]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: scmi: Fix use-after-free in scmi_cpufreq_exit()
[linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         int max_perf_pct;
189         int min_perf_pct;
190 };
191
192 /**
193  * struct cpudata -     Per CPU instance data storage
194  * @cpu:                CPU number for this instance data
195  * @policy:             CPUFreq policy value
196  * @update_util:        CPUFreq utility callback information
197  * @update_util_set:    CPUFreq utility callback is set
198  * @iowait_boost:       iowait-related boost fraction
199  * @last_update:        Time of the last update.
200  * @pstate:             Stores P state limits for this CPU
201  * @vid:                Stores VID limits for this CPU
202  * @last_sample_time:   Last Sample time
203  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
204  *                      This shift is a multiplier to mperf delta to
205  *                      calculate CPU busy.
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  * @hwp_req_cached:     Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
226  * @last_io_update:     Last time when IO wake flag was set
227  * @sched_flags:        Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:      Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_saved;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266 };
267
268 static struct cpudata **all_cpu_data;
269
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:            Callback to get maximum non turbo effective P state
273  * @get_max_physical:   Callback to get maximum non turbo physical P state
274  * @get_min:            Callback to get minimum P state
275  * @get_turbo:          Callback to get turbo P state
276  * @get_scaling:        Callback to get frequency scaling factor
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(void);
285         int (*get_max_physical)(void);
286         int (*get_min)(void);
287         int (*get_turbo)(void);
288         int (*get_scaling)(void);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318                 return true;
319
320         return false;
321 }
322
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325         if (intel_pstate_acpi_pm_profile_server())
326                 return true;
327
328         return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336         sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343         struct cppc_perf_caps cppc_perf;
344         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345         int ret;
346
347         ret = cppc_get_perf_caps(cpu, &cppc_perf);
348         if (ret)
349                 return;
350
351         /*
352          * The priorities can be set regardless of whether or not
353          * sched_set_itmt_support(true) has been called and it is valid to
354          * update them at any time after it has been called.
355          */
356         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358         if (max_highest_perf <= min_highest_perf) {
359                 if (cppc_perf.highest_perf > max_highest_perf)
360                         max_highest_perf = cppc_perf.highest_perf;
361
362                 if (cppc_perf.highest_perf < min_highest_perf)
363                         min_highest_perf = cppc_perf.highest_perf;
364
365                 if (max_highest_perf > min_highest_perf) {
366                         /*
367                          * This code can be run during CPU online under the
368                          * CPU hotplug locks, so sched_set_itmt_support()
369                          * cannot be called from here.  Queue up a work item
370                          * to invoke it.
371                          */
372                         schedule_work(&sched_itmt_work);
373                 }
374         }
375 }
376
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379         struct cppc_perf_caps cppc_perf;
380         int ret;
381
382         ret = cppc_get_perf_caps(cpu, &cppc_perf);
383         if (ret)
384                 return ret;
385
386         return cppc_perf.guaranteed_perf;
387 }
388
389 #else /* CONFIG_ACPI_CPPC_LIB */
390 static void intel_pstate_set_itmt_prio(int cpu)
391 {
392 }
393 #endif /* CONFIG_ACPI_CPPC_LIB */
394
395 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
396 {
397         struct cpudata *cpu;
398         int ret;
399         int i;
400
401         if (hwp_active) {
402                 intel_pstate_set_itmt_prio(policy->cpu);
403                 return;
404         }
405
406         if (!intel_pstate_get_ppc_enable_status())
407                 return;
408
409         cpu = all_cpu_data[policy->cpu];
410
411         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
412                                                   policy->cpu);
413         if (ret)
414                 return;
415
416         /*
417          * Check if the control value in _PSS is for PERF_CTL MSR, which should
418          * guarantee that the states returned by it map to the states in our
419          * list directly.
420          */
421         if (cpu->acpi_perf_data.control_register.space_id !=
422                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
423                 goto err;
424
425         /*
426          * If there is only one entry _PSS, simply ignore _PSS and continue as
427          * usual without taking _PSS into account
428          */
429         if (cpu->acpi_perf_data.state_count < 2)
430                 goto err;
431
432         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
433         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
434                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
435                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
436                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
437                          (u32) cpu->acpi_perf_data.states[i].power,
438                          (u32) cpu->acpi_perf_data.states[i].control);
439         }
440
441         /*
442          * The _PSS table doesn't contain whole turbo frequency range.
