]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/skd_main.c
skd: Enable request tags for the block layer queue
[linux.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
40
41 #include "skd_s1120.h"
42
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
45
46 enum {
47         SKD_FLUSH_INITIALIZER,
48         SKD_FLUSH_ZERO_SIZE_FIRST,
49         SKD_FLUSH_DATA_SECOND,
50 };
51
52 #define SKD_ASSERT(expr) \
53         do { \
54                 if (unlikely(!(expr))) { \
55                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
56                                # expr, __FILE__, __func__, __LINE__); \
57                 } \
58         } while (0)
59
60 #define DRV_NAME "skd"
61 #define DRV_VERSION "2.2.1"
62 #define DRV_BUILD_ID "0260"
63 #define PFX DRV_NAME ": "
64
65 MODULE_LICENSE("GPL");
66
67 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
68 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
69
70 #define PCI_VENDOR_ID_STEC      0x1B39
71 #define PCI_DEVICE_ID_S1120     0x0001
72
73 #define SKD_FUA_NV              (1 << 1)
74 #define SKD_MINORS_PER_DEVICE   16
75
76 #define SKD_MAX_QUEUE_DEPTH     200u
77
78 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
79
80 #define SKD_N_FITMSG_BYTES      (512u)
81 #define SKD_MAX_REQ_PER_MSG     14
82
83 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
84
85 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
86  * 128KB limit.  That allows 4096*4K = 16M xfer size
87  */
88 #define SKD_N_SG_PER_REQ_DEFAULT 256u
89
90 #define SKD_N_COMPLETION_ENTRY  256u
91 #define SKD_N_READ_CAP_BYTES    (8u)
92
93 #define SKD_N_INTERNAL_BYTES    (512u)
94
95 #define SKD_SKCOMP_SIZE                                                 \
96         ((sizeof(struct fit_completion_entry_v1) +                      \
97           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
98
99 /* 5 bits of uniqifier, 0xF800 */
100 #define SKD_ID_INCR             (0x400)
101 #define SKD_ID_TABLE_MASK       (3u << 8u)
102 #define  SKD_ID_RW_REQUEST      (0u << 8u)
103 #define  SKD_ID_INTERNAL        (1u << 8u)
104 #define  SKD_ID_FIT_MSG         (3u << 8u)
105 #define SKD_ID_SLOT_MASK        0x00FFu
106 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
107
108 #define SKD_N_TIMEOUT_SLOT      4u
109 #define SKD_TIMEOUT_SLOT_MASK   3u
110
111 #define SKD_N_MAX_SECTORS 2048u
112
113 #define SKD_MAX_RETRIES 2u
114
115 #define SKD_TIMER_SECONDS(seconds) (seconds)
116 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
117
118 #define INQ_STD_NBYTES 36
119
120 enum skd_drvr_state {
121         SKD_DRVR_STATE_LOAD,
122         SKD_DRVR_STATE_IDLE,
123         SKD_DRVR_STATE_BUSY,
124         SKD_DRVR_STATE_STARTING,
125         SKD_DRVR_STATE_ONLINE,
126         SKD_DRVR_STATE_PAUSING,
127         SKD_DRVR_STATE_PAUSED,
128         SKD_DRVR_STATE_DRAINING_TIMEOUT,
129         SKD_DRVR_STATE_RESTARTING,
130         SKD_DRVR_STATE_RESUMING,
131         SKD_DRVR_STATE_STOPPING,
132         SKD_DRVR_STATE_FAULT,
133         SKD_DRVR_STATE_DISAPPEARED,
134         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
135         SKD_DRVR_STATE_BUSY_ERASE,
136         SKD_DRVR_STATE_BUSY_SANITIZE,
137         SKD_DRVR_STATE_BUSY_IMMINENT,
138         SKD_DRVR_STATE_WAIT_BOOT,
139         SKD_DRVR_STATE_SYNCING,
140 };
141
142 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
143 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
144 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
145 #define SKD_DRAINING_TIMO       SKD_TIMER_SECONDS(6u)
146 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
147 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
148 #define SKD_START_WAIT_SECONDS  90u
149
150 enum skd_req_state {
151         SKD_REQ_STATE_IDLE,
152         SKD_REQ_STATE_SETUP,
153         SKD_REQ_STATE_BUSY,
154         SKD_REQ_STATE_COMPLETED,
155         SKD_REQ_STATE_TIMEOUT,
156 };
157
158 enum skd_check_status_action {
159         SKD_CHECK_STATUS_REPORT_GOOD,
160         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
161         SKD_CHECK_STATUS_REQUEUE_REQUEST,
162         SKD_CHECK_STATUS_REPORT_ERROR,
163         SKD_CHECK_STATUS_BUSY_IMMINENT,
164 };
165
166 struct skd_msg_buf {
167         struct fit_msg_hdr      fmh;
168         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
169 };
170
171 struct skd_fitmsg_context {
172         u32 id;
173
174         u32 length;
175
176         struct skd_msg_buf *msg_buf;
177         dma_addr_t mb_dma_address;
178 };
179
180 struct skd_request_context {
181         enum skd_req_state state;
182
183         u16 id;
184         u32 fitmsg_id;
185
186         struct request *req;
187         u8 flush_cmd;
188
189         u32 timeout_stamp;
190         enum dma_data_direction data_dir;
191         struct scatterlist *sg;
192         u32 n_sg;
193         u32 sg_byte_count;
194
195         struct fit_sg_descriptor *sksg_list;
196         dma_addr_t sksg_dma_address;
197
198         struct fit_completion_entry_v1 completion;
199
200         struct fit_comp_error_info err_info;
201
202 };
203
204 struct skd_special_context {
205         struct skd_request_context req;
206
207         void *data_buf;
208         dma_addr_t db_dma_address;
209
210         struct skd_msg_buf *msg_buf;
211         dma_addr_t mb_dma_address;
212 };
213
214 typedef enum skd_irq_type {
215         SKD_IRQ_LEGACY,
216         SKD_IRQ_MSI,
217         SKD_IRQ_MSIX
218 } skd_irq_type_t;
219
220 #define SKD_MAX_BARS                    2
221
222 struct skd_device {
223         void __iomem *mem_map[SKD_MAX_BARS];
224         resource_size_t mem_phys[SKD_MAX_BARS];
225         u32 mem_size[SKD_MAX_BARS];
226
227         struct skd_msix_entry *msix_entries;
228
229         struct pci_dev *pdev;
230         int pcie_error_reporting_is_enabled;
231
232         spinlock_t lock;
233         struct gendisk *disk;
234         struct request_queue *queue;
235         struct device *class_dev;
236         int gendisk_on;
237         int sync_done;
238
239         u32 devno;
240         u32 major;
241         char isr_name[30];
242
243         enum skd_drvr_state state;
244         u32 drive_state;
245
246         u32 in_flight;
247         u32 cur_max_queue_depth;
248         u32 queue_low_water_mark;
249         u32 dev_max_queue_depth;
250
251         u32 num_fitmsg_context;
252         u32 num_req_context;
253
254         u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
255         u32 timeout_stamp;
256         struct skd_fitmsg_context *skmsg_table;
257
258         struct skd_request_context *skreq_table;
259
260         struct skd_special_context internal_skspcl;
261         u32 read_cap_blocksize;
262         u32 read_cap_last_lba;
263         int read_cap_is_valid;
264         int inquiry_is_valid;
265         u8 inq_serial_num[13];  /*12 chars plus null term */
266
267         u8 skcomp_cycle;
268         u32 skcomp_ix;
269         struct fit_completion_entry_v1 *skcomp_table;
270         struct fit_comp_error_info *skerr_table;
271         dma_addr_t cq_dma_address;
272
273         wait_queue_head_t waitq;
274
275         struct timer_list timer;
276         u32 timer_countdown;
277         u32 timer_substate;
278
279         int sgs_per_request;
280         u32 last_mtd;
281
282         u32 proto_ver;
283
284         int dbg_level;
285         u32 connect_time_stamp;
286         int connect_retries;
287 #define SKD_MAX_CONNECT_RETRIES 16
288         u32 drive_jiffies;
289
290         u32 timo_slot;
291
292         struct work_struct completion_worker;
293 };
294
295 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
296 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
297 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
298
299 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
300 {
301         u32 val = readl(skdev->mem_map[1] + offset);
302
303         if (unlikely(skdev->dbg_level >= 2))
304                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
305         return val;
306 }
307
308 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
309                                    u32 offset)
310 {
311         writel(val, skdev->mem_map[1] + offset);
312         if (unlikely(skdev->dbg_level >= 2))
313                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
314 }
315
316 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
317                                    u32 offset)
318 {
319         writeq(val, skdev->mem_map[1] + offset);
320         if (unlikely(skdev->dbg_level >= 2))
321                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
322                         val);
323 }
324
325
326 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
327 static int skd_isr_type = SKD_IRQ_DEFAULT;
328
329 module_param(skd_isr_type, int, 0444);
330 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
331                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
332
333 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
334 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
335
336 module_param(skd_max_req_per_msg, int, 0444);
337 MODULE_PARM_DESC(skd_max_req_per_msg,
338                  "Maximum SCSI requests packed in a single message."
339                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
340
341 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
342 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
343 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
344
345 module_param(skd_max_queue_depth, int, 0444);
346 MODULE_PARM_DESC(skd_max_queue_depth,
347                  "Maximum SCSI requests issued to s1120."
348                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
349
350 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
351 module_param(skd_sgs_per_request, int, 0444);
352 MODULE_PARM_DESC(skd_sgs_per_request,
353                  "Maximum SG elements per block request."
354                  " (1-4096, default==256)");
355
356 static int skd_max_pass_thru = 1;
357 module_param(skd_max_pass_thru, int, 0444);
358 MODULE_PARM_DESC(skd_max_pass_thru,
359                  "Maximum SCSI pass-thru at a time. IGNORED");
360
361 module_param(skd_dbg_level, int, 0444);
362 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
363
364 module_param(skd_isr_comp_limit, int, 0444);
365 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
366
367 /* Major device number dynamically assigned. */
368 static u32 skd_major;
369
370 static void skd_destruct(struct skd_device *skdev);
371 static const struct block_device_operations skd_blockdev_ops;
372 static void skd_send_fitmsg(struct skd_device *skdev,
373                             struct skd_fitmsg_context *skmsg);
374 static void skd_send_special_fitmsg(struct skd_device *skdev,
375                                     struct skd_special_context *skspcl);
376 static void skd_request_fn(struct request_queue *rq);
377 static void skd_end_request(struct skd_device *skdev, struct request *req,
378                             blk_status_t status);
379 static bool skd_preop_sg_list(struct skd_device *skdev,
380                              struct skd_request_context *skreq);
381 static void skd_postop_sg_list(struct skd_device *skdev,
382                                struct skd_request_context *skreq);
383
384 static void skd_restart_device(struct skd_device *skdev);
385 static int skd_quiesce_dev(struct skd_device *skdev);
386 static int skd_unquiesce_dev(struct skd_device *skdev);
387 static void skd_disable_interrupts(struct skd_device *skdev);
388 static void skd_isr_fwstate(struct skd_device *skdev);
389 static void skd_recover_requests(struct skd_device *skdev);
390 static void skd_soft_reset(struct skd_device *skdev);
391
392 const char *skd_drive_state_to_str(int state);
393 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
394 static void skd_log_skdev(struct skd_device *skdev, const char *event);
395 static void skd_log_skreq(struct skd_device *skdev,
396                           struct skd_request_context *skreq, const char *event);
397
398 /*
399  *****************************************************************************
400  * READ/WRITE REQUESTS
401  *****************************************************************************
402  */
403 static void skd_fail_all_pending(struct skd_device *skdev)
404 {
405         struct request_queue *q = skdev->queue;
406         struct request *req;
407
408         for (;; ) {
409                 req = blk_peek_request(q);
410                 if (req == NULL)
411                         break;
412                 WARN_ON_ONCE(blk_queue_start_tag(q, req));
413                 __blk_end_request_all(req, BLK_STS_IOERR);
414         }
415 }
416
417 static void
418 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
419                 int data_dir, unsigned lba,
420                 unsigned count)
421 {
422         if (data_dir == READ)
423                 scsi_req->cdb[0] = READ_10;
424         else
425                 scsi_req->cdb[0] = WRITE_10;
426
427         scsi_req->cdb[1] = 0;
428         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
429         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
430         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
431         scsi_req->cdb[5] = (lba & 0xff);
432         scsi_req->cdb[6] = 0;
433         scsi_req->cdb[7] = (count & 0xff00) >> 8;
434         scsi_req->cdb[8] = count & 0xff;
435         scsi_req->cdb[9] = 0;
436 }
437
438 static void
439 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
440                             struct skd_request_context *skreq)
441 {
442         skreq->flush_cmd = 1;
443
444         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
445         scsi_req->cdb[1] = 0;
446         scsi_req->cdb[2] = 0;
447         scsi_req->cdb[3] = 0;
448         scsi_req->cdb[4] = 0;
449         scsi_req->cdb[5] = 0;
450         scsi_req->cdb[6] = 0;
451         scsi_req->cdb[7] = 0;
452         scsi_req->cdb[8] = 0;
453         scsi_req->cdb[9] = 0;
454 }
455
456 /*
457  * Return true if and only if all pending requests should be failed.
458  */
459 static bool skd_fail_all(struct request_queue *q)
460 {
461         struct skd_device *skdev = q->queuedata;
462
463         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
464
465         skd_log_skdev(skdev, "req_not_online");
466         switch (skdev->state) {
467         case SKD_DRVR_STATE_PAUSING:
468         case SKD_DRVR_STATE_PAUSED:
469         case SKD_DRVR_STATE_STARTING:
470         case SKD_DRVR_STATE_RESTARTING:
471         case SKD_DRVR_STATE_WAIT_BOOT:
472         /* In case of starting, we haven't started the queue,
473          * so we can't get here... but requests are
474          * possibly hanging out waiting for us because we
475          * reported the dev/skd0 already.  They'll wait
476          * forever if connect doesn't complete.
477          * What to do??? delay dev/skd0 ??
