byte_count = 0;
985                 scsi->hdr.sg_list_len_bytes = 0;
986                 break;
987
988         case WRITE_BUFFER:
989                 scsi->cdb[0] = WRITE_BUFFER;
990                 scsi->cdb[1] = 0x02;
991                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
992                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
993                 sgd->byte_count = WR_BUF_SIZE;
994                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
995                 /* fill incrementing byte pattern */
996                 for (i = 0; i < sgd->byte_count; i++)
997                         buf[i] = i & 0xFF;
998                 break;
999
1000         case READ_BUFFER:
1001                 scsi->cdb[0] = READ_BUFFER;
1002                 scsi->cdb[1] = 0x02;
1003                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1004                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1005                 sgd->byte_count = WR_BUF_SIZE;
1006                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1007                 memset(skspcl->data_buf, 0, sgd->byte_count);
1008                 break;
1009
1010         default:
1011                 SKD_ASSERT("Don't know what to send");
1012                 return;
1013
1014         }
1015         skd_send_special_fitmsg(skdev, skspcl);
1016 }
1017
1018 static void skd_refresh_device_data(struct skd_device *skdev)
1019 {
1020         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1021
1022         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1023 }
1024
1025 static int skd_chk_read_buf(struct skd_device *skdev,
1026                             struct skd_special_context *skspcl)
1027 {
1028         unsigned char *buf = skspcl->data_buf;
1029         int i;
1030
1031         /* check for incrementing byte pattern */
1032         for (i = 0; i < WR_BUF_SIZE; i++)
1033                 if (buf[i] != (i & 0xFF))
1034                         return 1;
1035
1036         return 0;
1037 }
1038
1039 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1040                                  u8 code, u8 qual, u8 fruc)
1041 {
1042         /* If the check condition is of special interest, log a message */
1043         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1044             && (code == 0x04) && (qual == 0x06)) {
1045                 dev_err(&skdev->pdev->dev,
1046                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1047                         key, code, qual, fruc);
1048         }
1049 }
1050
1051 static void skd_complete_internal(struct skd_device *skdev,
1052                                   struct fit_completion_entry_v1 *skcomp,
1053                                   struct fit_comp_error_info *skerr,
1054                                   struct skd_special_context *skspcl)
1055 {
1056         u8 *buf = skspcl->data_buf;
1057         u8 status;
1058         int i;
1059         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1060
1061         lockdep_assert_held(&skdev->lock);
1062
1063         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1064
1065         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1066
1067         dma_sync_single_for_cpu(&skdev->pdev->dev,
1068                                 skspcl->db_dma_address,
1069                                 skspcl->req.sksg_list[0].byte_count,
1070                                 DMA_BIDIRECTIONAL);
1071
1072         skspcl->req.completion = *skcomp;
1073         skspcl->req.state = SKD_REQ_STATE_IDLE;
1074         skspcl->req.id += SKD_ID_INCR;
1075
1076         status = skspcl->req.completion.status;
1077
1078         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1079                              skerr->qual, skerr->fruc);
1080
1081         switch (scsi->cdb[0]) {
1082         case TEST_UNIT_READY:
1083                 if (status == SAM_STAT_GOOD)
1084                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1085                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1086                          (skerr->key == MEDIUM_ERROR))
1087                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1088                 else {
1089                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1090                                 dev_dbg(&skdev->pdev->dev,
1091                                         "TUR failed, don't send anymore state 0x%x\n",
1092                                         skdev->state);
1093                                 return;
1094                         }
1095                         dev_dbg(&skdev->pdev->dev,
1096                                 "**** TUR failed, retry skerr\n");
1097                         skd_send_internal_skspcl(skdev, skspcl,
1098                                                  TEST_UNIT_READY);
1099                 }
1100                 break;
1101
1102         case WRITE_BUFFER:
1103                 if (status == SAM_STAT_GOOD)
1104                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1105                 else {
1106                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1107                                 dev_dbg(&skdev->pdev->dev,
1108                                         "write buffer failed, don't send anymore state 0x%x\n",
1109                                         skdev->state);
1110                                 return;
1111                         }
1112                         dev_dbg(&skdev->pdev->dev,
1113                                 "**** write buffer failed, retry skerr\n");
1114                         skd_send_internal_skspcl(skdev, skspcl,
1115                                                  TEST_UNIT_READY);
1116                 }
1117                 break;
1118
1119         case READ_BUFFER:
1120                 if (status == SAM_STAT_GOOD) {
1121                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1122                                 skd_send_internal_skspcl(skdev, skspcl,
1123                                                          READ_CAPACITY);
1124                         else {
1125                                 dev_err(&skdev->pdev->dev,
1126                                         "*** W/R Buffer mismatch %d ***\n",
1127                                         skdev->connect_retries);
1128                                 if (skdev->connect_retries <
1129                                     SKD_MAX_CONNECT_RETRIES) {
1130                                         skdev->connect_retries++;
1131                                         skd_soft_reset(skdev);
1132                                 } else {
1133                                         dev_err(&skdev->pdev->dev,
1134                                                 "W/R Buffer Connect Error\n");
1135                                         return;
1136                                 }
1137                         }
1138
1139                 } else {
1140                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1141                                 dev_dbg(&skdev->pdev->dev,
1142                                         "read buffer failed, don't send anymore state 0x%x\n",
1143                                         skdev->state);
1144                                 return;
1145                         }
1146                         dev_dbg(&skdev->pdev->dev,
1147                                 "**** read buffer failed, retry skerr\n");
1148                         skd_send_internal_skspcl(skdev, skspcl,
1149                                                  TEST_UNIT_READY);
1150                 }
1151                 break;
1152
1153         case READ_CAPACITY:
1154                 skdev->read_cap_is_valid = 0;
1155                 if (status == SAM_STAT_GOOD) {
1156                         skdev->read_cap_last_lba =
1157                                 (buf[0] << 24) | (buf[1] << 16) |
1158                                 (buf[2] << 8) | buf[3];
1159                         skdev->read_cap_blocksize =
1160                                 (buf[4] << 24) | (buf[5] << 16) |
1161                                 (buf[6] << 8) | buf[7];
1162
1163                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1164                                 skdev->read_cap_last_lba,
1165                                 skdev->read_cap_blocksize);
1166
1167                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1168
1169                         skdev->read_cap_is_valid = 1;
1170
1171                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1172                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1173                            (skerr->key == MEDIUM_ERROR)) {
1174                         skdev->read_cap_last_lba = ~0;
1175                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1176                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1177                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1178                 } else {
1179                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1180                         skd_send_internal_skspcl(skdev, skspcl,
1181                                                  TEST_UNIT_READY);
1182                 }
1183                 break;
1184
1185         case INQUIRY:
1186                 skdev->inquiry_is_valid = 0;
1187                 if (status == SAM_STAT_GOOD) {
1188                         skdev->inquiry_is_valid = 1;
1189
1190                         for (i = 0; i < 12; i++)
1191                                 skdev->inq_serial_num[i] = buf[i + 4];
1192                         skdev->inq_serial_num[12] = 0;
1193                 }
1194
1195                 if (skd_unquiesce_dev(skdev) < 0)
1196                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1197                  /* connection is complete */
1198                 skdev->connect_retries = 0;
1199                 break;
1200
1201         case SYNCHRONIZE_CACHE:
1202                 if (status == SAM_STAT_GOOD)
1203                         skdev->sync_done = 1;
1204                 else
1205                         skdev->sync_done = -1;
1206                 wake_up_interruptible(&skdev->waitq);
1207                 break;
1208
1209         default:
1210                 SKD_ASSERT("we didn't send this");
1211         }
1212 }
1213
1214 /*
1215  *****************************************************************************
1216  * FIT MESSAGES
1217  *****************************************************************************
1218  */
1219
1220 static void skd_send_fitmsg(struct skd_device *skdev,
1221                             struct skd_fitmsg_context *skmsg)
1222 {
1223         u64 qcmd;
1224
1225         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1226                 skmsg->mb_dma_address, skd_in_flight(skdev));
1227         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1228
1229         qcmd = skmsg->mb_dma_address;
1230         qcmd |= FIT_QCMD_QID_NORMAL;
1231
1232         if (unlikely(skdev->dbg_level > 1)) {
1233                 u8 *bp = (u8 *)skmsg->msg_buf;
1234                 int i;
1235                 for (i = 0; i < skmsg->length; i += 8) {
1236                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1237                                 &bp[i]);
1238                         if (i == 0)
1239                                 i = 64 - 8;
1240                 }
1241         }
1242
1243         if (skmsg->length > 256)
1244                 qcmd |= FIT_QCMD_MSGSIZE_512;
1245         else if (skmsg->length > 128)
1246                 qcmd |= FIT_QCMD_MSGSIZE_256;
1247         else if (skmsg->length > 64)
1248                 qcmd |= FIT_QCMD_MSGSIZE_128;
1249         else
1250                 /*
1251                  * This makes no sense because the FIT msg header is
1252                  * 64 bytes. If the msg is only 64 bytes long it has
1253                  * no payload.
1254                  */
1255                 qcmd |= FIT_QCMD_MSGSIZE_64;
1256
1257         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1258                                    skmsg->length, DMA_TO_DEVICE);
1259
1260         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1261         smp_wmb();
1262
1263         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1264 }
1265
1266 static void skd_send_special_fitmsg(struct skd_device *skdev,
1267                                     struct skd_special_context *skspcl)
1268 {
1269         u64 qcmd;
1270
1271         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1272
1273         if (unlikely(skdev->dbg_level > 1)) {
1274                 u8 *bp = (u8 *)skspcl->msg_buf;
1275                 int i;
1276
1277                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1278                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1279                                 &bp[i]);
1280                         if (i == 0)
1281                                 i = 64 - 8;
1282                 }
1283
1284                 dev_dbg(&skdev->pdev->dev,
1285                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1286                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1287                         skspcl->req.sksg_dma_address);
1288                 for (i = 0; i < skspcl->req.n_sg; i++) {
1289                         struct fit_sg_descriptor *sgd =
1290                                 &skspcl->req.sksg_list[i];
1291
1292                         dev_dbg(&skdev->pdev->dev,
1293                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1294                                 i, sgd->byte_count, sgd->control,
1295                                 sgd->host_side_addr, sgd->next_desc_ptr);
1296                 }
1297         }
1298
1299         /*
1300          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1301          * and one 64-byte SSDI command.