443          * This just contains +1 MHZ above the max non turbo frequency,
444          * with control value corresponding to max turbo ratio. But
445          * when cpufreq set policy is called, it will call with this
446          * max frequency, which will cause a reduced performance as
447          * this driver uses real max turbo frequency as the max
448          * frequency. So correct this frequency in _PSS table to
449          * correct max turbo frequency based on the turbo state.
450          * Also need to convert to MHz as _PSS freq is in MHz.
451          */
452         if (!global.turbo_disabled)
453                 cpu->acpi_perf_data.states[0].core_frequency =
454                                         policy->cpuinfo.max_freq / 1000;
455         cpu->valid_pss_table = true;
456         pr_debug("_PPC limits will be enforced\n");
457
458         return;
459
460  err:
461         cpu->valid_pss_table = false;
462         acpi_processor_unregister_performance(policy->cpu);
463 }
464
465 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
466 {
467         struct cpudata *cpu;
468
469         cpu = all_cpu_data[policy->cpu];
470         if (!cpu->valid_pss_table)
471                 return;
472
473         acpi_processor_unregister_performance(policy->cpu);
474 }
475 #else /* CONFIG_ACPI */
476 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477 {
478 }
479
480 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline bool intel_pstate_acpi_pm_profile_server(void)
485 {
486         return false;
487 }
488 #endif /* CONFIG_ACPI */
489
490 #ifndef CONFIG_ACPI_CPPC_LIB
491 static int intel_pstate_get_cppc_guranteed(int cpu)
492 {
493         return -ENOTSUPP;
494 }
495 #endif /* CONFIG_ACPI_CPPC_LIB */
496
497 static inline void update_turbo_state(void)
498 {
499         u64 misc_en;
500         struct cpudata *cpu;
501
502         cpu = all_cpu_data[0];
503         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
504         global.turbo_disabled =
505                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
506                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
507 }
508
509 static int min_perf_pct_min(void)
510 {
511         struct cpudata *cpu = all_cpu_data[0];
512         int turbo_pstate = cpu->pstate.turbo_pstate;
513
514         return turbo_pstate ?
515                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
516 }
517
518 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
519 {
520         u64 epb;
521         int ret;
522
523         if (!static_cpu_has(X86_FEATURE_EPB))
524                 return -ENXIO;
525
526         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
527         if (ret)
528                 return (s16)ret;
529
530         return (s16)(epb & 0x0f);
531 }
532
533 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
534 {
535         s16 epp;
536
537         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
538                 /*
539                  * When hwp_req_data is 0, means that caller didn't read
540                  * MSR_HWP_REQUEST, so need to read and get EPP.
541                  */
542                 if (!hwp_req_data) {
543                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
544                                             &hwp_req_data);
545                         if (epp)
546                                 return epp;
547                 }
548                 epp = (hwp_req_data >> 24) & 0xff;
549         } else {
550                 /* When there is no EPP present, HWP uses EPB settings */
551                 epp = intel_pstate_get_epb(cpu_data);
552         }
553
554         return epp;
555 }
556
557 static int intel_pstate_set_epb(int cpu, s16 pref)
558 {
559         u64 epb;
560         int ret;
561
562         if (!static_cpu_has(X86_FEATURE_EPB))
563                 return -ENXIO;
564
565         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
566         if (ret)
567                 return ret;
568
569         epb = (epb & ~0x0f) | pref;
570         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
571
572         return 0;
573 }
574
575 /*
576  * EPP/EPB display strings corresponding to EPP index in the
577  * energy_perf_strings[]
578  *      index           String
579  *-------------------------------------
580  *      0               default
581  *      1               performance
582  *      2               balance_performance
583  *      3               balance_power
584  *      4               power
585  */
586 static const char * const energy_perf_strings[] = {
587         "default",
588         "performance",
589         "balance_performance",
590         "balance_power",
591         "power",
592         NULL
593 };
594 static const unsigned int epp_values[] = {
595         HWP_EPP_PERFORMANCE,
596         HWP_EPP_BALANCE_PERFORMANCE,
597         HWP_EPP_BALANCE_POWERSAVE,
598         HWP_EPP_POWERSAVE
599 };
600
601 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
602 {
603         s16 epp;
604         int index = -EINVAL;
605
606         epp = intel_pstate_get_epp(cpu_data, 0);
607         if (epp < 0)
608                 return epp;
609
610         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
611                 if (epp == HWP_EPP_PERFORMANCE)
612                         return 1;
613                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
614                         return 2;
615                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
616                         return 3;
617                 else
618                         return 4;
619         } else if (static_cpu_has(X86_FEATURE_EPB)) {
620                 /*
621                  * Range:
622                  *      0x00-0x03       :       Performance
623                  *      0x04-0x07       :       Balance performance
624                  *      0x08-0x0B       :       Balance power
625                  *      0x0C-0x0F       :       Power
626                  * The EPB is a 4 bit value, but our ranges restrict the
627                  * value which can be set. Here only using top two bits
628                  * effectively.
