]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/clocksource/arm_arch_timer.c
clocksource/drivers/arm_arch_timer: Remove fsl-a008585 parameter
[linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #define pr_fmt(fmt)     "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29
30 #include <asm/arch_timer.h>
31 #include <asm/virt.h>
32
33 #include <clocksource/arm_arch_timer.h>
34
35 #define CNTTIDR         0x08
36 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
37
38 #define CNTACR(n)       (0x40 + ((n) * 4))
39 #define CNTACR_RPCT     BIT(0)
40 #define CNTACR_RVCT     BIT(1)
41 #define CNTACR_RFRQ     BIT(2)
42 #define CNTACR_RVOFF    BIT(3)
43 #define CNTACR_RWVT     BIT(4)
44 #define CNTACR_RWPT     BIT(5)
45
46 #define CNTVCT_LO       0x08
47 #define CNTVCT_HI       0x0c
48 #define CNTFRQ          0x10
49 #define CNTP_TVAL       0x28
50 #define CNTP_CTL        0x2c
51 #define CNTV_TVAL       0x38
52 #define CNTV_CTL        0x3c
53
54 #define ARCH_CP15_TIMER BIT(0)
55 #define ARCH_MEM_TIMER  BIT(1)
56 static unsigned arch_timers_present __initdata;
57
58 static void __iomem *arch_counter_base;
59
60 struct arch_timer {
61         void __iomem *base;
62         struct clock_event_device evt;
63 };
64
65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66
67 static u32 arch_timer_rate;
68
69 enum ppi_nr {
70         PHYS_SECURE_PPI,
71         PHYS_NONSECURE_PPI,
72         VIRT_PPI,
73         HYP_PPI,
74         MAX_TIMER_PPI
75 };
76
77 static int arch_timer_ppi[MAX_TIMER_PPI];
78
79 static struct clock_event_device __percpu *arch_timer_evt;
80
81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82 static bool arch_timer_c3stop;
83 static bool arch_timer_mem_use_virtual;
84 static bool arch_counter_suspend_stop;
85
86 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87
88 static int __init early_evtstrm_cfg(char *buf)
89 {
90         return strtobool(buf, &evtstrm_enable);
91 }
92 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93
94 /*
95  * Architected system timer support.
96  */
97
98 #ifdef CONFIG_FSL_ERRATUM_A008585
99 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
100 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
101
102 static int fsl_a008585_enable = -1;
103
104 u32 __fsl_a008585_read_cntp_tval_el0(void)
105 {
106         return __fsl_a008585_read_reg(cntp_tval_el0);
107 }
108
109 u32 __fsl_a008585_read_cntv_tval_el0(void)
110 {
111         return __fsl_a008585_read_reg(cntv_tval_el0);
112 }
113
114 u64 __fsl_a008585_read_cntvct_el0(void)
115 {
116         return __fsl_a008585_read_reg(cntvct_el0);
117 }
118 EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
119 #endif /* CONFIG_FSL_ERRATUM_A008585 */
120
121 static __always_inline
122 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
123                           struct clock_event_device *clk)
124 {
125         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
126                 struct arch_timer *timer = to_arch_timer(clk);
127                 switch (reg) {
128                 case ARCH_TIMER_REG_CTRL:
129                         writel_relaxed(val, timer->base + CNTP_CTL);
130                         break;
131                 case ARCH_TIMER_REG_TVAL:
132                         writel_relaxed(val, timer->base + CNTP_TVAL);
133                         break;
134                 }
135         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
136                 struct arch_timer *timer = to_arch_timer(clk);
137                 switch (reg) {
138                 case ARCH_TIMER_REG_CTRL:
139                         writel_relaxed(val, timer->base + CNTV_CTL);
140                         break;
141                 case ARCH_TIMER_REG_TVAL:
142                         writel_relaxed(val, timer->base + CNTV_TVAL);
143                         break;
144                 }
145         } else {
146                 arch_timer_reg_write_cp15(access, reg, val);
147         }
148 }
149
150 static __always_inline
151 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
152                         struct clock_event_device *clk)
153 {
154         u32 val;
155
156         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
157                 struct arch_timer *timer = to_arch_timer(clk);
158                 switch (reg) {
159                 case ARCH_TIMER_REG_CTRL:
160                         val = readl_relaxed(timer->base + CNTP_CTL);
161                         break;
162                 case ARCH_TIMER_REG_TVAL:
163                         val = readl_relaxed(timer->base + CNTP_TVAL);
164                         break;
165                 }
166         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
167                 struct arch_timer *timer = to_arch_timer(clk);
168                 switch (reg) {
169                 case ARCH_TIMER_REG_CTRL:
170                         val = readl_relaxed(timer->base + CNTV_CTL);
171                         break;
172                 case ARCH_TIMER_REG_TVAL:
173                         val = readl_relaxed(timer->base + CNTV_TVAL);
174                         break;
175                 }
