]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/skd_main.c
skd: Report completion mismatches once
[linux.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41
42 #include "skd_s1120.h"
43
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46
47 #define SKD_ASSERT(expr) \
48         do { \
49                 if (unlikely(!(expr))) { \
50                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
51                                # expr, __FILE__, __func__, __LINE__); \
52                 } \
53         } while (0)
54
55 #define DRV_NAME "skd"
56 #define PFX DRV_NAME ": "
57
58 MODULE_LICENSE("GPL");
59
60 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61
62 #define PCI_VENDOR_ID_STEC      0x1B39
63 #define PCI_DEVICE_ID_S1120     0x0001
64
65 #define SKD_FUA_NV              (1 << 1)
66 #define SKD_MINORS_PER_DEVICE   16
67
68 #define SKD_MAX_QUEUE_DEPTH     200u
69
70 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
71
72 #define SKD_N_FITMSG_BYTES      (512u)
73 #define SKD_MAX_REQ_PER_MSG     14
74
75 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
76
77 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
78  * 128KB limit.  That allows 4096*4K = 16M xfer size
79  */
80 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81
82 #define SKD_N_COMPLETION_ENTRY  256u
83 #define SKD_N_READ_CAP_BYTES    (8u)
84
85 #define SKD_N_INTERNAL_BYTES    (512u)
86
87 #define SKD_SKCOMP_SIZE                                                 \
88         ((sizeof(struct fit_completion_entry_v1) +                      \
89           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90
91 /* 5 bits of uniqifier, 0xF800 */
92 #define SKD_ID_INCR             (0x400)
93 #define SKD_ID_TABLE_MASK       (3u << 8u)
94 #define  SKD_ID_RW_REQUEST      (0u << 8u)
95 #define  SKD_ID_INTERNAL        (1u << 8u)
96 #define  SKD_ID_FIT_MSG         (3u << 8u)
97 #define SKD_ID_SLOT_MASK        0x00FFu
98 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
99
100 #define SKD_N_MAX_SECTORS 2048u
101
102 #define SKD_MAX_RETRIES 2u
103
104 #define SKD_TIMER_SECONDS(seconds) (seconds)
105 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
106
107 #define INQ_STD_NBYTES 36
108
109 enum skd_drvr_state {
110         SKD_DRVR_STATE_LOAD,
111         SKD_DRVR_STATE_IDLE,
112         SKD_DRVR_STATE_BUSY,
113         SKD_DRVR_STATE_STARTING,
114         SKD_DRVR_STATE_ONLINE,
115         SKD_DRVR_STATE_PAUSING,
116         SKD_DRVR_STATE_PAUSED,
117         SKD_DRVR_STATE_RESTARTING,
118         SKD_DRVR_STATE_RESUMING,
119         SKD_DRVR_STATE_STOPPING,
120         SKD_DRVR_STATE_FAULT,
121         SKD_DRVR_STATE_DISAPPEARED,
122         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
123         SKD_DRVR_STATE_BUSY_ERASE,
124         SKD_DRVR_STATE_BUSY_SANITIZE,
125         SKD_DRVR_STATE_BUSY_IMMINENT,
126         SKD_DRVR_STATE_WAIT_BOOT,
127         SKD_DRVR_STATE_SYNCING,
128 };
129
130 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
131 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
132 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
133 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
134 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
135 #define SKD_START_WAIT_SECONDS  90u
136
137 enum skd_req_state {
138         SKD_REQ_STATE_IDLE,
139         SKD_REQ_STATE_SETUP,
140         SKD_REQ_STATE_BUSY,
141         SKD_REQ_STATE_COMPLETED,
142         SKD_REQ_STATE_TIMEOUT,
143 };
144
145 enum skd_check_status_action {
146         SKD_CHECK_STATUS_REPORT_GOOD,
147         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
148         SKD_CHECK_STATUS_REQUEUE_REQUEST,
149         SKD_CHECK_STATUS_REPORT_ERROR,
150         SKD_CHECK_STATUS_BUSY_IMMINENT,
151 };
152
153 struct skd_msg_buf {
154         struct fit_msg_hdr      fmh;
155         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
156 };
157
158 struct skd_fitmsg_context {
159         u32 id;
160
161         u32 length;
162
163         struct skd_msg_buf *msg_buf;
164         dma_addr_t mb_dma_address;
165 };
166
167 struct skd_request_context {
168         enum skd_req_state state;
169
170         u16 id;
171         u32 fitmsg_id;
172
173         u8 flush_cmd;
174
175         enum dma_data_direction data_dir;
176         struct scatterlist *sg;
177         u32 n_sg;
178         u32 sg_byte_count;
179
180         struct fit_sg_descriptor *sksg_list;
181         dma_addr_t sksg_dma_address;
182
183         struct fit_completion_entry_v1 completion;
184
185         struct fit_comp_error_info err_info;
186
187 };
188
189 struct skd_special_context {
190         struct skd_request_context req;
191
192         void *data_buf;
193         dma_addr_t db_dma_address;
194
195         struct skd_msg_buf *msg_buf;
196         dma_addr_t mb_dma_address;
197 };
198
199 typedef enum skd_irq_type {
200         SKD_IRQ_LEGACY,
201         SKD_IRQ_MSI,
202         SKD_IRQ_MSIX
203 } skd_irq_type_t;
204
205 #define SKD_MAX_BARS                    2
206
207 struct skd_device {
208         void __iomem *mem_map[SKD_MAX_BARS];
209         resource_size_t mem_phys[SKD_MAX_BARS];
210         u32 mem_size[SKD_MAX_BARS];
211
212         struct skd_msix_entry *msix_entries;
213
214         struct pci_dev *pdev;
215         int pcie_error_reporting_is_enabled;
216
217         spinlock_t lock;
218         struct gendisk *disk;
219         struct blk_mq_tag_set tag_set;
220         struct request_queue *queue;
221         struct skd_fitmsg_context *skmsg;
222         struct device *class_dev;
223         int gendisk_on;
224         int sync_done;
225
226         u32 devno;
227         u32 major;
228         char isr_name[30];
229
230         enum skd_drvr_state state;
231         u32 drive_state;
232
233         u32 cur_max_queue_depth;
234         u32 queue_low_water_mark;
235         u32 dev_max_queue_depth;
236
237         u32 num_fitmsg_context;
238         u32 num_req_context;
239
240         struct skd_fitmsg_context *skmsg_table;
241
242         struct skd_special_context internal_skspcl;
243         u32 read_cap_blocksize;
244         u32 read_cap_last_lba;
245         int read_cap_is_valid;
246         int inquiry_is_valid;
247         u8 inq_serial_num[13];  /*12 chars plus null term */
248
249         u8 skcomp_cycle;
250         u32 skcomp_ix;
251         struct kmem_cache *msgbuf_cache;
252         struct kmem_cache *sglist_cache;
253         struct kmem_cache *databuf_cache;
254         struct fit_completion_entry_v1 *skcomp_table;
255         struct fit_comp_error_info *skerr_table;
256         dma_addr_t cq_dma_address;
257
258         wait_queue_head_t waitq;
259
260         struct timer_list timer;
261         u32 timer_countdown;
262         u32 timer_substate;
263
264         int sgs_per_request;
265         u32 last_mtd;
266
267         u32 proto_ver;
268
269         int dbg_level;
270         u32 connect_time_stamp;
271         int connect_retries;
272 #define SKD_MAX_CONNECT_RETRIES 16
273         u32 drive_jiffies;
274
275         u32 timo_slot;
276
277         struct work_struct start_queue;
278         struct work_struct completion_worker;
279 };
280
281 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
282 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
283 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284
285 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 {
287         u32 val = readl(skdev->mem_map[1] + offset);
288
289         if (unlikely(skdev->dbg_level >= 2))
290                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
291         return val;
292 }
293
294 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
295                                    u32 offset)
296 {
297         writel(val, skdev->mem_map[1] + offset);
298         if (unlikely(skdev->dbg_level >= 2))
299                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
300 }
301
302 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
303                                    u32 offset)
304 {
305         writeq(val, skdev->mem_map[1] + offset);
306         if (unlikely(skdev->dbg_level >= 2))
307                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
308                         val);
309 }
310
311
312 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
313 static int skd_isr_type = SKD_IRQ_DEFAULT;
314
315 module_param(skd_isr_type, int, 0444);
316 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
317                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318
319 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
320 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321
322 module_param(skd_max_req_per_msg, int, 0444);
323 MODULE_PARM_DESC(skd_max_req_per_msg,
324                  "Maximum SCSI requests packed in a single message."
325                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
329 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330
331 module_param(skd_max_queue_depth, int, 0444);
332 MODULE_PARM_DESC(skd_max_queue_depth,
333                  "Maximum SCSI requests issued to s1120."
334                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335
336 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
337 module_param(skd_sgs_per_request, int, 0444);
338 MODULE_PARM_DESC(skd_sgs_per_request,
339                  "Maximum SG elements per block request."
340                  " (1-4096, default==256)");
341
342 static int skd_max_pass_thru = 1;
343 module_param(skd_max_pass_thru, int, 0444);
344 MODULE_PARM_DESC(skd_max_pass_thru,
345                  "Maximum SCSI pass-thru at a time. IGNORED");
346
347 module_param(skd_dbg_level, int, 0444);
348 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349
350 module_param(skd_isr_comp_limit, int, 0444);
351 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352
353 /* Major device number dynamically assigned. */
354 static u32 skd_major;
355
356 static void skd_destruct(struct skd_device *skdev);
357 static const struct block_device_operations skd_blockdev_ops;
358 static void skd_send_fitmsg(struct skd_device *skdev,
359                             struct skd_fitmsg_context *skmsg);
360 static void skd_send_special_fitmsg(struct skd_device *skdev,
361                                     struct skd_special_context *skspcl);
362 static void skd_end_request(struct skd_device *skdev, struct request *req,
363                             blk_status_t status);
364 static bool skd_preop_sg_list(struct skd_device *skdev,
365                              struct skd_request_context *skreq);
366 static void skd_postop_sg_list(struct skd_device *skdev,
367                                struct skd_request_context *skreq);
368
369 static void skd_restart_device(struct skd_device *skdev);
370 static int skd_quiesce_dev(struct skd_device *skdev);
371 static int skd_unquiesce_dev(struct skd_device *skdev);
372 static void skd_disable_interrupts(struct skd_device *skdev);
373 static void skd_isr_fwstate(struct skd_device *skdev);
374 static void skd_recover_requests(struct skd_device *skdev);
375 static void skd_soft_reset(struct skd_device *skdev);
376
377 const char *skd_drive_state_to_str(int state);
378 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
379 static void skd_log_skdev(struct skd_device *skdev, const char *event);
380 static void skd_log_skreq(struct skd_device *skdev,
381                           struct skd_request_context *skreq, const char *event);
382
383 /*
384  *****************************************************************************
385  * READ/WRITE REQUESTS
386  *****************************************************************************
387  */
388 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
389 {
390         int *count = data;
391
392         count++;
393 }
394
395 static int skd_in_flight(struct skd_device *skdev)
396 {
397         int count = 0;
398
399         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
400
401         return count;
402 }
403
404 static void
405 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
406                 int data_dir, unsigned lba,
407                 unsigned count)
408 {
409         if (data_dir == READ)
410                 scsi_req->cdb[0] = READ_10;
411         else
412                 scsi_req->cdb[0] = WRITE_10;
413
414         scsi_req->cdb[1] = 0;
415         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
416         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
417         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
418         scsi_req->cdb[5] = (lba & 0xff);
419         scsi_req->cdb[6] = 0;
420         scsi_req->cdb[7] = (count & 0xff00) >> 8;
421         scsi_req->cdb[8] = count & 0xff;
422         scsi_req->cdb[9] = 0;
423 }
424
425 static void
426 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
427                             struct skd_request_context *skreq)
428 {
429         skreq->flush_cmd = 1;
430
431         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
432         scsi_req->cdb[1] = 0;
433         scsi_req->cdb[2] = 0;
434         scsi_req->cdb[3] = 0;
435         scsi_req->cdb[4] = 0;
436         scsi_req->cdb[5] = 0;
437         scsi_req->cdb[6] = 0;
438         scsi_req->cdb[7] = 0;
439         scsi_req->cdb[8] = 0;
440         scsi_req->cdb[9] = 0;
441 }
442
443 /*
444  * Return true if and only if all pending requests should be failed.
445  */
446 static bool skd_fail_all(struct request_queue *q)
447 {
448         struct skd_device *skdev = q->queuedata;
449
450         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
451
452         skd_log_skdev(skdev, "req_not_online");
453         switch (skdev->state) {
454         case SKD_DRVR_STATE_PAUSING:
455         case SKD_DRVR_STATE_PAUSED:
456         case SKD_DRVR_STATE_STARTING:
457         case SKD_DRVR_STATE_RESTARTING:
458         case SKD_DRVR_STATE_WAIT_BOOT:
459         /* In case of starting, we haven't started the queue,
460          * so we can't get here... but requests are
461          * possibly hanging out waiting for us because we
462          * reported the dev/skd0 already.  They'll wait
463          * forever if connect doesn't complete.
464          * What to do??? delay dev/skd0 ??