629                  */
630                 index = (epp >> 2) + 1;
631         }
632
633         return index;
634 }
635
636 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
637                                               int pref_index)
638 {
639         int epp = -EINVAL;
640         int ret;
641
642         if (!pref_index)
643                 epp = cpu_data->epp_default;
644
645         mutex_lock(&intel_pstate_limits_lock);
646
647         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
648                 u64 value;
649
650                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
651                 if (ret)
652                         goto return_pref;
653
654                 value &= ~GENMASK_ULL(31, 24);
655
656                 if (epp == -EINVAL)
657                         epp = epp_values[pref_index - 1];
658
659                 value |= (u64)epp << 24;
660                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
661         } else {
662                 if (epp == -EINVAL)
663                         epp = (pref_index - 1) << 2;
664                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
665         }
666 return_pref:
667         mutex_unlock(&intel_pstate_limits_lock);
668
669         return ret;
670 }
671
672 static ssize_t show_energy_performance_available_preferences(
673                                 struct cpufreq_policy *policy, char *buf)
674 {
675         int i = 0;
676         int ret = 0;
677
678         while (energy_perf_strings[i] != NULL)
679                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
680
681         ret += sprintf(&buf[ret], "\n");
682
683         return ret;
684 }
685
686 cpufreq_freq_attr_ro(energy_performance_available_preferences);
687
688 static ssize_t store_energy_performance_preference(
689                 struct cpufreq_policy *policy, const char *buf, size_t count)
690 {
691         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
692         char str_preference[21];
693         int ret;
694
695         ret = sscanf(buf, "%20s", str_preference);
696         if (ret != 1)
697                 return -EINVAL;
698
699         ret = match_string(energy_perf_strings, -1, str_preference);
700         if (ret < 0)
701                 return ret;
702
703         intel_pstate_set_energy_pref_index(cpu_data, ret);
704         return count;
705 }
706
707 static ssize_t show_energy_performance_preference(
708                                 struct cpufreq_policy *policy, char *buf)
709 {
710         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
711         int preference;
712
713         preference = intel_pstate_get_energy_pref_index(cpu_data);
714         if (preference < 0)
715                 return preference;
716
717         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
718 }
719
720 cpufreq_freq_attr_rw(energy_performance_preference);
721
722 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
723 {
724         struct cpudata *cpu;
725         u64 cap;
726         int ratio;
727
728         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
729         if (ratio <= 0) {
730                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
731                 ratio = HWP_GUARANTEED_PERF(cap);
732         }
733
734         cpu = all_cpu_data[policy->cpu];
735
736         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
737 }
738
739 cpufreq_freq_attr_ro(base_frequency);
740
741 static struct freq_attr *hwp_cpufreq_attrs[] = {
742         &energy_performance_preference,
743         &energy_performance_available_preferences,
744         &base_frequency,
745         NULL,
746 };
747
748 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
749                                      int *current_max)
750 {
751         u64 cap;
752
753         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
754         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
755         if (global.no_turbo)
756                 *current_max = HWP_GUARANTEED_PERF(cap);
757         else
758                 *current_max = HWP_HIGHEST_PERF(cap);
759
760         *phy_max = HWP_HIGHEST_PERF(cap);
761 }
762
763 static void intel_pstate_hwp_set(unsigned int cpu)
764 {
765         struct cpudata *cpu_data = all_cpu_data[cpu];
766         int max, min;
767         u64 value;
768         s16 epp;
769
770         max = cpu_data->max_perf_ratio;
771         min = cpu_data->min_perf_ratio;
772
773         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
774                 min = max;
775
776         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
777
778         value &= ~HWP_MIN_PERF(~0L);
779         value |= HWP_MIN_PERF(min);
780
781         value &= ~HWP_MAX_PERF(~0L);
