]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/clocksource/arm_arch_timer.c
Merge tag 'v5.2' into next
[linux.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 static bool vdso_default = true;
73
74 static cpumask_t evtstrm_available = CPU_MASK_NONE;
75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
76
77 static int __init early_evtstrm_cfg(char *buf)
78 {
79         return strtobool(buf, &evtstrm_enable);
80 }
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
82
83 /*
84  * Architected system timer support.
85  */
86
87 static __always_inline
88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
89                           struct clock_event_device *clk)
90 {
91         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
92                 struct arch_timer *timer = to_arch_timer(clk);
93                 switch (reg) {
94                 case ARCH_TIMER_REG_CTRL:
95                         writel_relaxed(val, timer->base + CNTP_CTL);
96                         break;
97                 case ARCH_TIMER_REG_TVAL:
98                         writel_relaxed(val, timer->base + CNTP_TVAL);
99                         break;
100                 }
101         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
102                 struct arch_timer *timer = to_arch_timer(clk);
103                 switch (reg) {
104                 case ARCH_TIMER_REG_CTRL:
105                         writel_relaxed(val, timer->base + CNTV_CTL);
106                         break;
107                 case ARCH_TIMER_REG_TVAL:
108                         writel_relaxed(val, timer->base + CNTV_TVAL);
109                         break;
110                 }
111         } else {
112                 arch_timer_reg_write_cp15(access, reg, val);
113         }
114 }
115
116 static __always_inline
117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
118                         struct clock_event_device *clk)
119 {
120         u32 val;
121
122         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
123                 struct arch_timer *timer = to_arch_timer(clk);
124                 switch (reg) {
125                 case ARCH_TIMER_REG_CTRL:
126                         val = readl_relaxed(timer->base + CNTP_CTL);
127                         break;
128                 case ARCH_TIMER_REG_TVAL:
129                         val = readl_relaxed(timer->base + CNTP_TVAL);
130                         break;
131                 }
132         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
133                 struct arch_timer *timer = to_arch_timer(clk);
134                 switch (reg) {
135                 case ARCH_TIMER_REG_CTRL:
136                         val = readl_relaxed(timer->base + CNTV_CTL);
137                         break;
138                 case ARCH_TIMER_REG_TVAL:
139                         val = readl_relaxed(timer->base + CNTV_TVAL);
140                         break;
141                 }
142         } else {
143                 val = arch_timer_reg_read_cp15(access, reg);
144         }
145
146         return val;
147 }
148
149 static notrace u64 arch_counter_get_cntpct_stable(void)
150 {
151         return __arch_counter_get_cntpct_stable();
152 }
153
154 static notrace u64 arch_counter_get_cntpct(void)
155 {
156         return __arch_counter_get_cntpct();
157 }
158
159 static notrace u64 arch_counter_get_cntvct_stable(void)
160 {
161         return __arch_counter_get_cntvct_stable();
162 }
163
164 static notrace u64 arch_counter_get_cntvct(void)
165 {
166         return __arch_counter_get_cntvct();
167 }
168
169 /*
170  * Default to cp15 based access because arm64 uses this function for
171  * sched_clock() before DT is probed and the cp15 method is guaranteed
172  * to exist on arm64. arm doesn't use this before DT is probed so even
173  * if we don't have the cp15 accessors we won't have a problem.
174  */
175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
177
178 static u64 arch_counter_read(struct clocksource *cs)
179 {
180         return arch_timer_read_counter();
181 }
182
183 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
184 {
185         return arch_timer_read_counter();
186 }
187
188 static struct clocksource clocksource_counter = {
189         .name   = "arch_sys_counter",
190         .rating = 400,
191         .read   = arch_counter_read,
192         .mask   = CLOCKSOURCE_MASK(56),
193         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
194 };
195
196 static struct cyclecounter cyclecounter __ro_after_init = {
197         .read   = arch_counter_read_cc,
198         .mask   = CLOCKSOURCE_MASK(56),
199 };
200
201 struct ate_acpi_oem_info {
202         char oem_id[ACPI_OEM_ID_SIZE + 1];
203         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
204         u32 oem_revision;
205 };
206
207 #ifdef CONFIG_FSL_ERRATUM_A008585
208 /*
209  * The number of retries is an arbitrary value well beyond the highest number
210  * of iterations the loop has been observed to take.
211  */
212 #define __fsl_a008585_read_reg(reg) ({                  \
213         u64 _old, _new;                                 \
214         int _retries = 200;                             \
215                                                         \
216         do {                                            \
217                 _old = read_sysreg(reg);                \
218                 _new = read_sysreg(reg);                \
219                 _retries--;                             \
220         } while (unlikely(_old != _new) && _retries);   \
221                                                         \
222         WARN_ON_ONCE(!_retries);                        \
223         _new;                                           \
224 })
225
226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
227 {
228         return __fsl_a008585_read_reg(cntp_tval_el0);
229 }
230
231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
232 {
233         return __fsl_a008585_read_reg(cntv_tval_el0);
234 }
235
236 static u64 notrace fsl_a008585_read_cntpct_el0(void)
237 {
238         return __fsl_a008585_read_reg(cntpct_el0);
239 }
240
241 static u64 notrace fsl_a008585_read_cntvct_el0(void)
242 {
243         return __fsl_a008585_read_reg(cntvct_el0);
244 }
245 #endif
246
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
248 /*
249  * Verify whether the value of the second read is larger than the first by
250  * less than 32 is the only way to confirm the value is correct, so clear the
251  * lower 5 bits to check whether the difference is greater than 32 or not.
