]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/block/zram/zram_drv.c
Merge branch 'for-4.14/block' of git://git.kernel.dk/linux-block
[linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
35
36 #include "zram_drv.h"
37
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
41
42 static int zram_major;
43 static const char *default_compressor = "lzo";
44
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
47
48 static void zram_free_page(struct zram *zram, size_t index);
49
50 static inline bool init_done(struct zram *zram)
51 {
52         return zram->disksize;
53 }
54
55 static inline struct zram *dev_to_zram(struct device *dev)
56 {
57         return (struct zram *)dev_to_disk(dev)->private_data;
58 }
59
60 static unsigned long zram_get_handle(struct zram *zram, u32 index)
61 {
62         return zram->table[index].handle;
63 }
64
65 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66 {
67         zram->table[index].handle = handle;
68 }
69
70 /* flag operations require table entry bit_spin_lock() being held */
71 static int zram_test_flag(struct zram *zram, u32 index,
72                         enum zram_pageflags flag)
73 {
74         return zram->table[index].value & BIT(flag);
75 }
76
77 static void zram_set_flag(struct zram *zram, u32 index,
78                         enum zram_pageflags flag)
79 {
80         zram->table[index].value |= BIT(flag);
81 }
82
83 static void zram_clear_flag(struct zram *zram, u32 index,
84                         enum zram_pageflags flag)
85 {
86         zram->table[index].value &= ~BIT(flag);
87 }
88
89 static inline void zram_set_element(struct zram *zram, u32 index,
90                         unsigned long element)
91 {
92         zram->table[index].element = element;
93 }
94
95 static unsigned long zram_get_element(struct zram *zram, u32 index)
96 {
97         return zram->table[index].element;
98 }
99
100 static size_t zram_get_obj_size(struct zram *zram, u32 index)
101 {
102         return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
103 }
104
105 static void zram_set_obj_size(struct zram *zram,
106                                         u32 index, size_t size)
107 {
108         unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
109
110         zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
111 }
112
113 #if PAGE_SIZE != 4096
114 static inline bool is_partial_io(struct bio_vec *bvec)
115 {
116         return bvec->bv_len != PAGE_SIZE;
117 }
118 #else
119 static inline bool is_partial_io(struct bio_vec *bvec)
120 {
121         return false;
122 }
123 #endif
124
125 static void zram_revalidate_disk(struct zram *zram)
126 {
127         revalidate_disk(zram->disk);
128         /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
129         zram->disk->queue->backing_dev_info->capabilities |=
130                 BDI_CAP_STABLE_WRITES;
131 }
132
133 /*
134  * Check if request is within bounds and aligned on zram logical blocks.
135  */
136 static inline bool valid_io_request(struct zram *zram,
137                 sector_t start, unsigned int size)
138 {
139         u64 end, bound;
140
141         /* unaligned request */
142         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
143                 return false;
144         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
145                 return false;
146
147         end = start + (size >> SECTOR_SHIFT);
148         bound = zram->disksize >> SECTOR_SHIFT;
149         /* out of range range */
150         if (unlikely(start >= bound || end > bound || start > end))
151                 return false;
152
153         /* I/O request is valid */
154         return true;
155 }
156
157 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158 {
159         *index  += (*offset + bvec->bv_len) / PAGE_SIZE;
160         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161 }
162
163 static inline void update_used_max(struct zram *zram,
164                                         const unsigned long pages)
165 {
166         unsigned long old_max, cur_max;
167
168         old_max = atomic_long_read(&zram->stats.max_used_pages);
169
170         do {
171                 cur_max = old_max;
172                 if (pages > cur_max)
173                         old_max = atomic_long_cmpxchg(
174                                 &zram->stats.max_used_pages, cur_max, pages);
175         } while (old_max != cur_max);
176 }
177
178 static inline void zram_fill_page(char *ptr, unsigned long len,
179                                         unsigned long value)
180 {
181         int i;
182         unsigned long *page = (unsigned long *)ptr;
183
184         WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
185
186         if (likely(value == 0)) {
187                 memset(ptr, 0, len);
188         } else {
189                 for (i = 0; i < len / sizeof(*page); i++)
190                         page[i] = value;
191         }
192 }
193
194 static bool page_same_filled(void *ptr, unsigned long *element)
195 {
196         unsigned int pos;
197         unsigned long *page;
198         unsigned long val;
199
200         page = (unsigned long *)ptr;
201         val = page[0];
202
203         for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
204                 if (val != page[pos])
205                         return false;
206         }
207
208         *element = val;
209
210         return true;
211 }
212
213 static ssize_t initstate_show(struct device *dev,
214                 struct device_attribute *attr, char *buf)
215 {
216         u32 val;
217         struct zram *zram = dev_to_zram(dev);
218
219         down_read(&zram->init_lock);
220         val = init_done(zram);
221         up_read(&zram->init_lock);
222
223         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
224 }
225
226 static ssize_t disksize_show(struct device *dev,
227                 struct device_attribute *attr, char *buf)
228 {
229         struct zram *zram = dev_to_zram(dev);
230
231         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
232 }
233
234 static ssize_t mem_limit_store(struct device *dev,
235                 struct device_attribute *attr, const char *buf, size_t len)
236 {
237         u64 limit;
238         char *tmp;
239         struct zram *zram = dev_to_zram(dev);
240
241         limit = memparse(buf, &tmp);
242         if (buf == tmp) /* no chars parsed, invalid input */
243                 return -EINVAL;
244
245         down_write(&zram->init_lock);
246         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
247         up_write(&zram->init_lock);
248
249         return len;
250 }
251
252 static ssize_t mem_used_max_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         int err;
256         unsigned long val;
257         struct zram *zram = dev_to_zram(dev);
258
259         err = kstrtoul(buf, 10, &val);
260         if (err || val != 0)
261                 return -EINVAL;
262
263         down_read(&zram->init_lock);
264         if (init_done(zram)) {
265                 atomic_long_set(&zram->stats.max_used_pages,
266                                 zs_get_total_pages(zram->mem_pool));
267         }
268         up_read(&zram->init_lock);
269
270         return len;
271 }
272
273 #ifdef CONFIG_ZRAM_WRITEBACK
