]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/bluetooth/hci_qca.c
Bluetooth: hci_qca: Retry btsoc initialize when it fails
[linux.git] / drivers / bluetooth / hci_qca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/serdev.h>
32 #include <asm/unaligned.h>
33
34 #include <net/bluetooth/bluetooth.h>
35 #include <net/bluetooth/hci_core.h>
36
37 #include "hci_uart.h"
38 #include "btqca.h"
39
40 /* HCI_IBS protocol messages */
41 #define HCI_IBS_SLEEP_IND       0xFE
42 #define HCI_IBS_WAKE_IND        0xFD
43 #define HCI_IBS_WAKE_ACK        0xFC
44 #define HCI_MAX_IBS_SIZE        10
45
46 #define IBS_WAKE_RETRANS_TIMEOUT_MS     100
47 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    40
48 #define IBS_HOST_TX_IDLE_TIMEOUT_MS     2000
49 #define CMD_TRANS_TIMEOUT_MS            100
50 #define MEMDUMP_TIMEOUT_MS              8000
51
52 /* susclk rate */
53 #define SUSCLK_RATE_32KHZ       32768
54
55 /* Controller debug log header */
56 #define QCA_DEBUG_HANDLE        0x2EDC
57
58 /* max retry count when init fails */
59 #define MAX_INIT_RETRIES 3
60
61 /* Controller dump header */
62 #define QCA_SSR_DUMP_HANDLE             0x0108
63 #define QCA_DUMP_PACKET_SIZE            255
64 #define QCA_LAST_SEQUENCE_NUM           0xFFFF
65 #define QCA_CRASHBYTE_PACKET_LEN        1096
66 #define QCA_MEMDUMP_BYTE                0xFB
67
68 enum qca_flags {
69         QCA_IBS_ENABLED,
70         QCA_DROP_VENDOR_EVENT,
71         QCA_SUSPENDING,
72         QCA_MEMDUMP_COLLECTION
73 };
74
75
76 /* HCI_IBS transmit side sleep protocol states */
77 enum tx_ibs_states {
78         HCI_IBS_TX_ASLEEP,
79         HCI_IBS_TX_WAKING,
80         HCI_IBS_TX_AWAKE,
81 };
82
83 /* HCI_IBS receive side sleep protocol states */
84 enum rx_states {
85         HCI_IBS_RX_ASLEEP,
86         HCI_IBS_RX_AWAKE,
87 };
88
89 /* HCI_IBS transmit and receive side clock state vote */
90 enum hci_ibs_clock_state_vote {
91         HCI_IBS_VOTE_STATS_UPDATE,
92         HCI_IBS_TX_VOTE_CLOCK_ON,
93         HCI_IBS_TX_VOTE_CLOCK_OFF,
94         HCI_IBS_RX_VOTE_CLOCK_ON,
95         HCI_IBS_RX_VOTE_CLOCK_OFF,
96 };
97
98 /* Controller memory dump states */
99 enum qca_memdump_states {
100         QCA_MEMDUMP_IDLE,
101         QCA_MEMDUMP_COLLECTING,
102         QCA_MEMDUMP_COLLECTED,
103         QCA_MEMDUMP_TIMEOUT,
104 };
105
106 struct qca_memdump_data {
107         char *memdump_buf_head;
108         char *memdump_buf_tail;
109         u32 current_seq_no;
110         u32 received_dump;
111 };
112
113 struct qca_memdump_event_hdr {
114         __u8    evt;
115         __u8    plen;
116         __u16   opcode;
117         __u16   seq_no;
118         __u8    reserved;
119 } __packed;
120
121
122 struct qca_dump_size {
123         u32 dump_size;
124 } __packed;
125
126 struct qca_data {
127         struct hci_uart *hu;
128         struct sk_buff *rx_skb;
129         struct sk_buff_head txq;
130         struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
131         struct sk_buff_head rx_memdump_q;       /* Memdump wait queue   */
132         spinlock_t hci_ibs_lock;        /* HCI_IBS state lock   */
133         u8 tx_ibs_state;        /* HCI_IBS transmit side power state*/
134         u8 rx_ibs_state;        /* HCI_IBS receive side power state */
135         bool tx_vote;           /* Clock must be on for TX */
136         bool rx_vote;           /* Clock must be on for RX */
137         struct timer_list tx_idle_timer;
138         u32 tx_idle_delay;
139         struct timer_list wake_retrans_timer;
140         u32 wake_retrans;
141         struct timer_list memdump_timer;
142         struct workqueue_struct *workqueue;
143         struct work_struct ws_awake_rx;
144         struct work_struct ws_awake_device;
145         struct work_struct ws_rx_vote_off;
146         struct work_struct ws_tx_vote_off;
147         struct work_struct ctrl_memdump_evt;
148         struct qca_memdump_data *qca_memdump;
149         unsigned long flags;
150         struct completion drop_ev_comp;
151         wait_queue_head_t suspend_wait_q;
152         enum qca_memdump_states memdump_state;
153
154         /* For debugging purpose */
155         u64 ibs_sent_wacks;
156         u64 ibs_sent_slps;
157         u64 ibs_sent_wakes;
158         u64 ibs_recv_wacks;
159         u64 ibs_recv_slps;
160         u64 ibs_recv_wakes;
161         u64 vote_last_jif;
162         u32 vote_on_ms;
163         u32 vote_off_ms;
164         u64 tx_votes_on;
165         u64 rx_votes_on;
166         u64 tx_votes_off;
167         u64 rx_votes_off;
168         u64 votes_on;
169         u64 votes_off;
170 };
171
172 enum qca_speed_type {
173         QCA_INIT_SPEED = 1,
174         QCA_OPER_SPEED
175 };
176
177 /*
178  * Voltage regulator information required for configuring the
179  * QCA Bluetooth chipset
180  */
181 struct qca_vreg {
182         const char *name;
183         unsigned int load_uA;
184 };
185
186 struct qca_vreg_data {
187         enum qca_btsoc_type soc_type;
188         struct qca_vreg *vregs;
189         size_t num_vregs;
190 };
191
192 /*
193  * Platform data for the QCA Bluetooth power driver.
194  */
195 struct qca_power {
196         struct device *dev;
197         struct regulator_bulk_data *vreg_bulk;
198         int num_vregs;
199         bool vregs_on;
200 };
201
202 struct qca_serdev {
203         struct hci_uart  serdev_hu;
204         struct gpio_desc *bt_en;
205         struct clk       *susclk;
206         enum qca_btsoc_type btsoc_type;
207         struct qca_power *bt_power;
208         u32 init_speed;
209         u32 oper_speed;
210         const char *firmware_name;
211 };
212
213 static int qca_regulator_enable(struct qca_serdev *qcadev);
214 static void qca_regulator_disable(struct qca_serdev *qcadev);
215 static void qca_power_shutdown(struct hci_uart *hu);
216 static int qca_power_off(struct hci_dev *hdev);
217 static void qca_controller_memdump(struct work_struct *work);
218
219 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
220 {
221         enum qca_btsoc_type soc_type;
222
223         if (hu->serdev) {
224                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
225
226                 soc_type = qsd->btsoc_type;
227         } else {
228                 soc_type = QCA_ROME;
229         }
230
231         return soc_type;
232 }
233
234 static const char *qca_get_firmware_name(struct hci_uart *hu)
235 {
236         if (hu->serdev) {
237                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
238
239                 return qsd->firmware_name;
240         } else {
241                 return NULL;
242         }
243 }
244
245 static void __serial_clock_on(struct tty_struct *tty)
246 {
247         /* TODO: Some chipset requires to enable UART clock on client
248          * side to save power consumption or manual work is required.
