]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/clk/bcm/clk-bcm2835.c
Merge tag 'for-linus-20180616' of git://git.kernel.dk/linux-block
[linux.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/debugfs.h>
41 #include <linux/delay.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47
48 #define CM_PASSWORD             0x5a000000
49
50 #define CM_GNRICCTL             0x000
51 #define CM_GNRICDIV             0x004
52 # define CM_DIV_FRAC_BITS       12
53 # define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54
55 #define CM_VPUCTL               0x008
56 #define CM_VPUDIV               0x00c
57 #define CM_SYSCTL               0x010
58 #define CM_SYSDIV               0x014
59 #define CM_PERIACTL             0x018
60 #define CM_PERIADIV             0x01c
61 #define CM_PERIICTL             0x020
62 #define CM_PERIIDIV             0x024
63 #define CM_H264CTL              0x028
64 #define CM_H264DIV              0x02c
65 #define CM_ISPCTL               0x030
66 #define CM_ISPDIV               0x034
67 #define CM_V3DCTL               0x038
68 #define CM_V3DDIV               0x03c
69 #define CM_CAM0CTL              0x040
70 #define CM_CAM0DIV              0x044
71 #define CM_CAM1CTL              0x048
72 #define CM_CAM1DIV              0x04c
73 #define CM_CCP2CTL              0x050
74 #define CM_CCP2DIV              0x054
75 #define CM_DSI0ECTL             0x058
76 #define CM_DSI0EDIV             0x05c
77 #define CM_DSI0PCTL             0x060
78 #define CM_DSI0PDIV             0x064
79 #define CM_DPICTL               0x068
80 #define CM_DPIDIV               0x06c
81 #define CM_GP0CTL               0x070
82 #define CM_GP0DIV               0x074
83 #define CM_GP1CTL               0x078
84 #define CM_GP1DIV               0x07c
85 #define CM_GP2CTL               0x080
86 #define CM_GP2DIV               0x084
87 #define CM_HSMCTL               0x088
88 #define CM_HSMDIV               0x08c
89 #define CM_OTPCTL               0x090
90 #define CM_OTPDIV               0x094
91 #define CM_PCMCTL               0x098
92 #define CM_PCMDIV               0x09c
93 #define CM_PWMCTL               0x0a0
94 #define CM_PWMDIV               0x0a4
95 #define CM_SLIMCTL              0x0a8
96 #define CM_SLIMDIV              0x0ac
97 #define CM_SMICTL               0x0b0
98 #define CM_SMIDIV               0x0b4
99 /* no definition for 0x0b8  and 0x0bc */
100 #define CM_TCNTCTL              0x0c0
101 # define CM_TCNT_SRC1_SHIFT             12
102 #define CM_TCNTCNT              0x0c4
103 #define CM_TECCTL               0x0c8
104 #define CM_TECDIV               0x0cc
105 #define CM_TD0CTL               0x0d0
106 #define CM_TD0DIV               0x0d4
107 #define CM_TD1CTL               0x0d8
108 #define CM_TD1DIV               0x0dc
109 #define CM_TSENSCTL             0x0e0
110 #define CM_TSENSDIV             0x0e4
111 #define CM_TIMERCTL             0x0e8
112 #define CM_TIMERDIV             0x0ec
113 #define CM_UARTCTL              0x0f0
114 #define CM_UARTDIV              0x0f4
115 #define CM_VECCTL               0x0f8
116 #define CM_VECDIV               0x0fc
117 #define CM_PULSECTL             0x190
118 #define CM_PULSEDIV             0x194
119 #define CM_SDCCTL               0x1a8
120 #define CM_SDCDIV               0x1ac
121 #define CM_ARMCTL               0x1b0
122 #define CM_AVEOCTL              0x1b8
123 #define CM_AVEODIV              0x1bc
124 #define CM_EMMCCTL              0x1c0
125 #define CM_EMMCDIV              0x1c4
126
127 /* General bits for the CM_*CTL regs */
128 # define CM_ENABLE                      BIT(4)
129 # define CM_KILL                        BIT(5)
130 # define CM_GATE_BIT                    6
131 # define CM_GATE                        BIT(CM_GATE_BIT)
132 # define CM_BUSY                        BIT(7)
133 # define CM_BUSYD                       BIT(8)
134 # define CM_FRAC                        BIT(9)
135 # define CM_SRC_SHIFT                   0
136 # define CM_SRC_BITS                    4
137 # define CM_SRC_MASK                    0xf
138 # define CM_SRC_GND                     0
139 # define CM_SRC_OSC                     1
140 # define CM_SRC_TESTDEBUG0              2
141 # define CM_SRC_TESTDEBUG1              3
142 # define CM_SRC_PLLA_CORE               4
143 # define CM_SRC_PLLA_PER                4
144 # define CM_SRC_PLLC_CORE0              5
145 # define CM_SRC_PLLC_PER                5
146 # define CM_SRC_PLLC_CORE1              8
147 # define CM_SRC_PLLD_CORE               6
148 # define CM_SRC_PLLD_PER                6
149 # define CM_SRC_PLLH_AUX                7
150 # define CM_SRC_PLLC_CORE1              8
151 # define CM_SRC_PLLC_CORE2              9
152
153 #define CM_OSCCOUNT             0x100
154
155 #define CM_PLLA                 0x104
156 # define CM_PLL_ANARST                  BIT(8)
157 # define CM_PLLA_HOLDPER                BIT(7)
158 # define CM_PLLA_LOADPER                BIT(6)
159 # define CM_PLLA_HOLDCORE               BIT(5)
160 # define CM_PLLA_LOADCORE               BIT(4)
161 # define CM_PLLA_HOLDCCP2               BIT(3)
162 # define CM_PLLA_LOADCCP2               BIT(2)
163 # define CM_PLLA_HOLDDSI0               BIT(1)
164 # define CM_PLLA_LOADDSI0               BIT(0)
165
166 #define CM_PLLC                 0x108
167 # define CM_PLLC_HOLDPER                BIT(7)
168 # define CM_PLLC_LOADPER                BIT(6)
169 # define CM_PLLC_HOLDCORE2              BIT(5)
170 # define CM_PLLC_LOADCORE2              BIT(4)
171 # define CM_PLLC_HOLDCORE1              BIT(3)
172 # define CM_PLLC_LOADCORE1              BIT(2)
173 # define CM_PLLC_HOLDCORE0              BIT(1)
174 # define CM_PLLC_LOADCORE0              BIT(0)
175
176 #define CM_PLLD                 0x10c
177 # define CM_PLLD_HOLDPER                BIT(7)
178 # define CM_PLLD_LOADPER                BIT(6)
179 # define CM_PLLD_HOLDCORE               BIT(5)
180 # define CM_PLLD_LOADCORE               BIT(4)
181 # define CM_PLLD_HOLDDSI1               BIT(3)
182 # define CM_PLLD_LOADDSI1               BIT(2)
183 # define CM_PLLD_HOLDDSI0               BIT(1)
184 # define CM_PLLD_LOADDSI0               BIT(0)
185
186 #define CM_PLLH                 0x110
187 # define CM_PLLH_LOADRCAL               BIT(2)
188 # define CM_PLLH_LOADAUX                BIT(1)
189 # define CM_PLLH_LOADPIX                BIT(0)
190
191 #define CM_LOCK                 0x114
192 # define CM_LOCK_FLOCKH                 BIT(12)
193 # define CM_LOCK_FLOCKD                 BIT(11)
194 # define CM_LOCK_FLOCKC                 BIT(10)
195 # define CM_LOCK_FLOCKB                 BIT(9)
196 # define CM_LOCK_FLOCKA                 BIT(8)
197
198 #define CM_EVENT                0x118
199 #define CM_DSI1ECTL             0x158
200 #define CM_DSI1EDIV             0x15c
201 #define CM_DSI1PCTL             0x160
202 #define CM_DSI1PDIV             0x164
203 #define CM_DFTCTL               0x168
204 #define CM_DFTDIV               0x16c
205
206 #define CM_PLLB                 0x170
207 # define CM_PLLB_HOLDARM                BIT(1)
208 # define CM_PLLB_LOADARM                BIT(0)
209
210 #define A2W_PLLA_CTRL           0x1100
211 #define A2W_PLLC_CTRL           0x1120
212 #define A2W_PLLD_CTRL           0x1140
213 #define A2W_PLLH_CTRL           0x1160
214 #define A2W_PLLB_CTRL           0x11e0
215 # define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
216 # define A2W_PLL_CTRL_PWRDN             BIT(16)
217 # define A2W_PLL_CTRL_PDIV_MASK         0x000007000
218 # define A2W_PLL_CTRL_PDIV_SHIFT        12
219 # define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
220 # define A2W_PLL_CTRL_NDIV_SHIFT        0
221
222 #define A2W_PLLA_ANA0           0x1010
223 #define A2W_PLLC_ANA0           0x1030
224 #define A2W_PLLD_ANA0           0x1050
225 #define A2W_PLLH_ANA0           0x1070
226 #define A2W_PLLB_ANA0           0x10f0
227
228 #define A2W_PLL_KA_SHIFT        7
229 #define A2W_PLL_KA_MASK         GENMASK(9, 7)
230 #define A2W_PLL_KI_SHIFT        19
231 #define A2W_PLL_KI_MASK         GENMASK(21, 19)
232 #define A2W_PLL_KP_SHIFT        15
233 #define A2W_PLL_KP_MASK         GENMASK(18, 15)
234
235 #define A2W_PLLH_KA_SHIFT       19
236 #define A2W_PLLH_KA_MASK        GENMASK(21, 19)
237 #define A2W_PLLH_KI_LOW_SHIFT   22
238 #define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
239 #define A2W_PLLH_KI_HIGH_SHIFT  0
240 #define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
241 #define A2W_PLLH_KP_SHIFT       1
242 #define A2W_PLLH_KP_MASK        GENMASK(4, 1)
243
244 #define A2W_XOSC_CTRL           0x1190
245 # define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
246 # define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
247 # define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
248 # define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
249 # define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
250 # define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
251 # define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
252 # define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
253
254 #define A2W_PLLA_FRAC           0x1200
255 #define A2W_PLLC_FRAC           0x1220
256 #define A2W_PLLD_FRAC           0x1240
257 #define A2W_PLLH_FRAC           0x1260
258 #define A2W_PLLB_FRAC           0x12e0
259 # define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
260 # define A2W_PLL_FRAC_BITS              20
261
262 #define A2W_PLL_CHANNEL_DISABLE         BIT(8)
263 #define A2W_PLL_DIV_BITS                8
264 #define A2W_PLL_DIV_SHIFT               0
265
266 #define A2W_PLLA_DSI0           0x1300
267 #define A2W_PLLA_CORE           0x1400
268 #define A2W_PLLA_PER            0x1500
269 #define A2W_PLLA_CCP2           0x1600
270
271 #define A2W_PLLC_CORE2          0x1320
272 #define A2W_PLLC_CORE1          0x1420
273 #define A2W_PLLC_PER            0x1520
274 #define A2W_PLLC_CORE0          0x1620
275
276 #define A2W_PLLD_DSI0           0x1340
277 #define A2W_PLLD_CORE           0x1440
278 #define A2W_PLLD_PER            0x1540
279 #define A2W_PLLD_DSI1           0x1640
280
281 #define A2W_PLLH_AUX            0x1360
282 #define A2W_PLLH_RCAL           0x1460
283 #define A2W_PLLH_PIX            0x1560
284 #define A2W_PLLH_STS            0x1660
285
286 #define A2W_PLLH_CTRLR          0x1960
287 #define A2W_PLLH_FRACR          0x1a60
288 #define A2W_PLLH_AUXR           0x1b60
289 #define A2W_PLLH_RCALR          0x1c60
290 #define A2W_PLLH_PIXR           0x1d60
291 #define A2W_PLLH_STSR           0x1e60
292
293 #define A2W_PLLB_ARM            0x13e0
294 #define A2W_PLLB_SP0            0x14e0
295 #define A2W_PLLB_SP1            0x15e0
296 #define A2W_PLLB_SP2            0x16e0