176         } else {
177                 val = arch_timer_reg_read_cp15(access, reg);
178         }
179
180         return val;
181 }
182
183 static __always_inline irqreturn_t timer_handler(const int access,
184                                         struct clock_event_device *evt)
185 {
186         unsigned long ctrl;
187
188         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
189         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
190                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
191                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
192                 evt->event_handler(evt);
193                 return IRQ_HANDLED;
194         }
195
196         return IRQ_NONE;
197 }
198
199 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
200 {
201         struct clock_event_device *evt = dev_id;
202
203         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
204 }
205
206 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
207 {
208         struct clock_event_device *evt = dev_id;
209
210         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
211 }
212
213 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
214 {
215         struct clock_event_device *evt = dev_id;
216
217         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
218 }
219
220 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
221 {
222         struct clock_event_device *evt = dev_id;
223
224         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
225 }
226
227 static __always_inline int timer_shutdown(const int access,
228                                           struct clock_event_device *clk)
229 {
230         unsigned long ctrl;
231
232         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
233         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
234         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
235
236         return 0;
237 }
238
239 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
240 {
241         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
242 }
243
244 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
245 {
246         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
247 }
248
249 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
250 {
251         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
252 }
253
254 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
255 {
256         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
257 }
258
259 static __always_inline void set_next_event(const int access, unsigned long evt,
260                                            struct clock_event_device *clk)
261 {
262         unsigned long ctrl;
263         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
264         ctrl |= ARCH_TIMER_CTRL_ENABLE;
265         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
266         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
267         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
268 }
269
270 #ifdef CONFIG_FSL_ERRATUM_A008585
271 static __always_inline void fsl_a008585_set_next_event(const int access,
272                 unsigned long evt, struct clock_event_device *clk)
273 {
274         unsigned long ctrl;
275         u64 cval = evt + arch_counter_get_cntvct();
276
277         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278         ctrl |= ARCH_TIMER_CTRL_ENABLE;
279         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280
281         if (access == ARCH_TIMER_PHYS_ACCESS)
282                 write_sysreg(cval, cntp_cval_el0);
283         else if (access == ARCH_TIMER_VIRT_ACCESS)
284                 write_sysreg(cval, cntv_cval_el0);
285
286         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
287 }
288
289 static int fsl_a008585_set_next_event_virt(unsigned long evt,
290                                            struct clock_event_device *clk)
291 {
292         fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
293         return 0;
294 }
295
296 static int fsl_a008585_set_next_event_phys(unsigned long evt,
297                                            struct clock_event_device *clk)
298 {
299         fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
300         return 0;
301 }
302 #endif /* CONFIG_FSL_ERRATUM_A008585 */
303
304 static int arch_timer_set_next_event_virt(unsigned long evt,
305                                           struct clock_event_device *clk)
306 {
307         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
308         return 0;
309 }
310
311 static int arch_timer_set_next_event_phys(unsigned long evt,
312                                           struct clock_event_device *clk)
313 {
314         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
315         return 0;
316 }
317
318 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
319                                               struct clock_event_device *clk)
320 {
321         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
322         return 0;
323 }
324
325 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
326                                               struct clock_event_device *clk)
