]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/clk/bcm/clk-bcm2835.c
Merge tag 'drm-next-2019-12-06' of git://anongit.freedesktop.org/drm/drm
[linux.git] / drivers / clk / bcm / clk-bcm2835.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35 #include <linux/platform_device.h>
36 #include <linux/slab.h>
37 #include <dt-bindings/clock/bcm2835.h>
38
39 #define CM_PASSWORD             0x5a000000
40
41 #define CM_GNRICCTL             0x000
42 #define CM_GNRICDIV             0x004
43 # define CM_DIV_FRAC_BITS       12
44 # define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45
46 #define CM_VPUCTL               0x008
47 #define CM_VPUDIV               0x00c
48 #define CM_SYSCTL               0x010
49 #define CM_SYSDIV               0x014
50 #define CM_PERIACTL             0x018
51 #define CM_PERIADIV             0x01c
52 #define CM_PERIICTL             0x020
53 #define CM_PERIIDIV             0x024
54 #define CM_H264CTL              0x028
55 #define CM_H264DIV              0x02c
56 #define CM_ISPCTL               0x030
57 #define CM_ISPDIV               0x034
58 #define CM_V3DCTL               0x038
59 #define CM_V3DDIV               0x03c
60 #define CM_CAM0CTL              0x040
61 #define CM_CAM0DIV              0x044
62 #define CM_CAM1CTL              0x048
63 #define CM_CAM1DIV              0x04c
64 #define CM_CCP2CTL              0x050
65 #define CM_CCP2DIV              0x054
66 #define CM_DSI0ECTL             0x058
67 #define CM_DSI0EDIV             0x05c
68 #define CM_DSI0PCTL             0x060
69 #define CM_DSI0PDIV             0x064
70 #define CM_DPICTL               0x068
71 #define CM_DPIDIV               0x06c
72 #define CM_GP0CTL               0x070
73 #define CM_GP0DIV               0x074
74 #define CM_GP1CTL               0x078
75 #define CM_GP1DIV               0x07c
76 #define CM_GP2CTL               0x080
77 #define CM_GP2DIV               0x084
78 #define CM_HSMCTL               0x088
79 #define CM_HSMDIV               0x08c
80 #define CM_OTPCTL               0x090
81 #define CM_OTPDIV               0x094
82 #define CM_PCMCTL               0x098
83 #define CM_PCMDIV               0x09c
84 #define CM_PWMCTL               0x0a0
85 #define CM_PWMDIV               0x0a4
86 #define CM_SLIMCTL              0x0a8
87 #define CM_SLIMDIV              0x0ac
88 #define CM_SMICTL               0x0b0
89 #define CM_SMIDIV               0x0b4
90 /* no definition for 0x0b8  and 0x0bc */
91 #define CM_TCNTCTL              0x0c0
92 # define CM_TCNT_SRC1_SHIFT             12
93 #define CM_TCNTCNT              0x0c4
94 #define CM_TECCTL               0x0c8
95 #define CM_TECDIV               0x0cc
96 #define CM_TD0CTL               0x0d0
97 #define CM_TD0DIV               0x0d4
98 #define CM_TD1CTL               0x0d8
99 #define CM_TD1DIV               0x0dc
100 #define CM_TSENSCTL             0x0e0
101 #define CM_TSENSDIV             0x0e4
102 #define CM_TIMERCTL             0x0e8
103 #define CM_TIMERDIV             0x0ec
104 #define CM_UARTCTL              0x0f0
105 #define CM_UARTDIV              0x0f4
106 #define CM_VECCTL               0x0f8
107 #define CM_VECDIV               0x0fc
108 #define CM_PULSECTL             0x190
109 #define CM_PULSEDIV             0x194
110 #define CM_SDCCTL               0x1a8
111 #define CM_SDCDIV               0x1ac
112 #define CM_ARMCTL               0x1b0
113 #define CM_AVEOCTL              0x1b8
114 #define CM_AVEODIV              0x1bc
115 #define CM_EMMCCTL              0x1c0
116 #define CM_EMMCDIV              0x1c4
117 #define CM_EMMC2CTL             0x1d0
118 #define CM_EMMC2DIV             0x1d4
119
120 /* General bits for the CM_*CTL regs */
121 # define CM_ENABLE                      BIT(4)
122 # define CM_KILL                        BIT(5)
123 # define CM_GATE_BIT                    6
124 # define CM_GATE                        BIT(CM_GATE_BIT)
125 # define CM_BUSY                        BIT(7)
126 # define CM_BUSYD                       BIT(8)
127 # define CM_FRAC                        BIT(9)
128 # define CM_SRC_SHIFT                   0
129 # define CM_SRC_BITS                    4
130 # define CM_SRC_MASK                    0xf
131 # define CM_SRC_GND                     0
132 # define CM_SRC_OSC                     1
133 # define CM_SRC_TESTDEBUG0              2
134 # define CM_SRC_TESTDEBUG1              3
135 # define CM_SRC_PLLA_CORE               4
136 # define CM_SRC_PLLA_PER                4
137 # define CM_SRC_PLLC_CORE0              5
138 # define CM_SRC_PLLC_PER                5
139 # define CM_SRC_PLLC_CORE1              8
140 # define CM_SRC_PLLD_CORE               6
141 # define CM_SRC_PLLD_PER                6
142 # define CM_SRC_PLLH_AUX                7
143 # define CM_SRC_PLLC_CORE1              8
144 # define CM_SRC_PLLC_CORE2              9
145
146 #define CM_OSCCOUNT             0x100
147
148 #define CM_PLLA                 0x104
149 # define CM_PLL_ANARST                  BIT(8)
150 # define CM_PLLA_HOLDPER                BIT(7)
151 # define CM_PLLA_LOADPER                BIT(6)
152 # define CM_PLLA_HOLDCORE               BIT(5)
153 # define CM_PLLA_LOADCORE               BIT(4)
154 # define CM_PLLA_HOLDCCP2               BIT(3)
155 # define CM_PLLA_LOADCCP2               BIT(2)
156 # define CM_PLLA_HOLDDSI0               BIT(1)
157 # define CM_PLLA_LOADDSI0               BIT(0)
158
159 #define CM_PLLC                 0x108
160 # define CM_PLLC_HOLDPER                BIT(7)
161 # define CM_PLLC_LOADPER                BIT(6)
162 # define CM_PLLC_HOLDCORE2              BIT(5)
163 # define CM_PLLC_LOADCORE2              BIT(4)
164 # define CM_PLLC_HOLDCORE1              BIT(3)
165 # define CM_PLLC_LOADCORE1              BIT(2)
166 # define CM_PLLC_HOLDCORE0              BIT(1)
167 # define CM_PLLC_LOADCORE0              BIT(0)
168
169 #define CM_PLLD                 0x10c
170 # define CM_PLLD_HOLDPER                BIT(7)
171 # define CM_PLLD_LOADPER                BIT(6)
172 # define CM_PLLD_HOLDCORE               BIT(5)
173 # define CM_PLLD_LOADCORE               BIT(4)
174 # define CM_PLLD_HOLDDSI1               BIT(3)
175 # define CM_PLLD_LOADDSI1               BIT(2)
176 # define CM_PLLD_HOLDDSI0               BIT(1)
177 # define CM_PLLD_LOADDSI0               BIT(0)
178
179 #define CM_PLLH                 0x110
180 # define CM_PLLH_LOADRCAL               BIT(2)
181 # define CM_PLLH_LOADAUX                BIT(1)
182 # define CM_PLLH_LOADPIX                BIT(0)
183
184 #define CM_LOCK                 0x114
185 # define CM_LOCK_FLOCKH                 BIT(12)
186 # define CM_LOCK_FLOCKD                 BIT(11)
187 # define CM_LOCK_FLOCKC                 BIT(10)
188 # define CM_LOCK_FLOCKB                 BIT(9)
189 # define CM_LOCK_FLOCKA                 BIT(8)
190
191 #define CM_EVENT                0x118
192 #define CM_DSI1ECTL             0x158
193 #define CM_DSI1EDIV             0x15c
194 #define CM_DSI1PCTL             0x160
195 #define CM_DSI1PDIV             0x164
196 #define CM_DFTCTL               0x168
197 #define CM_DFTDIV               0x16c
198
199 #define CM_PLLB                 0x170
200 # define CM_PLLB_HOLDARM                BIT(1)
201 # define CM_PLLB_LOADARM                BIT(0)
202
203 #define A2W_PLLA_CTRL           0x1100
204 #define A2W_PLLC_CTRL           0x1120
205 #define A2W_PLLD_CTRL           0x1140
206 #define A2W_PLLH_CTRL           0x1160
207 #define A2W_PLLB_CTRL           0x11e0
208 # define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
209 # define A2W_PLL_CTRL_PWRDN             BIT(16)
210 # define A2W_PLL_CTRL_PDIV_MASK         0x000007000
211 # define A2W_PLL_CTRL_PDIV_SHIFT        12
212 # define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
213 # define A2W_PLL_CTRL_NDIV_SHIFT        0
214
215 #define A2W_PLLA_ANA0           0x1010
216 #define A2W_PLLC_ANA0           0x1030
217 #define A2W_PLLD_ANA0           0x1050
218 #define A2W_PLLH_ANA0           0x1070
219 #define A2W_PLLB_ANA0           0x10f0
220
221 #define A2W_PLL_KA_SHIFT        7
222 #define A2W_PLL_KA_MASK         GENMASK(9, 7)
223 #define A2W_PLL_KI_SHIFT        19
224 #define A2W_PLL_KI_MASK         GENMASK(21, 19)
225 #define A2W_PLL_KP_SHIFT        15
226 #define A2W_PLL_KP_MASK         GENMASK(18, 15)
227
228 #define A2W_PLLH_KA_SHIFT       19
229 #define A2W_PLLH_KA_MASK        GENMASK(21, 19)
230 #define A2W_PLLH_KI_LOW_SHIFT   22
231 #define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
232 #define A2W_PLLH_KI_HIGH_SHIFT  0
233 #define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
234 #define A2W_PLLH_KP_SHIFT       1
235 #define A2W_PLLH_KP_MASK        GENMASK(4, 1)
236
237 #define A2W_XOSC_CTRL           0x1190
238 # define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
239 # define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
240 # define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
241 # define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
242 # define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
243 # define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
244 # define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
245 # define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
246
247 #define A2W_PLLA_FRAC           0x1200
248 #define A2W_PLLC_FRAC           0x1220
249 #define A2W_PLLD_FRAC           0x1240
250 #define A2W_PLLH_FRAC           0x1260
251 #define A2W_PLLB_FRAC           0x12e0
252 # define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
253 # define A2W_PLL_FRAC_BITS              20
254
255 #define A2W_PLL_CHANNEL_DISABLE         BIT(8)
256 #define A2W_PLL_DIV_BITS                8
257 #define A2W_PLL_DIV_SHIFT               0
258
259 #define A2W_PLLA_DSI0           0x1300
260 #define A2W_PLLA_CORE           0x1400
261 #define A2W_PLLA_PER            0x1500
262 #define A2W_PLLA_CCP2           0x1600
263
264 #define A2W_PLLC_CORE2          0x1320
265 #define A2W_PLLC_CORE1          0x1420
266 #define A2W_PLLC_PER            0x1520
267 #define A2W_PLLC_CORE0          0x1620
268
269 #define A2W_PLLD_DSI0           0x1340
270 #define A2W_PLLD_CORE           0x1440
271 #define A2W_PLLD_PER            0x1540
272 #define A2W_PLLD_DSI1           0x1640
273
274 #define A2W_PLLH_AUX            0x1360
275 #define A2W_PLLH_RCAL           0x1460
276 #define A2W_PLLH_PIX            0x1560
277 #define A2W_PLLH_STS            0x1660
278
279 #define A2W_PLLH_CTRLR          0x1960
280 #define A2W_PLLH_FRACR          0x1a60
281 #define A2W_PLLH_AUXR           0x1b60
282 #define A2W_PLLH_RCALR          0x1c60
283 #define A2W_PLLH_PIXR           0x1d60
284 #define A2W_PLLH_STSR           0x1e60
285
286 #define A2W_PLLB_ARM            0x13e0
287 #define A2W_PLLB_SP0            0x14e0
288 #define A2W_PLLB_SP1            0x15e0
289 #define A2W_PLLB_SP2            0x16e0
290
291 #define LOCK_TIMEOUT_NS         100000000
292 #define BCM2835_MAX_FB_RATE     1750000000u
293
294 #define SOC_BCM2835             BIT(0)
295 #define SOC_BCM2711             BIT(1)
296 #define SOC_ALL                 (SOC_BCM2835 | SOC_BCM2711)
297
298 /*
299  * Names of clocks used within the driver that need to be replaced
300  * with an external parent's name.  This array is in the order that
301  * the clocks node in the DT references external clocks.
302  */
303 static const char *const cprman_parent_names[] = {
304         "xosc",
305         "dsi0_byte",