297
298 #define LOCK_TIMEOUT_NS         100000000
299 #define BCM2835_MAX_FB_RATE     1750000000u
300
301 /*
302  * Names of clocks used within the driver that need to be replaced
303  * with an external parent's name.  This array is in the order that
304  * the clocks node in the DT references external clocks.
305  */
306 static const char *const cprman_parent_names[] = {
307         "xosc",
308         "dsi0_byte",
309         "dsi0_ddr2",
310         "dsi0_ddr",
311         "dsi1_byte",
312         "dsi1_ddr2",
313         "dsi1_ddr",
314 };
315
316 struct bcm2835_cprman {
317         struct device *dev;
318         void __iomem *regs;
319         spinlock_t regs_lock; /* spinlock for all clocks */
320
321         /*
322          * Real names of cprman clock parents looked up through
323          * of_clk_get_parent_name(), which will be used in the
324          * parent_names[] arrays for clock registration.
325          */
326         const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
327
328         /* Must be last */
329         struct clk_hw_onecell_data onecell;
330 };
331
332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
333 {
334         writel(CM_PASSWORD | val, cprman->regs + reg);
335 }
336
337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
338 {
339         return readl(cprman->regs + reg);
340 }
341
342 /* Does a cycle of measuring a clock through the TCNT clock, which may
343  * source from many other clocks in the system.
344  */
345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
346                                               u32 tcnt_mux)
347 {
348         u32 osccount = 19200; /* 1ms */
349         u32 count;
350         ktime_t timeout;
351
352         spin_lock(&cprman->regs_lock);
353
354         cprman_write(cprman, CM_TCNTCTL, CM_KILL);
355
356         cprman_write(cprman, CM_TCNTCTL,
357                      (tcnt_mux & CM_SRC_MASK) |
358                      (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
359
360         cprman_write(cprman, CM_OSCCOUNT, osccount);
361
362         /* do a kind delay at the start */
363         mdelay(1);
364
365         /* Finish off whatever is left of OSCCOUNT */
366         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
367         while (cprman_read(cprman, CM_OSCCOUNT)) {
368                 if (ktime_after(ktime_get(), timeout)) {
369                         dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
370                         count = 0;
371                         goto out;
372                 }
373                 cpu_relax();
374         }
375
376         /* Wait for BUSY to clear. */
377         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
378         while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
379                 if (ktime_after(ktime_get(), timeout)) {
380                         dev_err(cprman->dev, "timeout waiting for !BUSY\n");
381                         count = 0;
382                         goto out;
383                 }
384                 cpu_relax();
385         }
386
387         count = cprman_read(cprman, CM_TCNTCNT);
388
389         cprman_write(cprman, CM_TCNTCTL, 0);
390
391 out:
392         spin_unlock(&cprman->regs_lock);
393
394         return count * 1000;
395 }
396
397 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
398                                   struct debugfs_reg32 *regs, size_t nregs,
399                                   struct dentry *dentry)
400 {
401         struct debugfs_regset32 *regset;
402
403         regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
404         if (!regset)
405                 return;
406
407         regset->regs = regs;
408         regset->nregs = nregs;
409         regset->base = cprman->regs + base;
410
411         debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
412 }
413
414 struct bcm2835_pll_data {
415         const char *name;
416         u32 cm_ctrl_reg;
417         u32 a2w_ctrl_reg;
418         u32 frac_reg;
419         u32 ana_reg_base;
420         u32 reference_enable_mask;
421         /* Bit in CM_LOCK to indicate when the PLL has locked. */
422         u32 lock_mask;
423
424         const struct bcm2835_pll_ana_bits *ana;
425
426         unsigned long min_rate;
427         unsigned long max_rate;
428         /*
429          * Highest rate for the VCO before we have to use the
430          * pre-divide-by-2.
431          */
432         unsigned long max_fb_rate;
433 };
434
435 struct bcm2835_pll_ana_bits {
436         u32 mask0;
437         u32 set0;
438         u32 mask1;
439         u32 set1;
440         u32 mask3;
441         u32 set3;
442         u32 fb_prediv_mask;
443 };
444
445 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
446         .mask0 = 0,
447         .set0 = 0,
448         .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
449         .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
450         .mask3 = A2W_PLL_KA_MASK,
451         .set3 = (2 << A2W_PLL_KA_SHIFT),
452         .fb_prediv_mask = BIT(14),
453 };
454
455 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
456         .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
457         .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
458         .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
459         .set1 = (6 << A2W_PLLH_KP_SHIFT),
460         .mask3 = 0,
461         .set3 = 0,
462         .fb_prediv_mask = BIT(11),
463 };
464
465 struct bcm2835_pll_divider_data {
466         const char *name;
467         const char *source_pll;
468
469         u32 cm_reg;
470         u32 a2w_reg;
471
472         u32 load_mask;
473         u32 hold_mask;
474         u32 fixed_divider;
475         u32 flags;
476 };
477
478 struct bcm2835_clock_data {
479         const char *name;
480
481         const char *const *parents;
482         int num_mux_parents;
483
484         /* Bitmap encoding which parents accept rate change propagation. */
485         unsigned int set_rate_parent;
486
487         u32 ctl_reg;
488         u32 div_reg;
489
490         /* Number of integer bits in the divider */
491         u32 int_bits;
492         /* Number of fractional bits in the divider */
493         u32 frac_bits;
494
495         u32 flags;
496
497         bool is_vpu_clock;
498         bool is_mash_clock;
499         bool low_jitter;
500
501         u32 tcnt_mux;
502 };
503
504 struct bcm2835_gate_data {
505         const char *name;
506         const char *parent;
507
508         u32 ctl_reg;
509 };
510
511 struct bcm2835_pll {
512         struct clk_hw hw;
513         struct bcm2835_cprman *cprman;
514         const struct bcm2835_pll_data *data;
515 };
516
517 static int bcm2835_pll_is_on(struct clk_hw *hw)
518 {
519         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
520         struct bcm2835_cprman *cprman = pll->cprman;
521         const struct bcm2835_pll_data *data = pll->data;
522
523         return cprman_read(cprman, data->a2w_ctrl_reg) &
524                 A2W_PLL_CTRL_PRST_DISABLE;
525 }
526
527 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
528                                              unsigned long parent_rate,
529                                              u32 *ndiv, u32 *fdiv)
530 {
531         u64 div;
532
533         div = (u64)rate << A2W_PLL_FRAC_BITS;
534         do_div(div, parent_rate);
535
536         *ndiv = div >> A2W_PLL_FRAC_BITS;
537         *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
538 }
539
540 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
541                                            u32 ndiv, u32 fdiv, u32 pdiv)
542 {
543         u64 rate;
544
545         if (pdiv == 0)
546                 return 0;
547
548         rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
549         do_div(rate, pdiv);
550         return rate >> A2W_PLL_FRAC_BITS;
551 }
552
553 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
554                                    unsigned long *parent_rate)
555 {
556         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
557         const struct bcm2835_pll_data *data = pll->data;
558         u32 ndiv, fdiv;
559
560         rate = clamp(rate, data->min_rate, data->max_rate);
561
562         bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
563
564         return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
565 }
566
567 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
568                                           unsigned long parent_rate)
569 {
570         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
571         struct bcm2835_cprman *cprman = pll->cprman;
572         const struct bcm2835_pll_data *data = pll->data;
573         u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
574         u32 ndiv, pdiv, fdiv;
575         bool using_prediv;
576
577         if (parent_rate == 0)
578                 return 0;
579
580         fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
581         ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
582         pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
583         using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
584                 data->ana->fb_prediv_mask;
585
586         if (using_prediv) {
587                 ndiv *= 2;
588                 fdiv *= 2;
589         }
590
591         return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
592 }
593
594 static void bcm2835_pll_off(struct clk_hw *hw)
595 {
596         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
597         struct bcm2835_cprman *cprman = pll->cprman;
598         const struct bcm2835_pll_data *data = pll->data;
599
600         spin_lock(&cprman->regs_lock);
601         cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
602         cprman_write(cprman, data->a2w_ctrl_reg,
603                      cprman_read(cprman, data->a2w_ctrl_reg) |
604                      A2W_PLL_CTRL_PWRDN);
605         spin_unlock(&cprman->regs_lock);
606 }
607
608 static int bcm2835_pll_on(struct clk_hw *hw)
609 {
610         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
611         struct bcm2835_cprman *cprman = pll->cprman;
612         const struct bcm2835_pll_data *data = pll->data;
613         ktime_t timeout;
614
615         cprman_write(cprman, data->a2w_ctrl_reg,
616                      cprman_read(cprman, data->a2w_ctrl_reg) &
617                      ~A2W_PLL_CTRL_PWRDN);
618
619         /* Take the PLL out of reset. */
620         spin_lock(&cprman->regs_lock);
621         cprman_write(cprman, data->cm_ctrl_reg,
622                      cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
