]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <trace/events/power.h>
28
29 #include <asm/div64.h>
30 #include <asm/msr.h>
31 #include <asm/cpu_device_id.h>
32 #include <asm/cpufeature.h>
33 #include <asm/intel-family.h>
34
35 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
36
37 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
38 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
39
40 #ifdef CONFIG_ACPI
41 #include <acpi/processor.h>
42 #include <acpi/cppc_acpi.h>
43 #endif
44
45 #define FRAC_BITS 8
46 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
47 #define fp_toint(X) ((X) >> FRAC_BITS)
48
49 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline int32_t percent_fp(int percent)
78 {
79         return div_fp(percent, 100);
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 static inline int32_t percent_ext_fp(int percent)
93 {
94         return div_ext_fp(percent, 100);
95 }
96
97 /**
98  * struct sample -      Store performance sample
99  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
100  *                      performance during last sample period
101  * @busy_scaled:        Scaled busy value which is used to calculate next
102  *                      P state. This can be different than core_avg_perf
103  *                      to account for cpu idle period
104  * @aperf:              Difference of actual performance frequency clock count
105  *                      read from APERF MSR between last and current sample
106  * @mperf:              Difference of maximum performance frequency clock count
107  *                      read from MPERF MSR between last and current sample
108  * @tsc:                Difference of time stamp counter between last and
109  *                      current sample
110  * @time:               Current time from scheduler
111  *
112  * This structure is used in the cpudata structure to store performance sample
113  * data for choosing next P State.
114  */
115 struct sample {
116         int32_t core_avg_perf;
117         int32_t busy_scaled;
118         u64 aperf;
119         u64 mperf;
120         u64 tsc;
121         u64 time;
122 };
123
124 /**
125  * struct pstate_data - Store P state data
126  * @current_pstate:     Current requested P state
127  * @min_pstate:         Min P state possible for this platform
128  * @max_pstate:         Max P state possible for this platform
129  * @max_pstate_physical:This is physical Max P state for a processor
130  *                      This can be higher than the max_pstate which can
131  *                      be limited by platform thermal design power limits
132  * @scaling:            Scaling factor to  convert frequency to cpufreq
133  *                      frequency units
134  * @turbo_pstate:       Max Turbo P state possible for this platform
135  * @max_freq:           @max_pstate frequency in cpufreq units
136  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
137  *
138  * Stores the per cpu model P state limits and current P state.
139  */
140 struct pstate_data {
141         int     current_pstate;
142         int     min_pstate;
143         int     max_pstate;
144         int     max_pstate_physical;
145         int     scaling;
146         int     turbo_pstate;
147         unsigned int max_freq;
148         unsigned int turbo_freq;
149 };
150
151 /**
152  * struct vid_data -    Stores voltage information data
153  * @min:                VID data for this platform corresponding to
154  *                      the lowest P state
155  * @max:                VID data corresponding to the highest P State.
156  * @turbo:              VID data for turbo P state
157  * @ratio:              Ratio of (vid max - vid min) /
158  *                      (max P state - Min P State)
159  *
160  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161  * This data is used in Atom platforms, where in addition to target P state,
162  * the voltage data needs to be specified to select next P State.
163  */
164 struct vid_data {
165         int min;
166         int max;
167         int turbo;
168         int32_t ratio;
169 };
170
171 /**
172  * struct global_params - Global parameters, mostly tunable via sysfs.
173  * @no_turbo:           Whether or not to use turbo P-states.
174  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
175  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
176  *                      not the maximum reported turbo P-state is different from
177  *                      the maximum reported non-turbo one.
178  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
179  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
180  *                      P-state capacity.
181  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  */
184 struct global_params {
185         bool no_turbo;
186         bool turbo_disabled;
187         bool turbo_disabled_mf;
188         int max_perf_pct;
189         int min_perf_pct;
190 };
191
192 /**
193  * struct cpudata -     Per CPU instance data storage
194  * @cpu:                CPU number for this instance data
195  * @policy:             CPUFreq policy value
196  * @update_util:        CPUFreq utility callback information
197  * @update_util_set:    CPUFreq utility callback is set
198  * @iowait_boost:       iowait-related boost fraction
199  * @last_update:        Time of the last update.
200  * @pstate:             Stores P state limits for this CPU
201  * @vid:                Stores VID limits for this CPU
202  * @last_sample_time:   Last Sample time
203  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
204  *                      This shift is a multiplier to mperf delta to
205  *                      calculate CPU busy.
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  * @hwp_req_cached:     Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
226  * @last_io_update:     Last time when IO wake flag was set
227  * @sched_flags:        Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:      Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_saved;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266 };
267
268 static struct cpudata **all_cpu_data;
269
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:            Callback to get maximum non turbo effective P state
273  * @get_max_physical:   Callback to get maximum non turbo physical P state
274  * @get_min:            Callback to get minimum P state
275  * @get_turbo:          Callback to get turbo P state
276  * @get_scaling:        Callback to get frequency scaling factor
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(void);
285         int (*get_max_physical)(void);
286         int (*get_min)(void);
287         int (*get_turbo)(void);
288         int (*get_scaling)(void);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318                 return true;
319
320         return false;
321 }
322
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325         if (intel_pstate_acpi_pm_profile_server())
326                 return true;
327
328         return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336         sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343         struct cppc_perf_caps cppc_perf;
344         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345         int ret;
346
347         ret = cppc_get_perf_caps(cpu, &cppc_perf);
348         if (ret)
349                 return;
350
351         /*
352          * The priorities can be set regardless of whether or not
353          * sched_set_itmt_support(true) has been called and it is valid to
354          * update them at any time after it has been called.
355          */
356         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358         if (max_highest_perf <= min_highest_perf) {
359                 if (cppc_perf.highest_perf > max_highest_perf)
360                         max_highest_perf = cppc_perf.highest_perf;
361
362                 if (cppc_perf.highest_perf < min_highest_perf)
363                         min_highest_perf = cppc_perf.highest_perf;
364
365                 if (max_highest_perf > min_highest_perf) {
366                         /*
367                          * This code can be run during CPU online under the
368                          * CPU hotplug locks, so sched_set_itmt_support()
369                          * cannot be called from here.  Queue up a work item
370                          * to invoke it.
371                          */
372                         schedule_work(&sched_itmt_work);
373                 }
374         }
375 }
376
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379         struct cppc_perf_caps cppc_perf;
380         int ret;
381
382         ret = cppc_get_perf_caps(cpu, &cppc_perf);
383         if (ret)
384                 return ret;
385
386         if (cppc_perf.guaranteed_perf)
387                 return cppc_perf.guaranteed_perf;
388
389         return cppc_perf.nominal_perf;
390 }
391
392 #else /* CONFIG_ACPI_CPPC_LIB */
393 static void intel_pstate_set_itmt_prio(int cpu)
394 {
395 }
396 #endif /* CONFIG_ACPI_CPPC_LIB */
397
398 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
399 {
400         struct cpudata *cpu;
401         int ret;
402         int i;
403
404         if (hwp_active) {
405                 intel_pstate_set_itmt_prio(policy->cpu);
406                 return;
407         }
408
409         if (!intel_pstate_get_ppc_enable_status())
410                 return;
411
412         cpu = all_cpu_data[policy->cpu];
413
414         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
415                                                   policy->cpu);
416         if (ret)
417                 return;
418
419         /*
420          * Check if the control value in _PSS is for PERF_CTL MSR, which should
421          * guarantee that the states returned by it map to the states in our
422          * list directly.
423          */
424         if (cpu->acpi_perf_data.control_register.space_id !=
425                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
426                 goto err;
427
428         /*
429          * If there is only one entry _PSS, simply ignore _PSS and continue as
430          * usual without taking _PSS into account
431          */
432         if (cpu->acpi_perf_data.state_count < 2)
433                 goto err;
434
435         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
436         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
437                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
438                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
439                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
440                          (u32) cpu->acpi_perf_data.states[i].power,
441                          (u32) cpu->acpi_perf_data.states[i].control);
442         }
443
444         /*
445          * The _PSS table doesn't contain whole turbo frequency range.
446          * This just contains +1 MHZ above the max non turbo frequency,
447          * with control value corresponding to max turbo ratio. But
448          * when cpufreq set policy is called, it will call with this
449          * max frequency, which will cause a reduced performance as
450          * this driver uses real max turbo frequency as the max
451          * frequency. So correct this frequency in _PSS table to
452          * correct max turbo frequency based on the turbo state.
453          * Also need to convert to MHz as _PSS freq is in MHz.