782         value |= HWP_MAX_PERF(max);
783
784         if (cpu_data->epp_policy == cpu_data->policy)
785                 goto skip_epp;
786
787         cpu_data->epp_policy = cpu_data->policy;
788
789         if (cpu_data->epp_saved >= 0) {
790                 epp = cpu_data->epp_saved;
791                 cpu_data->epp_saved = -EINVAL;
792                 goto update_epp;
793         }
794
795         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
796                 epp = intel_pstate_get_epp(cpu_data, value);
797                 cpu_data->epp_powersave = epp;
798                 /* If EPP read was failed, then don't try to write */
799                 if (epp < 0)
800                         goto skip_epp;
801
802                 epp = 0;
803         } else {
804                 /* skip setting EPP, when saved value is invalid */
805                 if (cpu_data->epp_powersave < 0)
806                         goto skip_epp;
807
808                 /*
809                  * No need to restore EPP when it is not zero. This
810                  * means:
811                  *  - Policy is not changed
812                  *  - user has manually changed
813                  *  - Error reading EPB
814                  */
815                 epp = intel_pstate_get_epp(cpu_data, value);
816                 if (epp)
817                         goto skip_epp;
818
819                 epp = cpu_data->epp_powersave;
820         }
821 update_epp:
822         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
823                 value &= ~GENMASK_ULL(31, 24);
824                 value |= (u64)epp << 24;
825         } else {
826                 intel_pstate_set_epb(cpu, epp);
827         }
828 skip_epp:
829         WRITE_ONCE(cpu_data->hwp_req_cached, value);
830         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
831 }
832
833 static void intel_pstate_hwp_force_min_perf(int cpu)
834 {
835         u64 value;
836         int min_perf;
837
838         value = all_cpu_data[cpu]->hwp_req_cached;
839         value &= ~GENMASK_ULL(31, 0);
840         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
841
842         /* Set hwp_max = hwp_min */
843         value |= HWP_MAX_PERF(min_perf);
844         value |= HWP_MIN_PERF(min_perf);
845
846         /* Set EPP/EPB to min */
847         if (static_cpu_has(X86_FEATURE_HWP_EPP))
848                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
849         else
850                 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
851
852         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
853 }
854
855 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
856 {
857         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
858
859         if (!hwp_active)
860                 return 0;
861
862         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
863
864         return 0;
865 }
866
867 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
868
869 static int intel_pstate_resume(struct cpufreq_policy *policy)
870 {
871         if (!hwp_active)
872                 return 0;
873
874         mutex_lock(&intel_pstate_limits_lock);
875
876         if (policy->cpu == 0)
877                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
878
879         all_cpu_data[policy->cpu]->epp_policy = 0;
880         intel_pstate_hwp_set(policy->cpu);
881
882         mutex_unlock(&intel_pstate_limits_lock);
883
884         return 0;
885 }
886
887 static void intel_pstate_update_policies(void)
888 {
889         int cpu;
890
891         for_each_possible_cpu(cpu)
892                 cpufreq_update_policy(cpu);
893 }
894
895 /************************** sysfs begin ************************/
896 #define show_one(file_name, object)                                     \
897         static ssize_t show_##file_name                                 \
898         (struct kobject *kobj, struct attribute *attr, char *buf)       \
899         {                                                               \
900                 return sprintf(buf, "%u\n", global.object);             \
901         }
902
903 static ssize_t intel_pstate_show_status(char *buf);
904 static int intel_pstate_update_status(const char *buf, size_t size);
905
906 static ssize_t show_status(struct kobject *kobj,
907                            struct attribute *attr, char *buf)
908 {
909         ssize_t ret;
910
911         mutex_lock(&intel_pstate_driver_lock);
912         ret = intel_pstate_show_status(buf);
913         mutex_unlock(&intel_pstate_driver_lock);
914
915         return ret;
916 }
917
918 static ssize_t store_status(struct kobject *a, struct attribute *b,
919                             const char *buf, size_t count)
920 {