274 static bool zram_wb_enabled(struct zram *zram)
275 {
276         return zram->backing_dev;
277 }
278
279 static void reset_bdev(struct zram *zram)
280 {
281         struct block_device *bdev;
282
283         if (!zram_wb_enabled(zram))
284                 return;
285
286         bdev = zram->bdev;
287         if (zram->old_block_size)
288                 set_blocksize(bdev, zram->old_block_size);
289         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
290         /* hope filp_close flush all of IO */
291         filp_close(zram->backing_dev, NULL);
292         zram->backing_dev = NULL;
293         zram->old_block_size = 0;
294         zram->bdev = NULL;
295
296         kvfree(zram->bitmap);
297         zram->bitmap = NULL;
298 }
299
300 static ssize_t backing_dev_show(struct device *dev,
301                 struct device_attribute *attr, char *buf)
302 {
303         struct zram *zram = dev_to_zram(dev);
304         struct file *file = zram->backing_dev;
305         char *p;
306         ssize_t ret;
307
308         down_read(&zram->init_lock);
309         if (!zram_wb_enabled(zram)) {
310                 memcpy(buf, "none\n", 5);
311                 up_read(&zram->init_lock);
312                 return 5;
313         }
314
315         p = file_path(file, buf, PAGE_SIZE - 1);
316         if (IS_ERR(p)) {
317                 ret = PTR_ERR(p);
318                 goto out;
319         }
320
321         ret = strlen(p);
322         memmove(buf, p, ret);
323         buf[ret++] = '\n';
324 out:
325         up_read(&zram->init_lock);
326         return ret;
327 }
328
329 static ssize_t backing_dev_store(struct device *dev,
330                 struct device_attribute *attr, const char *buf, size_t len)
331 {
332         char *file_name;
333         struct file *backing_dev = NULL;
334         struct inode *inode;
335         struct address_space *mapping;
336         unsigned int bitmap_sz, old_block_size = 0;
337         unsigned long nr_pages, *bitmap = NULL;
338         struct block_device *bdev = NULL;
339         int err;
340         struct zram *zram = dev_to_zram(dev);
341
342         file_name = kmalloc(PATH_MAX, GFP_KERNEL);
343         if (!file_name)
344                 return -ENOMEM;
345
346         down_write(&zram->init_lock);
347         if (init_done(zram)) {
348                 pr_info("Can't setup backing device for initialized device\n");
349                 err = -EBUSY;
350                 goto out;
351         }
352
353         strlcpy(file_name, buf, len);
354
355         backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
356         if (IS_ERR(backing_dev)) {
357                 err = PTR_ERR(backing_dev);
358                 backing_dev = NULL;
359                 goto out;
360         }
361
362         mapping = backing_dev->f_mapping;
363         inode = mapping->host;
364
365         /* Support only block device in this moment */
366         if (!S_ISBLK(inode->i_mode)) {
367                 err = -ENOTBLK;
368                 goto out;
369         }
370
371         bdev = bdgrab(I_BDEV(inode));
372         err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
373         if (err < 0)
374                 goto out;
375
376         nr_pages = i_size_read(inode) >> PAGE_SHIFT;
377         bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
378         bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
379         if (!bitmap) {
380                 err = -ENOMEM;
381                 goto out;
382         }
383
384         old_block_size = block_size(bdev);
385         err = set_blocksize(bdev, PAGE_SIZE);
386         if (err)
387                 goto out;
388
389         reset_bdev(zram);
390         spin_lock_init(&zram->bitmap_lock);
391
392         zram->old_block_size = old_block_size;
393         zram->bdev = bdev;
394         zram->backing_dev = backing_dev;
395         zram->bitmap = bitmap;
396         zram->nr_pages = nr_pages;
397         up_write(&zram->init_lock);
398
399         pr_info("setup backing device %s\n", file_name);
400         kfree(file_name);
401
402         return len;
403 out:
404         if (bitmap)
405                 kvfree(bitmap);
406
407         if (bdev)
408                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
409
410         if (backing_dev)
411                 filp_close(backing_dev, NULL);
412
413         up_write(&zram->init_lock);
414
415         kfree(file_name);
416
417         return err;
418 }
419
420 static unsigned long get_entry_bdev(struct zram *zram)
421 {
422         unsigned long entry;
423
424         spin_lock(&zram->bitmap_lock);
425         /* skip 0 bit to confuse zram.handle = 0 */
426         entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
427         if (entry == zram->nr_pages) {
428                 spin_unlock(&zram->bitmap_lock);
429                 return 0;
430         }
431
432         set_bit(entry, zram->bitmap);
433         spin_unlock(&zram->bitmap_lock);
434
435         return entry;
436 }
437
438 static void put_entry_bdev(struct zram *zram, unsigned long entry)
439 {
440         int was_set;
441
442         spin_lock(&zram->bitmap_lock);
443         was_set = test_and_clear_bit(entry, zram->bitmap);
444         spin_unlock(&zram->bitmap_lock);
445         WARN_ON_ONCE(!was_set);
446 }
447
448 void zram_page_end_io(struct bio *bio)
449 {
450         struct page *page = bio->bi_io_vec[0].bv_page;
451
452         page_endio(page, op_is_write(bio_op(bio)),
453                         blk_status_to_errno(bio->bi_status));
454         bio_put(bio);
455 }
456
457 /*
458  * Returns 1 if the submission is successful.
459  */
460 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
461                         unsigned long entry, struct bio *parent)
462 {
463         struct bio *bio;
464
465         bio = bio_alloc(GFP_ATOMIC, 1);
466         if (!bio)
467                 return -ENOMEM;
468
469         bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
470         bio_set_dev(bio, zram->bdev);
471         if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
472                 bio_put(bio);
473                 return -EIO;
474         }
475
476         if (!parent) {
477                 bio->bi_opf = REQ_OP_READ;
478                 bio->bi_end_io = zram_page_end_io;
479         } else {
480                 bio->bi_opf = parent->bi_opf;
481                 bio_chain(bio, parent);
482         }
483
484         submit_bio(bio);
485         return 1;
486 }
487
488 struct zram_work {
489         struct work_struct work;
490         struct zram *zram;
491         unsigned long entry;
492         struct bio *bio;
493 };
494
495 #if PAGE_SIZE != 4096
496 static void zram_sync_read(struct work_struct *work)
497 {
498         struct bio_vec bvec;
499         struct zram_work *zw = container_of(work, struct zram_work, work);
500         struct zram *zram = zw->zram;
501         unsigned long entry = zw->entry;
502         struct bio *bio = zw->bio;
503
504         read_from_bdev_async(zram, &bvec, entry, bio);
505 }
506
507 /*
508  * Block layer want one ->make_request_fn to be active at a time
509  * so if we use chained IO with parent IO in same context,
510  * it's a deadlock. To avoid, it, it uses worker thread context.