454          */
455         if (!global.turbo_disabled)
456                 cpu->acpi_perf_data.states[0].core_frequency =
457                                         policy->cpuinfo.max_freq / 1000;
458         cpu->valid_pss_table = true;
459         pr_debug("_PPC limits will be enforced\n");
460
461         return;
462
463  err:
464         cpu->valid_pss_table = false;
465         acpi_processor_unregister_performance(policy->cpu);
466 }
467
468 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
469 {
470         struct cpudata *cpu;
471
472         cpu = all_cpu_data[policy->cpu];
473         if (!cpu->valid_pss_table)
474                 return;
475
476         acpi_processor_unregister_performance(policy->cpu);
477 }
478 #else /* CONFIG_ACPI */
479 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 {
481 }
482
483 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 {
485 }
486
487 static inline bool intel_pstate_acpi_pm_profile_server(void)
488 {
489         return false;
490 }
491 #endif /* CONFIG_ACPI */
492
493 #ifndef CONFIG_ACPI_CPPC_LIB
494 static int intel_pstate_get_cppc_guranteed(int cpu)
495 {
496         return -ENOTSUPP;
497 }
498 #endif /* CONFIG_ACPI_CPPC_LIB */
499
500 static inline void update_turbo_state(void)
501 {
502         u64 misc_en;
503         struct cpudata *cpu;
504
505         cpu = all_cpu_data[0];
506         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507         global.turbo_disabled =
508                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
509                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
510 }
511
512 static int min_perf_pct_min(void)
513 {
514         struct cpudata *cpu = all_cpu_data[0];
515         int turbo_pstate = cpu->pstate.turbo_pstate;
516
517         return turbo_pstate ?
518                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 }
520
521 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
522 {
523         u64 epb;
524         int ret;
525
526         if (!boot_cpu_has(X86_FEATURE_EPB))
527                 return -ENXIO;
528
529         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
530         if (ret)
531                 return (s16)ret;
532
533         return (s16)(epb & 0x0f);
534 }
535
536 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
537 {
538         s16 epp;
539
540         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541                 /*
542                  * When hwp_req_data is 0, means that caller didn't read
543                  * MSR_HWP_REQUEST, so need to read and get EPP.
544                  */
545                 if (!hwp_req_data) {
546                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
547                                             &hwp_req_data);
548                         if (epp)
549                                 return epp;
550                 }
551                 epp = (hwp_req_data >> 24) & 0xff;
552         } else {
553                 /* When there is no EPP present, HWP uses EPB settings */
554                 epp = intel_pstate_get_epb(cpu_data);
555         }
556
557         return epp;
558 }
559
560 static int intel_pstate_set_epb(int cpu, s16 pref)
561 {
562         u64 epb;
563         int ret;
564
565         if (!boot_cpu_has(X86_FEATURE_EPB))
566                 return -ENXIO;
567
568         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569         if (ret)
570                 return ret;
571
572         epb = (epb & ~0x0f) | pref;
573         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574
575         return 0;
576 }
577
578 /*
579  * EPP/EPB display strings corresponding to EPP index in the
580  * energy_perf_strings[]
581  *      index           String
582  *-------------------------------------
583  *      0               default
584  *      1               performance
585  *      2               balance_performance
586  *      3               balance_power
587  *      4               power
588  */
589 static const char * const energy_perf_strings[] = {
590         "default",
591         "performance",
592         "balance_performance",
593         "balance_power",
594         "power",
595         NULL
596 };
597 static const unsigned int epp_values[] = {
598         HWP_EPP_PERFORMANCE,
599         HWP_EPP_BALANCE_PERFORMANCE,
600         HWP_EPP_BALANCE_POWERSAVE,
601         HWP_EPP_POWERSAVE
602 };
603
604 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
605 {
606         s16 epp;
607         int index = -EINVAL;
608
609         epp = intel_pstate_get_epp(cpu_data, 0);
610         if (epp < 0)
611                 return epp;
612
613         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614                 if (epp == HWP_EPP_PERFORMANCE)
615                         return 1;
616                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
617                         return 2;
618                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
619                         return 3;
620                 else
621                         return 4;
622         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
623                 /*
624                  * Range:
625                  *      0x00-0x03       :       Performance
626                  *      0x04-0x07       :       Balance performance
627                  *      0x08-0x0B       :       Balance power
628                  *      0x0C-0x0F       :       Power
629                  * The EPB is a 4 bit value, but our ranges restrict the
630                  * value which can be set. Here only using top two bits
631                  * effectively.
632                  */
633                 index = (epp >> 2) + 1;
634         }
635
636         return index;
637 }
638
639 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
640                                               int pref_index)
641 {
642         int epp = -EINVAL;
643         int ret;
644
645         if (!pref_index)
646                 epp = cpu_data->epp_default;
647
648         mutex_lock(&intel_pstate_limits_lock);
649
650         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651                 u64 value;
652
653                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
654                 if (ret)
655                         goto return_pref;
656
657                 value &= ~GENMASK_ULL(31, 24);
658
659                 if (epp == -EINVAL)
660                         epp = epp_values[pref_index - 1];
661
662                 value |= (u64)epp << 24;
663                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
664         } else {
665                 if (epp == -EINVAL)
666                         epp = (pref_index - 1) << 2;
667                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
668         }
669 return_pref:
670         mutex_unlock(&intel_pstate_limits_lock);
671
672         return ret;
673 }
674
675 static ssize_t show_energy_performance_available_preferences(
676                                 struct cpufreq_policy *policy, char *buf)
677 {
678         int i = 0;
679         int ret = 0;
680
681         while (energy_perf_strings[i] != NULL)
682                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
683
684         ret += sprintf(&buf[ret], "\n");
685
686         return ret;
687 }
688
689 cpufreq_freq_attr_ro(energy_performance_available_preferences);
690
691 static ssize_t store_energy_performance_preference(
692                 struct cpufreq_policy *policy, const char *buf, size_t count)
693 {
694         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
695         char str_preference[21];
696         int ret;
697
698         ret = sscanf(buf, "%20s", str_preference);
699         if (ret != 1)
700                 return -EINVAL;
701
702         ret = match_string(energy_perf_strings, -1, str_preference);
703         if (ret < 0)
704                 return ret;
705
706         intel_pstate_set_energy_pref_index(cpu_data, ret);
707         return count;
708 }
709
710 static ssize_t show_energy_performance_preference(
711                                 struct cpufreq_policy *policy, char *buf)
712 {
713         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
714         int preference;
715
716         preference = intel_pstate_get_energy_pref_index(cpu_data);
717         if (preference < 0)
718                 return preference;
719
720         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
721 }
722
723 cpufreq_freq_attr_rw(energy_performance_preference);
724
725 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
726 {
727         struct cpudata *cpu;
728         u64 cap;
729         int ratio;
730
731         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
732         if (ratio <= 0) {
733                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
734                 ratio = HWP_GUARANTEED_PERF(cap);
735         }
736
737         cpu = all_cpu_data[policy->cpu];
738
739         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
740 }
741
742 cpufreq_freq_attr_ro(base_frequency);
743
744 static struct freq_attr *hwp_cpufreq_attrs[] = {
745         &energy_performance_preference,
746         &energy_performance_available_preferences,
747         &base_frequency,
748         NULL,
749 };
750
751 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
752                                      int *current_max)
753 {
754         u64 cap;
755
756         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758         if (global.no_turbo)
759                 *current_max = HWP_GUARANTEED_PERF(cap);
760         else
761                 *current_max = HWP_HIGHEST_PERF(cap);
762
763         *phy_max = HWP_HIGHEST_PERF(cap);
764 }
765
766 static void intel_pstate_hwp_set(unsigned int cpu)
767 {
768         struct cpudata *cpu_data = all_cpu_data[cpu];
769         int max, min;
770         u64 value;
771         s16 epp;
772
773         max = cpu_data->max_perf_ratio;
774         min = cpu_data->min_perf_ratio;
775
776         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
777                 min = max;
778
779         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
780
781         value &= ~HWP_MIN_PERF(~0L);
782         value |= HWP_MIN_PERF(min);
783
784         value &= ~HWP_MAX_PERF(~0L);
785         value |= HWP_MAX_PERF(max);
786
787         if (cpu_data->epp_policy == cpu_data->policy)
788                 goto skip_epp;
789
790         cpu_data->epp_policy = cpu_data->policy;
791
792         if (cpu_data->epp_saved >= 0) {
793                 epp = cpu_data->epp_saved;
794                 cpu_data->epp_saved = -EINVAL;
795                 goto update_epp;
796         }
797
798         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
799                 epp = intel_pstate_get_epp(cpu_data, value);
800                 cpu_data->epp_powersave = epp;
801                 /* If EPP read was failed, then don't try to write */
802                 if (epp < 0)
803                         goto skip_epp;
804
805                 epp = 0;
806         } else {
807                 /* skip setting EPP, when saved value is invalid */
808                 if (cpu_data->epp_powersave < 0)
809                         goto skip_epp;
810
811                 /*
812                  * No need to restore EPP when it is not zero. This
813                  * means:
814                  *  - Policy is not changed
815                  *  - user has manually changed
816                  *  - Error reading EPB
817                  */
818                 epp = intel_pstate_get_epp(cpu_data, value);
819                 if (epp)
820                         goto skip_epp;
821
822                 epp = cpu_data->epp_powersave;
823         }
824 update_epp:
825         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826                 value &= ~GENMASK_ULL(31, 24);
827                 value |= (u64)epp << 24;
828         } else {
829                 intel_pstate_set_epb(cpu, epp);
830         }
831 skip_epp:
832         WRITE_ONCE(cpu_data->hwp_req_cached, value);
833         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834 }
835
836 static void intel_pstate_hwp_force_min_perf(int cpu)
837 {
838         u64 value;
839         int min_perf;
840
841         value = all_cpu_data[cpu]->hwp_req_cached;
842         value &= ~GENMASK_ULL(31, 0);
843         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
844
845         /* Set hwp_max = hwp_min */
846         value |= HWP_MAX_PERF(min_perf);
847         value |= HWP_MIN_PERF(min_perf);
848
849         /* Set EPP/EPB to min */
850         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
852         else
853                 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
854
855         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
856 }
857
858 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
859 {
860         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
861
862         if (!hwp_active)
863                 return 0;
864
865         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
866
867         return 0;
868 }
869
870 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
871
872 static int intel_pstate_resume(struct cpufreq_policy *policy)
873 {
874         if (!hwp_active)
875                 return 0;
876
877         mutex_lock(&intel_pstate_limits_lock);
878
879         if (policy->cpu == 0)
880                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
881
882         all_cpu_data[policy->cpu]->epp_policy = 0;
883         intel_pstate_hwp_set(policy->cpu);
884
885         mutex_unlock(&intel_pstate_limits_lock);
886
887         return 0;
888 }
889
890 static void intel_pstate_update_policies(void)
891 {
892         int cpu;
893
894         for_each_possible_cpu(cpu)
895                 cpufreq_update_policy(cpu);
896 }
897
898 static void intel_pstate_update_max_freq(unsigned int cpu)
899 {
900         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
901         struct cpudata *cpudata;
902
903         if (!policy)
904                 return;
905
906         cpudata = all_cpu_data[cpu];
907         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
908                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
909
910         refresh_frequency_limits(policy);
911
912         cpufreq_cpu_release(policy);
913 }
914
915 static void intel_pstate_update_limits(unsigned int cpu)
916 {
917         mutex_lock(&intel_pstate_driver_lock);
918
919         update_turbo_state();
920         /*
921          * If turbo has been turned on or off globally, policy limits for
922          * all CPUs need to be updated to reflect that.