921         char *p = memchr(buf, '\n', count);
922         int ret;
923
924         mutex_lock(&intel_pstate_driver_lock);
925         ret = intel_pstate_update_status(buf, p ? p - buf : count);
926         mutex_unlock(&intel_pstate_driver_lock);
927
928         return ret < 0 ? ret : count;
929 }
930
931 static ssize_t show_turbo_pct(struct kobject *kobj,
932                                 struct attribute *attr, char *buf)
933 {
934         struct cpudata *cpu;
935         int total, no_turbo, turbo_pct;
936         uint32_t turbo_fp;
937
938         mutex_lock(&intel_pstate_driver_lock);
939
940         if (!intel_pstate_driver) {
941                 mutex_unlock(&intel_pstate_driver_lock);
942                 return -EAGAIN;
943         }
944
945         cpu = all_cpu_data[0];
946
947         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
948         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
949         turbo_fp = div_fp(no_turbo, total);
950         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
951
952         mutex_unlock(&intel_pstate_driver_lock);
953
954         return sprintf(buf, "%u\n", turbo_pct);
955 }
956
957 static ssize_t show_num_pstates(struct kobject *kobj,
958                                 struct attribute *attr, char *buf)
959 {
960         struct cpudata *cpu;
961         int total;
962
963         mutex_lock(&intel_pstate_driver_lock);
964
965         if (!intel_pstate_driver) {
966                 mutex_unlock(&intel_pstate_driver_lock);
967                 return -EAGAIN;
968         }
969
970         cpu = all_cpu_data[0];
971         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
972
973         mutex_unlock(&intel_pstate_driver_lock);
974
975         return sprintf(buf, "%u\n", total);
976 }
977
978 static ssize_t show_no_turbo(struct kobject *kobj,
979                              struct attribute *attr, char *buf)
980 {
981         ssize_t ret;
982
983         mutex_lock(&intel_pstate_driver_lock);
984
985         if (!intel_pstate_driver) {
986                 mutex_unlock(&intel_pstate_driver_lock);
987                 return -EAGAIN;
988         }
989
990         update_turbo_state();
991         if (global.turbo_disabled)
992                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
993         else
994                 ret = sprintf(buf, "%u\n", global.no_turbo);
995
996         mutex_unlock(&intel_pstate_driver_lock);
997
998         return ret;
999 }
1000
1001 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1002                               const char *buf, size_t count)
1003 {
1004         unsigned int input;
1005         int ret;
1006
1007         ret = sscanf(buf, "%u", &input);
1008         if (ret != 1)
1009                 return -EINVAL;
1010
1011         mutex_lock(&intel_pstate_driver_lock);
1012
1013         if (!intel_pstate_driver) {
1014                 mutex_unlock(&intel_pstate_driver_lock);
1015                 return -EAGAIN;
1016         }
1017
1018         mutex_lock(&intel_pstate_limits_lock);
1019
1020         update_turbo_state();
1021         if (global.turbo_disabled) {
1022                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1023                 mutex_unlock(&intel_pstate_limits_lock);
1024                 mutex_unlock(&intel_pstate_driver_lock);
1025                 return -EPERM;
1026         }
1027
1028         global.no_turbo = clamp_t(int, input, 0, 1);
1029
1030         if (global.no_turbo) {
1031                 struct cpudata *cpu = all_cpu_data[0];
1032                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1033
1034                 /* Squash the global minimum into the permitted range. */
1035                 if (global.min_perf_pct > pct)
1036                         global.min_perf_pct = pct;
1037         }
1038
1039         mutex_unlock(&intel_pstate_limits_lock);
1040
1041         intel_pstate_update_policies();
1042
1043         mutex_unlock(&intel_pstate_driver_lock);
1044
1045         return count;
1046 }
1047
1048 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1049                                   const char *buf, size_t count)
1050 {
1051         unsigned int input;
1052         int ret;
1053
1054         ret = sscanf(buf, "%u", &input);
1055         if (ret != 1)
1056                 return -EINVAL;
1057
1058         mutex_lock(&intel_pstate_driver_lock);
1059
1060         if (!intel_pstate_driver) {
1061                 mutex_unlock(&intel_pstate_driver_lock);
1062                 return -EAGAIN;
1063         }
1064
1065         mutex_lock(&intel_pstate_limits_lock);
1066
1067         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1068
1069         mutex_unlock(&intel_pstate_limits_lock);
1070