511  */
512 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
513                                 unsigned long entry, struct bio *bio)
514 {
515         struct zram_work work;
516
517         work.zram = zram;
518         work.entry = entry;
519         work.bio = bio;
520
521         INIT_WORK_ONSTACK(&work.work, zram_sync_read);
522         queue_work(system_unbound_wq, &work.work);
523         flush_work(&work.work);
524         destroy_work_on_stack(&work.work);
525
526         return 1;
527 }
528 #else
529 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
530                                 unsigned long entry, struct bio *bio)
531 {
532         WARN_ON(1);
533         return -EIO;
534 }
535 #endif
536
537 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
538                         unsigned long entry, struct bio *parent, bool sync)
539 {
540         if (sync)
541                 return read_from_bdev_sync(zram, bvec, entry, parent);
542         else
543                 return read_from_bdev_async(zram, bvec, entry, parent);
544 }
545
546 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
547                                         u32 index, struct bio *parent,
548                                         unsigned long *pentry)
549 {
550         struct bio *bio;
551         unsigned long entry;
552
553         bio = bio_alloc(GFP_ATOMIC, 1);
554         if (!bio)
555                 return -ENOMEM;
556
557         entry = get_entry_bdev(zram);
558         if (!entry) {
559                 bio_put(bio);
560                 return -ENOSPC;
561         }
562
563         bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
564         bio_set_dev(bio, zram->bdev);
565         if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
566                                         bvec->bv_offset)) {
567                 bio_put(bio);
568                 put_entry_bdev(zram, entry);
569                 return -EIO;
570         }
571
572         if (!parent) {
573                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
574                 bio->bi_end_io = zram_page_end_io;
575         } else {
576                 bio->bi_opf = parent->bi_opf;
577                 bio_chain(bio, parent);
578         }
579
580         submit_bio(bio);
581         *pentry = entry;
582
583         return 0;
584 }
585
586 static void zram_wb_clear(struct zram *zram, u32 index)
587 {
588         unsigned long entry;
589
590         zram_clear_flag(zram, index, ZRAM_WB);
591         entry = zram_get_element(zram, index);
592         zram_set_element(zram, index, 0);
593         put_entry_bdev(zram, entry);
594 }
595
596 #else
597 static bool zram_wb_enabled(struct zram *zram) { return false; }
598 static inline void reset_bdev(struct zram *zram) {};
599 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
600                                         u32 index, struct bio *parent,
601                                         unsigned long *pentry)
602
603 {
604         return -EIO;
605 }
606
607 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
608                         unsigned long entry, struct bio *parent, bool sync)
609 {
610         return -EIO;
611 }
612 static void zram_wb_clear(struct zram *zram, u32 index) {}
613 #endif
614
615
616 /*
617  * We switched to per-cpu streams and this attr is not needed anymore.
618  * However, we will keep it around for some time, because:
619  * a) we may revert per-cpu streams in the future
620  * b) it's visible to user space and we need to follow our 2 years
621  *    retirement rule; but we already have a number of 'soon to be
622  *    altered' attrs, so max_comp_streams need to wait for the next
623  *    layoff cycle.
624  */
625 static ssize_t max_comp_streams_show(struct device *dev,
626                 struct device_attribute *attr, char *buf)
627 {
628         return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
629 }
630
631 static ssize_t max_comp_streams_store(struct device *dev,
632                 struct device_attribute *attr, const char *buf, size_t len)
633 {
634         return len;
635 }
636
637 static ssize_t comp_algorithm_show(struct device *dev,
638                 struct device_attribute *attr, char *buf)
639 {
640         size_t sz;
641         struct zram *zram = dev_to_zram(dev);
642
643         down_read(&zram->init_lock);
644         sz = zcomp_available_show(zram->compressor, buf);
645         up_read(&zram->init_lock);
646
647         return sz;
648 }
649
650 static ssize_t comp_algorithm_store(struct device *dev,
651                 struct device_attribute *attr, const char *buf, size_t len)
652 {
653         struct zram *zram = dev_to_zram(dev);
654         char compressor[ARRAY_SIZE(zram->compressor)];
655         size_t sz;
656
657         strlcpy(compressor, buf, sizeof(compressor));
658         /* ignore trailing newline */
659         sz = strlen(compressor);
660         if (sz > 0 && compressor[sz - 1] == '\n')
661                 compressor[sz - 1] = 0x00;
662
663         if (!zcomp_available_algorithm(compressor))
664                 return -EINVAL;
665
666         down_write(&zram->init_lock);
667         if (init_done(zram)) {
668                 up_write(&zram->init_lock);
669                 pr_info("Can't change algorithm for initialized device\n");
670                 return -EBUSY;
671         }
672
673         strcpy(zram->compressor, compressor);
674         up_write(&zram->init_lock);
675         return len;
676 }
677
678 static ssize_t compact_store(struct device *dev,
679                 struct device_attribute *attr, const char *buf, size_t len)
680 {
681         struct zram *zram = dev_to_zram(dev);
682
683         down_read(&zram->init_lock);
684         if (!init_done(zram)) {
685                 up_read(&zram->init_lock);
686                 return -EINVAL;
687         }
688
689         zs_compact(zram->mem_pool);
690         up_read(&zram->init_lock);
691
692         return len;
693 }
694
695 static ssize_t io_stat_show(struct device *dev,
696                 struct device_attribute *attr, char *buf)
697 {
698         struct zram *zram = dev_to_zram(dev);
699         ssize_t ret;
700
701         down_read(&zram->init_lock);
702         ret = scnprintf(buf, PAGE_SIZE,
703                         "%8llu %8llu %8llu %8llu\n",
704                         (u64)atomic64_read(&zram->stats.failed_reads),
705                         (u64)atomic64_read(&zram->stats.failed_writes),
706                         (u64)atomic64_read(&zram->stats.invalid_io),
707                         (u64)atomic64_read(&zram->stats.notify_free));
708         up_read(&zram->init_lock);
709
710         return ret;
711 }
712
713 static ssize_t mm_stat_show(struct device *dev,
714                 struct device_attribute *attr, char *buf)
715 {
716         struct zram *zram = dev_to_zram(dev);
717         struct zs_pool_stats pool_stats;
718         u64 orig_size, mem_used = 0;
719         long max_used;
720         ssize_t ret;
721
722         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
723
724         down_read(&zram->init_lock);
725         if (init_done(zram)) {
726                 mem_used = zs_get_total_pages(zram->mem_pool);
727                 zs_pool_stats(zram->mem_pool, &pool_stats);
728         }
729
730         orig_size = atomic64_read(&zram->stats.pages_stored);
731         max_used = atomic_long_read(&zram->stats.max_used_pages);
732
733         ret = scnprintf(buf, PAGE_SIZE,
734                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
735                         orig_size << PAGE_SHIFT,
736                         (u64)atomic64_read(&zram->stats.compr_data_size),
737                         mem_used << PAGE_SHIFT,
738                         zram->limit_pages << PAGE_SHIFT,
739                         max_used << PAGE_SHIFT,
740                         (u64)atomic64_read(&zram->stats.same_pages),
741                         pool_stats.pages_compacted);
742         up_read(&zram->init_lock);
743
744         return ret;
745 }
746
747 static ssize_t debug_stat_show(struct device *dev,
748                 struct device_attribute *attr, char *buf)
749 {
750         int version = 1;
751         struct zram *zram = dev_to_zram(dev);
752         ssize_t ret;
753
754         down_read(&zram->init_lock);
755         ret = scnprintf(buf, PAGE_SIZE,
756                         "version: %d\n%8llu\n",
757                         version,
758                         (u64)atomic64_read(&zram->stats.writestall));
759         up_read(&zram->init_lock);
760
761         return ret;
762 }
763
764 static DEVICE_ATTR_RO(io_stat);
765 static DEVICE_ATTR_RO(mm_stat);
766 static DEVICE_ATTR_RO(debug_stat);
767
768 static void zram_slot_lock(struct zram *zram, u32 index)
769 {
770         bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
771 }
772
773 static void zram_slot_unlock(struct zram *zram, u32 index)