923          */
924         if (global.turbo_disabled_mf != global.turbo_disabled) {
925                 global.turbo_disabled_mf = global.turbo_disabled;
926                 for_each_possible_cpu(cpu)
927                         intel_pstate_update_max_freq(cpu);
928         } else {
929                 cpufreq_update_policy(cpu);
930         }
931
932         mutex_unlock(&intel_pstate_driver_lock);
933 }
934
935 /************************** sysfs begin ************************/
936 #define show_one(file_name, object)                                     \
937         static ssize_t show_##file_name                                 \
938         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
939         {                                                               \
940                 return sprintf(buf, "%u\n", global.object);             \
941         }
942
943 static ssize_t intel_pstate_show_status(char *buf);
944 static int intel_pstate_update_status(const char *buf, size_t size);
945
946 static ssize_t show_status(struct kobject *kobj,
947                            struct kobj_attribute *attr, char *buf)
948 {
949         ssize_t ret;
950
951         mutex_lock(&intel_pstate_driver_lock);
952         ret = intel_pstate_show_status(buf);
953         mutex_unlock(&intel_pstate_driver_lock);
954
955         return ret;
956 }
957
958 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
959                             const char *buf, size_t count)
960 {
961         char *p = memchr(buf, '\n', count);
962         int ret;
963
964         mutex_lock(&intel_pstate_driver_lock);
965         ret = intel_pstate_update_status(buf, p ? p - buf : count);
966         mutex_unlock(&intel_pstate_driver_lock);
967
968         return ret < 0 ? ret : count;
969 }
970
971 static ssize_t show_turbo_pct(struct kobject *kobj,
972                                 struct kobj_attribute *attr, char *buf)
973 {
974         struct cpudata *cpu;
975         int total, no_turbo, turbo_pct;
976         uint32_t turbo_fp;
977
978         mutex_lock(&intel_pstate_driver_lock);
979
980         if (!intel_pstate_driver) {
981                 mutex_unlock(&intel_pstate_driver_lock);
982                 return -EAGAIN;
983         }
984
985         cpu = all_cpu_data[0];
986
987         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
988         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
989         turbo_fp = div_fp(no_turbo, total);
990         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
991
992         mutex_unlock(&intel_pstate_driver_lock);
993
994         return sprintf(buf, "%u\n", turbo_pct);
995 }
996
997 static ssize_t show_num_pstates(struct kobject *kobj,
998                                 struct kobj_attribute *attr, char *buf)
999 {
1000         struct cpudata *cpu;
1001         int total;
1002
1003         mutex_lock(&intel_pstate_driver_lock);
1004
1005         if (!intel_pstate_driver) {
1006                 mutex_unlock(&intel_pstate_driver_lock);
1007                 return -EAGAIN;
1008         }
1009
1010         cpu = all_cpu_data[0];
1011         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012
1013         mutex_unlock(&intel_pstate_driver_lock);
1014
1015         return sprintf(buf, "%u\n", total);
1016 }
1017
1018 static ssize_t show_no_turbo(struct kobject *kobj,
1019                              struct kobj_attribute *attr, char *buf)
1020 {
1021         ssize_t ret;
1022
1023         mutex_lock(&intel_pstate_driver_lock);
1024
1025         if (!intel_pstate_driver) {
1026                 mutex_unlock(&intel_pstate_driver_lock);
1027                 return -EAGAIN;
1028         }
1029
1030         update_turbo_state();
1031         if (global.turbo_disabled)
1032                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033         else
1034                 ret = sprintf(buf, "%u\n", global.no_turbo);
1035
1036         mutex_unlock(&intel_pstate_driver_lock);
1037
1038         return ret;
1039 }
1040
1041 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042                               const char *buf, size_t count)
1043 {
1044         unsigned int input;
1045         int ret;
1046
1047         ret = sscanf(buf, "%u", &input);
1048         if (ret != 1)
1049                 return -EINVAL;
1050
1051         mutex_lock(&intel_pstate_driver_lock);
1052
1053         if (!intel_pstate_driver) {
1054                 mutex_unlock(&intel_pstate_driver_lock);
1055                 return -EAGAIN;
1056         }
1057
1058         mutex_lock(&intel_pstate_limits_lock);
1059
1060         update_turbo_state();
1061         if (global.turbo_disabled) {
1062                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1063                 mutex_unlock(&intel_pstate_limits_lock);
1064                 mutex_unlock(&intel_pstate_driver_lock);
1065                 return -EPERM;
1066         }
1067
1068         global.no_turbo = clamp_t(int, input, 0, 1);
1069
1070         if (global.no_turbo) {
1071                 struct cpudata *cpu = all_cpu_data[0];
1072                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1073
1074                 /* Squash the global minimum into the permitted range. */
1075                 if (global.min_perf_pct > pct)
1076                         global.min_perf_pct = pct;
1077         }
1078
1079         mutex_unlock(&intel_pstate_limits_lock);
1080
1081         intel_pstate_update_policies();
1082
1083         mutex_unlock(&intel_pstate_driver_lock);
1084
1085         return count;
1086 }
1087
1088 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1089                                   const char *buf, size_t count)
1090 {
1091         unsigned int input;
1092         int ret;
1093
1094         ret = sscanf(buf, "%u", &input);
1095         if (ret != 1)
1096                 return -EINVAL;
1097
1098         mutex_lock(&intel_pstate_driver_lock);
1099
1100         if (!intel_pstate_driver) {
1101                 mutex_unlock(&intel_pstate_driver_lock);
1102                 return -EAGAIN;
1103         }
1104
1105         mutex_lock(&intel_pstate_limits_lock);
1106
1107         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1108
1109         mutex_unlock(&intel_pstate_limits_lock);
1110
1111         intel_pstate_update_policies();
1112
1113         mutex_unlock(&intel_pstate_driver_lock);
1114
1115         return count;
1116 }
1117
1118 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1119                                   const char *buf, size_t count)
1120 {
1121         unsigned int input;
1122         int ret;
1123
1124         ret = sscanf(buf, "%u", &input);
1125         if (ret != 1)
1126                 return -EINVAL;
1127
1128         mutex_lock(&intel_pstate_driver_lock);
1129
1130         if (!intel_pstate_driver) {
1131                 mutex_unlock(&intel_pstate_driver_lock);
1132                 return -EAGAIN;
1133         }
1134
1135         mutex_lock(&intel_pstate_limits_lock);
1136
1137         global.min_perf_pct = clamp_t(int, input,
1138                                       min_perf_pct_min(), global.max_perf_pct);
1139
1140         mutex_unlock(&intel_pstate_limits_lock);
1141
1142         intel_pstate_update_policies();
1143
1144         mutex_unlock(&intel_pstate_driver_lock);
1145
1146         return count;
1147 }
1148
1149 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1150                                 struct kobj_attribute *attr, char *buf)
1151 {
1152         return sprintf(buf, "%u\n", hwp_boost);
1153 }
1154
1155 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1156                                        struct kobj_attribute *b,
1157                                        const char *buf, size_t count)
1158 {
1159         unsigned int input;
1160         int ret;
1161
1162         ret = kstrtouint(buf, 10, &input);
1163         if (ret)
1164                 return ret;
1165
1166         mutex_lock(&intel_pstate_driver_lock);
1167         hwp_boost = !!input;
1168         intel_pstate_update_policies();
1169         mutex_unlock(&intel_pstate_driver_lock);
1170
1171         return count;
1172 }
1173
1174 show_one(max_perf_pct, max_perf_pct);
1175 show_one(min_perf_pct, min_perf_pct);
1176
1177 define_one_global_rw(status);
1178 define_one_global_rw(no_turbo);
1179 define_one_global_rw(max_perf_pct);
1180 define_one_global_rw(min_perf_pct);
1181 define_one_global_ro(turbo_pct);
1182 define_one_global_ro(num_pstates);
1183 define_one_global_rw(hwp_dynamic_boost);
1184
1185 static struct attribute *intel_pstate_attributes[] = {
1186         &status.attr,
1187         &no_turbo.attr,
1188         &turbo_pct.attr,
1189         &num_pstates.attr,
1190         NULL
1191 };
1192
1193 static const struct attribute_group intel_pstate_attr_group = {
1194         .attrs = intel_pstate_attributes,
1195 };
1196
1197 static void __init intel_pstate_sysfs_expose_params(void)
1198 {
1199         struct kobject *intel_pstate_kobject;
1200         int rc;
1201
1202         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1203                                                 &cpu_subsys.dev_root->kobj);
1204         if (WARN_ON(!intel_pstate_kobject))