306         "dsi0_ddr2",
307         "dsi0_ddr",
308         "dsi1_byte",
309         "dsi1_ddr2",
310         "dsi1_ddr",
311 };
312
313 struct bcm2835_cprman {
314         struct device *dev;
315         void __iomem *regs;
316         spinlock_t regs_lock; /* spinlock for all clocks */
317
318         /*
319          * Real names of cprman clock parents looked up through
320          * of_clk_get_parent_name(), which will be used in the
321          * parent_names[] arrays for clock registration.
322          */
323         const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
324
325         /* Must be last */
326         struct clk_hw_onecell_data onecell;
327 };
328
329 struct cprman_plat_data {
330         unsigned int soc;
331 };
332
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335         writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340         return readl(cprman->regs + reg);
341 }
342
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347                                               u32 tcnt_mux)
348 {
349         u32 osccount = 19200; /* 1ms */
350         u32 count;
351         ktime_t timeout;
352
353         spin_lock(&cprman->regs_lock);
354
355         cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356
357         cprman_write(cprman, CM_TCNTCTL,
358                      (tcnt_mux & CM_SRC_MASK) |
359                      (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360
361         cprman_write(cprman, CM_OSCCOUNT, osccount);
362
363         /* do a kind delay at the start */
364         mdelay(1);
365
366         /* Finish off whatever is left of OSCCOUNT */
367         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368         while (cprman_read(cprman, CM_OSCCOUNT)) {
369                 if (ktime_after(ktime_get(), timeout)) {
370                         dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371                         count = 0;
372                         goto out;
373                 }
374                 cpu_relax();
375         }
376
377         /* Wait for BUSY to clear. */
378         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379         while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380                 if (ktime_after(ktime_get(), timeout)) {
381                         dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382                         count = 0;
383                         goto out;
384                 }
385                 cpu_relax();
386         }
387
388         count = cprman_read(cprman, CM_TCNTCNT);
389
390         cprman_write(cprman, CM_TCNTCTL, 0);
391
392 out:
393         spin_unlock(&cprman->regs_lock);
394
395         return count * 1000;
396 }
397
398 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399                                   struct debugfs_reg32 *regs, size_t nregs,
400                                   struct dentry *dentry)
401 {
402         struct debugfs_regset32 *regset;
403
404         regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
405         if (!regset)
406                 return;
407
408         regset->regs = regs;
409         regset->nregs = nregs;
410         regset->base = cprman->regs + base;
411
412         debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
413 }
414
415 struct bcm2835_pll_data {
416         const char *name;
417         u32 cm_ctrl_reg;
418         u32 a2w_ctrl_reg;
419         u32 frac_reg;
420         u32 ana_reg_base;
421         u32 reference_enable_mask;
422         /* Bit in CM_LOCK to indicate when the PLL has locked. */
423         u32 lock_mask;
424
425         const struct bcm2835_pll_ana_bits *ana;
426
427         unsigned long min_rate;
428         unsigned long max_rate;
429         /*
430          * Highest rate for the VCO before we have to use the
431          * pre-divide-by-2.
432          */
433         unsigned long max_fb_rate;
434 };
435
436 struct bcm2835_pll_ana_bits {
437         u32 mask0;
438         u32 set0;
439         u32 mask1;
440         u32 set1;
441         u32 mask3;
442         u32 set3;
443         u32 fb_prediv_mask;
444 };
445
446 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
447         .mask0 = 0,
448         .set0 = 0,
449         .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
450         .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
451         .mask3 = A2W_PLL_KA_MASK,
452         .set3 = (2 << A2W_PLL_KA_SHIFT),
453         .fb_prediv_mask = BIT(14),
454 };
455
456 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
457         .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
458         .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
459         .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
460         .set1 = (6 << A2W_PLLH_KP_SHIFT),
461         .mask3 = 0,
462         .set3 = 0,
463         .fb_prediv_mask = BIT(11),
464 };
465
466 struct bcm2835_pll_divider_data {
467         const char *name;
468         const char *source_pll;
469
470         u32 cm_reg;
471         u32 a2w_reg;
472
473         u32 load_mask;
474         u32 hold_mask;
475         u32 fixed_divider;
476         u32 flags;
477 };
478
479 struct bcm2835_clock_data {
480         const char *name;
481
482         const char *const *parents;
483         int num_mux_parents;
484
485         /* Bitmap encoding which parents accept rate change propagation. */
486         unsigned int set_rate_parent;
487
488         u32 ctl_reg;
489         u32 div_reg;
490
491         /* Number of integer bits in the divider */
492         u32 int_bits;
493         /* Number of fractional bits in the divider */
494         u32 frac_bits;
495
496         u32 flags;
497
498         bool is_vpu_clock;
499         bool is_mash_clock;
500         bool low_jitter;
501
502         u32 tcnt_mux;
503 };
504
505 struct bcm2835_gate_data {
506         const char *name;
507         const char *parent;
508
509         u32 ctl_reg;
510 };
511
512 struct bcm2835_pll {
513         struct clk_hw hw;
514         struct bcm2835_cprman *cprman;
515         const struct bcm2835_pll_data *data;
516 };
517
518 static int bcm2835_pll_is_on(struct clk_hw *hw)
519 {
520         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
521         struct bcm2835_cprman *cprman = pll->cprman;
522         const struct bcm2835_pll_data *data = pll->data;
523
524         return cprman_read(cprman, data->a2w_ctrl_reg) &
525                 A2W_PLL_CTRL_PRST_DISABLE;
526 }
527
528 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
529                                              unsigned long parent_rate,
530                                              u32 *ndiv, u32 *fdiv)
531 {
532         u64 div;
533
534         div = (u64)rate << A2W_PLL_FRAC_BITS;
535         do_div(div, parent_rate);
536
537         *ndiv = div >> A2W_PLL_FRAC_BITS;
538         *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
539 }
540
541 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
542                                            u32 ndiv, u32 fdiv, u32 pdiv)
543 {
544         u64 rate;
545
546         if (pdiv == 0)
547                 return 0;
548
549         rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
550         do_div(rate, pdiv);
551         return rate >> A2W_PLL_FRAC_BITS;
552 }
553
554 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
555                                    unsigned long *parent_rate)
556 {
557         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
558         const struct bcm2835_pll_data *data = pll->data;
559         u32 ndiv, fdiv;
560
561         rate = clamp(rate, data->min_rate, data->max_rate);
562
563         bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
564
565         return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
566 }
567
568 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
569                                           unsigned long parent_rate)
570 {
571         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
572         struct bcm2835_cprman *cprman = pll->cprman;
573         const struct bcm2835_pll_data *data = pll->data;
574         u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
575         u32 ndiv, pdiv, fdiv;
576         bool using_prediv;
577
578         if (parent_rate == 0)
579                 return 0;
580
581         fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
582         ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
583         pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
584         using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
585                 data->ana->fb_prediv_mask;
586
587         if (using_prediv) {
588                 ndiv *= 2;
589                 fdiv *= 2;
590         }
591
592         return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
593 }
594
595 static void bcm2835_pll_off(struct clk_hw *hw)
596 {
597         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
598         struct bcm2835_cprman *cprman = pll->cprman;
599         const struct bcm2835_pll_data *data = pll->data;
600
601         spin_lock(&cprman->regs_lock);
602         cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
603         cprman_write(cprman, data->a2w_ctrl_reg,
604                      cprman_read(cprman, data->a2w_ctrl_reg) |
605                      A2W_PLL_CTRL_PWRDN);
606         spin_unlock(&cprman->regs_lock);
607 }
608
609 static int bcm2835_pll_on(struct clk_hw *hw)
610 {
611         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
612         struct bcm2835_cprman *cprman = pll->cprman;
613         const struct bcm2835_pll_data *data = pll->data;
614         ktime_t timeout;
615
616         cprman_write(cprman, data->a2w_ctrl_reg,
617                      cprman_read(cprman, data->a2w_ctrl_reg) &
618                      ~A2W_PLL_CTRL_PWRDN);
619
620         /* Take the PLL out of reset. */
621         spin_lock(&cprman->regs_lock);
622         cprman_write(cprman, data->cm_ctrl_reg,
623                      cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
624         spin_unlock(&cprman->regs_lock);
625
626         /* Wait for the PLL to lock. */
627         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
628         while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
629                 if (ktime_after(ktime_get(), timeout)) {
630                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
631                                 clk_hw_get_name(hw));
632                         return -ETIMEDOUT;
633                 }
634
635                 cpu_relax();
636         }
637
638         cprman_write(cprman, data->a2w_ctrl_reg,
639                      cprman_read(cprman, data->a2w_ctrl_reg) |
640                      A2W_PLL_CTRL_PRST_DISABLE);
641
642         return 0;
643 }
644
645 static void
646 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
647 {
648         int i;
649
650         /*
651          * ANA register setup is done as a series of writes to
652          * ANA3-ANA0, in that order.  This lets us write all 4
653          * registers as a single cycle of the serdes interface (taking
654          * 100 xosc clocks), whereas if we were to update ana0, 1, and
655          * 3 individually through their partial-write registers, each
656          * would be their own serdes cycle.
