]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/cpufreq/cpufreq.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91         return off;
92 }
93 void disable_cpufreq(void)
94 {
95         off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107         if (have_governor_per_policy())
108                 return &policy->kobj;
109         else
110                 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116         struct kernel_cpustat kcpustat;
117         u64 cur_wall_time;
118         u64 idle_time;
119         u64 busy_time;
120
121         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
122
123         kcpustat_cpu_fetch(&kcpustat, cpu);
124
125         busy_time = kcpustat.cpustat[CPUTIME_USER];
126         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
127         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
128         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
129         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
130         busy_time += kcpustat.cpustat[CPUTIME_NICE];
131
132         idle_time = cur_wall_time - busy_time;
133         if (wall)
134                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
135
136         return div_u64(idle_time, NSEC_PER_USEC);
137 }
138
139 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
140 {
141         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
142
143         if (idle_time == -1ULL)
144                 return get_cpu_idle_time_jiffy(cpu, wall);
145         else if (!io_busy)
146                 idle_time += get_cpu_iowait_time_us(cpu, wall);
147
148         return idle_time;
149 }
150 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
151
152 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
153                 unsigned long max_freq)
154 {
155 }
156 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
157
158 /*
159  * This is a generic cpufreq init() routine which can be used by cpufreq
160  * drivers of SMP systems. It will do following:
161  * - validate & show freq table passed
162  * - set policies transition latency
163  * - policy->cpus with all possible CPUs
164  */
165 void cpufreq_generic_init(struct cpufreq_policy *policy,
166                 struct cpufreq_frequency_table *table,
167                 unsigned int transition_latency)
168 {
169         policy->freq_table = table;
170         policy->cpuinfo.transition_latency = transition_latency;
171
172         /*
173          * The driver only supports the SMP configuration where all processors
174          * share the clock and voltage and clock.
175          */
176         cpumask_setall(policy->cpus);
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
181 {
182         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
185 }
186 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
187
188 unsigned int cpufreq_generic_get(unsigned int cpu)
189 {
190         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
191
192         if (!policy || IS_ERR(policy->clk)) {
193                 pr_err("%s: No %s associated to cpu: %d\n",
194                        __func__, policy ? "clk" : "policy", cpu);
195                 return 0;
196         }
197
198         return clk_get_rate(policy->clk) / 1000;
199 }
200 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
201
202 /**
203  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
204  * @cpu: CPU to find the policy for.
205  *
206  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
207  * the kobject reference counter of that policy.  Return a valid policy on
208  * success or NULL on failure.
209  *
210  * The policy returned by this function has to be released with the help of
211  * cpufreq_cpu_put() to balance its kobject reference counter properly.
212  */
213 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
214 {
215         struct cpufreq_policy *policy = NULL;
216         unsigned long flags;
217
218         if (WARN_ON(cpu >= nr_cpu_ids))
219                 return NULL;
220
221         /* get the cpufreq driver */
222         read_lock_irqsave(&cpufreq_driver_lock, flags);
223
224         if (cpufreq_driver) {
225                 /* get the CPU */
226                 policy = cpufreq_cpu_get_raw(cpu);
227                 if (policy)
228                         kobject_get(&policy->kobj);
229         }
230
231         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
232
233         return policy;
234 }
235 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
236
237 /**
238  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
239  * @policy: cpufreq policy returned by cpufreq_cpu_get().
240  */
241 void cpufreq_cpu_put(struct cpufreq_policy *policy)
242 {
243         kobject_put(&policy->kobj);
244 }
245 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
246
247 /**
248  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
249  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
250  */
251 void cpufreq_cpu_release(struct cpufreq_policy *policy)
252 {
253         if (WARN_ON(!policy))
254                 return;
255
256         lockdep_assert_held(&policy->rwsem);
257
258         up_write(&policy->rwsem);
259
260         cpufreq_cpu_put(policy);
261 }
262
263 /**
264  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
265  * @cpu: CPU to find the policy for.
266  *
267  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
268  * if the policy returned by it is not NULL, acquire its rwsem for writing.
269  * Return the policy if it is active or release it and return NULL otherwise.
270  *
271  * The policy returned by this function has to be released with the help of
272  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
273  * counter properly.
274  */
275 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
276 {
277         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
278
279         if (!policy)
280                 return NULL;
281
282         down_write(&policy->rwsem);
283
284         if (policy_is_inactive(policy)) {
285                 cpufreq_cpu_release(policy);
286                 return NULL;
287         }
288
289         return policy;
290 }
291
292 /*********************************************************************
293  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
294  *********************************************************************/
295
296 /**
297  * adjust_jiffies - adjust the system "loops_per_jiffy"
298  *
299  * This function alters the system "loops_per_jiffy" for the clock
300  * speed change. Note that loops_per_jiffy cannot be updated on SMP
301  * systems as each CPU might be scaled differently. So, use the arch
302  * per-CPU loops_per_jiffy value wherever possible.
303  */
304 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
305 {
306 #ifndef CONFIG_SMP
307         static unsigned long l_p_j_ref;
308         static unsigned int l_p_j_ref_freq;
309
310         if (ci->flags & CPUFREQ_CONST_LOOPS)
311                 return;
312
313         if (!l_p_j_ref_freq) {
314                 l_p_j_ref = loops_per_jiffy;
315                 l_p_j_ref_freq = ci->old;
316                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
317                          l_p_j_ref, l_p_j_ref_freq);
318         }
319         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
320                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
321                                                                 ci->new);
322                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
323                          loops_per_jiffy, ci->new);
324         }
325 #endif
326 }
327
328 /**
329  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
330  * @policy: cpufreq policy to enable fast frequency switching for.
331  * @freqs: contain details of the frequency update.
332  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
333  *
334  * This function calls the transition notifiers and the "adjust_jiffies"
335  * function. It is called twice on all CPU frequency changes that have
336  * external effects.
337  */
338 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
339                                       struct cpufreq_freqs *freqs,
340                                       unsigned int state)
341 {
342         int cpu;
343
344         BUG_ON(irqs_disabled());
345
346         if (cpufreq_disabled())
347                 return;
348
349         freqs->policy = policy;
350         freqs->flags = cpufreq_driver->flags;
351         pr_debug("notification %u of frequency transition to %u kHz\n",
352                  state, freqs->new);
353
354         switch (state) {
355         case CPUFREQ_PRECHANGE:
356                 /*
357                  * Detect if the driver reported a value as "old frequency"
358                  * which is not equal to what the cpufreq core thinks is
359                  * "old frequency".
360                  */
361                 if (policy->cur && policy->cur != freqs->old) {
362                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
363                                  freqs->old, policy->cur);
364                         freqs->old = policy->cur;
365                 }
366
367                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
368                                          CPUFREQ_PRECHANGE, freqs);
369
370                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
371                 break;
372
373         case CPUFREQ_POSTCHANGE:
374                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
375                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
376                          cpumask_pr_args(policy->cpus));
377
378                 for_each_cpu(cpu, policy->cpus)
379                         trace_cpu_frequency(freqs->new, cpu);
380
381                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
382                                          CPUFREQ_POSTCHANGE, freqs);
383
384                 cpufreq_stats_record_transition(policy, freqs->new);
385                 policy->cur = freqs->new;
386         }
387 }
388
389 /* Do post notifications when there are chances that transition has failed */
390 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
391                 struct cpufreq_freqs *freqs, int transition_failed)
392 {
393         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
394         if (!transition_failed)
395                 return;
396
397         swap(freqs->old, freqs->new);
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
399         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
400 }
401
402 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
403                 struct cpufreq_freqs *freqs)
404 {
405
406         /*
407          * Catch double invocations of _begin() which lead to self-deadlock.
408          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
409          * doesn't invoke _begin() on their behalf, and hence the chances of
410          * double invocations are very low. Moreover, there are scenarios
411          * where these checks can emit false-positive warnings in these
412          * drivers; so we avoid that by skipping them altogether.
413          */
414         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
415                                 && current == policy->transition_task);
416
417 wait:
418         wait_event(policy->transition_wait, !policy->transition_ongoing);
419
420         spin_lock(&policy->transition_lock);
421
422         if (unlikely(policy->transition_ongoing)) {
423                 spin_unlock(&policy->transition_lock);
424                 goto wait;
425         }
426
427         policy->transition_ongoing = true;
428         policy->transition_task = current;
429
430         spin_unlock(&policy->transition_lock);
431
432         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
433 }
434 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
435
436 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
437                 struct cpufreq_freqs *freqs, int transition_failed)
438 {
439         if (WARN_ON(!policy->transition_ongoing))
440                 return;
441
442         cpufreq_notify_post_transition(policy, freqs, transition_failed);
443
444         policy->transition_ongoing = false;
445         policy->transition_task = NULL;
446
447         wake_up(&policy->transition_wait);
448 }
449 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
450
451 /*
452  * Fast frequency switching status count.  Positive means "enabled", negative
453  * means "disabled" and 0 means "not decided yet".
454  */
455 static int cpufreq_fast_switch_count;
456 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
457
458 static void cpufreq_list_transition_notifiers(void)
459 {
460         struct notifier_block *nb;
461
462         pr_info("Registered transition notifiers:\n");
463
464         mutex_lock(&cpufreq_transition_notifier_list.mutex);
465
466         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
467                 pr_info("%pS\n", nb->notifier_call);
468
469         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
470 }
471
472 /**
473  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
474  * @policy: cpufreq policy to enable fast frequency switching for.