1302          */
1303         qcmd = skspcl->mb_dma_address;
1304         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1305
1306         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1307                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1308         dma_sync_single_for_device(&skdev->pdev->dev,
1309                                    skspcl->req.sksg_dma_address,
1310                                    1 * sizeof(struct fit_sg_descriptor),
1311                                    DMA_TO_DEVICE);
1312         dma_sync_single_for_device(&skdev->pdev->dev,
1313                                    skspcl->db_dma_address,
1314                                    skspcl->req.sksg_list[0].byte_count,
1315                                    DMA_BIDIRECTIONAL);
1316
1317         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1318         smp_wmb();
1319
1320         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1321 }
1322
1323 /*
1324  *****************************************************************************
1325  * COMPLETION QUEUE
1326  *****************************************************************************
1327  */
1328
1329 static void skd_complete_other(struct skd_device *skdev,
1330                                struct fit_completion_entry_v1 *skcomp,
1331                                struct fit_comp_error_info *skerr);
1332
1333 struct sns_info {
1334         u8 type;
1335         u8 stat;
1336         u8 key;
1337         u8 asc;
1338         u8 ascq;
1339         u8 mask;
1340         enum skd_check_status_action action;
1341 };
1342
1343 static struct sns_info skd_chkstat_table[] = {
1344         /* Good */
1345         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1346           SKD_CHECK_STATUS_REPORT_GOOD },
1347
1348         /* Smart alerts */
1349         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1350           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1351         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1352           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1353         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1354           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1355
1356         /* Retry (with limits) */
1357         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1358           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1359         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1360           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1361         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1362           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1363         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1364           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1365
1366         /* Busy (or about to be) */
1367         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1368           SKD_CHECK_STATUS_BUSY_IMMINENT },
1369 };
1370
1371 /*
1372  * Look up status and sense data to decide how to handle the error
1373  * from the device.
1374  * mask says which fields must match e.g., mask=0x18 means check
1375  * type and stat, ignore key, asc, ascq.
1376  */
1377
1378 static enum skd_check_status_action
1379 skd_check_status(struct skd_device *skdev,
1380                  u8 cmp_status, struct fit_comp_error_info *skerr)
1381 {
1382         int i;
1383
1384         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1385                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1386
1387         dev_dbg(&skdev->pdev->dev,
1388                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1389                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1390                 skerr->fruc);
1391
1392         /* Does the info match an entry in the good category? */
1393         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1394                 struct sns_info *sns = &skd_chkstat_table[i];
1395
1396                 if (sns->mask & 0x10)
1397                         if (skerr->type != sns->type)
1398                                 continue;
1399
1400                 if (sns->mask & 0x08)
1401                         if (cmp_status != sns->stat)
1402                                 continue;
1403
1404                 if (sns->mask & 0x04)
1405                         if (skerr->key != sns->key)
1406                                 continue;
1407
1408                 if (sns->mask & 0x02)
1409                         if (skerr->code != sns->asc)
1410                                 continue;
1411
1412                 if (sns->mask & 0x01)
1413                         if (skerr->qual != sns->ascq)
1414                                 continue;
1415
1416                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1417                         dev_err(&skdev->pdev->dev,
1418                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1419                                 skerr->key, skerr->code, skerr->qual);
1420                 }
1421                 return sns->action;
1422         }
1423
1424         /* No other match, so nonzero status means error,
1425          * zero status means good
1426          */
1427         if (cmp_status) {
1428                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1429                 return SKD_CHECK_STATUS_REPORT_ERROR;
1430         }
1431
1432         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1433         return SKD_CHECK_STATUS_REPORT_GOOD;
1434 }
1435
1436 static void skd_resolve_req_exception(struct skd_device *skdev,
1437                                       struct skd_request_context *skreq,
1438                                       struct request *req)
1439 {
1440         u8 cmp_status = skreq->completion.status;
1441
1442         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1443         case SKD_CHECK_STATUS_REPORT_GOOD:
1444         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1445                 skd_end_request(skdev, req, BLK_STS_OK);
1446                 break;
1447
1448         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1449                 skd_log_skreq(skdev, skreq, "retry(busy)");
1450                 blk_requeue_request(skdev->queue, req);
1451                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1452                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1453                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1454                 skd_quiesce_dev(skdev);
1455                 break;
1456
1457         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1458                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1459                         skd_log_skreq(skdev, skreq, "retry");
1460                         blk_requeue_request(skdev->queue, req);
1461                         break;
1462                 }
1463                 /* fall through */
1464
1465         case SKD_CHECK_STATUS_REPORT_ERROR:
1466         default:
1467                 skd_end_request(skdev, req, BLK_STS_IOERR);
1468                 break;
1469         }
1470 }
1471
1472 static void skd_release_skreq(struct skd_device *skdev,
1473                               struct skd_request_context *skreq)
1474 {
1475         /*
1476          * Reclaim the skd_request_context
1477          */
1478         skreq->state = SKD_REQ_STATE_IDLE;
1479         skreq->id += SKD_ID_INCR;
1480 }
1481
1482 static int skd_isr_completion_posted(struct skd_device *skdev,
1483                                         int limit, int *enqueued)
1484 {
1485         struct fit_completion_entry_v1 *skcmp;
1486         struct fit_comp_error_info *skerr;
1487         u16 req_id;
1488         u32 tag;
1489         u16 hwq = 0;
1490         struct request *rq;
1491         struct skd_request_context *skreq;
1492         u16 cmp_cntxt;
1493         u8 cmp_status;
1494         u8 cmp_cycle;
1495         u32 cmp_bytes;
1496         int rc;
1497         int processed = 0;
1498
1499         lockdep_assert_held(&skdev->lock);
1500
1501         for (;; ) {
1502                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1503
1504                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1505                 cmp_cycle = skcmp->cycle;
1506                 cmp_cntxt = skcmp->tag;
1507                 cmp_status = skcmp->status;
1508                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1509
1510                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1511
1512                 dev_dbg(&skdev->pdev->dev,
1513                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1514                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1515                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1516                         cmp_bytes, skdev->proto_ver);
1517
1518                 if (cmp_cycle != skdev->skcomp_cycle) {
1519                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1520                         break;
1521                 }
1522                 /*
1523                  * Update the completion queue head index and possibly
1524                  * the completion cycle count. 8-bit wrap-around.
1525                  */
1526                 skdev->skcomp_ix++;
1527                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1528                         skdev->skcomp_ix = 0;
1529                         skdev->skcomp_cycle++;
1530                 }
1531
1532                 /*
1533                  * The command context is a unique 32-bit ID. The low order
1534                  * bits help locate the request. The request is usually a
1535                  * r/w request (see skd_start() above) or a special request.
1536                  */
1537                 req_id = cmp_cntxt;
1538                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1539
1540                 /* Is this other than a r/w request? */
1541                 if (tag >= skdev->num_req_context) {
1542                         /*
1543                          * This is not a completion for a r/w request.
1544                          */
1545                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1546                                                       tag));
1547                         skd_complete_other(skdev, skcmp, skerr);
1548                         continue;
1549                 }
1550
1551                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1552                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1553                          tag))
1554                         continue;
1555                 skreq = blk_mq_rq_to_pdu(rq);
1556
1557                 /*
1558                  * Make sure the request ID for the slot matches.
1559                  */
1560                 if (skreq->id != req_id) {
1561                         dev_dbg(&skdev->pdev->dev,
1562                                 "mismatch comp_id=0x%x req_id=0x%x\n", req_id,
1563                                 skreq->id);
1564                         {
1565                                 u16 new_id = cmp_cntxt;
1566                                 dev_err(&skdev->pdev->dev,
1567                                         "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1568                                         req_id, skreq->id, new_id);
1569
1570                                 continue;
1571                         }
1572                 }
1573
1574                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1575
1576                 skreq->completion = *skcmp;
1577                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1578                         skreq->err_info = *skerr;
1579                         skd_log_check_status(skdev, cmp_status, skerr->key,
1580                                              skerr->code, skerr->qual,
1581                                              skerr->fruc);
1582                 }
1583                 /* Release DMA resources for the request. */
1584                 if (skreq->n_sg > 0)
1585                         skd_postop_sg_list(skdev, skreq);
1586
1587                 skd_release_skreq(skdev, skreq);
1588
1589                 /*
1590                  * Capture the outcome and post it back to the native request.
1591                  */
1592                 if (likely(cmp_status == SAM_STAT_GOOD))
1593                         skd_end_request(skdev, rq, BLK_STS_OK);
1594                 else
1595                         skd_resolve_req_exception(skdev, skreq, rq);
1596
1597                 /* skd_isr_comp_limit equal zero means no limit */
1598                 if (limit) {
1599                         if (++processed >= limit) {
1600                                 rc = 1;
1601                                 break;
1602                         }
1603                 }
1604         }
1605
1606         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1607             skd_in_flight(skdev) == 0) {
1608                 skdev->state = SKD_DRVR_STATE_PAUSED;
1609                 wake_up_interruptible(&skdev->waitq);
1610         }
1611
1612         return rc;
1613 }
1614
1615 static void skd_complete_other(struct skd_device *skdev,
1616                                struct fit_completion_entry_v1 *skcomp,
1617                                struct fit_comp_error_info *skerr)
1618 {
1619         u32 req_id = 0;
1620         u32 req_table;
1621         u32 req_slot;
1622         struct skd_special_context *skspcl;
1623
1624         lockdep_assert_held(&skdev->lock);
1625
1626         req_id = skcomp->tag;
1627         req_table = req_id & SKD_ID_TABLE_MASK;
1628         req_slot = req_id & SKD_ID_SLOT_MASK;
1629
1630         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1631                 req_id, req_slot);
1632
1633         /*
1634          * Based on the request id, determine how to dispatch this completion.
1635          * This swich/case is finding the good cases and forwarding the
1636          * completion entry. Errors are reported below the switch.