774 {
775         bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
776 }
777
778 static bool zram_same_page_read(struct zram *zram, u32 index,
779                                 struct page *page,
780                                 unsigned int offset, unsigned int len)
781 {
782         zram_slot_lock(zram, index);
783         if (unlikely(!zram_get_handle(zram, index) ||
784                         zram_test_flag(zram, index, ZRAM_SAME))) {
785                 void *mem;
786
787                 zram_slot_unlock(zram, index);
788                 mem = kmap_atomic(page);
789                 zram_fill_page(mem + offset, len,
790                                         zram_get_element(zram, index));
791                 kunmap_atomic(mem);
792                 return true;
793         }
794         zram_slot_unlock(zram, index);
795
796         return false;
797 }
798
799 static void zram_meta_free(struct zram *zram, u64 disksize)
800 {
801         size_t num_pages = disksize >> PAGE_SHIFT;
802         size_t index;
803
804         /* Free all pages that are still in this zram device */
805         for (index = 0; index < num_pages; index++)
806                 zram_free_page(zram, index);
807
808         zs_destroy_pool(zram->mem_pool);
809         vfree(zram->table);
810 }
811
812 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
813 {
814         size_t num_pages;
815
816         num_pages = disksize >> PAGE_SHIFT;
817         zram->table = vzalloc(num_pages * sizeof(*zram->table));
818         if (!zram->table)
819                 return false;
820
821         zram->mem_pool = zs_create_pool(zram->disk->disk_name);
822         if (!zram->mem_pool) {
823                 vfree(zram->table);
824                 return false;
825         }
826
827         return true;
828 }
829
830 /*
831  * To protect concurrent access to the same index entry,
832  * caller should hold this table index entry's bit_spinlock to
833  * indicate this index entry is accessing.
834  */
835 static void zram_free_page(struct zram *zram, size_t index)
836 {
837         unsigned long handle;
838
839         if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
840                 zram_wb_clear(zram, index);
841                 atomic64_dec(&zram->stats.pages_stored);
842                 return;
843         }
844
845         /*
846          * No memory is allocated for same element filled pages.
847          * Simply clear same page flag.
848          */
849         if (zram_test_flag(zram, index, ZRAM_SAME)) {
850                 zram_clear_flag(zram, index, ZRAM_SAME);
851                 zram_set_element(zram, index, 0);
852                 atomic64_dec(&zram->stats.same_pages);
853                 atomic64_dec(&zram->stats.pages_stored);
854                 return;
855         }
856
857         handle = zram_get_handle(zram, index);
858         if (!handle)
859                 return;
860
861         zs_free(zram->mem_pool, handle);
862
863         atomic64_sub(zram_get_obj_size(zram, index),
864                         &zram->stats.compr_data_size);
865         atomic64_dec(&zram->stats.pages_stored);
866
867         zram_set_handle(zram, index, 0);
868         zram_set_obj_size(zram, index, 0);
869 }
870
871 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
872                                 struct bio *bio, bool partial_io)
873 {
874         int ret;
875         unsigned long handle;
876         unsigned int size;
877         void *src, *dst;
878
879         if (zram_wb_enabled(zram)) {
880                 zram_slot_lock(zram, index);
881                 if (zram_test_flag(zram, index, ZRAM_WB)) {
882                         struct bio_vec bvec;
883
884                         zram_slot_unlock(zram, index);
885
886                         bvec.bv_page = page;
887                         bvec.bv_len = PAGE_SIZE;
888                         bvec.bv_offset = 0;
889                         return read_from_bdev(zram, &bvec,
890                                         zram_get_element(zram, index),
891                                         bio, partial_io);
892                 }
893                 zram_slot_unlock(zram, index);
894         }
895
896         if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
897                 return 0;
898
899         zram_slot_lock(zram, index);
900         handle = zram_get_handle(zram, index);
901         size = zram_get_obj_size(zram, index);
902
903         src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
904         if (size == PAGE_SIZE) {
905                 dst = kmap_atomic(page);
906                 memcpy(dst, src, PAGE_SIZE);
907                 kunmap_atomic(dst);
908                 ret = 0;
909         } else {
910                 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
911
912                 dst = kmap_atomic(page);
913                 ret = zcomp_decompress(zstrm, src, size, dst);
914                 kunmap_atomic(dst);
915                 zcomp_stream_put(zram->comp);
916         }
917         zs_unmap_object(zram->mem_pool, handle);
918         zram_slot_unlock(zram, index);
919
920         /* Should NEVER happen. Return bio error if it does. */
921         if (unlikely(ret))
922                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
923
924         return ret;
925 }
926
927 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
928                                 u32 index, int offset, struct bio *bio)
929 {
930         int ret;
931         struct page *page;
932
933         page = bvec->bv_page;
934         if (is_partial_io(bvec)) {
935                 /* Use a temporary buffer to decompress the page */
936                 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
937                 if (!page)
938                         return -ENOMEM;
939         }
940
941         ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
942         if (unlikely(ret))
943                 goto out;
944
945         if (is_partial_io(bvec)) {
946                 void *dst = kmap_atomic(bvec->bv_page);
947                 void *src = kmap_atomic(page);
948
949                 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
950                 kunmap_atomic(src);
951                 kunmap_atomic(dst);
952         }
953 out:
954         if (is_partial_io(bvec))
955                 __free_page(page);
956
957         return ret;
958 }
959
960 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
961                                 u32 index, struct bio *bio)
962 {
963         int ret = 0;
964         unsigned long alloced_pages;
965         unsigned long handle = 0;
966         unsigned int comp_len = 0;
967         void *src, *dst, *mem;
968         struct zcomp_strm *zstrm;
969         struct page *page = bvec->bv_page;
970         unsigned long element = 0;
971         enum zram_pageflags flags = 0;
972         bool allow_wb = true;
973
974         mem = kmap_atomic(page);
975         if (page_same_filled(mem, &element)) {
976                 kunmap_atomic(mem);
977                 /* Free memory associated with this sector now. */
978                 flags = ZRAM_SAME;
979                 atomic64_inc(&zram->stats.same_pages);
980                 goto out;
981         }
982         kunmap_atomic(mem);
983
984 compress_again:
985         zstrm = zcomp_stream_get(zram->comp);
986         src = kmap_atomic(page);
987         ret = zcomp_compress(zstrm, src, &comp_len);
988         kunmap_atomic(src);
989
990         if (unlikely(ret)) {
991                 zcomp_stream_put(zram->comp);
992                 pr_err("Compression failed! err=%d\n", ret);
993                 zs_free(zram->mem_pool, handle);
994                 return ret;
995         }
996
997         if (unlikely(comp_len > max_zpage_size)) {
998                 if (zram_wb_enabled(zram) && allow_wb) {
999                         zcomp_stream_put(zram->comp);
1000                         ret = write_to_bdev(zram, bvec, index, bio, &element);
1001                         if (!ret) {
1002                                 flags = ZRAM_WB;
1003                                 ret = 1;
1004                                 goto out;
1005                         }
1006                         allow_wb = false;
1007                         goto compress_again;
1008                 }
1009                 comp_len = PAGE_SIZE;
1010         }
1011
1012         /*
1013          * handle allocation has 2 paths:
1014          * a) fast path is executed with preemption disabled (for
1015          *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1016          *  since we can't sleep;
1017          * b) slow path enables preemption and attempts to allocate
1018          *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1019          *  put per-cpu compression stream and, thus, to re-do
1020          *  the compression once handle is allocated.