475  *
476  * Try to enable fast frequency switching for @policy.
477  *
478  * The attempt will fail if there is at least one transition notifier registered
479  * at this point, as fast frequency switching is quite fundamentally at odds
480  * with transition notifiers.  Thus if successful, it will make registration of
481  * transition notifiers fail going forward.
482  */
483 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
484 {
485         lockdep_assert_held(&policy->rwsem);
486
487         if (!policy->fast_switch_possible)
488                 return;
489
490         mutex_lock(&cpufreq_fast_switch_lock);
491         if (cpufreq_fast_switch_count >= 0) {
492                 cpufreq_fast_switch_count++;
493                 policy->fast_switch_enabled = true;
494         } else {
495                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
496                         policy->cpu);
497                 cpufreq_list_transition_notifiers();
498         }
499         mutex_unlock(&cpufreq_fast_switch_lock);
500 }
501 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
502
503 /**
504  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
505  * @policy: cpufreq policy to disable fast frequency switching for.
506  */
507 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
508 {
509         mutex_lock(&cpufreq_fast_switch_lock);
510         if (policy->fast_switch_enabled) {
511                 policy->fast_switch_enabled = false;
512                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
513                         cpufreq_fast_switch_count--;
514         }
515         mutex_unlock(&cpufreq_fast_switch_lock);
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
518
519 /**
520  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
521  * one.
522  * @target_freq: target frequency to resolve.
523  *
524  * The target to driver frequency mapping is cached in the policy.
525  *
526  * Return: Lowest driver-supported frequency greater than or equal to the
527  * given target_freq, subject to policy (min/max) and driver limitations.
528  */
529 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
530                                          unsigned int target_freq)
531 {
532         target_freq = clamp_val(target_freq, policy->min, policy->max);
533         policy->cached_target_freq = target_freq;
534
535         if (cpufreq_driver->target_index) {
536                 int idx;
537
538                 idx = cpufreq_frequency_table_target(policy, target_freq,
539                                                      CPUFREQ_RELATION_L);
540                 policy->cached_resolved_idx = idx;
541                 return policy->freq_table[idx].frequency;
542         }
543
544         if (cpufreq_driver->resolve_freq)
545                 return cpufreq_driver->resolve_freq(policy, target_freq);
546
547         return target_freq;
548 }
549 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
550
551 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
552 {
553         unsigned int latency;
554
555         if (policy->transition_delay_us)
556                 return policy->transition_delay_us;
557
558         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
559         if (latency) {
560                 /*
561                  * For platforms that can change the frequency very fast (< 10
562                  * us), the above formula gives a decent transition delay. But
563                  * for platforms where transition_latency is in milliseconds, it
564                  * ends up giving unrealistic values.
565                  *
566                  * Cap the default transition delay to 10 ms, which seems to be
567                  * a reasonable amount of time after which we should reevaluate
568                  * the frequency.
569                  */
570                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
571         }
572
573         return LATENCY_MULTIPLIER;
574 }
575 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
576
577 /*********************************************************************
578  *                          SYSFS INTERFACE                          *
579  *********************************************************************/
580 static ssize_t show_boost(struct kobject *kobj,
581                           struct kobj_attribute *attr, char *buf)
582 {
583         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
584 }
585
586 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
587                            const char *buf, size_t count)
588 {
589         int ret, enable;
590
591         ret = sscanf(buf, "%d", &enable);
592         if (ret != 1 || enable < 0 || enable > 1)
593                 return -EINVAL;
594
595         if (cpufreq_boost_trigger_state(enable)) {
596                 pr_err("%s: Cannot %s BOOST!\n",
597                        __func__, enable ? "enable" : "disable");
598                 return -EINVAL;
599         }
600
601         pr_debug("%s: cpufreq BOOST %s\n",
602                  __func__, enable ? "enabled" : "disabled");
603
604         return count;
605 }
606 define_one_global_rw(boost);
607
608 static struct cpufreq_governor *find_governor(const char *str_governor)
609 {
610         struct cpufreq_governor *t;
611
612         for_each_governor(t)
613                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
614                         return t;
615
616         return NULL;
617 }
618
619 static int cpufreq_parse_policy(char *str_governor,
620                                 struct cpufreq_policy *policy)
621 {
622         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
623                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
624                 return 0;
625         }
626         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
627                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
628                 return 0;
629         }
630         return -EINVAL;
631 }
632
633 /**
634  * cpufreq_parse_governor - parse a governor string only for has_target()
635  */
636 static int cpufreq_parse_governor(char *str_governor,
637                                   struct cpufreq_policy *policy)
638 {
639         struct cpufreq_governor *t;
640
641         mutex_lock(&cpufreq_governor_mutex);
642
643         t = find_governor(str_governor);
644         if (!t) {
645                 int ret;
646
647                 mutex_unlock(&cpufreq_governor_mutex);
648
649                 ret = request_module("cpufreq_%s", str_governor);
650                 if (ret)
651                         return -EINVAL;
652
653                 mutex_lock(&cpufreq_governor_mutex);
654
655                 t = find_governor(str_governor);
656         }
657         if (t && !try_module_get(t->owner))
658                 t = NULL;
659
660         mutex_unlock(&cpufreq_governor_mutex);
661
662         if (t) {
663                 policy->governor = t;
664                 return 0;
665         }
666
667         return -EINVAL;
668 }
669
670 /**
671  * cpufreq_per_cpu_attr_read() / show_##file_name() -
672  * print out cpufreq information
673  *
674  * Write out information from cpufreq_driver->policy[cpu]; object must be
675  * "unsigned int".
676  */
677
678 #define show_one(file_name, object)                     \
679 static ssize_t show_##file_name                         \
680 (struct cpufreq_policy *policy, char *buf)              \
681 {                                                       \
682         return sprintf(buf, "%u\n", policy->object);    \
683 }
684
685 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
686 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
687 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
688 show_one(scaling_min_freq, min);
689 show_one(scaling_max_freq, max);
690
691 __weak unsigned int arch_freq_get_on_cpu(int cpu)
692 {
693         return 0;
694 }
695
696 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
697 {
698         ssize_t ret;
699         unsigned int freq;
700
701         freq = arch_freq_get_on_cpu(policy->cpu);
702         if (freq)
703                 ret = sprintf(buf, "%u\n", freq);
704         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
705                         cpufreq_driver->get)
706                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
707         else
708                 ret = sprintf(buf, "%u\n", policy->cur);
709         return ret;
710 }
711
712 /**
713  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
714  */
715 #define store_one(file_name, object)                    \
716 static ssize_t store_##file_name                                        \
717 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
718 {                                                                       \
719         unsigned long val;                                              \
720         int ret;                                                        \
721                                                                         \
722         ret = sscanf(buf, "%lu", &val);                                 \
723         if (ret != 1)                                                   \
724                 return -EINVAL;                                         \
725                                                                         \
726         ret = freq_qos_update_request(policy->object##_freq_req, val);\
727         return ret >= 0 ? count : ret;                                  \
728 }
729
730 store_one(scaling_min_freq, min);
731 store_one(scaling_max_freq, max);
732
733 /**
734  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
735  */
736 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
737                                         char *buf)
738 {
739         unsigned int cur_freq = __cpufreq_get(policy);
740
741         if (cur_freq)
742                 return sprintf(buf, "%u\n", cur_freq);
743
744         return sprintf(buf, "<unknown>\n");
745 }
746
747 /**
748  * show_scaling_governor - show the current policy for the specified CPU
749  */
750 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
751 {
752         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
753                 return sprintf(buf, "powersave\n");
754         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
755                 return sprintf(buf, "performance\n");
756         else if (policy->governor)
757                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
758                                 policy->governor->name);
759         return -EINVAL;
760 }
761
762 /**
763  * store_scaling_governor - store policy for the specified CPU
764  */
765 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
766                                         const char *buf, size_t count)
767 {
768         int ret;
769         char    str_governor[16];
770         struct cpufreq_policy new_policy;
771
772         memcpy(&new_policy, policy, sizeof(*policy));
773
774         ret = sscanf(buf, "%15s", str_governor);
775         if (ret != 1)
776                 return -EINVAL;
777
778         if (cpufreq_driver->setpolicy) {
779                 if (cpufreq_parse_policy(str_governor, &new_policy))
780                         return -EINVAL;
781         } else {
782                 if (cpufreq_parse_governor(str_governor, &new_policy))
783                         return -EINVAL;
784         }
785
786         ret = cpufreq_set_policy(policy, &new_policy);
787
788         if (new_policy.governor)
789                 module_put(new_policy.governor->owner);
790
791         return ret ? ret : count;
792 }
793
794 /**
795  * show_scaling_driver - show the cpufreq driver currently loaded
796  */
797 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
798 {
799         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
800 }
801
802 /**
803  * show_scaling_available_governors - show the available CPUfreq governors
804  */
805 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