657          */
658         for (i = 3; i >= 0; i--)
659                 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
660 }
661
662 static int bcm2835_pll_set_rate(struct clk_hw *hw,
663                                 unsigned long rate, unsigned long parent_rate)
664 {
665         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
666         struct bcm2835_cprman *cprman = pll->cprman;
667         const struct bcm2835_pll_data *data = pll->data;
668         bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
669         u32 ndiv, fdiv, a2w_ctl;
670         u32 ana[4];
671         int i;
672
673         if (rate > data->max_fb_rate) {
674                 use_fb_prediv = true;
675                 rate /= 2;
676         } else {
677                 use_fb_prediv = false;
678         }
679
680         bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
681
682         for (i = 3; i >= 0; i--)
683                 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
684
685         was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
686
687         ana[0] &= ~data->ana->mask0;
688         ana[0] |= data->ana->set0;
689         ana[1] &= ~data->ana->mask1;
690         ana[1] |= data->ana->set1;
691         ana[3] &= ~data->ana->mask3;
692         ana[3] |= data->ana->set3;
693
694         if (was_using_prediv && !use_fb_prediv) {
695                 ana[1] &= ~data->ana->fb_prediv_mask;
696                 do_ana_setup_first = true;
697         } else if (!was_using_prediv && use_fb_prediv) {
698                 ana[1] |= data->ana->fb_prediv_mask;
699                 do_ana_setup_first = false;
700         } else {
701                 do_ana_setup_first = true;
702         }
703
704         /* Unmask the reference clock from the oscillator. */
705         spin_lock(&cprman->regs_lock);
706         cprman_write(cprman, A2W_XOSC_CTRL,
707                      cprman_read(cprman, A2W_XOSC_CTRL) |
708                      data->reference_enable_mask);
709         spin_unlock(&cprman->regs_lock);
710
711         if (do_ana_setup_first)
712                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
713
714         /* Set the PLL multiplier from the oscillator. */
715         cprman_write(cprman, data->frac_reg, fdiv);
716
717         a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
718         a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
719         a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
720         a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
721         a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
722         cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
723
724         if (!do_ana_setup_first)
725                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
726
727         return 0;
728 }
729
730 static void bcm2835_pll_debug_init(struct clk_hw *hw,
731                                   struct dentry *dentry)
732 {
733         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
734         struct bcm2835_cprman *cprman = pll->cprman;
735         const struct bcm2835_pll_data *data = pll->data;
736         struct debugfs_reg32 *regs;
737
738         regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
739         if (!regs)
740                 return;
741
742         regs[0].name = "cm_ctrl";
743         regs[0].offset = data->cm_ctrl_reg;
744         regs[1].name = "a2w_ctrl";
745         regs[1].offset = data->a2w_ctrl_reg;
746         regs[2].name = "frac";
747         regs[2].offset = data->frac_reg;
748         regs[3].name = "ana0";
749         regs[3].offset = data->ana_reg_base + 0 * 4;
750         regs[4].name = "ana1";
751         regs[4].offset = data->ana_reg_base + 1 * 4;
752         regs[5].name = "ana2";
753         regs[5].offset = data->ana_reg_base + 2 * 4;
754         regs[6].name = "ana3";
755         regs[6].offset = data->ana_reg_base + 3 * 4;
756
757         bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
758 }
759
760 static const struct clk_ops bcm2835_pll_clk_ops = {
761         .is_prepared = bcm2835_pll_is_on,
762         .prepare = bcm2835_pll_on,
763         .unprepare = bcm2835_pll_off,
764         .recalc_rate = bcm2835_pll_get_rate,
765         .set_rate = bcm2835_pll_set_rate,
766         .round_rate = bcm2835_pll_round_rate,
767         .debug_init = bcm2835_pll_debug_init,
768 };
769
770 struct bcm2835_pll_divider {
771         struct clk_divider div;
772         struct bcm2835_cprman *cprman;
773         const struct bcm2835_pll_divider_data *data;
774 };
775
776 static struct bcm2835_pll_divider *
777 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
778 {
779         return container_of(hw, struct bcm2835_pll_divider, div.hw);
780 }
781
782 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
783 {
784         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
785         struct bcm2835_cprman *cprman = divider->cprman;
786         const struct bcm2835_pll_divider_data *data = divider->data;
787
788         return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
789 }
790
791 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
792                                            unsigned long rate,
793                                            unsigned long *parent_rate)
794 {
795         return clk_divider_ops.round_rate(hw, rate, parent_rate);
796 }
797
798 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
799                                                   unsigned long parent_rate)
800 {
801         return clk_divider_ops.recalc_rate(hw, parent_rate);
802 }
803
804 static void bcm2835_pll_divider_off(struct clk_hw *hw)
805 {
806         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
807         struct bcm2835_cprman *cprman = divider->cprman;
808         const struct bcm2835_pll_divider_data *data = divider->data;
809
810         spin_lock(&cprman->regs_lock);
811         cprman_write(cprman, data->cm_reg,
812                      (cprman_read(cprman, data->cm_reg) &
813                       ~data->load_mask) | data->hold_mask);
814         cprman_write(cprman, data->a2w_reg,
815                      cprman_read(cprman, data->a2w_reg) |
816                      A2W_PLL_CHANNEL_DISABLE);
817         spin_unlock(&cprman->regs_lock);
818 }
819
820 static int bcm2835_pll_divider_on(struct clk_hw *hw)
821 {
822         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
823         struct bcm2835_cprman *cprman = divider->cprman;
824         const struct bcm2835_pll_divider_data *data = divider->data;
825
826         spin_lock(&cprman->regs_lock);
827         cprman_write(cprman, data->a2w_reg,
828                      cprman_read(cprman, data->a2w_reg) &
829                      ~A2W_PLL_CHANNEL_DISABLE);
830
831         cprman_write(cprman, data->cm_reg,
832                      cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
833         spin_unlock(&cprman->regs_lock);
834
835         return 0;
836 }
837
838 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
839                                         unsigned long rate,
840                                         unsigned long parent_rate)
841 {
842         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
843         struct bcm2835_cprman *cprman = divider->cprman;
844         const struct bcm2835_pll_divider_data *data = divider->data;
845         u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
846
847         div = DIV_ROUND_UP_ULL(parent_rate, rate);
848
849         div = min(div, max_div);
850         if (div == max_div)
851                 div = 0;
852
853         cprman_write(cprman, data->a2w_reg, div);
854         cm = cprman_read(cprman, data->cm_reg);
855         cprman_write(cprman, data->cm_reg, cm | data->load_mask);
856         cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
857
858         return 0;
859 }
860
861 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
862                                            struct dentry *dentry)
863 {
864         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
865         struct bcm2835_cprman *cprman = divider->cprman;
866         const struct bcm2835_pll_divider_data *data = divider->data;
867         struct debugfs_reg32 *regs;
868
869         regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
870         if (!regs)
871                 return;
872
873         regs[0].name = "cm";
874         regs[0].offset = data->cm_reg;
875         regs[1].name = "a2w";
876         regs[1].offset = data->a2w_reg;
877
878         bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
879 }
880
881 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
882         .is_prepared = bcm2835_pll_divider_is_on,
883         .prepare = bcm2835_pll_divider_on,
884         .unprepare = bcm2835_pll_divider_off,
885         .recalc_rate = bcm2835_pll_divider_get_rate,
886         .set_rate = bcm2835_pll_divider_set_rate,
887         .round_rate = bcm2835_pll_divider_round_rate,
888         .debug_init = bcm2835_pll_divider_debug_init,
889 };
890
891 /*
892  * The CM dividers do fixed-point division, so we can't use the
893  * generic integer divider code like the PLL dividers do (and we can't
894  * fake it by having some fixed shifts preceding it in the clock tree,
895  * because we'd run out of bits in a 32-bit unsigned long).