1021          *
1022          * if we have a 'non-null' handle here then we are coming
1023          * from the slow path and handle has already been allocated.
1024          */
1025         if (!handle)
1026                 handle = zs_malloc(zram->mem_pool, comp_len,
1027                                 __GFP_KSWAPD_RECLAIM |
1028                                 __GFP_NOWARN |
1029                                 __GFP_HIGHMEM |
1030                                 __GFP_MOVABLE);
1031         if (!handle) {
1032                 zcomp_stream_put(zram->comp);
1033                 atomic64_inc(&zram->stats.writestall);
1034                 handle = zs_malloc(zram->mem_pool, comp_len,
1035                                 GFP_NOIO | __GFP_HIGHMEM |
1036                                 __GFP_MOVABLE);
1037                 if (handle)
1038                         goto compress_again;
1039                 return -ENOMEM;
1040         }
1041
1042         alloced_pages = zs_get_total_pages(zram->mem_pool);
1043         update_used_max(zram, alloced_pages);
1044
1045         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1046                 zcomp_stream_put(zram->comp);
1047                 zs_free(zram->mem_pool, handle);
1048                 return -ENOMEM;
1049         }
1050
1051         dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1052
1053         src = zstrm->buffer;
1054         if (comp_len == PAGE_SIZE)
1055                 src = kmap_atomic(page);
1056         memcpy(dst, src, comp_len);
1057         if (comp_len == PAGE_SIZE)
1058                 kunmap_atomic(src);
1059
1060         zcomp_stream_put(zram->comp);
1061         zs_unmap_object(zram->mem_pool, handle);
1062         atomic64_add(comp_len, &zram->stats.compr_data_size);
1063 out:
1064         /*
1065          * Free memory associated with this sector
1066          * before overwriting unused sectors.
1067          */
1068         zram_slot_lock(zram, index);
1069         zram_free_page(zram, index);
1070
1071         if (flags) {
1072                 zram_set_flag(zram, index, flags);
1073                 zram_set_element(zram, index, element);
1074         }  else {
1075                 zram_set_handle(zram, index, handle);
1076                 zram_set_obj_size(zram, index, comp_len);
1077         }
1078         zram_slot_unlock(zram, index);
1079
1080         /* Update stats */
1081         atomic64_inc(&zram->stats.pages_stored);
1082         return ret;
1083 }
1084
1085 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1086                                 u32 index, int offset, struct bio *bio)
1087 {
1088         int ret;
1089         struct page *page = NULL;
1090         void *src;
1091         struct bio_vec vec;
1092
1093         vec = *bvec;
1094         if (is_partial_io(bvec)) {
1095                 void *dst;
1096                 /*
1097                  * This is a partial IO. We need to read the full page
1098                  * before to write the changes.
1099                  */
1100                 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1101                 if (!page)
1102                         return -ENOMEM;
1103
1104                 ret = __zram_bvec_read(zram, page, index, bio, true);
1105                 if (ret)
1106                         goto out;
1107
1108                 src = kmap_atomic(bvec->bv_page);
1109                 dst = kmap_atomic(page);
1110                 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1111                 kunmap_atomic(dst);
1112                 kunmap_atomic(src);
1113
1114                 vec.bv_page = page;
1115                 vec.bv_len = PAGE_SIZE;
1116                 vec.bv_offset = 0;
1117         }
1118
1119         ret = __zram_bvec_write(zram, &vec, index, bio);
1120 out:
1121         if (is_partial_io(bvec))
1122                 __free_page(page);
1123         return ret;
1124 }
1125
1126 /*
1127  * zram_bio_discard - handler on discard request
1128  * @index: physical block index in PAGE_SIZE units
1129  * @offset: byte offset within physical block
1130  */
1131 static void zram_bio_discard(struct zram *zram, u32 index,
1132                              int offset, struct bio *bio)
1133 {
1134         size_t n = bio->bi_iter.bi_size;
1135
1136         /*
1137          * zram manages data in physical block size units. Because logical block
1138          * size isn't identical with physical block size on some arch, we
1139          * could get a discard request pointing to a specific offset within a
1140          * certain physical block.  Although we can handle this request by
1141          * reading that physiclal block and decompressing and partially zeroing
1142          * and re-compressing and then re-storing it, this isn't reasonable
1143          * because our intent with a discard request is to save memory.  So
1144          * skipping this logical block is appropriate here.
1145          */
1146         if (offset) {
1147                 if (n <= (PAGE_SIZE - offset))
1148                         return;
1149
1150                 n -= (PAGE_SIZE - offset);
1151                 index++;
1152         }
1153
1154         while (n >= PAGE_SIZE) {
1155                 zram_slot_lock(zram, index);
1156                 zram_free_page(zram, index);
1157                 zram_slot_unlock(zram, index);
1158                 atomic64_inc(&zram->stats.notify_free);
1159                 index++;
1160                 n -= PAGE_SIZE;
1161         }
1162 }
1163
1164 /*
1165  * Returns errno if it has some problem. Otherwise return 0 or 1.