623         spin_unlock(&cprman->regs_lock);
624
625         /* Wait for the PLL to lock. */
626         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
627         while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
628                 if (ktime_after(ktime_get(), timeout)) {
629                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
630                                 clk_hw_get_name(hw));
631                         return -ETIMEDOUT;
632                 }
633
634                 cpu_relax();
635         }
636
637         cprman_write(cprman, data->a2w_ctrl_reg,
638                      cprman_read(cprman, data->a2w_ctrl_reg) |
639                      A2W_PLL_CTRL_PRST_DISABLE);
640
641         return 0;
642 }
643
644 static void
645 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
646 {
647         int i;
648
649         /*
650          * ANA register setup is done as a series of writes to
651          * ANA3-ANA0, in that order.  This lets us write all 4
652          * registers as a single cycle of the serdes interface (taking
653          * 100 xosc clocks), whereas if we were to update ana0, 1, and
654          * 3 individually through their partial-write registers, each
655          * would be their own serdes cycle.
656          */
657         for (i = 3; i >= 0; i--)
658                 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
659 }
660
661 static int bcm2835_pll_set_rate(struct clk_hw *hw,
662                                 unsigned long rate, unsigned long parent_rate)
663 {
664         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
665         struct bcm2835_cprman *cprman = pll->cprman;
666         const struct bcm2835_pll_data *data = pll->data;
667         bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
668         u32 ndiv, fdiv, a2w_ctl;
669         u32 ana[4];
670         int i;
671
672         if (rate > data->max_fb_rate) {
673                 use_fb_prediv = true;
674                 rate /= 2;
675         } else {
676                 use_fb_prediv = false;
677         }
678
679         bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
680
681         for (i = 3; i >= 0; i--)
682                 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
683
684         was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
685
686         ana[0] &= ~data->ana->mask0;
687         ana[0] |= data->ana->set0;
688         ana[1] &= ~data->ana->mask1;
689         ana[1] |= data->ana->set1;
690         ana[3] &= ~data->ana->mask3;
691         ana[3] |= data->ana->set3;
692
693         if (was_using_prediv && !use_fb_prediv) {
694                 ana[1] &= ~data->ana->fb_prediv_mask;
695                 do_ana_setup_first = true;
696         } else if (!was_using_prediv && use_fb_prediv) {
697                 ana[1] |= data->ana->fb_prediv_mask;
698                 do_ana_setup_first = false;
699         } else {
700                 do_ana_setup_first = true;
701         }
702
703         /* Unmask the reference clock from the oscillator. */
704         spin_lock(&cprman->regs_lock);
705         cprman_write(cprman, A2W_XOSC_CTRL,
706                      cprman_read(cprman, A2W_XOSC_CTRL) |
707                      data->reference_enable_mask);
708         spin_unlock(&cprman->regs_lock);
709
710         if (do_ana_setup_first)
711                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
712
713         /* Set the PLL multiplier from the oscillator. */
714         cprman_write(cprman, data->frac_reg, fdiv);
715
716         a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
717         a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
718         a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
719         a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
720         a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
721         cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
722
723         if (!do_ana_setup_first)
724                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
725
726         return 0;
727 }
728
729 static void bcm2835_pll_debug_init(struct clk_hw *hw,
730                                   struct dentry *dentry)
731 {
732         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
733         struct bcm2835_cprman *cprman = pll->cprman;
734         const struct bcm2835_pll_data *data = pll->data;
735         struct debugfs_reg32 *regs;
736
737         regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
738         if (!regs)
739                 return;
740
741         regs[0].name = "cm_ctrl";
742         regs[0].offset = data->cm_ctrl_reg;
743         regs[1].name = "a2w_ctrl";
744         regs[1].offset = data->a2w_ctrl_reg;
745         regs[2].name = "frac";
746         regs[2].offset = data->frac_reg;
747         regs[3].name = "ana0";
748         regs[3].offset = data->ana_reg_base + 0 * 4;
749         regs[4].name = "ana1";
750         regs[4].offset = data->ana_reg_base + 1 * 4;
751         regs[5].name = "ana2";
752         regs[5].offset = data->ana_reg_base + 2 * 4;
753         regs[6].name = "ana3";
754         regs[6].offset = data->ana_reg_base + 3 * 4;
755
756         bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
757 }
758
759 static const struct clk_ops bcm2835_pll_clk_ops = {
760         .is_prepared = bcm2835_pll_is_on,
761         .prepare = bcm2835_pll_on,
762         .unprepare = bcm2835_pll_off,
763         .recalc_rate = bcm2835_pll_get_rate,
764         .set_rate = bcm2835_pll_set_rate,
765         .round_rate = bcm2835_pll_round_rate,
766         .debug_init = bcm2835_pll_debug_init,
767 };
768
769 struct bcm2835_pll_divider {
770         struct clk_divider div;
771         struct bcm2835_cprman *cprman;
772         const struct bcm2835_pll_divider_data *data;
773 };
774
775 static struct bcm2835_pll_divider *
776 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
777 {
778         return container_of(hw, struct bcm2835_pll_divider, div.hw);
779 }
780
781 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
782 {
783         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
784         struct bcm2835_cprman *cprman = divider->cprman;
785         const struct bcm2835_pll_divider_data *data = divider->data;
786
787         return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
788 }
789
790 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
791                                            unsigned long rate,
792                                            unsigned long *parent_rate)
793 {
794         return clk_divider_ops.round_rate(hw, rate, parent_rate);
795 }
796
797 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
798                                                   unsigned long parent_rate)
799 {
800         return clk_divider_ops.recalc_rate(hw, parent_rate);
801 }
802
803 static void bcm2835_pll_divider_off(struct clk_hw *hw)
804 {
805         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
806         struct bcm2835_cprman *cprman = divider->cprman;
807         const struct bcm2835_pll_divider_data *data = divider->data;
808
809         spin_lock(&cprman->regs_lock);
810         cprman_write(cprman, data->cm_reg,
811                      (cprman_read(cprman, data->cm_reg) &
812                       ~data->load_mask) | data->hold_mask);
813         cprman_write(cprman, data->a2w_reg,
814                      cprman_read(cprman, data->a2w_reg) |
815                      A2W_PLL_CHANNEL_DISABLE);
816         spin_unlock(&cprman->regs_lock);
817 }
818
819 static int bcm2835_pll_divider_on(struct clk_hw *hw)
820 {
821         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
822         struct bcm2835_cprman *cprman = divider->cprman;
823         const struct bcm2835_pll_divider_data *data = divider->data;
824
825         spin_lock(&cprman->regs_lock);
826         cprman_write(cprman, data->a2w_reg,
827                      cprman_read(cprman, data->a2w_reg) &
828                      ~A2W_PLL_CHANNEL_DISABLE);
829
830         cprman_write(cprman, data->cm_reg,
831                      cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
832         spin_unlock(&cprman->regs_lock);
833
834         return 0;
835 }
836
837 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
838                                         unsigned long rate,
839                                         unsigned long parent_rate)
840 {
841         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842         struct bcm2835_cprman *cprman = divider->cprman;
843         const struct bcm2835_pll_divider_data *data = divider->data;
844         u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
845
846         div = DIV_ROUND_UP_ULL(parent_rate, rate);
847
848         div = min(div, max_div);
849         if (div == max_div)
850                 div = 0;
851
852         cprman_write(cprman, data->a2w_reg, div);
853         cm = cprman_read(cprman, data->cm_reg);
854         cprman_write(cprman, data->cm_reg, cm | data->load_mask);
855         cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
856
857         return 0;
858 }
859
860 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
861                                            struct dentry *dentry)
862 {
863         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
864         struct bcm2835_cprman *cprman = divider->cprman;
865         const struct bcm2835_pll_divider_data *data = divider->data;
866         struct debugfs_reg32 *regs;
867
868         regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
869         if (!regs)
870                 return;
871
872         regs[0].name = "cm";
873         regs[0].offset = data->cm_reg;
874         regs[1].name = "a2w";
875         regs[1].offset = data->a2w_reg;
876
877         bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
878 }
879
880 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
881         .is_prepared = bcm2835_pll_divider_is_on,
882         .prepare = bcm2835_pll_divider_on,
883         .unprepare = bcm2835_pll_divider_off,
884         .recalc_rate = bcm2835_pll_divider_get_rate,
885         .set_rate = bcm2835_pll_divider_set_rate,
886         .round_rate = bcm2835_pll_divider_round_rate,
887         .debug_init = bcm2835_pll_divider_debug_init,
888 };
889
890 /*
891  * The CM dividers do fixed-point division, so we can't use the
892  * generic integer divider code like the PLL dividers do (and we can't
893  * fake it by having some fixed shifts preceding it in the clock tree,
894  * because we'd run out of bits in a 32-bit unsigned long).