896  */
897 struct bcm2835_clock {
898         struct clk_hw hw;
899         struct bcm2835_cprman *cprman;
900         const struct bcm2835_clock_data *data;
901 };
902
903 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
904 {
905         return container_of(hw, struct bcm2835_clock, hw);
906 }
907
908 static int bcm2835_clock_is_on(struct clk_hw *hw)
909 {
910         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
911         struct bcm2835_cprman *cprman = clock->cprman;
912         const struct bcm2835_clock_data *data = clock->data;
913
914         return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
915 }
916
917 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
918                                     unsigned long rate,
919                                     unsigned long parent_rate,
920                                     bool round_up)
921 {
922         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
923         const struct bcm2835_clock_data *data = clock->data;
924         u32 unused_frac_mask =
925                 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
926         u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
927         u64 rem;
928         u32 div, mindiv, maxdiv;
929
930         rem = do_div(temp, rate);
931         div = temp;
932
933         /* Round up and mask off the unused bits */
934         if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
935                 div += unused_frac_mask + 1;
936         div &= ~unused_frac_mask;
937
938         /* different clamping limits apply for a mash clock */
939         if (data->is_mash_clock) {
940                 /* clamp to min divider of 2 */
941                 mindiv = 2 << CM_DIV_FRAC_BITS;
942                 /* clamp to the highest possible integer divider */
943                 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
944         } else {
945                 /* clamp to min divider of 1 */
946                 mindiv = 1 << CM_DIV_FRAC_BITS;
947                 /* clamp to the highest possible fractional divider */
948                 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
949                                  CM_DIV_FRAC_BITS - data->frac_bits);
950         }
951
952         /* apply the clamping  limits */
953         div = max_t(u32, div, mindiv);
954         div = min_t(u32, div, maxdiv);
955
956         return div;
957 }
958
959 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
960                                             unsigned long parent_rate,
961                                             u32 div)
962 {
963         const struct bcm2835_clock_data *data = clock->data;
964         u64 temp;
965
966         if (data->int_bits == 0 && data->frac_bits == 0)
967                 return parent_rate;
968
969         /*
970          * The divisor is a 12.12 fixed point field, but only some of
971          * the bits are populated in any given clock.
972          */
973         div >>= CM_DIV_FRAC_BITS - data->frac_bits;
974         div &= (1 << (data->int_bits + data->frac_bits)) - 1;
975
976         if (div == 0)
977                 return 0;
978
979         temp = (u64)parent_rate << data->frac_bits;
980
981         do_div(temp, div);
982
983         return temp;
984 }
985
986 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
987                                             unsigned long parent_rate)
988 {
989         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
990         struct bcm2835_cprman *cprman = clock->cprman;
991         const struct bcm2835_clock_data *data = clock->data;
992         u32 div;
993
994         if (data->int_bits == 0 && data->frac_bits == 0)
995                 return parent_rate;
996
997         div = cprman_read(cprman, data->div_reg);
998
999         return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1000 }
1001
1002 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1003 {
1004         struct bcm2835_cprman *cprman = clock->cprman;
1005         const struct bcm2835_clock_data *data = clock->data;
1006         ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1007
1008         while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1009                 if (ktime_after(ktime_get(), timeout)) {
1010                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1011                                 clk_hw_get_name(&clock->hw));
1012                         return;
1013                 }
1014                 cpu_relax();
1015         }
1016 }
1017
1018 static void bcm2835_clock_off(struct clk_hw *hw)
1019 {
1020         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1021         struct bcm2835_cprman *cprman = clock->cprman;
1022         const struct bcm2835_clock_data *data = clock->data;
1023
1024         spin_lock(&cprman->regs_lock);
1025         cprman_write(cprman, data->ctl_reg,
1026                      cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1027         spin_unlock(&cprman->regs_lock);
1028
1029         /* BUSY will remain high until the divider completes its cycle. */
1030         bcm2835_clock_wait_busy(clock);
1031 }
1032
1033 static int bcm2835_clock_on(struct clk_hw *hw)
1034 {
1035         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1036         struct bcm2835_cprman *cprman = clock->cprman;
1037         const struct bcm2835_clock_data *data = clock->data;
1038
1039         spin_lock(&cprman->regs_lock);
1040         cprman_write(cprman, data->ctl_reg,
1041                      cprman_read(cprman, data->ctl_reg) |
1042                      CM_ENABLE |
1043                      CM_GATE);
1044         spin_unlock(&cprman->regs_lock);
1045
1046         /* Debug code to measure the clock once it's turned on to see
1047          * if it's ticking at the rate we expect.
1048          */
1049         if (data->tcnt_mux && false) {
1050                 dev_info(cprman->dev,
1051                          "clk %s: rate %ld, measure %ld\n",
1052                          data->name,
1053                          clk_hw_get_rate(hw),
1054                          bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1055         }
1056
1057         return 0;
1058 }
1059
1060 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1061                                   unsigned long rate, unsigned long parent_rate)
1062 {
1063         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1064         struct bcm2835_cprman *cprman = clock->cprman;
1065         const struct bcm2835_clock_data *data = clock->data;
1066         u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1067         u32 ctl;
1068
1069         spin_lock(&cprman->regs_lock);
1070
1071         /*
1072          * Setting up frac support
1073          *
1074          * In principle it is recommended to stop/start the clock first,
1075          * but as we set CLK_SET_RATE_GATE during registration of the
1076          * clock this requirement should be take care of by the
1077          * clk-framework.
1078          */
1079         ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1080         ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1081         cprman_write(cprman, data->ctl_reg, ctl);
1082
1083         cprman_write(cprman, data->div_reg, div);
1084
1085         spin_unlock(&cprman->regs_lock);
1086
1087         return 0;
1088 }
1089
1090 static bool
1091 bcm2835_clk_is_pllc(struct clk_hw *hw)
1092 {
1093         if (!hw)
1094                 return false;
1095
1096         return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1097 }
1098
1099 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1100                                                         int parent_idx,
1101                                                         unsigned long rate,
1102                                                         u32 *div,
1103                                                         unsigned long *prate,
1104                                                         unsigned long *avgrate)
1105 {
1106         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1107         struct bcm2835_cprman *cprman = clock->cprman;
1108         const struct bcm2835_clock_data *data = clock->data;
1109         unsigned long best_rate = 0;
1110         u32 curdiv, mindiv, maxdiv;
1111         struct clk_hw *parent;
1112
1113         parent = clk_hw_get_parent_by_index(hw, parent_idx);
1114
1115         if (!(BIT(parent_idx) & data->set_rate_parent)) {
1116                 *prate = clk_hw_get_rate(parent);
1117                 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1118
1119                 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1120
1121                 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1122                         unsigned long high, low;
1123                         u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1124
1125                         high = bcm2835_clock_rate_from_divisor(clock, *prate,
1126                                                                int_div);
1127                         int_div += CM_DIV_FRAC_MASK + 1;
1128                         low = bcm2835_clock_rate_from_divisor(clock, *prate,
1129                                                               int_div);
1130
1131                         /*
1132                          * Return a value which is the maximum deviation
1133                          * below the ideal rate, for use as a metric.
1134                          */
1135                         return *avgrate - max(*avgrate - low, high - *avgrate);
1136                 }
1137                 return *avgrate;
1138         }
1139
1140         if (data->frac_bits)
1141                 dev_warn(cprman->dev,
1142                         "frac bits are not used when propagating rate change");
1143
1144         /* clamp to min divider of 2 if we're dealing with a mash clock */
1145         mindiv = data->is_mash_clock ? 2 : 1;
1146         maxdiv = BIT(data->int_bits) - 1;
1147
1148         /* TODO: Be smart, and only test a subset of the available divisors. */
1149         for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1150                 unsigned long tmp_rate;
1151
1152                 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1153                 tmp_rate /= curdiv;
1154                 if (curdiv == mindiv ||
1155                     (tmp_rate > best_rate && tmp_rate <= rate))
1156                         best_rate = tmp_rate;
1157
1158                 if (best_rate == rate)
1159                         break;
1160         }
1161
1162         *div = curdiv << CM_DIV_FRAC_BITS;
1163         *prate = curdiv * best_rate;
1164         *avgrate = best_rate;
1165
1166         return best_rate;
1167 }
1168
1169 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1170                                         struct clk_rate_request *req)
1171 {
1172         struct clk_hw *parent, *best_parent = NULL;
1173         bool current_parent_is_pllc;
1174         unsigned long rate, best_rate = 0;
1175         unsigned long prate, best_prate = 0;
1176         unsigned long avgrate, best_avgrate = 0;
1177         size_t i;
1178         u32 div;
1179
1180         current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1181
1182         /*
1183          * Select parent clock that results in the closest but lower rate
1184          */
1185         for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1186                 parent = clk_hw_get_parent_by_index(hw, i);
1187                 if (!parent)
1188                         continue;
1189
1190                 /*
1191                  * Don't choose a PLLC-derived clock as our parent
1192                  * unless it had been manually set that way.  PLLC's
1193                  * frequency gets adjusted by the firmware due to
1194                  * over-temp or under-voltage conditions, without
1195                  * prior notification to our clock consumer.