1166  * Returns 0 if IO request was done synchronously
1167  * Returns 1 if IO request was successfully submitted.
1168  */
1169 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1170                         int offset, bool is_write, struct bio *bio)
1171 {
1172         unsigned long start_time = jiffies;
1173         int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
1174         struct request_queue *q = zram->disk->queue;
1175         int ret;
1176
1177         generic_start_io_acct(q, rw_acct, bvec->bv_len >> SECTOR_SHIFT,
1178                         &zram->disk->part0);
1179
1180         if (!is_write) {
1181                 atomic64_inc(&zram->stats.num_reads);
1182                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1183                 flush_dcache_page(bvec->bv_page);
1184         } else {
1185                 atomic64_inc(&zram->stats.num_writes);
1186                 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1187         }
1188
1189         generic_end_io_acct(q, rw_acct, &zram->disk->part0, start_time);
1190
1191         if (unlikely(ret < 0)) {
1192                 if (!is_write)
1193                         atomic64_inc(&zram->stats.failed_reads);
1194                 else
1195                         atomic64_inc(&zram->stats.failed_writes);
1196         }
1197
1198         return ret;
1199 }
1200
1201 static void __zram_make_request(struct zram *zram, struct bio *bio)
1202 {
1203         int offset;
1204         u32 index;
1205         struct bio_vec bvec;
1206         struct bvec_iter iter;
1207
1208         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1209         offset = (bio->bi_iter.bi_sector &
1210                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1211
1212         switch (bio_op(bio)) {
1213         case REQ_OP_DISCARD:
1214         case REQ_OP_WRITE_ZEROES:
1215                 zram_bio_discard(zram, index, offset, bio);
1216                 bio_endio(bio);
1217                 return;
1218         default:
1219                 break;
1220         }
1221
1222         bio_for_each_segment(bvec, bio, iter) {
1223                 struct bio_vec bv = bvec;
1224                 unsigned int unwritten = bvec.bv_len;
1225
1226                 do {
1227                         bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1228                                                         unwritten);
1229                         if (zram_bvec_rw(zram, &bv, index, offset,
1230                                         op_is_write(bio_op(bio)), bio) < 0)
1231                                 goto out;
1232
1233                         bv.bv_offset += bv.bv_len;
1234                         unwritten -= bv.bv_len;
1235
1236                         update_position(&index, &offset, &bv);
1237                 } while (unwritten);
1238         }
1239
1240         bio_endio(bio);
1241         return;
1242
1243 out:
1244         bio_io_error(bio);
1245 }
1246
1247 /*
1248  * Handler function for all zram I/O requests.
1249  */
1250 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1251 {
1252         struct zram *zram = queue->queuedata;
1253
1254         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1255                                         bio->bi_iter.bi_size)) {
1256                 atomic64_inc(&zram->stats.invalid_io);
1257                 goto error;
1258         }
1259
1260         __zram_make_request(zram, bio);
1261         return BLK_QC_T_NONE;
1262
1263 error:
1264         bio_io_error(bio);
1265         return BLK_QC_T_NONE;
1266 }
1267
1268 static void zram_slot_free_notify(struct block_device *bdev,
1269                                 unsigned long index)
1270 {
1271         struct zram *zram;
1272
1273         zram = bdev->bd_disk->private_data;
1274
1275         zram_slot_lock(zram, index);
1276         zram_free_page(zram, index);
1277         zram_slot_unlock(zram, index);
1278         atomic64_inc(&zram->stats.notify_free);
1279 }
1280
1281 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1282                        struct page *page, bool is_write)
1283 {
1284         int offset, ret;
1285         u32 index;
1286         struct zram *zram;
1287         struct bio_vec bv;
1288
1289         if (PageTransHuge(page))
1290                 return -ENOTSUPP;
1291         zram = bdev->bd_disk->private_data;
1292
1293         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1294                 atomic64_inc(&zram->stats.invalid_io);
1295                 ret = -EINVAL;
1296                 goto out;
1297         }
1298
1299         index = sector >> SECTORS_PER_PAGE_SHIFT;
1300         offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1301
1302         bv.bv_page = page;
1303         bv.bv_len = PAGE_SIZE;
1304         bv.bv_offset = 0;
1305
1306         ret = zram_bvec_rw(zram, &bv, index, offset, is_write, NULL);
1307 out:
1308         /*
1309          * If I/O fails, just return error(ie, non-zero) without
1310          * calling page_endio.
1311          * It causes resubmit the I/O with bio request by upper functions
1312          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1313          * bio->bi_end_io does things to handle the error
1314          * (e.g., SetPageError, set_page_dirty and extra works).