478          */
479         case SKD_DRVR_STATE_BUSY:
480         case SKD_DRVR_STATE_BUSY_IMMINENT:
481         case SKD_DRVR_STATE_BUSY_ERASE:
482         case SKD_DRVR_STATE_DRAINING_TIMEOUT:
483                 return false;
484
485         case SKD_DRVR_STATE_BUSY_SANITIZE:
486         case SKD_DRVR_STATE_STOPPING:
487         case SKD_DRVR_STATE_SYNCING:
488         case SKD_DRVR_STATE_FAULT:
489         case SKD_DRVR_STATE_DISAPPEARED:
490         default:
491                 return true;
492         }
493 }
494
495 static void skd_request_fn(struct request_queue *q)
496 {
497         struct skd_device *skdev = q->queuedata;
498         struct skd_fitmsg_context *skmsg = NULL;
499         struct fit_msg_hdr *fmh = NULL;
500         struct skd_request_context *skreq;
501         struct request *req = NULL;
502         struct skd_scsi_request *scsi_req;
503         unsigned long io_flags;
504         u32 lba;
505         u32 count;
506         int data_dir;
507         __be64 be_dmaa;
508         u64 cmdctxt;
509         u32 timo_slot;
510         int flush, fua;
511         u32 tag;
512
513         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
514                 if (skd_fail_all(q))
515                         skd_fail_all_pending(skdev);
516                 return;
517         }
518
519         if (blk_queue_stopped(skdev->queue)) {
520                 if (skdev->in_flight >= skdev->queue_low_water_mark)
521                         /* There is still some kind of shortage */
522                         return;
523
524                 queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
525         }
526
527         /*
528          * Stop conditions:
529          *  - There are no more native requests
530          *  - There are already the maximum number of requests in progress
531          *  - There are no more skd_request_context entries
532          *  - There are no more FIT msg buffers
533          */
534         for (;; ) {
535
536                 flush = fua = 0;
537
538                 req = blk_peek_request(q);
539
540                 /* Are there any native requests to start? */
541                 if (req == NULL)
542                         break;
543
544                 lba = (u32)blk_rq_pos(req);
545                 count = blk_rq_sectors(req);
546                 data_dir = rq_data_dir(req);
547                 io_flags = req->cmd_flags;
548
549                 if (req_op(req) == REQ_OP_FLUSH)
550                         flush++;
551
552                 if (io_flags & REQ_FUA)
553                         fua++;
554
555                 dev_dbg(&skdev->pdev->dev,
556                         "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
557                         req, lba, lba, count, count, data_dir);
558
559                 /* At this point we know there is a request */
560
561                 /* Are too many requets already in progress? */
562                 if (skdev->in_flight >= skdev->cur_max_queue_depth) {
563                         dev_dbg(&skdev->pdev->dev, "qdepth %d, limit %d\n",
564                                 skdev->in_flight, skdev->cur_max_queue_depth);
565                         break;
566                 }
567
568                 /*
569                  * OK to now dequeue request from q.
570                  *
571                  * At this point we are comitted to either start or reject
572                  * the native request. Note that skd_request_context is
573                  * available but is still at the head of the free list.
574                  */
575                 WARN_ON_ONCE(blk_queue_start_tag(q, req));
576
577                 tag = blk_mq_unique_tag(req);
578                 WARN_ONCE(tag >= skd_max_queue_depth,
579                           "%#x > %#x (nr_requests = %lu)\n", tag,
580                           skd_max_queue_depth, q->nr_requests);
581
582                 skreq = &skdev->skreq_table[tag];
583                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
584                 SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
585
586                 skreq->id = tag + SKD_ID_RW_REQUEST;
587                 skreq->flush_cmd = 0;
588                 skreq->n_sg = 0;
589                 skreq->sg_byte_count = 0;
590
591                 skreq->req = req;
592                 skreq->fitmsg_id = 0;
593
594                 skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE :
595                         DMA_TO_DEVICE;
596
597                 if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
598                         dev_dbg(&skdev->pdev->dev, "error Out\n");
599                         skd_end_request(skdev, skreq->req, BLK_STS_RESOURCE);
600                         continue;
601                 }
602
603                 /* Either a FIT msg is in progress or we have to start one. */
604                 if (skmsg == NULL) {
605                         skmsg = &skdev->skmsg_table[tag];
606
607                         /* Initialize the FIT msg header */
608                         fmh = &skmsg->msg_buf->fmh;
609                         memset(fmh, 0, sizeof(*fmh));
610                         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
611                         skmsg->length = sizeof(*fmh);
612                 }
613
614                 skreq->fitmsg_id = skmsg->id;
615
616                 scsi_req =
617                         &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
618                 memset(scsi_req, 0, sizeof(*scsi_req));
619
620                 be_dmaa = cpu_to_be64(skreq->sksg_dma_address);
621                 cmdctxt = skreq->id + SKD_ID_INCR;
622
623                 scsi_req->hdr.tag = cmdctxt;
624                 scsi_req->hdr.sg_list_dma_address = be_dmaa;
625
626                 if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
627                         skd_prep_zerosize_flush_cdb(scsi_req, skreq);
628                         SKD_ASSERT(skreq->flush_cmd == 1);
629                 } else {
630                         skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
631                 }
632
633                 if (fua)
634                         scsi_req->cdb[1] |= SKD_FUA_NV;
635
636                 scsi_req->hdr.sg_list_len_bytes =
637                         cpu_to_be32(skreq->sg_byte_count);
638
639                 /* Complete resource allocations. */
640                 skreq->state = SKD_REQ_STATE_BUSY;
641                 skreq->id += SKD_ID_INCR;
642
643                 skmsg->length += sizeof(struct skd_scsi_request);
644                 fmh->num_protocol_cmds_coalesced++;
645
646                 /*
647                  * Update the active request counts.
648                  * Capture the timeout timestamp.
649                  */
650                 skreq->timeout_stamp = skdev->timeout_stamp;
651                 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
652                 skdev->timeout_slot[timo_slot]++;
653                 skdev->in_flight++;
654                 dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
655                         skdev->in_flight);
656
657                 /*
658                  * If the FIT msg buffer is full send it.
659                  */
660                 if (fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
661                         skd_send_fitmsg(skdev, skmsg);
662                         skmsg = NULL;
663                         fmh = NULL;
664                 }
665         }
666
667         /* If the FIT msg buffer is not empty send what we got. */
668         if (skmsg) {
669                 WARN_ON_ONCE(!fmh->num_protocol_cmds_coalesced);
670                 skd_send_fitmsg(skdev, skmsg);
671                 skmsg = NULL;
672                 fmh = NULL;
673         }
674
675         /*
676          * If req is non-NULL it means there is something to do but
677          * we are out of a resource.
678          */
679         if (req)
680                 blk_stop_queue(skdev->queue);
681 }
682
683 static void skd_end_request(struct skd_device *skdev, struct request *req,
684                             blk_status_t error)
685 {
686         if (unlikely(error)) {
687                 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
688                 u32 lba = (u32)blk_rq_pos(req);
689                 u32 count = blk_rq_sectors(req);
690
691                 dev_err(&skdev->pdev->dev,
692                         "Error cmd=%s sect=%u count=%u id=0x%x\n", cmd, lba,
693                         count, req->tag);
694         } else
695                 dev_dbg(&skdev->pdev->dev, "id=0x%x error=%d\n", req->tag,
696                         error);
697
698         __blk_end_request_all(req, error);
699 }
700
701 static bool skd_preop_sg_list(struct skd_device *skdev,
702                              struct skd_request_context *skreq)
703 {
704         struct request *req = skreq->req;
705         struct scatterlist *sgl = &skreq->sg[0], *sg;
706         int n_sg;
707         int i;
708
709         skreq->sg_byte_count = 0;
710
711         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
712                      skreq->data_dir != DMA_FROM_DEVICE);
713
714         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
715         if (n_sg <= 0)
716                 return false;
717
718         /*
719          * Map scatterlist to PCI bus addresses.
720          * Note PCI might change the number of entries.
721          */
722         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
723         if (n_sg <= 0)
724                 return false;
725
726         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
727
728         skreq->n_sg = n_sg;
729
730         for_each_sg(sgl, sg, n_sg, i) {
731                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
732                 u32 cnt = sg_dma_len(sg);
733                 uint64_t dma_addr = sg_dma_address(sg);
734
735                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
736                 sgd->byte_count = cnt;
737                 skreq->sg_byte_count += cnt;
738                 sgd->host_side_addr = dma_addr;
739                 sgd->dev_side_addr = 0;
740         }
741
742         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
743         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
744
745         if (unlikely(skdev->dbg_level > 1)) {
746                 dev_dbg(&skdev->pdev->dev,
747                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
748                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
749                 for (i = 0; i < n_sg; i++) {
750                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
751
752                         dev_dbg(&skdev->pdev->dev,
753                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
754                                 i, sgd->byte_count, sgd->control,
755                                 sgd->host_side_addr, sgd->next_desc_ptr);
756                 }
757         }
758
759         return true;
760 }
761
762 static void skd_postop_sg_list(struct skd_device *skdev,
763                                struct skd_request_context *skreq)
764 {
765         /*
766          * restore the next ptr for next IO request so we
767          * don't have to set it every time.
768          */
769         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
770                 skreq->sksg_dma_address +
771                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
772         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
773 }
774
775 /*
776  *****************************************************************************
777  * TIMER
778  *****************************************************************************
779  */
780
781 static void skd_timer_tick_not_online(struct skd_device *skdev);
782
783 static void skd_timer_tick(ulong arg)
784 {
785         struct skd_device *skdev = (struct skd_device *)arg;
786
787         u32 timo_slot;
788         unsigned long reqflags;
789         u32 state;
790
791         if (skdev->state == SKD_DRVR_STATE_FAULT)
792                 /* The driver has declared fault, and we want it to
793                  * stay that way until driver is reloaded.
794                  */
795                 return;
796
797         spin_lock_irqsave(&skdev->lock, reqflags);
798
799         state = SKD_READL(skdev, FIT_STATUS);
800         state &= FIT_SR_DRIVE_STATE_MASK;
801         if (state != skdev->drive_state)
802                 skd_isr_fwstate(skdev);
803
804         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
805                 skd_timer_tick_not_online(skdev);
806                 goto timer_func_out;
807         }
808         skdev->timeout_stamp++;
809         timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
810
811         /*
812          * All requests that happened during the previous use of
813          * this slot should be done by now. The previous use was
814          * over 7 seconds ago.
815          */
816         if (skdev->timeout_slot[timo_slot] == 0)
817                 goto timer_func_out;
818
819         /* Something is overdue */
820         dev_dbg(&skdev->pdev->dev, "found %d timeouts, draining busy=%d\n",
821                 skdev->timeout_slot[timo_slot], skdev->in_flight);
822         dev_err(&skdev->pdev->dev, "Overdue IOs (%d), busy %d\n",
823                 skdev->timeout_slot[timo_slot], skdev->in_flight);
824
825         skdev->timer_countdown = SKD_DRAINING_TIMO;
826         skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
827         skdev->timo_slot = timo_slot;
828         blk_stop_queue(skdev->queue);
829
830 timer_func_out:
831         mod_timer(&skdev->timer, (jiffies + HZ));
832
833         spin_unlock_irqrestore(&skdev->lock, reqflags);
834 }
835
836 static void skd_timer_tick_not_online(struct skd_device *skdev)
837 {
838         switch (skdev->state) {
839         case SKD_DRVR_STATE_IDLE:
840         case SKD_DRVR_STATE_LOAD:
841                 break;
842         case SKD_DRVR_STATE_BUSY_SANITIZE:
843                 dev_dbg(&skdev->pdev->dev,
844                         "drive busy sanitize[%x], driver[%x]\n",
845                         skdev->drive_state, skdev->state);
846                 /* If we've been in sanitize for 3 seconds, we figure we're not
847                  * going to get anymore completions, so recover requests now
848                  */
849                 if (skdev->timer_countdown > 0) {
850                         skdev->timer_countdown--;
851                         return;
852                 }
853                 skd_recover_requests(skdev);
854                 break;
855
856         case SKD_DRVR_STATE_BUSY:
857         case SKD_DRVR_STATE_BUSY_IMMINENT:
858         case SKD_DRVR_STATE_BUSY_ERASE:
859                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
860                         skdev->state, skdev->timer_countdown);
861                 if (skdev->timer_countdown > 0) {
862                         skdev->timer_countdown--;
863                         return;
864                 }
865                 dev_dbg(&skdev->pdev->dev,
866                         "busy[%x], timedout=%d, restarting device.",
867                         skdev->state, skdev->timer_countdown);
868                 skd_restart_device(skdev);
869                 break;
870
871         case SKD_DRVR_STATE_WAIT_BOOT:
872         case SKD_DRVR_STATE_STARTING:
873                 if (skdev->timer_countdown > 0) {
874                         skdev->timer_countdown--;
875                         return;
876                 }
877                 /* For now, we fault the drive.  Could attempt resets to
878                  * revcover at some point. */
879                 skdev->state = SKD_DRVR_STATE_FAULT;
880
881                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
882                         skdev->drive_state);
883
884                 /*start the queue so we can respond with error to requests */
885                 /* wakeup anyone waiting for startup complete */
886                 blk_start_queue(skdev->queue);
887                 skdev->gendisk_on = -1;
888                 wake_up_interruptible(&skdev->waitq);
889                 break;
890
891         case SKD_DRVR_STATE_ONLINE:
892                 /* shouldn't get here. */
893                 break;
894
895         case SKD_DRVR_STATE_PAUSING:
896         case SKD_DRVR_STATE_PAUSED:
897                 break;
898
899         case SKD_DRVR_STATE_DRAINING_TIMEOUT:
900                 dev_dbg(&skdev->pdev->dev,
901                         "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
902                         skdev->timo_slot, skdev->timer_countdown,
903                         skdev->in_flight,
904                         skdev->timeout_slot[skdev->timo_slot]);
905                 /* if the slot has cleared we can let the I/O continue */
906                 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
907                         dev_dbg(&skdev->pdev->dev,
908                                 "Slot drained, starting queue.\n");
909                         skdev->state = SKD_DRVR_STATE_ONLINE;
910                         blk_start_queue(skdev->queue);
911                         return;
912                 }
913                 if (skdev->timer_countdown > 0) {
914                         skdev->timer_countdown--;
915                         return;
916                 }
917                 skd_restart_device(skdev);
918                 break;
919
920         case SKD_DRVR_STATE_RESTARTING:
921                 if (skdev->timer_countdown > 0) {
922                         skdev->timer_countdown--;
923                         return;
924                 }
925                 /* For now, we fault the drive. Could attempt resets to
926                  * revcover at some point. */
927                 skdev->state = SKD_DRVR_STATE_FAULT;
928                 dev_err(&skdev->pdev->dev,
929                         "DriveFault Reconnect Timeout (%x)\n",
930                         skdev->drive_state);
931
932                 /*
933                  * Recovering does two things:
934                  * 1. completes IO with error
935                  * 2. reclaims dma resources
936                  * When is it safe to recover requests?