1205                 return;
1206
1207         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1208         if (WARN_ON(rc))
1209                 return;
1210
1211         /*
1212          * If per cpu limits are enforced there are no global limits, so
1213          * return without creating max/min_perf_pct attributes
1214          */
1215         if (per_cpu_limits)
1216                 return;
1217
1218         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1219         WARN_ON(rc);
1220
1221         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1222         WARN_ON(rc);
1223
1224         if (hwp_active) {
1225                 rc = sysfs_create_file(intel_pstate_kobject,
1226                                        &hwp_dynamic_boost.attr);
1227                 WARN_ON(rc);
1228         }
1229 }
1230 /************************** sysfs end ************************/
1231
1232 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1233 {
1234         /* First disable HWP notification interrupt as we don't process them */
1235         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1236                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1237
1238         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1239         cpudata->epp_policy = 0;
1240         if (cpudata->epp_default == -EINVAL)
1241                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1242 }
1243
1244 #define MSR_IA32_POWER_CTL_BIT_EE       19
1245
1246 /* Disable energy efficiency optimization */
1247 static void intel_pstate_disable_ee(int cpu)
1248 {
1249         u64 power_ctl;
1250         int ret;
1251
1252         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1253         if (ret)
1254                 return;
1255
1256         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1257                 pr_info("Disabling energy efficiency optimization\n");
1258                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1259                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1260         }
1261 }
1262
1263 static int atom_get_min_pstate(void)
1264 {
1265         u64 value;
1266
1267         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1268         return (value >> 8) & 0x7F;
1269 }
1270
1271 static int atom_get_max_pstate(void)
1272 {
1273         u64 value;
1274
1275         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1276         return (value >> 16) & 0x7F;
1277 }
1278
1279 static int atom_get_turbo_pstate(void)
1280 {
1281         u64 value;
1282
1283         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1284         return value & 0x7F;
1285 }
1286
1287 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1288 {
1289         u64 val;
1290         int32_t vid_fp;
1291         u32 vid;
1292
1293         val = (u64)pstate << 8;
1294         if (global.no_turbo && !global.turbo_disabled)
1295                 val |= (u64)1 << 32;
1296
1297         vid_fp = cpudata->vid.min + mul_fp(
1298                 int_tofp(pstate - cpudata->pstate.min_pstate),
1299                 cpudata->vid.ratio);
1300
1301         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1302         vid = ceiling_fp(vid_fp);
1303
1304         if (pstate > cpudata->pstate.max_pstate)
1305                 vid = cpudata->vid.turbo;
1306
1307         return val | vid;
1308 }
1309
1310 static int silvermont_get_scaling(void)
1311 {
1312         u64 value;
1313         int i;
1314         /* Defined in Table 35-6 from SDM (Sept 2015) */
1315         static int silvermont_freq_table[] = {
1316                 83300, 100000, 133300, 116700, 80000};
1317
1318         rdmsrl(MSR_FSB_FREQ, value);
1319         i = value & 0x7;
1320         WARN_ON(i > 4);
1321
1322         return silvermont_freq_table[i];
1323 }
1324
1325 static int airmont_get_scaling(void)
1326 {
1327         u64 value;
1328         int i;
1329         /* Defined in Table 35-10 from SDM (Sept 2015) */
1330         static int airmont_freq_table[] = {
1331                 83300, 100000, 133300, 116700, 80000,
1332                 93300, 90000, 88900, 87500};
1333
1334         rdmsrl(MSR_FSB_FREQ, value);
1335         i = value & 0xF;
1336         WARN_ON(i > 8);
1337
1338         return airmont_freq_table[i];
1339 }
1340
1341 static void atom_get_vid(struct cpudata *cpudata)
1342 {
1343         u64 value;
1344
1345         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1346         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1347         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1348         cpudata->vid.ratio = div_fp(
1349                 cpudata->vid.max - cpudata->vid.min,
1350                 int_tofp(cpudata->pstate.max_pstate -
1351                         cpudata->pstate.min_pstate));
1352
1353         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1354         cpudata->vid.turbo = value & 0x7f;
1355 }
1356
1357 static int core_get_min_pstate(void)
1358 {
1359         u64 value;
1360
1361         rdmsrl(MSR_PLATFORM_INFO, value);
1362         return (value >> 40) & 0xFF;
1363 }
1364
1365 static int core_get_max_pstate_physical(void)
1366 {
1367         u64 value;
1368
1369         rdmsrl(MSR_PLATFORM_INFO, value);
1370         return (value >> 8) & 0xFF;
1371 }
1372
1373 static int core_get_tdp_ratio(u64 plat_info)
1374 {
1375         /* Check how many TDP levels present */
1376         if (plat_info & 0x600000000) {
1377                 u64 tdp_ctrl;
1378                 u64 tdp_ratio;
1379                 int tdp_msr;
1380                 int err;
1381
1382                 /* Get the TDP level (0, 1, 2) to get ratios */
1383                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1384                 if (err)
1385                         return err;
1386
1387                 /* TDP MSR are continuous starting at 0x648 */
1388                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1389                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1390                 if (err)
1391                         return err;
1392
1393                 /* For level 1 and 2, bits[23:16] contain the ratio */
1394                 if (tdp_ctrl & 0x03)
1395                         tdp_ratio >>= 16;
1396
1397                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1398                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1399
1400                 return (int)tdp_ratio;
1401         }
1402
1403         return -ENXIO;
1404 }
1405
1406 static int core_get_max_pstate(void)
1407 {
1408         u64 tar;
1409         u64 plat_info;
1410         int max_pstate;
1411         int tdp_ratio;
1412         int err;
1413
1414         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1415         max_pstate = (plat_info >> 8) & 0xFF;
1416
1417         tdp_ratio = core_get_tdp_ratio(plat_info);
1418         if (tdp_ratio <= 0)
1419                 return max_pstate;
1420
1421         if (hwp_active) {
1422                 /* Turbo activation ratio is not used on HWP platforms */
1423                 return tdp_ratio;
1424         }
1425
1426         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1427         if (!err) {
1428                 int tar_levels;
1429
1430                 /* Do some sanity checking for safety */
1431                 tar_levels = tar & 0xff;
1432                 if (tdp_ratio - 1 == tar_levels) {
1433                         max_pstate = tar_levels;
1434                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1435                 }
1436         }
1437
1438         return max_pstate;
1439 }
1440
1441 static int core_get_turbo_pstate(void)
1442 {
1443         u64 value;
1444         int nont, ret;
1445
1446         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447         nont = core_get_max_pstate();
1448         ret = (value) & 255;
1449         if (ret <= nont)
1450                 ret = nont;
1451         return ret;
1452 }
1453
1454 static inline int core_get_scaling(void)
1455 {
1456         return 100000;
1457 }
1458
1459 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1460 {
1461         u64 val;
1462
1463         val = (u64)pstate << 8;
1464         if (global.no_turbo && !global.turbo_disabled)
1465                 val |= (u64)1 << 32;
1466
1467         return val;
1468 }
1469
1470 static int knl_get_aperf_mperf_shift(void)
1471 {
1472         return 10;
1473 }
1474
1475 static int knl_get_turbo_pstate(void)
1476 {
1477         u64 value;
1478         int nont, ret;
1479
1480         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1481         nont = core_get_max_pstate();
1482         ret = (((value) >> 8) & 0xFF);
1483         if (ret <= nont)
1484                 ret = nont;
1485         return ret;
1486 }
1487
1488 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1489 {
1490         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1491         cpu->pstate.current_pstate = pstate;
1492         /*
1493          * Generally, there is no guarantee that this code will always run on
1494          * the CPU being updated, so force the register update to run on the
1495          * right CPU.