465          */
466         case SKD_DRVR_STATE_BUSY:
467         case SKD_DRVR_STATE_BUSY_IMMINENT:
468         case SKD_DRVR_STATE_BUSY_ERASE:
469                 return false;
470
471         case SKD_DRVR_STATE_BUSY_SANITIZE:
472         case SKD_DRVR_STATE_STOPPING:
473         case SKD_DRVR_STATE_SYNCING:
474         case SKD_DRVR_STATE_FAULT:
475         case SKD_DRVR_STATE_DISAPPEARED:
476         default:
477                 return true;
478         }
479 }
480
481 static void skd_process_request(struct request *req, bool last)
482 {
483         struct request_queue *const q = req->q;
484         struct skd_device *skdev = q->queuedata;
485         struct skd_fitmsg_context *skmsg;
486         struct fit_msg_hdr *fmh;
487         const u32 tag = blk_mq_unique_tag(req);
488         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
489         struct skd_scsi_request *scsi_req;
490         unsigned long flags = 0;
491         const u32 lba = blk_rq_pos(req);
492         const u32 count = blk_rq_sectors(req);
493         const int data_dir = rq_data_dir(req);
494
495         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
496                   tag, skd_max_queue_depth, q->nr_requests);
497
498         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
499
500         dev_dbg(&skdev->pdev->dev,
501                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
502                 lba, count, count, data_dir);
503
504         skreq->id = tag + SKD_ID_RW_REQUEST;
505         skreq->flush_cmd = 0;
506         skreq->n_sg = 0;
507         skreq->sg_byte_count = 0;
508
509         skreq->fitmsg_id = 0;
510
511         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
512
513         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
514                 dev_dbg(&skdev->pdev->dev, "error Out\n");
515                 skd_end_request(skdev, blk_mq_rq_from_pdu(skreq),
516                                 BLK_STS_RESOURCE);
517                 return;
518         }
519
520         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
521                                    skreq->n_sg *
522                                    sizeof(struct fit_sg_descriptor),
523                                    DMA_TO_DEVICE);
524
525         /* Either a FIT msg is in progress or we have to start one. */
526         if (skd_max_req_per_msg == 1) {
527                 skmsg = NULL;
528         } else {
529                 spin_lock_irqsave(&skdev->lock, flags);
530                 skmsg = skdev->skmsg;
531         }
532         if (!skmsg) {
533                 skmsg = &skdev->skmsg_table[tag];
534                 skdev->skmsg = skmsg;
535
536                 /* Initialize the FIT msg header */
537                 fmh = &skmsg->msg_buf->fmh;
538                 memset(fmh, 0, sizeof(*fmh));
539                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
540                 skmsg->length = sizeof(*fmh);
541         } else {
542                 fmh = &skmsg->msg_buf->fmh;
543         }
544
545         skreq->fitmsg_id = skmsg->id;
546
547         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
548         memset(scsi_req, 0, sizeof(*scsi_req));
549
550         scsi_req->hdr.tag = skreq->id;
551         scsi_req->hdr.sg_list_dma_address =
552                 cpu_to_be64(skreq->sksg_dma_address);
553
554         if (req_op(req) == REQ_OP_FLUSH) {
555                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
556                 SKD_ASSERT(skreq->flush_cmd == 1);
557         } else {
558                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
559         }
560
561         if (req->cmd_flags & REQ_FUA)
562                 scsi_req->cdb[1] |= SKD_FUA_NV;
563
564         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
565
566         /* Complete resource allocations. */
567         skreq->state = SKD_REQ_STATE_BUSY;
568
569         skmsg->length += sizeof(struct skd_scsi_request);
570         fmh->num_protocol_cmds_coalesced++;
571
572         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
573                 skd_in_flight(skdev));
574
575         /*
576          * If the FIT msg buffer is full send it.
577          */
578         if (skd_max_req_per_msg == 1) {
579                 skd_send_fitmsg(skdev, skmsg);
580         } else {
581                 if (last ||
582                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
583                         skd_send_fitmsg(skdev, skmsg);
584                         skdev->skmsg = NULL;
585                 }
586                 spin_unlock_irqrestore(&skdev->lock, flags);
587         }
588 }
589
590 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
591                                     const struct blk_mq_queue_data *mqd)
592 {
593         struct request *req = mqd->rq;
594         struct request_queue *q = req->q;
595         struct skd_device *skdev = q->queuedata;
596
597         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
598                 blk_mq_start_request(req);
599                 skd_process_request(req, mqd->last);
600
601                 return BLK_STS_OK;
602         } else {
603                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
604         }
605
606         return BLK_STS_OK;
607 }
608
609 static enum blk_eh_timer_return skd_timed_out(struct request *req)
610 {
611         struct skd_device *skdev = req->q->queuedata;
612
613         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
614                 blk_mq_unique_tag(req));
615
616         return BLK_EH_HANDLED;
617 }
618
619 static void skd_end_request(struct skd_device *skdev, struct request *req,
620                             blk_status_t error)
621 {
622         if (unlikely(error)) {
623                 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
624                 u32 lba = (u32)blk_rq_pos(req);
625                 u32 count = blk_rq_sectors(req);
626
627                 dev_err(&skdev->pdev->dev,
628                         "Error cmd=%s sect=%u count=%u id=0x%x\n", cmd, lba,
629                         count, req->tag);
630         } else
631                 dev_dbg(&skdev->pdev->dev, "id=0x%x error=%d\n", req->tag,
632                         error);
633
634         blk_mq_end_request(req, error);
635 }
636
637 /* Only called in case of a request timeout */
638 static void skd_softirq_done(struct request *req)
639 {
640         struct skd_device *skdev = req->q->queuedata;
641         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
642         unsigned long flags;
643
644         spin_lock_irqsave(&skdev->lock, flags);
645         skd_end_request(skdev, blk_mq_rq_from_pdu(skreq), BLK_STS_TIMEOUT);
646         spin_unlock_irqrestore(&skdev->lock, flags);
647 }
648
649 static bool skd_preop_sg_list(struct skd_device *skdev,
650                              struct skd_request_context *skreq)
651 {
652         struct request *req = blk_mq_rq_from_pdu(skreq);
653         struct scatterlist *sgl = &skreq->sg[0], *sg;
654         int n_sg;
655         int i;
656
657         skreq->sg_byte_count = 0;
658
659         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
660                      skreq->data_dir != DMA_FROM_DEVICE);
661
662         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
663         if (n_sg <= 0)
664                 return false;
665
666         /*
667          * Map scatterlist to PCI bus addresses.
668          * Note PCI might change the number of entries.
669          */
670         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
671         if (n_sg <= 0)
672                 return false;
673
674         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
675
676         skreq->n_sg = n_sg;
677
678         for_each_sg(sgl, sg, n_sg, i) {
679                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
680                 u32 cnt = sg_dma_len(sg);
681                 uint64_t dma_addr = sg_dma_address(sg);
682
683                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
684                 sgd->byte_count = cnt;
685                 skreq->sg_byte_count += cnt;
686                 sgd->host_side_addr = dma_addr;
687                 sgd->dev_side_addr = 0;
688         }
689
690         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
691         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
692
693         if (unlikely(skdev->dbg_level > 1)) {
694                 dev_dbg(&skdev->pdev->dev,
695                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
696                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
697                 for (i = 0; i < n_sg; i++) {
698                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
699
700                         dev_dbg(&skdev->pdev->dev,
701                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
702                                 i, sgd->byte_count, sgd->control,
703                                 sgd->host_side_addr, sgd->next_desc_ptr);
704                 }
705         }
706
707         return true;
708 }
709
710 static void skd_postop_sg_list(struct skd_device *skdev,
711                                struct skd_request_context *skreq)
712 {
713         /*
714          * restore the next ptr for next IO request so we
715          * don't have to set it every time.
716          */
717         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
718                 skreq->sksg_dma_address +
719                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
720         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
721 }
722
723 /*
724  *****************************************************************************
725  * TIMER
726  *****************************************************************************
727  */
728
729 static void skd_timer_tick_not_online(struct skd_device *skdev);
730
731 static void skd_start_queue(struct work_struct *work)
732 {
733         struct skd_device *skdev = container_of(work, typeof(*skdev),
734                                                 start_queue);
735
736         /*
737          * Although it is safe to call blk_start_queue() from interrupt
738          * context, blk_mq_start_hw_queues() must not be called from
739          * interrupt context.
740          */
741         blk_mq_start_hw_queues(skdev->queue);
742 }
743
744 static void skd_timer_tick(ulong arg)
745 {
746         struct skd_device *skdev = (struct skd_device *)arg;
747         unsigned long reqflags;
748         u32 state;
749
750         if (skdev->state == SKD_DRVR_STATE_FAULT)
751                 /* The driver has declared fault, and we want it to
752                  * stay that way until driver is reloaded.
753                  */
754                 return;
755
756         spin_lock_irqsave(&skdev->lock, reqflags);
757
758         state = SKD_READL(skdev, FIT_STATUS);
759         state &= FIT_SR_DRIVE_STATE_MASK;
760         if (state != skdev->drive_state)
761                 skd_isr_fwstate(skdev);
762
763         if (skdev->state != SKD_DRVR_STATE_ONLINE)
764                 skd_timer_tick_not_online(skdev);
765
766         mod_timer(&skdev->timer, (jiffies + HZ));
767
768         spin_unlock_irqrestore(&skdev->lock, reqflags);
769 }
770
771 static void skd_timer_tick_not_online(struct skd_device *skdev)
772 {
773         switch (skdev->state) {
774         case SKD_DRVR_STATE_IDLE:
775         case SKD_DRVR_STATE_LOAD:
776                 break;
777         case SKD_DRVR_STATE_BUSY_SANITIZE:
778                 dev_dbg(&skdev->pdev->dev,
779                         "drive busy sanitize[%x], driver[%x]\n",
780                         skdev->drive_state, skdev->state);
781                 /* If we've been in sanitize for 3 seconds, we figure we're not
782                  * going to get anymore completions, so recover requests now
783                  */
784                 if (skdev->timer_countdown > 0) {
785                         skdev->timer_countdown--;
786                         return;
787                 }
788                 skd_recover_requests(skdev);
789                 break;
790
791         case SKD_DRVR_STATE_BUSY:
792         case SKD_DRVR_STATE_BUSY_IMMINENT:
793         case SKD_DRVR_STATE_BUSY_ERASE:
794                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
795                         skdev->state, skdev->timer_countdown);
796                 if (skdev->timer_countdown > 0) {
797                         skdev->timer_countdown--;
798                         return;
799                 }
800                 dev_dbg(&skdev->pdev->dev,
801                         "busy[%x], timedout=%d, restarting device.",
802                         skdev->state, skdev->timer_countdown);
803                 skd_restart_device(skdev);
804                 break;
805
806         case SKD_DRVR_STATE_WAIT_BOOT:
807         case SKD_DRVR_STATE_STARTING:
808                 if (skdev->timer_countdown > 0) {
809                         skdev->timer_countdown--;
810                         return;
811                 }
812                 /* For now, we fault the drive.  Could attempt resets to
813                  * revcover at some point. */
814                 skdev->state = SKD_DRVR_STATE_FAULT;
815
816                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
817                         skdev->drive_state);
818
819                 /*start the queue so we can respond with error to requests */
820                 /* wakeup anyone waiting for startup complete */
821                 schedule_work(&skdev->start_queue);
822                 skdev->gendisk_on = -1;
823                 wake_up_interruptible(&skdev->waitq);
824                 break;
825
826         case SKD_DRVR_STATE_ONLINE:
827                 /* shouldn't get here. */
828                 break;
829
830         case SKD_DRVR_STATE_PAUSING:
831         case SKD_DRVR_STATE_PAUSED:
832                 break;
833
834         case SKD_DRVR_STATE_RESTARTING:
835                 if (skdev->timer_countdown > 0) {
836                         skdev->timer_countdown--;
837                         return;
838                 }
839                 /* For now, we fault the drive. Could attempt resets to
840                  * revcover at some point. */
841                 skdev->state = SKD_DRVR_STATE_FAULT;
842                 dev_err(&skdev->pdev->dev,
843                         "DriveFault Reconnect Timeout (%x)\n",
844                         skdev->drive_state);
845
846                 /*
847                  * Recovering does two things:
848                  * 1. completes IO with error
849                  * 2. reclaims dma resources
850                  * When is it safe to recover requests?
851                  * - if the drive state is faulted
852                  * - if the state is still soft reset after out timeout
853                  * - if the drive registers are dead (state = FF)
854                  * If it is "unsafe", we still need to recover, so we will
855                  * disable pci bus mastering and disable our interrupts.
856                  */
857
858                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
859                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
860                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
861                         /* It never came out of soft reset. Try to
862                          * recover the requests and then let them
863                          * fail. This is to mitigate hung processes. */
864                         skd_recover_requests(skdev);
865                 else {
866                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
867                                 skdev->drive_state);
868                         pci_disable_device(skdev->pdev);
869                         skd_disable_interrupts(skdev);
870                         skd_recover_requests(skdev);
871                 }
872
873                 /*start the queue so we can respond with error to requests */
874                 /* wakeup anyone waiting for startup complete */
875                 schedule_work(&skdev->start_queue);
876                 skdev->gendisk_on = -1;
877                 wake_up_interruptible(&skdev->waitq);
878                 break;
879
880         case SKD_DRVR_STATE_RESUMING:
881         case SKD_DRVR_STATE_STOPPING:
882         case SKD_DRVR_STATE_SYNCING:
883         case SKD_DRVR_STATE_FAULT:
884         case SKD_DRVR_STATE_DISAPPEARED:
885         default:
886                 break;
887         }
888 }
889
890 static int skd_start_timer(struct skd_device *skdev)
891 {
892         int rc;
893
894         setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
895
896         rc = mod_timer(&skdev->timer, (jiffies + HZ));
897         if (rc)
898                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
899         return rc;
900 }
901
902 static void skd_kill_timer(struct skd_device *skdev)
903 {
904         del_timer_sync(&skdev->timer);
905 }
906
907 /*
908  *****************************************************************************
909  * INTERNAL REQUESTS -- generated by driver itself
910  *****************************************************************************
911  */
912
913 static int skd_format_internal_skspcl(struct skd_device *skdev)
914 {
915         struct skd_special_context *skspcl = &skdev->internal_skspcl;
916         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
917         struct fit_msg_hdr *fmh;
918         uint64_t dma_address;
919         struct skd_scsi_request *scsi;
920
921         fmh = &skspcl->msg_buf->fmh;
922         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
923         fmh->num_protocol_cmds_coalesced = 1;
924
925         scsi = &skspcl->msg_buf->scsi[0];
926         memset(scsi, 0, sizeof(*scsi));
927         dma_address = skspcl->req.sksg_dma_address;
928         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
929         skspcl->req.n_sg = 1;
930         sgd->control = FIT_SGD_CONTROL_LAST;
931         sgd->byte_count = 0;
932         sgd->host_side_addr = skspcl->db_dma_address;
933         sgd->dev_side_addr = 0;
934         sgd->next_desc_ptr = 0LL;
935
936         return 1;
937 }
938
939 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
940
941 static void skd_send_internal_skspcl(struct skd_device *skdev,
942                                      struct skd_special_context *skspcl,
943                                      u8 opcode)
944 {
945         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
946         struct skd_scsi_request *scsi;
947         unsigned char *buf = skspcl->data_buf;
948         int i;
949
950         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
951                 /*
952                  * A refresh is already in progress.