895  */
896 struct bcm2835_clock {
897         struct clk_hw hw;
898         struct bcm2835_cprman *cprman;
899         const struct bcm2835_clock_data *data;
900 };
901
902 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
903 {
904         return container_of(hw, struct bcm2835_clock, hw);
905 }
906
907 static int bcm2835_clock_is_on(struct clk_hw *hw)
908 {
909         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
910         struct bcm2835_cprman *cprman = clock->cprman;
911         const struct bcm2835_clock_data *data = clock->data;
912
913         return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
914 }
915
916 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
917                                     unsigned long rate,
918                                     unsigned long parent_rate,
919                                     bool round_up)
920 {
921         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
922         const struct bcm2835_clock_data *data = clock->data;
923         u32 unused_frac_mask =
924                 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
925         u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
926         u64 rem;
927         u32 div, mindiv, maxdiv;
928
929         rem = do_div(temp, rate);
930         div = temp;
931
932         /* Round up and mask off the unused bits */
933         if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
934                 div += unused_frac_mask + 1;
935         div &= ~unused_frac_mask;
936
937         /* different clamping limits apply for a mash clock */
938         if (data->is_mash_clock) {
939                 /* clamp to min divider of 2 */
940                 mindiv = 2 << CM_DIV_FRAC_BITS;
941                 /* clamp to the highest possible integer divider */
942                 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
943         } else {
944                 /* clamp to min divider of 1 */
945                 mindiv = 1 << CM_DIV_FRAC_BITS;
946                 /* clamp to the highest possible fractional divider */
947                 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
948                                  CM_DIV_FRAC_BITS - data->frac_bits);
949         }
950
951         /* apply the clamping  limits */
952         div = max_t(u32, div, mindiv);
953         div = min_t(u32, div, maxdiv);
954
955         return div;
956 }
957
958 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
959                                             unsigned long parent_rate,
960                                             u32 div)
961 {
962         const struct bcm2835_clock_data *data = clock->data;
963         u64 temp;
964
965         if (data->int_bits == 0 && data->frac_bits == 0)
966                 return parent_rate;
967
968         /*
969          * The divisor is a 12.12 fixed point field, but only some of
970          * the bits are populated in any given clock.
971          */
972         div >>= CM_DIV_FRAC_BITS - data->frac_bits;
973         div &= (1 << (data->int_bits + data->frac_bits)) - 1;
974
975         if (div == 0)
976                 return 0;
977
978         temp = (u64)parent_rate << data->frac_bits;
979
980         do_div(temp, div);
981
982         return temp;
983 }
984
985 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
986                                             unsigned long parent_rate)
987 {
988         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
989         struct bcm2835_cprman *cprman = clock->cprman;
990         const struct bcm2835_clock_data *data = clock->data;
991         u32 div;
992
993         if (data->int_bits == 0 && data->frac_bits == 0)
994                 return parent_rate;
995
996         div = cprman_read(cprman, data->div_reg);
997
998         return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
999 }
1000
1001 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1002 {
1003         struct bcm2835_cprman *cprman = clock->cprman;
1004         const struct bcm2835_clock_data *data = clock->data;
1005         ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1006
1007         while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1008                 if (ktime_after(ktime_get(), timeout)) {
1009                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1010                                 clk_hw_get_name(&clock->hw));
1011                         return;
1012                 }
1013                 cpu_relax();
1014         }
1015 }
1016
1017 static void bcm2835_clock_off(struct clk_hw *hw)
1018 {
1019         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1020         struct bcm2835_cprman *cprman = clock->cprman;
1021         const struct bcm2835_clock_data *data = clock->data;
1022
1023         spin_lock(&cprman->regs_lock);
1024         cprman_write(cprman, data->ctl_reg,
1025                      cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1026         spin_unlock(&cprman->regs_lock);
1027
1028         /* BUSY will remain high until the divider completes its cycle. */
1029         bcm2835_clock_wait_busy(clock);
1030 }
1031
1032 static int bcm2835_clock_on(struct clk_hw *hw)
1033 {
1034         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1035         struct bcm2835_cprman *cprman = clock->cprman;
1036         const struct bcm2835_clock_data *data = clock->data;
1037
1038         spin_lock(&cprman->regs_lock);
1039         cprman_write(cprman, data->ctl_reg,
1040                      cprman_read(cprman, data->ctl_reg) |
1041                      CM_ENABLE |
1042                      CM_GATE);
1043         spin_unlock(&cprman->regs_lock);
1044
1045         /* Debug code to measure the clock once it's turned on to see
1046          * if it's ticking at the rate we expect.
1047          */
1048         if (data->tcnt_mux && false) {
1049                 dev_info(cprman->dev,
1050                          "clk %s: rate %ld, measure %ld\n",
1051                          data->name,
1052                          clk_hw_get_rate(hw),
1053                          bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1054         }
1055
1056         return 0;
1057 }
1058
1059 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1060                                   unsigned long rate, unsigned long parent_rate)
1061 {
1062         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1063         struct bcm2835_cprman *cprman = clock->cprman;
1064         const struct bcm2835_clock_data *data = clock->data;
1065         u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1066         u32 ctl;
1067
1068         spin_lock(&cprman->regs_lock);
1069
1070         /*
1071          * Setting up frac support
1072          *
1073          * In principle it is recommended to stop/start the clock first,
1074          * but as we set CLK_SET_RATE_GATE during registration of the
1075          * clock this requirement should be take care of by the
1076          * clk-framework.
1077          */
1078         ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1079         ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1080         cprman_write(cprman, data->ctl_reg, ctl);
1081
1082         cprman_write(cprman, data->div_reg, div);
1083
1084         spin_unlock(&cprman->regs_lock);
1085
1086         return 0;
1087 }
1088
1089 static bool
1090 bcm2835_clk_is_pllc(struct clk_hw *hw)
1091 {
1092         if (!hw)
1093                 return false;
1094
1095         return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1096 }
1097
1098 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1099                                                         int parent_idx,
1100                                                         unsigned long rate,
1101                                                         u32 *div,
1102                                                         unsigned long *prate,
1103                                                         unsigned long *avgrate)
1104 {
1105         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1106         struct bcm2835_cprman *cprman = clock->cprman;
1107         const struct bcm2835_clock_data *data = clock->data;
1108         unsigned long best_rate = 0;
1109         u32 curdiv, mindiv, maxdiv;
1110         struct clk_hw *parent;
1111
1112         parent = clk_hw_get_parent_by_index(hw, parent_idx);
1113
1114         if (!(BIT(parent_idx) & data->set_rate_parent)) {
1115                 *prate = clk_hw_get_rate(parent);
1116                 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1117
1118                 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1119
1120                 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1121                         unsigned long high, low;
1122                         u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1123
1124                         high = bcm2835_clock_rate_from_divisor(clock, *prate,
1125                                                                int_div);
1126                         int_div += CM_DIV_FRAC_MASK + 1;
1127                         low = bcm2835_clock_rate_from_divisor(clock, *prate,
1128                                                               int_div);
1129
1130                         /*
1131                          * Return a value which is the maximum deviation
1132                          * below the ideal rate, for use as a metric.