1637          */
1638         switch (req_table) {
1639         case SKD_ID_RW_REQUEST:
1640                 /*
1641                  * The caller, skd_isr_completion_posted() above,
1642                  * handles r/w requests. The only way we get here
1643                  * is if the req_slot is out of bounds.
1644                  */
1645                 break;
1646
1647         case SKD_ID_INTERNAL:
1648                 if (req_slot == 0) {
1649                         skspcl = &skdev->internal_skspcl;
1650                         if (skspcl->req.id == req_id &&
1651                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1652                                 skd_complete_internal(skdev,
1653                                                       skcomp, skerr, skspcl);
1654                                 return;
1655                         }
1656                 }
1657                 break;
1658
1659         case SKD_ID_FIT_MSG:
1660                 /*
1661                  * These id's should never appear in a completion record.
1662                  */
1663                 break;
1664
1665         default:
1666                 /*
1667                  * These id's should never appear anywhere;
1668                  */
1669                 break;
1670         }
1671
1672         /*
1673          * If we get here it is a bad or stale id.
1674          */
1675 }
1676
1677 static void skd_reset_skcomp(struct skd_device *skdev)
1678 {
1679         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1680
1681         skdev->skcomp_ix = 0;
1682         skdev->skcomp_cycle = 1;
1683 }
1684
1685 /*
1686  *****************************************************************************
1687  * INTERRUPTS
1688  *****************************************************************************
1689  */
1690 static void skd_completion_worker(struct work_struct *work)
1691 {
1692         struct skd_device *skdev =
1693                 container_of(work, struct skd_device, completion_worker);
1694         unsigned long flags;
1695         int flush_enqueued = 0;
1696
1697         spin_lock_irqsave(&skdev->lock, flags);
1698
1699         /*
1700          * pass in limit=0, which means no limit..
1701          * process everything in compq
1702          */
1703         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1704         schedule_work(&skdev->start_queue);
1705
1706         spin_unlock_irqrestore(&skdev->lock, flags);
1707 }
1708
1709 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1710
1711 static irqreturn_t
1712 skd_isr(int irq, void *ptr)
1713 {
1714         struct skd_device *skdev = ptr;
1715         u32 intstat;
1716         u32 ack;
1717         int rc = 0;
1718         int deferred = 0;
1719         int flush_enqueued = 0;
1720
1721         spin_lock(&skdev->lock);
1722
1723         for (;; ) {
1724                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1725
1726                 ack = FIT_INT_DEF_MASK;
1727                 ack &= intstat;
1728
1729                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1730                         ack);
1731
1732                 /* As long as there is an int pending on device, keep
1733                  * running loop.  When none, get out, but if we've never
1734                  * done any processing, call completion handler?
1735                  */
1736                 if (ack == 0) {
1737                         /* No interrupts on device, but run the completion
1738                          * processor anyway?
1739                          */
1740                         if (rc == 0)
1741                                 if (likely (skdev->state
1742                                         == SKD_DRVR_STATE_ONLINE))
1743                                         deferred = 1;
1744                         break;
1745                 }
1746
1747                 rc = IRQ_HANDLED;
1748
1749                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1750
1751                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1752                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1753                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1754                                 /*
1755                                  * If we have already deferred completion
1756                                  * processing, don't bother running it again
1757                                  */
1758                                 if (deferred == 0)
1759                                         deferred =
1760                                                 skd_isr_completion_posted(skdev,
1761                                                 skd_isr_comp_limit, &flush_enqueued);
1762                         }
1763
1764                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1765                                 skd_isr_fwstate(skdev);
1766                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1767                                     skdev->state ==
1768                                     SKD_DRVR_STATE_DISAPPEARED) {
1769                                         spin_unlock(&skdev->lock);
1770                                         return rc;
1771                                 }
1772                         }
1773
1774                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1775                                 skd_isr_msg_from_dev(skdev);
1776                 }
1777         }
1778
1779         if (unlikely(flush_enqueued))
1780                 schedule_work(&skdev->start_queue);
1781
1782         if (deferred)
1783                 schedule_work(&skdev->completion_worker);
1784         else if (!flush_enqueued)
1785                 schedule_work(&skdev->start_queue);
1786
1787         spin_unlock(&skdev->lock);
1788
1789         return rc;
1790 }
1791
1792 static void skd_drive_fault(struct skd_device *skdev)
1793 {
1794         skdev->state = SKD_DRVR_STATE_FAULT;
1795         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1796 }
1797
1798 static void skd_drive_disappeared(struct skd_device *skdev)
1799 {
1800         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1801         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1802 }
1803
1804 static void skd_isr_fwstate(struct skd_device *skdev)
1805 {
1806         u32 sense;
1807         u32 state;
1808         u32 mtd;
1809         int prev_driver_state = skdev->state;
1810
1811         sense = SKD_READL(skdev, FIT_STATUS);
1812         state = sense & FIT_SR_DRIVE_STATE_MASK;
1813
1814         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1815                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1816                 skd_drive_state_to_str(state), state);
1817
1818         skdev->drive_state = state;
1819
1820         switch (skdev->drive_state) {
1821         case FIT_SR_DRIVE_INIT:
1822                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1823                         skd_disable_interrupts(skdev);
1824                         break;
1825                 }
1826                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1827                         skd_recover_requests(skdev);
1828                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1829                         skdev->timer_countdown = SKD_STARTING_TIMO;
1830                         skdev->state = SKD_DRVR_STATE_STARTING;
1831                         skd_soft_reset(skdev);
1832                         break;
1833                 }
1834                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1835                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1836                 skdev->last_mtd = mtd;
1837                 break;
1838
1839         case FIT_SR_DRIVE_ONLINE:
1840                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1841                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1842                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1843
1844                 skdev->queue_low_water_mark =
1845                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1846                 if (skdev->queue_low_water_mark < 1)
1847                         skdev->queue_low_water_mark = 1;
1848                 dev_info(&skdev->pdev->dev,
1849                          "Queue depth limit=%d dev=%d lowat=%d\n",
1850                          skdev->cur_max_queue_depth,
1851                          skdev->dev_max_queue_depth,
1852                          skdev->queue_low_water_mark);
1853
1854                 skd_refresh_device_data(skdev);
1855                 break;
1856
1857         case FIT_SR_DRIVE_BUSY:
1858                 skdev->state = SKD_DRVR_STATE_BUSY;
1859                 skdev->timer_countdown = SKD_BUSY_TIMO;
1860                 skd_quiesce_dev(skdev);
1861                 break;
1862         case FIT_SR_DRIVE_BUSY_SANITIZE:
1863                 /* set timer for 3 seconds, we'll abort any unfinished
1864                  * commands after that expires
1865                  */
1866                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1867                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1868                 schedule_work(&skdev->start_queue);
1869                 break;
1870         case FIT_SR_DRIVE_BUSY_ERASE:
1871                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1872                 skdev->timer_countdown = SKD_BUSY_TIMO;
1873                 break;
1874         case FIT_SR_DRIVE_OFFLINE:
1875                 skdev->state = SKD_DRVR_STATE_IDLE;
1876                 break;
1877         case FIT_SR_DRIVE_SOFT_RESET:
1878                 switch (skdev->state) {
1879                 case SKD_DRVR_STATE_STARTING:
1880                 case SKD_DRVR_STATE_RESTARTING:
1881                         /* Expected by a caller of skd_soft_reset() */
1882                         break;
1883                 default:
1884                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1885                         break;
1886                 }
1887                 break;
1888         case FIT_SR_DRIVE_FW_BOOTING:
1889                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1890                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1891                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1892                 break;
1893
1894         case FIT_SR_DRIVE_DEGRADED:
1895         case FIT_SR_PCIE_LINK_DOWN:
1896         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1897                 break;
1898
1899         case FIT_SR_DRIVE_FAULT:
1900                 skd_drive_fault(skdev);
1901                 skd_recover_requests(skdev);
1902                 schedule_work(&skdev->start_queue);
1903                 break;
1904
1905         /* PCIe bus returned all Fs? */
1906         case 0xFF:
1907                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1908                          sense);
1909                 skd_drive_disappeared(skdev);
1910                 skd_recover_requests(skdev);
1911                 schedule_work(&skdev->start_queue);
1912                 break;
1913         default:
1914                 /*
1915                  * Uknown FW State. Wait for a state we recognize.
1916                  */
1917                 break;
1918         }
1919         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1920                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1921                 skd_skdev_state_to_str(skdev->state), skdev->state);
1922 }
1923
1924 static void skd_recover_request(struct request *req, void *data, bool reserved)
1925 {
1926         struct skd_device *const skdev = data;
1927         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1928
1929         if (skreq->state != SKD_REQ_STATE_BUSY)
1930                 return;
1931
1932         skd_log_skreq(skdev, skreq, "recover");
1933
1934         /* Release DMA resources for the request. */
1935         if (skreq->n_sg > 0)
1936                 skd_postop_sg_list(skdev, skreq);
1937
1938         skreq->state = SKD_REQ_STATE_IDLE;
1939
1940         skd_end_request(skdev, req, BLK_STS_IOERR);
1941 }
1942
1943 static void skd_recover_requests(struct skd_device *skdev)
1944 {
1945         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1946 }
1947
1948 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1949 {
1950         u32 mfd;
1951         u32 mtd;
1952         u32 data;
1953
1954         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1955
1956         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1957                 skdev->last_mtd);
1958
1959         /* ignore any mtd that is an ack for something we didn't send */
1960         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1961                 return;
1962
1963         switch (FIT_MXD_TYPE(mfd)) {
1964         case FIT_MTD_FITFW_INIT:
1965                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1966
1967                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1968                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1969                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1970                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1971                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1972                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1973                         skd_soft_reset(skdev);
1974                         break;
1975                 }
1976                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1977                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1978                 skdev->last_mtd = mtd;
1979                 break;
1980
1981         case FIT_MTD_GET_CMDQ_DEPTH:
1982                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1983                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1984                                    SKD_N_COMPLETION_ENTRY);
1985                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1986                 skdev->last_mtd = mtd;
1987                 break;
1988
1989         case FIT_MTD_SET_COMPQ_DEPTH:
1990                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1991                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1992                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1993                 skdev->last_mtd = mtd;
1994                 break;
1995
1996         case FIT_MTD_SET_COMPQ_ADDR:
1997                 skd_reset_skcomp(skdev);
1998                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1999                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2000                 skdev->last_mtd = mtd;
2001                 break;
2002
2003         case FIT_MTD_CMD_LOG_HOST_ID:
2004                 skdev->connect_time_stamp = get_seconds();
2005                 data = skdev->connect_time_stamp & 0xFFFF;
2006                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
2007                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2008                 skdev->last_mtd = mtd;
2009                 break;
2010
2011         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
2012                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
2013                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
2014                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
2015                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2016                 skdev->last_mtd = mtd;
2017                 break;
2018
2019         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
2020                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
2021                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
2022                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2023                 skdev->last_mtd = mtd;
2024
2025                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2026                         skdev->connect_time_stamp, skdev->drive_jiffies);
2027                 break;
2028
2029         case FIT_MTD_ARM_QUEUE:
2030                 skdev->last_mtd = 0;
2031                 /*
2032                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2033                  */
2034                 break;
2035
2036         default:
2037                 break;
2038         }
2039 }
2040
2041 static void skd_disable_interrupts(struct skd_device *skdev)
2042 {
2043         u32 sense;
2044
2045         sense = SKD_READL(skdev, FIT_CONTROL);
2046         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2047         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2048         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2049
2050         /* Note that the 1s is written. A 1-bit means
2051          * disable, a 0 means enable.