249          * Please put your code to control UART clock here if needed
250          */
251 }
252
253 static void __serial_clock_off(struct tty_struct *tty)
254 {
255         /* TODO: Some chipset requires to disable UART clock on client
256          * side to save power consumption or manual work is required.
257          * Please put your code to control UART clock off here if needed
258          */
259 }
260
261 /* serial_clock_vote needs to be called with the ibs lock held */
262 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
263 {
264         struct qca_data *qca = hu->priv;
265         unsigned int diff;
266
267         bool old_vote = (qca->tx_vote | qca->rx_vote);
268         bool new_vote;
269
270         switch (vote) {
271         case HCI_IBS_VOTE_STATS_UPDATE:
272                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
273
274                 if (old_vote)
275                         qca->vote_off_ms += diff;
276                 else
277                         qca->vote_on_ms += diff;
278                 return;
279
280         case HCI_IBS_TX_VOTE_CLOCK_ON:
281                 qca->tx_vote = true;
282                 qca->tx_votes_on++;
283                 new_vote = true;
284                 break;
285
286         case HCI_IBS_RX_VOTE_CLOCK_ON:
287                 qca->rx_vote = true;
288                 qca->rx_votes_on++;
289                 new_vote = true;
290                 break;
291
292         case HCI_IBS_TX_VOTE_CLOCK_OFF:
293                 qca->tx_vote = false;
294                 qca->tx_votes_off++;
295                 new_vote = qca->rx_vote | qca->tx_vote;
296                 break;
297
298         case HCI_IBS_RX_VOTE_CLOCK_OFF:
299                 qca->rx_vote = false;
300                 qca->rx_votes_off++;
301                 new_vote = qca->rx_vote | qca->tx_vote;
302                 break;
303
304         default:
305                 BT_ERR("Voting irregularity");
306                 return;
307         }
308
309         if (new_vote != old_vote) {
310                 if (new_vote)
311                         __serial_clock_on(hu->tty);
312                 else
313                         __serial_clock_off(hu->tty);
314
315                 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
316                        vote ? "true" : "false");
317
318                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
319
320                 if (new_vote) {
321                         qca->votes_on++;
322                         qca->vote_off_ms += diff;
323                 } else {
324                         qca->votes_off++;
325                         qca->vote_on_ms += diff;
326                 }
327                 qca->vote_last_jif = jiffies;
328         }
329 }
330
331 /* Builds and sends an HCI_IBS command packet.
332  * These are very simple packets with only 1 cmd byte.
333  */
334 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
335 {
336         int err = 0;
337         struct sk_buff *skb = NULL;
338         struct qca_data *qca = hu->priv;
339
340         BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
341
342         skb = bt_skb_alloc(1, GFP_ATOMIC);
343         if (!skb) {
344                 BT_ERR("Failed to allocate memory for HCI_IBS packet");
345                 return -ENOMEM;
346         }
347
348         /* Assign HCI_IBS type */
349         skb_put_u8(skb, cmd);
350
351         skb_queue_tail(&qca->txq, skb);
352
353         return err;
354 }
355
356 static void qca_wq_awake_device(struct work_struct *work)
357 {
358         struct qca_data *qca = container_of(work, struct qca_data,
359                                             ws_awake_device);
360         struct hci_uart *hu = qca->hu;
361         unsigned long retrans_delay;
362         unsigned long flags;
363
364         BT_DBG("hu %p wq awake device", hu);
365
366         /* Vote for serial clock */
367         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
368
369         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
370
371         /* Send wake indication to device */
372         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
373                 BT_ERR("Failed to send WAKE to device");
374
375         qca->ibs_sent_wakes++;
376
377         /* Start retransmit timer */
378         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
379         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
380
381         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
382
383         /* Actually send the packets */
384         hci_uart_tx_wakeup(hu);
385 }
386
387 static void qca_wq_awake_rx(struct work_struct *work)
388 {
389         struct qca_data *qca = container_of(work, struct qca_data,
390                                             ws_awake_rx);
391         struct hci_uart *hu = qca->hu;
392         unsigned long flags;
393
394         BT_DBG("hu %p wq awake rx", hu);
395
396         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
397
398         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
399         qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
400
401         /* Always acknowledge device wake up,
402          * sending IBS message doesn't count as TX ON.
403          */
404         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
405                 BT_ERR("Failed to acknowledge device wake up");
406
407         qca->ibs_sent_wacks++;
408
409         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
410
411         /* Actually send the packets */
412         hci_uart_tx_wakeup(hu);
413 }
414
415 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
416 {
417         struct qca_data *qca = container_of(work, struct qca_data,
418                                             ws_rx_vote_off);
419         struct hci_uart *hu = qca->hu;
420
421         BT_DBG("hu %p rx clock vote off", hu);
422
423         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
424 }
425
426 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
427 {
428         struct qca_data *qca = container_of(work, struct qca_data,
429                                             ws_tx_vote_off);
430         struct hci_uart *hu = qca->hu;
431
432         BT_DBG("hu %p tx clock vote off", hu);
433
434         /* Run HCI tx handling unlocked */
435         hci_uart_tx_wakeup(hu);
436
437         /* Now that message queued to tty driver, vote for tty clocks off.
438          * It is up to the tty driver to pend the clocks off until tx done.