1133                          */
1134                         return *avgrate - max(*avgrate - low, high - *avgrate);
1135                 }
1136                 return *avgrate;
1137         }
1138
1139         if (data->frac_bits)
1140                 dev_warn(cprman->dev,
1141                         "frac bits are not used when propagating rate change");
1142
1143         /* clamp to min divider of 2 if we're dealing with a mash clock */
1144         mindiv = data->is_mash_clock ? 2 : 1;
1145         maxdiv = BIT(data->int_bits) - 1;
1146
1147         /* TODO: Be smart, and only test a subset of the available divisors. */
1148         for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1149                 unsigned long tmp_rate;
1150
1151                 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1152                 tmp_rate /= curdiv;
1153                 if (curdiv == mindiv ||
1154                     (tmp_rate > best_rate && tmp_rate <= rate))
1155                         best_rate = tmp_rate;
1156
1157                 if (best_rate == rate)
1158                         break;
1159         }
1160
1161         *div = curdiv << CM_DIV_FRAC_BITS;
1162         *prate = curdiv * best_rate;
1163         *avgrate = best_rate;
1164
1165         return best_rate;
1166 }
1167
1168 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1169                                         struct clk_rate_request *req)
1170 {
1171         struct clk_hw *parent, *best_parent = NULL;
1172         bool current_parent_is_pllc;
1173         unsigned long rate, best_rate = 0;
1174         unsigned long prate, best_prate = 0;
1175         unsigned long avgrate, best_avgrate = 0;
1176         size_t i;
1177         u32 div;
1178
1179         current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1180
1181         /*
1182          * Select parent clock that results in the closest but lower rate
1183          */
1184         for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1185                 parent = clk_hw_get_parent_by_index(hw, i);
1186                 if (!parent)
1187                         continue;
1188
1189                 /*
1190                  * Don't choose a PLLC-derived clock as our parent
1191                  * unless it had been manually set that way.  PLLC's
1192                  * frequency gets adjusted by the firmware due to
1193                  * over-temp or under-voltage conditions, without
1194                  * prior notification to our clock consumer.
1195                  */
1196                 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1197                         continue;
1198
1199                 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1200                                                           &div, &prate,
1201                                                           &avgrate);
1202                 if (rate > best_rate && rate <= req->rate) {
1203                         best_parent = parent;
1204                         best_prate = prate;
1205                         best_rate = rate;
1206                         best_avgrate = avgrate;
1207                 }
1208         }
1209
1210         if (!best_parent)
1211                 return -EINVAL;
1212
1213         req->best_parent_hw = best_parent;
1214         req->best_parent_rate = best_prate;
1215
1216         req->rate = best_avgrate;
1217
1218         return 0;
1219 }
1220
1221 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1222 {
1223         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1224         struct bcm2835_cprman *cprman = clock->cprman;
1225         const struct bcm2835_clock_data *data = clock->data;
1226         u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1227
1228         cprman_write(cprman, data->ctl_reg, src);
1229         return 0;
1230 }
1231
1232 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1233 {
1234         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1235         struct bcm2835_cprman *cprman = clock->cprman;
1236         const struct bcm2835_clock_data *data = clock->data;
1237         u32 src = cprman_read(cprman, data->ctl_reg);
1238
1239         return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1240 }
1241
1242 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1243         {
1244                 .name = "ctl",
1245                 .offset = 0,
1246         },
1247         {
1248                 .name = "div",
1249                 .offset = 4,
1250         },
1251 };
1252
1253 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1254                                     struct dentry *dentry)
1255 {
1256         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1257         struct bcm2835_cprman *cprman = clock->cprman;
1258         const struct bcm2835_clock_data *data = clock->data;
1259
1260         bcm2835_debugfs_regset(cprman, data->ctl_reg,
1261                 bcm2835_debugfs_clock_reg32,
1262                 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1263                 dentry);
1264 }
1265
1266 static const struct clk_ops bcm2835_clock_clk_ops = {
1267         .is_prepared = bcm2835_clock_is_on,
1268         .prepare = bcm2835_clock_on,
1269         .unprepare = bcm2835_clock_off,
1270         .recalc_rate = bcm2835_clock_get_rate,
1271         .set_rate = bcm2835_clock_set_rate,
1272         .determine_rate = bcm2835_clock_determine_rate,
1273         .set_parent = bcm2835_clock_set_parent,
1274         .get_parent = bcm2835_clock_get_parent,
1275         .debug_init = bcm2835_clock_debug_init,
1276 };
1277
1278 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1279 {
1280         return true;
1281 }
1282
1283 /*
1284  * The VPU clock can never be disabled (it doesn't have an ENABLE
1285  * bit), so it gets its own set of clock ops.
1286  */
1287 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1288         .is_prepared = bcm2835_vpu_clock_is_on,
1289         .recalc_rate = bcm2835_clock_get_rate,
1290         .set_rate = bcm2835_clock_set_rate,
1291         .determine_rate = bcm2835_clock_determine_rate,
1292         .set_parent = bcm2835_clock_set_parent,
1293         .get_parent = bcm2835_clock_get_parent,
1294         .debug_init = bcm2835_clock_debug_init,
1295 };
1296
1297 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1298                                            const struct bcm2835_pll_data *data)
1299 {
1300         struct bcm2835_pll *pll;
1301         struct clk_init_data init;
1302         int ret;
1303
1304         memset(&init, 0, sizeof(init));
1305
1306         /* All of the PLLs derive from the external oscillator. */
1307         init.parent_names = &cprman->real_parent_names[0];
1308         init.num_parents = 1;
1309         init.name = data->name;
1310         init.ops = &bcm2835_pll_clk_ops;
1311         init.flags = CLK_IGNORE_UNUSED;
1312
1313         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1314         if (!pll)
1315                 return NULL;
1316
1317         pll->cprman = cprman;
1318         pll->data = data;
1319         pll->hw.init = &init;
1320
1321         ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1322         if (ret)
1323                 return NULL;
1324         return &pll->hw;
1325 }
1326
1327 static struct clk_hw *
1328 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1329                              const struct bcm2835_pll_divider_data *data)
1330 {
1331         struct bcm2835_pll_divider *divider;
1332         struct clk_init_data init;
1333         const char *divider_name;
1334         int ret;
1335
1336         if (data->fixed_divider != 1) {
1337                 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1338                                               "%s_prediv", data->name);
1339                 if (!divider_name)
1340                         return NULL;
1341         } else {
1342                 divider_name = data->name;
1343         }
1344
1345         memset(&init, 0, sizeof(init));
1346
1347         init.parent_names = &data->source_pll;
1348         init.num_parents = 1;
1349         init.name = divider_name;
1350         init.ops = &bcm2835_pll_divider_clk_ops;
1351         init.flags = data->flags | CLK_IGNORE_UNUSED;
1352
1353         divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1354         if (!divider)
1355                 return NULL;
1356
1357         divider->div.reg = cprman->regs + data->a2w_reg;
1358         divider->div.shift = A2W_PLL_DIV_SHIFT;
1359         divider->div.width = A2W_PLL_DIV_BITS;
1360         divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1361         divider->div.lock = &cprman->regs_lock;
1362         divider->div.hw.init = &init;
1363         divider->div.table = NULL;
1364
1365         divider->cprman = cprman;
1366         divider->data = data;
1367
1368         ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1369         if (ret)
1370                 return ERR_PTR(ret);
1371
1372         /*
1373          * PLLH's channels have a fixed divide by 10 afterwards, which
1374          * is what our consumers are actually using.
1375          */
1376         if (data->fixed_divider != 1) {
1377                 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1378                                                     divider_name,
1379                                                     CLK_SET_RATE_PARENT,
1380                                                     1,
1381                                                     data->fixed_divider);
1382         }
1383
1384         return &divider->div.hw;
1385 }
1386
1387 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1388                                           const struct bcm2835_clock_data *data)
1389 {
1390         struct bcm2835_clock *clock;
1391         struct clk_init_data init;
1392         const char *parents[1 << CM_SRC_BITS];
1393         size_t i;
1394         int ret;
1395
1396         /*
1397          * Replace our strings referencing parent clocks with the
1398          * actual clock-output-name of the parent.
1399          */
1400         for (i = 0; i < data->num_mux_parents; i++) {
1401                 parents[i] = data->parents[i];
1402
1403                 ret = match_string(cprman_parent_names,
1404                                    ARRAY_SIZE(cprman_parent_names),
1405                                    parents[i]);
1406                 if (ret >= 0)
1407                         parents[i] = cprman->real_parent_names[ret];
1408         }
1409
1410         memset(&init, 0, sizeof(init));
1411         init.parent_names = parents;
1412         init.num_parents = data->num_mux_parents;
1413         init.name = data->name;
1414         init.flags = data->flags | CLK_IGNORE_UNUSED;
1415
1416         /*
1417          * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1418          * rate changes on at least of the parents.
1419          */
1420         if (data->set_rate_parent)
1421                 init.flags |= CLK_SET_RATE_PARENT;
1422
1423         if (data->is_vpu_clock) {
1424                 init.ops = &bcm2835_vpu_clock_clk_ops;
1425         } else {
1426                 init.ops = &bcm2835_clock_clk_ops;
1427                 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1428
1429                 /* If the clock wasn't actually enabled at boot, it's not
1430                  * critical.