327 {
328         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
329         return 0;
330 }
331
332 static void fsl_a008585_set_sne(struct clock_event_device *clk)
333 {
334 #ifdef CONFIG_FSL_ERRATUM_A008585
335         if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
336                 return;
337
338         if (arch_timer_uses_ppi == VIRT_PPI)
339                 clk->set_next_event = fsl_a008585_set_next_event_virt;
340         else
341                 clk->set_next_event = fsl_a008585_set_next_event_phys;
342 #endif
343 }
344
345 static void __arch_timer_setup(unsigned type,
346                                struct clock_event_device *clk)
347 {
348         clk->features = CLOCK_EVT_FEAT_ONESHOT;
349
350         if (type == ARCH_CP15_TIMER) {
351                 if (arch_timer_c3stop)
352                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
353                 clk->name = "arch_sys_timer";
354                 clk->rating = 450;
355                 clk->cpumask = cpumask_of(smp_processor_id());
356                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
357                 switch (arch_timer_uses_ppi) {
358                 case VIRT_PPI:
359                         clk->set_state_shutdown = arch_timer_shutdown_virt;
360                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
361                         clk->set_next_event = arch_timer_set_next_event_virt;
362                         break;
363                 case PHYS_SECURE_PPI:
364                 case PHYS_NONSECURE_PPI:
365                 case HYP_PPI:
366                         clk->set_state_shutdown = arch_timer_shutdown_phys;
367                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
368                         clk->set_next_event = arch_timer_set_next_event_phys;
369                         break;
370                 default:
371                         BUG();
372                 }
373
374                 fsl_a008585_set_sne(clk);
375         } else {
376                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
377                 clk->name = "arch_mem_timer";
378                 clk->rating = 400;
379                 clk->cpumask = cpu_all_mask;
380                 if (arch_timer_mem_use_virtual) {
381                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
382                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
383                         clk->set_next_event =
384                                 arch_timer_set_next_event_virt_mem;
385                 } else {
386                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
387                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
388                         clk->set_next_event =
389                                 arch_timer_set_next_event_phys_mem;
390                 }
391         }
392
393         clk->set_state_shutdown(clk);
394
395         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
396 }
397
398 static void arch_timer_evtstrm_enable(int divider)
399 {
400         u32 cntkctl = arch_timer_get_cntkctl();
401
402         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
403         /* Set the divider and enable virtual event stream */
404         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
405                         | ARCH_TIMER_VIRT_EVT_EN;
406         arch_timer_set_cntkctl(cntkctl);
407         elf_hwcap |= HWCAP_EVTSTRM;
408 #ifdef CONFIG_COMPAT
409         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
410 #endif
411 }
412
413 static void arch_timer_configure_evtstream(void)
414 {
415         int evt_stream_div, pos;
416
417         /* Find the closest power of two to the divisor */
418         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
419         pos = fls(evt_stream_div);
420         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
421                 pos--;
422         /* enable event stream */
423         arch_timer_evtstrm_enable(min(pos, 15));
424 }
425
426 static void arch_counter_set_user_access(void)
427 {
428         u32 cntkctl = arch_timer_get_cntkctl();
429
430         /* Disable user access to the timers and the physical counter */
431         /* Also disable virtual event stream */
432         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
433                         | ARCH_TIMER_USR_VT_ACCESS_EN
434                         | ARCH_TIMER_VIRT_EVT_EN
435                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
436
437         /* Enable user access to the virtual counter */
438         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
439
440         arch_timer_set_cntkctl(cntkctl);
441 }
442
443 static bool arch_timer_has_nonsecure_ppi(void)
444 {
445         return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
446                 arch_timer_ppi[PHYS_NONSECURE_PPI]);
447 }
448
449 static u32 check_ppi_trigger(int irq)
450 {
451         u32 flags = irq_get_trigger_type(irq);
452
453         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