252  * Theoretically the erratum should not occur more than twice in succession
253  * when reading the system counter, but it is possible that some interrupts
254  * may lead to more than twice read errors, triggering the warning, so setting
255  * the number of retries far beyond the number of iterations the loop has been
256  * observed to take.
257  */
258 #define __hisi_161010101_read_reg(reg) ({                               \
259         u64 _old, _new;                                         \
260         int _retries = 50;                                      \
261                                                                 \
262         do {                                                    \
263                 _old = read_sysreg(reg);                        \
264                 _new = read_sysreg(reg);                        \
265                 _retries--;                                     \
266         } while (unlikely((_new - _old) >> 5) && _retries);     \
267                                                                 \
268         WARN_ON_ONCE(!_retries);                                \
269         _new;                                                   \
270 })
271
272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
273 {
274         return __hisi_161010101_read_reg(cntp_tval_el0);
275 }
276
277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
278 {
279         return __hisi_161010101_read_reg(cntv_tval_el0);
280 }
281
282 static u64 notrace hisi_161010101_read_cntpct_el0(void)
283 {
284         return __hisi_161010101_read_reg(cntpct_el0);
285 }
286
287 static u64 notrace hisi_161010101_read_cntvct_el0(void)
288 {
289         return __hisi_161010101_read_reg(cntvct_el0);
290 }
291
292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
293         /*
294          * Note that trailing spaces are required to properly match
295          * the OEM table information.
296          */
297         {
298                 .oem_id         = "HISI  ",
299                 .oem_table_id   = "HIP05   ",
300                 .oem_revision   = 0,
301         },
302         {
303                 .oem_id         = "HISI  ",
304                 .oem_table_id   = "HIP06   ",
305                 .oem_revision   = 0,
306         },
307         {
308                 .oem_id         = "HISI  ",
309                 .oem_table_id   = "HIP07   ",
310                 .oem_revision   = 0,
311         },
312         { /* Sentinel indicating the end of the OEM array */ },
313 };
314 #endif
315
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace arm64_858921_read_cntpct_el0(void)
318 {
319         u64 old, new;
320
321         old = read_sysreg(cntpct_el0);
322         new = read_sysreg(cntpct_el0);
323         return (((old ^ new) >> 32) & 1) ? old : new;
324 }
325
326 static u64 notrace arm64_858921_read_cntvct_el0(void)
327 {
328         u64 old, new;
329
330         old = read_sysreg(cntvct_el0);
331         new = read_sysreg(cntvct_el0);
332         return (((old ^ new) >> 32) & 1) ? old : new;
333 }
334 #endif
335
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
337 /*
338  * The low bits of the counter registers are indeterminate while bit 10 or
339  * greater is rolling over. Since the counter value can jump both backward
340  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341  * with all ones or all zeros in the low bits. Bound the loop by the maximum
342  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
343  */
344 #define __sun50i_a64_read_reg(reg) ({                                   \
345         u64 _val;                                                       \
346         int _retries = 150;                                             \
347                                                                         \
348         do {                                                            \
349                 _val = read_sysreg(reg);                                \
350                 _retries--;                                             \
351         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
352                                                                         \
353         WARN_ON_ONCE(!_retries);                                        \
354         _val;                                                           \
355 })
356
357 static u64 notrace sun50i_a64_read_cntpct_el0(void)
358 {
359         return __sun50i_a64_read_reg(cntpct_el0);
360 }
361
362 static u64 notrace sun50i_a64_read_cntvct_el0(void)
363 {
364         return __sun50i_a64_read_reg(cntvct_el0);
365 }
366
367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
368 {
369         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
370 }
371
372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
373 {
374         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
375 }
376 #endif
377
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
381
382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
383
384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
385                                                 struct clock_event_device *clk)
386 {
387         unsigned long ctrl;
388         u64 cval;
389
390         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
391         ctrl |= ARCH_TIMER_CTRL_ENABLE;
392         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
393
394         if (access == ARCH_TIMER_PHYS_ACCESS) {
395                 cval = evt + arch_counter_get_cntpct();
396                 write_sysreg(cval, cntp_cval_el0);
397         } else {
398                 cval = evt + arch_counter_get_cntvct();
399                 write_sysreg(cval, cntv_cval_el0);
400         }
401
402         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
403 }
404
405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
406                                             struct clock_event_device *clk)
407 {
408         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
409         return 0;
410 }
411
412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
413                                             struct clock_event_device *clk)
414 {
415         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
416         return 0;
417 }
418
419 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
421         {
422                 .match_type = ate_match_dt,
423                 .id = "fsl,erratum-a008585",
424                 .desc = "Freescale erratum a005858",
425                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
426                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
427                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
428                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
429                 .set_next_event_phys = erratum_set_next_event_tval_phys,
430                 .set_next_event_virt = erratum_set_next_event_tval_virt,
431         },
432 #endif
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
434         {
435                 .match_type = ate_match_dt,
436                 .id = "hisilicon,erratum-161010101",
437                 .desc = "HiSilicon erratum 161010101",
438                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
439                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
440                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
441                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
442                 .set_next_event_phys = erratum_set_next_event_tval_phys,