1196                  */
1197                 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1198                         continue;
1199
1200                 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1201                                                           &div, &prate,
1202                                                           &avgrate);
1203                 if (rate > best_rate && rate <= req->rate) {
1204                         best_parent = parent;
1205                         best_prate = prate;
1206                         best_rate = rate;
1207                         best_avgrate = avgrate;
1208                 }
1209         }
1210
1211         if (!best_parent)
1212                 return -EINVAL;
1213
1214         req->best_parent_hw = best_parent;
1215         req->best_parent_rate = best_prate;
1216
1217         req->rate = best_avgrate;
1218
1219         return 0;
1220 }
1221
1222 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1223 {
1224         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1225         struct bcm2835_cprman *cprman = clock->cprman;
1226         const struct bcm2835_clock_data *data = clock->data;
1227         u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1228
1229         cprman_write(cprman, data->ctl_reg, src);
1230         return 0;
1231 }
1232
1233 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1234 {
1235         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236         struct bcm2835_cprman *cprman = clock->cprman;
1237         const struct bcm2835_clock_data *data = clock->data;
1238         u32 src = cprman_read(cprman, data->ctl_reg);
1239
1240         return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1241 }
1242
1243 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1244         {
1245                 .name = "ctl",
1246                 .offset = 0,
1247         },
1248         {
1249                 .name = "div",
1250                 .offset = 4,
1251         },
1252 };
1253
1254 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1255                                     struct dentry *dentry)
1256 {
1257         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258         struct bcm2835_cprman *cprman = clock->cprman;
1259         const struct bcm2835_clock_data *data = clock->data;
1260
1261         bcm2835_debugfs_regset(cprman, data->ctl_reg,
1262                 bcm2835_debugfs_clock_reg32,
1263                 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1264                 dentry);
1265 }
1266
1267 static const struct clk_ops bcm2835_clock_clk_ops = {
1268         .is_prepared = bcm2835_clock_is_on,
1269         .prepare = bcm2835_clock_on,
1270         .unprepare = bcm2835_clock_off,
1271         .recalc_rate = bcm2835_clock_get_rate,
1272         .set_rate = bcm2835_clock_set_rate,
1273         .determine_rate = bcm2835_clock_determine_rate,
1274         .set_parent = bcm2835_clock_set_parent,
1275         .get_parent = bcm2835_clock_get_parent,
1276         .debug_init = bcm2835_clock_debug_init,
1277 };
1278
1279 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1280 {
1281         return true;
1282 }
1283
1284 /*
1285  * The VPU clock can never be disabled (it doesn't have an ENABLE
1286  * bit), so it gets its own set of clock ops.
1287  */
1288 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1289         .is_prepared = bcm2835_vpu_clock_is_on,
1290         .recalc_rate = bcm2835_clock_get_rate,
1291         .set_rate = bcm2835_clock_set_rate,
1292         .determine_rate = bcm2835_clock_determine_rate,
1293         .set_parent = bcm2835_clock_set_parent,
1294         .get_parent = bcm2835_clock_get_parent,
1295         .debug_init = bcm2835_clock_debug_init,
1296 };
1297
1298 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1299                                            const struct bcm2835_pll_data *data)
1300 {
1301         struct bcm2835_pll *pll;
1302         struct clk_init_data init;
1303         int ret;
1304
1305         memset(&init, 0, sizeof(init));
1306
1307         /* All of the PLLs derive from the external oscillator. */
1308         init.parent_names = &cprman->real_parent_names[0];
1309         init.num_parents = 1;
1310         init.name = data->name;
1311         init.ops = &bcm2835_pll_clk_ops;
1312         init.flags = CLK_IGNORE_UNUSED;
1313
1314         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1315         if (!pll)
1316                 return NULL;
1317
1318         pll->cprman = cprman;
1319         pll->data = data;
1320         pll->hw.init = &init;
1321
1322         ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1323         if (ret)
1324                 return NULL;
1325         return &pll->hw;
1326 }
1327
1328 static struct clk_hw *
1329 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1330                              const struct bcm2835_pll_divider_data *data)
1331 {
1332         struct bcm2835_pll_divider *divider;
1333         struct clk_init_data init;
1334         const char *divider_name;
1335         int ret;
1336
1337         if (data->fixed_divider != 1) {
1338                 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1339                                               "%s_prediv", data->name);
1340                 if (!divider_name)
1341                         return NULL;
1342         } else {
1343                 divider_name = data->name;
1344         }
1345
1346         memset(&init, 0, sizeof(init));
1347
1348         init.parent_names = &data->source_pll;
1349         init.num_parents = 1;
1350         init.name = divider_name;
1351         init.ops = &bcm2835_pll_divider_clk_ops;
1352         init.flags = data->flags | CLK_IGNORE_UNUSED;
1353
1354         divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1355         if (!divider)
1356                 return NULL;
1357
1358         divider->div.reg = cprman->regs + data->a2w_reg;
1359         divider->div.shift = A2W_PLL_DIV_SHIFT;
1360         divider->div.width = A2W_PLL_DIV_BITS;
1361         divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1362         divider->div.lock = &cprman->regs_lock;
1363         divider->div.hw.init = &init;
1364         divider->div.table = NULL;
1365
1366         divider->cprman = cprman;
1367         divider->data = data;
1368
1369         ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1370         if (ret)
1371                 return ERR_PTR(ret);
1372
1373         /*
1374          * PLLH's channels have a fixed divide by 10 afterwards, which
1375          * is what our consumers are actually using.
1376          */
1377         if (data->fixed_divider != 1) {
1378                 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1379                                                     divider_name,
1380                                                     CLK_SET_RATE_PARENT,
1381                                                     1,
1382                                                     data->fixed_divider);
1383         }
1384
1385         return &divider->div.hw;
1386 }
1387
1388 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1389                                           const struct bcm2835_clock_data *data)
1390 {
1391         struct bcm2835_clock *clock;
1392         struct clk_init_data init;
1393         const char *parents[1 << CM_SRC_BITS];
1394         size_t i;
1395         int ret;
1396
1397         /*
1398          * Replace our strings referencing parent clocks with the
1399          * actual clock-output-name of the parent.
1400          */
1401         for (i = 0; i < data->num_mux_parents; i++) {
1402                 parents[i] = data->parents[i];
1403
1404                 ret = match_string(cprman_parent_names,
1405                                    ARRAY_SIZE(cprman_parent_names),
1406                                    parents[i]);
1407                 if (ret >= 0)
1408                         parents[i] = cprman->real_parent_names[ret];
1409         }
1410
1411         memset(&init, 0, sizeof(init));
1412         init.parent_names = parents;
1413         init.num_parents = data->num_mux_parents;
1414         init.name = data->name;
1415         init.flags = data->flags | CLK_IGNORE_UNUSED;
1416
1417         /*
1418          * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419          * rate changes on at least of the parents.
1420          */
1421         if (data->set_rate_parent)
1422                 init.flags |= CLK_SET_RATE_PARENT;
1423
1424         if (data->is_vpu_clock) {
1425                 init.ops = &bcm2835_vpu_clock_clk_ops;
1426         } else {
1427                 init.ops = &bcm2835_clock_clk_ops;
1428                 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1429
1430                 /* If the clock wasn't actually enabled at boot, it's not
1431                  * critical.
1432                  */
1433                 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1434                         init.flags &= ~CLK_IS_CRITICAL;
1435         }
1436
1437         clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1438         if (!clock)
1439                 return NULL;
1440
1441         clock->cprman = cprman;
1442         clock->data = data;
1443         clock->hw.init = &init;
1444
1445         ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1446         if (ret)
1447                 return ERR_PTR(ret);
1448         return &clock->hw;
1449 }
1450
1451 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1452                                          const struct bcm2835_gate_data *data)
1453 {
1454         return clk_register_gate(cprman->dev, data->name, data->parent,
1455                                  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1456                                  cprman->regs + data->ctl_reg,
1457                                  CM_GATE_BIT, 0, &cprman->regs_lock);
1458 }
1459
1460 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1461                                                const void *data);
1462 struct bcm2835_clk_desc {
1463         bcm2835_clk_register clk_register;
1464         unsigned int supported;
1465         const void *data;
1466 };
1467
1468 /* assignment helper macros for different clock types */
1469 #define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \
1470                                .supported = s,                          \
1471                                .data = __VA_ARGS__ }
1472 #define REGISTER_PLL(s, ...)    _REGISTER(&bcm2835_register_pll,        \
1473                                           s,                            \
1474                                           &(struct bcm2835_pll_data)    \
1475                                           {__VA_ARGS__})
1476 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1477                                            s,                             \
1478                                            &(struct bcm2835_pll_divider_data) \
1479                                            {__VA_ARGS__})
1480 #define REGISTER_CLK(s, ...)    _REGISTER(&bcm2835_register_clock,      \
1481                                           s,                            \
1482                                           &(struct bcm2835_clock_data)  \
1483                                           {__VA_ARGS__})
1484 #define REGISTER_GATE(s, ...)   _REGISTER(&bcm2835_register_gate,       \
1485                                           s,                            \
1486                                           &(struct bcm2835_gate_data)   \
1487                                           {__VA_ARGS__})
1488
1489 /* parent mux arrays plus helper macros */
1490
1491 /* main oscillator parent mux */
1492 static const char *const bcm2835_clock_osc_parents[] = {
1493         "gnd",
1494         "xosc",
1495         "testdebug0",
1496         "testdebug1"
1497 };
1498
1499 #define REGISTER_OSC_CLK(s, ...)        REGISTER_CLK(                   \
1500         s,                                                              \
1501         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1502         .parents = bcm2835_clock_osc_parents,                           \
1503         __VA_ARGS__)
1504
1505 /* main peripherial parent mux */
1506 static const char *const bcm2835_clock_per_parents[] = {
1507         "gnd",
1508         "xosc",
1509         "testdebug0",
1510         "testdebug1",
1511         "plla_per",
1512         "pllc_per",
1513         "plld_per",
1514         "pllh_aux",
1515 };
1516
1517 #define REGISTER_PER_CLK(s, ...)        REGISTER_CLK(                   \
1518         s,                                                              \
1519         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1520         .parents = bcm2835_clock_per_parents,                           \
1521         __VA_ARGS__)
1522
1523 /*
1524  * Restrict clock sources for the PCM peripheral to the oscillator and
1525  * PLLD_PER because other source may have varying rates or be switched
1526  * off.