1496          */
1497         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1498                       pstate_funcs.get_val(cpu, pstate));
1499 }
1500
1501 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1502 {
1503         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1504 }
1505
1506 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1507 {
1508         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1509
1510         update_turbo_state();
1511         intel_pstate_set_pstate(cpu, pstate);
1512 }
1513
1514 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1515 {
1516         cpu->pstate.min_pstate = pstate_funcs.get_min();
1517         cpu->pstate.max_pstate = pstate_funcs.get_max();
1518         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1519         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1520         cpu->pstate.scaling = pstate_funcs.get_scaling();
1521         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1522
1523         if (hwp_active && !hwp_mode_bdw) {
1524                 unsigned int phy_max, current_max;
1525
1526                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1527                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1528         } else {
1529                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1530         }
1531
1532         if (pstate_funcs.get_aperf_mperf_shift)
1533                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1534
1535         if (pstate_funcs.get_vid)
1536                 pstate_funcs.get_vid(cpu);
1537
1538         intel_pstate_set_min_pstate(cpu);
1539 }
1540
1541 /*
1542  * Long hold time will keep high perf limits for long time,
1543  * which negatively impacts perf/watt for some workloads,
1544  * like specpower. 3ms is based on experiements on some
1545  * workoads.
1546  */
1547 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1548
1549 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1550 {
1551         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1552         u32 max_limit = (hwp_req & 0xff00) >> 8;
1553         u32 min_limit = (hwp_req & 0xff);
1554         u32 boost_level1;
1555
1556         /*
1557          * Cases to consider (User changes via sysfs or boot time):
1558          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1559          *      No boost, return.
1560          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1561          *     Should result in one level boost only for P0.
1562          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1563          *     Should result in two level boost:
1564          *         (min + p1)/2 and P1.
1565          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1566          *     Should result in three level boost:
1567          *        (min + p1)/2, P1 and P0.
1568          */
1569
1570         /* If max and min are equal or already at max, nothing to boost */
1571         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1572                 return;
1573
1574         if (!cpu->hwp_boost_min)
1575                 cpu->hwp_boost_min = min_limit;
1576
1577         /* level at half way mark between min and guranteed */
1578         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1579
1580         if (cpu->hwp_boost_min < boost_level1)
1581                 cpu->hwp_boost_min = boost_level1;
1582         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1583                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1584         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1585                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1586                 cpu->hwp_boost_min = max_limit;
1587         else
1588                 return;
1589
1590         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1591         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1592         cpu->last_update = cpu->sample.time;
1593 }
1594
1595 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1596 {
1597         if (cpu->hwp_boost_min) {
1598                 bool expired;
1599
1600                 /* Check if we are idle for hold time to boost down */
1601                 expired = time_after64(cpu->sample.time, cpu->last_update +
1602                                        hwp_boost_hold_time_ns);
1603                 if (expired) {
1604                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1605                         cpu->hwp_boost_min = 0;
1606                 }
1607         }
1608         cpu->last_update = cpu->sample.time;
1609 }
1610
1611 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1612                                                       u64 time)
1613 {
1614         cpu->sample.time = time;
1615
1616         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1617                 bool do_io = false;
1618
1619                 cpu->sched_flags = 0;
1620                 /*
1621                  * Set iowait_boost flag and update time. Since IO WAIT flag
1622                  * is set all the time, we can't just conclude that there is
1623                  * some IO bound activity is scheduled on this CPU with just
1624                  * one occurrence. If we receive at least two in two
1625                  * consecutive ticks, then we treat as boost candidate.
1626                  */
1627                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1628                         do_io = true;
1629
1630                 cpu->last_io_update = time;
1631
1632                 if (do_io)
1633                         intel_pstate_hwp_boost_up(cpu);
1634
1635         } else {
1636                 intel_pstate_hwp_boost_down(cpu);
1637         }
1638 }
1639
1640 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1641                                                 u64 time, unsigned int flags)
1642 {
1643         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1644
1645         cpu->sched_flags |= flags;
1646
1647         if (smp_processor_id() == cpu->cpu)
1648                 intel_pstate_update_util_hwp_local(cpu, time);
1649 }
1650
1651 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1652 {
1653         struct sample *sample = &cpu->sample;
1654
1655         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1656 }
1657
1658 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1659 {
1660         u64 aperf, mperf;
1661         unsigned long flags;
1662         u64 tsc;
1663
1664         local_irq_save(flags);
1665         rdmsrl(MSR_IA32_APERF, aperf);
1666         rdmsrl(MSR_IA32_MPERF, mperf);
1667         tsc = rdtsc();
1668         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1669                 local_irq_restore(flags);
1670                 return false;
1671         }
1672         local_irq_restore(flags);
1673
1674         cpu->last_sample_time = cpu->sample.time;
1675         cpu->sample.time = time;
1676         cpu->sample.aperf = aperf;
1677         cpu->sample.mperf = mperf;
1678         cpu->sample.tsc =  tsc;
1679         cpu->sample.aperf -= cpu->prev_aperf;
1680         cpu->sample.mperf -= cpu->prev_mperf;
1681         cpu->sample.tsc -= cpu->prev_tsc;
1682
1683         cpu->prev_aperf = aperf;
1684         cpu->prev_mperf = mperf;
1685         cpu->prev_tsc = tsc;
1686         /*
1687          * First time this function is invoked in a given cycle, all of the
1688          * previous sample data fields are equal to zero or stale and they must
1689          * be populated with meaningful numbers for things to work, so assume
1690          * that sample.time will always be reset before setting the utilization
1691          * update hook and make the caller skip the sample then.
1692          */
1693         if (cpu->last_sample_time) {
1694                 intel_pstate_calc_avg_perf(cpu);
1695                 return true;
1696         }
1697         return false;
1698 }
1699
1700 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1701 {
1702         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1703 }
1704
1705 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1706 {
1707         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1708                           cpu->sample.core_avg_perf);
1709 }
1710
1711 static inline int32_t get_target_pstate(struct cpudata *cpu)
1712 {
1713         struct sample *sample = &cpu->sample;
1714         int32_t busy_frac;
1715         int target, avg_pstate;
1716
1717         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1718                            sample->tsc);
1719
1720         if (busy_frac < cpu->iowait_boost)
1721                 busy_frac = cpu->iowait_boost;
1722
1723         sample->busy_scaled = busy_frac * 100;
1724
1725         target = global.no_turbo || global.turbo_disabled ?
1726                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1727         target += target >> 2;
1728         target = mul_fp(target, busy_frac);
1729         if (target < cpu->pstate.min_pstate)
1730                 target = cpu->pstate.min_pstate;
1731
1732         /*
1733          * If the average P-state during the previous cycle was higher than the
1734          * current target, add 50% of the difference to the target to reduce
1735          * possible performance oscillations and offset possible performance
1736          * loss related to moving the workload from one CPU to another within
1737          * a package/module.