443                 .set_next_event_virt = erratum_set_next_event_tval_virt,
444         },
445         {
446                 .match_type = ate_match_acpi_oem_info,
447                 .id = hisi_161010101_oem_info,
448                 .desc = "HiSilicon erratum 161010101",
449                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
450                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
451                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
452                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
453                 .set_next_event_phys = erratum_set_next_event_tval_phys,
454                 .set_next_event_virt = erratum_set_next_event_tval_virt,
455         },
456 #endif
457 #ifdef CONFIG_ARM64_ERRATUM_858921
458         {
459                 .match_type = ate_match_local_cap_id,
460                 .id = (void *)ARM64_WORKAROUND_858921,
461                 .desc = "ARM erratum 858921",
462                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
463                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
464         },
465 #endif
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
467         {
468                 .match_type = ate_match_dt,
469                 .id = "allwinner,erratum-unknown1",
470                 .desc = "Allwinner erratum UNKNOWN1",
471                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
472                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
473                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
474                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
475                 .set_next_event_phys = erratum_set_next_event_tval_phys,
476                 .set_next_event_virt = erratum_set_next_event_tval_virt,
477         },
478 #endif
479 };
480
481 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
482                                const void *);
483
484 static
485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
486                                  const void *arg)
487 {
488         const struct device_node *np = arg;
489
490         return of_property_read_bool(np, wa->id);
491 }
492
493 static
494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
495                                         const void *arg)
496 {
497         return this_cpu_has_cap((uintptr_t)wa->id);
498 }
499
500
501 static
502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
503                                        const void *arg)
504 {
505         static const struct ate_acpi_oem_info empty_oem_info = {};
506         const struct ate_acpi_oem_info *info = wa->id;
507         const struct acpi_table_header *table = arg;
508
509         /* Iterate over the ACPI OEM info array, looking for a match */
510         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
511                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
512                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
513                     info->oem_revision == table->oem_revision)
514                         return true;
515
516                 info++;
517         }
518
519         return false;
520 }
521
522 static const struct arch_timer_erratum_workaround *
523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
524                           ate_match_fn_t match_fn,
525                           void *arg)
526 {
527         int i;
528
529         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
530                 if (ool_workarounds[i].match_type != type)
531                         continue;
532
533                 if (match_fn(&ool_workarounds[i], arg))
534                         return &ool_workarounds[i];
535         }
536
537         return NULL;
538 }
539
540 static
541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
542                                   bool local)
543 {
544         int i;
545
546         if (local) {
547                 __this_cpu_write(timer_unstable_counter_workaround, wa);
548         } else {
549                 for_each_possible_cpu(i)
550                         per_cpu(timer_unstable_counter_workaround, i) = wa;
551         }
552
553         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
554                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
555
556         /*
557          * Don't use the vdso fastpath if errata require using the
558          * out-of-line counter accessor. We may change our mind pretty
559          * late in the game (with a per-CPU erratum, for example), so
560          * change both the default value and the vdso itself.
561          */
562         if (wa->read_cntvct_el0) {
563                 clocksource_counter.archdata.vdso_direct = false;
564                 vdso_default = false;
565         }
566 }
567
568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
569                                             void *arg)
570 {
571         const struct arch_timer_erratum_workaround *wa, *__wa;
572         ate_match_fn_t match_fn = NULL;
573         bool local = false;
574
575         switch (type) {
576         case ate_match_dt:
577                 match_fn = arch_timer_check_dt_erratum;
578                 break;
579         case ate_match_local_cap_id:
580                 match_fn = arch_timer_check_local_cap_erratum;
581                 local = true;
582                 break;
583         case ate_match_acpi_oem_info:
584                 match_fn = arch_timer_check_acpi_oem_erratum;
585                 break;
586         default:
587                 WARN_ON(1);
588                 return;
589         }
590
591         wa = arch_timer_iterate_errata(type, match_fn, arg);
592         if (!wa)
593                 return;
594
595         __wa = __this_cpu_read(timer_unstable_counter_workaround);
596         if (__wa && wa != __wa)
597                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
598                         wa->desc, __wa->desc);
599
600         if (__wa)
601                 return;
602
603         arch_timer_enable_workaround(wa, local);
604         pr_info("Enabling %s workaround for %s\n",
605                 local ? "local" : "global", wa->desc);
606 }
607
608 static bool arch_timer_this_cpu_has_cntvct_wa(void)
609 {
610         return has_erratum_handler(read_cntvct_el0);
611 }
612
613 static bool arch_timer_counter_has_wa(void)
614 {
615         return atomic_read(&timer_unstable_counter_workaround_in_use);
616 }
617 #else
618 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
619 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
620 #define arch_timer_counter_has_wa()                     ({false;})
621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
622
623 static __always_inline irqreturn_t timer_handler(const int access,
624                                         struct clock_event_device *evt)
625 {
626         unsigned long ctrl;
627
628         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
629         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
630                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
631                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
632                 evt->event_handler(evt);
633                 return IRQ_HANDLED;
634         }
635
636         return IRQ_NONE;
637 }
638
639 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
640 {
641         struct clock_event_device *evt = dev_id;
642
643         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
644 }
645
646 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