953                  * Just wait for it to finish.
954                  */
955                 return;
956
957         SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
958         skspcl->req.state = SKD_REQ_STATE_BUSY;
959         skspcl->req.id += SKD_ID_INCR;
960
961         scsi = &skspcl->msg_buf->scsi[0];
962         scsi->hdr.tag = skspcl->req.id;
963
964         memset(scsi->cdb, 0, sizeof(scsi->cdb));
965
966         switch (opcode) {
967         case TEST_UNIT_READY:
968                 scsi->cdb[0] = TEST_UNIT_READY;
969                 sgd->byte_count = 0;
970                 scsi->hdr.sg_list_len_bytes = 0;
971                 break;
972
973         case READ_CAPACITY:
974                 scsi->cdb[0] = READ_CAPACITY;
975                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
976                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977                 break;
978
979         case INQUIRY:
980                 scsi->cdb[0] = INQUIRY;
981                 scsi->cdb[1] = 0x01;    /* evpd */
982                 scsi->cdb[2] = 0x80;    /* serial number page */
983                 scsi->cdb[4] = 0x10;
984                 sgd->byte_count = 16;
985                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
986                 break;
987
988         case SYNCHRONIZE_CACHE:
989                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
990                 sgd->byte_count = 0;
991                 scsi->hdr.sg_list_len_bytes = 0;
992                 break;
993
994         case WRITE_BUFFER:
995                 scsi->cdb[0] = WRITE_BUFFER;
996                 scsi->cdb[1] = 0x02;
997                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
998                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
999                 sgd->byte_count = WR_BUF_SIZE;
1000                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1001                 /* fill incrementing byte pattern */
1002                 for (i = 0; i < sgd->byte_count; i++)
1003                         buf[i] = i & 0xFF;
1004                 break;
1005
1006         case READ_BUFFER:
1007                 scsi->cdb[0] = READ_BUFFER;
1008                 scsi->cdb[1] = 0x02;
1009                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1010                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1011                 sgd->byte_count = WR_BUF_SIZE;
1012                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1013                 memset(skspcl->data_buf, 0, sgd->byte_count);
1014                 break;
1015
1016         default:
1017                 SKD_ASSERT("Don't know what to send");
1018                 return;
1019
1020         }
1021         skd_send_special_fitmsg(skdev, skspcl);
1022 }
1023
1024 static void skd_refresh_device_data(struct skd_device *skdev)
1025 {
1026         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1027
1028         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1029 }
1030
1031 static int skd_chk_read_buf(struct skd_device *skdev,
1032                             struct skd_special_context *skspcl)
1033 {
1034         unsigned char *buf = skspcl->data_buf;
1035         int i;
1036
1037         /* check for incrementing byte pattern */
1038         for (i = 0; i < WR_BUF_SIZE; i++)
1039                 if (buf[i] != (i & 0xFF))
1040                         return 1;
1041
1042         return 0;
1043 }
1044
1045 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1046                                  u8 code, u8 qual, u8 fruc)
1047 {
1048         /* If the check condition is of special interest, log a message */
1049         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1050             && (code == 0x04) && (qual == 0x06)) {
1051                 dev_err(&skdev->pdev->dev,
1052                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1053                         key, code, qual, fruc);
1054         }
1055 }
1056
1057 static void skd_complete_internal(struct skd_device *skdev,
1058                                   struct fit_completion_entry_v1 *skcomp,
1059                                   struct fit_comp_error_info *skerr,
1060                                   struct skd_special_context *skspcl)
1061 {
1062         u8 *buf = skspcl->data_buf;
1063         u8 status;
1064         int i;
1065         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1066
1067         lockdep_assert_held(&skdev->lock);
1068
1069         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1070
1071         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1072
1073         dma_sync_single_for_cpu(&skdev->pdev->dev,
1074                                 skspcl->db_dma_address,
1075                                 skspcl->req.sksg_list[0].byte_count,
1076                                 DMA_BIDIRECTIONAL);
1077
1078         skspcl->req.completion = *skcomp;
1079         skspcl->req.state = SKD_REQ_STATE_IDLE;
1080         skspcl->req.id += SKD_ID_INCR;
1081
1082         status = skspcl->req.completion.status;
1083
1084         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1085                              skerr->qual, skerr->fruc);
1086
1087         switch (scsi->cdb[0]) {
1088         case TEST_UNIT_READY:
1089                 if (status == SAM_STAT_GOOD)
1090                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1091                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1092                          (skerr->key == MEDIUM_ERROR))
1093                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1094                 else {
1095                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1096                                 dev_dbg(&skdev->pdev->dev,
1097                                         "TUR failed, don't send anymore state 0x%x\n",
1098                                         skdev->state);
1099                                 return;
1100                         }
1101                         dev_dbg(&skdev->pdev->dev,
1102                                 "**** TUR failed, retry skerr\n");
1103                         skd_send_internal_skspcl(skdev, skspcl,
1104                                                  TEST_UNIT_READY);
1105                 }
1106                 break;
1107
1108         case WRITE_BUFFER:
1109                 if (status == SAM_STAT_GOOD)
1110                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1111                 else {
1112                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1113                                 dev_dbg(&skdev->pdev->dev,
1114                                         "write buffer failed, don't send anymore state 0x%x\n",
1115                                         skdev->state);
1116                                 return;
1117                         }
1118                         dev_dbg(&skdev->pdev->dev,
1119                                 "**** write buffer failed, retry skerr\n");
1120                         skd_send_internal_skspcl(skdev, skspcl,
1121                                                  TEST_UNIT_READY);
1122                 }
1123                 break;
1124
1125         case READ_BUFFER:
1126                 if (status == SAM_STAT_GOOD) {
1127                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1128                                 skd_send_internal_skspcl(skdev, skspcl,
1129                                                          READ_CAPACITY);
1130                         else {
1131                                 dev_err(&skdev->pdev->dev,
1132                                         "*** W/R Buffer mismatch %d ***\n",
1133                                         skdev->connect_retries);
1134                                 if (skdev->connect_retries <
1135                                     SKD_MAX_CONNECT_RETRIES) {
1136                                         skdev->connect_retries++;
1137                                         skd_soft_reset(skdev);
1138                                 } else {
1139                                         dev_err(&skdev->pdev->dev,
1140                                                 "W/R Buffer Connect Error\n");
1141                                         return;
1142                                 }
1143                         }
1144
1145                 } else {
1146                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1147                                 dev_dbg(&skdev->pdev->dev,
1148                                         "read buffer failed, don't send anymore state 0x%x\n",
1149                                         skdev->state);
1150                                 return;
1151                         }
1152                         dev_dbg(&skdev->pdev->dev,
1153                                 "**** read buffer failed, retry skerr\n");
1154                         skd_send_internal_skspcl(skdev, skspcl,
1155                                                  TEST_UNIT_READY);
1156                 }
1157                 break;
1158
1159         case READ_CAPACITY:
1160                 skdev->read_cap_is_valid = 0;
1161                 if (status == SAM_STAT_GOOD) {
1162                         skdev->read_cap_last_lba =
1163                                 (buf[0] << 24) | (buf[1] << 16) |
1164                                 (buf[2] << 8) | buf[3];
1165                         skdev->read_cap_blocksize =
1166                                 (buf[4] << 24) | (buf[5] << 16) |
1167                                 (buf[6] << 8) | buf[7];
1168
1169                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1170                                 skdev->read_cap_last_lba,
1171                                 skdev->read_cap_blocksize);
1172
1173                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1174
1175                         skdev->read_cap_is_valid = 1;
1176
1177                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1178                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1179                            (skerr->key == MEDIUM_ERROR)) {
1180                         skdev->read_cap_last_lba = ~0;
1181                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1182                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1183                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1184                 } else {
1185                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1186                         skd_send_internal_skspcl(skdev, skspcl,
1187                                                  TEST_UNIT_READY);
1188                 }
1189                 break;
1190
1191         case INQUIRY:
1192                 skdev->inquiry_is_valid = 0;
1193                 if (status == SAM_STAT_GOOD) {
1194                         skdev->inquiry_is_valid = 1;
1195
1196                         for (i = 0; i < 12; i++)
1197                                 skdev->inq_serial_num[i] = buf[i + 4];
1198                         skdev->inq_serial_num[12] = 0;
1199                 }
1200
1201                 if (skd_unquiesce_dev(skdev) < 0)
1202                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1203                  /* connection is complete */
1204                 skdev->connect_retries = 0;
1205                 break;
1206
1207         case SYNCHRONIZE_CACHE:
1208                 if (status == SAM_STAT_GOOD)
1209                         skdev->sync_done = 1;
1210                 else
1211                         skdev->sync_done = -1;
1212                 wake_up_interruptible(&skdev->waitq);
1213                 break;
1214
1215         default:
1216                 SKD_ASSERT("we didn't send this");
1217         }
1218 }
1219
1220 /*
1221  *****************************************************************************
1222  * FIT MESSAGES
1223  *****************************************************************************
1224  */
1225
1226 static void skd_send_fitmsg(struct skd_device *skdev,
1227                             struct skd_fitmsg_context *skmsg)
1228 {
1229         u64 qcmd;
1230
1231         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1232                 skmsg->mb_dma_address, skd_in_flight(skdev));
1233         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1234
1235         qcmd = skmsg->mb_dma_address;
1236         qcmd |= FIT_QCMD_QID_NORMAL;
1237
1238         if (unlikely(skdev->dbg_level > 1)) {
1239                 u8 *bp = (u8 *)skmsg->msg_buf;
1240                 int i;
1241                 for (i = 0; i < skmsg->length; i += 8) {
1242                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1243                                 &bp[i]);
1244                         if (i == 0)
1245                                 i = 64 - 8;
1246                 }
1247         }
1248
1249         if (skmsg->length > 256)
1250                 qcmd |= FIT_QCMD_MSGSIZE_512;
1251         else if (skmsg->length > 128)
1252                 qcmd |= FIT_QCMD_MSGSIZE_256;
1253         else if (skmsg->length > 64)
1254                 qcmd |= FIT_QCMD_MSGSIZE_128;
1255         else
1256                 /*
1257                  * This makes no sense because the FIT msg header is
1258                  * 64 bytes. If the msg is only 64 bytes long it has
1259                  * no payload.
1260                  */
1261                 qcmd |= FIT_QCMD_MSGSIZE_64;
1262
1263         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1264                                    skmsg->length, DMA_TO_DEVICE);
1265
1266         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1267         smp_wmb();
1268
1269         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1270 }
1271
1272 static void skd_send_special_fitmsg(struct skd_device *skdev,
1273                                     struct skd_special_context *skspcl)
1274 {
1275         u64 qcmd;
1276
1277         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1278
1279         if (unlikely(skdev->dbg_level > 1)) {
1280                 u8 *bp = (u8 *)skspcl->msg_buf;
1281                 int i;
1282
1283                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1284                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1285                                 &bp[i]);
1286                         if (i == 0)
1287                                 i = 64 - 8;
1288                 }
1289
1290                 dev_dbg(&skdev->pdev->dev,
1291                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1292                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1293                         skspcl->req.sksg_dma_address);
1294                 for (i = 0; i < skspcl->req.n_sg; i++) {
1295                         struct fit_sg_descriptor *sgd =
1296                                 &skspcl->req.sksg_list[i];
1297
1298                         dev_dbg(&skdev->pdev->dev,
1299                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1300                                 i, sgd->byte_count, sgd->control,
1301                                 sgd->host_side_addr, sgd->next_desc_ptr);
1302                 }
1303         }
1304
1305         /*
1306          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1307          * and one 64-byte SSDI command.
1308          */
1309         qcmd = skspcl->mb_dma_address;
1310         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1311
1312         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1313                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1314         dma_sync_single_for_device(&skdev->pdev->dev,
1315                                    skspcl->req.sksg_dma_address,
1316                                    1 * sizeof(struct fit_sg_descriptor),
1317                                    DMA_TO_DEVICE);
1318         dma_sync_single_for_device(&skdev->pdev->dev,
1319                                    skspcl->db_dma_address,
1320                                    skspcl->req.sksg_list[0].byte_count,
1321                                    DMA_BIDIRECTIONAL);
1322
1323         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1324         smp_wmb();
1325
1326         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1327 }
1328
1329 /*
1330  *****************************************************************************
1331  * COMPLETION QUEUE
1332  *****************************************************************************
1333  */
1334
1335 static void skd_complete_other(struct skd_device *skdev,
1336                                struct fit_completion_entry_v1 *skcomp,
1337                                struct fit_comp_error_info *skerr);
1338
1339 struct sns_info {
1340         u8 type;
1341         u8 stat;
1342         u8 key;
1343         u8 asc;
1344         u8 ascq;
1345         u8 mask;
1346         enum skd_check_status_action action;
1347 };
1348
1349 static struct sns_info skd_chkstat_table[] = {
1350         /* Good */
1351         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1352           SKD_CHECK_STATUS_REPORT_GOOD },
1353
1354         /* Smart alerts */
1355         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1356           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1357         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1358           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1359         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1360           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1361
1362         /* Retry (with limits) */
1363         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1364           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1365         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1366           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1367         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1368           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1369         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1370           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1371
1372         /* Busy (or about to be) */
1373         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1374           SKD_CHECK_STATUS_BUSY_IMMINENT },
1375 };
1376
1377 /*
1378  * Look up status and sense data to decide how to handle the error
1379  * from the device.