1738          */
1739         avg_pstate = get_avg_pstate(cpu);
1740         if (avg_pstate > target)
1741                 target += (avg_pstate - target) >> 1;
1742
1743         return target;
1744 }
1745
1746 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1747 {
1748         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1749         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1750
1751         return clamp_t(int, pstate, min_pstate, max_pstate);
1752 }
1753
1754 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1755 {
1756         if (pstate == cpu->pstate.current_pstate)
1757                 return;
1758
1759         cpu->pstate.current_pstate = pstate;
1760         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1761 }
1762
1763 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1764 {
1765         int from = cpu->pstate.current_pstate;
1766         struct sample *sample;
1767         int target_pstate;
1768
1769         update_turbo_state();
1770
1771         target_pstate = get_target_pstate(cpu);
1772         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1773         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1774         intel_pstate_update_pstate(cpu, target_pstate);
1775
1776         sample = &cpu->sample;
1777         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1778                 fp_toint(sample->busy_scaled),
1779                 from,
1780                 cpu->pstate.current_pstate,
1781                 sample->mperf,
1782                 sample->aperf,
1783                 sample->tsc,
1784                 get_avg_frequency(cpu),
1785                 fp_toint(cpu->iowait_boost * 100));
1786 }
1787
1788 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1789                                      unsigned int flags)
1790 {
1791         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1792         u64 delta_ns;
1793
1794         /* Don't allow remote callbacks */
1795         if (smp_processor_id() != cpu->cpu)
1796                 return;
1797
1798         delta_ns = time - cpu->last_update;
1799         if (flags & SCHED_CPUFREQ_IOWAIT) {
1800                 /* Start over if the CPU may have been idle. */
1801                 if (delta_ns > TICK_NSEC) {
1802                         cpu->iowait_boost = ONE_EIGHTH_FP;
1803                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1804                         cpu->iowait_boost <<= 1;
1805                         if (cpu->iowait_boost > int_tofp(1))
1806                                 cpu->iowait_boost = int_tofp(1);
1807                 } else {
1808                         cpu->iowait_boost = ONE_EIGHTH_FP;
1809                 }
1810         } else if (cpu->iowait_boost) {
1811                 /* Clear iowait_boost if the CPU may have been idle. */
1812                 if (delta_ns > TICK_NSEC)
1813                         cpu->iowait_boost = 0;
1814                 else
1815                         cpu->iowait_boost >>= 1;
1816         }
1817         cpu->last_update = time;
1818         delta_ns = time - cpu->sample.time;
1819         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1820                 return;
1821
1822         if (intel_pstate_sample(cpu, time))
1823                 intel_pstate_adjust_pstate(cpu);
1824 }
1825
1826 static struct pstate_funcs core_funcs = {
1827         .get_max = core_get_max_pstate,
1828         .get_max_physical = core_get_max_pstate_physical,
1829         .get_min = core_get_min_pstate,
1830         .get_turbo = core_get_turbo_pstate,
1831         .get_scaling = core_get_scaling,
1832         .get_val = core_get_val,
1833 };
1834
1835 static const struct pstate_funcs silvermont_funcs = {
1836         .get_max = atom_get_max_pstate,
1837         .get_max_physical = atom_get_max_pstate,
1838         .get_min = atom_get_min_pstate,
1839         .get_turbo = atom_get_turbo_pstate,
1840         .get_val = atom_get_val,
1841         .get_scaling = silvermont_get_scaling,
1842         .get_vid = atom_get_vid,
1843 };
1844
1845 static const struct pstate_funcs airmont_funcs = {
1846         .get_max = atom_get_max_pstate,
1847         .get_max_physical = atom_get_max_pstate,
1848         .get_min = atom_get_min_pstate,
1849         .get_turbo = atom_get_turbo_pstate,
1850         .get_val = atom_get_val,
1851         .get_scaling = airmont_get_scaling,
1852         .get_vid = atom_get_vid,
1853 };
1854
1855 static const struct pstate_funcs knl_funcs = {
1856         .get_max = core_get_max_pstate,
1857         .get_max_physical = core_get_max_pstate_physical,
1858         .get_min = core_get_min_pstate,
1859         .get_turbo = knl_get_turbo_pstate,
1860         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1861         .get_scaling = core_get_scaling,
1862         .get_val = core_get_val,
1863 };
1864
1865 #define ICPU(model, policy) \
1866         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1867                         (unsigned long)&policy }
1868
1869 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1870         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1871         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1872         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1873         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1874         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1875         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1876         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1877         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1878         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1879         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1880         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1881         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1882         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1883         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1884         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1885         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1886         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1887         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1888         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1889         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1890         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1891         {}
1892 };
1893 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1894
1895 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1896         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1897         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1898         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1899         {}
1900 };
1901
1902 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1903         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1904         {}
1905 };
1906
1907 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1908         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1909         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1910         {}
1911 };
1912
1913 static int intel_pstate_init_cpu(unsigned int cpunum)
1914 {
1915         struct cpudata *cpu;
1916
1917         cpu = all_cpu_data[cpunum];
1918
1919         if (!cpu) {
1920                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1921                 if (!cpu)
1922                         return -ENOMEM;
1923
1924                 all_cpu_data[cpunum] = cpu;
1925
1926                 cpu->epp_default = -EINVAL;
1927                 cpu->epp_powersave = -EINVAL;
1928                 cpu->epp_saved = -EINVAL;
1929         }
1930
1931         cpu = all_cpu_data[cpunum];
1932
1933         cpu->cpu = cpunum;
1934
1935         if (hwp_active) {
1936                 const struct x86_cpu_id *id;
1937
1938                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1939                 if (id)
1940                         intel_pstate_disable_ee(cpunum);
1941
1942                 intel_pstate_hwp_enable(cpu);
1943
1944                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1945                 if (id && intel_pstate_acpi_pm_profile_server())
1946                         hwp_boost = true;
1947         }
1948
1949         intel_pstate_get_cpu_pstates(cpu);
1950
1951         pr_debug("controlling: cpu %d\n", cpunum);
1952
1953         return 0;
1954 }
1955
1956 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1957 {
1958         struct cpudata *cpu = all_cpu_data[cpu_num];
1959
1960         if (hwp_active && !hwp_boost)
1961                 return;
1962
1963         if (cpu->update_util_set)
1964                 return;
1965
1966         /* Prevent intel_pstate_update_util() from using stale data. */
1967         cpu->sample.time = 0;
1968         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1969                                      (hwp_active ?
1970                                       intel_pstate_update_util_hwp :
1971                                       intel_pstate_update_util));
1972         cpu->update_util_set = true;
1973 }
1974
1975 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1976 {
1977         struct cpudata *cpu_data = all_cpu_data[cpu];
1978
1979         if (!cpu_data->update_util_set)
1980                 return;
1981
1982         cpufreq_remove_update_util_hook(cpu);
1983         cpu_data->update_util_set = false;
1984         synchronize_rcu();
1985 }
1986
1987 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1988 {
1989         return global.turbo_disabled || global.no_turbo ?
1990                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1991 }
1992
1993 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1994                                             struct cpudata *cpu)
1995 {
1996         int max_freq = intel_pstate_get_max_freq(cpu);
1997         int32_t max_policy_perf, min_policy_perf;
1998         int max_state, turbo_max;
1999
2000         /*
2001          * HWP needs some special consideration, because on BDX the
2002          * HWP_REQUEST uses abstract value to represent performance
2003          * rather than pure ratios.
2004          */
2005         if (hwp_active) {
2006                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2007         } else {
2008                 max_state = global.no_turbo || global.turbo_disabled ?
2009                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2010                 turbo_max = cpu->pstate.turbo_pstate;
2011         }
2012
2013         max_policy_perf = max_state * policy->max / max_freq;
2014         if (policy->max == policy->min) {
2015                 min_policy_perf = max_policy_perf;
2016         } else {
2017                 min_policy_perf = max_state * policy->min / max_freq;
2018                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2019                                           0, max_policy_perf);
2020         }
2021
2022         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2023                  policy->cpu, max_state,
2024                  min_policy_perf, max_policy_perf);
2025
2026         /* Normalize user input to [min_perf, max_perf] */
2027         if (per_cpu_limits) {
2028                 cpu->min_perf_ratio = min_policy_perf;
2029                 cpu->max_perf_ratio = max_policy_perf;
2030         } else {
2031                 int32_t global_min, global_max;
2032
2033                 /* Global limits are in percent of the maximum turbo P-state. */
2034                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2035                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2036                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2037
2038                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2039                          global_min, global_max);
2040
2041                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2042                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2043                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2044                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2045
2046                 /* Make sure min_perf <= max_perf */
2047                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2048                                           cpu->max_perf_ratio);
2049
2050         }
2051         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2052                  cpu->max_perf_ratio,
2053                  cpu->min_perf_ratio);
2054 }
2055
2056 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2057 {
2058         struct cpudata *cpu;
2059
2060         if (!policy->cpuinfo.max_freq)
2061                 return -ENODEV;
2062
2063         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2064                  policy->cpuinfo.max_freq, policy->max);
2065
2066         cpu = all_cpu_data[policy->cpu];
2067         cpu->policy = policy->policy;
2068
2069         mutex_lock(&intel_pstate_limits_lock);
2070
2071         intel_pstate_update_perf_limits(policy, cpu);
2072
2073         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2074                 /*
2075                  * NOHZ_FULL CPUs need this as the governor callback may not
2076                  * be invoked on them.
2077                  */
2078                 intel_pstate_clear_update_util_hook(policy->cpu);
2079                 intel_pstate_max_within_limits(cpu);
2080         } else {
2081                 intel_pstate_set_update_util_hook(policy->cpu);
2082         }
2083
2084         if (hwp_active) {
2085                 /*
2086                  * When hwp_boost was active before and dynamically it
2087                  * was turned off, in that case we need to clear the
2088                  * update util hook.