806                                                 char *buf)
807 {
808         ssize_t i = 0;
809         struct cpufreq_governor *t;
810
811         if (!has_target()) {
812                 i += sprintf(buf, "performance powersave");
813                 goto out;
814         }
815
816         for_each_governor(t) {
817                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
818                     - (CPUFREQ_NAME_LEN + 2)))
819                         goto out;
820                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
821         }
822 out:
823         i += sprintf(&buf[i], "\n");
824         return i;
825 }
826
827 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
828 {
829         ssize_t i = 0;
830         unsigned int cpu;
831
832         for_each_cpu(cpu, mask) {
833                 if (i)
834                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
835                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
836                 if (i >= (PAGE_SIZE - 5))
837                         break;
838         }
839         i += sprintf(&buf[i], "\n");
840         return i;
841 }
842 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
843
844 /**
845  * show_related_cpus - show the CPUs affected by each transition even if
846  * hw coordination is in use
847  */
848 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
849 {
850         return cpufreq_show_cpus(policy->related_cpus, buf);
851 }
852
853 /**
854  * show_affected_cpus - show the CPUs affected by each transition
855  */
856 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
857 {
858         return cpufreq_show_cpus(policy->cpus, buf);
859 }
860
861 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
862                                         const char *buf, size_t count)
863 {
864         unsigned int freq = 0;
865         unsigned int ret;
866
867         if (!policy->governor || !policy->governor->store_setspeed)
868                 return -EINVAL;
869
870         ret = sscanf(buf, "%u", &freq);
871         if (ret != 1)
872                 return -EINVAL;
873
874         policy->governor->store_setspeed(policy, freq);
875
876         return count;
877 }
878
879 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
880 {
881         if (!policy->governor || !policy->governor->show_setspeed)
882                 return sprintf(buf, "<unsupported>\n");
883
884         return policy->governor->show_setspeed(policy, buf);
885 }
886
887 /**
888  * show_bios_limit - show the current cpufreq HW/BIOS limitation
889  */
890 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
891 {
892         unsigned int limit;
893         int ret;
894         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
895         if (!ret)
896                 return sprintf(buf, "%u\n", limit);
897         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
898 }
899
900 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
901 cpufreq_freq_attr_ro(cpuinfo_min_freq);
902 cpufreq_freq_attr_ro(cpuinfo_max_freq);
903 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
904 cpufreq_freq_attr_ro(scaling_available_governors);
905 cpufreq_freq_attr_ro(scaling_driver);
906 cpufreq_freq_attr_ro(scaling_cur_freq);
907 cpufreq_freq_attr_ro(bios_limit);
908 cpufreq_freq_attr_ro(related_cpus);
909 cpufreq_freq_attr_ro(affected_cpus);
910 cpufreq_freq_attr_rw(scaling_min_freq);
911 cpufreq_freq_attr_rw(scaling_max_freq);
912 cpufreq_freq_attr_rw(scaling_governor);
913 cpufreq_freq_attr_rw(scaling_setspeed);
914
915 static struct attribute *default_attrs[] = {
916         &cpuinfo_min_freq.attr,
917         &cpuinfo_max_freq.attr,
918         &cpuinfo_transition_latency.attr,
919         &scaling_min_freq.attr,
920         &scaling_max_freq.attr,
921         &affected_cpus.attr,
922         &related_cpus.attr,
923         &scaling_governor.attr,
924         &scaling_driver.attr,
925         &scaling_available_governors.attr,
926         &scaling_setspeed.attr,
927         NULL
928 };
929
930 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
931 #define to_attr(a) container_of(a, struct freq_attr, attr)
932
933 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
934 {
935         struct cpufreq_policy *policy = to_policy(kobj);
936         struct freq_attr *fattr = to_attr(attr);
937         ssize_t ret;
938
939         if (!fattr->show)
940                 return -EIO;
941
942         down_read(&policy->rwsem);
943         ret = fattr->show(policy, buf);
944         up_read(&policy->rwsem);
945
946         return ret;
947 }
948
949 static ssize_t store(struct kobject *kobj, struct attribute *attr,
950                      const char *buf, size_t count)
951 {
952         struct cpufreq_policy *policy = to_policy(kobj);
953         struct freq_attr *fattr = to_attr(attr);
954         ssize_t ret = -EINVAL;
955
956         if (!fattr->store)
957                 return -EIO;
958
959         /*
960          * cpus_read_trylock() is used here to work around a circular lock
961          * dependency problem with respect to the cpufreq_register_driver().
962          */
963         if (!cpus_read_trylock())
964                 return -EBUSY;
965
966         if (cpu_online(policy->cpu)) {
967                 down_write(&policy->rwsem);
968                 ret = fattr->store(policy, buf, count);
969                 up_write(&policy->rwsem);
970         }
971
972         cpus_read_unlock();
973
974         return ret;
975 }
976
977 static void cpufreq_sysfs_release(struct kobject *kobj)
978 {
979         struct cpufreq_policy *policy = to_policy(kobj);
980         pr_debug("last reference is dropped\n");
981         complete(&policy->kobj_unregister);
982 }
983
984 static const struct sysfs_ops sysfs_ops = {
985         .show   = show,
986         .store  = store,
987 };
988
989 static struct kobj_type ktype_cpufreq = {
990         .sysfs_ops      = &sysfs_ops,
991         .default_attrs  = default_attrs,
992         .release        = cpufreq_sysfs_release,
993 };
994
995 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
996 {
997         struct device *dev = get_cpu_device(cpu);
998
999         if (unlikely(!dev))
1000                 return;
1001
1002         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1003                 return;
1004
1005         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1006         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1007                 dev_err(dev, "cpufreq symlink creation failed\n");
1008 }
1009
1010 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1011                                    struct device *dev)
1012 {
1013         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1014         sysfs_remove_link(&dev->kobj, "cpufreq");
1015 }
1016
1017 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1018 {
1019         struct freq_attr **drv_attr;
1020         int ret = 0;
1021
1022         /* set up files for this cpu device */
1023         drv_attr = cpufreq_driver->attr;
1024         while (drv_attr && *drv_attr) {
1025                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1026                 if (ret)
1027                         return ret;
1028                 drv_attr++;
1029         }
1030         if (cpufreq_driver->get) {
1031                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1032                 if (ret)
1033                         return ret;
1034         }
1035
1036         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1037         if (ret)
1038                 return ret;
1039
1040         if (cpufreq_driver->bios_limit) {
1041                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1042                 if (ret)
1043                         return ret;
1044         }
1045
1046         return 0;
1047 }
1048
1049 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1050 {
1051         return NULL;
1052 }
1053
1054 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1055 {
1056         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1057         struct cpufreq_policy new_policy;
1058
1059         memcpy(&new_policy, policy, sizeof(*policy));
1060
1061         def_gov = cpufreq_default_governor();
1062
1063         if (has_target()) {
1064                 /*
1065                  * Update governor of new_policy to the governor used before
1066                  * hotplug
1067                  */
1068                 gov = find_governor(policy->last_governor);
1069                 if (gov) {
1070                         pr_debug("Restoring governor %s for cpu %d\n",
1071                                 policy->governor->name, policy->cpu);
1072                 } else {
1073                         if (!def_gov)
1074                                 return -ENODATA;
1075                         gov = def_gov;
1076                 }
1077                 new_policy.governor = gov;
1078         } else {
1079                 /* Use the default policy if there is no last_policy. */
1080                 if (policy->last_policy) {
1081                         new_policy.policy = policy->last_policy;
1082                 } else {
1083                         if (!def_gov)
1084                                 return -ENODATA;
1085                         cpufreq_parse_policy(def_gov->name, &new_policy);
1086                 }
1087         }
1088
1089         return cpufreq_set_policy(policy, &new_policy);
1090 }
1091
1092 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1093 {
1094         int ret = 0;
1095
1096         /* Has this CPU been taken care of already? */
1097         if (cpumask_test_cpu(cpu, policy->cpus))
1098                 return 0;
1099
1100         down_write(&policy->rwsem);
1101         if (has_target())
1102                 cpufreq_stop_governor(policy);
1103
1104         cpumask_set_cpu(cpu, policy->cpus);
1105
1106         if (has_target()) {
1107                 ret = cpufreq_start_governor(policy);
1108                 if (ret)
1109                         pr_err("%s: Failed to start governor\n", __func__);
1110         }
1111         up_write(&policy->rwsem);
1112         return ret;
1113 }
1114
1115 void refresh_frequency_limits(struct cpufreq_policy *policy)
1116 {
1117         struct cpufreq_policy new_policy;
1118
1119         if (!policy_is_inactive(policy)) {
1120                 new_policy = *policy;
1121                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1122
1123                 cpufreq_set_policy(policy, &new_policy);
1124         }
1125 }
1126 EXPORT_SYMBOL(refresh_frequency_limits);
1127
1128 static void handle_update(struct work_struct *work)
1129 {
1130         struct cpufreq_policy *policy =
1131                 container_of(work, struct cpufreq_policy, update);
1132
1133         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1134         down_write(&policy->rwsem);
1135         refresh_frequency_limits(policy);
1136         up_write(&policy->rwsem);
1137 }
1138
1139 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1140                                 void *data)
1141 {
1142         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1143
1144         schedule_work(&policy->update);
1145         return 0;
1146 }
1147
1148 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1149                                 void *data)
1150 {
1151         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1152
1153         schedule_work(&policy->update);
1154         return 0;
1155 }
1156
1157 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1158 {
1159         struct kobject *kobj;
1160         struct completion *cmp;
1161
1162         down_write(&policy->rwsem);
1163         cpufreq_stats_free_table(policy);
1164         kobj = &policy->kobj;
1165         cmp = &policy->kobj_unregister;
1166         up_write(&policy->rwsem);
1167         kobject_put(kobj);
1168
1169         /*
1170          * We need to make sure that the underlying kobj is
1171          * actually not referenced anymore by anybody before we
1172          * proceed with unloading.