439          */
440         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
441 }
442
443 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
444 {
445         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
446         struct hci_uart *hu = qca->hu;
447         unsigned long flags;
448
449         BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
450
451         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
452                                  flags, SINGLE_DEPTH_NESTING);
453
454         switch (qca->tx_ibs_state) {
455         case HCI_IBS_TX_AWAKE:
456                 /* TX_IDLE, go to SLEEP */
457                 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
458                         BT_ERR("Failed to send SLEEP to device");
459                         break;
460                 }
461                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
462                 qca->ibs_sent_slps++;
463                 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
464                 break;
465
466         case HCI_IBS_TX_ASLEEP:
467         case HCI_IBS_TX_WAKING:
468                 /* Fall through */
469
470         default:
471                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
472                 break;
473         }
474
475         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
476 }
477
478 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
479 {
480         struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
481         struct hci_uart *hu = qca->hu;
482         unsigned long flags, retrans_delay;
483         bool retransmit = false;
484
485         BT_DBG("hu %p wake retransmit timeout in %d state",
486                 hu, qca->tx_ibs_state);
487
488         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
489                                  flags, SINGLE_DEPTH_NESTING);
490
491         /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
492         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
493                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
494                 return;
495         }
496
497         switch (qca->tx_ibs_state) {
498         case HCI_IBS_TX_WAKING:
499                 /* No WAKE_ACK, retransmit WAKE */
500                 retransmit = true;
501                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
502                         BT_ERR("Failed to acknowledge device wake up");
503                         break;
504                 }
505                 qca->ibs_sent_wakes++;
506                 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
507                 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
508                 break;
509
510         case HCI_IBS_TX_ASLEEP:
511         case HCI_IBS_TX_AWAKE:
512                 /* Fall through */
513
514         default:
515                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
516                 break;
517         }
518
519         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
520
521         if (retransmit)
522                 hci_uart_tx_wakeup(hu);
523 }
524
525 static void hci_memdump_timeout(struct timer_list *t)
526 {
527         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
528         struct hci_uart *hu = qca->hu;
529         struct qca_memdump_data *qca_memdump = qca->qca_memdump;
530         char *memdump_buf = qca_memdump->memdump_buf_tail;
531
532         bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
533         /* Inject hw error event to reset the device and driver. */
534         hci_reset_dev(hu->hdev);
535         vfree(memdump_buf);
536         kfree(qca_memdump);
537         qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
538         del_timer(&qca->memdump_timer);
539         cancel_work_sync(&qca->ctrl_memdump_evt);
540 }
541
542 /* Initialize protocol */
543 static int qca_open(struct hci_uart *hu)
544 {
545         struct qca_serdev *qcadev;
546         struct qca_data *qca;
547
548         BT_DBG("hu %p qca_open", hu);
549
550         if (!hci_uart_has_flow_control(hu))
551                 return -EOPNOTSUPP;
552
553         qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
554         if (!qca)
555                 return -ENOMEM;
556
557         skb_queue_head_init(&qca->txq);
558         skb_queue_head_init(&qca->tx_wait_q);
559         skb_queue_head_init(&qca->rx_memdump_q);
560         spin_lock_init(&qca->hci_ibs_lock);
561         qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
562         if (!qca->workqueue) {
563                 BT_ERR("QCA Workqueue not initialized properly");
564                 kfree(qca);
565                 return -ENOMEM;
566         }
567
568         INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
569         INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
570         INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
571         INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
572         INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
573         init_waitqueue_head(&qca->suspend_wait_q);
574
575         qca->hu = hu;
576         init_completion(&qca->drop_ev_comp);
577
578         /* Assume we start with both sides asleep -- extra wakes OK */
579         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
580         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
581
582         qca->vote_last_jif = jiffies;
583
584         hu->priv = qca;
585
586         if (hu->serdev) {
587                 qcadev = serdev_device_get_drvdata(hu->serdev);
588                 if (qca_is_wcn399x(qcadev->btsoc_type)) {
589                         hu->init_speed = qcadev->init_speed;
590                         hu->oper_speed = qcadev->oper_speed;
591                 }
592         }
593
594         timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
595         qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
596
597         timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
598         qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
599         timer_setup(&qca->memdump_timer, hci_memdump_timeout, 0);
600
601         BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
602                qca->tx_idle_delay, qca->wake_retrans);
603
604         return 0;
605 }
606
607 static void qca_debugfs_init(struct hci_dev *hdev)
608 {
609         struct hci_uart *hu = hci_get_drvdata(hdev);
610         struct qca_data *qca = hu->priv;
611         struct dentry *ibs_dir;
612         umode_t mode;
613
614         if (!hdev->debugfs)
615                 return;
616
617         ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
618
619         /* read only */
620         mode = S_IRUGO;
621         debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
622         debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
623         debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
624                            &qca->ibs_sent_slps);
625         debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
626                            &qca->ibs_sent_wakes);
627         debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
628                            &qca->ibs_sent_wacks);
629         debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
630                            &qca->ibs_recv_slps);
631         debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
632                            &qca->ibs_recv_wakes);
633         debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
634                            &qca->ibs_recv_wacks);
635         debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
636         debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
637         debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
638         debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
639         debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
640         debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
641         debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
642         debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
643         debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
644         debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
645
646         /* read/write */
647         mode = S_IRUGO | S_IWUSR;
648         debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
649         debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
650                            &qca->tx_idle_delay);
651 }
652
653 /* Flush protocol data */
654 static int qca_flush(struct hci_uart *hu)
655 {
656         struct qca_data *qca = hu->priv;
657
658         BT_DBG("hu %p qca flush", hu);
659
660         skb_queue_purge(&qca->tx_wait_q);
661         skb_queue_purge(&qca->txq);
662
663         return 0;
664 }
665
666 /* Close protocol */
667 static int qca_close(struct hci_uart *hu)
668 {
669         struct qca_data *qca = hu->priv;
670
671         BT_DBG("hu %p qca close", hu);
672
673         serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
674
675         skb_queue_purge(&qca->tx_wait_q);
676         skb_queue_purge(&qca->txq);
677         skb_queue_purge(&qca->rx_memdump_q);
678         del_timer(&qca->tx_idle_timer);
679         del_timer(&qca->wake_retrans_timer);
680         del_timer(&qca->memdump_timer);
681         destroy_workqueue(qca->workqueue);
682         qca->hu = NULL;
683
684         qca_power_shutdown(hu);
685
686         kfree_skb(qca->rx_skb);
687
688         hu->priv = NULL;
689
690         kfree(qca);
691
692         return 0;
693 }
694
695 /* Called upon a wake-up-indication from the device.
696  */
697 static void device_want_to_wakeup(struct hci_uart *hu)
698 {
699         unsigned long flags;
700         struct qca_data *qca = hu->priv;
701
702         BT_DBG("hu %p want to wake up", hu);
703
704         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
705
706         qca->ibs_recv_wakes++;
707
708         /* Don't wake the rx up when suspending. */
709         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
710                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
711                 return;
712         }
713
714         switch (qca->rx_ibs_state) {
715         case HCI_IBS_RX_ASLEEP:
716                 /* Make sure clock is on - we may have turned clock off since
717                  * receiving the wake up indicator awake rx clock.
718                  */
719                 queue_work(qca->workqueue, &qca->ws_awake_rx);
720                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
721                 return;
722
723         case HCI_IBS_RX_AWAKE:
724                 /* Always acknowledge device wake up,
725                  * sending IBS message doesn't count as TX ON.
726                  */
727                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
728                         BT_ERR("Failed to acknowledge device wake up");
729                         break;
730                 }
731                 qca->ibs_sent_wacks++;
732                 break;
733
734         default:
735                 /* Any other state is illegal */
736                 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
737                        qca->rx_ibs_state);
738                 break;
739         }
740
741         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
742
743         /* Actually send the packets */
744         hci_uart_tx_wakeup(hu);
745 }
746
747 /* Called upon a sleep-indication from the device.
748  */
749 static void device_want_to_sleep(struct hci_uart *hu)
750 {
751         unsigned long flags;
752         struct qca_data *qca = hu->priv;
753
754         BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
755
756         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
757
758         qca->ibs_recv_slps++;
759
760         switch (qca->rx_ibs_state) {
761         case HCI_IBS_RX_AWAKE:
762                 /* Update state */
763                 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
764                 /* Vote off rx clock under workqueue */
765                 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
766                 break;
767
768         case HCI_IBS_RX_ASLEEP:
769                 break;
770
771         default:
772                 /* Any other state is illegal */
773                 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
774                        qca->rx_ibs_state);
775                 break;
776         }
777
778         wake_up_interruptible(&qca->suspend_wait_q);
779
780         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
781 }
782
783 /* Called upon wake-up-acknowledgement from the device
784  */
785 static void device_woke_up(struct hci_uart *hu)
786 {
787         unsigned long flags, idle_delay;
788         struct qca_data *qca = hu->priv;
789         struct sk_buff *skb = NULL;
790
791         BT_DBG("hu %p woke up", hu);
792
793         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
794
795         qca->ibs_recv_wacks++;
796
797         /* Don't react to the wake-up-acknowledgment when suspending. */
798         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
799                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
800                 return;
801         }
802
803         switch (qca->tx_ibs_state) {
804         case HCI_IBS_TX_AWAKE:
805                 /* Expect one if we send 2 WAKEs */
806                 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
807                        qca->tx_ibs_state);
808                 break;
809
810         case HCI_IBS_TX_WAKING:
811                 /* Send pending packets */
812                 while ((skb = skb_dequeue(&qca->tx_wait_q)))
813                         skb_queue_tail(&qca->txq, skb);
814
815                 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
816                 del_timer(&qca->wake_retrans_timer);
817                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
818                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
819                 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
820                 break;
821
822         case HCI_IBS_TX_ASLEEP:
823                 /* Fall through */
824
825         default:
826                 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
827                        qca->tx_ibs_state);
828                 break;
829         }
830
831         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
832
833         /* Actually send the packets */
834         hci_uart_tx_wakeup(hu);
835 }
836
837 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
838  * two simultaneous tasklets.