2089                  */
2090                 if (!hwp_boost)
2091                         intel_pstate_clear_update_util_hook(policy->cpu);
2092                 intel_pstate_hwp_set(policy->cpu);
2093         }
2094
2095         mutex_unlock(&intel_pstate_limits_lock);
2096
2097         return 0;
2098 }
2099
2100 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2101                                          struct cpudata *cpu)
2102 {
2103         if (!hwp_active &&
2104             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2105             policy->max < policy->cpuinfo.max_freq &&
2106             policy->max > cpu->pstate.max_freq) {
2107                 pr_debug("policy->max > max non turbo frequency\n");
2108                 policy->max = policy->cpuinfo.max_freq;
2109         }
2110 }
2111
2112 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2113 {
2114         struct cpudata *cpu = all_cpu_data[policy->cpu];
2115
2116         update_turbo_state();
2117         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2118                                      intel_pstate_get_max_freq(cpu));
2119
2120         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2121             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2122                 return -EINVAL;
2123
2124         intel_pstate_adjust_policy_max(policy, cpu);
2125
2126         return 0;
2127 }
2128
2129 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2130 {
2131         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2132 }
2133
2134 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2135 {
2136         pr_debug("CPU %d exiting\n", policy->cpu);
2137
2138         intel_pstate_clear_update_util_hook(policy->cpu);
2139         if (hwp_active) {
2140                 intel_pstate_hwp_save_state(policy);
2141                 intel_pstate_hwp_force_min_perf(policy->cpu);
2142         } else {
2143                 intel_cpufreq_stop_cpu(policy);
2144         }
2145 }
2146
2147 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2148 {
2149         intel_pstate_exit_perf_limits(policy);
2150
2151         policy->fast_switch_possible = false;
2152
2153         return 0;
2154 }
2155
2156 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2157 {
2158         struct cpudata *cpu;
2159         int rc;
2160
2161         rc = intel_pstate_init_cpu(policy->cpu);
2162         if (rc)
2163                 return rc;
2164
2165         cpu = all_cpu_data[policy->cpu];
2166
2167         cpu->max_perf_ratio = 0xFF;
2168         cpu->min_perf_ratio = 0;
2169
2170         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2171         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2172
2173         /* cpuinfo and default policy values */
2174         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2175         update_turbo_state();
2176         global.turbo_disabled_mf = global.turbo_disabled;
2177         policy->cpuinfo.max_freq = global.turbo_disabled ?
2178                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2179         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2180
2181         if (hwp_active) {
2182                 unsigned int max_freq;
2183
2184                 max_freq = global.turbo_disabled ?
2185                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186                 if (max_freq < policy->cpuinfo.max_freq)
2187                         policy->cpuinfo.max_freq = max_freq;
2188         }
2189
2190         intel_pstate_init_acpi_perf_limits(policy);
2191
2192         policy->fast_switch_possible = true;
2193
2194         return 0;
2195 }
2196
2197 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2198 {
2199         int ret = __intel_pstate_cpu_init(policy);
2200
2201         if (ret)
2202                 return ret;
2203
2204         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2205                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2206         else
2207                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2208
2209         return 0;
2210 }
2211
2212 static struct cpufreq_driver intel_pstate = {
2213         .flags          = CPUFREQ_CONST_LOOPS,
2214         .verify         = intel_pstate_verify_policy,
2215         .setpolicy      = intel_pstate_set_policy,
2216         .suspend        = intel_pstate_hwp_save_state,
2217         .resume         = intel_pstate_resume,
2218         .init           = intel_pstate_cpu_init,
2219         .exit           = intel_pstate_cpu_exit,
2220         .stop_cpu       = intel_pstate_stop_cpu,
2221         .update_limits  = intel_pstate_update_limits,
2222         .name           = "intel_pstate",
2223 };
2224
2225 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2226 {
2227         struct cpudata *cpu = all_cpu_data[policy->cpu];
2228
2229         update_turbo_state();
2230         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2231                                      intel_pstate_get_max_freq(cpu));
2232
2233         intel_pstate_adjust_policy_max(policy, cpu);
2234
2235         intel_pstate_update_perf_limits(policy, cpu);
2236
2237         return 0;
2238 }
2239
2240 /* Use of trace in passive mode:
2241  *
2242  * In passive mode the trace core_busy field (also known as the
2243  * performance field, and lablelled as such on the graphs; also known as
2244  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2245  * driver call was via the normal or fast switch path. Various graphs
2246  * output from the intel_pstate_tracer.py utility that include core_busy
2247  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2248  * so we use 10 to indicate the the normal path through the driver, and
2249  * 90 to indicate the fast switch path through the driver.
2250  * The scaled_busy field is not used, and is set to 0.
2251  */
2252
2253 #define INTEL_PSTATE_TRACE_TARGET 10
2254 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2255
2256 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2257 {
2258         struct sample *sample;
2259
2260         if (!trace_pstate_sample_enabled())
2261                 return;
2262
2263         if (!intel_pstate_sample(cpu, ktime_get()))
2264                 return;
2265
2266         sample = &cpu->sample;
2267         trace_pstate_sample(trace_type,
2268                 0,
2269                 old_pstate,
2270                 cpu->pstate.current_pstate,
2271                 sample->mperf,
2272                 sample->aperf,
2273                 sample->tsc,
2274                 get_avg_frequency(cpu),
2275                 fp_toint(cpu->iowait_boost * 100));
2276 }
2277
2278 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2279                                 unsigned int target_freq,
2280                                 unsigned int relation)
2281 {
2282         struct cpudata *cpu = all_cpu_data[policy->cpu];
2283         struct cpufreq_freqs freqs;
2284         int target_pstate, old_pstate;
2285
2286         update_turbo_state();
2287
2288         freqs.old = policy->cur;
2289         freqs.new = target_freq;
2290
2291         cpufreq_freq_transition_begin(policy, &freqs);
2292         switch (relation) {
2293         case CPUFREQ_RELATION_L:
2294                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2295                 break;
2296         case CPUFREQ_RELATION_H:
2297                 target_pstate = freqs.new / cpu->pstate.scaling;
2298                 break;
2299         default:
2300                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2301                 break;
2302         }
2303         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2304         old_pstate = cpu->pstate.current_pstate;
2305         if (target_pstate != cpu->pstate.current_pstate) {
2306                 cpu->pstate.current_pstate = target_pstate;
2307                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2308                               pstate_funcs.get_val(cpu, target_pstate));
2309         }
2310         freqs.new = target_pstate * cpu->pstate.scaling;
2311         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2312         cpufreq_freq_transition_end(policy, &freqs, false);
2313
2314         return 0;
2315 }
2316
2317 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2318                                               unsigned int target_freq)
2319 {
2320         struct cpudata *cpu = all_cpu_data[policy->cpu];
2321         int target_pstate, old_pstate;
2322
2323         update_turbo_state();
2324
2325         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2326         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2327         old_pstate = cpu->pstate.current_pstate;
2328         intel_pstate_update_pstate(cpu, target_pstate);
2329         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2330         return target_pstate * cpu->pstate.scaling;
2331 }
2332
2333 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2334 {
2335         int ret = __intel_pstate_cpu_init(policy);
2336
2337         if (ret)
2338                 return ret;
2339
2340         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2341         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2342         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2343         policy->cur = policy->cpuinfo.min_freq;
2344
2345         return 0;
2346 }
2347
2348 static struct cpufreq_driver intel_cpufreq = {
2349         .flags          = CPUFREQ_CONST_LOOPS,
2350         .verify         = intel_cpufreq_verify_policy,
2351         .target         = intel_cpufreq_target,
2352         .fast_switch    = intel_cpufreq_fast_switch,
2353         .init           = intel_cpufreq_cpu_init,
2354         .exit           = intel_pstate_cpu_exit,
2355         .stop_cpu       = intel_cpufreq_stop_cpu,
2356         .update_limits  = intel_pstate_update_limits,
2357         .name           = "intel_cpufreq",
2358 };
2359
2360 static struct cpufreq_driver *default_driver = &intel_pstate;
2361
2362 static void intel_pstate_driver_cleanup(void)
2363 {
2364         unsigned int cpu;
2365
2366         get_online_cpus();
2367         for_each_online_cpu(cpu) {
2368                 if (all_cpu_data[cpu]) {
2369                         if (intel_pstate_driver == &intel_pstate)
2370                                 intel_pstate_clear_update_util_hook(cpu);
2371
2372                         kfree(all_cpu_data[cpu]);
2373                         all_cpu_data[cpu] = NULL;
2374                 }
2375         }
2376         put_online_cpus();
2377         intel_pstate_driver = NULL;
2378 }
2379
2380 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2381 {
2382         int ret;
2383
2384         memset(&global, 0, sizeof(global));
2385         global.max_perf_pct = 100;
2386
2387         intel_pstate_driver = driver;
2388         ret = cpufreq_register_driver(intel_pstate_driver);
2389         if (ret) {
2390                 intel_pstate_driver_cleanup();
2391                 return ret;
2392         }
2393
2394         global.min_perf_pct = min_perf_pct_min();
2395
2396         return 0;
2397 }
2398
2399 static int intel_pstate_unregister_driver(void)
2400 {
2401         if (hwp_active)
2402                 return -EBUSY;
2403
2404         cpufreq_unregister_driver(intel_pstate_driver);
2405         intel_pstate_driver_cleanup();
2406
2407         return 0;
2408 }
2409
2410 static ssize_t intel_pstate_show_status(char *buf)
2411 {
2412         if (!intel_pstate_driver)
2413                 return sprintf(buf, "off\n");
2414
2415         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2416                                         "active" : "passive");
2417 }
2418
2419 static int intel_pstate_update_status(const char *buf, size_t size)
2420 {
2421         int ret;
2422
2423         if (size == 3 && !strncmp(buf, "off", size))
2424                 return intel_pstate_driver ?