454                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
455                 pr_warn("WARNING: Please fix your firmware\n");
456                 flags = IRQF_TRIGGER_LOW;
457         }
458
459         return flags;
460 }
461
462 static int arch_timer_starting_cpu(unsigned int cpu)
463 {
464         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
465         u32 flags;
466
467         __arch_timer_setup(ARCH_CP15_TIMER, clk);
468
469         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
470         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
471
472         if (arch_timer_has_nonsecure_ppi()) {
473                 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
474                 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
475         }
476
477         arch_counter_set_user_access();
478         if (evtstrm_enable)
479                 arch_timer_configure_evtstream();
480
481         return 0;
482 }
483
484 static void
485 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
486 {
487         /* Who has more than one independent system counter? */
488         if (arch_timer_rate)
489                 return;
490
491         /*
492          * Try to determine the frequency from the device tree or CNTFRQ,
493          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
494          */
495         if (!acpi_disabled ||
496             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
497                 if (cntbase)
498                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
499                 else
500                         arch_timer_rate = arch_timer_get_cntfrq();
501         }
502
503         /* Check the timer frequency. */
504         if (arch_timer_rate == 0)
505                 pr_warn("Architected timer frequency not available\n");
506 }
507
508 static void arch_timer_banner(unsigned type)
509 {
510         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
511                      type & ARCH_CP15_TIMER ? "cp15" : "",
512                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
513                      type & ARCH_MEM_TIMER ? "mmio" : "",
514                      (unsigned long)arch_timer_rate / 1000000,
515                      (unsigned long)(arch_timer_rate / 10000) % 100,
516                      type & ARCH_CP15_TIMER ?
517                      (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
518                         "",
519                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
520                      type & ARCH_MEM_TIMER ?
521                         arch_timer_mem_use_virtual ? "virt" : "phys" :
522                         "");
523 }
524
525 u32 arch_timer_get_rate(void)
526 {
527         return arch_timer_rate;
528 }
529
530 static u64 arch_counter_get_cntvct_mem(void)
531 {
532         u32 vct_lo, vct_hi, tmp_hi;
533
534         do {
535                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
536                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
537                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
538         } while (vct_hi != tmp_hi);
539
540         return ((u64) vct_hi << 32) | vct_lo;
541 }
542
543 /*
544  * Default to cp15 based access because arm64 uses this function for
545  * sched_clock() before DT is probed and the cp15 method is guaranteed
546  * to exist on arm64. arm doesn't use this before DT is probed so even
547  * if we don't have the cp15 accessors we won't have a problem.
548  */
549 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
550
551 static u64 arch_counter_read(struct clocksource *cs)
552 {
553         return arch_timer_read_counter();
554 }
555
556 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
557 {
558         return arch_timer_read_counter();
559 }
560
561 static struct clocksource clocksource_counter = {
562         .name   = "arch_sys_counter",
563         .rating = 400,
564         .read   = arch_counter_read,
565         .mask   = CLOCKSOURCE_MASK(56),
566         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
567 };
568
569 static struct cyclecounter cyclecounter = {
570         .read   = arch_counter_read_cc,
571         .mask   = CLOCKSOURCE_MASK(56),
572 };
573
574 static struct arch_timer_kvm_info arch_timer_kvm_info;
575
576 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
577 {
578         return &arch_timer_kvm_info;
579 }
580
581 static void __init arch_counter_register(unsigned type)
582 {
583         u64 start_count;
584
585         /* Register the CP15 based counter if we have one */
586         if (type & ARCH_CP15_TIMER) {
587                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
588                         arch_timer_read_counter = arch_counter_get_cntvct;
589                 else
590                         arch_timer_read_counter = arch_counter_get_cntpct;
591
592                 clocksource_counter.archdata.vdso_direct = true;
593
594 #ifdef CONFIG_FSL_ERRATUM_A008585
595                 /*
596                  * Don't use the vdso fastpath if errata require using
597                  * the out-of-line counter accessor.