1527  *
1528  * Prevent other sources from being selected by replacing their names in
1529  * the list of potential parents with dummy entries (entry index is
1530  * significant).
1531  */
1532 static const char *const bcm2835_pcm_per_parents[] = {
1533         "-",
1534         "xosc",
1535         "-",
1536         "-",
1537         "-",
1538         "-",
1539         "plld_per",
1540         "-",
1541 };
1542
1543 #define REGISTER_PCM_CLK(s, ...)        REGISTER_CLK(                   \
1544         s,                                                              \
1545         .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1546         .parents = bcm2835_pcm_per_parents,                             \
1547         __VA_ARGS__)
1548
1549 /* main vpu parent mux */
1550 static const char *const bcm2835_clock_vpu_parents[] = {
1551         "gnd",
1552         "xosc",
1553         "testdebug0",
1554         "testdebug1",
1555         "plla_core",
1556         "pllc_core0",
1557         "plld_core",
1558         "pllh_aux",
1559         "pllc_core1",
1560         "pllc_core2",
1561 };
1562
1563 #define REGISTER_VPU_CLK(s, ...)        REGISTER_CLK(                   \
1564         s,                                                              \
1565         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1566         .parents = bcm2835_clock_vpu_parents,                           \
1567         __VA_ARGS__)
1568
1569 /*
1570  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1571  * analog PHY.  The _inv variants are generated internally to cprman,
1572  * but we don't use them so they aren't hooked up.
1573  */
1574 static const char *const bcm2835_clock_dsi0_parents[] = {
1575         "gnd",
1576         "xosc",
1577         "testdebug0",
1578         "testdebug1",
1579         "dsi0_ddr",
1580         "dsi0_ddr_inv",
1581         "dsi0_ddr2",
1582         "dsi0_ddr2_inv",
1583         "dsi0_byte",
1584         "dsi0_byte_inv",
1585 };
1586
1587 static const char *const bcm2835_clock_dsi1_parents[] = {
1588         "gnd",
1589         "xosc",
1590         "testdebug0",
1591         "testdebug1",
1592         "dsi1_ddr",
1593         "dsi1_ddr_inv",
1594         "dsi1_ddr2",
1595         "dsi1_ddr2_inv",
1596         "dsi1_byte",
1597         "dsi1_byte_inv",
1598 };
1599
1600 #define REGISTER_DSI0_CLK(s, ...)       REGISTER_CLK(                   \
1601         s,                                                              \
1602         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1603         .parents = bcm2835_clock_dsi0_parents,                          \
1604         __VA_ARGS__)
1605
1606 #define REGISTER_DSI1_CLK(s, ...)       REGISTER_CLK(                   \
1607         s,                                                              \
1608         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1609         .parents = bcm2835_clock_dsi1_parents,                          \
1610         __VA_ARGS__)
1611
1612 /*
1613  * the real definition of all the pll, pll_dividers and clocks
1614  * these make use of the above REGISTER_* macros
1615  */
1616 static const struct bcm2835_clk_desc clk_desc_array[] = {
1617         /* the PLL + PLL dividers */
1618
1619         /*
1620          * PLLA is the auxiliary PLL, used to drive the CCP2
1621          * (Compact Camera Port 2) transmitter clock.
1622          *
1623          * It is in the PX LDO power domain, which is on when the
1624          * AUDIO domain is on.
1625          */
1626         [BCM2835_PLLA]          = REGISTER_PLL(
1627                 SOC_ALL,
1628                 .name = "plla",
1629                 .cm_ctrl_reg = CM_PLLA,
1630                 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1631                 .frac_reg = A2W_PLLA_FRAC,
1632                 .ana_reg_base = A2W_PLLA_ANA0,
1633                 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1634                 .lock_mask = CM_LOCK_FLOCKA,
1635
1636                 .ana = &bcm2835_ana_default,
1637
1638                 .min_rate = 600000000u,
1639                 .max_rate = 2400000000u,
1640                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1641         [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1642                 SOC_ALL,
1643                 .name = "plla_core",
1644                 .source_pll = "plla",
1645                 .cm_reg = CM_PLLA,
1646                 .a2w_reg = A2W_PLLA_CORE,
1647                 .load_mask = CM_PLLA_LOADCORE,
1648                 .hold_mask = CM_PLLA_HOLDCORE,
1649                 .fixed_divider = 1,
1650                 .flags = CLK_SET_RATE_PARENT),
1651         [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1652                 SOC_ALL,
1653                 .name = "plla_per",
1654                 .source_pll = "plla",
1655                 .cm_reg = CM_PLLA,
1656                 .a2w_reg = A2W_PLLA_PER,
1657                 .load_mask = CM_PLLA_LOADPER,
1658                 .hold_mask = CM_PLLA_HOLDPER,
1659                 .fixed_divider = 1,
1660                 .flags = CLK_SET_RATE_PARENT),
1661         [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1662                 SOC_ALL,
1663                 .name = "plla_dsi0",
1664                 .source_pll = "plla",
1665                 .cm_reg = CM_PLLA,
1666                 .a2w_reg = A2W_PLLA_DSI0,
1667                 .load_mask = CM_PLLA_LOADDSI0,
1668                 .hold_mask = CM_PLLA_HOLDDSI0,
1669                 .fixed_divider = 1),
1670         [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1671                 SOC_ALL,
1672                 .name = "plla_ccp2",
1673                 .source_pll = "plla",
1674                 .cm_reg = CM_PLLA,
1675                 .a2w_reg = A2W_PLLA_CCP2,
1676                 .load_mask = CM_PLLA_LOADCCP2,
1677                 .hold_mask = CM_PLLA_HOLDCCP2,
1678                 .fixed_divider = 1,
1679                 .flags = CLK_SET_RATE_PARENT),
1680
1681         /*
1682          * PLLB is used for the ARM's clock. Controlled by firmware, see
1683          * clk-raspberrypi.c.
1684          */
1685
1686         /*
1687          * PLLC is the core PLL, used to drive the core VPU clock.
1688          *
1689          * It is in the PX LDO power domain, which is on when the
1690          * AUDIO domain is on.
1691          */
1692         [BCM2835_PLLC]          = REGISTER_PLL(
1693                 SOC_ALL,
1694                 .name = "pllc",
1695                 .cm_ctrl_reg = CM_PLLC,
1696                 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1697                 .frac_reg = A2W_PLLC_FRAC,
1698                 .ana_reg_base = A2W_PLLC_ANA0,
1699                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1700                 .lock_mask = CM_LOCK_FLOCKC,
1701
1702                 .ana = &bcm2835_ana_default,
1703
1704                 .min_rate = 600000000u,
1705                 .max_rate = 3000000000u,
1706                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1707         [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1708                 SOC_ALL,
1709                 .name = "pllc_core0",
1710                 .source_pll = "pllc",
1711                 .cm_reg = CM_PLLC,
1712                 .a2w_reg = A2W_PLLC_CORE0,
1713                 .load_mask = CM_PLLC_LOADCORE0,
1714                 .hold_mask = CM_PLLC_HOLDCORE0,
1715                 .fixed_divider = 1,
1716                 .flags = CLK_SET_RATE_PARENT),
1717         [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1718                 SOC_ALL,
1719                 .name = "pllc_core1",
1720                 .source_pll = "pllc",
1721                 .cm_reg = CM_PLLC,
1722                 .a2w_reg = A2W_PLLC_CORE1,
1723                 .load_mask = CM_PLLC_LOADCORE1,
1724                 .hold_mask = CM_PLLC_HOLDCORE1,
1725                 .fixed_divider = 1,
1726                 .flags = CLK_SET_RATE_PARENT),
1727         [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1728                 SOC_ALL,
1729                 .name = "pllc_core2",
1730                 .source_pll = "pllc",
1731                 .cm_reg = CM_PLLC,
1732                 .a2w_reg = A2W_PLLC_CORE2,
1733                 .load_mask = CM_PLLC_LOADCORE2,
1734                 .hold_mask = CM_PLLC_HOLDCORE2,
1735                 .fixed_divider = 1,
1736                 .flags = CLK_SET_RATE_PARENT),
1737         [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1738                 SOC_ALL,
1739                 .name = "pllc_per",
1740                 .source_pll = "pllc",
1741                 .cm_reg = CM_PLLC,
1742                 .a2w_reg = A2W_PLLC_PER,
1743                 .load_mask = CM_PLLC_LOADPER,
1744                 .hold_mask = CM_PLLC_HOLDPER,
1745                 .fixed_divider = 1,
1746                 .flags = CLK_SET_RATE_PARENT),
1747
1748         /*
1749          * PLLD is the display PLL, used to drive DSI display panels.