1173          */
1174         pr_debug("waiting for dropping of refcount\n");
1175         wait_for_completion(cmp);
1176         pr_debug("wait complete\n");
1177 }
1178
1179 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1180 {
1181         struct cpufreq_policy *policy;
1182         struct device *dev = get_cpu_device(cpu);
1183         int ret;
1184
1185         if (!dev)
1186                 return NULL;
1187
1188         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1189         if (!policy)
1190                 return NULL;
1191
1192         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1193                 goto err_free_policy;
1194
1195         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1196                 goto err_free_cpumask;
1197
1198         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1199                 goto err_free_rcpumask;
1200
1201         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1202                                    cpufreq_global_kobject, "policy%u", cpu);
1203         if (ret) {
1204                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1205                 /*
1206                  * The entire policy object will be freed below, but the extra
1207                  * memory allocated for the kobject name needs to be freed by
1208                  * releasing the kobject.
1209                  */
1210                 kobject_put(&policy->kobj);
1211                 goto err_free_real_cpus;
1212         }
1213
1214         freq_constraints_init(&policy->constraints);
1215
1216         policy->nb_min.notifier_call = cpufreq_notifier_min;
1217         policy->nb_max.notifier_call = cpufreq_notifier_max;
1218
1219         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1220                                     &policy->nb_min);
1221         if (ret) {
1222                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1223                         ret, cpumask_pr_args(policy->cpus));
1224                 goto err_kobj_remove;
1225         }
1226
1227         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1228                                     &policy->nb_max);
1229         if (ret) {
1230                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1231                         ret, cpumask_pr_args(policy->cpus));
1232                 goto err_min_qos_notifier;
1233         }
1234
1235         INIT_LIST_HEAD(&policy->policy_list);
1236         init_rwsem(&policy->rwsem);
1237         spin_lock_init(&policy->transition_lock);
1238         init_waitqueue_head(&policy->transition_wait);
1239         init_completion(&policy->kobj_unregister);
1240         INIT_WORK(&policy->update, handle_update);
1241
1242         policy->cpu = cpu;
1243         return policy;
1244
1245 err_min_qos_notifier:
1246         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1247                                  &policy->nb_min);
1248 err_kobj_remove:
1249         cpufreq_policy_put_kobj(policy);
1250 err_free_real_cpus:
1251         free_cpumask_var(policy->real_cpus);
1252 err_free_rcpumask:
1253         free_cpumask_var(policy->related_cpus);
1254 err_free_cpumask:
1255         free_cpumask_var(policy->cpus);
1256 err_free_policy:
1257         kfree(policy);
1258
1259         return NULL;
1260 }
1261
1262 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1263 {
1264         unsigned long flags;
1265         int cpu;
1266
1267         /* Remove policy from list */
1268         write_lock_irqsave(&cpufreq_driver_lock, flags);
1269         list_del(&policy->policy_list);
1270
1271         for_each_cpu(cpu, policy->related_cpus)
1272                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1273         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1274
1275         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1276                                  &policy->nb_max);
1277         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1278                                  &policy->nb_min);
1279
1280         /* Cancel any pending policy->update work before freeing the policy. */
1281         cancel_work_sync(&policy->update);
1282
1283         if (policy->max_freq_req) {
1284                 /*
1285                  * CPUFREQ_CREATE_POLICY notification is sent only after
1286                  * successfully adding max_freq_req request.
1287                  */
1288                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1289                                              CPUFREQ_REMOVE_POLICY, policy);
1290                 freq_qos_remove_request(policy->max_freq_req);
1291         }
1292
1293         freq_qos_remove_request(policy->min_freq_req);
1294         kfree(policy->min_freq_req);
1295
1296         cpufreq_policy_put_kobj(policy);
1297         free_cpumask_var(policy->real_cpus);
1298         free_cpumask_var(policy->related_cpus);
1299         free_cpumask_var(policy->cpus);
1300         kfree(policy);
1301 }
1302
1303 static int cpufreq_online(unsigned int cpu)
1304 {
1305         struct cpufreq_policy *policy;
1306         bool new_policy;
1307         unsigned long flags;
1308         unsigned int j;
1309         int ret;
1310
1311         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1312
1313         /* Check if this CPU already has a policy to manage it */
1314         policy = per_cpu(cpufreq_cpu_data, cpu);
1315         if (policy) {
1316                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1317                 if (!policy_is_inactive(policy))
1318                         return cpufreq_add_policy_cpu(policy, cpu);
1319
1320                 /* This is the only online CPU for the policy.  Start over. */
1321                 new_policy = false;
1322                 down_write(&policy->rwsem);
1323                 policy->cpu = cpu;
1324                 policy->governor = NULL;
1325                 up_write(&policy->rwsem);
1326         } else {
1327                 new_policy = true;
1328                 policy = cpufreq_policy_alloc(cpu);
1329                 if (!policy)
1330                         return -ENOMEM;
1331         }
1332
1333         if (!new_policy && cpufreq_driver->online) {
1334                 ret = cpufreq_driver->online(policy);
1335                 if (ret) {
1336                         pr_debug("%s: %d: initialization failed\n", __func__,
1337                                  __LINE__);
1338                         goto out_exit_policy;
1339                 }
1340
1341                 /* Recover policy->cpus using related_cpus */
1342                 cpumask_copy(policy->cpus, policy->related_cpus);
1343         } else {
1344                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1345
1346                 /*
1347                  * Call driver. From then on the cpufreq must be able
1348                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1349                  */
1350                 ret = cpufreq_driver->init(policy);
1351                 if (ret) {
1352                         pr_debug("%s: %d: initialization failed\n", __func__,
1353                                  __LINE__);
1354                         goto out_free_policy;
1355                 }
1356
1357                 ret = cpufreq_table_validate_and_sort(policy);
1358                 if (ret)
1359                         goto out_exit_policy;
1360
1361                 /* related_cpus should at least include policy->cpus. */
1362                 cpumask_copy(policy->related_cpus, policy->cpus);
1363         }
1364
1365         down_write(&policy->rwsem);
1366         /*
1367          * affected cpus must always be the one, which are online. We aren't
1368          * managing offline cpus here.
1369          */
1370         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1371
1372         if (new_policy) {
1373                 for_each_cpu(j, policy->related_cpus) {
1374                         per_cpu(cpufreq_cpu_data, j) = policy;
1375                         add_cpu_dev_symlink(policy, j);
1376                 }
1377
1378                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1379                                                GFP_KERNEL);
1380                 if (!policy->min_freq_req)
1381                         goto out_destroy_policy;
1382
1383                 ret = freq_qos_add_request(&policy->constraints,
1384                                            policy->min_freq_req, FREQ_QOS_MIN,
1385                                            policy->min);
1386                 if (ret < 0) {
1387                         /*
1388                          * So we don't call freq_qos_remove_request() for an
1389                          * uninitialized request.
1390                          */
1391                         kfree(policy->min_freq_req);
1392                         policy->min_freq_req = NULL;
1393                         goto out_destroy_policy;
1394                 }
1395
1396                 /*
1397                  * This must be initialized right here to avoid calling
1398                  * freq_qos_remove_request() on uninitialized request in case
1399                  * of errors.
1400                  */
1401                 policy->max_freq_req = policy->min_freq_req + 1;
1402
1403                 ret = freq_qos_add_request(&policy->constraints,
1404                                            policy->max_freq_req, FREQ_QOS_MAX,
1405                                            policy->max);
1406                 if (ret < 0) {
1407                         policy->max_freq_req = NULL;
1408                         goto out_destroy_policy;
1409                 }
1410
1411                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1412                                 CPUFREQ_CREATE_POLICY, policy);
1413         }
1414
1415         if (cpufreq_driver->get && has_target()) {
1416                 policy->cur = cpufreq_driver->get(policy->cpu);
1417                 if (!policy->cur) {
1418                         pr_err("%s: ->get() failed\n", __func__);
1419                         goto out_destroy_policy;
1420                 }
1421         }
1422
1423         /*
1424          * Sometimes boot loaders set CPU frequency to a value outside of
1425          * frequency table present with cpufreq core. In such cases CPU might be
1426          * unstable if it has to run on that frequency for long duration of time
1427          * and so its better to set it to a frequency which is specified in
1428          * freq-table. This also makes cpufreq stats inconsistent as
1429          * cpufreq-stats would fail to register because current frequency of CPU
1430          * isn't found in freq-table.
1431          *
1432          * Because we don't want this change to effect boot process badly, we go
1433          * for the next freq which is >= policy->cur ('cur' must be set by now,
1434          * otherwise we will end up setting freq to lowest of the table as 'cur'
1435          * is initialized to zero).
1436          *
1437          * We are passing target-freq as "policy->cur - 1" otherwise
1438          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1439          * equal to target-freq.
1440          */
1441         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1442             && has_target()) {
1443                 /* Are we running at unknown frequency ? */
1444                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1445                 if (ret == -EINVAL) {
1446                         /* Warn user and fix it */
1447                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1448                                 __func__, policy->cpu, policy->cur);
1449                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1450                                 CPUFREQ_RELATION_L);
1451
1452                         /*
1453                          * Reaching here after boot in a few seconds may not
1454                          * mean that system will remain stable at "unknown"
1455                          * frequency for longer duration. Hence, a BUG_ON().