647 {
648         struct clock_event_device *evt = dev_id;
649
650         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
651 }
652
653 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
654 {
655         struct clock_event_device *evt = dev_id;
656
657         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
658 }
659
660 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
661 {
662         struct clock_event_device *evt = dev_id;
663
664         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
665 }
666
667 static __always_inline int timer_shutdown(const int access,
668                                           struct clock_event_device *clk)
669 {
670         unsigned long ctrl;
671
672         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
673         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
674         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
675
676         return 0;
677 }
678
679 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
680 {
681         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
682 }
683
684 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
685 {
686         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
687 }
688
689 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
690 {
691         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
692 }
693
694 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
695 {
696         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
697 }
698
699 static __always_inline void set_next_event(const int access, unsigned long evt,
700                                            struct clock_event_device *clk)
701 {
702         unsigned long ctrl;
703         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
704         ctrl |= ARCH_TIMER_CTRL_ENABLE;
705         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
706         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
707         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
708 }
709
710 static int arch_timer_set_next_event_virt(unsigned long evt,
711                                           struct clock_event_device *clk)
712 {
713         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
714         return 0;
715 }
716
717 static int arch_timer_set_next_event_phys(unsigned long evt,
718                                           struct clock_event_device *clk)
719 {
720         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
721         return 0;
722 }
723
724 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
725                                               struct clock_event_device *clk)
726 {
727         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
728         return 0;
729 }
730
731 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
732                                               struct clock_event_device *clk)
733 {
734         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
735         return 0;
736 }
737
738 static void __arch_timer_setup(unsigned type,
739                                struct clock_event_device *clk)
740 {
741         clk->features = CLOCK_EVT_FEAT_ONESHOT;
742
743         if (type == ARCH_TIMER_TYPE_CP15) {
744                 typeof(clk->set_next_event) sne;
745
746                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
747
748                 if (arch_timer_c3stop)
749                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
750                 clk->name = "arch_sys_timer";
751                 clk->rating = 450;
752                 clk->cpumask = cpumask_of(smp_processor_id());
753                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
754                 switch (arch_timer_uses_ppi) {
755                 case ARCH_TIMER_VIRT_PPI:
756                         clk->set_state_shutdown = arch_timer_shutdown_virt;
757                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
758                         sne = erratum_handler(set_next_event_virt);
759                         break;
760                 case ARCH_TIMER_PHYS_SECURE_PPI:
761                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
762                 case ARCH_TIMER_HYP_PPI:
763                         clk->set_state_shutdown = arch_timer_shutdown_phys;
764                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
765                         sne = erratum_handler(set_next_event_phys);
766                         break;
767                 default:
768                         BUG();
769                 }
770
771                 clk->set_next_event = sne;
772         } else {
773                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
774                 clk->name = "arch_mem_timer";
775                 clk->rating = 400;
776                 clk->cpumask = cpu_possible_mask;
777                 if (arch_timer_mem_use_virtual) {
778                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
779                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
780                         clk->set_next_event =
781                                 arch_timer_set_next_event_virt_mem;
782                 } else {
783                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
784                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
785                         clk->set_next_event =
786                                 arch_timer_set_next_event_phys_mem;
787                 }
788         }
789
790         clk->set_state_shutdown(clk);
791
792         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
793 }
794
795 static void arch_timer_evtstrm_enable(int divider)
796 {
797         u32 cntkctl = arch_timer_get_cntkctl();
798
799         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
800         /* Set the divider and enable virtual event stream */
801         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
802                         | ARCH_TIMER_VIRT_EVT_EN;
803         arch_timer_set_cntkctl(cntkctl);
804 #ifdef CONFIG_ARM64
805         cpu_set_named_feature(EVTSTRM);
806 #else
807         elf_hwcap |= HWCAP_EVTSTRM;
808 #endif
809 #ifdef CONFIG_COMPAT
810         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
811 #endif
812         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
813 }
814
815 static void arch_timer_configure_evtstream(void)
816 {
817         int evt_stream_div, pos;
818
819         /* Find the closest power of two to the divisor */
820         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
821         pos = fls(evt_stream_div);
822         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
823                 pos--;
824         /* enable event stream */
825         arch_timer_evtstrm_enable(min(pos, 15));
826 }
827
828 static void arch_counter_set_user_access(void)
829 {
830         u32 cntkctl = arch_timer_get_cntkctl();
831
832         /* Disable user access to the timers and both counters */
833         /* Also disable virtual event stream */
834         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
835                         | ARCH_TIMER_USR_VT_ACCESS_EN
836                         | ARCH_TIMER_USR_VCT_ACCESS_EN
837                         | ARCH_TIMER_VIRT_EVT_EN
838                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
839
840         /*
841          * Enable user access to the virtual counter if it doesn't
842          * need to be workaround. The vdso may have been already
843          * disabled though.