1380  * mask says which fields must match e.g., mask=0x18 means check
1381  * type and stat, ignore key, asc, ascq.
1382  */
1383
1384 static enum skd_check_status_action
1385 skd_check_status(struct skd_device *skdev,
1386                  u8 cmp_status, struct fit_comp_error_info *skerr)
1387 {
1388         int i;
1389
1390         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1391                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1392
1393         dev_dbg(&skdev->pdev->dev,
1394                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1395                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1396                 skerr->fruc);
1397
1398         /* Does the info match an entry in the good category? */
1399         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1400                 struct sns_info *sns = &skd_chkstat_table[i];
1401
1402                 if (sns->mask & 0x10)
1403                         if (skerr->type != sns->type)
1404                                 continue;
1405
1406                 if (sns->mask & 0x08)
1407                         if (cmp_status != sns->stat)
1408                                 continue;
1409
1410                 if (sns->mask & 0x04)
1411                         if (skerr->key != sns->key)
1412                                 continue;
1413
1414                 if (sns->mask & 0x02)
1415                         if (skerr->code != sns->asc)
1416                                 continue;
1417
1418                 if (sns->mask & 0x01)
1419                         if (skerr->qual != sns->ascq)
1420                                 continue;
1421
1422                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1423                         dev_err(&skdev->pdev->dev,
1424                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1425                                 skerr->key, skerr->code, skerr->qual);
1426                 }
1427                 return sns->action;
1428         }
1429
1430         /* No other match, so nonzero status means error,
1431          * zero status means good
1432          */
1433         if (cmp_status) {
1434                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1435                 return SKD_CHECK_STATUS_REPORT_ERROR;
1436         }
1437
1438         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1439         return SKD_CHECK_STATUS_REPORT_GOOD;
1440 }
1441
1442 static void skd_resolve_req_exception(struct skd_device *skdev,
1443                                       struct skd_request_context *skreq,
1444                                       struct request *req)
1445 {
1446         u8 cmp_status = skreq->completion.status;
1447
1448         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1449         case SKD_CHECK_STATUS_REPORT_GOOD:
1450         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1451                 skd_end_request(skdev, req, BLK_STS_OK);
1452                 break;
1453
1454         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1455                 skd_log_skreq(skdev, skreq, "retry(busy)");
1456                 blk_requeue_request(skdev->queue, req);
1457                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1458                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1459                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1460                 skd_quiesce_dev(skdev);
1461                 break;
1462
1463         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1464                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1465                         skd_log_skreq(skdev, skreq, "retry");
1466                         blk_requeue_request(skdev->queue, req);
1467                         break;
1468                 }
1469                 /* fall through */
1470
1471         case SKD_CHECK_STATUS_REPORT_ERROR:
1472         default:
1473                 skd_end_request(skdev, req, BLK_STS_IOERR);
1474                 break;
1475         }
1476 }
1477
1478 static void skd_release_skreq(struct skd_device *skdev,
1479                               struct skd_request_context *skreq)
1480 {
1481         /*
1482          * Reclaim the skd_request_context
1483          */
1484         skreq->state = SKD_REQ_STATE_IDLE;
1485         skreq->id += SKD_ID_INCR;
1486 }
1487
1488 static int skd_isr_completion_posted(struct skd_device *skdev,
1489                                         int limit, int *enqueued)
1490 {
1491         struct fit_completion_entry_v1 *skcmp;
1492         struct fit_comp_error_info *skerr;
1493         u16 req_id;
1494         u32 tag;
1495         u16 hwq = 0;
1496         struct request *rq;
1497         struct skd_request_context *skreq;
1498         u16 cmp_cntxt;
1499         u8 cmp_status;
1500         u8 cmp_cycle;
1501         u32 cmp_bytes;
1502         int rc = 0;
1503         int processed = 0;
1504
1505         lockdep_assert_held(&skdev->lock);
1506
1507         for (;; ) {
1508                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1509
1510                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1511                 cmp_cycle = skcmp->cycle;
1512                 cmp_cntxt = skcmp->tag;
1513                 cmp_status = skcmp->status;
1514                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1515
1516                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1517
1518                 dev_dbg(&skdev->pdev->dev,
1519                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1520                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1521                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1522                         cmp_bytes, skdev->proto_ver);
1523
1524                 if (cmp_cycle != skdev->skcomp_cycle) {
1525                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1526                         break;
1527                 }
1528                 /*
1529                  * Update the completion queue head index and possibly
1530                  * the completion cycle count. 8-bit wrap-around.
1531                  */
1532                 skdev->skcomp_ix++;
1533                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1534                         skdev->skcomp_ix = 0;
1535                         skdev->skcomp_cycle++;
1536                 }
1537
1538                 /*
1539                  * The command context is a unique 32-bit ID. The low order
1540                  * bits help locate the request. The request is usually a
1541                  * r/w request (see skd_start() above) or a special request.
1542                  */
1543                 req_id = cmp_cntxt;
1544                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1545
1546                 /* Is this other than a r/w request? */
1547                 if (tag >= skdev->num_req_context) {
1548                         /*
1549                          * This is not a completion for a r/w request.
1550                          */
1551                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1552                                                       tag));
1553                         skd_complete_other(skdev, skcmp, skerr);
1554                         continue;
1555                 }
1556
1557                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1558                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1559                          tag))
1560                         continue;
1561                 skreq = blk_mq_rq_to_pdu(rq);
1562
1563                 /*
1564                  * Make sure the request ID for the slot matches.
1565                  */
1566                 if (skreq->id != req_id) {
1567                         dev_err(&skdev->pdev->dev,
1568                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1569                                 req_id, skreq->id, cmp_cntxt);
1570
1571                         continue;
1572                 }
1573
1574                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1575
1576                 skreq->completion = *skcmp;
1577                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1578                         skreq->err_info = *skerr;
1579                         skd_log_check_status(skdev, cmp_status, skerr->key,
1580                                              skerr->code, skerr->qual,
1581                                              skerr->fruc);
1582                 }
1583                 /* Release DMA resources for the request. */
1584                 if (skreq->n_sg > 0)
1585                         skd_postop_sg_list(skdev, skreq);
1586
1587                 skd_release_skreq(skdev, skreq);
1588
1589                 /*
1590                  * Capture the outcome and post it back to the native request.
1591                  */
1592                 if (likely(cmp_status == SAM_STAT_GOOD))
1593                         skd_end_request(skdev, rq, BLK_STS_OK);
1594                 else
1595                         skd_resolve_req_exception(skdev, skreq, rq);
1596
1597                 /* skd_isr_comp_limit equal zero means no limit */
1598                 if (limit) {
1599                         if (++processed >= limit) {
1600                                 rc = 1;
1601                                 break;
1602                         }
1603                 }
1604         }
1605
1606         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1607             skd_in_flight(skdev) == 0) {
1608                 skdev->state = SKD_DRVR_STATE_PAUSED;
1609                 wake_up_interruptible(&skdev->waitq);
1610         }
1611
1612         return rc;
1613 }
1614
1615 static void skd_complete_other(struct skd_device *skdev,
1616                                struct fit_completion_entry_v1 *skcomp,
1617                                struct fit_comp_error_info *skerr)
1618 {
1619         u32 req_id = 0;
1620         u32 req_table;
1621         u32 req_slot;
1622         struct skd_special_context *skspcl;
1623
1624         lockdep_assert_held(&skdev->lock);
1625
1626         req_id = skcomp->tag;
1627         req_table = req_id & SKD_ID_TABLE_MASK;
1628         req_slot = req_id & SKD_ID_SLOT_MASK;
1629
1630         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1631                 req_id, req_slot);
1632
1633         /*
1634          * Based on the request id, determine how to dispatch this completion.
1635          * This swich/case is finding the good cases and forwarding the
1636          * completion entry. Errors are reported below the switch.
1637          */
1638         switch (req_table) {
1639         case SKD_ID_RW_REQUEST:
1640                 /*
1641                  * The caller, skd_isr_completion_posted() above,
1642                  * handles r/w requests. The only way we get here
1643                  * is if the req_slot is out of bounds.
1644                  */
1645                 break;
1646
1647         case SKD_ID_INTERNAL:
1648                 if (req_slot == 0) {
1649                         skspcl = &skdev->internal_skspcl;
1650                         if (skspcl->req.id == req_id &&
1651                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1652                                 skd_complete_internal(skdev,
1653                                                       skcomp, skerr, skspcl);
1654                                 return;
1655                         }
1656                 }
1657                 break;
1658
1659         case SKD_ID_FIT_MSG:
1660                 /*
1661                  * These id's should never appear in a completion record.
1662                  */
1663                 break;
1664
1665         default:
1666                 /*
1667                  * These id's should never appear anywhere;
1668                  */
1669                 break;
1670         }
1671
1672         /*
1673          * If we get here it is a bad or stale id.
1674          */
1675 }
1676
1677 static void skd_reset_skcomp(struct skd_device *skdev)
1678 {
1679         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1680
1681         skdev->skcomp_ix = 0;
1682         skdev->skcomp_cycle = 1;
1683 }
1684
1685 /*
1686  *****************************************************************************
1687  * INTERRUPTS
1688  *****************************************************************************
1689  */
1690 static void skd_completion_worker(struct work_struct *work)
1691 {
1692         struct skd_device *skdev =
1693                 container_of(work, struct skd_device, completion_worker);
1694         unsigned long flags;
1695         int flush_enqueued = 0;
1696
1697         spin_lock_irqsave(&skdev->lock, flags);
1698
1699         /*
1700          * pass in limit=0, which means no limit..
1701          * process everything in compq
1702          */
1703         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1704         schedule_work(&skdev->start_queue);
1705
1706         spin_unlock_irqrestore(&skdev->lock, flags);
1707 }
1708
1709 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1710
1711 static irqreturn_t
1712 skd_isr(int irq, void *ptr)
1713 {
1714         struct skd_device *skdev = ptr;
1715         u32 intstat;
1716         u32 ack;
1717         int rc = 0;
1718         int deferred = 0;
1719         int flush_enqueued = 0;
1720
1721         spin_lock(&skdev->lock);
1722
1723         for (;; ) {
1724                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1725
1726                 ack = FIT_INT_DEF_MASK;
1727                 ack &= intstat;
1728
1729                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1730                         ack);
1731
1732                 /* As long as there is an int pending on device, keep
1733                  * running loop.  When none, get out, but if we've never
1734                  * done any processing, call completion handler?
1735                  */
1736                 if (ack == 0) {
1737                         /* No interrupts on device, but run the completion
1738                          * processor anyway?