1456                          */
1457                         BUG_ON(ret);
1458                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1459                                 __func__, policy->cpu, policy->cur);
1460                 }
1461         }
1462
1463         if (new_policy) {
1464                 ret = cpufreq_add_dev_interface(policy);
1465                 if (ret)
1466                         goto out_destroy_policy;
1467
1468                 cpufreq_stats_create_table(policy);
1469
1470                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1471                 list_add(&policy->policy_list, &cpufreq_policy_list);
1472                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1473         }
1474
1475         ret = cpufreq_init_policy(policy);
1476         if (ret) {
1477                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1478                        __func__, cpu, ret);
1479                 goto out_destroy_policy;
1480         }
1481
1482         up_write(&policy->rwsem);
1483
1484         kobject_uevent(&policy->kobj, KOBJ_ADD);
1485
1486         /* Callback for handling stuff after policy is ready */
1487         if (cpufreq_driver->ready)
1488                 cpufreq_driver->ready(policy);
1489
1490         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1491                 policy->cdev = of_cpufreq_cooling_register(policy);
1492
1493         pr_debug("initialization complete\n");
1494
1495         return 0;
1496
1497 out_destroy_policy:
1498         for_each_cpu(j, policy->real_cpus)
1499                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1500
1501         up_write(&policy->rwsem);
1502
1503 out_exit_policy:
1504         if (cpufreq_driver->exit)
1505                 cpufreq_driver->exit(policy);
1506
1507 out_free_policy:
1508         cpufreq_policy_free(policy);
1509         return ret;
1510 }
1511
1512 /**
1513  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1514  * @dev: CPU device.
1515  * @sif: Subsystem interface structure pointer (not used)
1516  */
1517 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1518 {
1519         struct cpufreq_policy *policy;
1520         unsigned cpu = dev->id;
1521         int ret;
1522
1523         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1524
1525         if (cpu_online(cpu)) {
1526                 ret = cpufreq_online(cpu);
1527                 if (ret)
1528                         return ret;
1529         }
1530
1531         /* Create sysfs link on CPU registration */
1532         policy = per_cpu(cpufreq_cpu_data, cpu);
1533         if (policy)
1534                 add_cpu_dev_symlink(policy, cpu);
1535
1536         return 0;
1537 }
1538
1539 static int cpufreq_offline(unsigned int cpu)
1540 {
1541         struct cpufreq_policy *policy;
1542         int ret;
1543
1544         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1545
1546         policy = cpufreq_cpu_get_raw(cpu);
1547         if (!policy) {
1548                 pr_debug("%s: No cpu_data found\n", __func__);
1549                 return 0;
1550         }
1551
1552         down_write(&policy->rwsem);
1553         if (has_target())
1554                 cpufreq_stop_governor(policy);
1555
1556         cpumask_clear_cpu(cpu, policy->cpus);
1557
1558         if (policy_is_inactive(policy)) {
1559                 if (has_target())
1560                         strncpy(policy->last_governor, policy->governor->name,
1561                                 CPUFREQ_NAME_LEN);
1562                 else
1563                         policy->last_policy = policy->policy;
1564         } else if (cpu == policy->cpu) {
1565                 /* Nominate new CPU */
1566                 policy->cpu = cpumask_any(policy->cpus);
1567         }
1568
1569         /* Start governor again for active policy */
1570         if (!policy_is_inactive(policy)) {
1571                 if (has_target()) {
1572                         ret = cpufreq_start_governor(policy);
1573                         if (ret)
1574                                 pr_err("%s: Failed to start governor\n", __func__);
1575                 }
1576
1577                 goto unlock;
1578         }
1579
1580         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1581                 cpufreq_cooling_unregister(policy->cdev);
1582                 policy->cdev = NULL;
1583         }
1584
1585         if (cpufreq_driver->stop_cpu)
1586                 cpufreq_driver->stop_cpu(policy);
1587
1588         if (has_target())
1589                 cpufreq_exit_governor(policy);
1590
1591         /*
1592          * Perform the ->offline() during light-weight tear-down, as
1593          * that allows fast recovery when the CPU comes back.
1594          */
1595         if (cpufreq_driver->offline) {
1596                 cpufreq_driver->offline(policy);
1597         } else if (cpufreq_driver->exit) {
1598                 cpufreq_driver->exit(policy);
1599                 policy->freq_table = NULL;
1600         }
1601
1602 unlock:
1603         up_write(&policy->rwsem);
1604         return 0;
1605 }
1606
1607 /**
1608  * cpufreq_remove_dev - remove a CPU device
1609  *
1610  * Removes the cpufreq interface for a CPU device.
1611  */
1612 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1613 {
1614         unsigned int cpu = dev->id;
1615         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1616
1617         if (!policy)
1618                 return;
1619
1620         if (cpu_online(cpu))
1621                 cpufreq_offline(cpu);
1622
1623         cpumask_clear_cpu(cpu, policy->real_cpus);
1624         remove_cpu_dev_symlink(policy, dev);
1625
1626         if (cpumask_empty(policy->real_cpus)) {
1627                 /* We did light-weight exit earlier, do full tear down now */
1628                 if (cpufreq_driver->offline)
1629                         cpufreq_driver->exit(policy);
1630
1631                 cpufreq_policy_free(policy);
1632         }
1633 }
1634
1635 /**
1636  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1637  *      in deep trouble.
1638  *      @policy: policy managing CPUs
1639  *      @new_freq: CPU frequency the CPU actually runs at
1640  *
1641  *      We adjust to current frequency first, and need to clean up later.
1642  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1643  */
1644 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1645                                 unsigned int new_freq)
1646 {
1647         struct cpufreq_freqs freqs;
1648
1649         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1650                  policy->cur, new_freq);
1651
1652         freqs.old = policy->cur;
1653         freqs.new = new_freq;
1654
1655         cpufreq_freq_transition_begin(policy, &freqs);
1656         cpufreq_freq_transition_end(policy, &freqs, 0);
1657 }
1658
1659 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1660 {
1661         unsigned int new_freq;
1662
1663         new_freq = cpufreq_driver->get(policy->cpu);
1664         if (!new_freq)
1665                 return 0;
1666
1667         /*
1668          * If fast frequency switching is used with the given policy, the check
1669          * against policy->cur is pointless, so skip it in that case.
1670          */
1671         if (policy->fast_switch_enabled || !has_target())
1672                 return new_freq;
1673
1674         if (policy->cur != new_freq) {
1675                 cpufreq_out_of_sync(policy, new_freq);
1676                 if (update)
1677                         schedule_work(&policy->update);
1678         }
1679
1680         return new_freq;
1681 }
1682
1683 /**
1684  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1685  * @cpu: CPU number
1686  *
1687  * This is the last known freq, without actually getting it from the driver.
1688  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1689  */
1690 unsigned int cpufreq_quick_get(unsigned int cpu)
1691 {
1692         struct cpufreq_policy *policy;
1693         unsigned int ret_freq = 0;
1694         unsigned long flags;
1695
1696         read_lock_irqsave(&cpufreq_driver_lock, flags);
1697
1698         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1699                 ret_freq = cpufreq_driver->get(cpu);
1700                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1701                 return ret_freq;
1702         }
1703
1704         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1705
1706         policy = cpufreq_cpu_get(cpu);
1707         if (policy) {
1708                 ret_freq = policy->cur;
1709                 cpufreq_cpu_put(policy);
1710         }
1711
1712         return ret_freq;
1713 }
1714 EXPORT_SYMBOL(cpufreq_quick_get);
1715
1716 /**
1717  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1718  * @cpu: CPU number
1719  *
1720  * Just return the max possible frequency for a given CPU.
1721  */
1722 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1723 {
1724         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1725         unsigned int ret_freq = 0;
1726
1727         if (policy) {
1728                 ret_freq = policy->max;
1729                 cpufreq_cpu_put(policy);
1730         }
1731
1732         return ret_freq;
1733 }
1734 EXPORT_SYMBOL(cpufreq_quick_get_max);
1735
1736 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1737 {
1738         if (unlikely(policy_is_inactive(policy)))
1739                 return 0;
1740
1741         return cpufreq_verify_current_freq(policy, true);
1742 }
1743
1744 /**
1745  * cpufreq_get - get the current CPU frequency (in kHz)
1746  * @cpu: CPU number
1747  *
1748  * Get the CPU current (static) CPU frequency
1749  */
1750 unsigned int cpufreq_get(unsigned int cpu)
1751 {
1752         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1753         unsigned int ret_freq = 0;
1754
1755         if (policy) {
1756                 down_read(&policy->rwsem);
1757                 if (cpufreq_driver->get)
1758                         ret_freq = __cpufreq_get(policy);
1759                 up_read(&policy->rwsem);
1760
1761                 cpufreq_cpu_put(policy);
1762         }
1763
1764         return ret_freq;
1765 }
1766 EXPORT_SYMBOL(cpufreq_get);
1767
1768 static struct subsys_interface cpufreq_interface = {
1769         .name           = "cpufreq",
1770         .subsys         = &cpu_subsys,
1771         .add_dev        = cpufreq_add_dev,
1772         .remove_dev     = cpufreq_remove_dev,
1773 };
1774
1775 /*
1776  * In case platform wants some specific frequency to be configured
1777  * during suspend..