2052          */
2053         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2054 }
2055
2056 static void skd_enable_interrupts(struct skd_device *skdev)
2057 {
2058         u32 val;
2059
2060         /* unmask interrupts first */
2061         val = FIT_ISH_FW_STATE_CHANGE +
2062               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2063
2064         /* Note that the compliment of mask is written. A 1-bit means
2065          * disable, a 0 means enable. */
2066         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2067         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2068
2069         val = SKD_READL(skdev, FIT_CONTROL);
2070         val |= FIT_CR_ENABLE_INTERRUPTS;
2071         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2072         SKD_WRITEL(skdev, val, FIT_CONTROL);
2073 }
2074
2075 /*
2076  *****************************************************************************
2077  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2078  *****************************************************************************
2079  */
2080
2081 static void skd_soft_reset(struct skd_device *skdev)
2082 {
2083         u32 val;
2084
2085         val = SKD_READL(skdev, FIT_CONTROL);
2086         val |= (FIT_CR_SOFT_RESET);
2087         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2088         SKD_WRITEL(skdev, val, FIT_CONTROL);
2089 }
2090
2091 static void skd_start_device(struct skd_device *skdev)
2092 {
2093         unsigned long flags;
2094         u32 sense;
2095         u32 state;
2096
2097         spin_lock_irqsave(&skdev->lock, flags);
2098
2099         /* ack all ghost interrupts */
2100         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2101
2102         sense = SKD_READL(skdev, FIT_STATUS);
2103
2104         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2105
2106         state = sense & FIT_SR_DRIVE_STATE_MASK;
2107         skdev->drive_state = state;
2108         skdev->last_mtd = 0;
2109
2110         skdev->state = SKD_DRVR_STATE_STARTING;
2111         skdev->timer_countdown = SKD_STARTING_TIMO;
2112
2113         skd_enable_interrupts(skdev);
2114
2115         switch (skdev->drive_state) {
2116         case FIT_SR_DRIVE_OFFLINE:
2117                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2118                 break;
2119
2120         case FIT_SR_DRIVE_FW_BOOTING:
2121                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2122                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2123                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2124                 break;
2125
2126         case FIT_SR_DRIVE_BUSY_SANITIZE:
2127                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2128                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2129                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2130                 break;
2131
2132         case FIT_SR_DRIVE_BUSY_ERASE:
2133                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2134                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2135                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2136                 break;
2137
2138         case FIT_SR_DRIVE_INIT:
2139         case FIT_SR_DRIVE_ONLINE:
2140                 skd_soft_reset(skdev);
2141                 break;
2142
2143         case FIT_SR_DRIVE_BUSY:
2144                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2145                 skdev->state = SKD_DRVR_STATE_BUSY;
2146                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2147                 break;
2148
2149         case FIT_SR_DRIVE_SOFT_RESET:
2150                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2151                 break;
2152
2153         case FIT_SR_DRIVE_FAULT:
2154                 /* Fault state is bad...soft reset won't do it...
2155                  * Hard reset, maybe, but does it work on device?
2156                  * For now, just fault so the system doesn't hang.
2157                  */
2158                 skd_drive_fault(skdev);
2159                 /*start the queue so we can respond with error to requests */
2160                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2161                 schedule_work(&skdev->start_queue);
2162                 skdev->gendisk_on = -1;
2163                 wake_up_interruptible(&skdev->waitq);
2164                 break;
2165
2166         case 0xFF:
2167                 /* Most likely the device isn't there or isn't responding
2168                  * to the BAR1 addresses. */
2169                 skd_drive_disappeared(skdev);
2170                 /*start the queue so we can respond with error to requests */
2171                 dev_dbg(&skdev->pdev->dev,
2172                         "starting queue to error-out reqs\n");
2173                 schedule_work(&skdev->start_queue);
2174                 skdev->gendisk_on = -1;
2175                 wake_up_interruptible(&skdev->waitq);
2176                 break;
2177
2178         default:
2179                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2180                         skdev->drive_state);
2181                 break;
2182         }
2183
2184         state = SKD_READL(skdev, FIT_CONTROL);
2185         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2186
2187         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2188         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2189
2190         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2191         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2192
2193         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2194         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2195
2196         state = SKD_READL(skdev, FIT_HW_VERSION);
2197         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2198
2199         spin_unlock_irqrestore(&skdev->lock, flags);
2200 }
2201
2202 static void skd_stop_device(struct skd_device *skdev)
2203 {
2204         unsigned long flags;
2205         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2206         u32 dev_state;
2207         int i;
2208
2209         spin_lock_irqsave(&skdev->lock, flags);
2210
2211         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2212                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2213                 goto stop_out;
2214         }
2215
2216         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2217                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2218                 goto stop_out;
2219         }
2220
2221         skdev->state = SKD_DRVR_STATE_SYNCING;
2222         skdev->sync_done = 0;
2223
2224         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2225
2226         spin_unlock_irqrestore(&skdev->lock, flags);
2227
2228         wait_event_interruptible_timeout(skdev->waitq,
2229                                          (skdev->sync_done), (10 * HZ));
2230
2231         spin_lock_irqsave(&skdev->lock, flags);
2232
2233         switch (skdev->sync_done) {
2234         case 0:
2235                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2236                 break;
2237         case 1:
2238                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2239                 break;
2240         default:
2241                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2242         }
2243
2244 stop_out:
2245         skdev->state = SKD_DRVR_STATE_STOPPING;
2246         spin_unlock_irqrestore(&skdev->lock, flags);
2247
2248         skd_kill_timer(skdev);
2249
2250         spin_lock_irqsave(&skdev->lock, flags);
2251         skd_disable_interrupts(skdev);
2252
2253         /* ensure all ints on device are cleared */
2254         /* soft reset the device to unload with a clean slate */
2255         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2256         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2257
2258         spin_unlock_irqrestore(&skdev->lock, flags);
2259
2260         /* poll every 100ms, 1 second timeout */
2261         for (i = 0; i < 10; i++) {
2262                 dev_state =
2263                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2264                 if (dev_state == FIT_SR_DRIVE_INIT)
2265                         break;
2266                 set_current_state(TASK_INTERRUPTIBLE);
2267                 schedule_timeout(msecs_to_jiffies(100));
2268         }
2269
2270         if (dev_state != FIT_SR_DRIVE_INIT)
2271                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2272                         dev_state);
2273 }
2274
2275 /* assume spinlock is held */
2276 static void skd_restart_device(struct skd_device *skdev)
2277 {
2278         u32 state;
2279
2280         /* ack all ghost interrupts */
2281         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2282
2283         state = SKD_READL(skdev, FIT_STATUS);
2284
2285         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2286
2287         state &= FIT_SR_DRIVE_STATE_MASK;
2288         skdev->drive_state = state;
2289         skdev->last_mtd = 0;
2290
2291         skdev->state = SKD_DRVR_STATE_RESTARTING;
2292         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2293
2294         skd_soft_reset(skdev);
2295 }
2296
2297 /* assume spinlock is held */
2298 static int skd_quiesce_dev(struct skd_device *skdev)
2299 {
2300         int rc = 0;
2301
2302         switch (skdev->state) {
2303         case SKD_DRVR_STATE_BUSY:
2304         case SKD_DRVR_STATE_BUSY_IMMINENT:
2305                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2306                 blk_mq_stop_hw_queues(skdev->queue);
2307                 break;
2308         case SKD_DRVR_STATE_ONLINE:
2309         case SKD_DRVR_STATE_STOPPING:
2310         case SKD_DRVR_STATE_SYNCING:
2311         case SKD_DRVR_STATE_PAUSING:
2312         case SKD_DRVR_STATE_PAUSED:
2313         case SKD_DRVR_STATE_STARTING:
2314         case SKD_DRVR_STATE_RESTARTING:
2315         case SKD_DRVR_STATE_RESUMING:
2316         default:
2317                 rc = -EINVAL;
2318                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2319                         skdev->state);
2320         }
2321         return rc;
2322 }
2323
2324 /* assume spinlock is held */
2325 static int skd_unquiesce_dev(struct skd_device *skdev)
2326 {
2327         int prev_driver_state = skdev->state;
2328
2329         skd_log_skdev(skdev, "unquiesce");
2330         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2331                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2332                 return 0;
2333         }
2334         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2335                 /*
2336                  * If there has been an state change to other than
2337                  * ONLINE, we will rely on controller state change
2338                  * to come back online and restart the queue.
2339                  * The BUSY state means that driver is ready to
2340                  * continue normal processing but waiting for controller
2341                  * to become available.
2342                  */
2343                 skdev->state = SKD_DRVR_STATE_BUSY;
2344                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2345                 return 0;
2346         }
2347
2348         /*
2349          * Drive has just come online, driver is either in startup,
2350          * paused performing a task, or bust waiting for hardware.