1739                          */
1740                         if (rc == 0)
1741                                 if (likely (skdev->state
1742                                         == SKD_DRVR_STATE_ONLINE))
1743                                         deferred = 1;
1744                         break;
1745                 }
1746
1747                 rc = IRQ_HANDLED;
1748
1749                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1750
1751                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1752                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1753                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1754                                 /*
1755                                  * If we have already deferred completion
1756                                  * processing, don't bother running it again
1757                                  */
1758                                 if (deferred == 0)
1759                                         deferred =
1760                                                 skd_isr_completion_posted(skdev,
1761                                                 skd_isr_comp_limit, &flush_enqueued);
1762                         }
1763
1764                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1765                                 skd_isr_fwstate(skdev);
1766                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1767                                     skdev->state ==
1768                                     SKD_DRVR_STATE_DISAPPEARED) {
1769                                         spin_unlock(&skdev->lock);
1770                                         return rc;
1771                                 }
1772                         }
1773
1774                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1775                                 skd_isr_msg_from_dev(skdev);
1776                 }
1777         }
1778
1779         if (unlikely(flush_enqueued))
1780                 schedule_work(&skdev->start_queue);
1781
1782         if (deferred)
1783                 schedule_work(&skdev->completion_worker);
1784         else if (!flush_enqueued)
1785                 schedule_work(&skdev->start_queue);
1786
1787         spin_unlock(&skdev->lock);
1788
1789         return rc;
1790 }
1791
1792 static void skd_drive_fault(struct skd_device *skdev)
1793 {
1794         skdev->state = SKD_DRVR_STATE_FAULT;
1795         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1796 }
1797
1798 static void skd_drive_disappeared(struct skd_device *skdev)
1799 {
1800         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1801         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1802 }
1803
1804 static void skd_isr_fwstate(struct skd_device *skdev)
1805 {
1806         u32 sense;
1807         u32 state;
1808         u32 mtd;
1809         int prev_driver_state = skdev->state;
1810
1811         sense = SKD_READL(skdev, FIT_STATUS);
1812         state = sense & FIT_SR_DRIVE_STATE_MASK;
1813
1814         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1815                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1816                 skd_drive_state_to_str(state), state);
1817
1818         skdev->drive_state = state;
1819
1820         switch (skdev->drive_state) {
1821         case FIT_SR_DRIVE_INIT:
1822                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1823                         skd_disable_interrupts(skdev);
1824                         break;
1825                 }
1826                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1827                         skd_recover_requests(skdev);
1828                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1829                         skdev->timer_countdown = SKD_STARTING_TIMO;
1830                         skdev->state = SKD_DRVR_STATE_STARTING;
1831                         skd_soft_reset(skdev);
1832                         break;
1833                 }
1834                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1835                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1836                 skdev->last_mtd = mtd;
1837                 break;
1838
1839         case FIT_SR_DRIVE_ONLINE:
1840                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1841                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1842                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1843
1844                 skdev->queue_low_water_mark =
1845                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1846                 if (skdev->queue_low_water_mark < 1)
1847                         skdev->queue_low_water_mark = 1;
1848                 dev_info(&skdev->pdev->dev,
1849                          "Queue depth limit=%d dev=%d lowat=%d\n",
1850                          skdev->cur_max_queue_depth,
1851                          skdev->dev_max_queue_depth,
1852                          skdev->queue_low_water_mark);
1853
1854                 skd_refresh_device_data(skdev);
1855                 break;
1856
1857         case FIT_SR_DRIVE_BUSY:
1858                 skdev->state = SKD_DRVR_STATE_BUSY;
1859                 skdev->timer_countdown = SKD_BUSY_TIMO;
1860                 skd_quiesce_dev(skdev);
1861                 break;
1862         case FIT_SR_DRIVE_BUSY_SANITIZE:
1863                 /* set timer for 3 seconds, we'll abort any unfinished
1864                  * commands after that expires
1865                  */
1866                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1867                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1868                 schedule_work(&skdev->start_queue);
1869                 break;
1870         case FIT_SR_DRIVE_BUSY_ERASE:
1871                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1872                 skdev->timer_countdown = SKD_BUSY_TIMO;
1873                 break;
1874         case FIT_SR_DRIVE_OFFLINE:
1875                 skdev->state = SKD_DRVR_STATE_IDLE;
1876                 break;
1877         case FIT_SR_DRIVE_SOFT_RESET:
1878                 switch (skdev->state) {
1879                 case SKD_DRVR_STATE_STARTING:
1880                 case SKD_DRVR_STATE_RESTARTING:
1881                         /* Expected by a caller of skd_soft_reset() */
1882                         break;
1883                 default:
1884                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1885                         break;
1886                 }
1887                 break;
1888         case FIT_SR_DRIVE_FW_BOOTING:
1889                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1890                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1891                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1892                 break;
1893
1894         case FIT_SR_DRIVE_DEGRADED:
1895         case FIT_SR_PCIE_LINK_DOWN:
1896         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1897                 break;
1898
1899         case FIT_SR_DRIVE_FAULT:
1900                 skd_drive_fault(skdev);
1901                 skd_recover_requests(skdev);
1902                 schedule_work(&skdev->start_queue);
1903                 break;
1904
1905         /* PCIe bus returned all Fs? */
1906         case 0xFF:
1907                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1908                          sense);
1909                 skd_drive_disappeared(skdev);
1910                 skd_recover_requests(skdev);
1911                 schedule_work(&skdev->start_queue);
1912                 break;
1913         default:
1914                 /*
1915                  * Uknown FW State. Wait for a state we recognize.
1916                  */
1917                 break;
1918         }
1919         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1920                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1921                 skd_skdev_state_to_str(skdev->state), skdev->state);
1922 }
1923
1924 static void skd_recover_request(struct request *req, void *data, bool reserved)
1925 {
1926         struct skd_device *const skdev = data;
1927         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1928
1929         if (skreq->state != SKD_REQ_STATE_BUSY)
1930                 return;
1931
1932         skd_log_skreq(skdev, skreq, "recover");
1933
1934         /* Release DMA resources for the request. */
1935         if (skreq->n_sg > 0)
1936                 skd_postop_sg_list(skdev, skreq);
1937
1938         skreq->state = SKD_REQ_STATE_IDLE;
1939
1940         skd_end_request(skdev, req, BLK_STS_IOERR);
1941 }
1942
1943 static void skd_recover_requests(struct skd_device *skdev)
1944 {
1945         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1946 }
1947
1948 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1949 {
1950         u32 mfd;
1951         u32 mtd;
1952         u32 data;
1953
1954         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1955
1956         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1957                 skdev->last_mtd);
1958
1959         /* ignore any mtd that is an ack for something we didn't send */
1960         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1961                 return;
1962
1963         switch (FIT_MXD_TYPE(mfd)) {
1964         case FIT_MTD_FITFW_INIT:
1965                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1966
1967                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1968                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1969                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1970                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1971                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1972                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1973                         skd_soft_reset(skdev);
1974                         break;
1975                 }
1976                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1977                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1978                 skdev->last_mtd = mtd;
1979                 break;
1980
1981         case FIT_MTD_GET_CMDQ_DEPTH:
1982                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1983                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1984                                    SKD_N_COMPLETION_ENTRY);
1985                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1986                 skdev->last_mtd = mtd;
1987                 break;
1988
1989         case FIT_MTD_SET_COMPQ_DEPTH:
1990                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1991                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1992                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1993                 skdev->last_mtd = mtd;
1994                 break;
1995
1996         case FIT_MTD_SET_COMPQ_ADDR:
1997                 skd_reset_skcomp(skdev);
1998                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1999                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2000                 skdev->last_mtd = mtd;
2001                 break;
2002
2003         case FIT_MTD_CMD_LOG_HOST_ID:
2004                 skdev->connect_time_stamp = get_seconds();
2005                 data = skdev->connect_time_stamp & 0xFFFF;
2006                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
2007                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2008                 skdev->last_mtd = mtd;
2009                 break;
2010
2011         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
2012                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
2013                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
2014                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
2015                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2016                 skdev->last_mtd = mtd;
2017                 break;
2018
2019         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
2020                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
2021                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
2022                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2023                 skdev->last_mtd = mtd;
2024
2025                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2026                         skdev->connect_time_stamp, skdev->drive_jiffies);
2027                 break;
2028
2029         case FIT_MTD_ARM_QUEUE:
2030                 skdev->last_mtd = 0;
2031                 /*
2032                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2033                  */
2034                 break;
2035
2036         default:
2037                 break;
2038         }
2039 }
2040
2041 static void skd_disable_interrupts(struct skd_device *skdev)
2042 {
2043         u32 sense;
2044
2045         sense = SKD_READL(skdev, FIT_CONTROL);
2046         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2047         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2048         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2049
2050         /* Note that the 1s is written. A 1-bit means
2051          * disable, a 0 means enable.
2052          */
2053         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2054 }
2055
2056 static void skd_enable_interrupts(struct skd_device *skdev)
2057 {
2058         u32 val;
2059
2060         /* unmask interrupts first */
2061         val = FIT_ISH_FW_STATE_CHANGE +
2062               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2063
2064         /* Note that the compliment of mask is written. A 1-bit means
2065          * disable, a 0 means enable. */
2066         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2067         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2068
2069         val = SKD_READL(skdev, FIT_CONTROL);
2070         val |= FIT_CR_ENABLE_INTERRUPTS;
2071         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2072         SKD_WRITEL(skdev, val, FIT_CONTROL);
2073 }
2074
2075 /*
2076  *****************************************************************************
2077  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2078  *****************************************************************************
2079  */
2080
2081 static void skd_soft_reset(struct skd_device *skdev)
2082 {
2083         u32 val;
2084
2085         val = SKD_READL(skdev, FIT_CONTROL);
2086         val |= (FIT_CR_SOFT_RESET);
2087         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2088         SKD_WRITEL(skdev, val, FIT_CONTROL);
2089 }
2090
2091 static void skd_start_device(struct skd_device *skdev)
2092 {
2093         unsigned long flags;
2094         u32 sense;
2095         u32 state;
2096
2097         spin_lock_irqsave(&skdev->lock, flags);
2098
2099         /* ack all ghost interrupts */
2100         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2101
2102         sense = SKD_READL(skdev, FIT_STATUS);
2103
2104         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2105
2106         state = sense & FIT_SR_DRIVE_STATE_MASK;
2107         skdev->drive_state = state;
2108         skdev->last_mtd = 0;
2109
2110         skdev->state = SKD_DRVR_STATE_STARTING;
2111         skdev->timer_countdown = SKD_STARTING_TIMO;
2112
2113         skd_enable_interrupts(skdev);
2114
2115         switch (skdev->drive_state) {
2116         case FIT_SR_DRIVE_OFFLINE:
2117                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2118                 break;
2119
2120         case FIT_SR_DRIVE_FW_BOOTING:
2121                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2122                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2123                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2124                 break;
2125
2126         case FIT_SR_DRIVE_BUSY_SANITIZE:
2127                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2128                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2129                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2130                 break;
2131
2132         case FIT_SR_DRIVE_BUSY_ERASE:
2133                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2134                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2135                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2136                 break;
2137
2138         case FIT_SR_DRIVE_INIT:
2139         case FIT_SR_DRIVE_ONLINE:
2140                 skd_soft_reset(skdev);
2141                 break;
2142
2143         case FIT_SR_DRIVE_BUSY:
2144                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2145                 skdev->state = SKD_DRVR_STATE_BUSY;
2146                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2147                 break;
2148
2149         case FIT_SR_DRIVE_SOFT_RESET:
2150                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2151                 break;
2152
2153         case FIT_SR_DRIVE_FAULT:
2154                 /* Fault state is bad...soft reset won't do it...
2155                  * Hard reset, maybe, but does it work on device?
2156                  * For now, just fault so the system doesn't hang.
2157                  */
2158                 skd_drive_fault(skdev);
2159                 /*start the queue so we can respond with error to requests */
2160                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2161                 schedule_work(&skdev->start_queue);
2162                 skdev->gendisk_on = -1;
2163                 wake_up_interruptible(&skdev->waitq);
2164                 break;
2165
2166         case 0xFF:
2167                 /* Most likely the device isn't there or isn't responding
2168                  * to the BAR1 addresses. */
2169                 skd_drive_disappeared(skdev);
2170                 /*start the queue so we can respond with error to requests */
2171                 dev_dbg(&skdev->pdev->dev,
2172                         "starting queue to error-out reqs\n");
2173                 schedule_work(&skdev->start_queue);
2174                 skdev->gendisk_on = -1;
2175                 wake_up_interruptible(&skdev->waitq);
2176                 break;
2177
2178         default:
2179                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2180                         skdev->drive_state);
2181                 break;
2182         }
2183
2184         state = SKD_READL(skdev, FIT_CONTROL);
2185         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2186
2187         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2188         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2189
2190         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2191         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2192
2193         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2194         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2195
2196         state = SKD_READL(skdev, FIT_HW_VERSION);
2197         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2198
2199         spin_unlock_irqrestore(&skdev->lock, flags);
2200 }
2201
2202 static void skd_stop_device(struct skd_device *skdev)
2203 {
2204         unsigned long flags;
2205         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2206         u32 dev_state;
2207         int i;
2208
2209         spin_lock_irqsave(&skdev->lock, flags);
2210
2211         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2212                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2213                 goto stop_out;
2214         }
2215
2216         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2217                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2218                 goto stop_out;
2219         }
2220
2221         skdev->state = SKD_DRVR_STATE_SYNCING;
2222         skdev->sync_done = 0;
2223
2224         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2225
2226         spin_unlock_irqrestore(&skdev->lock, flags);
2227
2228         wait_event_interruptible_timeout(skdev->waitq,
2229                                          (skdev->sync_done), (10 * HZ));
2230
2231         spin_lock_irqsave(&skdev->lock, flags);
2232
2233         switch (skdev->sync_done) {
2234         case 0:
2235                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2236                 break;
2237         case 1:
2238                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2239                 break;
2240         default:
2241                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2242         }
2243
2244 stop_out:
2245         skdev->state = SKD_DRVR_STATE_STOPPING;
2246         spin_unlock_irqrestore(&skdev->lock, flags);
2247
2248         skd_kill_timer(skdev);
2249
2250         spin_lock_irqsave(&skdev->lock, flags);
2251         skd_disable_interrupts(skdev);
2252
2253         /* ensure all ints on device are cleared */
2254         /* soft reset the device to unload with a clean slate */
2255         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2256         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2257
2258         spin_unlock_irqrestore(&skdev->lock, flags);
2259
2260         /* poll every 100ms, 1 second timeout */
2261         for (i = 0; i < 10; i++) {
2262                 dev_state =
2263                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2264                 if (dev_state == FIT_SR_DRIVE_INIT)
2265                         break;
2266                 set_current_state(TASK_INTERRUPTIBLE);
2267                 schedule_timeout(msecs_to_jiffies(100));
2268         }
2269
2270         if (dev_state != FIT_SR_DRIVE_INIT)
2271                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2272                         dev_state);
2273 }
2274
2275 /* assume spinlock is held */
2276 static void skd_restart_device(struct skd_device *skdev)
2277 {
2278         u32 state;
2279
2280         /* ack all ghost interrupts */
2281         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2282
2283         state = SKD_READL(skdev, FIT_STATUS);
2284
2285         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2286
2287         state &= FIT_SR_DRIVE_STATE_MASK;
2288         skdev->drive_state = state;
2289         skdev->last_mtd = 0;
2290
2291         skdev->state = SKD_DRVR_STATE_RESTARTING;
2292         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2293
2294         skd_soft_reset(skdev);
2295 }
2296
2297 /* assume spinlock is held */
2298 static int skd_quiesce_dev(struct skd_device *skdev)
2299 {
2300         int rc = 0;
2301
2302         switch (skdev->state) {
2303         case SKD_DRVR_STATE_BUSY:
2304         case SKD_DRVR_STATE_BUSY_IMMINENT:
2305                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2306                 blk_mq_stop_hw_queues(skdev->queue);
2307                 break;
2308         case SKD_DRVR_STATE_ONLINE:
2309         case SKD_DRVR_STATE_STOPPING:
2310         case SKD_DRVR_STATE_SYNCING:
2311         case SKD_DRVR_STATE_PAUSING:
2312         case SKD_DRVR_STATE_PAUSED:
2313         case SKD_DRVR_STATE_STARTING:
2314         case SKD_DRVR_STATE_RESTARTING:
2315         case SKD_DRVR_STATE_RESUMING:
2316         default:
2317                 rc = -EINVAL;
2318                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2319                         skdev->state);
2320         }
2321         return rc;
2322 }
2323
2324 /* assume spinlock is held */
2325 static int skd_unquiesce_dev(struct skd_device *skdev)
2326 {
2327         int prev_driver_state = skdev->state;
2328
2329         skd_log_skdev(skdev, "unquiesce");
2330         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2331                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2332                 return 0;
2333         }
2334         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2335                 /*
2336                  * If there has been an state change to other than
2337                  * ONLINE, we will rely on controller state change
2338                  * to come back online and restart the queue.