839  */
840 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
841 {
842         unsigned long flags = 0, idle_delay;
843         struct qca_data *qca = hu->priv;
844
845         BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
846                qca->tx_ibs_state);
847
848         /* Prepend skb with frame type */
849         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
850
851         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
852
853         /* Don't go to sleep in middle of patch download or
854          * Out-Of-Band(GPIOs control) sleep is selected.
855          * Don't wake the device up when suspending.
856          */
857         if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
858             test_bit(QCA_SUSPENDING, &qca->flags)) {
859                 skb_queue_tail(&qca->txq, skb);
860                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
861                 return 0;
862         }
863
864         /* Act according to current state */
865         switch (qca->tx_ibs_state) {
866         case HCI_IBS_TX_AWAKE:
867                 BT_DBG("Device awake, sending normally");
868                 skb_queue_tail(&qca->txq, skb);
869                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
870                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
871                 break;
872
873         case HCI_IBS_TX_ASLEEP:
874                 BT_DBG("Device asleep, waking up and queueing packet");
875                 /* Save packet for later */
876                 skb_queue_tail(&qca->tx_wait_q, skb);
877
878                 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
879                 /* Schedule a work queue to wake up device */
880                 queue_work(qca->workqueue, &qca->ws_awake_device);
881                 break;
882
883         case HCI_IBS_TX_WAKING:
884                 BT_DBG("Device waking up, queueing packet");
885                 /* Transient state; just keep packet for later */
886                 skb_queue_tail(&qca->tx_wait_q, skb);
887                 break;
888
889         default:
890                 BT_ERR("Illegal tx state: %d (losing packet)",
891                        qca->tx_ibs_state);
892                 kfree_skb(skb);
893                 break;
894         }
895
896         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
897
898         return 0;
899 }
900
901 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
902 {
903         struct hci_uart *hu = hci_get_drvdata(hdev);
904
905         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
906
907         device_want_to_sleep(hu);
908
909         kfree_skb(skb);
910         return 0;
911 }
912
913 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
914 {
915         struct hci_uart *hu = hci_get_drvdata(hdev);
916
917         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
918
919         device_want_to_wakeup(hu);
920
921         kfree_skb(skb);
922         return 0;
923 }
924
925 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
926 {
927         struct hci_uart *hu = hci_get_drvdata(hdev);
928
929         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
930
931         device_woke_up(hu);
932
933         kfree_skb(skb);
934         return 0;
935 }
936
937 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
938 {
939         /* We receive debug logs from chip as an ACL packets.
940          * Instead of sending the data to ACL to decode the
941          * received data, we are pushing them to the above layers
942          * as a diagnostic packet.
943          */
944         if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
945                 return hci_recv_diag(hdev, skb);
946
947         return hci_recv_frame(hdev, skb);
948 }
949
950 static void qca_controller_memdump(struct work_struct *work)
951 {
952         struct qca_data *qca = container_of(work, struct qca_data,
953                                             ctrl_memdump_evt);
954         struct hci_uart *hu = qca->hu;
955         struct sk_buff *skb;
956         struct qca_memdump_event_hdr *cmd_hdr;
957         struct qca_memdump_data *qca_memdump = qca->qca_memdump;
958         struct qca_dump_size *dump;
959         char *memdump_buf;
960         char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
961         u16 seq_no;
962         u32 dump_size;
963
964         while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
965
966                 if (!qca_memdump) {
967                         qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
968                                               GFP_ATOMIC);
969                         if (!qca_memdump)
970                                 return;
971
972                         qca->qca_memdump = qca_memdump;
973                 }
974
975                 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
976                 cmd_hdr = (void *) skb->data;
977                 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
978                 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
979
980                 if (!seq_no) {
981
982                         /* This is the first frame of memdump packet from
983                          * the controller, Disable IBS to recevie dump
984                          * with out any interruption, ideally time required for
985                          * the controller to send the dump is 8 seconds. let us
986                          * start timer to handle this asynchronous activity.
987                          */
988                         clear_bit(QCA_IBS_ENABLED, &qca->flags);
989                         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
990                         dump = (void *) skb->data;
991                         dump_size = __le32_to_cpu(dump->dump_size);
992                         if (!(dump_size)) {
993                                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
994                                 kfree_skb(skb);
995                                 return;
996                         }
997
998                         bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
999                                     dump_size);
1000                         mod_timer(&qca->memdump_timer, (jiffies +
1001                                   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)));
1002
1003                         skb_pull(skb, sizeof(dump_size));
1004                         memdump_buf = vmalloc(dump_size);
1005                         qca_memdump->memdump_buf_head = memdump_buf;
1006                         qca_memdump->memdump_buf_tail = memdump_buf;
1007                 }
1008
1009                 memdump_buf = qca_memdump->memdump_buf_tail;
1010
1011                 /* If sequence no 0 is missed then there is no point in
1012                  * accepting the other sequences.
1013                  */
1014                 if (!memdump_buf) {
1015                         bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1016                         kfree(qca_memdump);
1017                         kfree_skb(skb);
1018                         qca->qca_memdump = NULL;
1019                         return;
1020                 }
1021
1022                 /* There could be chance of missing some packets from
1023                  * the controller. In such cases let us store the dummy
1024                  * packets in the buffer.
1025                  */
1026                 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1027                         seq_no != QCA_LAST_SEQUENCE_NUM) {
1028                         bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1029                                    qca_memdump->current_seq_no);
1030                         memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1031                         memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1032                         qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1033                         qca_memdump->current_seq_no++;
1034                 }
1035
1036                 memcpy(memdump_buf, (unsigned char *) skb->data, skb->len);
1037                 memdump_buf = memdump_buf + skb->len;
1038                 qca_memdump->memdump_buf_tail = memdump_buf;
1039                 qca_memdump->current_seq_no = seq_no + 1;
1040                 qca_memdump->received_dump += skb->len;
1041                 qca->qca_memdump = qca_memdump;
1042                 kfree_skb(skb);
1043                 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1044                         bt_dev_info(hu->hdev, "QCA writing crash dump of size %d bytes",
1045                                    qca_memdump->received_dump);
1046                         memdump_buf = qca_memdump->memdump_buf_head;
1047                         dev_coredumpv(&hu->serdev->dev, memdump_buf,
1048                                       qca_memdump->received_dump, GFP_KERNEL);
1049                         del_timer(&qca->memdump_timer);
1050                         kfree(qca->qca_memdump);
1051                         qca->qca_memdump = NULL;
1052                         qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1053                 }
1054         }
1055
1056 }
1057
1058 int qca_controller_memdump_event(struct hci_dev *hdev, struct sk_buff *skb)
1059 {
1060         struct hci_uart *hu = hci_get_drvdata(hdev);
1061         struct qca_data *qca = hu->priv;
1062
1063         skb_queue_tail(&qca->rx_memdump_q, skb);
1064         queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1065
1066         return 0;
1067 }
1068
1069 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1070 {
1071         struct hci_uart *hu = hci_get_drvdata(hdev);
1072         struct qca_data *qca = hu->priv;
1073
1074         if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1075                 struct hci_event_hdr *hdr = (void *)skb->data;
1076
1077                 /* For the WCN3990 the vendor command for a baudrate change
1078                  * isn't sent as synchronous HCI command, because the
1079                  * controller sends the corresponding vendor event with the
1080                  * new baudrate. The event is received and properly decoded
1081                  * after changing the baudrate of the host port. It needs to
1082                  * be dropped, otherwise it can be misinterpreted as
1083                  * response to a later firmware download command (also a
1084                  * vendor command).