598                  */
599                 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
600                         clocksource_counter.archdata.vdso_direct = false;
601 #endif
602         } else {
603                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
604         }
605
606         if (!arch_counter_suspend_stop)
607                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
608         start_count = arch_timer_read_counter();
609         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
610         cyclecounter.mult = clocksource_counter.mult;
611         cyclecounter.shift = clocksource_counter.shift;
612         timecounter_init(&arch_timer_kvm_info.timecounter,
613                          &cyclecounter, start_count);
614
615         /* 56 bits minimum, so we assume worst case rollover */
616         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
617 }
618
619 static void arch_timer_stop(struct clock_event_device *clk)
620 {
621         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
622                  clk->irq, smp_processor_id());
623
624         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
625         if (arch_timer_has_nonsecure_ppi())
626                 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
627
628         clk->set_state_shutdown(clk);
629 }
630
631 static int arch_timer_dying_cpu(unsigned int cpu)
632 {
633         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
634
635         arch_timer_stop(clk);
636         return 0;
637 }
638
639 #ifdef CONFIG_CPU_PM
640 static unsigned int saved_cntkctl;
641 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
642                                     unsigned long action, void *hcpu)
643 {
644         if (action == CPU_PM_ENTER)
645                 saved_cntkctl = arch_timer_get_cntkctl();
646         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
647                 arch_timer_set_cntkctl(saved_cntkctl);
648         return NOTIFY_OK;
649 }
650
651 static struct notifier_block arch_timer_cpu_pm_notifier = {
652         .notifier_call = arch_timer_cpu_pm_notify,
653 };
654
655 static int __init arch_timer_cpu_pm_init(void)
656 {
657         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
658 }
659
660 static void __init arch_timer_cpu_pm_deinit(void)
661 {
662         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
663 }
664
665 #else
666 static int __init arch_timer_cpu_pm_init(void)
667 {
668         return 0;
669 }
670
671 static void __init arch_timer_cpu_pm_deinit(void)
672 {
673 }
674 #endif
675
676 static int __init arch_timer_register(void)
677 {
678         int err;
679         int ppi;
680
681         arch_timer_evt = alloc_percpu(struct clock_event_device);
682         if (!arch_timer_evt) {
683                 err = -ENOMEM;
684                 goto out;
685         }
686
687         ppi = arch_timer_ppi[arch_timer_uses_ppi];
688         switch (arch_timer_uses_ppi) {
689         case VIRT_PPI:
690                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
691                                          "arch_timer", arch_timer_evt);
692                 break;
693         case PHYS_SECURE_PPI:
694         case PHYS_NONSECURE_PPI:
695                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
696                                          "arch_timer", arch_timer_evt);
697                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
698                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
699                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
700                                                  "arch_timer", arch_timer_evt);
701                         if (err)
702                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
703                                                 arch_timer_evt);
704                 }
705                 break;
706         case HYP_PPI:
707                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
708                                          "arch_timer", arch_timer_evt);
709                 break;
710         default:
711                 BUG();
712         }
713
714         if (err) {
715                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
716                        ppi, err);
717                 goto out_free;
718         }
719
720         err = arch_timer_cpu_pm_init();
721         if (err)
722                 goto out_unreg_notify;
723
724
725         /* Register and immediately configure the timer on the boot CPU */
726         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
727                                 "clockevents/arm/arch_timer:starting",
728                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
729         if (err)
730                 goto out_unreg_cpupm;
731         return 0;
732
733 out_unreg_cpupm:
734         arch_timer_cpu_pm_deinit();
735
736 out_unreg_notify:
737         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
738         if (arch_timer_has_nonsecure_ppi())
739                 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
740                                 arch_timer_evt);
741
742 out_free:
743         free_percpu(arch_timer_evt);
744 out:
745         return err;
746 }
747
748 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
749 {
750         int ret;
751         irq_handler_t func;
752         struct arch_timer *t;
753
754         t = kzalloc(sizeof(*t), GFP_KERNEL);
755         if (!t)
756                 return -ENOMEM;
757
758         t->base = base;
759         t->evt.irq = irq;
760         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
761
762         if (arch_timer_mem_use_virtual)
763                 func = arch_timer_handler_virt_mem;
764         else
765                 func = arch_timer_handler_phys_mem;
766
767         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
768         if (ret) {
769                 pr_err("arch_timer: Failed to request mem timer irq\n");
770                 kfree(t);
771         }
772
773         return ret;
774 }
775
776 static const struct of_device_id arch_timer_of_match[] __initconst = {
777         { .compatible   = "arm,armv7-timer",    },
778         { .compatible   = "arm,armv8-timer",    },
779         {},
780 };
781
782 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
783         { .compatible   = "arm,armv7-timer-mem", },
784         {},
785 };
786
787 static bool __init
788 arch_timer_needs_probing(int type, const struct of_device_id *matches)
789 {
790         struct device_node *dn;
791         bool needs_probing = false;
792
793         dn = of_find_matching_node(NULL, matches);
794         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
795                 needs_probing = true;
796         of_node_put(dn);
797
798         return needs_probing;
799 }
800
801 static int __init arch_timer_common_init(void)
802 {
803         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
804
805         /* Wait until both nodes are probed if we have two timers */
806         if ((arch_timers_present & mask) != mask) {
807                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
808                         return 0;
809                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
810                         return 0;
811         }
812
813         arch_timer_banner(arch_timers_present);
814         arch_counter_register(arch_timers_present);
815         return arch_timer_arch_init();
816 }
817
818 static int __init arch_timer_init(void)
819 {
820         int ret;
821         /*
822          * If HYP mode is available, we know that the physical timer
823          * has been configured to be accessible from PL1. Use it, so
824          * that a guest can use the virtual timer instead.
825          *
826          * If no interrupt provided for virtual timer, we'll have to
827          * stick to the physical timer. It'd better be accessible...
828          *
829          * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
830          * accesses to CNTP_*_EL1 registers are silently redirected to
831          * their CNTHP_*_EL2 counterparts, and use a different PPI
832          * number.
833          */
834         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
835                 bool has_ppi;
836
837                 if (is_kernel_in_hyp_mode()) {
838                         arch_timer_uses_ppi = HYP_PPI;
839                         has_ppi = !!arch_timer_ppi[HYP_PPI];
840                 } else {
841                         arch_timer_uses_ppi = PHYS_SECURE_PPI;
842                         has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
843                                    !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
844                 }
845
846                 if (!has_ppi) {
847                         pr_warn("arch_timer: No interrupt available, giving up\n");
848                         return -EINVAL;
849                 }
850         }
851
852         ret = arch_timer_register();
853         if (ret)
854                 return ret;
855
856         ret = arch_timer_common_init();
857         if (ret)
858                 return ret;
859
860         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
861         
862         return 0;
863 }
864
865 static int __init arch_timer_of_init(struct device_node *np)
866 {
867         int i;
868
869         if (arch_timers_present & ARCH_CP15_TIMER) {
870                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
871                 return 0;
872         }
873
874         arch_timers_present |= ARCH_CP15_TIMER;
875         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
876                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
877
878         arch_timer_detect_rate(NULL, np);
879
880         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
881
882 #ifdef CONFIG_FSL_ERRATUM_A008585
883         if (fsl_a008585_enable < 0)
884                 fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
885         if (fsl_a008585_enable) {
886                 static_branch_enable(&arch_timer_read_ool_enabled);
887                 pr_info("Enabling workaround for FSL erratum A-008585\n");
888         }
889 #endif
890
891         /*
892          * If we cannot rely on firmware initializing the timer registers then
893          * we should use the physical timers instead.