2339                  * The BUSY state means that driver is ready to
2340                  * continue normal processing but waiting for controller
2341                  * to become available.
2342                  */
2343                 skdev->state = SKD_DRVR_STATE_BUSY;
2344                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2345                 return 0;
2346         }
2347
2348         /*
2349          * Drive has just come online, driver is either in startup,
2350          * paused performing a task, or bust waiting for hardware.
2351          */
2352         switch (skdev->state) {
2353         case SKD_DRVR_STATE_PAUSED:
2354         case SKD_DRVR_STATE_BUSY:
2355         case SKD_DRVR_STATE_BUSY_IMMINENT:
2356         case SKD_DRVR_STATE_BUSY_ERASE:
2357         case SKD_DRVR_STATE_STARTING:
2358         case SKD_DRVR_STATE_RESTARTING:
2359         case SKD_DRVR_STATE_FAULT:
2360         case SKD_DRVR_STATE_IDLE:
2361         case SKD_DRVR_STATE_LOAD:
2362                 skdev->state = SKD_DRVR_STATE_ONLINE;
2363                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2364                         skd_skdev_state_to_str(prev_driver_state),
2365                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2366                         skdev->state);
2367                 dev_dbg(&skdev->pdev->dev,
2368                         "**** device ONLINE...starting block queue\n");
2369                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2370                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2371                 schedule_work(&skdev->start_queue);
2372                 skdev->gendisk_on = 1;
2373                 wake_up_interruptible(&skdev->waitq);
2374                 break;
2375
2376         case SKD_DRVR_STATE_DISAPPEARED:
2377         default:
2378                 dev_dbg(&skdev->pdev->dev,
2379                         "**** driver state %d, not implemented\n",
2380                         skdev->state);
2381                 return -EBUSY;
2382         }
2383         return 0;
2384 }
2385
2386 /*
2387  *****************************************************************************
2388  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2389  *****************************************************************************
2390  */
2391
2392 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2393 {
2394         struct skd_device *skdev = skd_host_data;
2395         unsigned long flags;
2396
2397         spin_lock_irqsave(&skdev->lock, flags);
2398         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2399                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2400         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2401                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2402         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2403         spin_unlock_irqrestore(&skdev->lock, flags);
2404         return IRQ_HANDLED;
2405 }
2406
2407 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2408 {
2409         struct skd_device *skdev = skd_host_data;
2410         unsigned long flags;
2411
2412         spin_lock_irqsave(&skdev->lock, flags);
2413         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2414                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2415         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2416         skd_isr_fwstate(skdev);
2417         spin_unlock_irqrestore(&skdev->lock, flags);
2418         return IRQ_HANDLED;
2419 }
2420
2421 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2422 {
2423         struct skd_device *skdev = skd_host_data;
2424         unsigned long flags;
2425         int flush_enqueued = 0;
2426         int deferred;
2427
2428         spin_lock_irqsave(&skdev->lock, flags);
2429         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2430                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2431         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2432         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2433                                                 &flush_enqueued);
2434         if (flush_enqueued)
2435                 schedule_work(&skdev->start_queue);
2436
2437         if (deferred)
2438                 schedule_work(&skdev->completion_worker);
2439         else if (!flush_enqueued)
2440                 schedule_work(&skdev->start_queue);
2441
2442         spin_unlock_irqrestore(&skdev->lock, flags);
2443
2444         return IRQ_HANDLED;
2445 }
2446
2447 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2448 {
2449         struct skd_device *skdev = skd_host_data;
2450         unsigned long flags;
2451
2452         spin_lock_irqsave(&skdev->lock, flags);
2453         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2454                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2455         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2456         skd_isr_msg_from_dev(skdev);
2457         spin_unlock_irqrestore(&skdev->lock, flags);
2458         return IRQ_HANDLED;
2459 }
2460
2461 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2462 {
2463         struct skd_device *skdev = skd_host_data;
2464         unsigned long flags;
2465
2466         spin_lock_irqsave(&skdev->lock, flags);
2467         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2468                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2469         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2470         spin_unlock_irqrestore(&skdev->lock, flags);
2471         return IRQ_HANDLED;
2472 }
2473
2474 /*
2475  *****************************************************************************
2476  * PCIe MSI/MSI-X SETUP
2477  *****************************************************************************
2478  */
2479
2480 struct skd_msix_entry {
2481         char isr_name[30];
2482 };
2483
2484 struct skd_init_msix_entry {
2485         const char *name;
2486         irq_handler_t handler;
2487 };
2488
2489 #define SKD_MAX_MSIX_COUNT              13
2490 #define SKD_MIN_MSIX_COUNT              7
2491 #define SKD_BASE_MSIX_IRQ               4
2492
2493 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2494         { "(DMA 0)",        skd_reserved_isr },
2495         { "(DMA 1)",        skd_reserved_isr },
2496         { "(DMA 2)",        skd_reserved_isr },
2497         { "(DMA 3)",        skd_reserved_isr },
2498         { "(State Change)", skd_statec_isr   },
2499         { "(COMPL_Q)",      skd_comp_q       },
2500         { "(MSG)",          skd_msg_isr      },
2501         { "(Reserved)",     skd_reserved_isr },
2502         { "(Reserved)",     skd_reserved_isr },
2503         { "(Queue Full 0)", skd_qfull_isr    },
2504         { "(Queue Full 1)", skd_qfull_isr    },
2505         { "(Queue Full 2)", skd_qfull_isr    },
2506         { "(Queue Full 3)", skd_qfull_isr    },
2507 };
2508
2509 static int skd_acquire_msix(struct skd_device *skdev)
2510 {
2511         int i, rc;
2512         struct pci_dev *pdev = skdev->pdev;
2513
2514         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2515                         PCI_IRQ_MSIX);
2516         if (rc < 0) {
2517                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2518                 goto out;
2519         }
2520
2521         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2522                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2523         if (!skdev->msix_entries) {
2524                 rc = -ENOMEM;
2525                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2526                 goto out;
2527         }
2528
2529         /* Enable MSI-X vectors for the base queue */
2530         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2531                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2532
2533                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2534                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2535                          msix_entries[i].name);
2536
2537                 rc = devm_request_irq(&skdev->pdev->dev,
2538                                 pci_irq_vector(skdev->pdev, i),
2539                                 msix_entries[i].handler, 0,
2540                                 qentry->isr_name, skdev);
2541                 if (rc) {
2542                         dev_err(&skdev->pdev->dev,
2543                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2544                                 rc, i, qentry->isr_name);
2545                         goto msix_out;
2546                 }
2547         }
2548
2549         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2550                 SKD_MAX_MSIX_COUNT);
2551         return 0;
2552
2553 msix_out:
2554         while (--i >= 0)
2555                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2556 out:
2557         kfree(skdev->msix_entries);
2558         skdev->msix_entries = NULL;
2559         return rc;
2560 }
2561
2562 static int skd_acquire_irq(struct skd_device *skdev)
2563 {
2564         struct pci_dev *pdev = skdev->pdev;
2565         unsigned int irq_flag = PCI_IRQ_LEGACY;
2566         int rc;
2567
2568         if (skd_isr_type == SKD_IRQ_MSIX) {
2569                 rc = skd_acquire_msix(skdev);
2570                 if (!rc)
2571                         return 0;
2572
2573                 dev_err(&skdev->pdev->dev,
2574                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2575         }
2576
2577         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2578                         skdev->devno);
2579
2580         if (skd_isr_type != SKD_IRQ_LEGACY)
2581                 irq_flag |= PCI_IRQ_MSI;
2582         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2583         if (rc < 0) {
2584                 dev_err(&skdev->pdev->dev,
2585                         "failed to allocate the MSI interrupt %d\n", rc);
2586                 return rc;
2587         }
2588
2589         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2590                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2591                         skdev->isr_name, skdev);
2592         if (rc) {
2593                 pci_free_irq_vectors(pdev);
2594                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2595                         rc);
2596                 return rc;
2597         }
2598
2599         return 0;
2600 }
2601
2602 static void skd_release_irq(struct skd_device *skdev)
2603 {
2604         struct pci_dev *pdev = skdev->pdev;
2605
2606         if (skdev->msix_entries) {
2607                 int i;
2608
2609                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2610                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2611                                         skdev);
2612                 }
2613
2614                 kfree(skdev->msix_entries);
2615                 skdev->msix_entries = NULL;
2616         } else {
2617                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2618         }
2619
2620         pci_free_irq_vectors(pdev);
2621 }
2622
2623 /*
2624  *****************************************************************************
2625  * CONSTRUCT
2626  *****************************************************************************
2627  */
2628
2629 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2630                            dma_addr_t *dma_handle, gfp_t gfp,
2631                            enum dma_data_direction dir)
2632 {
2633         struct device *dev = &skdev->pdev->dev;
2634         void *buf;
2635
2636         buf = kmem_cache_alloc(s, gfp);
2637         if (!buf)
2638                 return NULL;
2639         *dma_handle = dma_map_single(dev, buf, s->size, dir);
2640         if (dma_mapping_error(dev, *dma_handle)) {
2641                 kfree(buf);
2642                 buf = NULL;
2643         }
2644         return buf;
2645 }
2646
2647 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2648                          void *vaddr, dma_addr_t dma_handle,
2649                          enum dma_data_direction dir)
2650 {
2651         if (!vaddr)
2652                 return;
2653
2654         dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2655         kmem_cache_free(s, vaddr);
2656 }
2657
2658 static int skd_cons_skcomp(struct skd_device *skdev)
2659 {
2660         int rc = 0;
2661         struct fit_completion_entry_v1 *skcomp;
2662
2663         dev_dbg(&skdev->pdev->dev,
2664                 "comp pci_alloc, total bytes %zd entries %d\n",
2665                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2666
2667         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2668                                        &skdev->cq_dma_address);
2669
2670         if (skcomp == NULL) {
2671                 rc = -ENOMEM;
2672                 goto err_out;
2673         }
2674
2675         skdev->skcomp_table = skcomp;
2676         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2677                                                            sizeof(*skcomp) *
2678                                                            SKD_N_COMPLETION_ENTRY);
2679
2680 err_out:
2681         return rc;
2682 }
2683
2684 static int skd_cons_skmsg(struct skd_device *skdev)
2685 {
2686         int rc = 0;
2687         u32 i;
2688
2689         dev_dbg(&skdev->pdev->dev,
2690                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2691                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2692                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2693
2694         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2695                                      sizeof(struct skd_fitmsg_context),
2696                                      GFP_KERNEL);
2697         if (skdev->skmsg_table == NULL) {
2698                 rc = -ENOMEM;
2699                 goto err_out;
2700         }
2701
2702         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2703                 struct skd_fitmsg_context *skmsg;
2704
2705                 skmsg = &skdev->skmsg_table[i];
2706
2707                 skmsg->id = i + SKD_ID_FIT_MSG;
2708
2709                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2710                                                       SKD_N_FITMSG_BYTES,
2711                                                       &skmsg->mb_dma_address);
2712
2713                 if (skmsg->msg_buf == NULL) {
2714                         rc = -ENOMEM;
2715                         goto err_out;
2716                 }
2717
2718                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2719                      (FIT_QCMD_ALIGN - 1),
2720                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2721                      skmsg->msg_buf, skmsg->mb_dma_address);
2722                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2723         }
2724
2725 err_out:
2726         return rc;
2727 }
2728
2729 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2730                                                   u32 n_sg,
2731                                                   dma_addr_t *ret_dma_addr)
2732 {
2733         struct fit_sg_descriptor *sg_list;
2734
2735         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2736                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2737
2738         if (sg_list != NULL) {
2739                 uint64_t dma_address = *ret_dma_addr;
2740                 u32 i;
2741
2742                 for (i = 0; i < n_sg - 1; i++) {
2743                         uint64_t ndp_off;
2744                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2745
2746                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2747                 }
2748                 sg_list[i].next_desc_ptr = 0LL;
2749         }
2750
2751         return sg_list;
2752 }
2753
2754 static void skd_free_sg_list(struct skd_device *skdev,
2755                              struct fit_sg_descriptor *sg_list,
2756                              dma_addr_t dma_addr)
2757 {
2758         if (WARN_ON_ONCE(!sg_list))
2759                 return;
2760
2761         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2762                      DMA_TO_DEVICE);
2763 }
2764
2765 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2766                             unsigned int hctx_idx, unsigned int numa_node)
2767 {
2768         struct skd_device *skdev = set->driver_data;
2769         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2770
2771         skreq->state = SKD_REQ_STATE_IDLE;
2772         skreq->sg = (void *)(skreq + 1);
2773         sg_init_table(skreq->sg, skd_sgs_per_request);
2774         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2775                                             &skreq->sksg_dma_address);
2776
2777         return skreq->sksg_list ? 0 : -ENOMEM;