1315          */
1316         if (unlikely(ret < 0))
1317                 return ret;
1318
1319         switch (ret) {
1320         case 0:
1321                 page_endio(page, is_write, 0);
1322                 break;
1323         case 1:
1324                 ret = 0;
1325                 break;
1326         default:
1327                 WARN_ON(1);
1328         }
1329         return ret;
1330 }
1331
1332 static void zram_reset_device(struct zram *zram)
1333 {
1334         struct zcomp *comp;
1335         u64 disksize;
1336
1337         down_write(&zram->init_lock);
1338
1339         zram->limit_pages = 0;
1340
1341         if (!init_done(zram)) {
1342                 up_write(&zram->init_lock);
1343                 return;
1344         }
1345
1346         comp = zram->comp;
1347         disksize = zram->disksize;
1348         zram->disksize = 0;
1349
1350         set_capacity(zram->disk, 0);
1351         part_stat_set_all(&zram->disk->part0, 0);
1352
1353         up_write(&zram->init_lock);
1354         /* I/O operation under all of CPU are done so let's free */
1355         zram_meta_free(zram, disksize);
1356         memset(&zram->stats, 0, sizeof(zram->stats));
1357         zcomp_destroy(comp);
1358         reset_bdev(zram);
1359 }
1360
1361 static ssize_t disksize_store(struct device *dev,
1362                 struct device_attribute *attr, const char *buf, size_t len)
1363 {
1364         u64 disksize;
1365         struct zcomp *comp;
1366         struct zram *zram = dev_to_zram(dev);
1367         int err;
1368
1369         disksize = memparse(buf, NULL);
1370         if (!disksize)
1371                 return -EINVAL;
1372
1373         down_write(&zram->init_lock);
1374         if (init_done(zram)) {
1375                 pr_info("Cannot change disksize for initialized device\n");
1376                 err = -EBUSY;
1377                 goto out_unlock;
1378         }
1379
1380         disksize = PAGE_ALIGN(disksize);
1381         if (!zram_meta_alloc(zram, disksize)) {
1382                 err = -ENOMEM;
1383                 goto out_unlock;
1384         }
1385
1386         comp = zcomp_create(zram->compressor);
1387         if (IS_ERR(comp)) {
1388                 pr_err("Cannot initialise %s compressing backend\n",
1389                                 zram->compressor);
1390                 err = PTR_ERR(comp);
1391                 goto out_free_meta;
1392         }
1393
1394         zram->comp = comp;
1395         zram->disksize = disksize;
1396         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1397         zram_revalidate_disk(zram);
1398         up_write(&zram->init_lock);
1399
1400         return len;
1401
1402 out_free_meta:
1403         zram_meta_free(zram, disksize);
1404 out_unlock:
1405         up_write(&zram->init_lock);
1406         return err;
1407 }
1408
1409 static ssize_t reset_store(struct device *dev,
1410                 struct device_attribute *attr, const char *buf, size_t len)
1411 {
1412         int ret;
1413         unsigned short do_reset;
1414         struct zram *zram;
1415         struct block_device *bdev;
1416
1417         ret = kstrtou16(buf, 10, &do_reset);
1418         if (ret)
1419                 return ret;
1420
1421         if (!do_reset)
1422                 return -EINVAL;
1423
1424         zram = dev_to_zram(dev);
1425         bdev = bdget_disk(zram->disk, 0);
1426         if (!bdev)
1427                 return -ENOMEM;
1428
1429         mutex_lock(&bdev->bd_mutex);
1430         /* Do not reset an active device or claimed device */
1431         if (bdev->bd_openers || zram->claim) {
1432                 mutex_unlock(&bdev->bd_mutex);
1433                 bdput(bdev);
1434                 return -EBUSY;
1435         }
1436
1437         /* From now on, anyone can't open /dev/zram[0-9] */
1438         zram->claim = true;
1439         mutex_unlock(&bdev->bd_mutex);
1440
1441         /* Make sure all the pending I/O are finished */
1442         fsync_bdev(bdev);
1443         zram_reset_device(zram);
1444         zram_revalidate_disk(zram);
1445         bdput(bdev);
1446
1447         mutex_lock(&bdev->bd_mutex);
1448         zram->claim = false;
1449         mutex_unlock(&bdev->bd_mutex);
1450
1451         return len;
1452 }
1453
1454 static int zram_open(struct block_device *bdev, fmode_t mode)
1455 {
1456         int ret = 0;
1457         struct zram *zram;
1458
1459         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1460
1461         zram = bdev->bd_disk->private_data;
1462         /* zram was claimed to reset so open request fails */
1463         if (zram->claim)
1464                 ret = -EBUSY;
1465
1466         return ret;
1467 }
1468
1469 static const struct block_device_operations zram_devops = {
1470         .open = zram_open,
1471         .swap_slot_free_notify = zram_slot_free_notify,
1472         .rw_page = zram_rw_page,
1473         .owner = THIS_MODULE
1474 };
1475
1476 static DEVICE_ATTR_WO(compact);
1477 static DEVICE_ATTR_RW(disksize);
1478 static DEVICE_ATTR_RO(initstate);
1479 static DEVICE_ATTR_WO(reset);
1480 static DEVICE_ATTR_WO(mem_limit);
1481 static DEVICE_ATTR_WO(mem_used_max);
1482 static DEVICE_ATTR_RW(max_comp_streams);
1483 static DEVICE_ATTR_RW(comp_algorithm);
1484 #ifdef CONFIG_ZRAM_WRITEBACK
1485 static DEVICE_ATTR_RW(backing_dev);
1486 #endif
1487
1488 static struct attribute *zram_disk_attrs[] = {
1489         &dev_attr_disksize.attr,
1490         &dev_attr_initstate.attr,
1491         &dev_attr_reset.attr,
1492         &dev_attr_compact.attr,
1493         &dev_attr_mem_limit.attr,
1494         &dev_attr_mem_used_max.attr,
1495         &dev_attr_max_comp_streams.attr,
1496         &dev_attr_comp_algorithm.attr,
1497 #ifdef CONFIG_ZRAM_WRITEBACK
1498         &dev_attr_backing_dev.attr,
1499 #endif
1500         &dev_attr_io_stat.attr,
1501         &dev_attr_mm_stat.attr,
1502         &dev_attr_debug_stat.attr,
1503         NULL,
1504 };
1505
1506 static const struct attribute_group zram_disk_attr_group = {
1507         .attrs = zram_disk_attrs,
1508 };
1509
1510 /*
1511  * Allocate and initialize new zram device. the function returns
1512  * '>= 0' device_id upon success, and negative value otherwise.
1513  */
1514 static int zram_add(void)
1515 {
1516         struct zram *zram;
1517         struct request_queue *queue;
1518         int ret, device_id;
1519
1520         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1521         if (!zram)
1522                 return -ENOMEM;
1523
1524         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1525         if (ret < 0)
1526                 goto out_free_dev;
1527         device_id = ret;
1528
1529         init_rwsem(&zram->init_lock);
1530
1531         queue = blk_alloc_queue(GFP_KERNEL);
1532         if (!queue) {
1533                 pr_err("Error allocating disk queue for device %d\n",
1534                         device_id);
1535                 ret = -ENOMEM;
1536                 goto out_free_idr;
1537         }
1538
1539         blk_queue_make_request(queue, zram_make_request);
1540
1541         /* gendisk structure */
1542         zram->disk = alloc_disk(1);
1543         if (!zram->disk) {
1544                 pr_err("Error allocating disk structure for device %d\n",
1545                         device_id);
1546                 ret = -ENOMEM;
1547                 goto out_free_queue;
1548         }
1549
1550         zram->disk->major = zram_major;
1551         zram->disk->first_minor = device_id;
1552         zram->disk->fops = &zram_devops;
1553         zram->disk->queue = queue;
1554         zram->disk->queue->queuedata = zram;
1555         zram->disk->private_data = zram;
1556         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1557
1558         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1559         set_capacity(zram->disk, 0);
1560         /* zram devices sort of resembles non-rotational disks */
1561         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1562         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1563         /*
1564          * To ensure that we always get PAGE_SIZE aligned
1565          * and n*PAGE_SIZED sized I/O requests.