1085                  */
1086
1087                 if (hdr->evt == HCI_EV_VENDOR)
1088                         complete(&qca->drop_ev_comp);
1089
1090                 kfree_skb(skb);
1091
1092                 return 0;
1093         }
1094         /* We receive chip memory dump as an event packet, With a dedicated
1095          * handler followed by a hardware error event. When this event is
1096          * received we store dump into a file before closing hci. This
1097          * dump will help in triaging the issues.
1098          */
1099         if ((skb->data[0] == HCI_VENDOR_PKT) &&
1100             (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1101                 return qca_controller_memdump_event(hdev, skb);
1102
1103         return hci_recv_frame(hdev, skb);
1104 }
1105
1106 #define QCA_IBS_SLEEP_IND_EVENT \
1107         .type = HCI_IBS_SLEEP_IND, \
1108         .hlen = 0, \
1109         .loff = 0, \
1110         .lsize = 0, \
1111         .maxlen = HCI_MAX_IBS_SIZE
1112
1113 #define QCA_IBS_WAKE_IND_EVENT \
1114         .type = HCI_IBS_WAKE_IND, \
1115         .hlen = 0, \
1116         .loff = 0, \
1117         .lsize = 0, \
1118         .maxlen = HCI_MAX_IBS_SIZE
1119
1120 #define QCA_IBS_WAKE_ACK_EVENT \
1121         .type = HCI_IBS_WAKE_ACK, \
1122         .hlen = 0, \
1123         .loff = 0, \
1124         .lsize = 0, \
1125         .maxlen = HCI_MAX_IBS_SIZE
1126
1127 static const struct h4_recv_pkt qca_recv_pkts[] = {
1128         { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1129         { H4_RECV_SCO,             .recv = hci_recv_frame    },
1130         { H4_RECV_EVENT,           .recv = qca_recv_event    },
1131         { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1132         { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1133         { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1134 };
1135
1136 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1137 {
1138         struct qca_data *qca = hu->priv;
1139
1140         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1141                 return -EUNATCH;
1142
1143         qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1144                                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1145         if (IS_ERR(qca->rx_skb)) {
1146                 int err = PTR_ERR(qca->rx_skb);
1147                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1148                 qca->rx_skb = NULL;
1149                 return err;
1150         }
1151
1152         return count;
1153 }
1154
1155 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1156 {
1157         struct qca_data *qca = hu->priv;
1158
1159         return skb_dequeue(&qca->txq);
1160 }
1161
1162 static uint8_t qca_get_baudrate_value(int speed)
1163 {
1164         switch (speed) {
1165         case 9600:
1166                 return QCA_BAUDRATE_9600;
1167         case 19200:
1168                 return QCA_BAUDRATE_19200;
1169         case 38400:
1170                 return QCA_BAUDRATE_38400;
1171         case 57600:
1172                 return QCA_BAUDRATE_57600;
1173         case 115200:
1174                 return QCA_BAUDRATE_115200;
1175         case 230400:
1176                 return QCA_BAUDRATE_230400;
1177         case 460800:
1178                 return QCA_BAUDRATE_460800;
1179         case 500000:
1180                 return QCA_BAUDRATE_500000;
1181         case 921600:
1182                 return QCA_BAUDRATE_921600;
1183         case 1000000:
1184                 return QCA_BAUDRATE_1000000;
1185         case 2000000:
1186                 return QCA_BAUDRATE_2000000;
1187         case 3000000:
1188                 return QCA_BAUDRATE_3000000;
1189         case 3200000:
1190                 return QCA_BAUDRATE_3200000;
1191         case 3500000:
1192                 return QCA_BAUDRATE_3500000;
1193         default:
1194                 return QCA_BAUDRATE_115200;
1195         }
1196 }
1197
1198 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1199 {
1200         struct hci_uart *hu = hci_get_drvdata(hdev);
1201         struct qca_data *qca = hu->priv;
1202         struct sk_buff *skb;
1203         u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1204
1205         if (baudrate > QCA_BAUDRATE_3200000)
1206                 return -EINVAL;
1207
1208         cmd[4] = baudrate;
1209
1210         skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1211         if (!skb) {
1212                 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1213                 return -ENOMEM;
1214         }
1215
1216         /* Assign commands to change baudrate and packet type. */
1217         skb_put_data(skb, cmd, sizeof(cmd));
1218         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1219
1220         skb_queue_tail(&qca->txq, skb);
1221         hci_uart_tx_wakeup(hu);
1222
1223         /* Wait for the baudrate change request to be sent */
1224
1225         while (!skb_queue_empty(&qca->txq))
1226                 usleep_range(100, 200);
1227
1228         if (hu->serdev)
1229                 serdev_device_wait_until_sent(hu->serdev,
1230                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1231
1232         /* Give the controller time to process the request */
1233         if (qca_is_wcn399x(qca_soc_type(hu)))
1234                 msleep(10);
1235         else
1236                 msleep(300);
1237
1238         return 0;
1239 }
1240
1241 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1242 {
1243         if (hu->serdev)
1244                 serdev_device_set_baudrate(hu->serdev, speed);
1245         else
1246                 hci_uart_set_baudrate(hu, speed);
1247 }
1248
1249 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1250 {
1251         int ret;
1252         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1253         u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1254
1255         /* These power pulses are single byte command which are sent
1256          * at required baudrate to wcn3990. On wcn3990, we have an external
1257          * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1258          * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1259          * and also we use the same power inputs to turn on and off for
1260          * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1261          * we send a power on pulse at 115200 bps. This algorithm will help to
1262          * save power. Disabling hardware flow control is mandatory while
1263          * sending power pulses to SoC.
1264          */
1265         bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1266
1267         serdev_device_write_flush(hu->serdev);
1268         hci_uart_set_flow_control(hu, true);
1269         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1270         if (ret < 0) {
1271                 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1272                 return ret;
1273         }
1274
1275         serdev_device_wait_until_sent(hu->serdev, timeout);
1276         hci_uart_set_flow_control(hu, false);
1277
1278         /* Give to controller time to boot/shutdown */
1279         if (on)
1280                 msleep(100);
1281         else
1282                 msleep(10);
1283
1284         return 0;
1285 }
1286
1287 static unsigned int qca_get_speed(struct hci_uart *hu,
1288                                   enum qca_speed_type speed_type)
1289 {
1290         unsigned int speed = 0;
1291
1292         if (speed_type == QCA_INIT_SPEED) {
1293                 if (hu->init_speed)
1294                         speed = hu->init_speed;
1295                 else if (hu->proto->init_speed)
1296                         speed = hu->proto->init_speed;
1297         } else {
1298                 if (hu->oper_speed)
1299                         speed = hu->oper_speed;
1300                 else if (hu->proto->oper_speed)
1301                         speed = hu->proto->oper_speed;
1302         }
1303
1304         return speed;
1305 }
1306
1307 static int qca_check_speeds(struct hci_uart *hu)
1308 {
1309         if (qca_is_wcn399x(qca_soc_type(hu))) {
1310                 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1311                     !qca_get_speed(hu, QCA_OPER_SPEED))
1312                         return -EINVAL;
1313         } else {
1314                 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1315                     !qca_get_speed(hu, QCA_OPER_SPEED))
1316                         return -EINVAL;
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1323 {
1324         unsigned int speed, qca_baudrate;
1325         struct qca_data *qca = hu->priv;
1326         int ret = 0;
1327
1328         if (speed_type == QCA_INIT_SPEED) {
1329                 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1330                 if (speed)
1331                         host_set_baudrate(hu, speed);
1332         } else {
1333                 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1334
1335                 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1336                 if (!speed)
1337                         return 0;
1338
1339                 /* Disable flow control for wcn3990 to deassert RTS while
1340                  * changing the baudrate of chip and host.