2778 }
2779
2780 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2781                              unsigned int hctx_idx)
2782 {
2783         struct skd_device *skdev = set->driver_data;
2784         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2785
2786         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2787 }
2788
2789 static int skd_cons_sksb(struct skd_device *skdev)
2790 {
2791         int rc = 0;
2792         struct skd_special_context *skspcl;
2793
2794         skspcl = &skdev->internal_skspcl;
2795
2796         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2797         skspcl->req.state = SKD_REQ_STATE_IDLE;
2798
2799         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2800                                          &skspcl->db_dma_address,
2801                                          GFP_DMA | __GFP_ZERO,
2802                                          DMA_BIDIRECTIONAL);
2803         if (skspcl->data_buf == NULL) {
2804                 rc = -ENOMEM;
2805                 goto err_out;
2806         }
2807
2808         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2809                                         &skspcl->mb_dma_address,
2810                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2811         if (skspcl->msg_buf == NULL) {
2812                 rc = -ENOMEM;
2813                 goto err_out;
2814         }
2815
2816         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2817                                                  &skspcl->req.sksg_dma_address);
2818         if (skspcl->req.sksg_list == NULL) {
2819                 rc = -ENOMEM;
2820                 goto err_out;
2821         }
2822
2823         if (!skd_format_internal_skspcl(skdev)) {
2824                 rc = -EINVAL;
2825                 goto err_out;
2826         }
2827
2828 err_out:
2829         return rc;
2830 }
2831
2832 static const struct blk_mq_ops skd_mq_ops = {
2833         .queue_rq       = skd_mq_queue_rq,
2834         .init_request   = skd_init_request,
2835         .exit_request   = skd_exit_request,
2836 };
2837
2838 static int skd_cons_disk(struct skd_device *skdev)
2839 {
2840         int rc = 0;
2841         struct gendisk *disk;
2842         struct request_queue *q;
2843         unsigned long flags;
2844
2845         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2846         if (!disk) {
2847                 rc = -ENOMEM;
2848                 goto err_out;
2849         }
2850
2851         skdev->disk = disk;
2852         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2853
2854         disk->major = skdev->major;
2855         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2856         disk->fops = &skd_blockdev_ops;
2857         disk->private_data = skdev;
2858
2859         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2860         skdev->tag_set.ops = &skd_mq_ops;
2861         skdev->tag_set.nr_hw_queues = 1;
2862         skdev->tag_set.queue_depth = skd_max_queue_depth;
2863         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2864                 skdev->sgs_per_request * sizeof(struct scatterlist);
2865         skdev->tag_set.numa_node = NUMA_NO_NODE;
2866         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2867                 BLK_MQ_F_SG_MERGE |
2868                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2869         skdev->tag_set.driver_data = skdev;
2870         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2871         if (rc)
2872                 goto err_out;
2873         q = blk_mq_init_queue(&skdev->tag_set);
2874         if (IS_ERR(q)) {
2875                 blk_mq_free_tag_set(&skdev->tag_set);
2876                 rc = PTR_ERR(q);
2877                 goto err_out;
2878         }
2879         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2880         q->queuedata = skdev;
2881         q->nr_requests = skd_max_queue_depth / 2;
2882
2883         skdev->queue = q;
2884         disk->queue = q;
2885
2886         blk_queue_write_cache(q, true, true);
2887         blk_queue_max_segments(q, skdev->sgs_per_request);
2888         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2889
2890         /* set optimal I/O size to 8KB */
2891         blk_queue_io_opt(q, 8192);
2892
2893         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2894         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2895
2896         blk_queue_rq_timeout(q, 8 * HZ);
2897         blk_queue_rq_timed_out(q, skd_timed_out);
2898         blk_queue_softirq_done(q, skd_softirq_done);
2899
2900         spin_lock_irqsave(&skdev->lock, flags);
2901         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2902         blk_mq_stop_hw_queues(skdev->queue);
2903         spin_unlock_irqrestore(&skdev->lock, flags);
2904
2905 err_out:
2906         return rc;
2907 }
2908
2909 #define SKD_N_DEV_TABLE         16u
2910 static u32 skd_next_devno;
2911
2912 static struct skd_device *skd_construct(struct pci_dev *pdev)
2913 {
2914         struct skd_device *skdev;
2915         int blk_major = skd_major;
2916         size_t size;
2917         int rc;
2918
2919         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2920
2921         if (!skdev) {
2922                 dev_err(&pdev->dev, "memory alloc failure\n");
2923                 return NULL;
2924         }
2925
2926         skdev->state = SKD_DRVR_STATE_LOAD;
2927         skdev->pdev = pdev;
2928         skdev->devno = skd_next_devno++;
2929         skdev->major = blk_major;
2930         skdev->dev_max_queue_depth = 0;
2931
2932         skdev->num_req_context = skd_max_queue_depth;
2933         skdev->num_fitmsg_context = skd_max_queue_depth;
2934         skdev->cur_max_queue_depth = 1;
2935         skdev->queue_low_water_mark = 1;
2936         skdev->proto_ver = 99;
2937         skdev->sgs_per_request = skd_sgs_per_request;
2938         skdev->dbg_level = skd_dbg_level;
2939
2940         spin_lock_init(&skdev->lock);
2941
2942         INIT_WORK(&skdev->start_queue, skd_start_queue);
2943         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2944
2945         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2946         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2947                                                 SLAB_HWCACHE_ALIGN, NULL);
2948         if (!skdev->msgbuf_cache)
2949                 goto err_out;
2950         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2951                   "skd-msgbuf: %d < %zd\n",
2952                   kmem_cache_size(skdev->msgbuf_cache), size);
2953         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2954         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2955                                                 SLAB_HWCACHE_ALIGN, NULL);
2956         if (!skdev->sglist_cache)
2957                 goto err_out;
2958         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2959                   "skd-sglist: %d < %zd\n",
2960                   kmem_cache_size(skdev->sglist_cache), size);
2961         size = SKD_N_INTERNAL_BYTES;
2962         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2963                                                  SLAB_HWCACHE_ALIGN, NULL);
2964         if (!skdev->databuf_cache)
2965                 goto err_out;
2966         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2967                   "skd-databuf: %d < %zd\n",
2968                   kmem_cache_size(skdev->databuf_cache), size);
2969
2970         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2971         rc = skd_cons_skcomp(skdev);
2972         if (rc < 0)
2973                 goto err_out;
2974
2975         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2976         rc = skd_cons_skmsg(skdev);
2977         if (rc < 0)
2978                 goto err_out;
2979
2980         dev_dbg(&skdev->pdev->dev, "sksb\n");
2981         rc = skd_cons_sksb(skdev);
2982         if (rc < 0)
2983                 goto err_out;
2984
2985         dev_dbg(&skdev->pdev->dev, "disk\n");
2986         rc = skd_cons_disk(skdev);
2987         if (rc < 0)
2988                 goto err_out;
2989
2990         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2991         return skdev;
2992
2993 err_out:
2994         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2995         skd_destruct(skdev);
2996         return NULL;
2997 }
2998
2999 /*
3000  *****************************************************************************
3001  * DESTRUCT (FREE)
3002  *****************************************************************************
3003  */
3004
3005 static void skd_free_skcomp(struct skd_device *skdev)
3006 {
3007         if (skdev->skcomp_table)
3008                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
3009                                     skdev->skcomp_table, skdev->cq_dma_address);
3010
3011         skdev->skcomp_table = NULL;
3012         skdev->cq_dma_address = 0;
3013 }
3014
3015 static void skd_free_skmsg(struct skd_device *skdev)
3016 {
3017         u32 i;
3018
3019         if (skdev->skmsg_table == NULL)
3020                 return;
3021
3022         for (i = 0; i < skdev->num_fitmsg_context; i++) {
3023                 struct skd_fitmsg_context *skmsg;
3024
3025                 skmsg = &skdev->skmsg_table[i];
3026
3027                 if (skmsg->msg_buf != NULL) {
3028                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
3029                                             skmsg->msg_buf,
3030                                             skmsg->mb_dma_address);
3031                 }
3032                 skmsg->msg_buf = NULL;
3033                 skmsg->mb_dma_address = 0;
3034         }
3035
3036         kfree(skdev->skmsg_table);
3037         skdev->skmsg_table = NULL;
3038 }
3039
3040 static void skd_free_sksb(struct skd_device *skdev)
3041 {
3042         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3043
3044         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3045                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3046
3047         skspcl->data_buf = NULL;
3048         skspcl->db_dma_address = 0;
3049
3050         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3051                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3052
3053         skspcl->msg_buf = NULL;
3054         skspcl->mb_dma_address = 0;
3055
3056         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3057                          skspcl->req.sksg_dma_address);
3058
3059         skspcl->req.sksg_list = NULL;
3060         skspcl->req.sksg_dma_address = 0;
3061 }
3062
3063 static void skd_free_disk(struct skd_device *skdev)
3064 {
3065         struct gendisk *disk = skdev->disk;
3066
3067         if (disk && (disk->flags & GENHD_FL_UP))
3068                 del_gendisk(disk);
3069
3070         if (skdev->queue) {
3071                 blk_cleanup_queue(skdev->queue);
3072                 skdev->queue = NULL;
3073                 disk->queue = NULL;
3074         }
3075
3076         if (skdev->tag_set.tags)
3077                 blk_mq_free_tag_set(&skdev->tag_set);
3078
3079         put_disk(disk);
3080         skdev->disk = NULL;
3081 }
3082
3083 static void skd_destruct(struct skd_device *skdev)
3084 {
3085         if (skdev == NULL)
3086                 return;
3087
3088         cancel_work_sync(&skdev->start_queue);
3089
3090         dev_dbg(&skdev->pdev->dev, "disk\n");
3091         skd_free_disk(skdev);
3092
3093         dev_dbg(&skdev->pdev->dev, "sksb\n");
3094         skd_free_sksb(skdev);
3095
3096         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3097         skd_free_skmsg(skdev);
3098
3099         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3100         skd_free_skcomp(skdev);
3101
3102         kmem_cache_destroy(skdev->databuf_cache);
3103         kmem_cache_destroy(skdev->sglist_cache);
3104         kmem_cache_destroy(skdev->msgbuf_cache);
3105
3106         dev_dbg(&skdev->pdev->dev, "skdev\n");
3107         kfree(skdev);
3108 }
3109
3110 /*
3111  *****************************************************************************
3112  * BLOCK DEVICE (BDEV) GLUE
3113  *****************************************************************************
3114  */
3115
3116 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3117 {
3118         struct skd_device *skdev;
3119         u64 capacity;
3120
3121         skdev = bdev->bd_disk->private_data;
3122
3123         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3124                 bdev->bd_disk->disk_name, current->comm);
3125
3126         if (skdev->read_cap_is_valid) {
3127                 capacity = get_capacity(skdev->disk);
3128                 geo->heads = 64;
3129                 geo->sectors = 255;
3130                 geo->cylinders = (capacity) / (255 * 64);
3131
3132                 return 0;
3133         }
3134         return -EIO;
3135 }
3136
3137 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3138 {
3139         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3140         device_add_disk(parent, skdev->disk);
3141         return 0;
3142 }
3143
3144 static const struct block_device_operations skd_blockdev_ops = {
3145         .owner          = THIS_MODULE,
3146         .getgeo         = skd_bdev_getgeo,
3147 };
3148
3149 /*
3150  *****************************************************************************
3151  * PCIe DRIVER GLUE
3152  *****************************************************************************
3153  */
3154
3155 static const struct pci_device_id skd_pci_tbl[] = {
3156         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3157           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3158         { 0 }                     /* terminate list */
3159 };
3160
3161 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3162
3163 static char *skd_pci_info(struct skd_device *skdev, char *str)
3164 {
3165         int pcie_reg;
3166
3167         strcpy(str, "PCIe (");
3168         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3169
3170         if (pcie_reg) {
3171
3172                 char lwstr[6];
3173                 uint16_t pcie_lstat, lspeed, lwidth;
3174
3175                 pcie_reg += 0x12;
3176                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3177                 lspeed = pcie_lstat & (0xF);
3178                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3179
3180                 if (lspeed == 1)
3181                         strcat(str, "2.5GT/s ");
3182                 else if (lspeed == 2)
3183                         strcat(str, "5.0GT/s ");
3184                 else
3185                         strcat(str, "<unknown> ");
3186                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3187                 strcat(str, lwstr);
3188         }
3189         return str;
3190 }
3191
3192 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3193 {
3194         int i;
3195         int rc = 0;
3196         char pci_str[32];
3197         struct skd_device *skdev;
3198
3199         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3200                 pdev->device);
3201
3202         rc = pci_enable_device(pdev);
3203         if (rc)
3204                 return rc;
3205         rc = pci_request_regions(pdev, DRV_NAME);
3206         if (rc)
3207                 goto err_out;
3208         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3209         if (!rc) {
3210                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3211                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3212                                 rc);
3213                 }
3214         } else {
3215                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3216                 if (rc) {
3217                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3218                         goto err_out_regions;
3219                 }
3220         }
3221
3222         if (!skd_major) {
3223                 rc = register_blkdev(0, DRV_NAME);
3224                 if (rc < 0)
3225                         goto err_out_regions;
3226                 BUG_ON(!rc);
3227                 skd_major = rc;
3228         }
3229
3230         skdev = skd_construct(pdev);
3231         if (skdev == NULL) {
3232                 rc = -ENOMEM;
3233                 goto err_out_regions;
3234         }
3235
3236         skd_pci_info(skdev, pci_str);
3237         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3238
3239         pci_set_master(pdev);
3240         rc = pci_enable_pcie_error_reporting(pdev);
3241         if (rc) {
3242                 dev_err(&pdev->dev,
3243                         "bad enable of PCIe error reporting rc=%d\n", rc);
3244                 skdev->pcie_error_reporting_is_enabled = 0;
3245         } else
3246                 skdev->pcie_error_reporting_is_enabled = 1;
3247
3248         pci_set_drvdata(pdev, skdev);