937                  * - if the drive state is faulted
938                  * - if the state is still soft reset after out timeout
939                  * - if the drive registers are dead (state = FF)
940                  * If it is "unsafe", we still need to recover, so we will
941                  * disable pci bus mastering and disable our interrupts.
942                  */
943
944                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
945                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
946                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
947                         /* It never came out of soft reset. Try to
948                          * recover the requests and then let them
949                          * fail. This is to mitigate hung processes. */
950                         skd_recover_requests(skdev);
951                 else {
952                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
953                                 skdev->drive_state);
954                         pci_disable_device(skdev->pdev);
955                         skd_disable_interrupts(skdev);
956                         skd_recover_requests(skdev);
957                 }
958
959                 /*start the queue so we can respond with error to requests */
960                 /* wakeup anyone waiting for startup complete */
961                 blk_start_queue(skdev->queue);
962                 skdev->gendisk_on = -1;
963                 wake_up_interruptible(&skdev->waitq);
964                 break;
965
966         case SKD_DRVR_STATE_RESUMING:
967         case SKD_DRVR_STATE_STOPPING:
968         case SKD_DRVR_STATE_SYNCING:
969         case SKD_DRVR_STATE_FAULT:
970         case SKD_DRVR_STATE_DISAPPEARED:
971         default:
972                 break;
973         }
974 }
975
976 static int skd_start_timer(struct skd_device *skdev)
977 {
978         int rc;
979
980         setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
981
982         rc = mod_timer(&skdev->timer, (jiffies + HZ));
983         if (rc)
984                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
985         return rc;
986 }
987
988 static void skd_kill_timer(struct skd_device *skdev)
989 {
990         del_timer_sync(&skdev->timer);
991 }
992
993 /*
994  *****************************************************************************
995  * INTERNAL REQUESTS -- generated by driver itself
996  *****************************************************************************
997  */
998
999 static int skd_format_internal_skspcl(struct skd_device *skdev)
1000 {
1001         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1002         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1003         struct fit_msg_hdr *fmh;
1004         uint64_t dma_address;
1005         struct skd_scsi_request *scsi;
1006
1007         fmh = &skspcl->msg_buf->fmh;
1008         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1009         fmh->num_protocol_cmds_coalesced = 1;
1010
1011         scsi = &skspcl->msg_buf->scsi[0];
1012         memset(scsi, 0, sizeof(*scsi));
1013         dma_address = skspcl->req.sksg_dma_address;
1014         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1015         skspcl->req.n_sg = 1;
1016         sgd->control = FIT_SGD_CONTROL_LAST;
1017         sgd->byte_count = 0;
1018         sgd->host_side_addr = skspcl->db_dma_address;
1019         sgd->dev_side_addr = 0;
1020         sgd->next_desc_ptr = 0LL;
1021
1022         return 1;
1023 }
1024
1025 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
1026
1027 static void skd_send_internal_skspcl(struct skd_device *skdev,
1028                                      struct skd_special_context *skspcl,
1029                                      u8 opcode)
1030 {
1031         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1032         struct skd_scsi_request *scsi;
1033         unsigned char *buf = skspcl->data_buf;
1034         int i;
1035
1036         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
1037                 /*
1038                  * A refresh is already in progress.
1039                  * Just wait for it to finish.
1040                  */
1041                 return;
1042
1043         SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
1044         skspcl->req.state = SKD_REQ_STATE_BUSY;
1045         skspcl->req.id += SKD_ID_INCR;
1046
1047         scsi = &skspcl->msg_buf->scsi[0];
1048         scsi->hdr.tag = skspcl->req.id;
1049
1050         memset(scsi->cdb, 0, sizeof(scsi->cdb));
1051
1052         switch (opcode) {
1053         case TEST_UNIT_READY:
1054                 scsi->cdb[0] = TEST_UNIT_READY;
1055                 sgd->byte_count = 0;
1056                 scsi->hdr.sg_list_len_bytes = 0;
1057                 break;
1058
1059         case READ_CAPACITY:
1060                 scsi->cdb[0] = READ_CAPACITY;
1061                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
1062                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1063                 break;
1064
1065         case INQUIRY:
1066                 scsi->cdb[0] = INQUIRY;
1067                 scsi->cdb[1] = 0x01;    /* evpd */
1068                 scsi->cdb[2] = 0x80;    /* serial number page */
1069                 scsi->cdb[4] = 0x10;
1070                 sgd->byte_count = 16;
1071                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1072                 break;
1073
1074         case SYNCHRONIZE_CACHE:
1075                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1076                 sgd->byte_count = 0;
1077                 scsi->hdr.sg_list_len_bytes = 0;
1078                 break;
1079
1080         case WRITE_BUFFER:
1081                 scsi->cdb[0] = WRITE_BUFFER;
1082                 scsi->cdb[1] = 0x02;
1083                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1084                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1085                 sgd->byte_count = WR_BUF_SIZE;
1086                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1087                 /* fill incrementing byte pattern */
1088                 for (i = 0; i < sgd->byte_count; i++)
1089                         buf[i] = i & 0xFF;
1090                 break;
1091
1092         case READ_BUFFER:
1093                 scsi->cdb[0] = READ_BUFFER;
1094                 scsi->cdb[1] = 0x02;
1095                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1096                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1097                 sgd->byte_count = WR_BUF_SIZE;
1098                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1099                 memset(skspcl->data_buf, 0, sgd->byte_count);
1100                 break;
1101
1102         default:
1103                 SKD_ASSERT("Don't know what to send");
1104                 return;
1105
1106         }
1107         skd_send_special_fitmsg(skdev, skspcl);
1108 }
1109
1110 static void skd_refresh_device_data(struct skd_device *skdev)
1111 {
1112         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1113
1114         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1115 }
1116
1117 static int skd_chk_read_buf(struct skd_device *skdev,
1118                             struct skd_special_context *skspcl)
1119 {
1120         unsigned char *buf = skspcl->data_buf;
1121         int i;
1122
1123         /* check for incrementing byte pattern */
1124         for (i = 0; i < WR_BUF_SIZE; i++)
1125                 if (buf[i] != (i & 0xFF))
1126                         return 1;
1127
1128         return 0;
1129 }
1130
1131 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1132                                  u8 code, u8 qual, u8 fruc)
1133 {
1134         /* If the check condition is of special interest, log a message */
1135         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1136             && (code == 0x04) && (qual == 0x06)) {
1137                 dev_err(&skdev->pdev->dev,
1138                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1139                         key, code, qual, fruc);
1140         }
1141 }
1142
1143 static void skd_complete_internal(struct skd_device *skdev,
1144                                   struct fit_completion_entry_v1 *skcomp,
1145                                   struct fit_comp_error_info *skerr,
1146                                   struct skd_special_context *skspcl)
1147 {
1148         u8 *buf = skspcl->data_buf;
1149         u8 status;
1150         int i;
1151         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1152
1153         lockdep_assert_held(&skdev->lock);
1154
1155         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1156
1157         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1158
1159         skspcl->req.completion = *skcomp;
1160         skspcl->req.state = SKD_REQ_STATE_IDLE;
1161         skspcl->req.id += SKD_ID_INCR;
1162
1163         status = skspcl->req.completion.status;
1164
1165         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1166                              skerr->qual, skerr->fruc);
1167
1168         switch (scsi->cdb[0]) {
1169         case TEST_UNIT_READY:
1170                 if (status == SAM_STAT_GOOD)
1171                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1172                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1173                          (skerr->key == MEDIUM_ERROR))
1174                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1175                 else {
1176                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1177                                 dev_dbg(&skdev->pdev->dev,
1178                                         "TUR failed, don't send anymore state 0x%x\n",
1179                                         skdev->state);
1180                                 return;
1181                         }
1182                         dev_dbg(&skdev->pdev->dev,
1183                                 "**** TUR failed, retry skerr\n");
1184                         skd_send_internal_skspcl(skdev, skspcl,
1185                                                  TEST_UNIT_READY);
1186                 }
1187                 break;
1188
1189         case WRITE_BUFFER:
1190                 if (status == SAM_STAT_GOOD)
1191                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1192                 else {
1193                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1194                                 dev_dbg(&skdev->pdev->dev,
1195                                         "write buffer failed, don't send anymore state 0x%x\n",
1196                                         skdev->state);
1197                                 return;
1198                         }
1199                         dev_dbg(&skdev->pdev->dev,
1200                                 "**** write buffer failed, retry skerr\n");
1201                         skd_send_internal_skspcl(skdev, skspcl,
1202                                                  TEST_UNIT_READY);
1203                 }
1204                 break;
1205
1206         case READ_BUFFER:
1207                 if (status == SAM_STAT_GOOD) {
1208                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1209                                 skd_send_internal_skspcl(skdev, skspcl,
1210                                                          READ_CAPACITY);
1211                         else {
1212                                 dev_err(&skdev->pdev->dev,
1213                                         "*** W/R Buffer mismatch %d ***\n",
1214                                         skdev->connect_retries);
1215                                 if (skdev->connect_retries <
1216                                     SKD_MAX_CONNECT_RETRIES) {
1217                                         skdev->connect_retries++;
1218                                         skd_soft_reset(skdev);
1219                                 } else {
1220                                         dev_err(&skdev->pdev->dev,
1221                                                 "W/R Buffer Connect Error\n");
1222                                         return;
1223                                 }
1224                         }
1225
1226                 } else {
1227                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1228                                 dev_dbg(&skdev->pdev->dev,
1229                                         "read buffer failed, don't send anymore state 0x%x\n",
1230                                         skdev->state);
1231                                 return;
1232                         }
1233                         dev_dbg(&skdev->pdev->dev,
1234                                 "**** read buffer failed, retry skerr\n");
1235                         skd_send_internal_skspcl(skdev, skspcl,
1236                                                  TEST_UNIT_READY);
1237                 }
1238                 break;
1239
1240         case READ_CAPACITY:
1241                 skdev->read_cap_is_valid = 0;
1242                 if (status == SAM_STAT_GOOD) {
1243                         skdev->read_cap_last_lba =
1244                                 (buf[0] << 24) | (buf[1] << 16) |
1245                                 (buf[2] << 8) | buf[3];
1246                         skdev->read_cap_blocksize =
1247                                 (buf[4] << 24) | (buf[5] << 16) |
1248                                 (buf[6] << 8) | buf[7];
1249
1250                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1251                                 skdev->read_cap_last_lba,
1252                                 skdev->read_cap_blocksize);
1253
1254                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1255
1256                         skdev->read_cap_is_valid = 1;
1257
1258                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1259                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1260                            (skerr->key == MEDIUM_ERROR)) {
1261                         skdev->read_cap_last_lba = ~0;
1262                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1263                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1264                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1265                 } else {
1266                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1267                         skd_send_internal_skspcl(skdev, skspcl,
1268                                                  TEST_UNIT_READY);
1269                 }
1270                 break;
1271
1272         case INQUIRY:
1273                 skdev->inquiry_is_valid = 0;
1274                 if (status == SAM_STAT_GOOD) {
1275                         skdev->inquiry_is_valid = 1;
1276
1277                         for (i = 0; i < 12; i++)
1278                                 skdev->inq_serial_num[i] = buf[i + 4];
1279                         skdev->inq_serial_num[12] = 0;
1280                 }
1281
1282                 if (skd_unquiesce_dev(skdev) < 0)
1283                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1284                  /* connection is complete */
1285                 skdev->connect_retries = 0;
1286                 break;
1287
1288         case SYNCHRONIZE_CACHE:
1289                 if (status == SAM_STAT_GOOD)
1290                         skdev->sync_done = 1;
1291                 else
1292                         skdev->sync_done = -1;
1293                 wake_up_interruptible(&skdev->waitq);
1294                 break;
1295
1296         default:
1297                 SKD_ASSERT("we didn't send this");
1298         }
1299 }
1300
1301 /*
1302  *****************************************************************************
1303  * FIT MESSAGES
1304  *****************************************************************************
1305  */
1306
1307 static void skd_send_fitmsg(struct skd_device *skdev,
1308                             struct skd_fitmsg_context *skmsg)
1309 {
1310         u64 qcmd;
1311
1312         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1313                 skmsg->mb_dma_address, skdev->in_flight);
1314         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1315
1316         qcmd = skmsg->mb_dma_address;
1317         qcmd |= FIT_QCMD_QID_NORMAL;
1318
1319         if (unlikely(skdev->dbg_level > 1)) {
1320                 u8 *bp = (u8 *)skmsg->msg_buf;
1321                 int i;
1322                 for (i = 0; i < skmsg->length; i += 8) {
1323                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1324                                 &bp[i]);
1325                         if (i == 0)
1326                                 i = 64 - 8;
1327                 }
1328         }
1329
1330         if (skmsg->length > 256)
1331                 qcmd |= FIT_QCMD_MSGSIZE_512;
1332         else if (skmsg->length > 128)
1333                 qcmd |= FIT_QCMD_MSGSIZE_256;
1334         else if (skmsg->length > 64)
1335                 qcmd |= FIT_QCMD_MSGSIZE_128;
1336         else
1337                 /*
1338                  * This makes no sense because the FIT msg header is
1339                  * 64 bytes. If the msg is only 64 bytes long it has
1340                  * no payload.
1341                  */
1342                 qcmd |= FIT_QCMD_MSGSIZE_64;
1343
1344         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1345         smp_wmb();
1346
1347         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1348 }
1349
1350 static void skd_send_special_fitmsg(struct skd_device *skdev,
1351                                     struct skd_special_context *skspcl)
1352 {
1353         u64 qcmd;
1354
1355         if (unlikely(skdev->dbg_level > 1)) {
1356                 u8 *bp = (u8 *)skspcl->msg_buf;
1357                 int i;
1358
1359                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1360                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1361                                 &bp[i]);
1362                         if (i == 0)
1363                                 i = 64 - 8;
1364                 }
1365
1366                 dev_dbg(&skdev->pdev->dev,
1367                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1368                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1369                         skspcl->req.sksg_dma_address);
1370                 for (i = 0; i < skspcl->req.n_sg; i++) {
1371                         struct fit_sg_descriptor *sgd =
1372                                 &skspcl->req.sksg_list[i];
1373
1374                         dev_dbg(&skdev->pdev->dev,
1375                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1376                                 i, sgd->byte_count, sgd->control,
1377                                 sgd->host_side_addr, sgd->next_desc_ptr);
1378                 }
1379         }
1380
1381         /*
1382          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1383          * and one 64-byte SSDI command.