1071         intel_pstate_update_policies();
1072
1073         mutex_unlock(&intel_pstate_driver_lock);
1074
1075         return count;
1076 }
1077
1078 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1079                                   const char *buf, size_t count)
1080 {
1081         unsigned int input;
1082         int ret;
1083
1084         ret = sscanf(buf, "%u", &input);
1085         if (ret != 1)
1086                 return -EINVAL;
1087
1088         mutex_lock(&intel_pstate_driver_lock);
1089
1090         if (!intel_pstate_driver) {
1091                 mutex_unlock(&intel_pstate_driver_lock);
1092                 return -EAGAIN;
1093         }
1094
1095         mutex_lock(&intel_pstate_limits_lock);
1096
1097         global.min_perf_pct = clamp_t(int, input,
1098                                       min_perf_pct_min(), global.max_perf_pct);
1099
1100         mutex_unlock(&intel_pstate_limits_lock);
1101
1102         intel_pstate_update_policies();
1103
1104         mutex_unlock(&intel_pstate_driver_lock);
1105
1106         return count;
1107 }
1108
1109 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1110                                 struct attribute *attr, char *buf)
1111 {
1112         return sprintf(buf, "%u\n", hwp_boost);
1113 }
1114
1115 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1116                                        const char *buf, size_t count)
1117 {
1118         unsigned int input;
1119         int ret;
1120
1121         ret = kstrtouint(buf, 10, &input);
1122         if (ret)
1123                 return ret;
1124
1125         mutex_lock(&intel_pstate_driver_lock);
1126         hwp_boost = !!input;
1127         intel_pstate_update_policies();
1128         mutex_unlock(&intel_pstate_driver_lock);
1129
1130         return count;
1131 }
1132
1133 show_one(max_perf_pct, max_perf_pct);
1134 show_one(min_perf_pct, min_perf_pct);
1135
1136 define_one_global_rw(status);
1137 define_one_global_rw(no_turbo);
1138 define_one_global_rw(max_perf_pct);
1139 define_one_global_rw(min_perf_pct);
1140 define_one_global_ro(turbo_pct);
1141 define_one_global_ro(num_pstates);
1142 define_one_global_rw(hwp_dynamic_boost);
1143
1144 static struct attribute *intel_pstate_attributes[] = {
1145         &status.attr,
1146         &no_turbo.attr,
1147         &turbo_pct.attr,
1148         &num_pstates.attr,
1149         NULL
1150 };
1151
1152 static const struct attribute_group intel_pstate_attr_group = {
1153         .attrs = intel_pstate_attributes,
1154 };
1155
1156 static void __init intel_pstate_sysfs_expose_params(void)
1157 {
1158         struct kobject *intel_pstate_kobject;
1159         int rc;
1160
1161         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1162                                                 &cpu_subsys.dev_root->kobj);
1163         if (WARN_ON(!intel_pstate_kobject))
1164                 return;
1165
1166         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1167         if (WARN_ON(rc))
1168                 return;
1169
1170         /*
1171          * If per cpu limits are enforced there are no global limits, so
1172          * return without creating max/min_perf_pct attributes
1173          */
1174         if (per_cpu_limits)
1175                 return;
1176
1177         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1178         WARN_ON(rc);
1179
1180         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1181         WARN_ON(rc);
1182
1183         if (hwp_active) {
1184                 rc = sysfs_create_file(intel_pstate_kobject,
1185                                        &hwp_dynamic_boost.attr);
1186                 WARN_ON(rc);
1187         }
1188 }
1189 /************************** sysfs end ************************/
1190
1191 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1192 {
1193         /* First disable HWP notification interrupt as we don't process them */
1194         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1195                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1196
1197         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1198         cpudata->epp_policy = 0;
1199         if (cpudata->epp_default == -EINVAL)
1200                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1201 }
1202
1203 #define MSR_IA32_POWER_CTL_BIT_EE       19
1204
1205 /* Disable energy efficiency optimization */
1206 static void intel_pstate_disable_ee(int cpu)
1207 {
1208         u64 power_ctl;
1209         int ret;
1210
1211         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1212         if (ret)
1213                 return;
1214
1215         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1216                 pr_info("Disabling energy efficiency optimization\n");