2351          */
2352         switch (skdev->state) {
2353         case SKD_DRVR_STATE_PAUSED:
2354         case SKD_DRVR_STATE_BUSY:
2355         case SKD_DRVR_STATE_BUSY_IMMINENT:
2356         case SKD_DRVR_STATE_BUSY_ERASE:
2357         case SKD_DRVR_STATE_STARTING:
2358         case SKD_DRVR_STATE_RESTARTING:
2359         case SKD_DRVR_STATE_FAULT:
2360         case SKD_DRVR_STATE_IDLE:
2361         case SKD_DRVR_STATE_LOAD:
2362                 skdev->state = SKD_DRVR_STATE_ONLINE;
2363                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2364                         skd_skdev_state_to_str(prev_driver_state),
2365                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2366                         skdev->state);
2367                 dev_dbg(&skdev->pdev->dev,
2368                         "**** device ONLINE...starting block queue\n");
2369                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2370                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2371                 schedule_work(&skdev->start_queue);
2372                 skdev->gendisk_on = 1;
2373                 wake_up_interruptible(&skdev->waitq);
2374                 break;
2375
2376         case SKD_DRVR_STATE_DISAPPEARED:
2377         default:
2378                 dev_dbg(&skdev->pdev->dev,
2379                         "**** driver state %d, not implemented\n",
2380                         skdev->state);
2381                 return -EBUSY;
2382         }
2383         return 0;
2384 }
2385
2386 /*
2387  *****************************************************************************
2388  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2389  *****************************************************************************
2390  */
2391
2392 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2393 {
2394         struct skd_device *skdev = skd_host_data;
2395         unsigned long flags;
2396
2397         spin_lock_irqsave(&skdev->lock, flags);
2398         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2399                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2400         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2401                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2402         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2403         spin_unlock_irqrestore(&skdev->lock, flags);
2404         return IRQ_HANDLED;
2405 }
2406
2407 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2408 {
2409         struct skd_device *skdev = skd_host_data;
2410         unsigned long flags;
2411
2412         spin_lock_irqsave(&skdev->lock, flags);
2413         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2414                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2415         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2416         skd_isr_fwstate(skdev);
2417         spin_unlock_irqrestore(&skdev->lock, flags);
2418         return IRQ_HANDLED;
2419 }
2420
2421 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2422 {
2423         struct skd_device *skdev = skd_host_data;
2424         unsigned long flags;
2425         int flush_enqueued = 0;
2426         int deferred;
2427
2428         spin_lock_irqsave(&skdev->lock, flags);
2429         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2430                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2431         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2432         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2433                                                 &flush_enqueued);
2434         if (flush_enqueued)
2435                 schedule_work(&skdev->start_queue);
2436
2437         if (deferred)
2438                 schedule_work(&skdev->completion_worker);
2439         else if (!flush_enqueued)
2440                 schedule_work(&skdev->start_queue);
2441
2442         spin_unlock_irqrestore(&skdev->lock, flags);
2443
2444         return IRQ_HANDLED;
2445 }
2446
2447 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2448 {
2449         struct skd_device *skdev = skd_host_data;
2450         unsigned long flags;
2451
2452         spin_lock_irqsave(&skdev->lock, flags);
2453         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2454                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2455         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2456         skd_isr_msg_from_dev(skdev);
2457         spin_unlock_irqrestore(&skdev->lock, flags);
2458         return IRQ_HANDLED;
2459 }
2460
2461 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2462 {
2463         struct skd_device *skdev = skd_host_data;
2464         unsigned long flags;
2465
2466         spin_lock_irqsave(&skdev->lock, flags);
2467         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2468                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2469         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2470         spin_unlock_irqrestore(&skdev->lock, flags);
2471         return IRQ_HANDLED;
2472 }
2473
2474 /*
2475  *****************************************************************************
2476  * PCIe MSI/MSI-X SETUP
2477  *****************************************************************************
2478  */
2479
2480 struct skd_msix_entry {
2481         char isr_name[30];
2482 };
2483
2484 struct skd_init_msix_entry {
2485         const char *name;
2486         irq_handler_t handler;
2487 };
2488
2489 #define SKD_MAX_MSIX_COUNT              13
2490 #define SKD_MIN_MSIX_COUNT              7
2491 #define SKD_BASE_MSIX_IRQ               4
2492
2493 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2494         { "(DMA 0)",        skd_reserved_isr },
2495         { "(DMA 1)",        skd_reserved_isr },
2496         { "(DMA 2)",        skd_reserved_isr },
2497         { "(DMA 3)",        skd_reserved_isr },
2498         { "(State Change)", skd_statec_isr   },
2499         { "(COMPL_Q)",      skd_comp_q       },
2500         { "(MSG)",          skd_msg_isr      },
2501         { "(Reserved)",     skd_reserved_isr },
2502         { "(Reserved)",     skd_reserved_isr },
2503         { "(Queue Full 0)", skd_qfull_isr    },
2504         { "(Queue Full 1)", skd_qfull_isr    },
2505         { "(Queue Full 2)", skd_qfull_isr    },
2506         { "(Queue Full 3)", skd_qfull_isr    },
2507 };
2508
2509 static int skd_acquire_msix(struct skd_device *skdev)
2510 {
2511         int i, rc;
2512         struct pci_dev *pdev = skdev->pdev;
2513
2514         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2515                         PCI_IRQ_MSIX);
2516         if (rc < 0) {
2517                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2518                 goto out;
2519         }
2520
2521         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2522                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2523         if (!skdev->msix_entries) {
2524                 rc = -ENOMEM;
2525                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2526                 goto out;
2527         }
2528
2529         /* Enable MSI-X vectors for the base queue */
2530         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2531                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2532
2533                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2534                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2535                          msix_entries[i].name);
2536
2537                 rc = devm_request_irq(&skdev->pdev->dev,
2538                                 pci_irq_vector(skdev->pdev, i),
2539                                 msix_entries[i].handler, 0,
2540                                 qentry->isr_name, skdev);
2541                 if (rc) {
2542                         dev_err(&skdev->pdev->dev,
2543                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2544                                 rc, i, qentry->isr_name);
2545                         goto msix_out;
2546                 }
2547         }
2548
2549         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2550                 SKD_MAX_MSIX_COUNT);
2551         return 0;
2552
2553 msix_out:
2554         while (--i >= 0)
2555                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2556 out:
2557         kfree(skdev->msix_entries);
2558         skdev->msix_entries = NULL;
2559         return rc;
2560 }
2561
2562 static int skd_acquire_irq(struct skd_device *skdev)
2563 {
2564         struct pci_dev *pdev = skdev->pdev;
2565         unsigned int irq_flag = PCI_IRQ_LEGACY;
2566         int rc;
2567
2568         if (skd_isr_type == SKD_IRQ_MSIX) {
2569                 rc = skd_acquire_msix(skdev);
2570                 if (!rc)
2571                         return 0;
2572
2573                 dev_err(&skdev->pdev->dev,
2574                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2575         }
2576
2577         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2578                         skdev->devno);
2579
2580         if (skd_isr_type != SKD_IRQ_LEGACY)
2581                 irq_flag |= PCI_IRQ_MSI;
2582         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2583         if (rc < 0) {
2584                 dev_err(&skdev->pdev->dev,
2585                         "failed to allocate the MSI interrupt %d\n", rc);
2586                 return rc;
2587         }
2588
2589         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2590                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2591                         skdev->isr_name, skdev);
2592         if (rc) {
2593                 pci_free_irq_vectors(pdev);
2594                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2595                         rc);
2596                 return rc;
2597         }
2598
2599         return 0;
2600 }
2601
2602 static void skd_release_irq(struct skd_device *skdev)
2603 {
2604         struct pci_dev *pdev = skdev->pdev;
2605
2606         if (skdev->msix_entries) {
2607                 int i;
2608
2609                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2610                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2611                                         skdev);
2612                 }
2613
2614                 kfree(skdev->msix_entries);
2615                 skdev->msix_entries = NULL;
2616         } else {
2617                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2618         }
2619
2620         pci_free_irq_vectors(pdev);
2621 }
2622
2623 /*
2624  *****************************************************************************
2625  * CONSTRUCT
2626  *****************************************************************************
2627  */
2628
2629 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2630                            dma_addr_t *dma_handle, gfp_t gfp,
2631                            enum dma_data_direction dir)
2632 {
2633         struct device *dev = &skdev->pdev->dev;
2634         void *buf;
2635
2636         buf = kmem_cache_alloc(s, gfp);
2637         if (!buf)
2638                 return NULL;
2639         *dma_handle = dma_map_single(dev, buf, s->size, dir);
2640         if (dma_mapping_error(dev, *dma_handle)) {
2641                 kfree(buf);
2642                 buf = NULL;
2643         }
2644         return buf;
2645 }
2646
2647 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2648                          void *vaddr, dma_addr_t dma_handle,
2649                          enum dma_data_direction dir)
2650 {
2651         if (!vaddr)
2652                 return;
2653
2654         dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2655         kmem_cache_free(s, vaddr);
2656 }
2657
2658 static int skd_cons_skcomp(struct skd_device *skdev)
2659 {
2660         int rc = 0;
2661         struct fit_completion_entry_v1 *skcomp;
2662
2663         dev_dbg(&skdev->pdev->dev,
2664                 "comp pci_alloc, total bytes %zd entries %d\n",
2665                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2666
2667         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2668                                        &skdev->cq_dma_address);
2669
2670         if (skcomp == NULL) {
2671                 rc = -ENOMEM;
2672                 goto err_out;
2673         }
2674
2675         skdev->skcomp_table = skcomp;
2676         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2677                                                            sizeof(*skcomp) *
2678                                                            SKD_N_COMPLETION_ENTRY);