1778  */
1779 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1780 {
1781         int ret;
1782
1783         if (!policy->suspend_freq) {
1784                 pr_debug("%s: suspend_freq not defined\n", __func__);
1785                 return 0;
1786         }
1787
1788         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1789                         policy->suspend_freq);
1790
1791         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1792                         CPUFREQ_RELATION_H);
1793         if (ret)
1794                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1795                                 __func__, policy->suspend_freq, ret);
1796
1797         return ret;
1798 }
1799 EXPORT_SYMBOL(cpufreq_generic_suspend);
1800
1801 /**
1802  * cpufreq_suspend() - Suspend CPUFreq governors
1803  *
1804  * Called during system wide Suspend/Hibernate cycles for suspending governors
1805  * as some platforms can't change frequency after this point in suspend cycle.
1806  * Because some of the devices (like: i2c, regulators, etc) they use for
1807  * changing frequency are suspended quickly after this point.
1808  */
1809 void cpufreq_suspend(void)
1810 {
1811         struct cpufreq_policy *policy;
1812
1813         if (!cpufreq_driver)
1814                 return;
1815
1816         if (!has_target() && !cpufreq_driver->suspend)
1817                 goto suspend;
1818
1819         pr_debug("%s: Suspending Governors\n", __func__);
1820
1821         for_each_active_policy(policy) {
1822                 if (has_target()) {
1823                         down_write(&policy->rwsem);
1824                         cpufreq_stop_governor(policy);
1825                         up_write(&policy->rwsem);
1826                 }
1827
1828                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1829                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1830                                 cpufreq_driver->name);
1831         }
1832
1833 suspend:
1834         cpufreq_suspended = true;
1835 }
1836
1837 /**
1838  * cpufreq_resume() - Resume CPUFreq governors
1839  *
1840  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1841  * are suspended with cpufreq_suspend().
1842  */
1843 void cpufreq_resume(void)
1844 {
1845         struct cpufreq_policy *policy;
1846         int ret;
1847
1848         if (!cpufreq_driver)
1849                 return;
1850
1851         if (unlikely(!cpufreq_suspended))
1852                 return;
1853
1854         cpufreq_suspended = false;
1855
1856         if (!has_target() && !cpufreq_driver->resume)
1857                 return;
1858
1859         pr_debug("%s: Resuming Governors\n", __func__);
1860
1861         for_each_active_policy(policy) {
1862                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1863                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1864                                 policy);
1865                 } else if (has_target()) {
1866                         down_write(&policy->rwsem);
1867                         ret = cpufreq_start_governor(policy);
1868                         up_write(&policy->rwsem);
1869
1870                         if (ret)
1871                                 pr_err("%s: Failed to start governor for policy: %p\n",
1872                                        __func__, policy);
1873                 }
1874         }
1875 }
1876
1877 /**
1878  *      cpufreq_get_current_driver - return current driver's name
1879  *
1880  *      Return the name string of the currently loaded cpufreq driver
1881  *      or NULL, if none.
1882  */
1883 const char *cpufreq_get_current_driver(void)
1884 {
1885         if (cpufreq_driver)
1886                 return cpufreq_driver->name;
1887
1888         return NULL;
1889 }
1890 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1891
1892 /**
1893  *      cpufreq_get_driver_data - return current driver data
1894  *
1895  *      Return the private data of the currently loaded cpufreq
1896  *      driver, or NULL if no cpufreq driver is loaded.
1897  */
1898 void *cpufreq_get_driver_data(void)
1899 {
1900         if (cpufreq_driver)
1901                 return cpufreq_driver->driver_data;
1902
1903         return NULL;
1904 }
1905 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1906
1907 /*********************************************************************
1908  *                     NOTIFIER LISTS INTERFACE                      *
1909  *********************************************************************/
1910
1911 /**
1912  *      cpufreq_register_notifier - register a driver with cpufreq
1913  *      @nb: notifier function to register
1914  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1915  *
1916  *      Add a driver to one of two lists: either a list of drivers that
1917  *      are notified about clock rate changes (once before and once after
1918  *      the transition), or a list of drivers that are notified about
1919  *      changes in cpufreq policy.
1920  *
1921  *      This function may sleep, and has the same return conditions as
1922  *      blocking_notifier_chain_register.
1923  */
1924 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1925 {
1926         int ret;
1927
1928         if (cpufreq_disabled())
1929                 return -EINVAL;
1930
1931         switch (list) {
1932         case CPUFREQ_TRANSITION_NOTIFIER:
1933                 mutex_lock(&cpufreq_fast_switch_lock);
1934
1935                 if (cpufreq_fast_switch_count > 0) {
1936                         mutex_unlock(&cpufreq_fast_switch_lock);
1937                         return -EBUSY;
1938                 }
1939                 ret = srcu_notifier_chain_register(
1940                                 &cpufreq_transition_notifier_list, nb);
1941                 if (!ret)
1942                         cpufreq_fast_switch_count--;
1943
1944                 mutex_unlock(&cpufreq_fast_switch_lock);
1945                 break;
1946         case CPUFREQ_POLICY_NOTIFIER:
1947                 ret = blocking_notifier_chain_register(
1948                                 &cpufreq_policy_notifier_list, nb);
1949                 break;
1950         default:
1951                 ret = -EINVAL;
1952         }
1953
1954         return ret;
1955 }
1956 EXPORT_SYMBOL(cpufreq_register_notifier);
1957
1958 /**
1959  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1960  *      @nb: notifier block to be unregistered
1961  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1962  *
1963  *      Remove a driver from the CPU frequency notifier list.
1964  *
1965  *      This function may sleep, and has the same return conditions as
1966  *      blocking_notifier_chain_unregister.
1967  */
1968 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1969 {
1970         int ret;
1971
1972         if (cpufreq_disabled())
1973                 return -EINVAL;
1974
1975         switch (list) {
1976         case CPUFREQ_TRANSITION_NOTIFIER:
1977                 mutex_lock(&cpufreq_fast_switch_lock);
1978
1979                 ret = srcu_notifier_chain_unregister(
1980                                 &cpufreq_transition_notifier_list, nb);
1981                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1982                         cpufreq_fast_switch_count++;
1983
1984                 mutex_unlock(&cpufreq_fast_switch_lock);
1985                 break;
1986         case CPUFREQ_POLICY_NOTIFIER:
1987                 ret = blocking_notifier_chain_unregister(
1988                                 &cpufreq_policy_notifier_list, nb);
1989                 break;
1990         default:
1991                 ret = -EINVAL;
1992         }
1993
1994         return ret;
1995 }
1996 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1997
1998
1999 /*********************************************************************
2000  *                              GOVERNORS                            *
2001  *********************************************************************/
2002
2003 /**
2004  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2005  * @policy: cpufreq policy to switch the frequency for.
2006  * @target_freq: New frequency to set (may be approximate).
2007  *
2008  * Carry out a fast frequency switch without sleeping.
2009  *
2010  * The driver's ->fast_switch() callback invoked by this function must be
2011  * suitable for being called from within RCU-sched read-side critical sections
2012  * and it is expected to select the minimum available frequency greater than or
2013  * equal to @target_freq (CPUFREQ_RELATION_L).
2014  *
2015  * This function must not be called if policy->fast_switch_enabled is unset.
2016  *
2017  * Governors calling this function must guarantee that it will never be invoked
2018  * twice in parallel for the same policy and that it will never be called in
2019  * parallel with either ->target() or ->target_index() for the same policy.
2020  *
2021  * Returns the actual frequency set for the CPU.
2022  *
2023  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2024  * error condition, the hardware configuration must be preserved.
2025  */
2026 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2027                                         unsigned int target_freq)
2028 {
2029         target_freq = clamp_val(target_freq, policy->min, policy->max);
2030
2031         return cpufreq_driver->fast_switch(policy, target_freq);
2032 }
2033 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2034
2035 /* Must set freqs->new to intermediate frequency */
2036 static int __target_intermediate(struct cpufreq_policy *policy,
2037                                  struct cpufreq_freqs *freqs, int index)
2038 {
2039         int ret;
2040
2041         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2042
2043         /* We don't need to switch to intermediate freq */
2044         if (!freqs->new)
2045                 return 0;
2046
2047         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2048                  __func__, policy->cpu, freqs->old, freqs->new);
2049
2050         cpufreq_freq_transition_begin(policy, freqs);
2051         ret = cpufreq_driver->target_intermediate(policy, index);
2052         cpufreq_freq_transition_end(policy, freqs, ret);
2053
2054         if (ret)
2055                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2056                        __func__, ret);
2057
2058         return ret;
2059 }
2060
2061 static int __target_index(struct cpufreq_policy *policy, int index)
2062 {
2063         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2064         unsigned int intermediate_freq = 0;
2065         unsigned int newfreq = policy->freq_table[index].frequency;
2066         int retval = -EINVAL;
2067         bool notify;
2068
2069         if (newfreq == policy->cur)
2070                 return 0;
2071
2072         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2073         if (notify) {
2074                 /* Handle switching to intermediate frequency */
2075                 if (cpufreq_driver->get_intermediate) {
2076                         retval = __target_intermediate(policy, &freqs, index);
2077                         if (retval)
2078                                 return retval;
2079
2080                         intermediate_freq = freqs.new;
2081                         /* Set old freq to intermediate */
2082                         if (intermediate_freq)
2083                                 freqs.old = freqs.new;
2084                 }
2085
2086                 freqs.new = newfreq;
2087                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2088                          __func__, policy->cpu, freqs.old, freqs.new);
2089
2090                 cpufreq_freq_transition_begin(policy, &freqs);
2091         }
2092
2093         retval = cpufreq_driver->target_index(policy, index);
2094         if (retval)
2095                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2096                        retval);
2097
2098         if (notify) {
2099                 cpufreq_freq_transition_end(policy, &freqs, retval);
2100
2101                 /*
2102                  * Failed after setting to intermediate freq? Driver should have
2103                  * reverted back to initial frequency and so should we. Check
2104                  * here for intermediate_freq instead of get_intermediate, in
2105                  * case we haven't switched to intermediate freq at all.