894          */
895         if (IS_ENABLED(CONFIG_ARM) &&
896             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
897                 arch_timer_uses_ppi = PHYS_SECURE_PPI;
898
899         /* On some systems, the counter stops ticking when in suspend. */
900         arch_counter_suspend_stop = of_property_read_bool(np,
901                                                          "arm,no-tick-in-suspend");
902
903         return arch_timer_init();
904 }
905 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
906 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
907
908 static int __init arch_timer_mem_init(struct device_node *np)
909 {
910         struct device_node *frame, *best_frame = NULL;
911         void __iomem *cntctlbase, *base;
912         unsigned int irq, ret = -EINVAL;
913         u32 cnttidr;
914
915         arch_timers_present |= ARCH_MEM_TIMER;
916         cntctlbase = of_iomap(np, 0);
917         if (!cntctlbase) {
918                 pr_err("arch_timer: Can't find CNTCTLBase\n");
919                 return -ENXIO;
920         }
921
922         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
923
924         /*
925          * Try to find a virtual capable frame. Otherwise fall back to a
926          * physical capable frame.
927          */
928         for_each_available_child_of_node(np, frame) {
929                 int n;
930                 u32 cntacr;
931
932                 if (of_property_read_u32(frame, "frame-number", &n)) {
933                         pr_err("arch_timer: Missing frame-number\n");
934                         of_node_put(frame);
935                         goto out;
936                 }
937
938                 /* Try enabling everything, and see what sticks */
939                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
940                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
941                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
942                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
943
944                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
945                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
946                         of_node_put(best_frame);
947                         best_frame = frame;
948                         arch_timer_mem_use_virtual = true;
949                         break;
950                 }
951
952                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
953                         continue;
954
955                 of_node_put(best_frame);
956                 best_frame = of_node_get(frame);
957         }
958
959         ret= -ENXIO;
960         base = arch_counter_base = of_io_request_and_map(best_frame, 0,
961                                                          "arch_mem_timer");
962         if (IS_ERR(base)) {
963                 pr_err("arch_timer: Can't map frame's registers\n");
964                 goto out;
965         }
966
967         if (arch_timer_mem_use_virtual)
968                 irq = irq_of_parse_and_map(best_frame, 1);
969         else
970                 irq = irq_of_parse_and_map(best_frame, 0);
971
972         ret = -EINVAL;
973         if (!irq) {
974                 pr_err("arch_timer: Frame missing %s irq",
975                        arch_timer_mem_use_virtual ? "virt" : "phys");
976                 goto out;
977         }
978
979         arch_timer_detect_rate(base, np);
980         ret = arch_timer_mem_register(base, irq);
981         if (ret)
982                 goto out;
983
984         return arch_timer_common_init();
985 out:
986         iounmap(cntctlbase);
987         of_node_put(best_frame);
988         return ret;
989 }
990 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
991                        arch_timer_mem_init);
992
993 #ifdef CONFIG_ACPI
994 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
995 {
996         int trigger, polarity;
997
998         if (!interrupt)
999                 return 0;
1000
1001         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1002                         : ACPI_LEVEL_SENSITIVE;
1003
1004         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1005                         : ACPI_ACTIVE_HIGH;
1006
1007         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1008 }
1009
1010 /* Initialize per-processor generic timer */
1011 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1012 {
1013         struct acpi_table_gtdt *gtdt;
1014
1015         if (arch_timers_present & ARCH_CP15_TIMER) {
1016                 pr_warn("arch_timer: already initialized, skipping\n");
1017                 return -EINVAL;
1018         }
1019
1020         gtdt = container_of(table, struct acpi_table_gtdt, header);
1021
1022         arch_timers_present |= ARCH_CP15_TIMER;
1023
1024         arch_timer_ppi[PHYS_SECURE_PPI] =
1025                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1026                 gtdt->secure_el1_flags);
1027
1028         arch_timer_ppi[PHYS_NONSECURE_PPI] =
1029                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1030                 gtdt->non_secure_el1_flags);
1031
1032         arch_timer_ppi[VIRT_PPI] =
1033                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1034                 gtdt->virtual_timer_flags);
1035
1036         arch_timer_ppi[HYP_PPI] =
1037                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1038                 gtdt->non_secure_el2_flags);
1039
1040         /* Get the frequency from CNTFRQ */
1041         arch_timer_detect_rate(NULL, NULL);
1042
1043         /* Always-on capability */
1044         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1045
1046         arch_timer_init();
1047         return 0;
1048 }
1049 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1050 #endif