844          */
845         if (arch_timer_this_cpu_has_cntvct_wa())
846                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
847         else
848                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
849
850         arch_timer_set_cntkctl(cntkctl);
851 }
852
853 static bool arch_timer_has_nonsecure_ppi(void)
854 {
855         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
856                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
857 }
858
859 static u32 check_ppi_trigger(int irq)
860 {
861         u32 flags = irq_get_trigger_type(irq);
862
863         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
864                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
865                 pr_warn("WARNING: Please fix your firmware\n");
866                 flags = IRQF_TRIGGER_LOW;
867         }
868
869         return flags;
870 }
871
872 static int arch_timer_starting_cpu(unsigned int cpu)
873 {
874         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
875         u32 flags;
876
877         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
878
879         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
880         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
881
882         if (arch_timer_has_nonsecure_ppi()) {
883                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
884                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
885                                   flags);
886         }
887
888         arch_counter_set_user_access();
889         if (evtstrm_enable)
890                 arch_timer_configure_evtstream();
891
892         return 0;
893 }
894
895 /*
896  * For historical reasons, when probing with DT we use whichever (non-zero)
897  * rate was probed first, and don't verify that others match. If the first node
898  * probed has a clock-frequency property, this overrides the HW register.
899  */
900 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
901 {
902         /* Who has more than one independent system counter? */
903         if (arch_timer_rate)
904                 return;
905
906         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
907                 arch_timer_rate = rate;
908
909         /* Check the timer frequency. */
910         if (arch_timer_rate == 0)
911                 pr_warn("frequency not available\n");
912 }
913
914 static void arch_timer_banner(unsigned type)
915 {
916         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
917                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
918                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
919                         " and " : "",
920                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
921                 (unsigned long)arch_timer_rate / 1000000,
922                 (unsigned long)(arch_timer_rate / 10000) % 100,
923                 type & ARCH_TIMER_TYPE_CP15 ?
924                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
925                         "",
926                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
927                 type & ARCH_TIMER_TYPE_MEM ?
928                         arch_timer_mem_use_virtual ? "virt" : "phys" :
929                         "");
930 }
931
932 u32 arch_timer_get_rate(void)
933 {
934         return arch_timer_rate;
935 }
936
937 bool arch_timer_evtstrm_available(void)
938 {
939         /*
940          * We might get called from a preemptible context. This is fine
941          * because availability of the event stream should be always the same
942          * for a preemptible context and context where we might resume a task.
943          */
944         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
945 }
946
947 static u64 arch_counter_get_cntvct_mem(void)
948 {
949         u32 vct_lo, vct_hi, tmp_hi;
950
951         do {
952                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
953                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
954                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
955         } while (vct_hi != tmp_hi);
956
957         return ((u64) vct_hi << 32) | vct_lo;
958 }
959
960 static struct arch_timer_kvm_info arch_timer_kvm_info;
961
962 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
963 {
964         return &arch_timer_kvm_info;
965 }
966
967 static void __init arch_counter_register(unsigned type)
968 {
969         u64 start_count;
970
971         /* Register the CP15 based counter if we have one */
972         if (type & ARCH_TIMER_TYPE_CP15) {
973                 u64 (*rd)(void);
974
975                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
976                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
977                         if (arch_timer_counter_has_wa())
978                                 rd = arch_counter_get_cntvct_stable;
979                         else
980                                 rd = arch_counter_get_cntvct;
981                 } else {
982                         if (arch_timer_counter_has_wa())
983                                 rd = arch_counter_get_cntpct_stable;
984                         else
985                                 rd = arch_counter_get_cntpct;
986                 }
987
988                 arch_timer_read_counter = rd;
989                 clocksource_counter.archdata.vdso_direct = vdso_default;
990         } else {
991                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
992         }
993
994         if (!arch_counter_suspend_stop)
995                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
996         start_count = arch_timer_read_counter();
997         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
998         cyclecounter.mult = clocksource_counter.mult;
999         cyclecounter.shift = clocksource_counter.shift;
1000         timecounter_init(&arch_timer_kvm_info.timecounter,
1001                          &cyclecounter, start_count);
1002
1003         /* 56 bits minimum, so we assume worst case rollover */
1004         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1005 }
1006
1007 static void arch_timer_stop(struct clock_event_device *clk)
1008 {
1009         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1010
1011         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1012         if (arch_timer_has_nonsecure_ppi())
1013                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1014
1015         clk->set_state_shutdown(clk);
1016 }
1017
1018 static int arch_timer_dying_cpu(unsigned int cpu)
1019 {
1020         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1021
1022         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1023
1024         arch_timer_stop(clk);
1025         return 0;
1026 }
1027
1028 #ifdef CONFIG_CPU_PM
1029 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1030 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1031                                     unsigned long action, void *hcpu)
1032 {
1033         if (action == CPU_PM_ENTER) {