1384          */
1385         qcmd = skspcl->mb_dma_address;
1386         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1387
1388         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1389         smp_wmb();
1390
1391         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1392 }
1393
1394 /*
1395  *****************************************************************************
1396  * COMPLETION QUEUE
1397  *****************************************************************************
1398  */
1399
1400 static void skd_complete_other(struct skd_device *skdev,
1401                                struct fit_completion_entry_v1 *skcomp,
1402                                struct fit_comp_error_info *skerr);
1403
1404 struct sns_info {
1405         u8 type;
1406         u8 stat;
1407         u8 key;
1408         u8 asc;
1409         u8 ascq;
1410         u8 mask;
1411         enum skd_check_status_action action;
1412 };
1413
1414 static struct sns_info skd_chkstat_table[] = {
1415         /* Good */
1416         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1417           SKD_CHECK_STATUS_REPORT_GOOD },
1418
1419         /* Smart alerts */
1420         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1421           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1422         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1423           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1424         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1425           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1426
1427         /* Retry (with limits) */
1428         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1429           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1430         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1431           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1432         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1433           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1434         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1435           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1436
1437         /* Busy (or about to be) */
1438         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1439           SKD_CHECK_STATUS_BUSY_IMMINENT },
1440 };
1441
1442 /*
1443  * Look up status and sense data to decide how to handle the error
1444  * from the device.
1445  * mask says which fields must match e.g., mask=0x18 means check
1446  * type and stat, ignore key, asc, ascq.
1447  */
1448
1449 static enum skd_check_status_action
1450 skd_check_status(struct skd_device *skdev,
1451                  u8 cmp_status, struct fit_comp_error_info *skerr)
1452 {
1453         int i;
1454
1455         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1456                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1457
1458         dev_dbg(&skdev->pdev->dev,
1459                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1460                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1461                 skerr->fruc);
1462
1463         /* Does the info match an entry in the good category? */
1464         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1465                 struct sns_info *sns = &skd_chkstat_table[i];
1466
1467                 if (sns->mask & 0x10)
1468                         if (skerr->type != sns->type)
1469                                 continue;
1470
1471                 if (sns->mask & 0x08)
1472                         if (cmp_status != sns->stat)
1473                                 continue;
1474
1475                 if (sns->mask & 0x04)
1476                         if (skerr->key != sns->key)
1477                                 continue;
1478
1479                 if (sns->mask & 0x02)
1480                         if (skerr->code != sns->asc)
1481                                 continue;
1482
1483                 if (sns->mask & 0x01)
1484                         if (skerr->qual != sns->ascq)
1485                                 continue;
1486
1487                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1488                         dev_err(&skdev->pdev->dev,
1489                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1490                                 skerr->key, skerr->code, skerr->qual);
1491                 }
1492                 return sns->action;
1493         }
1494
1495         /* No other match, so nonzero status means error,
1496          * zero status means good
1497          */
1498         if (cmp_status) {
1499                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1500                 return SKD_CHECK_STATUS_REPORT_ERROR;
1501         }
1502
1503         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1504         return SKD_CHECK_STATUS_REPORT_GOOD;
1505 }
1506
1507 static void skd_resolve_req_exception(struct skd_device *skdev,
1508                                       struct skd_request_context *skreq,
1509                                       struct request *req)
1510 {
1511         u8 cmp_status = skreq->completion.status;
1512
1513         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1514         case SKD_CHECK_STATUS_REPORT_GOOD:
1515         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1516                 skd_end_request(skdev, req, BLK_STS_OK);
1517                 break;
1518
1519         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1520                 skd_log_skreq(skdev, skreq, "retry(busy)");
1521                 blk_requeue_request(skdev->queue, req);
1522                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1523                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1524                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1525                 skd_quiesce_dev(skdev);
1526                 break;
1527
1528         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1529                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1530                         skd_log_skreq(skdev, skreq, "retry");
1531                         blk_requeue_request(skdev->queue, req);
1532                         break;
1533                 }
1534                 /* fall through */
1535
1536         case SKD_CHECK_STATUS_REPORT_ERROR:
1537         default:
1538                 skd_end_request(skdev, req, BLK_STS_IOERR);
1539                 break;
1540         }
1541 }
1542
1543 /* assume spinlock is already held */
1544 static void skd_release_skreq(struct skd_device *skdev,
1545                               struct skd_request_context *skreq)
1546 {
1547         u32 timo_slot;
1548
1549         /*
1550          * Decrease the number of active requests.
1551          * Also decrements the count in the timeout slot.
1552          */
1553         SKD_ASSERT(skdev->in_flight > 0);
1554         skdev->in_flight -= 1;
1555
1556         timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
1557         SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
1558         skdev->timeout_slot[timo_slot] -= 1;
1559
1560         /*
1561          * Reset backpointer
1562          */
1563         skreq->req = NULL;
1564
1565         /*
1566          * Reclaim the skd_request_context
1567          */
1568         skreq->state = SKD_REQ_STATE_IDLE;
1569         skreq->id += SKD_ID_INCR;
1570 }
1571
1572 static struct skd_request_context *skd_skreq_from_rq(struct skd_device *skdev,
1573                                                      struct request *rq)
1574 {
1575         struct skd_request_context *skreq;
1576         int i;
1577
1578         for (i = 0, skreq = skdev->skreq_table; i < skdev->num_fitmsg_context;
1579              i++, skreq++)
1580                 if (skreq->req == rq)
1581                         return skreq;
1582
1583         return NULL;
1584 }
1585
1586 static int skd_isr_completion_posted(struct skd_device *skdev,
1587                                         int limit, int *enqueued)
1588 {
1589         struct fit_completion_entry_v1 *skcmp;
1590         struct fit_comp_error_info *skerr;
1591         u16 req_id;
1592         u32 tag;
1593         struct request *rq;
1594         struct skd_request_context *skreq;
1595         u16 cmp_cntxt;
1596         u8 cmp_status;
1597         u8 cmp_cycle;
1598         u32 cmp_bytes;
1599         int rc;
1600         int processed = 0;
1601
1602         lockdep_assert_held(&skdev->lock);
1603
1604         for (;; ) {
1605                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1606
1607                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1608                 cmp_cycle = skcmp->cycle;
1609                 cmp_cntxt = skcmp->tag;
1610                 cmp_status = skcmp->status;
1611                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1612
1613                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1614
1615                 dev_dbg(&skdev->pdev->dev,
1616                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1617                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1618                         cmp_cntxt, cmp_status, skdev->in_flight, cmp_bytes,
1619                         skdev->proto_ver);
1620
1621                 if (cmp_cycle != skdev->skcomp_cycle) {
1622                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1623                         break;
1624                 }
1625                 /*
1626                  * Update the completion queue head index and possibly
1627                  * the completion cycle count. 8-bit wrap-around.
1628                  */
1629                 skdev->skcomp_ix++;
1630                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1631                         skdev->skcomp_ix = 0;
1632                         skdev->skcomp_cycle++;
1633                 }
1634
1635                 /*
1636                  * The command context is a unique 32-bit ID. The low order
1637                  * bits help locate the request. The request is usually a
1638                  * r/w request (see skd_start() above) or a special request.
1639                  */
1640                 req_id = cmp_cntxt;
1641                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1642
1643                 /* Is this other than a r/w request? */
1644                 if (tag >= skdev->num_req_context) {
1645                         /*
1646                          * This is not a completion for a r/w request.
1647                          */
1648                         WARN_ON_ONCE(blk_map_queue_find_tag(skdev->queue->
1649                                                             queue_tags, tag));
1650                         skd_complete_other(skdev, skcmp, skerr);
1651                         continue;
1652                 }
1653
1654                 rq = blk_map_queue_find_tag(skdev->queue->queue_tags, tag);
1655                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1656                          tag))
1657                         continue;
1658                 skreq = skd_skreq_from_rq(skdev, rq);
1659
1660                 /*
1661                  * Make sure the request ID for the slot matches.
1662                  */
1663                 if (skreq->id != req_id) {
1664                         dev_dbg(&skdev->pdev->dev,
1665                                 "mismatch comp_id=0x%x req_id=0x%x\n", req_id,
1666                                 skreq->id);
1667                         {
1668                                 u16 new_id = cmp_cntxt;
1669                                 dev_err(&skdev->pdev->dev,
1670                                         "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1671                                         req_id, skreq->id, new_id);
1672
1673                                 continue;
1674                         }
1675                 }
1676
1677                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1678
1679                 skreq->completion = *skcmp;
1680                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1681                         skreq->err_info = *skerr;
1682                         skd_log_check_status(skdev, cmp_status, skerr->key,
1683                                              skerr->code, skerr->qual,
1684                                              skerr->fruc);
1685                 }
1686                 /* Release DMA resources for the request. */
1687                 if (skreq->n_sg > 0)
1688                         skd_postop_sg_list(skdev, skreq);
1689
1690                 /* Mark the FIT msg and timeout slot as free. */
1691                 skd_release_skreq(skdev, skreq);
1692
1693                 /*
1694                  * Capture the outcome and post it back to the native request.
1695                  */
1696                 if (likely(cmp_status == SAM_STAT_GOOD))
1697                         skd_end_request(skdev, rq, BLK_STS_OK);
1698                 else
1699                         skd_resolve_req_exception(skdev, skreq, rq);
1700
1701                 /* skd_isr_comp_limit equal zero means no limit */
1702                 if (limit) {
1703                         if (++processed >= limit) {
1704                                 rc = 1;
1705                                 break;
1706                         }
1707                 }
1708         }
1709
1710         if ((skdev->state == SKD_DRVR_STATE_PAUSING)
1711                 && (skdev->in_flight) == 0) {
1712                 skdev->state = SKD_DRVR_STATE_PAUSED;
1713                 wake_up_interruptible(&skdev->waitq);
1714         }
1715
1716         return rc;
1717 }
1718
1719 static void skd_complete_other(struct skd_device *skdev,
1720                                struct fit_completion_entry_v1 *skcomp,
1721                                struct fit_comp_error_info *skerr)
1722 {
1723         u32 req_id = 0;
1724         u32 req_table;
1725         u32 req_slot;
1726         struct skd_special_context *skspcl;
1727
1728         lockdep_assert_held(&skdev->lock);
1729
1730         req_id = skcomp->tag;
1731         req_table = req_id & SKD_ID_TABLE_MASK;
1732         req_slot = req_id & SKD_ID_SLOT_MASK;
1733
1734         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1735                 req_id, req_slot);
1736
1737         /*
1738          * Based on the request id, determine how to dispatch this completion.
1739          * This swich/case is finding the good cases and forwarding the
1740          * completion entry. Errors are reported below the switch.
1741          */
1742         switch (req_table) {
1743         case SKD_ID_RW_REQUEST:
1744                 /*
1745                  * The caller, skd_isr_completion_posted() above,
1746                  * handles r/w requests. The only way we get here
1747                  * is if the req_slot is out of bounds.
1748                  */
1749                 break;
1750
1751         case SKD_ID_INTERNAL:
1752                 if (req_slot == 0) {
1753                         skspcl = &skdev->internal_skspcl;
1754                         if (skspcl->req.id == req_id &&
1755                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1756                                 skd_complete_internal(skdev,
1757                                                       skcomp, skerr, skspcl);
1758                                 return;
1759                         }
1760                 }
1761                 break;
1762
1763         case SKD_ID_FIT_MSG:
1764                 /*
1765                  * These id's should never appear in a completion record.
1766                  */
1767                 break;
1768
1769         default:
1770                 /*
1771                  * These id's should never appear anywhere;
1772                  */
1773                 break;
1774         }
1775
1776         /*
1777          * If we get here it is a bad or stale id.
1778          */
1779 }
1780
1781 static void skd_reset_skcomp(struct skd_device *skdev)
1782 {
1783         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1784
1785         skdev->skcomp_ix = 0;
1786         skdev->skcomp_cycle = 1;
1787 }
1788
1789 /*
1790  *****************************************************************************
1791  * INTERRUPTS
1792  *****************************************************************************
1793  */
1794 static void skd_completion_worker(struct work_struct *work)
1795 {
1796         struct skd_device *skdev =
1797                 container_of(work, struct skd_device, completion_worker);
1798         unsigned long flags;
1799         int flush_enqueued = 0;
1800
1801         spin_lock_irqsave(&skdev->lock, flags);
1802
1803         /*
1804          * pass in limit=0, which means no limit..
1805          * process everything in compq
1806          */
1807         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1808         blk_run_queue_async(skdev->queue);
1809
1810         spin_unlock_irqrestore(&skdev->lock, flags);
1811 }
1812
1813 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1814
1815 static irqreturn_t
1816 skd_isr(int irq, void *ptr)
1817 {
1818         struct skd_device *skdev = ptr;
1819         u32 intstat;
1820         u32 ack;
1821         int rc = 0;
1822         int deferred = 0;
1823         int flush_enqueued = 0;
1824
1825         spin_lock(&skdev->lock);
1826
1827         for (;; ) {
1828                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1829
1830                 ack = FIT_INT_DEF_MASK;
1831                 ack &= intstat;
1832
1833                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1834                         ack);
1835
1836                 /* As long as there is an int pending on device, keep
1837                  * running loop.  When none, get out, but if we've never
1838                  * done any processing, call completion handler?
1839                  */
1840                 if (ack == 0) {
1841                         /* No interrupts on device, but run the completion
1842                          * processor anyway?