1341                  */
1342                 if (qca_is_wcn399x(soc_type))
1343                         hci_uart_set_flow_control(hu, true);
1344
1345                 if (soc_type == QCA_WCN3990) {
1346                         reinit_completion(&qca->drop_ev_comp);
1347                         set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1348                 }
1349
1350                 qca_baudrate = qca_get_baudrate_value(speed);
1351                 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1352                 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1353                 if (ret)
1354                         goto error;
1355
1356                 host_set_baudrate(hu, speed);
1357
1358 error:
1359                 if (qca_is_wcn399x(soc_type))
1360                         hci_uart_set_flow_control(hu, false);
1361
1362                 if (soc_type == QCA_WCN3990) {
1363                         /* Wait for the controller to send the vendor event
1364                          * for the baudrate change command.
1365                          */
1366                         if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1367                                                  msecs_to_jiffies(100))) {
1368                                 bt_dev_err(hu->hdev,
1369                                            "Failed to change controller baudrate\n");
1370                                 ret = -ETIMEDOUT;
1371                         }
1372
1373                         clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1374                 }
1375         }
1376
1377         return ret;
1378 }
1379
1380 static int qca_send_crashbuffer(struct hci_uart *hu)
1381 {
1382         struct qca_data *qca = hu->priv;
1383         struct sk_buff *skb;
1384
1385         skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1386         if (!skb) {
1387                 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1388                 return -ENOMEM;
1389         }
1390
1391         /* We forcefully crash the controller, by sending 0xfb byte for
1392          * 1024 times. We also might have chance of losing data, To be
1393          * on safer side we send 1096 bytes to the SoC.
1394          */
1395         memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1396                QCA_CRASHBYTE_PACKET_LEN);
1397         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1398         bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1399         skb_queue_tail(&qca->txq, skb);
1400         hci_uart_tx_wakeup(hu);
1401
1402         return 0;
1403 }
1404
1405 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1406 {
1407         struct hci_uart *hu = hci_get_drvdata(hdev);
1408         struct qca_data *qca = hu->priv;
1409         struct qca_memdump_data *qca_memdump = qca->qca_memdump;
1410         char *memdump_buf = NULL;
1411
1412         wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1413                             TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1414
1415         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1416         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1417                 bt_dev_err(hu->hdev, "Clearing the buffers due to timeout");
1418                 if (qca_memdump)
1419                         memdump_buf = qca_memdump->memdump_buf_tail;
1420                 vfree(memdump_buf);
1421                 kfree(qca_memdump);
1422                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1423                 del_timer(&qca->memdump_timer);
1424                 cancel_work_sync(&qca->ctrl_memdump_evt);
1425         }
1426 }
1427
1428 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1429 {
1430         struct hci_uart *hu = hci_get_drvdata(hdev);
1431         struct qca_data *qca = hu->priv;
1432
1433         bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1434
1435         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1436                 /* If hardware error event received for other than QCA
1437                  * soc memory dump event, then we need to crash the SOC
1438                  * and wait here for 8 seconds to get the dump packets.
1439                  * This will block main thread to be on hold until we
1440                  * collect dump.
1441                  */
1442                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1443                 qca_send_crashbuffer(hu);
1444                 qca_wait_for_dump_collection(hdev);
1445         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1446                 /* Let us wait here until memory dump collected or
1447                  * memory dump timer expired.
1448                  */
1449                 bt_dev_info(hdev, "waiting for dump to complete");
1450                 qca_wait_for_dump_collection(hdev);
1451         }
1452 }
1453
1454 static void qca_cmd_timeout(struct hci_dev *hdev)
1455 {
1456         struct hci_uart *hu = hci_get_drvdata(hdev);
1457         struct qca_data *qca = hu->priv;
1458
1459         if (qca->memdump_state == QCA_MEMDUMP_IDLE)
1460                 qca_send_crashbuffer(hu);
1461         else
1462                 bt_dev_info(hdev, "Dump collection is in process");
1463 }
1464
1465 static int qca_wcn3990_init(struct hci_uart *hu)
1466 {
1467         struct qca_serdev *qcadev;
1468         int ret;
1469
1470         /* Check for vregs status, may be hci down has turned
1471          * off the voltage regulator.
1472          */
1473         qcadev = serdev_device_get_drvdata(hu->serdev);
1474         if (!qcadev->bt_power->vregs_on) {
1475                 serdev_device_close(hu->serdev);
1476                 ret = qca_regulator_enable(qcadev);
1477                 if (ret)
1478                         return ret;
1479
1480                 ret = serdev_device_open(hu->serdev);
1481                 if (ret) {
1482                         bt_dev_err(hu->hdev, "failed to open port");
1483                         return ret;
1484                 }
1485         }
1486
1487         /* Forcefully enable wcn3990 to enter in to boot mode. */
1488         host_set_baudrate(hu, 2400);
1489         ret = qca_send_power_pulse(hu, false);
1490         if (ret)
1491                 return ret;
1492
1493         qca_set_speed(hu, QCA_INIT_SPEED);
1494         ret = qca_send_power_pulse(hu, true);
1495         if (ret)
1496                 return ret;
1497
1498         /* Now the device is in ready state to communicate with host.
1499          * To sync host with device we need to reopen port.
1500          * Without this, we will have RTS and CTS synchronization
1501          * issues.
1502          */
1503         serdev_device_close(hu->serdev);
1504         ret = serdev_device_open(hu->serdev);
1505         if (ret) {
1506                 bt_dev_err(hu->hdev, "failed to open port");
1507                 return ret;
1508         }
1509
1510         hci_uart_set_flow_control(hu, false);
1511
1512         return 0;
1513 }
1514
1515 static int qca_power_on(struct hci_dev *hdev)
1516 {
1517         struct hci_uart *hu = hci_get_drvdata(hdev);
1518         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1519         struct qca_serdev *qcadev;
1520         int ret = 0;
1521
1522         /* Non-serdev device usually is powered by external power
1523          * and don't need additional action in driver for power on
1524          */
1525         if (!hu->serdev)
1526                 return 0;
1527
1528         if (qca_is_wcn399x(soc_type)) {
1529                 ret = qca_wcn3990_init(hu);
1530         } else {
1531                 qcadev = serdev_device_get_drvdata(hu->serdev);
1532                 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1533                 /* Controller needs time to bootup. */
1534                 msleep(150);
1535         }
1536
1537         return ret;
1538 }
1539
1540 static int qca_setup(struct hci_uart *hu)
1541 {
1542         struct hci_dev *hdev = hu->hdev;
1543         struct qca_data *qca = hu->priv;
1544         unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1545         unsigned int retries = 0;
1546         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1547         const char *firmware_name = qca_get_firmware_name(hu);
1548         int ret;
1549         int soc_ver = 0;
1550
1551         ret = qca_check_speeds(hu);
1552         if (ret)
1553                 return ret;
1554
1555         /* Patch downloading has to be done without IBS mode */
1556         clear_bit(QCA_IBS_ENABLED, &qca->flags);
1557
1558         /* Enable controller to do both LE scan and BR/EDR inquiry
1559          * simultaneously.