2106                  */
2107                 if (unlikely(retval && intermediate_freq)) {
2108                         freqs.old = intermediate_freq;
2109                         freqs.new = policy->restore_freq;
2110                         cpufreq_freq_transition_begin(policy, &freqs);
2111                         cpufreq_freq_transition_end(policy, &freqs, 0);
2112                 }
2113         }
2114
2115         return retval;
2116 }
2117
2118 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2119                             unsigned int target_freq,
2120                             unsigned int relation)
2121 {
2122         unsigned int old_target_freq = target_freq;
2123         int index;
2124
2125         if (cpufreq_disabled())
2126                 return -ENODEV;
2127
2128         /* Make sure that target_freq is within supported range */
2129         target_freq = clamp_val(target_freq, policy->min, policy->max);
2130
2131         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2132                  policy->cpu, target_freq, relation, old_target_freq);
2133
2134         /*
2135          * This might look like a redundant call as we are checking it again
2136          * after finding index. But it is left intentionally for cases where
2137          * exactly same freq is called again and so we can save on few function
2138          * calls.
2139          */
2140         if (target_freq == policy->cur)
2141                 return 0;
2142
2143         /* Save last value to restore later on errors */
2144         policy->restore_freq = policy->cur;
2145
2146         if (cpufreq_driver->target)
2147                 return cpufreq_driver->target(policy, target_freq, relation);
2148
2149         if (!cpufreq_driver->target_index)
2150                 return -EINVAL;
2151
2152         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2153
2154         return __target_index(policy, index);
2155 }
2156 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2157
2158 int cpufreq_driver_target(struct cpufreq_policy *policy,
2159                           unsigned int target_freq,
2160                           unsigned int relation)
2161 {
2162         int ret;
2163
2164         down_write(&policy->rwsem);
2165
2166         ret = __cpufreq_driver_target(policy, target_freq, relation);
2167
2168         up_write(&policy->rwsem);
2169
2170         return ret;
2171 }
2172 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2173
2174 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2175 {
2176         return NULL;
2177 }
2178
2179 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2180 {
2181         int ret;
2182
2183         /* Don't start any governor operations if we are entering suspend */
2184         if (cpufreq_suspended)
2185                 return 0;
2186         /*
2187          * Governor might not be initiated here if ACPI _PPC changed
2188          * notification happened, so check it.
2189          */
2190         if (!policy->governor)
2191                 return -EINVAL;
2192
2193         /* Platform doesn't want dynamic frequency switching ? */
2194         if (policy->governor->dynamic_switching &&
2195             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2196                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2197
2198                 if (gov) {
2199                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2200                                 policy->governor->name, gov->name);
2201                         policy->governor = gov;
2202                 } else {
2203                         return -EINVAL;
2204                 }
2205         }
2206
2207         if (!try_module_get(policy->governor->owner))
2208                 return -EINVAL;
2209
2210         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2211
2212         if (policy->governor->init) {
2213                 ret = policy->governor->init(policy);
2214                 if (ret) {
2215                         module_put(policy->governor->owner);
2216                         return ret;
2217                 }
2218         }
2219
2220         return 0;
2221 }
2222
2223 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2224 {
2225         if (cpufreq_suspended || !policy->governor)
2226                 return;
2227
2228         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2229
2230         if (policy->governor->exit)
2231                 policy->governor->exit(policy);
2232
2233         module_put(policy->governor->owner);
2234 }
2235
2236 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2237 {
2238         int ret;
2239
2240         if (cpufreq_suspended)
2241                 return 0;
2242
2243         if (!policy->governor)
2244                 return -EINVAL;
2245
2246         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2247
2248         if (cpufreq_driver->get)
2249                 cpufreq_verify_current_freq(policy, false);
2250
2251         if (policy->governor->start) {
2252                 ret = policy->governor->start(policy);
2253                 if (ret)
2254                         return ret;
2255         }
2256
2257         if (policy->governor->limits)
2258                 policy->governor->limits(policy);
2259
2260         return 0;
2261 }
2262
2263 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2264 {
2265         if (cpufreq_suspended || !policy->governor)
2266                 return;
2267
2268         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2269
2270         if (policy->governor->stop)
2271                 policy->governor->stop(policy);
2272 }
2273
2274 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2275 {
2276         if (cpufreq_suspended || !policy->governor)
2277                 return;
2278
2279         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2280
2281         if (policy->governor->limits)
2282                 policy->governor->limits(policy);
2283 }
2284
2285 int cpufreq_register_governor(struct cpufreq_governor *governor)
2286 {
2287         int err;
2288
2289         if (!governor)
2290                 return -EINVAL;
2291
2292         if (cpufreq_disabled())
2293                 return -ENODEV;
2294
2295         mutex_lock(&cpufreq_governor_mutex);
2296
2297         err = -EBUSY;
2298         if (!find_governor(governor->name)) {
2299                 err = 0;
2300                 list_add(&governor->governor_list, &cpufreq_governor_list);
2301         }
2302
2303         mutex_unlock(&cpufreq_governor_mutex);
2304         return err;
2305 }
2306 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2307
2308 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2309 {
2310         struct cpufreq_policy *policy;
2311         unsigned long flags;
2312
2313         if (!governor)
2314                 return;
2315
2316         if (cpufreq_disabled())
2317                 return;
2318
2319         /* clear last_governor for all inactive policies */
2320         read_lock_irqsave(&cpufreq_driver_lock, flags);
2321         for_each_inactive_policy(policy) {
2322                 if (!strcmp(policy->last_governor, governor->name)) {
2323                         policy->governor = NULL;
2324                         strcpy(policy->last_governor, "\0");
2325                 }
2326         }
2327         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2328
2329         mutex_lock(&cpufreq_governor_mutex);
2330         list_del(&governor->governor_list);
2331         mutex_unlock(&cpufreq_governor_mutex);
2332 }
2333 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2334
2335
2336 /*********************************************************************
2337  *                          POLICY INTERFACE                         *
2338  *********************************************************************/
2339
2340 /**
2341  * cpufreq_get_policy - get the current cpufreq_policy
2342  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2343  *      is written
2344  *
2345  * Reads the current cpufreq policy.
2346  */
2347 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2348 {
2349         struct cpufreq_policy *cpu_policy;
2350         if (!policy)
2351                 return -EINVAL;
2352
2353         cpu_policy = cpufreq_cpu_get(cpu);
2354         if (!cpu_policy)
2355                 return -EINVAL;
2356
2357         memcpy(policy, cpu_policy, sizeof(*policy));
2358
2359         cpufreq_cpu_put(cpu_policy);
2360         return 0;
2361 }
2362 EXPORT_SYMBOL(cpufreq_get_policy);
2363
2364 /**
2365  * cpufreq_set_policy - Modify cpufreq policy parameters.
2366  * @policy: Policy object to modify.
2367  * @new_policy: New policy data.
2368  *
2369  * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2370  * min and max parameters of @new_policy to @policy and either invoke the
2371  * driver's ->setpolicy() callback (if present) or carry out a governor update
2372  * for @policy.  That is, run the current governor's ->limits() callback (if the
2373  * governor field in @new_policy points to the same object as the one in
2374  * @policy) or replace the governor for @policy with the new one stored in
2375  * @new_policy.
2376  *
2377  * The cpuinfo part of @policy is not updated by this function.
2378  */
2379 int cpufreq_set_policy(struct cpufreq_policy *policy,
2380                        struct cpufreq_policy *new_policy)
2381 {
2382         struct cpufreq_governor *old_gov;
2383         int ret;
2384
2385         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2386                  new_policy->cpu, new_policy->min, new_policy->max);
2387
2388         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2389
2390         /*
2391          * PM QoS framework collects all the requests from users and provide us
2392          * the final aggregated value here.
2393          */
2394         new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2395         new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2396
2397         /*
2398          * Verify that the CPU speed can be set within these limits and make sure
2399          * that min <= max.
2400          */
2401         ret = cpufreq_driver->verify(new_policy);
2402         if (ret)
2403                 return ret;
2404
2405         policy->min = new_policy->min;
2406         policy->max = new_policy->max;
2407         trace_cpu_frequency_limits(policy);
2408
2409         policy->cached_target_freq = UINT_MAX;
2410
2411         pr_debug("new min and max freqs are %u - %u kHz\n",
2412                  policy->min, policy->max);
2413
2414         if (cpufreq_driver->setpolicy) {
2415                 policy->policy = new_policy->policy;
2416                 pr_debug("setting range\n");
2417                 return cpufreq_driver->setpolicy(policy);
2418         }
2419
2420         if (new_policy->governor == policy->governor) {
2421                 pr_debug("governor limits update\n");
2422                 cpufreq_governor_limits(policy);
2423                 return 0;
2424         }
2425
2426         pr_debug("governor switch\n");
2427
2428         /* save old, working values */
2429         old_gov = policy->governor;
2430         /* end old governor */
2431         if (old_gov) {
2432                 cpufreq_stop_governor(policy);
2433                 cpufreq_exit_governor(policy);
2434         }
2435
2436         /* start new governor */
2437         policy->governor = new_policy->governor;
2438         ret = cpufreq_init_governor(policy);
2439         if (!ret) {
2440                 ret = cpufreq_start_governor(policy);
2441                 if (!ret) {
2442                         pr_debug("governor change\n");
2443                         sched_cpufreq_governor_change(policy, old_gov);
2444                         return 0;
2445                 }
2446                 cpufreq_exit_governor(policy);
2447         }
2448
2449         /* new governor failed, so re-start old one */
2450         pr_debug("starting governor %s failed\n", policy->governor->name);
2451         if (old_gov) {
2452                 policy->governor = old_gov;
2453                 if (cpufreq_init_governor(policy))
2454                         policy->governor = NULL;
2455                 else
2456                         cpufreq_start_governor(policy);
2457         }
2458
2459         return ret;
2460 }
2461
2462 /**
2463  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2464  * @cpu: CPU to re-evaluate the policy for.