1843                          */
1844                         if (rc == 0)
1845                                 if (likely (skdev->state
1846                                         == SKD_DRVR_STATE_ONLINE))
1847                                         deferred = 1;
1848                         break;
1849                 }
1850
1851                 rc = IRQ_HANDLED;
1852
1853                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1854
1855                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1856                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1857                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1858                                 /*
1859                                  * If we have already deferred completion
1860                                  * processing, don't bother running it again
1861                                  */
1862                                 if (deferred == 0)
1863                                         deferred =
1864                                                 skd_isr_completion_posted(skdev,
1865                                                 skd_isr_comp_limit, &flush_enqueued);
1866                         }
1867
1868                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1869                                 skd_isr_fwstate(skdev);
1870                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1871                                     skdev->state ==
1872                                     SKD_DRVR_STATE_DISAPPEARED) {
1873                                         spin_unlock(&skdev->lock);
1874                                         return rc;
1875                                 }
1876                         }
1877
1878                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1879                                 skd_isr_msg_from_dev(skdev);
1880                 }
1881         }
1882
1883         if (unlikely(flush_enqueued))
1884                 blk_run_queue_async(skdev->queue);
1885
1886         if (deferred)
1887                 schedule_work(&skdev->completion_worker);
1888         else if (!flush_enqueued)
1889                 blk_run_queue_async(skdev->queue);
1890
1891         spin_unlock(&skdev->lock);
1892
1893         return rc;
1894 }
1895
1896 static void skd_drive_fault(struct skd_device *skdev)
1897 {
1898         skdev->state = SKD_DRVR_STATE_FAULT;
1899         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1900 }
1901
1902 static void skd_drive_disappeared(struct skd_device *skdev)
1903 {
1904         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1905         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1906 }
1907
1908 static void skd_isr_fwstate(struct skd_device *skdev)
1909 {
1910         u32 sense;
1911         u32 state;
1912         u32 mtd;
1913         int prev_driver_state = skdev->state;
1914
1915         sense = SKD_READL(skdev, FIT_STATUS);
1916         state = sense & FIT_SR_DRIVE_STATE_MASK;
1917
1918         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1919                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1920                 skd_drive_state_to_str(state), state);
1921
1922         skdev->drive_state = state;
1923
1924         switch (skdev->drive_state) {
1925         case FIT_SR_DRIVE_INIT:
1926                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1927                         skd_disable_interrupts(skdev);
1928                         break;
1929                 }
1930                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1931                         skd_recover_requests(skdev);
1932                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1933                         skdev->timer_countdown = SKD_STARTING_TIMO;
1934                         skdev->state = SKD_DRVR_STATE_STARTING;
1935                         skd_soft_reset(skdev);
1936                         break;
1937                 }
1938                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1939                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1940                 skdev->last_mtd = mtd;
1941                 break;
1942
1943         case FIT_SR_DRIVE_ONLINE:
1944                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1945                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1946                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1947
1948                 skdev->queue_low_water_mark =
1949                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1950                 if (skdev->queue_low_water_mark < 1)
1951                         skdev->queue_low_water_mark = 1;
1952                 dev_info(&skdev->pdev->dev,
1953                          "Queue depth limit=%d dev=%d lowat=%d\n",
1954                          skdev->cur_max_queue_depth,
1955                          skdev->dev_max_queue_depth,
1956                          skdev->queue_low_water_mark);
1957
1958                 skd_refresh_device_data(skdev);
1959                 break;
1960
1961         case FIT_SR_DRIVE_BUSY:
1962                 skdev->state = SKD_DRVR_STATE_BUSY;
1963                 skdev->timer_countdown = SKD_BUSY_TIMO;
1964                 skd_quiesce_dev(skdev);
1965                 break;
1966         case FIT_SR_DRIVE_BUSY_SANITIZE:
1967                 /* set timer for 3 seconds, we'll abort any unfinished
1968                  * commands after that expires
1969                  */
1970                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1971                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1972                 blk_start_queue(skdev->queue);
1973                 break;
1974         case FIT_SR_DRIVE_BUSY_ERASE:
1975                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1976                 skdev->timer_countdown = SKD_BUSY_TIMO;
1977                 break;
1978         case FIT_SR_DRIVE_OFFLINE:
1979                 skdev->state = SKD_DRVR_STATE_IDLE;
1980                 break;
1981         case FIT_SR_DRIVE_SOFT_RESET:
1982                 switch (skdev->state) {
1983                 case SKD_DRVR_STATE_STARTING:
1984                 case SKD_DRVR_STATE_RESTARTING:
1985                         /* Expected by a caller of skd_soft_reset() */
1986                         break;
1987                 default:
1988                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1989                         break;
1990                 }
1991                 break;
1992         case FIT_SR_DRIVE_FW_BOOTING:
1993                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1994                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1995                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1996                 break;
1997
1998         case FIT_SR_DRIVE_DEGRADED:
1999         case FIT_SR_PCIE_LINK_DOWN:
2000         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
2001                 break;
2002
2003         case FIT_SR_DRIVE_FAULT:
2004                 skd_drive_fault(skdev);
2005                 skd_recover_requests(skdev);
2006                 blk_start_queue(skdev->queue);
2007                 break;
2008
2009         /* PCIe bus returned all Fs? */
2010         case 0xFF:
2011                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
2012                          sense);
2013                 skd_drive_disappeared(skdev);
2014                 skd_recover_requests(skdev);
2015                 blk_start_queue(skdev->queue);
2016                 break;
2017         default:
2018                 /*
2019                  * Uknown FW State. Wait for a state we recognize.
2020                  */
2021                 break;
2022         }
2023         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2024                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
2025                 skd_skdev_state_to_str(skdev->state), skdev->state);
2026 }
2027
2028 static void skd_recover_requests(struct skd_device *skdev)
2029 {
2030         int i;
2031
2032         for (i = 0; i < skdev->num_req_context; i++) {
2033                 struct skd_request_context *skreq = &skdev->skreq_table[i];
2034                 struct request *req = skreq->req;
2035
2036                 if (skreq->state == SKD_REQ_STATE_BUSY) {
2037                         skd_log_skreq(skdev, skreq, "recover");
2038
2039                         SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
2040                         SKD_ASSERT(req != NULL);
2041
2042                         /* Release DMA resources for the request. */
2043                         if (skreq->n_sg > 0)
2044                                 skd_postop_sg_list(skdev, skreq);
2045
2046                         skreq->req = NULL;
2047
2048                         skreq->state = SKD_REQ_STATE_IDLE;
2049                         skreq->id += SKD_ID_INCR;
2050
2051                         skd_end_request(skdev, req, BLK_STS_IOERR);
2052                 }
2053         }
2054
2055         for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
2056                 skdev->timeout_slot[i] = 0;
2057
2058         skdev->in_flight = 0;
2059 }
2060
2061 static void skd_isr_msg_from_dev(struct skd_device *skdev)
2062 {
2063         u32 mfd;
2064         u32 mtd;
2065         u32 data;
2066
2067         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2068
2069         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
2070                 skdev->last_mtd);
2071
2072         /* ignore any mtd that is an ack for something we didn't send */
2073         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
2074                 return;
2075
2076         switch (FIT_MXD_TYPE(mfd)) {
2077         case FIT_MTD_FITFW_INIT:
2078                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
2079
2080                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
2081                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
2082                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
2083                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
2084                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
2085                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
2086                         skd_soft_reset(skdev);
2087                         break;
2088                 }
2089                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
2090                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2091                 skdev->last_mtd = mtd;
2092                 break;
2093
2094         case FIT_MTD_GET_CMDQ_DEPTH:
2095                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
2096                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
2097                                    SKD_N_COMPLETION_ENTRY);
2098                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2099                 skdev->last_mtd = mtd;
2100                 break;
2101
2102         case FIT_MTD_SET_COMPQ_DEPTH:
2103                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
2104                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
2105                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2106                 skdev->last_mtd = mtd;
2107                 break;
2108
2109         case FIT_MTD_SET_COMPQ_ADDR:
2110                 skd_reset_skcomp(skdev);
2111                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
2112                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2113                 skdev->last_mtd = mtd;
2114                 break;
2115
2116         case FIT_MTD_CMD_LOG_HOST_ID:
2117                 skdev->connect_time_stamp = get_seconds();
2118                 data = skdev->connect_time_stamp & 0xFFFF;
2119                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
2120                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2121                 skdev->last_mtd = mtd;
2122                 break;
2123
2124         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
2125                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
2126                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
2127                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
2128                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2129                 skdev->last_mtd = mtd;
2130                 break;
2131
2132         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
2133                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
2134                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
2135                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2136                 skdev->last_mtd = mtd;
2137
2138                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2139                         skdev->connect_time_stamp, skdev->drive_jiffies);
2140                 break;
2141
2142         case FIT_MTD_ARM_QUEUE:
2143                 skdev->last_mtd = 0;
2144                 /*
2145                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2146                  */
2147                 break;
2148
2149         default:
2150                 break;
2151         }
2152 }
2153
2154 static void skd_disable_interrupts(struct skd_device *skdev)
2155 {
2156         u32 sense;
2157
2158         sense = SKD_READL(skdev, FIT_CONTROL);
2159         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2160         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2161         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2162
2163         /* Note that the 1s is written. A 1-bit means
2164          * disable, a 0 means enable.
2165          */
2166         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2167 }
2168
2169 static void skd_enable_interrupts(struct skd_device *skdev)
2170 {
2171         u32 val;
2172
2173         /* unmask interrupts first */
2174         val = FIT_ISH_FW_STATE_CHANGE +
2175               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2176
2177         /* Note that the compliment of mask is written. A 1-bit means
2178          * disable, a 0 means enable. */
2179         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2180         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2181
2182         val = SKD_READL(skdev, FIT_CONTROL);
2183         val |= FIT_CR_ENABLE_INTERRUPTS;
2184         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2185         SKD_WRITEL(skdev, val, FIT_CONTROL);
2186 }
2187
2188 /*
2189  *****************************************************************************
2190  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2191  *****************************************************************************
2192  */
2193
2194 static void skd_soft_reset(struct skd_device *skdev)
2195 {
2196         u32 val;
2197
2198         val = SKD_READL(skdev, FIT_CONTROL);
2199         val |= (FIT_CR_SOFT_RESET);
2200         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2201         SKD_WRITEL(skdev, val, FIT_CONTROL);
2202 }
2203
2204 static void skd_start_device(struct skd_device *skdev)
2205 {
2206         unsigned long flags;
2207         u32 sense;
2208         u32 state;
2209
2210         spin_lock_irqsave(&skdev->lock, flags);
2211
2212         /* ack all ghost interrupts */
2213         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2214
2215         sense = SKD_READL(skdev, FIT_STATUS);
2216
2217         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2218
2219         state = sense & FIT_SR_DRIVE_STATE_MASK;
2220         skdev->drive_state = state;
2221         skdev->last_mtd = 0;
2222
2223         skdev->state = SKD_DRVR_STATE_STARTING;
2224         skdev->timer_countdown = SKD_STARTING_TIMO;
2225
2226         skd_enable_interrupts(skdev);
2227
2228         switch (skdev->drive_state) {
2229         case FIT_SR_DRIVE_OFFLINE:
2230                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2231                 break;
2232
2233         case FIT_SR_DRIVE_FW_BOOTING:
2234                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2235                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2236                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2237                 break;
2238
2239         case FIT_SR_DRIVE_BUSY_SANITIZE:
2240                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2241                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2242                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2243                 break;
2244
2245         case FIT_SR_DRIVE_BUSY_ERASE:
2246                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2247                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2248                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2249                 break;
2250
2251         case FIT_SR_DRIVE_INIT:
2252         case FIT_SR_DRIVE_ONLINE:
2253                 skd_soft_reset(skdev);
2254                 break;
2255
2256         case FIT_SR_DRIVE_BUSY:
2257                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2258                 skdev->state = SKD_DRVR_STATE_BUSY;
2259                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2260                 break;
2261
2262         case FIT_SR_DRIVE_SOFT_RESET:
2263                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2264                 break;
2265
2266         case FIT_SR_DRIVE_FAULT:
2267                 /* Fault state is bad...soft reset won't do it...
2268                  * Hard reset, maybe, but does it work on device?
2269                  * For now, just fault so the system doesn't hang.
2270                  */
2271                 skd_drive_fault(skdev);
2272                 /*start the queue so we can respond with error to requests */
2273                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2274                 blk_start_queue(skdev->queue);
2275                 skdev->gendisk_on = -1;
2276                 wake_up_interruptible(&skdev->waitq);
2277                 break;
2278
2279         case 0xFF:
2280                 /* Most likely the device isn't there or isn't responding
2281                  * to the BAR1 addresses. */
2282                 skd_drive_disappeared(skdev);
2283                 /*start the queue so we can respond with error to requests */
2284                 dev_dbg(&skdev->pdev->dev,
2285                         "starting queue to error-out reqs\n");
2286                 blk_start_queue(skdev->queue);
2287                 skdev->gendisk_on = -1;
2288                 wake_up_interruptible(&skdev->waitq);
2289                 break;
2290
2291         default:
2292                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2293                         skdev->drive_state);
2294                 break;
2295         }
2296
2297         state = SKD_READL(skdev, FIT_CONTROL);
2298         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2299
2300         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2301         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2302
2303         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2304         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2305
2306         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2307         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2308
2309         state = SKD_READL(skdev, FIT_HW_VERSION);
2310         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2311
2312         spin_unlock_irqrestore(&skdev->lock, flags);
2313 }
2314
2315 static void skd_stop_device(struct skd_device *skdev)
2316 {
2317         unsigned long flags;
2318         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2319         u32 dev_state;
2320         int i;
2321
2322         spin_lock_irqsave(&skdev->lock, flags);
2323
2324         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2325                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2326                 goto stop_out;
2327         }
2328
2329         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2330                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2331                 goto stop_out;
2332         }
2333
2334         skdev->state = SKD_DRVR_STATE_SYNCING;
2335         skdev->sync_done = 0;
2336
2337         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2338
2339         spin_unlock_irqrestore(&skdev->lock, flags);
2340
2341         wait_event_interruptible_timeout(skdev->waitq,
2342                                          (skdev->sync_done), (10 * HZ));
2343
2344         spin_lock_irqsave(&skdev->lock, flags);
2345
2346         switch (skdev->sync_done) {
2347         case 0:
2348                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2349                 break;
2350         case 1:
2351                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2352                 break;
2353         default:
2354                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2355         }
2356
2357 stop_out:
2358         skdev->state = SKD_DRVR_STATE_STOPPING;
2359         spin_unlock_irqrestore(&skdev->lock, flags);
2360
2361         skd_kill_timer(skdev);
2362
2363         spin_lock_irqsave(&skdev->lock, flags);
2364         skd_disable_interrupts(skdev);
2365
2366         /* ensure all ints on device are cleared */
2367         /* soft reset the device to unload with a clean slate */
2368         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2369         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2370
2371         spin_unlock_irqrestore(&skdev->lock, flags);
2372
2373         /* poll every 100ms, 1 second timeout */
2374         for (i = 0; i < 10; i++) {
2375                 dev_state =
2376                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2377                 if (dev_state == FIT_SR_DRIVE_INIT)
2378                         break;
2379                 set_current_state(TASK_INTERRUPTIBLE);
2380                 schedule_timeout(msecs_to_jiffies(100));
2381         }
2382
2383         if (dev_state != FIT_SR_DRIVE_INIT)
2384                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2385                         dev_state);
2386 }
2387
2388 /* assume spinlock is held */
2389 static void skd_restart_device(struct skd_device *skdev)
2390 {
2391         u32 state;
2392
2393         /* ack all ghost interrupts */
2394         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2395
2396         state = SKD_READL(skdev, FIT_STATUS);
2397
2398         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2399
2400         state &= FIT_SR_DRIVE_STATE_MASK;
2401         skdev->drive_state = state;
2402         skdev->last_mtd = 0;
2403
2404         skdev->state = SKD_DRVR_STATE_RESTARTING;
2405         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2406
2407         skd_soft_reset(skdev);
2408 }
2409
2410 /* assume spinlock is held */
2411 static int skd_quiesce_dev(struct skd_device *skdev)
2412 {
2413         int rc = 0;
2414
2415         switch (skdev->state) {
2416         case SKD_DRVR_STATE_BUSY:
2417         case SKD_DRVR_STATE_BUSY_IMMINENT:
2418                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2419                 blk_stop_queue(skdev->queue);
2420                 break;
2421         case SKD_DRVR_STATE_ONLINE:
2422         case SKD_DRVR_STATE_STOPPING:
2423         case SKD_DRVR_STATE_SYNCING:
2424         case SKD_DRVR_STATE_PAUSING:
2425         case SKD_DRVR_STATE_PAUSED:
2426         case SKD_DRVR_STATE_STARTING:
2427         case SKD_DRVR_STATE_RESTARTING:
2428         case SKD_DRVR_STATE_RESUMING:
2429         default:
2430                 rc = -EINVAL;
2431                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2432                         skdev->state);
2433         }
2434         return rc;
2435 }
2436
2437 /* assume spinlock is held */
2438 static int skd_unquiesce_dev(struct skd_device *skdev)
2439 {
2440         int prev_driver_state = skdev->state;
2441
2442         skd_log_skdev(skdev, "unquiesce");
2443         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2444                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2445                 return 0;
2446         }
2447         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2448                 /*
2449                  * If there has been an state change to other than
2450                  * ONLINE, we will rely on controller state change
2451                  * to come back online and restart the queue.