1560          */
1561         set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1562
1563         bt_dev_info(hdev, "setting up %s",
1564                 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME");
1565
1566 retry:
1567         ret = qca_power_on(hdev);
1568         if (ret)
1569                 return ret;
1570
1571         if (qca_is_wcn399x(soc_type)) {
1572                 /* Enable NON_PERSISTENT_SETUP QUIRK to ensure to execute
1573                  * setup for every hci up.
1574                  */
1575                 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
1576                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1577                 hu->hdev->shutdown = qca_power_off;
1578
1579                 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1580                 if (ret)
1581                         return ret;
1582         } else {
1583                 qca_set_speed(hu, QCA_INIT_SPEED);
1584         }
1585
1586         /* Setup user speed if needed */
1587         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1588         if (speed) {
1589                 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1590                 if (ret)
1591                         return ret;
1592
1593                 qca_baudrate = qca_get_baudrate_value(speed);
1594         }
1595
1596         if (!qca_is_wcn399x(soc_type)) {
1597                 /* Get QCA version information */
1598                 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1599                 if (ret)
1600                         return ret;
1601         }
1602
1603         bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1604         /* Setup patch / NVM configurations */
1605         ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1606                         firmware_name);
1607         if (!ret) {
1608                 set_bit(QCA_IBS_ENABLED, &qca->flags);
1609                 qca_debugfs_init(hdev);
1610                 hu->hdev->hw_error = qca_hw_error;
1611                 hu->hdev->cmd_timeout = qca_cmd_timeout;
1612         } else if (ret == -ENOENT) {
1613                 /* No patch/nvm-config found, run with original fw/config */
1614                 ret = 0;
1615         } else if (ret == -EAGAIN) {
1616                 /*
1617                  * Userspace firmware loader will return -EAGAIN in case no
1618                  * patch/nvm-config is found, so run with original fw/config.
1619                  */
1620                 ret = 0;
1621         } else {
1622                 if (retries < MAX_INIT_RETRIES) {
1623                         qca_power_shutdown(hu);
1624                         if (hu->serdev) {
1625                                 serdev_device_close(hu->serdev);
1626                                 ret = serdev_device_open(hu->serdev);
1627                                 if (ret) {
1628                                         bt_dev_err(hdev, "failed to open port");
1629                                         return ret;
1630                                 }
1631                         }
1632                         retries++;
1633                         goto retry;
1634                 }
1635         }
1636
1637         /* Setup bdaddr */
1638         if (qca_is_wcn399x(soc_type))
1639                 hu->hdev->set_bdaddr = qca_set_bdaddr;
1640         else
1641                 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1642
1643         return ret;
1644 }
1645
1646 static const struct hci_uart_proto qca_proto = {
1647         .id             = HCI_UART_QCA,
1648         .name           = "QCA",
1649         .manufacturer   = 29,
1650         .init_speed     = 115200,
1651         .oper_speed     = 3000000,
1652         .open           = qca_open,
1653         .close          = qca_close,
1654         .flush          = qca_flush,
1655         .setup          = qca_setup,
1656         .recv           = qca_recv,
1657         .enqueue        = qca_enqueue,
1658         .dequeue        = qca_dequeue,
1659 };
1660
1661 static const struct qca_vreg_data qca_soc_data_wcn3990 = {
1662         .soc_type = QCA_WCN3990,
1663         .vregs = (struct qca_vreg []) {
1664                 { "vddio", 15000  },
1665                 { "vddxo", 80000  },
1666                 { "vddrf", 300000 },
1667                 { "vddch0", 450000 },
1668         },
1669         .num_vregs = 4,
1670 };
1671
1672 static const struct qca_vreg_data qca_soc_data_wcn3991 = {
1673         .soc_type = QCA_WCN3991,
1674         .vregs = (struct qca_vreg []) {
1675                 { "vddio", 15000  },
1676                 { "vddxo", 80000  },
1677                 { "vddrf", 300000 },
1678                 { "vddch0", 450000 },
1679         },
1680         .num_vregs = 4,
1681 };
1682
1683 static const struct qca_vreg_data qca_soc_data_wcn3998 = {
1684         .soc_type = QCA_WCN3998,
1685         .vregs = (struct qca_vreg []) {
1686                 { "vddio", 10000  },
1687                 { "vddxo", 80000  },
1688                 { "vddrf", 300000 },
1689                 { "vddch0", 450000 },
1690         },
1691         .num_vregs = 4,
1692 };
1693
1694 static void qca_power_shutdown(struct hci_uart *hu)
1695 {
1696         struct qca_serdev *qcadev;
1697         struct qca_data *qca = hu->priv;
1698         unsigned long flags;
1699         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1700
1701         qcadev = serdev_device_get_drvdata(hu->serdev);
1702
1703         /* From this point we go into power off state. But serial port is
1704          * still open, stop queueing the IBS data and flush all the buffered
1705          * data in skb's.
1706          */
1707         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1708         clear_bit(QCA_IBS_ENABLED, &qca->flags);
1709         qca_flush(hu);
1710         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1711
1712         hu->hdev->hw_error = NULL;
1713         hu->hdev->cmd_timeout = NULL;
1714
1715         /* Non-serdev device usually is powered by external power
1716          * and don't need additional action in driver for power down
1717          */
1718         if (!hu->serdev)
1719                 return;
1720
1721         if (qca_is_wcn399x(soc_type)) {
1722                 host_set_baudrate(hu, 2400);
1723                 qca_send_power_pulse(hu, false);
1724                 qca_regulator_disable(qcadev);
1725         } else {
1726                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1727         }
1728 }
1729
1730 static int qca_power_off(struct hci_dev *hdev)
1731 {
1732         struct hci_uart *hu = hci_get_drvdata(hdev);
1733         struct qca_data *qca = hu->priv;
1734
1735         /* Stop sending shutdown command if soc crashes. */
1736         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1737                 qca_send_pre_shutdown_cmd(hdev);
1738                 usleep_range(8000, 10000);
1739         }
1740
1741         qca->memdump_state = QCA_MEMDUMP_IDLE;
1742         qca_power_shutdown(hu);
1743         return 0;
1744 }
1745
1746 static int qca_regulator_enable(struct qca_serdev *qcadev)
1747 {
1748         struct qca_power *power = qcadev->bt_power;
1749         int ret;
1750
1751         /* Already enabled */
1752         if (power->vregs_on)
1753                 return 0;
1754
1755         BT_DBG("enabling %d regulators)", power->num_vregs);
1756
1757         ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1758         if (ret)
1759                 return ret;
1760
1761         power->vregs_on = true;
1762
1763         return 0;
1764 }
1765
1766 static void qca_regulator_disable(struct qca_serdev *qcadev)
1767 {
1768         struct qca_power *power;
1769
1770         if (!qcadev)
1771                 return;
1772
1773         power = qcadev->bt_power;
1774
1775         /* Already disabled? */
1776         if (!power->vregs_on)
1777                 return;
1778
1779         regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1780         power->vregs_on = false;
1781 }
1782
1783 static int qca_init_regulators(struct qca_power *qca,
1784                                 const struct qca_vreg *vregs, size_t num_vregs)
1785 {
1786         struct regulator_bulk_data *bulk;
1787         int ret;
1788         int i;
1789
1790         bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1791         if (!bulk)
1792                 return -ENOMEM;
1793
1794         for (i = 0; i < num_vregs; i++)
1795                 bulk[i].supply = vregs[i].name;