1431                  */
1432                 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1433                         init.flags &= ~CLK_IS_CRITICAL;
1434         }
1435
1436         clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1437         if (!clock)
1438                 return NULL;
1439
1440         clock->cprman = cprman;
1441         clock->data = data;
1442         clock->hw.init = &init;
1443
1444         ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1445         if (ret)
1446                 return ERR_PTR(ret);
1447         return &clock->hw;
1448 }
1449
1450 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1451                                          const struct bcm2835_gate_data *data)
1452 {
1453         return clk_register_gate(cprman->dev, data->name, data->parent,
1454                                  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1455                                  cprman->regs + data->ctl_reg,
1456                                  CM_GATE_BIT, 0, &cprman->regs_lock);
1457 }
1458
1459 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1460                                                const void *data);
1461 struct bcm2835_clk_desc {
1462         bcm2835_clk_register clk_register;
1463         const void *data;
1464 };
1465
1466 /* assignment helper macros for different clock types */
1467 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1468                             .data = __VA_ARGS__ }
1469 #define REGISTER_PLL(...)       _REGISTER(&bcm2835_register_pll,        \
1470                                           &(struct bcm2835_pll_data)    \
1471                                           {__VA_ARGS__})
1472 #define REGISTER_PLL_DIV(...)   _REGISTER(&bcm2835_register_pll_divider, \
1473                                           &(struct bcm2835_pll_divider_data) \
1474                                           {__VA_ARGS__})
1475 #define REGISTER_CLK(...)       _REGISTER(&bcm2835_register_clock,      \
1476                                           &(struct bcm2835_clock_data)  \
1477                                           {__VA_ARGS__})
1478 #define REGISTER_GATE(...)      _REGISTER(&bcm2835_register_gate,       \
1479                                           &(struct bcm2835_gate_data)   \
1480                                           {__VA_ARGS__})
1481
1482 /* parent mux arrays plus helper macros */
1483
1484 /* main oscillator parent mux */
1485 static const char *const bcm2835_clock_osc_parents[] = {
1486         "gnd",
1487         "xosc",
1488         "testdebug0",
1489         "testdebug1"
1490 };
1491
1492 #define REGISTER_OSC_CLK(...)   REGISTER_CLK(                           \
1493         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1494         .parents = bcm2835_clock_osc_parents,                           \
1495         __VA_ARGS__)
1496
1497 /* main peripherial parent mux */
1498 static const char *const bcm2835_clock_per_parents[] = {
1499         "gnd",
1500         "xosc",
1501         "testdebug0",
1502         "testdebug1",
1503         "plla_per",
1504         "pllc_per",
1505         "plld_per",
1506         "pllh_aux",
1507 };
1508
1509 #define REGISTER_PER_CLK(...)   REGISTER_CLK(                           \
1510         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1511         .parents = bcm2835_clock_per_parents,                           \
1512         __VA_ARGS__)
1513
1514 /*
1515  * Restrict clock sources for the PCM peripheral to the oscillator and
1516  * PLLD_PER because other source may have varying rates or be switched
1517  * off.
1518  *
1519  * Prevent other sources from being selected by replacing their names in
1520  * the list of potential parents with dummy entries (entry index is
1521  * significant).
1522  */
1523 static const char *const bcm2835_pcm_per_parents[] = {
1524         "-",
1525         "xosc",
1526         "-",
1527         "-",
1528         "-",
1529         "-",
1530         "plld_per",
1531         "-",
1532 };
1533
1534 #define REGISTER_PCM_CLK(...)   REGISTER_CLK(                           \
1535         .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1536         .parents = bcm2835_pcm_per_parents,                             \
1537         __VA_ARGS__)
1538
1539 /* main vpu parent mux */
1540 static const char *const bcm2835_clock_vpu_parents[] = {
1541         "gnd",
1542         "xosc",
1543         "testdebug0",
1544         "testdebug1",
1545         "plla_core",
1546         "pllc_core0",
1547         "plld_core",
1548         "pllh_aux",
1549         "pllc_core1",
1550         "pllc_core2",
1551 };
1552
1553 #define REGISTER_VPU_CLK(...)   REGISTER_CLK(                           \
1554         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1555         .parents = bcm2835_clock_vpu_parents,                           \
1556         __VA_ARGS__)
1557
1558 /*
1559  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1560  * analog PHY.  The _inv variants are generated internally to cprman,
1561  * but we don't use them so they aren't hooked up.
1562  */
1563 static const char *const bcm2835_clock_dsi0_parents[] = {
1564         "gnd",
1565         "xosc",
1566         "testdebug0",
1567         "testdebug1",
1568         "dsi0_ddr",
1569         "dsi0_ddr_inv",
1570         "dsi0_ddr2",
1571         "dsi0_ddr2_inv",
1572         "dsi0_byte",
1573         "dsi0_byte_inv",
1574 };
1575
1576 static const char *const bcm2835_clock_dsi1_parents[] = {
1577         "gnd",
1578         "xosc",
1579         "testdebug0",
1580         "testdebug1",
1581         "dsi1_ddr",
1582         "dsi1_ddr_inv",
1583         "dsi1_ddr2",
1584         "dsi1_ddr2_inv",
1585         "dsi1_byte",
1586         "dsi1_byte_inv",
1587 };
1588
1589 #define REGISTER_DSI0_CLK(...)  REGISTER_CLK(                           \
1590         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1591         .parents = bcm2835_clock_dsi0_parents,                          \
1592         __VA_ARGS__)
1593
1594 #define REGISTER_DSI1_CLK(...)  REGISTER_CLK(                           \
1595         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1596         .parents = bcm2835_clock_dsi1_parents,                          \
1597         __VA_ARGS__)
1598
1599 /*
1600  * the real definition of all the pll, pll_dividers and clocks
1601  * these make use of the above REGISTER_* macros
1602  */
1603 static const struct bcm2835_clk_desc clk_desc_array[] = {
1604         /* the PLL + PLL dividers */
1605
1606         /*
1607          * PLLA is the auxiliary PLL, used to drive the CCP2
1608          * (Compact Camera Port 2) transmitter clock.
1609          *
1610          * It is in the PX LDO power domain, which is on when the
1611          * AUDIO domain is on.
1612          */
1613         [BCM2835_PLLA]          = REGISTER_PLL(
1614                 .name = "plla",
1615                 .cm_ctrl_reg = CM_PLLA,
1616                 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1617                 .frac_reg = A2W_PLLA_FRAC,
1618                 .ana_reg_base = A2W_PLLA_ANA0,
1619                 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1620                 .lock_mask = CM_LOCK_FLOCKA,
1621
1622                 .ana = &bcm2835_ana_default,
1623
1624                 .min_rate = 600000000u,
1625                 .max_rate = 2400000000u,
1626                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1627         [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1628                 .name = "plla_core",
1629                 .source_pll = "plla",
1630                 .cm_reg = CM_PLLA,
1631                 .a2w_reg = A2W_PLLA_CORE,
1632                 .load_mask = CM_PLLA_LOADCORE,
1633                 .hold_mask = CM_PLLA_HOLDCORE,
1634                 .fixed_divider = 1,
1635                 .flags = CLK_SET_RATE_PARENT),
1636         [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1637                 .name = "plla_per",
1638                 .source_pll = "plla",
1639                 .cm_reg = CM_PLLA,
1640                 .a2w_reg = A2W_PLLA_PER,
1641                 .load_mask = CM_PLLA_LOADPER,
1642                 .hold_mask = CM_PLLA_HOLDPER,
1643                 .fixed_divider = 1,
1644                 .flags = CLK_SET_RATE_PARENT),
1645         [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1646                 .name = "plla_dsi0",
1647                 .source_pll = "plla",
1648                 .cm_reg = CM_PLLA,
1649                 .a2w_reg = A2W_PLLA_DSI0,
1650                 .load_mask = CM_PLLA_LOADDSI0,
1651                 .hold_mask = CM_PLLA_HOLDDSI0,
1652                 .fixed_divider = 1),
1653         [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1654                 .name = "plla_ccp2",
1655                 .source_pll = "plla",
1656                 .cm_reg = CM_PLLA,
1657                 .a2w_reg = A2W_PLLA_CCP2,
1658                 .load_mask = CM_PLLA_LOADCCP2,
1659                 .hold_mask = CM_PLLA_HOLDCCP2,
1660                 .fixed_divider = 1,
1661                 .flags = CLK_SET_RATE_PARENT),
1662
1663         /* PLLB is used for the ARM's clock. */
1664         [BCM2835_PLLB]          = REGISTER_PLL(
1665                 .name = "pllb",
1666                 .cm_ctrl_reg = CM_PLLB,
1667                 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1668                 .frac_reg = A2W_PLLB_FRAC,
1669                 .ana_reg_base = A2W_PLLB_ANA0,
1670                 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1671                 .lock_mask = CM_LOCK_FLOCKB,
1672
1673                 .ana = &bcm2835_ana_default,
1674
1675                 .min_rate = 600000000u,
1676                 .max_rate = 3000000000u,
1677                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1678         [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1679                 .name = "pllb_arm",
1680                 .source_pll = "pllb",
1681                 .cm_reg = CM_PLLB,
1682                 .a2w_reg = A2W_PLLB_ARM,
1683                 .load_mask = CM_PLLB_LOADARM,
1684                 .hold_mask = CM_PLLB_HOLDARM,
1685                 .fixed_divider = 1,
1686                 .flags = CLK_SET_RATE_PARENT),
1687
1688         /*
1689          * PLLC is the core PLL, used to drive the core VPU clock.
1690          *
1691          * It is in the PX LDO power domain, which is on when the
1692          * AUDIO domain is on.