1750          *
1751          * It is in the PX LDO power domain, which is on when the
1752          * AUDIO domain is on.
1753          */
1754         [BCM2835_PLLD]          = REGISTER_PLL(
1755                 SOC_ALL,
1756                 .name = "plld",
1757                 .cm_ctrl_reg = CM_PLLD,
1758                 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1759                 .frac_reg = A2W_PLLD_FRAC,
1760                 .ana_reg_base = A2W_PLLD_ANA0,
1761                 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1762                 .lock_mask = CM_LOCK_FLOCKD,
1763
1764                 .ana = &bcm2835_ana_default,
1765
1766                 .min_rate = 600000000u,
1767                 .max_rate = 2400000000u,
1768                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1769         [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1770                 SOC_ALL,
1771                 .name = "plld_core",
1772                 .source_pll = "plld",
1773                 .cm_reg = CM_PLLD,
1774                 .a2w_reg = A2W_PLLD_CORE,
1775                 .load_mask = CM_PLLD_LOADCORE,
1776                 .hold_mask = CM_PLLD_HOLDCORE,
1777                 .fixed_divider = 1,
1778                 .flags = CLK_SET_RATE_PARENT),
1779         /*
1780          * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1781          * Otherwise this could cause firmware lookups. That's why we mark
1782          * it as critical.
1783          */
1784         [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1785                 SOC_ALL,
1786                 .name = "plld_per",
1787                 .source_pll = "plld",
1788                 .cm_reg = CM_PLLD,
1789                 .a2w_reg = A2W_PLLD_PER,
1790                 .load_mask = CM_PLLD_LOADPER,
1791                 .hold_mask = CM_PLLD_HOLDPER,
1792                 .fixed_divider = 1,
1793                 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1794         [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1795                 SOC_ALL,
1796                 .name = "plld_dsi0",
1797                 .source_pll = "plld",
1798                 .cm_reg = CM_PLLD,
1799                 .a2w_reg = A2W_PLLD_DSI0,
1800                 .load_mask = CM_PLLD_LOADDSI0,
1801                 .hold_mask = CM_PLLD_HOLDDSI0,
1802                 .fixed_divider = 1),
1803         [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1804                 SOC_ALL,
1805                 .name = "plld_dsi1",
1806                 .source_pll = "plld",
1807                 .cm_reg = CM_PLLD,
1808                 .a2w_reg = A2W_PLLD_DSI1,
1809                 .load_mask = CM_PLLD_LOADDSI1,
1810                 .hold_mask = CM_PLLD_HOLDDSI1,
1811                 .fixed_divider = 1),
1812
1813         /*
1814          * PLLH is used to supply the pixel clock or the AUX clock for the
1815          * TV encoder.
1816          *
1817          * It is in the HDMI power domain.
1818          */
1819         [BCM2835_PLLH]          = REGISTER_PLL(
1820                 SOC_BCM2835,
1821                 "pllh",
1822                 .cm_ctrl_reg = CM_PLLH,
1823                 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1824                 .frac_reg = A2W_PLLH_FRAC,
1825                 .ana_reg_base = A2W_PLLH_ANA0,
1826                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1827                 .lock_mask = CM_LOCK_FLOCKH,
1828
1829                 .ana = &bcm2835_ana_pllh,
1830
1831                 .min_rate = 600000000u,
1832                 .max_rate = 3000000000u,
1833                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1834         [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1835                 SOC_BCM2835,
1836                 .name = "pllh_rcal",
1837                 .source_pll = "pllh",
1838                 .cm_reg = CM_PLLH,
1839                 .a2w_reg = A2W_PLLH_RCAL,
1840                 .load_mask = CM_PLLH_LOADRCAL,
1841                 .hold_mask = 0,
1842                 .fixed_divider = 10,
1843                 .flags = CLK_SET_RATE_PARENT),
1844         [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1845                 SOC_BCM2835,
1846                 .name = "pllh_aux",
1847                 .source_pll = "pllh",
1848                 .cm_reg = CM_PLLH,
1849                 .a2w_reg = A2W_PLLH_AUX,
1850                 .load_mask = CM_PLLH_LOADAUX,
1851                 .hold_mask = 0,
1852                 .fixed_divider = 1,
1853                 .flags = CLK_SET_RATE_PARENT),
1854         [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1855                 SOC_BCM2835,
1856                 .name = "pllh_pix",
1857                 .source_pll = "pllh",
1858                 .cm_reg = CM_PLLH,
1859                 .a2w_reg = A2W_PLLH_PIX,
1860                 .load_mask = CM_PLLH_LOADPIX,
1861                 .hold_mask = 0,
1862                 .fixed_divider = 10,
1863                 .flags = CLK_SET_RATE_PARENT),
1864
1865         /* the clocks */
1866
1867         /* clocks with oscillator parent mux */
1868
1869         /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1870         [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1871                 SOC_ALL,
1872                 .name = "otp",
1873                 .ctl_reg = CM_OTPCTL,
1874                 .div_reg = CM_OTPDIV,
1875                 .int_bits = 4,
1876                 .frac_bits = 0,
1877                 .tcnt_mux = 6),
1878         /*
1879          * Used for a 1Mhz clock for the system clocksource, and also used
1880          * bythe watchdog timer and the camera pulse generator.
1881          */
1882         [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1883                 SOC_ALL,
1884                 .name = "timer",
1885                 .ctl_reg = CM_TIMERCTL,
1886                 .div_reg = CM_TIMERDIV,
1887                 .int_bits = 6,
1888                 .frac_bits = 12),
1889         /*
1890          * Clock for the temperature sensor.
1891          * Generally run at 2Mhz, max 5Mhz.
1892          */
1893         [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1894                 SOC_ALL,
1895                 .name = "tsens",
1896                 .ctl_reg = CM_TSENSCTL,
1897                 .div_reg = CM_TSENSDIV,
1898                 .int_bits = 5,
1899                 .frac_bits = 0),
1900         [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1901                 SOC_ALL,
1902                 .name = "tec",
1903                 .ctl_reg = CM_TECCTL,
1904                 .div_reg = CM_TECDIV,
1905                 .int_bits = 6,
1906                 .frac_bits = 0),
1907
1908         /* clocks with vpu parent mux */
1909         [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1910                 SOC_ALL,
1911                 .name = "h264",
1912                 .ctl_reg = CM_H264CTL,
1913                 .div_reg = CM_H264DIV,
1914                 .int_bits = 4,
1915                 .frac_bits = 8,
1916                 .tcnt_mux = 1),
1917         [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1918                 SOC_ALL,
1919                 .name = "isp",
1920                 .ctl_reg = CM_ISPCTL,
1921                 .div_reg = CM_ISPDIV,
1922                 .int_bits = 4,
1923                 .frac_bits = 8,
1924                 .tcnt_mux = 2),
1925
1926         /*
1927          * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1928          * in the SDRAM controller can't be used.
1929          */
1930         [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1931                 SOC_ALL,
1932                 .name = "sdram",
1933                 .ctl_reg = CM_SDCCTL,
1934                 .div_reg = CM_SDCDIV,
1935                 .int_bits = 6,
1936                 .frac_bits = 0,
1937                 .tcnt_mux = 3),
1938         [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1939                 SOC_ALL,
1940                 .name = "v3d",
1941                 .ctl_reg = CM_V3DCTL,
1942                 .div_reg = CM_V3DDIV,
1943                 .int_bits = 4,
1944                 .frac_bits = 8,
1945                 .tcnt_mux = 4),
1946         /*
1947          * VPU clock.  This doesn't have an enable bit, since it drives
1948          * the bus for everything else, and is special so it doesn't need
1949          * to be gated for rate changes.  It is also known as "clk_audio"
1950          * in various hardware documentation.