2679
2680 err_out:
2681         return rc;
2682 }
2683
2684 static int skd_cons_skmsg(struct skd_device *skdev)
2685 {
2686         int rc = 0;
2687         u32 i;
2688
2689         dev_dbg(&skdev->pdev->dev,
2690                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2691                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2692                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2693
2694         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2695                                      sizeof(struct skd_fitmsg_context),
2696                                      GFP_KERNEL);
2697         if (skdev->skmsg_table == NULL) {
2698                 rc = -ENOMEM;
2699                 goto err_out;
2700         }
2701
2702         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2703                 struct skd_fitmsg_context *skmsg;
2704
2705                 skmsg = &skdev->skmsg_table[i];
2706
2707                 skmsg->id = i + SKD_ID_FIT_MSG;
2708
2709                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2710                                                       SKD_N_FITMSG_BYTES,
2711                                                       &skmsg->mb_dma_address);
2712
2713                 if (skmsg->msg_buf == NULL) {
2714                         rc = -ENOMEM;
2715                         goto err_out;
2716                 }
2717
2718                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2719                      (FIT_QCMD_ALIGN - 1),
2720                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2721                      skmsg->msg_buf, skmsg->mb_dma_address);
2722                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2723         }
2724
2725 err_out:
2726         return rc;
2727 }
2728
2729 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2730                                                   u32 n_sg,
2731                                                   dma_addr_t *ret_dma_addr)
2732 {
2733         struct fit_sg_descriptor *sg_list;
2734
2735         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2736                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2737
2738         if (sg_list != NULL) {
2739                 uint64_t dma_address = *ret_dma_addr;
2740                 u32 i;
2741
2742                 for (i = 0; i < n_sg - 1; i++) {
2743                         uint64_t ndp_off;
2744                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2745
2746                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2747                 }
2748                 sg_list[i].next_desc_ptr = 0LL;
2749         }
2750
2751         return sg_list;
2752 }
2753
2754 static void skd_free_sg_list(struct skd_device *skdev,
2755                              struct fit_sg_descriptor *sg_list,
2756                              dma_addr_t dma_addr)
2757 {
2758         if (WARN_ON_ONCE(!sg_list))
2759                 return;
2760
2761         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2762                      DMA_TO_DEVICE);
2763 }
2764
2765 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2766                             unsigned int hctx_idx, unsigned int numa_node)
2767 {
2768         struct skd_device *skdev = set->driver_data;
2769         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2770
2771         skreq->state = SKD_REQ_STATE_IDLE;
2772         skreq->sg = (void *)(skreq + 1);
2773         sg_init_table(skreq->sg, skd_sgs_per_request);
2774         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2775                                             &skreq->sksg_dma_address);
2776
2777         return skreq->sksg_list ? 0 : -ENOMEM;
2778 }
2779
2780 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2781                              unsigned int hctx_idx)
2782 {
2783         struct skd_device *skdev = set->driver_data;
2784         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2785
2786         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2787 }
2788
2789 static int skd_cons_sksb(struct skd_device *skdev)
2790 {
2791         int rc = 0;
2792         struct skd_special_context *skspcl;
2793
2794         skspcl = &skdev->internal_skspcl;
2795
2796         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2797         skspcl->req.state = SKD_REQ_STATE_IDLE;
2798
2799         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2800                                          &skspcl->db_dma_address,
2801                                          GFP_DMA | __GFP_ZERO,
2802                                          DMA_BIDIRECTIONAL);
2803         if (skspcl->data_buf == NULL) {
2804                 rc = -ENOMEM;
2805                 goto err_out;
2806         }
2807
2808         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2809                                         &skspcl->mb_dma_address,
2810                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2811         if (skspcl->msg_buf == NULL) {
2812                 rc = -ENOMEM;
2813                 goto err_out;
2814         }
2815
2816         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2817                                                  &skspcl->req.sksg_dma_address);
2818         if (skspcl->req.sksg_list == NULL) {
2819                 rc = -ENOMEM;
2820                 goto err_out;
2821         }
2822
2823         if (!skd_format_internal_skspcl(skdev)) {
2824                 rc = -EINVAL;
2825                 goto err_out;
2826         }
2827
2828 err_out:
2829         return rc;
2830 }
2831
2832 static const struct blk_mq_ops skd_mq_ops = {
2833         .queue_rq       = skd_mq_queue_rq,
2834         .init_request   = skd_init_request,
2835         .exit_request   = skd_exit_request,
2836 };
2837
2838 static int skd_cons_disk(struct skd_device *skdev)
2839 {
2840         int rc = 0;
2841         struct gendisk *disk;
2842         struct request_queue *q;
2843         unsigned long flags;
2844
2845         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2846         if (!disk) {
2847                 rc = -ENOMEM;
2848                 goto err_out;
2849         }
2850
2851         skdev->disk = disk;
2852         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2853
2854         disk->major = skdev->major;
2855         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2856         disk->fops = &skd_blockdev_ops;
2857         disk->private_data = skdev;
2858
2859         q = NULL;
2860         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2861         skdev->tag_set.ops = &skd_mq_ops;
2862         skdev->tag_set.nr_hw_queues = 1;
2863         skdev->tag_set.queue_depth = skd_max_queue_depth;
2864         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2865                 skdev->sgs_per_request * sizeof(struct scatterlist);
2866         skdev->tag_set.numa_node = NUMA_NO_NODE;
2867         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2868                 BLK_MQ_F_SG_MERGE |
2869                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2870         skdev->tag_set.driver_data = skdev;
2871         if (blk_mq_alloc_tag_set(&skdev->tag_set) >= 0) {
2872                 q = blk_mq_init_queue(&skdev->tag_set);
2873                 if (!q)
2874                         blk_mq_free_tag_set(&skdev->tag_set);
2875         }
2876         if (!q) {
2877                 rc = -ENOMEM;
2878                 goto err_out;
2879         }
2880         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2881         q->queuedata = skdev;
2882         q->nr_requests = skd_max_queue_depth / 2;
2883
2884         skdev->queue = q;
2885         disk->queue = q;
2886
2887         blk_queue_write_cache(q, true, true);
2888         blk_queue_max_segments(q, skdev->sgs_per_request);
2889         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2890
2891         /* set optimal I/O size to 8KB */
2892         blk_queue_io_opt(q, 8192);
2893
2894         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2895         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2896
2897         blk_queue_rq_timeout(q, 8 * HZ);
2898         blk_queue_rq_timed_out(q, skd_timed_out);
2899         blk_queue_softirq_done(q, skd_softirq_done);
2900
2901         spin_lock_irqsave(&skdev->lock, flags);
2902         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2903         blk_mq_stop_hw_queues(skdev->queue);
2904         spin_unlock_irqrestore(&skdev->lock, flags);
2905
2906 err_out:
2907         return rc;
2908 }
2909
2910 #define SKD_N_DEV_TABLE         16u
2911 static u32 skd_next_devno;
2912
2913 static struct skd_device *skd_construct(struct pci_dev *pdev)
2914 {
2915         struct skd_device *skdev;
2916         int blk_major = skd_major;
2917         size_t size;
2918         int rc;
2919
2920         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2921
2922         if (!skdev) {
2923                 dev_err(&pdev->dev, "memory alloc failure\n");
2924                 return NULL;
2925         }
2926
2927         skdev->state = SKD_DRVR_STATE_LOAD;
2928         skdev->pdev = pdev;
2929         skdev->devno = skd_next_devno++;
2930         skdev->major = blk_major;
2931         skdev->dev_max_queue_depth = 0;
2932
2933         skdev->num_req_context = skd_max_queue_depth;
2934         skdev->num_fitmsg_context = skd_max_queue_depth;
2935         skdev->cur_max_queue_depth = 1;
2936         skdev->queue_low_water_mark = 1;
2937         skdev->proto_ver = 99;
2938         skdev->sgs_per_request = skd_sgs_per_request;
2939         skdev->dbg_level = skd_dbg_level;
2940
2941         spin_lock_init(&skdev->lock);
2942
2943         INIT_WORK(&skdev->start_queue, skd_start_queue);
2944         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2945
2946         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2947         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2948                                                 SLAB_HWCACHE_ALIGN, NULL);
2949         if (!skdev->msgbuf_cache)
2950                 goto err_out;
2951         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2952                   "skd-msgbuf: %d < %zd\n",
2953                   kmem_cache_size(skdev->msgbuf_cache), size);
2954         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2955         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2956                                                 SLAB_HWCACHE_ALIGN, NULL);
2957         if (!skdev->sglist_cache)
2958                 goto err_out;
2959         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2960                   "skd-sglist: %d < %zd\n",
2961                   kmem_cache_size(skdev->sglist_cache), size);
2962         size = SKD_N_INTERNAL_BYTES;
2963         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2964                                                  SLAB_HWCACHE_ALIGN, NULL);
2965         if (!skdev->databuf_cache)
2966                 goto err_out;
2967         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2968                   "skd-databuf: %d < %zd\n",
2969                   kmem_cache_size(skdev->databuf_cache), size);
2970
2971         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2972         rc = skd_cons_skcomp(skdev);
2973         if (rc < 0)
2974                 goto err_out;
2975
2976         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2977         rc = skd_cons_skmsg(skdev);
2978         if (rc < 0)
2979                 goto err_out;
2980
2981         dev_dbg(&skdev->pdev->dev, "sksb\n");
2982         rc = skd_cons_sksb(skdev);
2983         if (rc < 0)
2984                 goto err_out;
2985
2986         dev_dbg(&skdev->pdev->dev, "disk\n");
2987         rc = skd_cons_disk(skdev);
2988         if (rc < 0)
2989                 goto err_out;
2990
2991         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2992         return skdev;
2993
2994 err_out:
2995         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2996         skd_destruct(skdev);
2997         return NULL;
2998 }
2999
3000 /*
3001  *****************************************************************************
3002  * DESTRUCT (FREE)
3003  *****************************************************************************
3004  */
3005
3006 static void skd_free_skcomp(struct skd_device *skdev)
3007 {
3008         if (skdev->skcomp_table)
3009                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
3010                                     skdev->skcomp_table, skdev->cq_dma_address);
3011