1693          */
1694         [BCM2835_PLLC]          = REGISTER_PLL(
1695                 .name = "pllc",
1696                 .cm_ctrl_reg = CM_PLLC,
1697                 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1698                 .frac_reg = A2W_PLLC_FRAC,
1699                 .ana_reg_base = A2W_PLLC_ANA0,
1700                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1701                 .lock_mask = CM_LOCK_FLOCKC,
1702
1703                 .ana = &bcm2835_ana_default,
1704
1705                 .min_rate = 600000000u,
1706                 .max_rate = 3000000000u,
1707                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1708         [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1709                 .name = "pllc_core0",
1710                 .source_pll = "pllc",
1711                 .cm_reg = CM_PLLC,
1712                 .a2w_reg = A2W_PLLC_CORE0,
1713                 .load_mask = CM_PLLC_LOADCORE0,
1714                 .hold_mask = CM_PLLC_HOLDCORE0,
1715                 .fixed_divider = 1,
1716                 .flags = CLK_SET_RATE_PARENT),
1717         [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1718                 .name = "pllc_core1",
1719                 .source_pll = "pllc",
1720                 .cm_reg = CM_PLLC,
1721                 .a2w_reg = A2W_PLLC_CORE1,
1722                 .load_mask = CM_PLLC_LOADCORE1,
1723                 .hold_mask = CM_PLLC_HOLDCORE1,
1724                 .fixed_divider = 1,
1725                 .flags = CLK_SET_RATE_PARENT),
1726         [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1727                 .name = "pllc_core2",
1728                 .source_pll = "pllc",
1729                 .cm_reg = CM_PLLC,
1730                 .a2w_reg = A2W_PLLC_CORE2,
1731                 .load_mask = CM_PLLC_LOADCORE2,
1732                 .hold_mask = CM_PLLC_HOLDCORE2,
1733                 .fixed_divider = 1,
1734                 .flags = CLK_SET_RATE_PARENT),
1735         [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1736                 .name = "pllc_per",
1737                 .source_pll = "pllc",
1738                 .cm_reg = CM_PLLC,
1739                 .a2w_reg = A2W_PLLC_PER,
1740                 .load_mask = CM_PLLC_LOADPER,
1741                 .hold_mask = CM_PLLC_HOLDPER,
1742                 .fixed_divider = 1,
1743                 .flags = CLK_SET_RATE_PARENT),
1744
1745         /*
1746          * PLLD is the display PLL, used to drive DSI display panels.
1747          *
1748          * It is in the PX LDO power domain, which is on when the
1749          * AUDIO domain is on.
1750          */
1751         [BCM2835_PLLD]          = REGISTER_PLL(
1752                 .name = "plld",
1753                 .cm_ctrl_reg = CM_PLLD,
1754                 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1755                 .frac_reg = A2W_PLLD_FRAC,
1756                 .ana_reg_base = A2W_PLLD_ANA0,
1757                 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1758                 .lock_mask = CM_LOCK_FLOCKD,
1759
1760                 .ana = &bcm2835_ana_default,
1761
1762                 .min_rate = 600000000u,
1763                 .max_rate = 2400000000u,
1764                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1765         [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1766                 .name = "plld_core",
1767                 .source_pll = "plld",
1768                 .cm_reg = CM_PLLD,
1769                 .a2w_reg = A2W_PLLD_CORE,
1770                 .load_mask = CM_PLLD_LOADCORE,
1771                 .hold_mask = CM_PLLD_HOLDCORE,
1772                 .fixed_divider = 1,
1773                 .flags = CLK_SET_RATE_PARENT),
1774         [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1775                 .name = "plld_per",
1776                 .source_pll = "plld",
1777                 .cm_reg = CM_PLLD,
1778                 .a2w_reg = A2W_PLLD_PER,
1779                 .load_mask = CM_PLLD_LOADPER,
1780                 .hold_mask = CM_PLLD_HOLDPER,
1781                 .fixed_divider = 1,
1782                 .flags = CLK_SET_RATE_PARENT),
1783         [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1784                 .name = "plld_dsi0",
1785                 .source_pll = "plld",
1786                 .cm_reg = CM_PLLD,
1787                 .a2w_reg = A2W_PLLD_DSI0,
1788                 .load_mask = CM_PLLD_LOADDSI0,
1789                 .hold_mask = CM_PLLD_HOLDDSI0,
1790                 .fixed_divider = 1),
1791         [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1792                 .name = "plld_dsi1",
1793                 .source_pll = "plld",
1794                 .cm_reg = CM_PLLD,
1795                 .a2w_reg = A2W_PLLD_DSI1,
1796                 .load_mask = CM_PLLD_LOADDSI1,
1797                 .hold_mask = CM_PLLD_HOLDDSI1,
1798                 .fixed_divider = 1),
1799
1800         /*
1801          * PLLH is used to supply the pixel clock or the AUX clock for the
1802          * TV encoder.
1803          *
1804          * It is in the HDMI power domain.
1805          */
1806         [BCM2835_PLLH]          = REGISTER_PLL(
1807                 "pllh",
1808                 .cm_ctrl_reg = CM_PLLH,
1809                 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1810                 .frac_reg = A2W_PLLH_FRAC,
1811                 .ana_reg_base = A2W_PLLH_ANA0,
1812                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1813                 .lock_mask = CM_LOCK_FLOCKH,
1814
1815                 .ana = &bcm2835_ana_pllh,
1816
1817                 .min_rate = 600000000u,
1818                 .max_rate = 3000000000u,
1819                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1820         [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1821                 .name = "pllh_rcal",
1822                 .source_pll = "pllh",
1823                 .cm_reg = CM_PLLH,
1824                 .a2w_reg = A2W_PLLH_RCAL,
1825                 .load_mask = CM_PLLH_LOADRCAL,
1826                 .hold_mask = 0,
1827                 .fixed_divider = 10,
1828                 .flags = CLK_SET_RATE_PARENT),
1829         [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1830                 .name = "pllh_aux",
1831                 .source_pll = "pllh",
1832                 .cm_reg = CM_PLLH,
1833                 .a2w_reg = A2W_PLLH_AUX,
1834                 .load_mask = CM_PLLH_LOADAUX,
1835                 .hold_mask = 0,
1836                 .fixed_divider = 1,
1837                 .flags = CLK_SET_RATE_PARENT),
1838         [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1839                 .name = "pllh_pix",
1840                 .source_pll = "pllh",
1841                 .cm_reg = CM_PLLH,
1842                 .a2w_reg = A2W_PLLH_PIX,
1843                 .load_mask = CM_PLLH_LOADPIX,
1844                 .hold_mask = 0,
1845                 .fixed_divider = 10,
1846                 .flags = CLK_SET_RATE_PARENT),
1847
1848         /* the clocks */
1849
1850         /* clocks with oscillator parent mux */
1851
1852         /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1853         [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1854                 .name = "otp",
1855                 .ctl_reg = CM_OTPCTL,
1856                 .div_reg = CM_OTPDIV,
1857                 .int_bits = 4,
1858                 .frac_bits = 0,
1859                 .tcnt_mux = 6),
1860         /*
1861          * Used for a 1Mhz clock for the system clocksource, and also used
1862          * bythe watchdog timer and the camera pulse generator.
1863          */
1864         [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1865                 .name = "timer",
1866                 .ctl_reg = CM_TIMERCTL,
1867                 .div_reg = CM_TIMERDIV,
1868                 .int_bits = 6,
1869                 .frac_bits = 12),
1870         /*
1871          * Clock for the temperature sensor.
1872          * Generally run at 2Mhz, max 5Mhz.
1873          */
1874         [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1875                 .name = "tsens",
1876                 .ctl_reg = CM_TSENSCTL,
1877                 .div_reg = CM_TSENSDIV,
1878                 .int_bits = 5,
1879                 .frac_bits = 0),
1880         [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1881                 .name = "tec",
1882                 .ctl_reg = CM_TECCTL,
1883                 .div_reg = CM_TECDIV,
1884                 .int_bits = 6,
1885                 .frac_bits = 0),
1886
1887         /* clocks with vpu parent mux */
1888         [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1889                 .name = "h264",
1890                 .ctl_reg = CM_H264CTL,
1891                 .div_reg = CM_H264DIV,
1892                 .int_bits = 4,
1893                 .frac_bits = 8,
1894                 .tcnt_mux = 1),
1895         [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1896                 .name = "isp",
1897                 .ctl_reg = CM_ISPCTL,
1898                 .div_reg = CM_ISPDIV,
1899                 .int_bits = 4,
1900                 .frac_bits = 8,
1901                 .tcnt_mux = 2),
1902
1903         /*
1904          * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1905          * in the SDRAM controller can't be used.
1906          */
1907         [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1908                 .name = "sdram",
1909                 .ctl_reg = CM_SDCCTL,
1910                 .div_reg = CM_SDCDIV,
1911                 .int_bits = 6,
1912                 .frac_bits = 0,
1913                 .tcnt_mux = 3),
1914         [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1915                 .name = "v3d",
1916                 .ctl_reg = CM_V3DCTL,
1917                 .div_reg = CM_V3DDIV,
1918                 .int_bits = 4,
1919                 .frac_bits = 8,
1920                 .tcnt_mux = 4),
1921         /*
1922          * VPU clock.  This doesn't have an enable bit, since it drives
1923          * the bus for everything else, and is special so it doesn't need
1924          * to be gated for rate changes.  It is also known as "clk_audio"
1925          * in various hardware documentation.