1034                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1035
1036                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1037         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1038                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1039
1040 #ifdef CONFIG_ARM64
1041                 if (cpu_have_named_feature(EVTSTRM))
1042 #else
1043                 if (elf_hwcap & HWCAP_EVTSTRM)
1044 #endif
1045                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1046         }
1047         return NOTIFY_OK;
1048 }
1049
1050 static struct notifier_block arch_timer_cpu_pm_notifier = {
1051         .notifier_call = arch_timer_cpu_pm_notify,
1052 };
1053
1054 static int __init arch_timer_cpu_pm_init(void)
1055 {
1056         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1057 }
1058
1059 static void __init arch_timer_cpu_pm_deinit(void)
1060 {
1061         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1062 }
1063
1064 #else
1065 static int __init arch_timer_cpu_pm_init(void)
1066 {
1067         return 0;
1068 }
1069
1070 static void __init arch_timer_cpu_pm_deinit(void)
1071 {
1072 }
1073 #endif
1074
1075 static int __init arch_timer_register(void)
1076 {
1077         int err;
1078         int ppi;
1079
1080         arch_timer_evt = alloc_percpu(struct clock_event_device);
1081         if (!arch_timer_evt) {
1082                 err = -ENOMEM;
1083                 goto out;
1084         }
1085
1086         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1087         switch (arch_timer_uses_ppi) {
1088         case ARCH_TIMER_VIRT_PPI:
1089                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1090                                          "arch_timer", arch_timer_evt);
1091                 break;
1092         case ARCH_TIMER_PHYS_SECURE_PPI:
1093         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1094                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1095                                          "arch_timer", arch_timer_evt);
1096                 if (!err && arch_timer_has_nonsecure_ppi()) {
1097                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1098                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1099                                                  "arch_timer", arch_timer_evt);
1100                         if (err)
1101                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1102                                                 arch_timer_evt);
1103                 }
1104                 break;
1105         case ARCH_TIMER_HYP_PPI:
1106                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1107                                          "arch_timer", arch_timer_evt);
1108                 break;
1109         default:
1110                 BUG();
1111         }
1112
1113         if (err) {
1114                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1115                 goto out_free;
1116         }
1117
1118         err = arch_timer_cpu_pm_init();
1119         if (err)
1120                 goto out_unreg_notify;
1121
1122         /* Register and immediately configure the timer on the boot CPU */
1123         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1124                                 "clockevents/arm/arch_timer:starting",
1125                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1126         if (err)
1127                 goto out_unreg_cpupm;
1128         return 0;
1129
1130 out_unreg_cpupm:
1131         arch_timer_cpu_pm_deinit();
1132
1133 out_unreg_notify:
1134         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1135         if (arch_timer_has_nonsecure_ppi())
1136                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1137                                 arch_timer_evt);
1138
1139 out_free:
1140         free_percpu(arch_timer_evt);
1141 out:
1142         return err;
1143 }
1144
1145 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1146 {
1147         int ret;
1148         irq_handler_t func;
1149         struct arch_timer *t;
1150
1151         t = kzalloc(sizeof(*t), GFP_KERNEL);
1152         if (!t)
1153                 return -ENOMEM;
1154
1155         t->base = base;
1156         t->evt.irq = irq;
1157         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1158
1159         if (arch_timer_mem_use_virtual)
1160                 func = arch_timer_handler_virt_mem;
1161         else
1162                 func = arch_timer_handler_phys_mem;
1163
1164         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1165         if (ret) {
1166                 pr_err("Failed to request mem timer irq\n");
1167                 kfree(t);
1168         }
1169
1170         return ret;
1171 }
1172
1173 static const struct of_device_id arch_timer_of_match[] __initconst = {
1174         { .compatible   = "arm,armv7-timer",    },
1175         { .compatible   = "arm,armv8-timer",    },
1176         {},
1177 };
1178
1179 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1180         { .compatible   = "arm,armv7-timer-mem", },
1181         {},
1182 };
1183
1184 static bool __init arch_timer_needs_of_probing(void)
1185 {
1186         struct device_node *dn;
1187         bool needs_probing = false;
1188         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1189
1190         /* We have two timers, and both device-tree nodes are probed. */
1191         if ((arch_timers_present & mask) == mask)
1192                 return false;
1193
1194         /*
1195          * Only one type of timer is probed,
1196          * check if we have another type of timer node in device-tree.
1197          */
1198         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1199                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1200         else
1201                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1202
1203         if (dn && of_device_is_available(dn))
1204                 needs_probing = true;
1205
1206         of_node_put(dn);
1207
1208         return needs_probing;
1209 }
1210
1211 static int __init arch_timer_common_init(void)
1212 {
1213         arch_timer_banner(arch_timers_present);
1214         arch_counter_register(arch_timers_present);
1215         return arch_timer_arch_init();
1216 }
1217
1218 /**
1219  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1220  *
1221  * If HYP mode is available, we know that the physical timer
1222  * has been configured to be accessible from PL1. Use it, so
1223  * that a guest can use the virtual timer instead.
1224  *
1225  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1226  * accesses to CNTP_*_EL1 registers are silently redirected to
1227  * their CNTHP_*_EL2 counterparts, and use a different PPI
1228  * number.
1229  *
1230  * If no interrupt provided for virtual timer, we'll have to
1231  * stick to the physical timer. It'd better be accessible...
1232  * For arm64 we never use the secure interrupt.
1233  *
1234  * Return: a suitable PPI type for the current system.