3249
3250         for (i = 0; i < SKD_MAX_BARS; i++) {
3251                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3252                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3253                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3254                                             skdev->mem_size[i]);
3255                 if (!skdev->mem_map[i]) {
3256                         dev_err(&pdev->dev,
3257                                 "Unable to map adapter memory!\n");
3258                         rc = -ENODEV;
3259                         goto err_out_iounmap;
3260                 }
3261                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3262                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3263                         skdev->mem_size[i]);
3264         }
3265
3266         rc = skd_acquire_irq(skdev);
3267         if (rc) {
3268                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3269                 goto err_out_iounmap;
3270         }
3271
3272         rc = skd_start_timer(skdev);
3273         if (rc)
3274                 goto err_out_timer;
3275
3276         init_waitqueue_head(&skdev->waitq);
3277
3278         skd_start_device(skdev);
3279
3280         rc = wait_event_interruptible_timeout(skdev->waitq,
3281                                               (skdev->gendisk_on),
3282                                               (SKD_START_WAIT_SECONDS * HZ));
3283         if (skdev->gendisk_on > 0) {
3284                 /* device came on-line after reset */
3285                 skd_bdev_attach(&pdev->dev, skdev);
3286                 rc = 0;
3287         } else {
3288                 /* we timed out, something is wrong with the device,
3289                    don't add the disk structure */
3290                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3291                         rc);
3292                 /* in case of no error; we timeout with ENXIO */
3293                 if (!rc)
3294                         rc = -ENXIO;
3295                 goto err_out_timer;
3296         }
3297
3298         return rc;
3299
3300 err_out_timer:
3301         skd_stop_device(skdev);
3302         skd_release_irq(skdev);
3303
3304 err_out_iounmap:
3305         for (i = 0; i < SKD_MAX_BARS; i++)
3306                 if (skdev->mem_map[i])
3307                         iounmap(skdev->mem_map[i]);
3308
3309         if (skdev->pcie_error_reporting_is_enabled)
3310                 pci_disable_pcie_error_reporting(pdev);
3311
3312         skd_destruct(skdev);
3313
3314 err_out_regions:
3315         pci_release_regions(pdev);
3316
3317 err_out:
3318         pci_disable_device(pdev);
3319         pci_set_drvdata(pdev, NULL);
3320         return rc;
3321 }
3322
3323 static void skd_pci_remove(struct pci_dev *pdev)
3324 {
3325         int i;
3326         struct skd_device *skdev;
3327
3328         skdev = pci_get_drvdata(pdev);
3329         if (!skdev) {
3330                 dev_err(&pdev->dev, "no device data for PCI\n");
3331                 return;
3332         }
3333         skd_stop_device(skdev);
3334         skd_release_irq(skdev);
3335
3336         for (i = 0; i < SKD_MAX_BARS; i++)
3337                 if (skdev->mem_map[i])
3338                         iounmap(skdev->mem_map[i]);
3339
3340         if (skdev->pcie_error_reporting_is_enabled)
3341                 pci_disable_pcie_error_reporting(pdev);
3342
3343         skd_destruct(skdev);
3344
3345         pci_release_regions(pdev);
3346         pci_disable_device(pdev);
3347         pci_set_drvdata(pdev, NULL);
3348
3349         return;
3350 }
3351
3352 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3353 {
3354         int i;
3355         struct skd_device *skdev;
3356
3357         skdev = pci_get_drvdata(pdev);
3358         if (!skdev) {
3359                 dev_err(&pdev->dev, "no device data for PCI\n");
3360                 return -EIO;
3361         }
3362
3363         skd_stop_device(skdev);
3364
3365         skd_release_irq(skdev);
3366
3367         for (i = 0; i < SKD_MAX_BARS; i++)
3368                 if (skdev->mem_map[i])
3369                         iounmap(skdev->mem_map[i]);
3370
3371         if (skdev->pcie_error_reporting_is_enabled)
3372                 pci_disable_pcie_error_reporting(pdev);
3373
3374         pci_release_regions(pdev);
3375         pci_save_state(pdev);
3376         pci_disable_device(pdev);
3377         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3378         return 0;
3379 }
3380
3381 static int skd_pci_resume(struct pci_dev *pdev)
3382 {
3383         int i;
3384         int rc = 0;
3385         struct skd_device *skdev;
3386
3387         skdev = pci_get_drvdata(pdev);
3388         if (!skdev) {
3389                 dev_err(&pdev->dev, "no device data for PCI\n");
3390                 return -1;
3391         }
3392
3393         pci_set_power_state(pdev, PCI_D0);
3394         pci_enable_wake(pdev, PCI_D0, 0);
3395         pci_restore_state(pdev);
3396
3397         rc = pci_enable_device(pdev);
3398         if (rc)
3399                 return rc;
3400         rc = pci_request_regions(pdev, DRV_NAME);
3401         if (rc)
3402                 goto err_out;
3403         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3404         if (!rc) {
3405                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3406
3407                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3408                                 rc);
3409                 }
3410         } else {
3411                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3412                 if (rc) {
3413
3414                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3415                         goto err_out_regions;
3416                 }
3417         }
3418
3419         pci_set_master(pdev);
3420         rc = pci_enable_pcie_error_reporting(pdev);
3421         if (rc) {
3422                 dev_err(&pdev->dev,
3423                         "bad enable of PCIe error reporting rc=%d\n", rc);
3424                 skdev->pcie_error_reporting_is_enabled = 0;
3425         } else
3426                 skdev->pcie_error_reporting_is_enabled = 1;
3427
3428         for (i = 0; i < SKD_MAX_BARS; i++) {
3429
3430                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3431                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3432                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3433                                             skdev->mem_size[i]);
3434                 if (!skdev->mem_map[i]) {
3435                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3436                         rc = -ENODEV;
3437                         goto err_out_iounmap;
3438                 }
3439                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3440                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3441                         skdev->mem_size[i]);
3442         }
3443         rc = skd_acquire_irq(skdev);
3444         if (rc) {
3445                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3446                 goto err_out_iounmap;
3447         }
3448
3449         rc = skd_start_timer(skdev);
3450         if (rc)
3451                 goto err_out_timer;
3452
3453         init_waitqueue_head(&skdev->waitq);
3454
3455         skd_start_device(skdev);
3456
3457         return rc;
3458
3459 err_out_timer:
3460         skd_stop_device(skdev);
3461         skd_release_irq(skdev);
3462
3463 err_out_iounmap:
3464         for (i = 0; i < SKD_MAX_BARS; i++)
3465                 if (skdev->mem_map[i])
3466                         iounmap(skdev->mem_map[i]);
3467
3468         if (skdev->pcie_error_reporting_is_enabled)
3469                 pci_disable_pcie_error_reporting(pdev);
3470
3471 err_out_regions:
3472         pci_release_regions(pdev);
3473
3474 err_out:
3475         pci_disable_device(pdev);
3476         return rc;
3477 }
3478
3479 static void skd_pci_shutdown(struct pci_dev *pdev)
3480 {
3481         struct skd_device *skdev;
3482
3483         dev_err(&pdev->dev, "%s called\n", __func__);
3484
3485         skdev = pci_get_drvdata(pdev);
3486         if (!skdev) {
3487                 dev_err(&pdev->dev, "no device data for PCI\n");
3488                 return;
3489         }
3490
3491         dev_err(&pdev->dev, "calling stop\n");
3492         skd_stop_device(skdev);
3493 }
3494
3495 static struct pci_driver skd_driver = {
3496         .name           = DRV_NAME,
3497         .id_table       = skd_pci_tbl,
3498         .probe          = skd_pci_probe,
3499         .remove         = skd_pci_remove,
3500         .suspend        = skd_pci_suspend,
3501         .resume         = skd_pci_resume,
3502         .shutdown       = skd_pci_shutdown,
3503 };
3504
3505 /*
3506  *****************************************************************************
3507  * LOGGING SUPPORT
3508  *****************************************************************************
3509  */
3510
3511 const char *skd_drive_state_to_str(int state)
3512 {
3513         switch (state) {
3514         case FIT_SR_DRIVE_OFFLINE:
3515                 return "OFFLINE";
3516         case FIT_SR_DRIVE_INIT:
3517                 return "INIT";
3518         case FIT_SR_DRIVE_ONLINE:
3519                 return "ONLINE";
3520         case FIT_SR_DRIVE_BUSY:
3521                 return "BUSY";
3522         case FIT_SR_DRIVE_FAULT:
3523                 return "FAULT";
3524         case FIT_SR_DRIVE_DEGRADED:
3525                 return "DEGRADED";
3526         case FIT_SR_PCIE_LINK_DOWN:
3527                 return "INK_DOWN";
3528         case FIT_SR_DRIVE_SOFT_RESET:
3529                 return "SOFT_RESET";
3530         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3531                 return "NEED_FW";
3532         case FIT_SR_DRIVE_INIT_FAULT:
3533                 return "INIT_FAULT";
3534         case FIT_SR_DRIVE_BUSY_SANITIZE:
3535                 return "BUSY_SANITIZE";
3536         case FIT_SR_DRIVE_BUSY_ERASE:
3537                 return "BUSY_ERASE";
3538         case FIT_SR_DRIVE_FW_BOOTING:
3539                 return "FW_BOOTING";
3540         default:
3541                 return "???";
3542         }
3543 }
3544
3545 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3546 {
3547         switch (state) {
3548         case SKD_DRVR_STATE_LOAD:
3549                 return "LOAD";
3550         case SKD_DRVR_STATE_IDLE:
3551                 return "IDLE";
3552         case SKD_DRVR_STATE_BUSY:
3553                 return "BUSY";
3554         case SKD_DRVR_STATE_STARTING:
3555                 return "STARTING";
3556         case SKD_DRVR_STATE_ONLINE:
3557                 return "ONLINE";
3558         case SKD_DRVR_STATE_PAUSING:
3559                 return "PAUSING";
3560         case SKD_DRVR_STATE_PAUSED:
3561                 return "PAUSED";
3562         case SKD_DRVR_STATE_RESTARTING:
3563                 return "RESTARTING";
3564         case SKD_DRVR_STATE_RESUMING:
3565                 return "RESUMING";
3566         case SKD_DRVR_STATE_STOPPING:
3567                 return "STOPPING";
3568         case SKD_DRVR_STATE_SYNCING:
3569                 return "SYNCING";
3570         case SKD_DRVR_STATE_FAULT:
3571                 return "FAULT";
3572         case SKD_DRVR_STATE_DISAPPEARED:
3573                 return "DISAPPEARED";
3574         case SKD_DRVR_STATE_BUSY_ERASE:
3575                 return "BUSY_ERASE";
3576         case SKD_DRVR_STATE_BUSY_SANITIZE:
3577                 return "BUSY_SANITIZE";
3578         case SKD_DRVR_STATE_BUSY_IMMINENT:
3579                 return "BUSY_IMMINENT";
3580         case SKD_DRVR_STATE_WAIT_BOOT:
3581                 return "WAIT_BOOT";
3582
3583         default:
3584                 return "???";
3585         }
3586 }
3587
3588 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3589 {
3590         switch (state) {
3591         case SKD_REQ_STATE_IDLE:
3592                 return "IDLE";
3593         case SKD_REQ_STATE_SETUP:
3594                 return "SETUP";
3595         case SKD_REQ_STATE_BUSY:
3596                 return "BUSY";
3597         case SKD_REQ_STATE_COMPLETED:
3598                 return "COMPLETED";
3599         case SKD_REQ_STATE_TIMEOUT:
3600                 return "TIMEOUT";
3601         default:
3602                 return "???";
3603         }
3604 }
3605
3606 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3607 {
3608         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3609         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3610                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3611                 skd_skdev_state_to_str(skdev->state), skdev->state);
3612         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3613                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3614                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3615         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3616                 skdev->skcomp_cycle, skdev->skcomp_ix);
3617 }
3618
3619 static void skd_log_skreq(struct skd_device *skdev,
3620                           struct skd_request_context *skreq, const char *event)
3621 {
3622         struct request *req = blk_mq_rq_from_pdu(skreq);
3623         u32 lba = blk_rq_pos(req);
3624         u32 count = blk_rq_sectors(req);
3625
3626         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3627         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3628                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3629                 skreq->fitmsg_id);
3630         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3631                 skreq->data_dir, skreq->n_sg);
3632
3633         dev_dbg(&skdev->pdev->dev,
3634                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3635                 count, count, (int)rq_data_dir(req));
3636 }
3637
3638 /*
3639  *****************************************************************************
3640  * MODULE GLUE
3641  *****************************************************************************
3642  */
3643
3644 static int __init skd_init(void)
3645 {
3646         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3647         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3648         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3649         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3650         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3651         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3652         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3653         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3654
3655         switch (skd_isr_type) {
3656         case SKD_IRQ_LEGACY:
3657         case SKD_IRQ_MSI:
3658         case SKD_IRQ_MSIX:
3659                 break;
3660         default:
3661                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3662                        skd_isr_type, SKD_IRQ_DEFAULT);
3663                 skd_isr_type = SKD_IRQ_DEFAULT;
3664         }
3665
3666         if (skd_max_queue_depth < 1 ||
3667             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3668                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3669                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3670                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3671         }
3672
3673         if (skd_max_req_per_msg < 1 ||
3674             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3675                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3676                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3677                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3678         }
3679
3680         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3681                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3682                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3683                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3684         }
3685
3686         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3687                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3688                        skd_dbg_level, 0);
3689                 skd_dbg_level = 0;
3690         }
3691
3692         if (skd_isr_comp_limit < 0) {
3693                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3694                        skd_isr_comp_limit, 0);
3695                 skd_isr_comp_limit = 0;
3696         }
3697
3698         return pci_register_driver(&skd_driver);
3699 }
3700
3701 static void __exit skd_exit(void)
3702 {
3703         pci_unregister_driver(&skd_driver);
3704
3705         if (skd_major)
3706                 unregister_blkdev(skd_major, DRV_NAME);
3707 }
3708
3709 module_init(skd_init);
3710 module_exit(skd_exit);