1566          */
1567         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1568         blk_queue_logical_block_size(zram->disk->queue,
1569                                         ZRAM_LOGICAL_BLOCK_SIZE);
1570         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1571         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1572         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1573         blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1574         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1575
1576         /*
1577          * zram_bio_discard() will clear all logical blocks if logical block
1578          * size is identical with physical block size(PAGE_SIZE). But if it is
1579          * different, we will skip discarding some parts of logical blocks in
1580          * the part of the request range which isn't aligned to physical block
1581          * size.  So we can't ensure that all discarded logical blocks are
1582          * zeroed.
1583          */
1584         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1585                 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1586
1587         add_disk(zram->disk);
1588
1589         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1590                                 &zram_disk_attr_group);
1591         if (ret < 0) {
1592                 pr_err("Error creating sysfs group for device %d\n",
1593                                 device_id);
1594                 goto out_free_disk;
1595         }
1596         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1597
1598         pr_info("Added device: %s\n", zram->disk->disk_name);
1599         return device_id;
1600
1601 out_free_disk:
1602         del_gendisk(zram->disk);
1603         put_disk(zram->disk);
1604 out_free_queue:
1605         blk_cleanup_queue(queue);
1606 out_free_idr:
1607         idr_remove(&zram_index_idr, device_id);
1608 out_free_dev:
1609         kfree(zram);
1610         return ret;
1611 }
1612
1613 static int zram_remove(struct zram *zram)
1614 {
1615         struct block_device *bdev;
1616
1617         bdev = bdget_disk(zram->disk, 0);
1618         if (!bdev)
1619                 return -ENOMEM;
1620
1621         mutex_lock(&bdev->bd_mutex);
1622         if (bdev->bd_openers || zram->claim) {
1623                 mutex_unlock(&bdev->bd_mutex);
1624                 bdput(bdev);
1625                 return -EBUSY;
1626         }
1627
1628         zram->claim = true;
1629         mutex_unlock(&bdev->bd_mutex);
1630
1631         /*
1632          * Remove sysfs first, so no one will perform a disksize
1633          * store while we destroy the devices. This also helps during
1634          * hot_remove -- zram_reset_device() is the last holder of
1635          * ->init_lock, no later/concurrent disksize_store() or any
1636          * other sysfs handlers are possible.
1637          */
1638         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1639                         &zram_disk_attr_group);
1640
1641         /* Make sure all the pending I/O are finished */
1642         fsync_bdev(bdev);
1643         zram_reset_device(zram);
1644         bdput(bdev);
1645
1646         pr_info("Removed device: %s\n", zram->disk->disk_name);
1647
1648         blk_cleanup_queue(zram->disk->queue);
1649         del_gendisk(zram->disk);
1650         put_disk(zram->disk);
1651         kfree(zram);
1652         return 0;
1653 }
1654
1655 /* zram-control sysfs attributes */
1656
1657 /*
1658  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1659  * sense that reading from this file does alter the state of your system -- it
1660  * creates a new un-initialized zram device and returns back this device's
1661  * device_id (or an error code if it fails to create a new device).
1662  */
1663 static ssize_t hot_add_show(struct class *class,
1664                         struct class_attribute *attr,
1665                         char *buf)
1666 {
1667         int ret;
1668
1669         mutex_lock(&zram_index_mutex);
1670         ret = zram_add();
1671         mutex_unlock(&zram_index_mutex);
1672
1673         if (ret < 0)
1674                 return ret;
1675         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1676 }
1677 static CLASS_ATTR_RO(hot_add);
1678
1679 static ssize_t hot_remove_store(struct class *class,
1680                         struct class_attribute *attr,
1681                         const char *buf,
1682                         size_t count)
1683 {
1684         struct zram *zram;
1685         int ret, dev_id;
1686
1687         /* dev_id is gendisk->first_minor, which is `int' */
1688         ret = kstrtoint(buf, 10, &dev_id);
1689         if (ret)
1690                 return ret;
1691         if (dev_id < 0)
1692                 return -EINVAL;
1693
1694         mutex_lock(&zram_index_mutex);
1695
1696         zram = idr_find(&zram_index_idr, dev_id);
1697         if (zram) {
1698                 ret = zram_remove(zram);
1699                 if (!ret)
1700                         idr_remove(&zram_index_idr, dev_id);
1701         } else {
1702                 ret = -ENODEV;
1703         }
1704
1705         mutex_unlock(&zram_index_mutex);
1706         return ret ? ret : count;
1707 }
1708 static CLASS_ATTR_WO(hot_remove);
1709
1710 static struct attribute *zram_control_class_attrs[] = {
1711         &class_attr_hot_add.attr,
1712         &class_attr_hot_remove.attr,
1713         NULL,
1714 };
1715 ATTRIBUTE_GROUPS(zram_control_class);
1716
1717 static struct class zram_control_class = {
1718         .name           = "zram-control",
1719         .owner          = THIS_MODULE,
1720         .class_groups   = zram_control_class_groups,
1721 };
1722
1723 static int zram_remove_cb(int id, void *ptr, void *data)
1724 {
1725         zram_remove(ptr);
1726         return 0;
1727 }
1728
1729 static void destroy_devices(void)
1730 {
1731         class_unregister(&zram_control_class);
1732         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1733         idr_destroy(&zram_index_idr);
1734         unregister_blkdev(zram_major, "zram");
1735         cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1736 }
1737
1738 static int __init zram_init(void)
1739 {
1740         int ret;
1741
1742         ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1743                                       zcomp_cpu_up_prepare, zcomp_cpu_dead);
1744         if (ret < 0)
1745                 return ret;
1746
1747         ret = class_register(&zram_control_class);
1748         if (ret) {
1749                 pr_err("Unable to register zram-control class\n");
1750                 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1751                 return ret;
1752         }
1753
1754         zram_major = register_blkdev(0, "zram");
1755         if (zram_major <= 0) {
1756                 pr_err("Unable to get major number\n");
1757                 class_unregister(&zram_control_class);
1758                 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1759                 return -EBUSY;
1760         }
1761
1762         while (num_devices != 0) {
1763                 mutex_lock(&zram_index_mutex);
1764                 ret = zram_add();
1765                 mutex_unlock(&zram_index_mutex);
1766                 if (ret < 0)
1767                         goto out_error;
1768                 num_devices--;
1769         }
1770
1771         return 0;
1772
1773 out_error:
1774         destroy_devices();
1775         return ret;
1776 }
1777
1778 static void __exit zram_exit(void)
1779 {
1780         destroy_devices();
1781 }
1782
1783 module_init(zram_init);
1784 module_exit(zram_exit);
1785
1786 module_param(num_devices, uint, 0);
1787 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1788
1789 MODULE_LICENSE("Dual BSD/GPL");
1790 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1791 MODULE_DESCRIPTION("Compressed RAM Block Device");