3012         skdev->skcomp_table = NULL;
3013         skdev->cq_dma_address = 0;
3014 }
3015
3016 static void skd_free_skmsg(struct skd_device *skdev)
3017 {
3018         u32 i;
3019
3020         if (skdev->skmsg_table == NULL)
3021                 return;
3022
3023         for (i = 0; i < skdev->num_fitmsg_context; i++) {
3024                 struct skd_fitmsg_context *skmsg;
3025
3026                 skmsg = &skdev->skmsg_table[i];
3027
3028                 if (skmsg->msg_buf != NULL) {
3029                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
3030                                             skmsg->msg_buf,
3031                                             skmsg->mb_dma_address);
3032                 }
3033                 skmsg->msg_buf = NULL;
3034                 skmsg->mb_dma_address = 0;
3035         }
3036
3037         kfree(skdev->skmsg_table);
3038         skdev->skmsg_table = NULL;
3039 }
3040
3041 static void skd_free_sksb(struct skd_device *skdev)
3042 {
3043         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3044
3045         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3046                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3047
3048         skspcl->data_buf = NULL;
3049         skspcl->db_dma_address = 0;
3050
3051         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3052                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3053
3054         skspcl->msg_buf = NULL;
3055         skspcl->mb_dma_address = 0;
3056
3057         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3058                          skspcl->req.sksg_dma_address);
3059
3060         skspcl->req.sksg_list = NULL;
3061         skspcl->req.sksg_dma_address = 0;
3062 }
3063
3064 static void skd_free_disk(struct skd_device *skdev)
3065 {
3066         struct gendisk *disk = skdev->disk;
3067
3068         if (disk && (disk->flags & GENHD_FL_UP))
3069                 del_gendisk(disk);
3070
3071         if (skdev->queue) {
3072                 blk_cleanup_queue(skdev->queue);
3073                 skdev->queue = NULL;
3074                 disk->queue = NULL;
3075         }
3076
3077         if (skdev->tag_set.tags)
3078                 blk_mq_free_tag_set(&skdev->tag_set);
3079
3080         put_disk(disk);
3081         skdev->disk = NULL;
3082 }
3083
3084 static void skd_destruct(struct skd_device *skdev)
3085 {
3086         if (skdev == NULL)
3087                 return;
3088
3089         cancel_work_sync(&skdev->start_queue);
3090
3091         dev_dbg(&skdev->pdev->dev, "disk\n");
3092         skd_free_disk(skdev);
3093
3094         dev_dbg(&skdev->pdev->dev, "sksb\n");
3095         skd_free_sksb(skdev);
3096
3097         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3098         skd_free_skmsg(skdev);
3099
3100         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3101         skd_free_skcomp(skdev);
3102
3103         kmem_cache_destroy(skdev->databuf_cache);
3104         kmem_cache_destroy(skdev->sglist_cache);
3105         kmem_cache_destroy(skdev->msgbuf_cache);
3106
3107         dev_dbg(&skdev->pdev->dev, "skdev\n");
3108         kfree(skdev);
3109 }
3110
3111 /*
3112  *****************************************************************************
3113  * BLOCK DEVICE (BDEV) GLUE
3114  *****************************************************************************
3115  */
3116
3117 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3118 {
3119         struct skd_device *skdev;
3120         u64 capacity;
3121
3122         skdev = bdev->bd_disk->private_data;
3123
3124         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3125                 bdev->bd_disk->disk_name, current->comm);
3126
3127         if (skdev->read_cap_is_valid) {
3128                 capacity = get_capacity(skdev->disk);
3129                 geo->heads = 64;
3130                 geo->sectors = 255;
3131                 geo->cylinders = (capacity) / (255 * 64);
3132
3133                 return 0;
3134         }
3135         return -EIO;
3136 }
3137
3138 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3139 {
3140         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3141         device_add_disk(parent, skdev->disk);
3142         return 0;
3143 }
3144
3145 static const struct block_device_operations skd_blockdev_ops = {
3146         .owner          = THIS_MODULE,
3147         .getgeo         = skd_bdev_getgeo,
3148 };
3149
3150 /*
3151  *****************************************************************************
3152  * PCIe DRIVER GLUE
3153  *****************************************************************************
3154  */
3155
3156 static const struct pci_device_id skd_pci_tbl[] = {
3157         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3158           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3159         { 0 }                     /* terminate list */
3160 };
3161
3162 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3163
3164 static char *skd_pci_info(struct skd_device *skdev, char *str)
3165 {
3166         int pcie_reg;
3167
3168         strcpy(str, "PCIe (");
3169         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3170
3171         if (pcie_reg) {
3172
3173                 char lwstr[6];
3174                 uint16_t pcie_lstat, lspeed, lwidth;
3175
3176                 pcie_reg += 0x12;
3177                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3178                 lspeed = pcie_lstat & (0xF);
3179                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3180
3181                 if (lspeed == 1)
3182                         strcat(str, "2.5GT/s ");
3183                 else if (lspeed == 2)
3184                         strcat(str, "5.0GT/s ");
3185                 else
3186                         strcat(str, "<unknown> ");
3187                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3188                 strcat(str, lwstr);
3189         }
3190         return str;
3191 }
3192
3193 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3194 {
3195         int i;
3196         int rc = 0;
3197         char pci_str[32];
3198         struct skd_device *skdev;
3199
3200         dev_info(&pdev->dev, "STEC s1120 Driver(%s) version %s-b%s\n",
3201                  DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
3202         dev_info(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3203                  pdev->device);
3204
3205         rc = pci_enable_device(pdev);
3206         if (rc)
3207                 return rc;
3208         rc = pci_request_regions(pdev, DRV_NAME);
3209         if (rc)
3210                 goto err_out;
3211         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3212         if (!rc) {
3213                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3214                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3215                                 rc);
3216                 }
3217         } else {
3218                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3219                 if (rc) {
3220                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3221                         goto err_out_regions;
3222                 }
3223         }
3224
3225         if (!skd_major) {
3226                 rc = register_blkdev(0, DRV_NAME);
3227                 if (rc < 0)
3228                         goto err_out_regions;
3229                 BUG_ON(!rc);
3230                 skd_major = rc;
3231         }
3232
3233         skdev = skd_construct(pdev);
3234         if (skdev == NULL) {
3235                 rc = -ENOMEM;
3236                 goto err_out_regions;
3237         }
3238
3239         skd_pci_info(skdev, pci_str);
3240         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3241
3242         pci_set_master(pdev);
3243         rc = pci_enable_pcie_error_reporting(pdev);
3244         if (rc) {
3245                 dev_err(&pdev->dev,
3246                         "bad enable of PCIe error reporting rc=%d\n", rc);
3247                 skdev->pcie_error_reporting_is_enabled = 0;
3248         } else
3249                 skdev->pcie_error_reporting_is_enabled = 1;
3250
3251         pci_set_drvdata(pdev, skdev);
3252
3253         for (i = 0; i < SKD_MAX_BARS; i++) {
3254                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3255                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3256                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3257                                             skdev->mem_size[i]);
3258                 if (!skdev->mem_map[i]) {
3259                         dev_err(&pdev->dev,
3260                                 "Unable to map adapter memory!\n");
3261                         rc = -ENODEV;
3262                         goto err_out_iounmap;
3263                 }
3264                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3265                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3266                         skdev->mem_size[i]);
3267         }
3268
3269         rc = skd_acquire_irq(skdev);
3270         if (rc) {
3271                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3272                 goto err_out_iounmap;
3273         }
3274
3275         rc = skd_start_timer(skdev);
3276         if (rc)
3277                 goto err_out_timer;
3278
3279         init_waitqueue_head(&skdev->waitq);
3280
3281         skd_start_device(skdev);
3282
3283         rc = wait_event_interruptible_timeout(skdev->waitq,
3284                                               (skdev->gendisk_on),
3285                                               (SKD_START_WAIT_SECONDS * HZ));
3286         if (skdev->gendisk_on > 0) {
3287                 /* device came on-line after reset */
3288                 skd_bdev_attach(&pdev->dev, skdev);
3289                 rc = 0;
3290         } else {
3291                 /* we timed out, something is wrong with the device,
3292                    don't add the disk structure */
3293                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3294                         rc);
3295                 /* in case of no error; we timeout with ENXIO */
3296                 if (!rc)
3297                         rc = -ENXIO;
3298                 goto err_out_timer;
3299         }
3300
3301         return rc;
3302
3303 err_out_timer:
3304         skd_stop_device(skdev);
3305         skd_release_irq(skdev);
3306
3307 err_out_iounmap:
3308         for (i = 0; i < SKD_MAX_BARS; i++)
3309                 if (skdev->mem_map[i])
3310                         iounmap(skdev->mem_map[i]);
3311
3312         if (skdev->pcie_error_reporting_is_enabled)
3313                 pci_disable_pcie_error_reporting(pdev);
3314
3315         skd_destruct(skdev);
3316
3317 err_out_regions:
3318         pci_release_regions(pdev);
3319
3320 err_out:
3321         pci_disable_device(pdev);
3322         pci_set_drvdata(pdev, NULL);
3323         return rc;
3324 }
3325
3326 static void skd_pci_remove(struct pci_dev *pdev)
3327 {
3328         int i;
3329         struct skd_device *skdev;
3330
3331         skdev = pci_get_drvdata(pdev);
3332         if (!skdev) {
3333                 dev_err(&pdev->dev, "no device data for PCI\n");
3334                 return;
3335         }
3336         skd_stop_device(skdev);
3337         skd_release_irq(skdev);
3338
3339         for (i = 0; i < SKD_MAX_BARS; i++)
3340                 if (skdev->mem_map[i])
3341                         iounmap(skdev->mem_map[i]);
3342
3343         if (skdev->pcie_error_reporting_is_enabled)
3344                 pci_disable_pcie_error_reporting(pdev);
3345
3346         skd_destruct(skdev);
3347
3348         pci_release_regions(pdev);
3349         pci_disable_device(pdev);
3350         pci_set_drvdata(pdev, NULL);
3351
3352         return;
3353 }
3354
3355 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3356 {
3357         int i;
3358         struct skd_device *skdev;
3359
3360         skdev = pci_get_drvdata(pdev);
3361         if (!skdev) {
3362                 dev_err(&pdev->dev, "no device data for PCI\n");
3363                 return -EIO;
3364         }
3365
3366         skd_stop_device(skdev);
3367
3368         skd_release_irq(skdev);
3369
3370         for (i = 0; i < SKD_MAX_BARS; i++)
3371                 if (skdev->mem_map[i])
3372                         iounmap(skdev->mem_map[i]);
3373
3374         if (skdev->pcie_error_reporting_is_enabled)
3375                 pci_disable_pcie_error_reporting(pdev);
3376
3377         pci_release_regions(pdev);
3378         pci_save_state(pdev);
3379         pci_disable_device(pdev);