1951          */
1952         [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1953                 SOC_ALL,
1954                 .name = "vpu",
1955                 .ctl_reg = CM_VPUCTL,
1956                 .div_reg = CM_VPUDIV,
1957                 .int_bits = 12,
1958                 .frac_bits = 8,
1959                 .flags = CLK_IS_CRITICAL,
1960                 .is_vpu_clock = true,
1961                 .tcnt_mux = 5),
1962
1963         /* clocks with per parent mux */
1964         [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1965                 SOC_ALL,
1966                 .name = "aveo",
1967                 .ctl_reg = CM_AVEOCTL,
1968                 .div_reg = CM_AVEODIV,
1969                 .int_bits = 4,
1970                 .frac_bits = 0,
1971                 .tcnt_mux = 38),
1972         [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1973                 SOC_ALL,
1974                 .name = "cam0",
1975                 .ctl_reg = CM_CAM0CTL,
1976                 .div_reg = CM_CAM0DIV,
1977                 .int_bits = 4,
1978                 .frac_bits = 8,
1979                 .tcnt_mux = 14),
1980         [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1981                 SOC_ALL,
1982                 .name = "cam1",
1983                 .ctl_reg = CM_CAM1CTL,
1984                 .div_reg = CM_CAM1DIV,
1985                 .int_bits = 4,
1986                 .frac_bits = 8,
1987                 .tcnt_mux = 15),
1988         [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1989                 SOC_ALL,
1990                 .name = "dft",
1991                 .ctl_reg = CM_DFTCTL,
1992                 .div_reg = CM_DFTDIV,
1993                 .int_bits = 5,
1994                 .frac_bits = 0),
1995         [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
1996                 SOC_ALL,
1997                 .name = "dpi",
1998                 .ctl_reg = CM_DPICTL,
1999                 .div_reg = CM_DPIDIV,
2000                 .int_bits = 4,
2001                 .frac_bits = 8,
2002                 .tcnt_mux = 17),
2003
2004         /* Arasan EMMC clock */
2005         [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2006                 SOC_ALL,
2007                 .name = "emmc",
2008                 .ctl_reg = CM_EMMCCTL,
2009                 .div_reg = CM_EMMCDIV,
2010                 .int_bits = 4,
2011                 .frac_bits = 8,
2012                 .tcnt_mux = 39),
2013
2014         /* EMMC2 clock (only available for BCM2711) */
2015         [BCM2711_CLOCK_EMMC2]   = REGISTER_PER_CLK(
2016                 SOC_BCM2711,
2017                 .name = "emmc2",
2018                 .ctl_reg = CM_EMMC2CTL,
2019                 .div_reg = CM_EMMC2DIV,
2020                 .int_bits = 4,
2021                 .frac_bits = 8,
2022                 .tcnt_mux = 42),
2023
2024         /* General purpose (GPIO) clocks */
2025         [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2026                 SOC_ALL,
2027                 .name = "gp0",
2028                 .ctl_reg = CM_GP0CTL,
2029                 .div_reg = CM_GP0DIV,
2030                 .int_bits = 12,
2031                 .frac_bits = 12,
2032                 .is_mash_clock = true,
2033                 .tcnt_mux = 20),
2034         [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2035                 SOC_ALL,
2036                 .name = "gp1",
2037                 .ctl_reg = CM_GP1CTL,
2038                 .div_reg = CM_GP1DIV,
2039                 .int_bits = 12,
2040                 .frac_bits = 12,
2041                 .flags = CLK_IS_CRITICAL,
2042                 .is_mash_clock = true,
2043                 .tcnt_mux = 21),
2044         [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2045                 SOC_ALL,
2046                 .name = "gp2",
2047                 .ctl_reg = CM_GP2CTL,
2048                 .div_reg = CM_GP2DIV,
2049                 .int_bits = 12,
2050                 .frac_bits = 12,
2051                 .flags = CLK_IS_CRITICAL),
2052
2053         /* HDMI state machine */
2054         [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2055                 SOC_ALL,
2056                 .name = "hsm",
2057                 .ctl_reg = CM_HSMCTL,
2058                 .div_reg = CM_HSMDIV,
2059                 .int_bits = 4,
2060                 .frac_bits = 8,
2061                 .tcnt_mux = 22),
2062         [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2063                 SOC_ALL,
2064                 .name = "pcm",
2065                 .ctl_reg = CM_PCMCTL,
2066                 .div_reg = CM_PCMDIV,
2067                 .int_bits = 12,
2068                 .frac_bits = 12,
2069                 .is_mash_clock = true,
2070                 .low_jitter = true,
2071                 .tcnt_mux = 23),
2072         [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2073                 SOC_ALL,
2074                 .name = "pwm",
2075                 .ctl_reg = CM_PWMCTL,
2076                 .div_reg = CM_PWMDIV,
2077                 .int_bits = 12,
2078                 .frac_bits = 12,
2079                 .is_mash_clock = true,
2080                 .tcnt_mux = 24),
2081         [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2082                 SOC_ALL,
2083                 .name = "slim",
2084                 .ctl_reg = CM_SLIMCTL,
2085                 .div_reg = CM_SLIMDIV,
2086                 .int_bits = 12,
2087                 .frac_bits = 12,
2088                 .is_mash_clock = true,
2089                 .tcnt_mux = 25),
2090         [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2091                 SOC_ALL,
2092                 .name = "smi",
2093                 .ctl_reg = CM_SMICTL,
2094                 .div_reg = CM_SMIDIV,
2095                 .int_bits = 4,
2096                 .frac_bits = 8,
2097                 .tcnt_mux = 27),
2098         [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2099                 SOC_ALL,
2100                 .name = "uart",
2101                 .ctl_reg = CM_UARTCTL,
2102                 .div_reg = CM_UARTDIV,
2103                 .int_bits = 10,
2104                 .frac_bits = 12,
2105                 .tcnt_mux = 28),
2106
2107         /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2108         [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2109                 SOC_ALL,
2110                 .name = "vec",
2111                 .ctl_reg = CM_VECCTL,
2112                 .div_reg = CM_VECDIV,
2113                 .int_bits = 4,
2114                 .frac_bits = 0,
2115                 /*
2116                  * Allow rate change propagation only on PLLH_AUX which is
2117                  * assigned index 7 in the parent array.
2118                  */
2119                 .set_rate_parent = BIT(7),
2120                 .tcnt_mux = 29),
2121
2122         /* dsi clocks */
2123         [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2124                 SOC_ALL,
2125                 .name = "dsi0e",
2126                 .ctl_reg = CM_DSI0ECTL,
2127                 .div_reg = CM_DSI0EDIV,
2128                 .int_bits = 4,
2129                 .frac_bits = 8,
2130                 .tcnt_mux = 18),
2131         [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2132                 SOC_ALL,
2133                 .name = "dsi1e",
2134                 .ctl_reg = CM_DSI1ECTL,
2135                 .div_reg = CM_DSI1EDIV,
2136                 .int_bits = 4,
2137                 .frac_bits = 8,
2138                 .tcnt_mux = 19),
2139         [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2140                 SOC_ALL,
2141                 .name = "dsi0p",
2142                 .ctl_reg = CM_DSI0PCTL,
2143                 .div_reg = CM_DSI0PDIV,
2144                 .int_bits = 0,
2145                 .frac_bits = 0,
2146                 .tcnt_mux = 12),
2147         [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2148                 SOC_ALL,
2149                 .name = "dsi1p",
2150                 .ctl_reg = CM_DSI1PCTL,
2151                 .div_reg = CM_DSI1PDIV,
2152                 .int_bits = 0,
2153                 .frac_bits = 0,
2154                 .tcnt_mux = 13),
2155
2156         /* the gates */
2157
2158         /*
2159          * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2160          * you have the debug bit set in the power manager, which we
2161          * don't bother exposing) are individual gates off of the
2162          * non-stop vpu clock.
2163          */
2164         [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2165                 SOC_ALL,
2166                 .name = "peri_image",
2167                 .parent = "vpu",
2168                 .ctl_reg = CM_PERIICTL),
2169 };
2170
2171 /*
2172  * Permanently take a reference on the parent of the SDRAM clock.
2173  *
2174  * While the SDRAM is being driven by its dedicated PLL most of the
2175  * time, there is a little loop running in the firmware that
2176  * periodically switches the SDRAM to using our CM clock to do PVT
2177  * recalibration, with the assumption that the previously configured
2178  * SDRAM parent is still enabled and running.
2179  */
2180 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2181 {
2182         struct clk *parent = clk_get_parent(sdc);
2183
2184         if (IS_ERR(parent))
2185                 return PTR_ERR(parent);
2186
2187         return clk_prepare_enable(parent);
2188 }
2189
2190 static int bcm2835_clk_probe(struct platform_device *pdev)
2191 {
2192         struct device *dev = &pdev->dev;
2193         struct clk_hw **hws;
2194         struct bcm2835_cprman *cprman;
2195         const struct bcm2835_clk_desc *desc;
2196         const size_t asize = ARRAY_SIZE(clk_desc_array);
2197         const struct cprman_plat_data *pdata;
2198         size_t i;
2199         int ret;
2200
2201         pdata = of_device_get_match_data(&pdev->dev);
2202         if (!pdata)
2203                 return -ENODEV;
2204
2205         cprman = devm_kzalloc(dev,
2206                               struct_size(cprman, onecell.hws, asize),
2207                               GFP_KERNEL);
2208         if (!cprman)
2209                 return -ENOMEM;
2210
2211         spin_lock_init(&cprman->regs_lock);
2212         cprman->dev = dev;
2213         cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2214         if (IS_ERR(cprman->regs))
2215                 return PTR_ERR(cprman->regs);
2216
2217         memcpy(cprman->real_parent_names, cprman_parent_names,
2218                sizeof(cprman_parent_names));
2219         of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2220                            ARRAY_SIZE(cprman_parent_names));
2221
2222         /*
2223          * Make sure the external oscillator has been registered.
2224          *
2225          * The other (DSI) clocks are not present on older device
2226          * trees, which we still need to support for backwards
2227          * compatibility.
2228          */
2229         if (!cprman->real_parent_names[0])
2230                 return -ENODEV;
2231
2232         platform_set_drvdata(pdev, cprman);
2233
2234         cprman->onecell.num = asize;
2235         hws = cprman->onecell.hws;
2236
2237         for (i = 0; i < asize; i++) {
2238                 desc = &clk_desc_array[i];
2239                 if (desc->clk_register && desc->data &&
2240                     (desc->supported & pdata->soc)) {
2241                         hws[i] = desc->clk_register(cprman, desc->data);
2242                 }
2243         }
2244
2245         ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2246         if (ret)
2247                 return ret;
2248
2249         return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2250                                       &cprman->onecell);
2251 }
2252
2253 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2254         .soc = SOC_BCM2835,
2255 };
2256
2257 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2258         .soc = SOC_BCM2711,
2259 };
2260
2261 static const struct of_device_id bcm2835_clk_of_match[] = {
2262         { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2263         { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2264         {}
2265 };
2266 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2267
2268 static struct platform_driver bcm2835_clk_driver = {
2269         .driver = {
2270                 .name = "bcm2835-clk",
2271                 .of_match_table = bcm2835_clk_of_match,
2272         },
2273         .probe          = bcm2835_clk_probe,
2274 };
2275
2276 builtin_platform_driver(bcm2835_clk_driver);
2277
2278 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2279 MODULE_DESCRIPTION("BCM2835 clock driver");
2280 MODULE_LICENSE("GPL");