2465  *
2466  * Update the current frequency for the cpufreq policy of @cpu and use
2467  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2468  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2469  * for the policy in question, among other things.
2470  */
2471 void cpufreq_update_policy(unsigned int cpu)
2472 {
2473         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2474
2475         if (!policy)
2476                 return;
2477
2478         /*
2479          * BIOS might change freq behind our back
2480          * -> ask driver for current freq and notify governors about a change
2481          */
2482         if (cpufreq_driver->get && has_target() &&
2483             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2484                 goto unlock;
2485
2486         refresh_frequency_limits(policy);
2487
2488 unlock:
2489         cpufreq_cpu_release(policy);
2490 }
2491 EXPORT_SYMBOL(cpufreq_update_policy);
2492
2493 /**
2494  * cpufreq_update_limits - Update policy limits for a given CPU.
2495  * @cpu: CPU to update the policy limits for.
2496  *
2497  * Invoke the driver's ->update_limits callback if present or call
2498  * cpufreq_update_policy() for @cpu.
2499  */
2500 void cpufreq_update_limits(unsigned int cpu)
2501 {
2502         if (cpufreq_driver->update_limits)
2503                 cpufreq_driver->update_limits(cpu);
2504         else
2505                 cpufreq_update_policy(cpu);
2506 }
2507 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2508
2509 /*********************************************************************
2510  *               BOOST                                               *
2511  *********************************************************************/
2512 static int cpufreq_boost_set_sw(int state)
2513 {
2514         struct cpufreq_policy *policy;
2515         int ret = -EINVAL;
2516
2517         for_each_active_policy(policy) {
2518                 if (!policy->freq_table)
2519                         continue;
2520
2521                 ret = cpufreq_frequency_table_cpuinfo(policy,
2522                                                       policy->freq_table);
2523                 if (ret) {
2524                         pr_err("%s: Policy frequency update failed\n",
2525                                __func__);
2526                         break;
2527                 }
2528
2529                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2530                 if (ret < 0)
2531                         break;
2532         }
2533
2534         return ret;
2535 }
2536
2537 int cpufreq_boost_trigger_state(int state)
2538 {
2539         unsigned long flags;
2540         int ret = 0;
2541
2542         if (cpufreq_driver->boost_enabled == state)
2543                 return 0;
2544
2545         write_lock_irqsave(&cpufreq_driver_lock, flags);
2546         cpufreq_driver->boost_enabled = state;
2547         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548
2549         ret = cpufreq_driver->set_boost(state);
2550         if (ret) {
2551                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2552                 cpufreq_driver->boost_enabled = !state;
2553                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2554
2555                 pr_err("%s: Cannot %s BOOST\n",
2556                        __func__, state ? "enable" : "disable");
2557         }
2558
2559         return ret;
2560 }
2561
2562 static bool cpufreq_boost_supported(void)
2563 {
2564         return cpufreq_driver->set_boost;
2565 }
2566
2567 static int create_boost_sysfs_file(void)
2568 {
2569         int ret;
2570
2571         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2572         if (ret)
2573                 pr_err("%s: cannot register global BOOST sysfs file\n",
2574                        __func__);
2575
2576         return ret;
2577 }
2578
2579 static void remove_boost_sysfs_file(void)
2580 {
2581         if (cpufreq_boost_supported())
2582                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2583 }
2584
2585 int cpufreq_enable_boost_support(void)
2586 {
2587         if (!cpufreq_driver)
2588                 return -EINVAL;
2589
2590         if (cpufreq_boost_supported())
2591                 return 0;
2592
2593         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2594
2595         /* This will get removed on driver unregister */
2596         return create_boost_sysfs_file();
2597 }
2598 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2599
2600 int cpufreq_boost_enabled(void)
2601 {
2602         return cpufreq_driver->boost_enabled;
2603 }
2604 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2605
2606 /*********************************************************************
2607  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2608  *********************************************************************/
2609 static enum cpuhp_state hp_online;
2610
2611 static int cpuhp_cpufreq_online(unsigned int cpu)
2612 {
2613         cpufreq_online(cpu);
2614
2615         return 0;
2616 }
2617
2618 static int cpuhp_cpufreq_offline(unsigned int cpu)
2619 {
2620         cpufreq_offline(cpu);
2621
2622         return 0;
2623 }
2624
2625 /**
2626  * cpufreq_register_driver - register a CPU Frequency driver
2627  * @driver_data: A struct cpufreq_driver containing the values#
2628  * submitted by the CPU Frequency driver.
2629  *
2630  * Registers a CPU Frequency driver to this core code. This code
2631  * returns zero on success, -EEXIST when another driver got here first
2632  * (and isn't unregistered in the meantime).
2633  *
2634  */
2635 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2636 {
2637         unsigned long flags;
2638         int ret;
2639
2640         if (cpufreq_disabled())
2641                 return -ENODEV;
2642
2643         /*
2644          * The cpufreq core depends heavily on the availability of device
2645          * structure, make sure they are available before proceeding further.
2646          */
2647         if (!get_cpu_device(0))
2648                 return -EPROBE_DEFER;
2649
2650         if (!driver_data || !driver_data->verify || !driver_data->init ||
2651             !(driver_data->setpolicy || driver_data->target_index ||
2652                     driver_data->target) ||
2653              (driver_data->setpolicy && (driver_data->target_index ||
2654                     driver_data->target)) ||
2655              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2656              (!driver_data->online != !driver_data->offline))
2657                 return -EINVAL;
2658
2659         pr_debug("trying to register driver %s\n", driver_data->name);
2660
2661         /* Protect against concurrent CPU online/offline. */
2662         cpus_read_lock();
2663
2664         write_lock_irqsave(&cpufreq_driver_lock, flags);
2665         if (cpufreq_driver) {
2666                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2667                 ret = -EEXIST;
2668                 goto out;
2669         }
2670         cpufreq_driver = driver_data;
2671         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2672
2673         if (driver_data->setpolicy)
2674                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2675
2676         if (cpufreq_boost_supported()) {
2677                 ret = create_boost_sysfs_file();
2678                 if (ret)
2679                         goto err_null_driver;
2680         }
2681
2682         ret = subsys_interface_register(&cpufreq_interface);
2683         if (ret)
2684                 goto err_boost_unreg;
2685
2686         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2687             list_empty(&cpufreq_policy_list)) {
2688                 /* if all ->init() calls failed, unregister */
2689                 ret = -ENODEV;
2690                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2691                          driver_data->name);
2692                 goto err_if_unreg;
2693         }
2694
2695         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2696                                                    "cpufreq:online",
2697                                                    cpuhp_cpufreq_online,
2698                                                    cpuhp_cpufreq_offline);
2699         if (ret < 0)
2700                 goto err_if_unreg;
2701         hp_online = ret;
2702         ret = 0;
2703
2704         pr_debug("driver %s up and running\n", driver_data->name);
2705         goto out;
2706
2707 err_if_unreg:
2708         subsys_interface_unregister(&cpufreq_interface);
2709 err_boost_unreg:
2710         remove_boost_sysfs_file();
2711 err_null_driver:
2712         write_lock_irqsave(&cpufreq_driver_lock, flags);
2713         cpufreq_driver = NULL;
2714         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2715 out:
2716         cpus_read_unlock();
2717         return ret;
2718 }
2719 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2720
2721 /**
2722  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2723  *
2724  * Unregister the current CPUFreq driver. Only call this if you have
2725  * the right to do so, i.e. if you have succeeded in initialising before!
2726  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2727  * currently not initialised.
2728  */
2729 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2730 {
2731         unsigned long flags;
2732
2733         if (!cpufreq_driver || (driver != cpufreq_driver))
2734                 return -EINVAL;
2735
2736         pr_debug("unregistering driver %s\n", driver->name);
2737
2738         /* Protect against concurrent cpu hotplug */
2739         cpus_read_lock();
2740         subsys_interface_unregister(&cpufreq_interface);
2741         remove_boost_sysfs_file();
2742         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2743
2744         write_lock_irqsave(&cpufreq_driver_lock, flags);
2745
2746         cpufreq_driver = NULL;
2747
2748         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2749         cpus_read_unlock();
2750
2751         return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2754
2755 struct kobject *cpufreq_global_kobject;
2756 EXPORT_SYMBOL(cpufreq_global_kobject);
2757
2758 static int __init cpufreq_core_init(void)
2759 {
2760         if (cpufreq_disabled())
2761                 return -ENODEV;
2762
2763         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2764         BUG_ON(!cpufreq_global_kobject);
2765
2766         return 0;
2767 }
2768 module_param(off, int, 0444);
2769 core_initcall(cpufreq_core_init);