1926          */
1927         [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1928                 .name = "vpu",
1929                 .ctl_reg = CM_VPUCTL,
1930                 .div_reg = CM_VPUDIV,
1931                 .int_bits = 12,
1932                 .frac_bits = 8,
1933                 .flags = CLK_IS_CRITICAL,
1934                 .is_vpu_clock = true,
1935                 .tcnt_mux = 5),
1936
1937         /* clocks with per parent mux */
1938         [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1939                 .name = "aveo",
1940                 .ctl_reg = CM_AVEOCTL,
1941                 .div_reg = CM_AVEODIV,
1942                 .int_bits = 4,
1943                 .frac_bits = 0,
1944                 .tcnt_mux = 38),
1945         [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1946                 .name = "cam0",
1947                 .ctl_reg = CM_CAM0CTL,
1948                 .div_reg = CM_CAM0DIV,
1949                 .int_bits = 4,
1950                 .frac_bits = 8,
1951                 .tcnt_mux = 14),
1952         [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1953                 .name = "cam1",
1954                 .ctl_reg = CM_CAM1CTL,
1955                 .div_reg = CM_CAM1DIV,
1956                 .int_bits = 4,
1957                 .frac_bits = 8,
1958                 .tcnt_mux = 15),
1959         [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1960                 .name = "dft",
1961                 .ctl_reg = CM_DFTCTL,
1962                 .div_reg = CM_DFTDIV,
1963                 .int_bits = 5,
1964                 .frac_bits = 0),
1965         [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
1966                 .name = "dpi",
1967                 .ctl_reg = CM_DPICTL,
1968                 .div_reg = CM_DPIDIV,
1969                 .int_bits = 4,
1970                 .frac_bits = 8,
1971                 .tcnt_mux = 17),
1972
1973         /* Arasan EMMC clock */
1974         [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
1975                 .name = "emmc",
1976                 .ctl_reg = CM_EMMCCTL,
1977                 .div_reg = CM_EMMCDIV,
1978                 .int_bits = 4,
1979                 .frac_bits = 8,
1980                 .tcnt_mux = 39),
1981
1982         /* General purpose (GPIO) clocks */
1983         [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
1984                 .name = "gp0",
1985                 .ctl_reg = CM_GP0CTL,
1986                 .div_reg = CM_GP0DIV,
1987                 .int_bits = 12,
1988                 .frac_bits = 12,
1989                 .is_mash_clock = true,
1990                 .tcnt_mux = 20),
1991         [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
1992                 .name = "gp1",
1993                 .ctl_reg = CM_GP1CTL,
1994                 .div_reg = CM_GP1DIV,
1995                 .int_bits = 12,
1996                 .frac_bits = 12,
1997                 .flags = CLK_IS_CRITICAL,
1998                 .is_mash_clock = true,
1999                 .tcnt_mux = 21),
2000         [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2001                 .name = "gp2",
2002                 .ctl_reg = CM_GP2CTL,
2003                 .div_reg = CM_GP2DIV,
2004                 .int_bits = 12,
2005                 .frac_bits = 12,
2006                 .flags = CLK_IS_CRITICAL),
2007
2008         /* HDMI state machine */
2009         [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2010                 .name = "hsm",
2011                 .ctl_reg = CM_HSMCTL,
2012                 .div_reg = CM_HSMDIV,
2013                 .int_bits = 4,
2014                 .frac_bits = 8,
2015                 .tcnt_mux = 22),
2016         [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2017                 .name = "pcm",
2018                 .ctl_reg = CM_PCMCTL,
2019                 .div_reg = CM_PCMDIV,
2020                 .int_bits = 12,
2021                 .frac_bits = 12,
2022                 .is_mash_clock = true,
2023                 .low_jitter = true,
2024                 .tcnt_mux = 23),
2025         [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2026                 .name = "pwm",
2027                 .ctl_reg = CM_PWMCTL,
2028                 .div_reg = CM_PWMDIV,
2029                 .int_bits = 12,
2030                 .frac_bits = 12,
2031                 .is_mash_clock = true,
2032                 .tcnt_mux = 24),
2033         [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2034                 .name = "slim",
2035                 .ctl_reg = CM_SLIMCTL,
2036                 .div_reg = CM_SLIMDIV,
2037                 .int_bits = 12,
2038                 .frac_bits = 12,
2039                 .is_mash_clock = true,
2040                 .tcnt_mux = 25),
2041         [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2042                 .name = "smi",
2043                 .ctl_reg = CM_SMICTL,
2044                 .div_reg = CM_SMIDIV,
2045                 .int_bits = 4,
2046                 .frac_bits = 8,
2047                 .tcnt_mux = 27),
2048         [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2049                 .name = "uart",
2050                 .ctl_reg = CM_UARTCTL,
2051                 .div_reg = CM_UARTDIV,
2052                 .int_bits = 10,
2053                 .frac_bits = 12,
2054                 .tcnt_mux = 28),
2055
2056         /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2057         [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2058                 .name = "vec",
2059                 .ctl_reg = CM_VECCTL,
2060                 .div_reg = CM_VECDIV,
2061                 .int_bits = 4,
2062                 .frac_bits = 0,
2063                 /*
2064                  * Allow rate change propagation only on PLLH_AUX which is
2065                  * assigned index 7 in the parent array.
2066                  */
2067                 .set_rate_parent = BIT(7),
2068                 .tcnt_mux = 29),
2069
2070         /* dsi clocks */
2071         [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2072                 .name = "dsi0e",
2073                 .ctl_reg = CM_DSI0ECTL,
2074                 .div_reg = CM_DSI0EDIV,
2075                 .int_bits = 4,
2076                 .frac_bits = 8,
2077                 .tcnt_mux = 18),
2078         [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2079                 .name = "dsi1e",
2080                 .ctl_reg = CM_DSI1ECTL,
2081                 .div_reg = CM_DSI1EDIV,
2082                 .int_bits = 4,
2083                 .frac_bits = 8,
2084                 .tcnt_mux = 19),
2085         [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2086                 .name = "dsi0p",
2087                 .ctl_reg = CM_DSI0PCTL,
2088                 .div_reg = CM_DSI0PDIV,
2089                 .int_bits = 0,
2090                 .frac_bits = 0,
2091                 .tcnt_mux = 12),
2092         [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2093                 .name = "dsi1p",
2094                 .ctl_reg = CM_DSI1PCTL,
2095                 .div_reg = CM_DSI1PDIV,
2096                 .int_bits = 0,
2097                 .frac_bits = 0,
2098                 .tcnt_mux = 13),
2099
2100         /* the gates */
2101
2102         /*
2103          * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2104          * you have the debug bit set in the power manager, which we
2105          * don't bother exposing) are individual gates off of the
2106          * non-stop vpu clock.
2107          */
2108         [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2109                 .name = "peri_image",
2110                 .parent = "vpu",
2111                 .ctl_reg = CM_PERIICTL),
2112 };
2113
2114 /*
2115  * Permanently take a reference on the parent of the SDRAM clock.
2116  *
2117  * While the SDRAM is being driven by its dedicated PLL most of the
2118  * time, there is a little loop running in the firmware that
2119  * periodically switches the SDRAM to using our CM clock to do PVT
2120  * recalibration, with the assumption that the previously configured
2121  * SDRAM parent is still enabled and running.
2122  */
2123 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2124 {
2125         struct clk *parent = clk_get_parent(sdc);
2126
2127         if (IS_ERR(parent))
2128                 return PTR_ERR(parent);
2129
2130         return clk_prepare_enable(parent);
2131 }
2132
2133 static int bcm2835_clk_probe(struct platform_device *pdev)
2134 {
2135         struct device *dev = &pdev->dev;
2136         struct clk_hw **hws;
2137         struct bcm2835_cprman *cprman;
2138         struct resource *res;
2139         const struct bcm2835_clk_desc *desc;
2140         const size_t asize = ARRAY_SIZE(clk_desc_array);
2141         size_t i;
2142         int ret;
2143
2144         cprman = devm_kzalloc(dev,
2145                               struct_size(cprman, onecell.hws, asize),
2146                               GFP_KERNEL);
2147         if (!cprman)
2148                 return -ENOMEM;
2149
2150         spin_lock_init(&cprman->regs_lock);
2151         cprman->dev = dev;
2152         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2153         cprman->regs = devm_ioremap_resource(dev, res);
2154         if (IS_ERR(cprman->regs))
2155                 return PTR_ERR(cprman->regs);
2156
2157         memcpy(cprman->real_parent_names, cprman_parent_names,
2158                sizeof(cprman_parent_names));
2159         of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2160                            ARRAY_SIZE(cprman_parent_names));
2161
2162         /*
2163          * Make sure the external oscillator has been registered.
2164          *
2165          * The other (DSI) clocks are not present on older device
2166          * trees, which we still need to support for backwards
2167          * compatibility.
2168          */
2169         if (!cprman->real_parent_names[0])
2170                 return -ENODEV;
2171
2172         platform_set_drvdata(pdev, cprman);
2173
2174         cprman->onecell.num = asize;
2175         hws = cprman->onecell.hws;
2176
2177         for (i = 0; i < asize; i++) {
2178                 desc = &clk_desc_array[i];
2179                 if (desc->clk_register && desc->data)
2180                         hws[i] = desc->clk_register(cprman, desc->data);
2181         }
2182
2183         ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2184         if (ret)
2185                 return ret;
2186
2187         return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2188                                       &cprman->onecell);
2189 }
2190
2191 static const struct of_device_id bcm2835_clk_of_match[] = {
2192         { .compatible = "brcm,bcm2835-cprman", },
2193         {}
2194 };
2195 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2196
2197 static struct platform_driver bcm2835_clk_driver = {
2198         .driver = {
2199                 .name = "bcm2835-clk",
2200                 .of_match_table = bcm2835_clk_of_match,
2201         },
2202         .probe          = bcm2835_clk_probe,
2203 };
2204
2205 builtin_platform_driver(bcm2835_clk_driver);
2206
2207 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2208 MODULE_DESCRIPTION("BCM2835 clock driver");
2209 MODULE_LICENSE("GPL v2");