1796
1797         ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1798         if (ret < 0)
1799                 return ret;
1800
1801         for (i = 0; i < num_vregs; i++) {
1802                 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1803                 if (ret)
1804                         return ret;
1805         }
1806
1807         qca->vreg_bulk = bulk;
1808         qca->num_vregs = num_vregs;
1809
1810         return 0;
1811 }
1812
1813 static int qca_serdev_probe(struct serdev_device *serdev)
1814 {
1815         struct qca_serdev *qcadev;
1816         const struct qca_vreg_data *data;
1817         int err;
1818
1819         qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1820         if (!qcadev)
1821                 return -ENOMEM;
1822
1823         qcadev->serdev_hu.serdev = serdev;
1824         data = device_get_match_data(&serdev->dev);
1825         serdev_device_set_drvdata(serdev, qcadev);
1826         device_property_read_string(&serdev->dev, "firmware-name",
1827                                          &qcadev->firmware_name);
1828         if (data && qca_is_wcn399x(data->soc_type)) {
1829                 qcadev->btsoc_type = data->soc_type;
1830                 qcadev->bt_power = devm_kzalloc(&serdev->dev,
1831                                                 sizeof(struct qca_power),
1832                                                 GFP_KERNEL);
1833                 if (!qcadev->bt_power)
1834                         return -ENOMEM;
1835
1836                 qcadev->bt_power->dev = &serdev->dev;
1837                 err = qca_init_regulators(qcadev->bt_power, data->vregs,
1838                                           data->num_vregs);
1839                 if (err) {
1840                         BT_ERR("Failed to init regulators:%d", err);
1841                         goto out;
1842                 }
1843
1844                 qcadev->bt_power->vregs_on = false;
1845
1846                 device_property_read_u32(&serdev->dev, "max-speed",
1847                                          &qcadev->oper_speed);
1848                 if (!qcadev->oper_speed)
1849                         BT_DBG("UART will pick default operating speed");
1850
1851                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1852                 if (err) {
1853                         BT_ERR("wcn3990 serdev registration failed");
1854                         goto out;
1855                 }
1856         } else {
1857                 qcadev->btsoc_type = QCA_ROME;
1858                 qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable",
1859                                                GPIOD_OUT_LOW);
1860                 if (IS_ERR(qcadev->bt_en)) {
1861                         dev_err(&serdev->dev, "failed to acquire enable gpio\n");
1862                         return PTR_ERR(qcadev->bt_en);
1863                 }
1864
1865                 qcadev->susclk = devm_clk_get(&serdev->dev, NULL);
1866                 if (IS_ERR(qcadev->susclk)) {
1867                         dev_err(&serdev->dev, "failed to acquire clk\n");
1868                         return PTR_ERR(qcadev->susclk);
1869                 }
1870
1871                 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
1872                 if (err)
1873                         return err;
1874
1875                 err = clk_prepare_enable(qcadev->susclk);
1876                 if (err)
1877                         return err;
1878
1879                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1880                 if (err)
1881                         clk_disable_unprepare(qcadev->susclk);
1882         }
1883
1884 out:    return err;
1885
1886 }
1887
1888 static void qca_serdev_remove(struct serdev_device *serdev)
1889 {
1890         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
1891
1892         if (qca_is_wcn399x(qcadev->btsoc_type))
1893                 qca_power_shutdown(&qcadev->serdev_hu);
1894         else
1895                 clk_disable_unprepare(qcadev->susclk);
1896
1897         hci_uart_unregister_device(&qcadev->serdev_hu);
1898 }
1899
1900 static int __maybe_unused qca_suspend(struct device *dev)
1901 {
1902         struct hci_dev *hdev = container_of(dev, struct hci_dev, dev);
1903         struct hci_uart *hu = hci_get_drvdata(hdev);
1904         struct qca_data *qca = hu->priv;
1905         unsigned long flags;
1906         int ret = 0;
1907         u8 cmd;
1908
1909         set_bit(QCA_SUSPENDING, &qca->flags);
1910
1911         /* Device is downloading patch or doesn't support in-band sleep. */
1912         if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
1913                 return 0;
1914
1915         cancel_work_sync(&qca->ws_awake_device);
1916         cancel_work_sync(&qca->ws_awake_rx);
1917
1918         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
1919                                  flags, SINGLE_DEPTH_NESTING);
1920
1921         switch (qca->tx_ibs_state) {
1922         case HCI_IBS_TX_WAKING:
1923                 del_timer(&qca->wake_retrans_timer);
1924                 /* Fall through */
1925         case HCI_IBS_TX_AWAKE:
1926                 del_timer(&qca->tx_idle_timer);
1927
1928                 serdev_device_write_flush(hu->serdev);
1929                 cmd = HCI_IBS_SLEEP_IND;
1930                 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1931
1932                 if (ret < 0) {
1933                         BT_ERR("Failed to send SLEEP to device");
1934                         break;
1935                 }
1936
1937                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
1938                 qca->ibs_sent_slps++;
1939
1940                 qca_wq_serial_tx_clock_vote_off(&qca->ws_tx_vote_off);
1941                 break;
1942
1943         case HCI_IBS_TX_ASLEEP:
1944                 break;
1945
1946         default:
1947                 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
1948                 ret = -EINVAL;
1949                 break;
1950         }
1951
1952         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1953
1954         if (ret < 0)
1955                 goto error;
1956
1957         serdev_device_wait_until_sent(hu->serdev,
1958                                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1959
1960         /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
1961          * to sleep, so that the packet does not wake the system later.
1962          */
1963
1964         ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
1965                         qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
1966                         msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
1967
1968         if (ret > 0)
1969                 return 0;
1970
1971         if (ret == 0)
1972                 ret = -ETIMEDOUT;
1973
1974 error:
1975         clear_bit(QCA_SUSPENDING, &qca->flags);
1976
1977         return ret;
1978 }
1979
1980 static int __maybe_unused qca_resume(struct device *dev)
1981 {
1982         struct hci_dev *hdev = container_of(dev, struct hci_dev, dev);
1983         struct hci_uart *hu = hci_get_drvdata(hdev);
1984         struct qca_data *qca = hu->priv;
1985
1986         clear_bit(QCA_SUSPENDING, &qca->flags);
1987
1988         return 0;
1989 }
1990
1991 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
1992
1993 static const struct of_device_id qca_bluetooth_of_match[] = {
1994         { .compatible = "qcom,qca6174-bt" },
1995         { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
1996         { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
1997         { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
1998         { /* sentinel */ }
1999 };
2000 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2001
2002 static struct serdev_device_driver qca_serdev_driver = {
2003         .probe = qca_serdev_probe,
2004         .remove = qca_serdev_remove,
2005         .driver = {
2006                 .name = "hci_uart_qca",
2007                 .of_match_table = qca_bluetooth_of_match,
2008                 .pm = &qca_pm_ops,
2009         },
2010 };
2011
2012 int __init qca_init(void)
2013 {
2014         serdev_device_driver_register(&qca_serdev_driver);
2015
2016         return hci_uart_register_proto(&qca_proto);
2017 }
2018
2019 int __exit qca_deinit(void)
2020 {
2021         serdev_device_driver_unregister(&qca_serdev_driver);
2022
2023         return hci_uart_unregister_proto(&qca_proto);
2024 }