1235  */
1236 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1237 {
1238         if (is_kernel_in_hyp_mode())
1239                 return ARCH_TIMER_HYP_PPI;
1240
1241         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1242                 return ARCH_TIMER_VIRT_PPI;
1243
1244         if (IS_ENABLED(CONFIG_ARM64))
1245                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1246
1247         return ARCH_TIMER_PHYS_SECURE_PPI;
1248 }
1249
1250 static void __init arch_timer_populate_kvm_info(void)
1251 {
1252         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1253         if (is_kernel_in_hyp_mode())
1254                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1255 }
1256
1257 static int __init arch_timer_of_init(struct device_node *np)
1258 {
1259         int i, ret;
1260         u32 rate;
1261
1262         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1263                 pr_warn("multiple nodes in dt, skipping\n");
1264                 return 0;
1265         }
1266
1267         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1268         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1269                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1270
1271         arch_timer_populate_kvm_info();
1272
1273         rate = arch_timer_get_cntfrq();
1274         arch_timer_of_configure_rate(rate, np);
1275
1276         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1277
1278         /* Check for globally applicable workarounds */
1279         arch_timer_check_ool_workaround(ate_match_dt, np);
1280
1281         /*
1282          * If we cannot rely on firmware initializing the timer registers then
1283          * we should use the physical timers instead.
1284          */
1285         if (IS_ENABLED(CONFIG_ARM) &&
1286             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1287                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1288         else
1289                 arch_timer_uses_ppi = arch_timer_select_ppi();
1290
1291         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1292                 pr_err("No interrupt available, giving up\n");
1293                 return -EINVAL;
1294         }
1295
1296         /* On some systems, the counter stops ticking when in suspend. */
1297         arch_counter_suspend_stop = of_property_read_bool(np,
1298                                                          "arm,no-tick-in-suspend");
1299
1300         ret = arch_timer_register();
1301         if (ret)
1302                 return ret;
1303
1304         if (arch_timer_needs_of_probing())
1305                 return 0;
1306
1307         return arch_timer_common_init();
1308 }
1309 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1310 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1311
1312 static u32 __init
1313 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1314 {
1315         void __iomem *base;
1316         u32 rate;
1317
1318         base = ioremap(frame->cntbase, frame->size);
1319         if (!base) {
1320                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1321                 return 0;
1322         }
1323
1324         rate = readl_relaxed(base + CNTFRQ);
1325
1326         iounmap(base);
1327
1328         return rate;
1329 }
1330
1331 static struct arch_timer_mem_frame * __init
1332 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1333 {
1334         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1335         void __iomem *cntctlbase;
1336         u32 cnttidr;
1337         int i;
1338
1339         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1340         if (!cntctlbase) {
1341                 pr_err("Can't map CNTCTLBase @ %pa\n",
1342                         &timer_mem->cntctlbase);
1343                 return NULL;
1344         }
1345
1346         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1347
1348         /*
1349          * Try to find a virtual capable frame. Otherwise fall back to a
1350          * physical capable frame.
1351          */
1352         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1353                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1354                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1355
1356                 frame = &timer_mem->frame[i];
1357                 if (!frame->valid)
1358                         continue;
1359
1360                 /* Try enabling everything, and see what sticks */
1361                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1362                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1363
1364                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1365                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1366                         best_frame = frame;
1367                         arch_timer_mem_use_virtual = true;
1368                         break;
1369                 }
1370
1371                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1372                         continue;
1373
1374                 best_frame = frame;
1375         }
1376
1377         iounmap(cntctlbase);
1378
1379         return best_frame;
1380 }
1381
1382 static int __init
1383 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1384 {
1385         void __iomem *base;
1386         int ret, irq = 0;
1387
1388         if (arch_timer_mem_use_virtual)
1389                 irq = frame->virt_irq;
1390         else
1391                 irq = frame->phys_irq;
1392
1393         if (!irq) {
1394                 pr_err("Frame missing %s irq.\n",
1395                        arch_timer_mem_use_virtual ? "virt" : "phys");
1396                 return -EINVAL;
1397         }
1398
1399         if (!request_mem_region(frame->cntbase, frame->size,
1400                                 "arch_mem_timer"))
1401                 return -EBUSY;
1402
1403         base = ioremap(frame->cntbase, frame->size);
1404         if (!base) {
1405                 pr_err("Can't map frame's registers\n");
1406                 return -ENXIO;
1407         }
1408
1409         ret = arch_timer_mem_register(base, irq);
1410         if (ret) {
1411                 iounmap(base);
1412                 return ret;
1413         }
1414
1415         arch_counter_base = base;
1416         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1417
1418         return 0;
1419 }
1420
1421 static int __init arch_timer_mem_of_init(struct device_node *np)
1422 {
1423         struct arch_timer_mem *timer_mem;
1424         struct arch_timer_mem_frame *frame;
1425         struct device_node *frame_node;
1426         struct resource res;
1427         int ret = -EINVAL;
1428         u32 rate;
1429
1430         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1431         if (!timer_mem)
1432                 return -ENOMEM;
1433
1434         if (of_address_to_resource(np, 0, &res))
1435                 goto out;
1436         timer_mem->cntctlbase = res.start;
1437         timer_mem->size = resource_size(&res);
1438
1439         for_each_available_child_of_node(np, frame_node) {
1440                 u32 n;
1441                 struct arch_timer_mem_frame *frame;
1442
1443                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1444                         pr_err(FW_BUG "Missing frame-number.\n");