3380         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3381         return 0;
3382 }
3383
3384 static int skd_pci_resume(struct pci_dev *pdev)
3385 {
3386         int i;
3387         int rc = 0;
3388         struct skd_device *skdev;
3389
3390         skdev = pci_get_drvdata(pdev);
3391         if (!skdev) {
3392                 dev_err(&pdev->dev, "no device data for PCI\n");
3393                 return -1;
3394         }
3395
3396         pci_set_power_state(pdev, PCI_D0);
3397         pci_enable_wake(pdev, PCI_D0, 0);
3398         pci_restore_state(pdev);
3399
3400         rc = pci_enable_device(pdev);
3401         if (rc)
3402                 return rc;
3403         rc = pci_request_regions(pdev, DRV_NAME);
3404         if (rc)
3405                 goto err_out;
3406         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3407         if (!rc) {
3408                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3409
3410                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3411                                 rc);
3412                 }
3413         } else {
3414                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3415                 if (rc) {
3416
3417                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3418                         goto err_out_regions;
3419                 }
3420         }
3421
3422         pci_set_master(pdev);
3423         rc = pci_enable_pcie_error_reporting(pdev);
3424         if (rc) {
3425                 dev_err(&pdev->dev,
3426                         "bad enable of PCIe error reporting rc=%d\n", rc);
3427                 skdev->pcie_error_reporting_is_enabled = 0;
3428         } else
3429                 skdev->pcie_error_reporting_is_enabled = 1;
3430
3431         for (i = 0; i < SKD_MAX_BARS; i++) {
3432
3433                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3434                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3435                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3436                                             skdev->mem_size[i]);
3437                 if (!skdev->mem_map[i]) {
3438                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3439                         rc = -ENODEV;
3440                         goto err_out_iounmap;
3441                 }
3442                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3443                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3444                         skdev->mem_size[i]);
3445         }
3446         rc = skd_acquire_irq(skdev);
3447         if (rc) {
3448                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3449                 goto err_out_iounmap;
3450         }
3451
3452         rc = skd_start_timer(skdev);
3453         if (rc)
3454                 goto err_out_timer;
3455
3456         init_waitqueue_head(&skdev->waitq);
3457
3458         skd_start_device(skdev);
3459
3460         return rc;
3461
3462 err_out_timer:
3463         skd_stop_device(skdev);
3464         skd_release_irq(skdev);
3465
3466 err_out_iounmap:
3467         for (i = 0; i < SKD_MAX_BARS; i++)
3468                 if (skdev->mem_map[i])
3469                         iounmap(skdev->mem_map[i]);
3470
3471         if (skdev->pcie_error_reporting_is_enabled)
3472                 pci_disable_pcie_error_reporting(pdev);
3473
3474 err_out_regions:
3475         pci_release_regions(pdev);
3476
3477 err_out:
3478         pci_disable_device(pdev);
3479         return rc;
3480 }
3481
3482 static void skd_pci_shutdown(struct pci_dev *pdev)
3483 {
3484         struct skd_device *skdev;
3485
3486         dev_err(&pdev->dev, "%s called\n", __func__);
3487
3488         skdev = pci_get_drvdata(pdev);
3489         if (!skdev) {
3490                 dev_err(&pdev->dev, "no device data for PCI\n");
3491                 return;
3492         }
3493
3494         dev_err(&pdev->dev, "calling stop\n");
3495         skd_stop_device(skdev);
3496 }
3497
3498 static struct pci_driver skd_driver = {
3499         .name           = DRV_NAME,
3500         .id_table       = skd_pci_tbl,
3501         .probe          = skd_pci_probe,
3502         .remove         = skd_pci_remove,
3503         .suspend        = skd_pci_suspend,
3504         .resume         = skd_pci_resume,
3505         .shutdown       = skd_pci_shutdown,
3506 };
3507
3508 /*
3509  *****************************************************************************
3510  * LOGGING SUPPORT
3511  *****************************************************************************
3512  */
3513
3514 const char *skd_drive_state_to_str(int state)
3515 {
3516         switch (state) {
3517         case FIT_SR_DRIVE_OFFLINE:
3518                 return "OFFLINE";
3519         case FIT_SR_DRIVE_INIT:
3520                 return "INIT";
3521         case FIT_SR_DRIVE_ONLINE:
3522                 return "ONLINE";
3523         case FIT_SR_DRIVE_BUSY:
3524                 return "BUSY";
3525         case FIT_SR_DRIVE_FAULT:
3526                 return "FAULT";
3527         case FIT_SR_DRIVE_DEGRADED:
3528                 return "DEGRADED";
3529         case FIT_SR_PCIE_LINK_DOWN:
3530                 return "INK_DOWN";
3531         case FIT_SR_DRIVE_SOFT_RESET:
3532                 return "SOFT_RESET";
3533         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3534                 return "NEED_FW";
3535         case FIT_SR_DRIVE_INIT_FAULT:
3536                 return "INIT_FAULT";
3537         case FIT_SR_DRIVE_BUSY_SANITIZE:
3538                 return "BUSY_SANITIZE";
3539         case FIT_SR_DRIVE_BUSY_ERASE:
3540                 return "BUSY_ERASE";
3541         case FIT_SR_DRIVE_FW_BOOTING:
3542                 return "FW_BOOTING";
3543         default:
3544                 return "???";
3545         }
3546 }
3547
3548 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3549 {
3550         switch (state) {
3551         case SKD_DRVR_STATE_LOAD:
3552                 return "LOAD";
3553         case SKD_DRVR_STATE_IDLE:
3554                 return "IDLE";
3555         case SKD_DRVR_STATE_BUSY:
3556                 return "BUSY";
3557         case SKD_DRVR_STATE_STARTING:
3558                 return "STARTING";
3559         case SKD_DRVR_STATE_ONLINE:
3560                 return "ONLINE";
3561         case SKD_DRVR_STATE_PAUSING:
3562                 return "PAUSING";
3563         case SKD_DRVR_STATE_PAUSED:
3564                 return "PAUSED";
3565         case SKD_DRVR_STATE_RESTARTING:
3566                 return "RESTARTING";
3567         case SKD_DRVR_STATE_RESUMING:
3568                 return "RESUMING";
3569         case SKD_DRVR_STATE_STOPPING:
3570                 return "STOPPING";
3571         case SKD_DRVR_STATE_SYNCING:
3572                 return "SYNCING";
3573         case SKD_DRVR_STATE_FAULT:
3574                 return "FAULT";
3575         case SKD_DRVR_STATE_DISAPPEARED:
3576                 return "DISAPPEARED";
3577         case SKD_DRVR_STATE_BUSY_ERASE:
3578                 return "BUSY_ERASE";
3579         case SKD_DRVR_STATE_BUSY_SANITIZE:
3580                 return "BUSY_SANITIZE";
3581         case SKD_DRVR_STATE_BUSY_IMMINENT:
3582                 return "BUSY_IMMINENT";
3583         case SKD_DRVR_STATE_WAIT_BOOT:
3584                 return "WAIT_BOOT";
3585
3586         default:
3587                 return "???";
3588         }
3589 }
3590
3591 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3592 {
3593         switch (state) {
3594         case SKD_REQ_STATE_IDLE:
3595                 return "IDLE";
3596         case SKD_REQ_STATE_SETUP:
3597                 return "SETUP";
3598         case SKD_REQ_STATE_BUSY:
3599                 return "BUSY";
3600         case SKD_REQ_STATE_COMPLETED:
3601                 return "COMPLETED";
3602         case SKD_REQ_STATE_TIMEOUT:
3603                 return "TIMEOUT";
3604         default:
3605                 return "???";
3606         }
3607 }
3608
3609 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3610 {
3611         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3612         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3613                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3614                 skd_skdev_state_to_str(skdev->state), skdev->state);
3615         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3616                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3617                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3618         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3619                 skdev->skcomp_cycle, skdev->skcomp_ix);
3620 }
3621
3622 static void skd_log_skreq(struct skd_device *skdev,
3623                           struct skd_request_context *skreq, const char *event)
3624 {
3625         struct request *req = blk_mq_rq_from_pdu(skreq);
3626         u32 lba = blk_rq_pos(req);
3627         u32 count = blk_rq_sectors(req);
3628
3629         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3630         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3631                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3632                 skreq->fitmsg_id);
3633         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3634                 skreq->data_dir, skreq->n_sg);
3635
3636         dev_dbg(&skdev->pdev->dev,
3637                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3638                 count, count, (int)rq_data_dir(req));
3639 }
3640
3641 /*
3642  *****************************************************************************
3643  * MODULE GLUE
3644  *****************************************************************************
3645  */
3646
3647 static int __init skd_init(void)
3648 {
3649         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3650         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3651         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3652         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3653         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3654         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3655         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3656         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3657
3658         pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
3659
3660         switch (skd_isr_type) {
3661         case SKD_IRQ_LEGACY:
3662         case SKD_IRQ_MSI:
3663         case SKD_IRQ_MSIX:
3664                 break;
3665         default:
3666                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3667                        skd_isr_type, SKD_IRQ_DEFAULT);
3668                 skd_isr_type = SKD_IRQ_DEFAULT;
3669         }
3670
3671         if (skd_max_queue_depth < 1 ||
3672             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3673                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3674                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3675                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3676         }
3677
3678         if (skd_max_req_per_msg < 1 ||
3679             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3680                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3681                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3682                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3683         }
3684
3685         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3686                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3687                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3688                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3689         }
3690
3691         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3692                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3693                        skd_dbg_level, 0);
3694                 skd_dbg_level = 0;
3695         }
3696
3697         if (skd_isr_comp_limit < 0) {
3698                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3699                        skd_isr_comp_limit, 0);
3700                 skd_isr_comp_limit = 0;
3701         }
3702
3703         return pci_register_driver(&skd_driver);
3704 }
3705
3706 static void __exit skd_exit(void)
3707 {
3708         pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
3709
3710         pci_unregister_driver(&skd_driver);
3711
3712         if (skd_major)
3713                 unregister_blkdev(skd_major, DRV_NAME);
3714 }
3715
3716 module_init(skd_init);
3717 module_exit(skd_exit);