2452                  * The BUSY state means that driver is ready to
2453                  * continue normal processing but waiting for controller
2454                  * to become available.
2455                  */
2456                 skdev->state = SKD_DRVR_STATE_BUSY;
2457                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2458                 return 0;
2459         }
2460
2461         /*
2462          * Drive has just come online, driver is either in startup,
2463          * paused performing a task, or bust waiting for hardware.
2464          */
2465         switch (skdev->state) {
2466         case SKD_DRVR_STATE_PAUSED:
2467         case SKD_DRVR_STATE_BUSY:
2468         case SKD_DRVR_STATE_BUSY_IMMINENT:
2469         case SKD_DRVR_STATE_BUSY_ERASE:
2470         case SKD_DRVR_STATE_STARTING:
2471         case SKD_DRVR_STATE_RESTARTING:
2472         case SKD_DRVR_STATE_FAULT:
2473         case SKD_DRVR_STATE_IDLE:
2474         case SKD_DRVR_STATE_LOAD:
2475                 skdev->state = SKD_DRVR_STATE_ONLINE;
2476                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2477                         skd_skdev_state_to_str(prev_driver_state),
2478                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2479                         skdev->state);
2480                 dev_dbg(&skdev->pdev->dev,
2481                         "**** device ONLINE...starting block queue\n");
2482                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2483                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2484                 blk_start_queue(skdev->queue);
2485                 skdev->gendisk_on = 1;
2486                 wake_up_interruptible(&skdev->waitq);
2487                 break;
2488
2489         case SKD_DRVR_STATE_DISAPPEARED:
2490         default:
2491                 dev_dbg(&skdev->pdev->dev,
2492                         "**** driver state %d, not implemented\n",
2493                         skdev->state);
2494                 return -EBUSY;
2495         }
2496         return 0;
2497 }
2498
2499 /*
2500  *****************************************************************************
2501  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2502  *****************************************************************************
2503  */
2504
2505 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2506 {
2507         struct skd_device *skdev = skd_host_data;
2508         unsigned long flags;
2509
2510         spin_lock_irqsave(&skdev->lock, flags);
2511         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2512                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2513         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2514                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2515         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2516         spin_unlock_irqrestore(&skdev->lock, flags);
2517         return IRQ_HANDLED;
2518 }
2519
2520 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2521 {
2522         struct skd_device *skdev = skd_host_data;
2523         unsigned long flags;
2524
2525         spin_lock_irqsave(&skdev->lock, flags);
2526         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2527                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2528         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2529         skd_isr_fwstate(skdev);
2530         spin_unlock_irqrestore(&skdev->lock, flags);
2531         return IRQ_HANDLED;
2532 }
2533
2534 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2535 {
2536         struct skd_device *skdev = skd_host_data;
2537         unsigned long flags;
2538         int flush_enqueued = 0;
2539         int deferred;
2540
2541         spin_lock_irqsave(&skdev->lock, flags);
2542         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2543                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2544         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2545         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2546                                                 &flush_enqueued);
2547         if (flush_enqueued)
2548                 blk_run_queue_async(skdev->queue);
2549
2550         if (deferred)
2551                 schedule_work(&skdev->completion_worker);
2552         else if (!flush_enqueued)
2553                 blk_run_queue_async(skdev->queue);
2554
2555         spin_unlock_irqrestore(&skdev->lock, flags);
2556
2557         return IRQ_HANDLED;
2558 }
2559
2560 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2561 {
2562         struct skd_device *skdev = skd_host_data;
2563         unsigned long flags;
2564
2565         spin_lock_irqsave(&skdev->lock, flags);
2566         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2567                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2568         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2569         skd_isr_msg_from_dev(skdev);
2570         spin_unlock_irqrestore(&skdev->lock, flags);
2571         return IRQ_HANDLED;
2572 }
2573
2574 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2575 {
2576         struct skd_device *skdev = skd_host_data;
2577         unsigned long flags;
2578
2579         spin_lock_irqsave(&skdev->lock, flags);
2580         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2581                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2582         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2583         spin_unlock_irqrestore(&skdev->lock, flags);
2584         return IRQ_HANDLED;
2585 }
2586
2587 /*
2588  *****************************************************************************
2589  * PCIe MSI/MSI-X SETUP
2590  *****************************************************************************
2591  */
2592
2593 struct skd_msix_entry {
2594         char isr_name[30];
2595 };
2596
2597 struct skd_init_msix_entry {
2598         const char *name;
2599         irq_handler_t handler;
2600 };
2601
2602 #define SKD_MAX_MSIX_COUNT              13
2603 #define SKD_MIN_MSIX_COUNT              7
2604 #define SKD_BASE_MSIX_IRQ               4
2605
2606 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2607         { "(DMA 0)",        skd_reserved_isr },
2608         { "(DMA 1)",        skd_reserved_isr },
2609         { "(DMA 2)",        skd_reserved_isr },
2610         { "(DMA 3)",        skd_reserved_isr },
2611         { "(State Change)", skd_statec_isr   },
2612         { "(COMPL_Q)",      skd_comp_q       },
2613         { "(MSG)",          skd_msg_isr      },
2614         { "(Reserved)",     skd_reserved_isr },
2615         { "(Reserved)",     skd_reserved_isr },
2616         { "(Queue Full 0)", skd_qfull_isr    },
2617         { "(Queue Full 1)", skd_qfull_isr    },
2618         { "(Queue Full 2)", skd_qfull_isr    },
2619         { "(Queue Full 3)", skd_qfull_isr    },
2620 };
2621
2622 static int skd_acquire_msix(struct skd_device *skdev)
2623 {
2624         int i, rc;
2625         struct pci_dev *pdev = skdev->pdev;
2626
2627         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2628                         PCI_IRQ_MSIX);
2629         if (rc < 0) {
2630                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2631                 goto out;
2632         }
2633
2634         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2635                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2636         if (!skdev->msix_entries) {
2637                 rc = -ENOMEM;
2638                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2639                 goto out;
2640         }
2641
2642         /* Enable MSI-X vectors for the base queue */
2643         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2644                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2645
2646                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2647                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2648                          msix_entries[i].name);
2649
2650                 rc = devm_request_irq(&skdev->pdev->dev,
2651                                 pci_irq_vector(skdev->pdev, i),
2652                                 msix_entries[i].handler, 0,
2653                                 qentry->isr_name, skdev);
2654                 if (rc) {
2655                         dev_err(&skdev->pdev->dev,
2656                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2657                                 rc, i, qentry->isr_name);
2658                         goto msix_out;
2659                 }
2660         }
2661
2662         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2663                 SKD_MAX_MSIX_COUNT);
2664         return 0;
2665
2666 msix_out:
2667         while (--i >= 0)
2668                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2669 out:
2670         kfree(skdev->msix_entries);
2671         skdev->msix_entries = NULL;
2672         return rc;
2673 }
2674
2675 static int skd_acquire_irq(struct skd_device *skdev)
2676 {
2677         struct pci_dev *pdev = skdev->pdev;
2678         unsigned int irq_flag = PCI_IRQ_LEGACY;
2679         int rc;
2680
2681         if (skd_isr_type == SKD_IRQ_MSIX) {
2682                 rc = skd_acquire_msix(skdev);
2683                 if (!rc)
2684                         return 0;
2685
2686                 dev_err(&skdev->pdev->dev,
2687                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2688         }
2689
2690         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2691                         skdev->devno);
2692
2693         if (skd_isr_type != SKD_IRQ_LEGACY)
2694                 irq_flag |= PCI_IRQ_MSI;
2695         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2696         if (rc < 0) {
2697                 dev_err(&skdev->pdev->dev,
2698                         "failed to allocate the MSI interrupt %d\n", rc);
2699                 return rc;
2700         }
2701
2702         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2703                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2704                         skdev->isr_name, skdev);
2705         if (rc) {
2706                 pci_free_irq_vectors(pdev);
2707                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2708                         rc);
2709                 return rc;
2710         }
2711
2712         return 0;
2713 }
2714
2715 static void skd_release_irq(struct skd_device *skdev)
2716 {
2717         struct pci_dev *pdev = skdev->pdev;
2718
2719         if (skdev->msix_entries) {
2720                 int i;
2721
2722                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2723                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2724                                         skdev);
2725                 }
2726
2727                 kfree(skdev->msix_entries);
2728                 skdev->msix_entries = NULL;
2729         } else {
2730                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2731         }
2732
2733         pci_free_irq_vectors(pdev);
2734 }
2735
2736 /*
2737  *****************************************************************************
2738  * CONSTRUCT
2739  *****************************************************************************
2740  */
2741
2742 static int skd_cons_skcomp(struct skd_device *skdev)
2743 {
2744         int rc = 0;
2745         struct fit_completion_entry_v1 *skcomp;
2746
2747         dev_dbg(&skdev->pdev->dev,
2748                 "comp pci_alloc, total bytes %zd entries %d\n",
2749                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2750
2751         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2752                                        &skdev->cq_dma_address);
2753
2754         if (skcomp == NULL) {
2755                 rc = -ENOMEM;
2756                 goto err_out;
2757         }
2758
2759         skdev->skcomp_table = skcomp;
2760         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2761                                                            sizeof(*skcomp) *
2762                                                            SKD_N_COMPLETION_ENTRY);
2763
2764 err_out:
2765         return rc;
2766 }
2767
2768 static int skd_cons_skmsg(struct skd_device *skdev)
2769 {
2770         int rc = 0;
2771         u32 i;
2772
2773         dev_dbg(&skdev->pdev->dev,
2774                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2775                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2776                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2777
2778         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2779                                      sizeof(struct skd_fitmsg_context),
2780                                      GFP_KERNEL);
2781         if (skdev->skmsg_table == NULL) {
2782                 rc = -ENOMEM;
2783                 goto err_out;
2784         }
2785
2786         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2787                 struct skd_fitmsg_context *skmsg;
2788
2789                 skmsg = &skdev->skmsg_table[i];
2790
2791                 skmsg->id = i + SKD_ID_FIT_MSG;
2792
2793                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2794                                                       SKD_N_FITMSG_BYTES,
2795                                                       &skmsg->mb_dma_address);
2796
2797                 if (skmsg->msg_buf == NULL) {
2798                         rc = -ENOMEM;
2799                         goto err_out;
2800                 }
2801
2802                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2803                      (FIT_QCMD_ALIGN - 1),
2804                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2805                      skmsg->msg_buf, skmsg->mb_dma_address);
2806                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2807         }
2808
2809 err_out:
2810         return rc;
2811 }
2812
2813 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2814                                                   u32 n_sg,
2815                                                   dma_addr_t *ret_dma_addr)
2816 {
2817         struct fit_sg_descriptor *sg_list;
2818         u32 nbytes;
2819
2820         nbytes = sizeof(*sg_list) * n_sg;
2821
2822         sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
2823
2824         if (sg_list != NULL) {
2825                 uint64_t dma_address = *ret_dma_addr;
2826                 u32 i;
2827
2828                 memset(sg_list, 0, nbytes);
2829
2830                 for (i = 0; i < n_sg - 1; i++) {
2831                         uint64_t ndp_off;
2832                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2833
2834                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2835                 }
2836                 sg_list[i].next_desc_ptr = 0LL;
2837         }
2838
2839         return sg_list;
2840 }
2841
2842 static int skd_cons_skreq(struct skd_device *skdev)
2843 {
2844         int rc = 0;
2845         u32 i;
2846
2847         dev_dbg(&skdev->pdev->dev,
2848                 "skreq_table kcalloc, struct %lu, count %u total %lu\n",
2849                 sizeof(struct skd_request_context), skdev->num_req_context,
2850                 sizeof(struct skd_request_context) * skdev->num_req_context);
2851
2852         skdev->skreq_table = kcalloc(skdev->num_req_context,
2853                                      sizeof(struct skd_request_context),
2854                                      GFP_KERNEL);
2855         if (skdev->skreq_table == NULL) {
2856                 rc = -ENOMEM;
2857                 goto err_out;
2858         }
2859
2860         dev_dbg(&skdev->pdev->dev, "alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
2861                 skdev->sgs_per_request, sizeof(struct scatterlist),
2862                 skdev->sgs_per_request * sizeof(struct scatterlist));
2863
2864         for (i = 0; i < skdev->num_req_context; i++) {
2865                 struct skd_request_context *skreq;
2866
2867                 skreq = &skdev->skreq_table[i];
2868                 skreq->state = SKD_REQ_STATE_IDLE;
2869                 skreq->sg = kcalloc(skdev->sgs_per_request,
2870                                     sizeof(struct scatterlist), GFP_KERNEL);
2871                 if (skreq->sg == NULL) {
2872                         rc = -ENOMEM;
2873                         goto err_out;
2874                 }
2875                 sg_init_table(skreq->sg, skdev->sgs_per_request);
2876
2877                 skreq->sksg_list = skd_cons_sg_list(skdev,