2425                         intel_pstate_unregister_driver() : -EINVAL;
2426
2427         if (size == 6 && !strncmp(buf, "active", size)) {
2428                 if (intel_pstate_driver) {
2429                         if (intel_pstate_driver == &intel_pstate)
2430                                 return 0;
2431
2432                         ret = intel_pstate_unregister_driver();
2433                         if (ret)
2434                                 return ret;
2435                 }
2436
2437                 return intel_pstate_register_driver(&intel_pstate);
2438         }
2439
2440         if (size == 7 && !strncmp(buf, "passive", size)) {
2441                 if (intel_pstate_driver) {
2442                         if (intel_pstate_driver == &intel_cpufreq)
2443                                 return 0;
2444
2445                         ret = intel_pstate_unregister_driver();
2446                         if (ret)
2447                                 return ret;
2448                 }
2449
2450                 return intel_pstate_register_driver(&intel_cpufreq);
2451         }
2452
2453         return -EINVAL;
2454 }
2455
2456 static int no_load __initdata;
2457 static int no_hwp __initdata;
2458 static int hwp_only __initdata;
2459 static unsigned int force_load __initdata;
2460
2461 static int __init intel_pstate_msrs_not_valid(void)
2462 {
2463         if (!pstate_funcs.get_max() ||
2464             !pstate_funcs.get_min() ||
2465             !pstate_funcs.get_turbo())
2466                 return -ENODEV;
2467
2468         return 0;
2469 }
2470
2471 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2472 {
2473         pstate_funcs.get_max   = funcs->get_max;
2474         pstate_funcs.get_max_physical = funcs->get_max_physical;
2475         pstate_funcs.get_min   = funcs->get_min;
2476         pstate_funcs.get_turbo = funcs->get_turbo;
2477         pstate_funcs.get_scaling = funcs->get_scaling;
2478         pstate_funcs.get_val   = funcs->get_val;
2479         pstate_funcs.get_vid   = funcs->get_vid;
2480         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2481 }
2482
2483 #ifdef CONFIG_ACPI
2484
2485 static bool __init intel_pstate_no_acpi_pss(void)
2486 {
2487         int i;
2488
2489         for_each_possible_cpu(i) {
2490                 acpi_status status;
2491                 union acpi_object *pss;
2492                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2493                 struct acpi_processor *pr = per_cpu(processors, i);
2494
2495                 if (!pr)
2496                         continue;
2497
2498                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2499                 if (ACPI_FAILURE(status))
2500                         continue;
2501
2502                 pss = buffer.pointer;
2503                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2504                         kfree(pss);
2505                         return false;
2506                 }
2507
2508                 kfree(pss);
2509         }
2510
2511         pr_debug("ACPI _PSS not found\n");
2512         return true;
2513 }
2514
2515 static bool __init intel_pstate_no_acpi_pcch(void)
2516 {
2517         acpi_status status;
2518         acpi_handle handle;
2519
2520         status = acpi_get_handle(NULL, "\\_SB", &handle);
2521         if (ACPI_FAILURE(status))
2522                 goto not_found;
2523
2524         if (acpi_has_method(handle, "PCCH"))
2525                 return false;
2526
2527 not_found:
2528         pr_debug("ACPI PCCH not found\n");
2529         return true;
2530 }
2531
2532 static bool __init intel_pstate_has_acpi_ppc(void)
2533 {
2534         int i;
2535
2536         for_each_possible_cpu(i) {
2537                 struct acpi_processor *pr = per_cpu(processors, i);
2538
2539                 if (!pr)
2540                         continue;
2541                 if (acpi_has_method(pr->handle, "_PPC"))
2542                         return true;
2543         }
2544         pr_debug("ACPI _PPC not found\n");
2545         return false;
2546 }
2547
2548 enum {
2549         PSS,
2550         PPC,
2551 };
2552
2553 /* Hardware vendor-specific info that has its own power management modes */
2554 static struct acpi_platform_list plat_info[] __initdata = {
2555         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2556         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2557         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2558         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2559         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2560         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2561         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2562         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2563         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2564         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2565         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570         { } /* End */
2571 };
2572
2573 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2574 {
2575         const struct x86_cpu_id *id;
2576         u64 misc_pwr;
2577         int idx;
2578
2579         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2580         if (id) {
2581                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2582                 if (misc_pwr & (1 << 8)) {
2583                         pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2584                         return true;
2585                 }
2586         }
2587
2588         idx = acpi_match_platform_list(plat_info);
2589         if (idx < 0)
2590                 return false;
2591
2592         switch (plat_info[idx].data) {
2593         case PSS:
2594                 if (!intel_pstate_no_acpi_pss())
2595                         return false;
2596
2597                 return intel_pstate_no_acpi_pcch();
2598         case PPC:
2599                 return intel_pstate_has_acpi_ppc() && !force_load;
2600         }
2601
2602         return false;
2603 }
2604
2605 static void intel_pstate_request_control_from_smm(void)
2606 {
2607         /*
2608          * It may be unsafe to request P-states control from SMM if _PPC support
2609          * has not been enabled.
2610          */
2611         if (acpi_ppc)
2612                 acpi_processor_pstate_control();
2613 }
2614 #else /* CONFIG_ACPI not enabled */
2615 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2616 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2617 static inline void intel_pstate_request_control_from_smm(void) {}
2618 #endif /* CONFIG_ACPI */
2619
2620 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2621
2622 #define ICPU_HWP(model, hwp_mode) \
2623         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2624
2625 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2626         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2627         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2628         ICPU_HWP(X86_MODEL_ANY, 0),
2629         {}
2630 };
2631
2632 static int __init intel_pstate_init(void)
2633 {
2634         const struct x86_cpu_id *id;
2635         int rc;
2636
2637         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2638                 return -ENODEV;
2639
2640         if (no_load)
2641                 return -ENODEV;
2642
2643         id = x86_match_cpu(hwp_support_ids);
2644         if (id) {
2645                 copy_cpu_funcs(&core_funcs);
2646                 if (!no_hwp) {
2647                         hwp_active++;
2648                         hwp_mode_bdw = id->driver_data;
2649                         intel_pstate.attr = hwp_cpufreq_attrs;
2650                         goto hwp_cpu_matched;
2651                 }
2652         } else {
2653                 id = x86_match_cpu(intel_pstate_cpu_ids);
2654                 if (!id) {
2655                         pr_info("CPU model not supported\n");
2656                         return -ENODEV;
2657                 }
2658
2659                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2660         }
2661
2662         if (intel_pstate_msrs_not_valid()) {
2663                 pr_info("Invalid MSRs\n");
2664                 return -ENODEV;
2665         }
2666
2667 hwp_cpu_matched:
2668         /*
2669          * The Intel pstate driver will be ignored if the platform
2670          * firmware has its own power management modes.
2671          */
2672         if (intel_pstate_platform_pwr_mgmt_exists()) {
2673                 pr_info("P-states controlled by the platform\n");
2674                 return -ENODEV;
2675         }
2676
2677         if (!hwp_active && hwp_only)
2678                 return -ENOTSUPP;
2679
2680         pr_info("Intel P-state driver initializing\n");
2681
2682         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2683         if (!all_cpu_data)
2684                 return -ENOMEM;
2685
2686         intel_pstate_request_control_from_smm();
2687
2688         intel_pstate_sysfs_expose_params();
2689
2690         mutex_lock(&intel_pstate_driver_lock);
2691         rc = intel_pstate_register_driver(default_driver);
2692         mutex_unlock(&intel_pstate_driver_lock);
2693         if (rc)
2694                 return rc;
2695
2696         if (hwp_active)
2697                 pr_info("HWP enabled\n");
2698
2699         return 0;
2700 }
2701 device_initcall(intel_pstate_init);
2702
2703 static int __init intel_pstate_setup(char *str)
2704 {
2705         if (!str)
2706                 return -EINVAL;
2707
2708         if (!strcmp(str, "disable")) {
2709                 no_load = 1;
2710         } else if (!strcmp(str, "passive")) {
2711                 pr_info("Passive mode enabled\n");
2712                 default_driver = &intel_cpufreq;
2713                 no_hwp = 1;
2714         }
2715         if (!strcmp(str, "no_hwp")) {
2716                 pr_info("HWP disabled\n");
2717                 no_hwp = 1;
2718         }
2719         if (!strcmp(str, "force"))
2720                 force_load = 1;
2721         if (!strcmp(str, "hwp_only"))
2722                 hwp_only = 1;
2723         if (!strcmp(str, "per_cpu_perf_limits"))
2724                 per_cpu_limits = true;
2725
2726 #ifdef CONFIG_ACPI
2727         if (!strcmp(str, "support_acpi_ppc"))
2728                 acpi_ppc = true;
2729 #endif
2730
2731         return 0;
2732 }
2733 early_param("intel_pstate", intel_pstate_setup);
2734
2735 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2736 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2737 MODULE_LICENSE("GPL");