1445                         of_node_put(frame_node);
1446                         goto out;
1447                 }
1448                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1449                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1450                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1451                         of_node_put(frame_node);
1452                         goto out;
1453                 }
1454                 frame = &timer_mem->frame[n];
1455
1456                 if (frame->valid) {
1457                         pr_err(FW_BUG "Duplicated frame-number.\n");
1458                         of_node_put(frame_node);
1459                         goto out;
1460                 }
1461
1462                 if (of_address_to_resource(frame_node, 0, &res)) {
1463                         of_node_put(frame_node);
1464                         goto out;
1465                 }
1466                 frame->cntbase = res.start;
1467                 frame->size = resource_size(&res);
1468
1469                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1470                                                        ARCH_TIMER_VIRT_SPI);
1471                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1472                                                        ARCH_TIMER_PHYS_SPI);
1473
1474                 frame->valid = true;
1475         }
1476
1477         frame = arch_timer_mem_find_best_frame(timer_mem);
1478         if (!frame) {
1479                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1480                         &timer_mem->cntctlbase);
1481                 ret = -EINVAL;
1482                 goto out;
1483         }
1484
1485         rate = arch_timer_mem_frame_get_cntfrq(frame);
1486         arch_timer_of_configure_rate(rate, np);
1487
1488         ret = arch_timer_mem_frame_register(frame);
1489         if (!ret && !arch_timer_needs_of_probing())
1490                 ret = arch_timer_common_init();
1491 out:
1492         kfree(timer_mem);
1493         return ret;
1494 }
1495 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1496                        arch_timer_mem_of_init);
1497
1498 #ifdef CONFIG_ACPI_GTDT
1499 static int __init
1500 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1501 {
1502         struct arch_timer_mem_frame *frame;
1503         u32 rate;
1504         int i;
1505
1506         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1507                 frame = &timer_mem->frame[i];
1508
1509                 if (!frame->valid)
1510                         continue;
1511
1512                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1513                 if (rate == arch_timer_rate)
1514                         continue;
1515
1516                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1517                         &frame->cntbase,
1518                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1519
1520                 return -EINVAL;
1521         }
1522
1523         return 0;
1524 }
1525
1526 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1527 {
1528         struct arch_timer_mem *timers, *timer;
1529         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1530         int timer_count, i, ret = 0;
1531
1532         timers = kcalloc(platform_timer_count, sizeof(*timers),
1533                             GFP_KERNEL);
1534         if (!timers)
1535                 return -ENOMEM;
1536
1537         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1538         if (ret || !timer_count)
1539                 goto out;
1540
1541         /*
1542          * While unlikely, it's theoretically possible that none of the frames
1543          * in a timer expose the combination of feature we want.
1544          */
1545         for (i = 0; i < timer_count; i++) {
1546                 timer = &timers[i];
1547
1548                 frame = arch_timer_mem_find_best_frame(timer);
1549                 if (!best_frame)
1550                         best_frame = frame;
1551
1552                 ret = arch_timer_mem_verify_cntfrq(timer);
1553                 if (ret) {
1554                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1555                         goto out;
1556                 }
1557
1558                 if (!best_frame) /* implies !frame */
1559                         /*
1560                          * Only complain about missing suitable frames if we
1561                          * haven't already found one in a previous iteration.
1562                          */
1563                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1564                                 &timer->cntctlbase);
1565         }
1566
1567         if (best_frame)
1568                 ret = arch_timer_mem_frame_register(best_frame);
1569 out:
1570         kfree(timers);
1571         return ret;
1572 }
1573
1574 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1575 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1576 {
1577         int ret, platform_timer_count;
1578
1579         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1580                 pr_warn("already initialized, skipping\n");
1581                 return -EINVAL;
1582         }
1583
1584         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1585
1586         ret = acpi_gtdt_init(table, &platform_timer_count);
1587         if (ret) {
1588                 pr_err("Failed to init GTDT table.\n");
1589                 return ret;
1590         }
1591
1592         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1593                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1594
1595         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1596                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1597
1598         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1599                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1600
1601         arch_timer_populate_kvm_info();
1602
1603         /*
1604          * When probing via ACPI, we have no mechanism to override the sysreg
1605          * CNTFRQ value. This *must* be correct.
1606          */
1607         arch_timer_rate = arch_timer_get_cntfrq();
1608         if (!arch_timer_rate) {
1609                 pr_err(FW_BUG "frequency not available.\n");
1610                 return -EINVAL;
1611         }
1612
1613         arch_timer_uses_ppi = arch_timer_select_ppi();
1614         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1615                 pr_err("No interrupt available, giving up\n");
1616                 return -EINVAL;
1617         }
1618
1619         /* Always-on capability */
1620         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1621
1622         /* Check for globally applicable workarounds */
1623         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1624
1625         ret = arch_timer_register();
1626         if (ret)
1627                 return ret;
1628
1629         if (platform_timer_count &&
1630             arch_timer_mem_acpi_init(platform_timer_count))
1631                 pr_err("Failed to initialize memory-mapped timer.\n");
1632
1633         return arch_timer_common_init();
1634 }
1635 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1636 #endif