2878                                                     skdev->sgs_per_request,
2879                                                     &skreq->sksg_dma_address);
2880
2881                 if (skreq->sksg_list == NULL) {
2882                         rc = -ENOMEM;
2883                         goto err_out;
2884                 }
2885         }
2886
2887 err_out:
2888         return rc;
2889 }
2890
2891 static int skd_cons_sksb(struct skd_device *skdev)
2892 {
2893         int rc = 0;
2894         struct skd_special_context *skspcl;
2895         u32 nbytes;
2896
2897         skspcl = &skdev->internal_skspcl;
2898
2899         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2900         skspcl->req.state = SKD_REQ_STATE_IDLE;
2901
2902         nbytes = SKD_N_INTERNAL_BYTES;
2903
2904         skspcl->data_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
2905                                                  &skspcl->db_dma_address);
2906         if (skspcl->data_buf == NULL) {
2907                 rc = -ENOMEM;
2908                 goto err_out;
2909         }
2910
2911         nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
2912         skspcl->msg_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
2913                                                 &skspcl->mb_dma_address);
2914         if (skspcl->msg_buf == NULL) {
2915                 rc = -ENOMEM;
2916                 goto err_out;
2917         }
2918
2919         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2920                                                  &skspcl->req.sksg_dma_address);
2921         if (skspcl->req.sksg_list == NULL) {
2922                 rc = -ENOMEM;
2923                 goto err_out;
2924         }
2925
2926         if (!skd_format_internal_skspcl(skdev)) {
2927                 rc = -EINVAL;
2928                 goto err_out;
2929         }
2930
2931 err_out:
2932         return rc;
2933 }
2934
2935 static int skd_cons_disk(struct skd_device *skdev)
2936 {
2937         int rc = 0;
2938         struct gendisk *disk;
2939         struct request_queue *q;
2940         unsigned long flags;
2941
2942         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2943         if (!disk) {
2944                 rc = -ENOMEM;
2945                 goto err_out;
2946         }
2947
2948         skdev->disk = disk;
2949         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2950
2951         disk->major = skdev->major;
2952         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2953         disk->fops = &skd_blockdev_ops;
2954         disk->private_data = skdev;
2955
2956         q = blk_init_queue(skd_request_fn, &skdev->lock);
2957         if (!q) {
2958                 rc = -ENOMEM;
2959                 goto err_out;
2960         }
2961         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2962         q->nr_requests = skd_max_queue_depth / 2;
2963         blk_queue_init_tags(q, skd_max_queue_depth, NULL, BLK_TAG_ALLOC_FIFO);
2964
2965         skdev->queue = q;
2966         disk->queue = q;
2967         q->queuedata = skdev;
2968
2969         blk_queue_write_cache(q, true, true);
2970         blk_queue_max_segments(q, skdev->sgs_per_request);
2971         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2972
2973         /* set optimal I/O size to 8KB */
2974         blk_queue_io_opt(q, 8192);
2975
2976         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2977         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2978
2979         spin_lock_irqsave(&skdev->lock, flags);
2980         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2981         blk_stop_queue(skdev->queue);
2982         spin_unlock_irqrestore(&skdev->lock, flags);
2983
2984 err_out:
2985         return rc;
2986 }
2987
2988 #define SKD_N_DEV_TABLE         16u
2989 static u32 skd_next_devno;
2990
2991 static struct skd_device *skd_construct(struct pci_dev *pdev)
2992 {
2993         struct skd_device *skdev;
2994         int blk_major = skd_major;
2995         int rc;
2996
2997         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2998
2999         if (!skdev) {
3000                 dev_err(&pdev->dev, "memory alloc failure\n");
3001                 return NULL;
3002         }
3003
3004         skdev->state = SKD_DRVR_STATE_LOAD;
3005         skdev->pdev = pdev;
3006         skdev->devno = skd_next_devno++;
3007         skdev->major = blk_major;
3008         skdev->dev_max_queue_depth = 0;
3009
3010         skdev->num_req_context = skd_max_queue_depth;
3011         skdev->num_fitmsg_context = skd_max_queue_depth;
3012         skdev->cur_max_queue_depth = 1;
3013         skdev->queue_low_water_mark = 1;
3014         skdev->proto_ver = 99;
3015         skdev->sgs_per_request = skd_sgs_per_request;
3016         skdev->dbg_level = skd_dbg_level;
3017
3018         spin_lock_init(&skdev->lock);
3019
3020         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
3021
3022         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3023         rc = skd_cons_skcomp(skdev);
3024         if (rc < 0)
3025                 goto err_out;
3026
3027         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3028         rc = skd_cons_skmsg(skdev);
3029         if (rc < 0)
3030                 goto err_out;
3031
3032         dev_dbg(&skdev->pdev->dev, "skreq\n");
3033         rc = skd_cons_skreq(skdev);
3034         if (rc < 0)
3035                 goto err_out;
3036
3037         dev_dbg(&skdev->pdev->dev, "sksb\n");
3038         rc = skd_cons_sksb(skdev);
3039         if (rc < 0)
3040                 goto err_out;
3041
3042         dev_dbg(&skdev->pdev->dev, "disk\n");
3043         rc = skd_cons_disk(skdev);
3044         if (rc < 0)
3045                 goto err_out;
3046
3047         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
3048         return skdev;
3049
3050 err_out:
3051         dev_dbg(&skdev->pdev->dev, "construct failed\n");
3052         skd_destruct(skdev);
3053         return NULL;
3054 }
3055
3056 /*
3057  *****************************************************************************
3058  * DESTRUCT (FREE)
3059  *****************************************************************************
3060  */
3061
3062 static void skd_free_skcomp(struct skd_device *skdev)
3063 {
3064         if (skdev->skcomp_table)
3065                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
3066                                     skdev->skcomp_table, skdev->cq_dma_address);
3067
3068         skdev->skcomp_table = NULL;
3069         skdev->cq_dma_address = 0;
3070 }
3071
3072 static void skd_free_skmsg(struct skd_device *skdev)
3073 {
3074         u32 i;
3075
3076         if (skdev->skmsg_table == NULL)
3077                 return;
3078
3079         for (i = 0; i < skdev->num_fitmsg_context; i++) {
3080                 struct skd_fitmsg_context *skmsg;
3081
3082                 skmsg = &skdev->skmsg_table[i];
3083
3084                 if (skmsg->msg_buf != NULL) {
3085                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
3086                                             skmsg->msg_buf,
3087                                             skmsg->mb_dma_address);
3088                 }
3089                 skmsg->msg_buf = NULL;
3090                 skmsg->mb_dma_address = 0;
3091         }
3092
3093         kfree(skdev->skmsg_table);
3094         skdev->skmsg_table = NULL;
3095 }
3096
3097 static void skd_free_sg_list(struct skd_device *skdev,
3098                              struct fit_sg_descriptor *sg_list,
3099                              u32 n_sg, dma_addr_t dma_addr)
3100 {
3101         if (sg_list != NULL) {
3102                 u32 nbytes;
3103
3104                 nbytes = sizeof(*sg_list) * n_sg;
3105
3106                 pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
3107         }
3108 }
3109
3110 static void skd_free_skreq(struct skd_device *skdev)
3111 {
3112         u32 i;
3113
3114         if (skdev->skreq_table == NULL)
3115                 return;
3116
3117         for (i = 0; i < skdev->num_req_context; i++) {
3118                 struct skd_request_context *skreq;
3119
3120                 skreq = &skdev->skreq_table[i];
3121
3122                 skd_free_sg_list(skdev, skreq->sksg_list,
3123                                  skdev->sgs_per_request,
3124                                  skreq->sksg_dma_address);
3125
3126                 skreq->sksg_list = NULL;
3127                 skreq->sksg_dma_address = 0;
3128
3129                 kfree(skreq->sg);
3130         }
3131
3132         kfree(skdev->skreq_table);
3133         skdev->skreq_table = NULL;
3134 }
3135
3136 static void skd_free_sksb(struct skd_device *skdev)
3137 {
3138         struct skd_special_context *skspcl;
3139         u32 nbytes;
3140
3141         skspcl = &skdev->internal_skspcl;
3142
3143         if (skspcl->data_buf != NULL) {
3144                 nbytes = SKD_N_INTERNAL_BYTES;
3145
3146                 pci_free_consistent(skdev->pdev, nbytes,
3147                                     skspcl->data_buf, skspcl->db_dma_address);
3148         }
3149
3150         skspcl->data_buf = NULL;
3151         skspcl->db_dma_address = 0;
3152
3153         if (skspcl->msg_buf != NULL) {
3154                 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
3155                 pci_free_consistent(skdev->pdev, nbytes,
3156                                     skspcl->msg_buf, skspcl->mb_dma_address);
3157         }
3158
3159         skspcl->msg_buf = NULL;
3160         skspcl->mb_dma_address = 0;
3161
3162         skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
3163                          skspcl->req.sksg_dma_address);
3164
3165         skspcl->req.sksg_list = NULL;
3166         skspcl->req.sksg_dma_address = 0;
3167 }
3168
3169 static void skd_free_disk(struct skd_device *skdev)
3170 {
3171         struct gendisk *disk = skdev->disk;
3172
3173         if (disk && (disk->flags & GENHD_FL_UP))
3174                 del_gendisk(disk);
3175
3176         if (skdev->queue) {
3177                 blk_cleanup_queue(skdev->queue);
3178                 skdev->queue = NULL;
3179                 disk->queue = NULL;
3180         }
3181
3182         put_disk(disk);
3183         skdev->disk = NULL;
3184 }
3185
3186 static void skd_destruct(struct skd_device *skdev)
3187 {
3188         if (skdev == NULL)
3189                 return;
3190
3191         dev_dbg(&skdev->pdev->dev, "disk\n");
3192         skd_free_disk(skdev);
3193
3194         dev_dbg(&skdev->pdev->dev, "sksb\n");
3195         skd_free_sksb(skdev);
3196
3197         dev_dbg(&skdev->pdev->dev, "skreq\n");
3198         skd_free_skreq(skdev);
3199
3200         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3201         skd_free_skmsg(skdev);
3202
3203         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3204         skd_free_skcomp(skdev);
3205
3206         dev_dbg(&skdev->pdev->dev, "skdev\n");
3207         kfree(skdev);
3208 }
3209
3210 /*
3211  *****************************************************************************
3212  * BLOCK DEVICE (BDEV) GLUE
3213  *****************************************************************************
3214  */
3215
3216 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3217 {
3218         struct skd_device *skdev;
3219         u64 capacity;
3220
3221         skdev = bdev->bd_disk->private_data;
3222
3223         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3224                 bdev->bd_disk->disk_name, current->comm);
3225
3226         if (skdev->read_cap_is_valid) {
3227                 capacity = get_capacity(skdev->disk);
3228                 geo->heads = 64;
3229                 geo->sectors = 255;
3230                 geo->cylinders = (capacity) / (255 * 64);
3231
3232                 return 0;
3233         }
3234         return -EIO;
3235 }
3236
3237 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3238 {
3239         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3240         device_add_disk(parent, skdev->disk);
3241         return 0;
3242 }
3243
3244 static const struct block_device_operations skd_blockdev_ops = {
3245         .owner          = THIS_MODULE,
3246         .getgeo         = skd_bdev_getgeo,
3247 };
3248
3249 /*
3250  *****************************************************************************
3251  * PCIe DRIVER GLUE
3252  *****************************************************************************
3253  */
3254
3255 static const struct pci_device_id skd_pci_tbl[] = {
3256         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3257           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3258         { 0 }                     /* terminate list */
3259 };
3260
3261 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3262
3263 static char *skd_pci_info(struct skd_device *skdev, char *str)
3264 {
3265         int pcie_reg;
3266
3267         strcpy(str, "PCIe (");
3268         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3269
3270         if (pcie_reg) {
3271
3272                 char lwstr[6];
3273                 uint16_t pcie_lstat, lspeed, lwidth;
3274
3275                 pcie_reg += 0x12;
3276                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3277                 lspeed = pcie_lstat & (0xF);
3278                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3279
3280                 if (lspeed == 1)
3281                         strcat(str, "2.5GT/s ");
3282                 else if (lspeed == 2)
3283                         strcat(str, "5.0GT/s ");
3284                 else
3285                         strcat(str, "<unknown> ");
3286                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3287                 strcat(str, lwstr);
3288         }
3289         return str;
3290 }
3291
3292 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3293 {
3294         int i;
3295         int rc = 0;
3296         char pci_str[32];
3297         struct skd_device *skdev;
3298
3299         dev_info(&pdev->dev, "STEC s1120 Driver(%s) version %s-b%s\n",
3300                  DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
3301         dev_info(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3302                  pdev->device);
3303
3304         rc = pci_enable_device(pdev);
3305         if (rc)
3306                 return rc;
3307         rc = pci_request_regions(pdev, DRV_NAME);
3308         if (rc)
3309                 goto err_out;
3310         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3311         if (!rc) {
3312                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3313                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3314                                 rc);
3315                 }
3316         } else {
3317                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3318                 if (rc) {
3319                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3320                         goto err_out_regions;
3321                 }
3322         }
3323
3324         if (!skd_major) {
3325                 rc = register_blkdev(0, DRV_NAME);
3326                 if (rc < 0)
3327                         goto err_out_regions;
3328                 BUG_ON(!rc);
3329                 skd_major = rc;
3330         }
3331
3332         skdev = skd_construct(pdev);
3333         if (skdev == NULL) {
3334                 rc = -ENOMEM;
3335                 goto err_out_regions;
3336         }
3337
3338         skd_pci_info(skdev, pci_str);
3339         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3340
3341         pci_set_master(pdev);
3342         rc = pci_enable_pcie_error_reporting(pdev);
3343         if (rc) {
3344                 dev_err(&pdev->dev,
3345                         "bad enable of PCIe error reporting rc=%d\n", rc);
3346                 skdev->pcie_error_reporting_is_enabled = 0;
3347         } else
3348                 skdev->pcie_error_reporting_is_enabled = 1;
3349
3350         pci_set_drvdata(pdev, skdev);
3351
3352         for (i = 0; i < SKD_MAX_BARS; i++) {
3353                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3354                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3355                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3356                                             skdev->mem_size[i]);
3357                 if (!skdev->mem_map[i]) {
3358                         dev_err(&pdev->dev,
3359                                 "Unable to map adapter memory!\n");
3360                         rc = -ENODEV;
3361                         goto err_out_iounmap;
3362                 }
3363                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3364                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3365                         skdev->mem_size[i]);
3366         }
3367
3368         rc = skd_acquire_irq(skdev);
3369         if (rc) {
3370                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3371                 goto err_out_iounmap;
3372         }
3373
3374         rc = skd_start_timer(skdev);
3375         if (rc)
3376                 goto err_out_timer;
3377
3378         init_waitqueue_head(&skdev->waitq);
3379
3380         skd_start_device(skdev);
3381
3382         rc = wait_event_interruptible_timeout(skdev->waitq,
3383                                               (skdev->gendisk_on),
3384                                               (SKD_START_WAIT_SECONDS * HZ));
3385         if (skdev->gendisk_on > 0) {
3386                 /* device came on-line after reset */
3387                 skd_bdev_attach(&pdev->dev, skdev);
3388                 rc = 0;
3389         } else {
3390                 /* we timed out, something is wrong with the device,
3391                    don't add the disk structure */
3392                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3393                         rc);
3394                 /* in case of no error; we timeout with ENXIO */
3395                 if (!rc)
3396                         rc = -ENXIO;
3397                 goto err_out_timer;
3398         }
3399
3400         return rc;
3401
3402 err_out_timer:
3403         skd_stop_device(skdev);
3404         skd_release_irq(skdev);
3405
3406 err_out_iounmap:
3407         for (i = 0; i < SKD_MAX_BARS; i++)
3408                 if (skdev->mem_map[i])
3409                         iounmap(skdev->mem_map[i]);
3410
3411         if (skdev->pcie_error_reporting_is_enabled)
3412                 pci_disable_pcie_error_reporting(pdev);
3413
3414         skd_destruct(skdev);
3415
3416 err_out_regions:
3417         pci_release_regions(pdev);
3418
3419 err_out:
3420         pci_disable_device(pdev);
3421         pci_set_drvdata(pdev, NULL);
3422         return rc;
3423 }
3424
3425 static void skd_pci_remove(struct pci_dev *pdev)
3426 {
3427         int i;
3428         struct skd_device *skdev;
3429
3430         skdev = pci_get_drvdata(pdev);
3431         if (!skdev) {
3432                 dev_err(&pdev->dev, "no device data for PCI\n");
3433                 return;
3434         }
3435         skd_stop_device(skdev);
3436         skd_release_irq(skdev);
3437
3438         for (i = 0; i < SKD_MAX_BARS; i++)
3439                 if (skdev->mem_map[i])
3440                         iounmap(skdev->mem_map[i]);
3441
3442         if (skdev->pcie_error_reporting_is_enabled)
3443                 pci_disable_pcie_error_reporting(pdev);
3444
3445         skd_destruct(skdev);
3446
3447         pci_release_regions(pdev);
3448         pci_disable_device(pdev);
3449         pci_set_drvdata(pdev, NULL);
3450
3451         return;
3452 }
3453
3454 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3455 {
3456         int i;
3457         struct skd_device *skdev;
3458
3459         skdev = pci_get_drvdata(pdev);
3460         if (!skdev) {
3461                 dev_err(&pdev->dev, "no device data for PCI\n");
3462                 return -EIO;
3463         }
3464
3465         skd_stop_device(skdev);
3466
3467         skd_release_irq(skdev);
3468
3469         for (i = 0; i < SKD_MAX_BARS; i++)
3470                 if (skdev->mem_map[i])
3471                         iounmap(skdev->mem_map[i]);
3472
3473         if (skdev->pcie_error_reporting_is_enabled)
3474                 pci_disable_pcie_error_reporting(pdev);
3475
3476         pci_release_regions(pdev);
3477         pci_save_state(pdev);
3478         pci_disable_device(pdev);
3479         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3480         return 0;
3481 }
3482
3483 static int skd_pci_resume(struct pci_dev *pdev)
3484 {
3485         int i;
3486         int rc = 0;
3487         struct skd_device *skdev;
3488
3489         skdev = pci_get_drvdata(pdev);
3490         if (!skdev) {
3491                 dev_err(&pdev->dev, "no device data for PCI\n");
3492                 return -1;
3493         }
3494
3495         pci_set_power_state(pdev, PCI_D0);
3496         pci_enable_wake(pdev, PCI_D0, 0);
3497         pci_restore_state(pdev);
3498
3499         rc = pci_enable_device(pdev);
3500         if (rc)
3501                 return rc;
3502         rc = pci_request_regions(pdev, DRV_NAME);
3503         if (rc)
3504                 goto err_out;
3505         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3506         if (!rc) {
3507                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3508
3509                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3510                                 rc);
3511                 }
3512         } else {
3513                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3514                 if (rc) {
3515
3516                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3517                         goto err_out_regions;
3518                 }
3519         }
3520
3521         pci_set_master(pdev);
3522         rc = pci_enable_pcie_error_reporting(pdev);
3523         if (rc) {
3524                 dev_err(&pdev->dev,
3525                         "bad enable of PCIe error reporting rc=%d\n", rc);
3526                 skdev->pcie_error_reporting_is_enabled = 0;
3527         } else
3528                 skdev->pcie_error_reporting_is_enabled = 1;
3529
3530         for (i = 0; i < SKD_MAX_BARS; i++) {
3531
3532                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3533                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3534                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3535                                             skdev->mem_size[i]);
3536                 if (!skdev->mem_map[i]) {
3537                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3538                         rc = -ENODEV;
3539                         goto err_out_iounmap;
3540                 }
3541                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3542                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3543                         skdev->mem_size[i]);
3544         }
3545         rc = skd_acquire_irq(skdev);
3546         if (rc) {
3547                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3548                 goto err_out_iounmap;
3549         }
3550
3551         rc = skd_start_timer(skdev);
3552         if (rc)
3553                 goto err_out_timer;
3554
3555         init_waitqueue_head(&skdev->waitq);
3556
3557         skd_start_device(skdev);
3558
3559         return rc;
3560
3561 err_out_timer:
3562         skd_stop_device(skdev);
3563         skd_release_irq(skdev);
3564
3565 err_out_iounmap:
3566         for (i = 0; i < SKD_MAX_BARS; i++)
3567                 if (skdev->mem_map[i])
3568                         iounmap(skdev->mem_map[i]);
3569
3570         if (skdev->pcie_error_reporting_is_enabled)
3571                 pci_disable_pcie_error_reporting(pdev);
3572
3573 err_out_regions:
3574         pci_release_regions(pdev);
3575
3576 err_out:
3577         pci_disable_device(pdev);
3578         return rc;
3579 }
3580
3581 static void skd_pci_shutdown(struct pci_dev *pdev)
3582 {
3583         struct skd_device *skdev;
3584
3585         dev_err(&pdev->dev, "%s called\n", __func__);
3586
3587         skdev = pci_get_drvdata(pdev);
3588         if (!skdev) {
3589                 dev_err(&pdev->dev, "no device data for PCI\n");
3590                 return;
3591         }
3592
3593         dev_err(&pdev->dev, "calling stop\n");
3594         skd_stop_device(skdev);
3595 }
3596
3597 static struct pci_driver skd_driver = {
3598         .name           = DRV_NAME,
3599         .id_table       = skd_pci_tbl,
3600         .probe          = skd_pci_probe,
3601         .remove         = skd_pci_remove,
3602         .suspend        = skd_pci_suspend,
3603         .resume         = skd_pci_resume,
3604         .shutdown       = skd_pci_shutdown,
3605 };
3606
3607 /*
3608  *****************************************************************************
3609  * LOGGING SUPPORT
3610  *****************************************************************************
3611  */
3612
3613 const char *skd_drive_state_to_str(int state)
3614 {
3615         switch (state) {
3616         case FIT_SR_DRIVE_OFFLINE:
3617                 return "OFFLINE";
3618         case FIT_SR_DRIVE_INIT:
3619                 return "INIT";
3620         case FIT_SR_DRIVE_ONLINE:
3621                 return "ONLINE";
3622         case FIT_SR_DRIVE_BUSY:
3623                 return "BUSY";
3624         case FIT_SR_DRIVE_FAULT:
3625                 return "FAULT";
3626         case FIT_SR_DRIVE_DEGRADED:
3627                 return "DEGRADED";
3628         case FIT_SR_PCIE_LINK_DOWN:
3629                 return "INK_DOWN";
3630         case FIT_SR_DRIVE_SOFT_RESET:
3631                 return "SOFT_RESET";
3632         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3633                 return "NEED_FW";
3634         case FIT_SR_DRIVE_INIT_FAULT:
3635                 return "INIT_FAULT";
3636         case FIT_SR_DRIVE_BUSY_SANITIZE:
3637                 return "BUSY_SANITIZE";
3638         case FIT_SR_DRIVE_BUSY_ERASE:
3639                 return "BUSY_ERASE";
3640         case FIT_SR_DRIVE_FW_BOOTING:
3641                 return "FW_BOOTING";
3642         default:
3643                 return "???";
3644         }
3645 }
3646
3647 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3648 {
3649         switch (state) {
3650         case SKD_DRVR_STATE_LOAD:
3651                 return "LOAD";
3652         case SKD_DRVR_STATE_IDLE:
3653                 return "IDLE";
3654         case SKD_DRVR_STATE_BUSY:
3655                 return "BUSY";
3656         case SKD_DRVR_STATE_STARTING:
3657                 return "STARTING";
3658         case SKD_DRVR_STATE_ONLINE:
3659                 return "ONLINE";
3660         case SKD_DRVR_STATE_PAUSING:
3661                 return "PAUSING";
3662         case SKD_DRVR_STATE_PAUSED:
3663                 return "PAUSED";
3664         case SKD_DRVR_STATE_DRAINING_TIMEOUT:
3665                 return "DRAINING_TIMEOUT";
3666         case SKD_DRVR_STATE_RESTARTING:
3667                 return "RESTARTING";
3668         case SKD_DRVR_STATE_RESUMING:
3669                 return "RESUMING";
3670         case SKD_DRVR_STATE_STOPPING:
3671                 return "STOPPING";
3672         case SKD_DRVR_STATE_SYNCING:
3673                 return "SYNCING";
3674         case SKD_DRVR_STATE_FAULT:
3675                 return "FAULT";
3676         case SKD_DRVR_STATE_DISAPPEARED:
3677                 return "DISAPPEARED";
3678         case SKD_DRVR_STATE_BUSY_ERASE:
3679                 return "BUSY_ERASE";
3680         case SKD_DRVR_STATE_BUSY_SANITIZE:
3681                 return "BUSY_SANITIZE";
3682         case SKD_DRVR_STATE_BUSY_IMMINENT:
3683                 return "BUSY_IMMINENT";
3684         case SKD_DRVR_STATE_WAIT_BOOT:
3685                 return "WAIT_BOOT";
3686
3687         default:
3688                 return "???";
3689         }
3690 }
3691
3692 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3693 {
3694         switch (state) {
3695         case SKD_REQ_STATE_IDLE:
3696                 return "IDLE";
3697         case SKD_REQ_STATE_SETUP:
3698                 return "SETUP";
3699         case SKD_REQ_STATE_BUSY:
3700                 return "BUSY";
3701         case SKD_REQ_STATE_COMPLETED:
3702                 return "COMPLETED";
3703         case SKD_REQ_STATE_TIMEOUT:
3704                 return "TIMEOUT";
3705         default:
3706                 return "???";
3707         }
3708 }
3709
3710 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3711 {
3712         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3713         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3714                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3715                 skd_skdev_state_to_str(skdev->state), skdev->state);
3716         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3717                 skdev->in_flight, skdev->cur_max_queue_depth,
3718                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3719         dev_dbg(&skdev->pdev->dev, "  timestamp=0x%x cycle=%d cycle_ix=%d\n",
3720                 skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
3721 }
3722
3723 static void skd_log_skreq(struct skd_device *skdev,
3724                           struct skd_request_context *skreq, const char *event)
3725 {
3726         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3727         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3728                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3729                 skreq->fitmsg_id);
3730         dev_dbg(&skdev->pdev->dev, "  timo=0x%x sg_dir=%d n_sg=%d\n",
3731                 skreq->timeout_stamp, skreq->data_dir, skreq->n_sg);
3732
3733         if (skreq->req != NULL) {
3734                 struct request *req = skreq->req;
3735                 u32 lba = (u32)blk_rq_pos(req);
3736                 u32 count = blk_rq_sectors(req);
3737
3738                 dev_dbg(&skdev->pdev->dev,
3739                         "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req,
3740                         lba, lba, count, count, (int)rq_data_dir(req));
3741         } else
3742                 dev_dbg(&skdev->pdev->dev, "req=NULL\n");
3743 }
3744
3745 /*
3746  *****************************************************************************
3747  * MODULE GLUE
3748  *****************************************************************************
3749  */
3750
3751 static int __init skd_init(void)
3752 {
3753         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3754         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3755         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3756         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3757         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3758         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3759         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3760         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3761
3762         pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
3763
3764         switch (skd_isr_type) {
3765         case SKD_IRQ_LEGACY:
3766         case SKD_IRQ_MSI:
3767         case SKD_IRQ_MSIX:
3768                 break;
3769         default:
3770                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3771                        skd_isr_type, SKD_IRQ_DEFAULT);
3772                 skd_isr_type = SKD_IRQ_DEFAULT;
3773         }
3774
3775         if (skd_max_queue_depth < 1 ||
3776             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3777                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3778                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3779                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3780         }
3781
3782         if (skd_max_req_per_msg < 1 ||
3783             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3784                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3785                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3786                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3787         }
3788
3789         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3790                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3791                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3792                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3793         }
3794
3795         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3796                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3797                        skd_dbg_level, 0);
3798                 skd_dbg_level = 0;
3799         }
3800
3801         if (skd_isr_comp_limit < 0) {
3802                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3803                        skd_isr_comp_limit, 0);
3804                 skd_isr_comp_limit = 0;
3805         }
3806
3807         return pci_register_driver(&skd_driver);
3808 }
3809
3810 static void __exit skd_exit(void)
3811 {
3812         pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
3813
3814         pci_unregister_driver(&skd_driver);
3815
3816         if (skd_major)
3817                 unregister_blkdev(skd_major, DRV_NAME);
3818 }
3819
3820 module_init(skd_init);
3821 module_exit(skd_exit);