1217                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1218                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1219         }
1220 }
1221
1222 static int atom_get_min_pstate(void)
1223 {
1224         u64 value;
1225
1226         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1227         return (value >> 8) & 0x7F;
1228 }
1229
1230 static int atom_get_max_pstate(void)
1231 {
1232         u64 value;
1233
1234         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1235         return (value >> 16) & 0x7F;
1236 }
1237
1238 static int atom_get_turbo_pstate(void)
1239 {
1240         u64 value;
1241
1242         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1243         return value & 0x7F;
1244 }
1245
1246 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1247 {
1248         u64 val;
1249         int32_t vid_fp;
1250         u32 vid;
1251
1252         val = (u64)pstate << 8;
1253         if (global.no_turbo && !global.turbo_disabled)
1254                 val |= (u64)1 << 32;
1255
1256         vid_fp = cpudata->vid.min + mul_fp(
1257                 int_tofp(pstate - cpudata->pstate.min_pstate),
1258                 cpudata->vid.ratio);
1259
1260         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1261         vid = ceiling_fp(vid_fp);
1262
1263         if (pstate > cpudata->pstate.max_pstate)
1264                 vid = cpudata->vid.turbo;
1265
1266         return val | vid;
1267 }
1268
1269 static int silvermont_get_scaling(void)
1270 {
1271         u64 value;
1272         int i;
1273         /* Defined in Table 35-6 from SDM (Sept 2015) */
1274         static int silvermont_freq_table[] = {
1275                 83300, 100000, 133300, 116700, 80000};
1276
1277         rdmsrl(MSR_FSB_FREQ, value);
1278         i = value & 0x7;
1279         WARN_ON(i > 4);
1280
1281         return silvermont_freq_table[i];
1282 }
1283
1284 static int airmont_get_scaling(void)
1285 {
1286         u64 value;
1287         int i;
1288         /* Defined in Table 35-10 from SDM (Sept 2015) */
1289         static int airmont_freq_table[] = {
1290                 83300, 100000, 133300, 116700, 80000,
1291                 93300, 90000, 88900, 87500};
1292
1293         rdmsrl(MSR_FSB_FREQ, value);
1294         i = value & 0xF;
1295         WARN_ON(i > 8);
1296
1297         return airmont_freq_table[i];
1298 }
1299
1300 static void atom_get_vid(struct cpudata *cpudata)
1301 {
1302         u64 value;
1303
1304         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1305         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1306         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1307         cpudata->vid.ratio = div_fp(
1308                 cpudata->vid.max - cpudata->vid.min,
1309                 int_tofp(cpudata->pstate.max_pstate -
1310                         cpudata->pstate.min_pstate));
1311
1312         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1313         cpudata->vid.turbo = value & 0x7f;
1314 }
1315
1316 static int core_get_min_pstate(void)
1317 {
1318         u64 value;
1319
1320         rdmsrl(MSR_PLATFORM_INFO, value);
1321         return (value >> 40) & 0xFF;
1322 }
1323
1324 static int core_get_max_pstate_physical(void)
1325 {
1326         u64 value;
1327
1328         rdmsrl(MSR_PLATFORM_INFO, value);
1329         return (value >> 8) & 0xFF;
1330 }
1331
1332 static int core_get_tdp_ratio(u64 plat_info)
1333 {
1334         /* Check how many TDP levels present */
1335         if (plat_info & 0x600000000) {
1336                 u64 tdp_ctrl;
1337                 u64 tdp_ratio;
1338                 int tdp_msr;
1339                 int err;
1340
1341                 /* Get the TDP level (0, 1, 2) to get ratios */
1342                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1343                 if (err)
1344                         return err;
1345
1346                 /* TDP MSR are continuous starting at 0x648 */
1347                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1348                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1349                 if (err)
1350                         return err;
1351
1352                 /* For level 1 and 2, bits[23:16] contain the ratio */
1353                 if (tdp_ctrl & 0x03)
1354                         tdp_ratio >>= 16;
1355
1356                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1357                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1358
1359                 return (int)tdp_ratio;
1360         }
1361
1362         return -ENXIO;
1363 }
1364
1365 static int core_get_max_pstate(void)
1366 {
1367         u64 tar;
1368         u64 plat_info;
1369         int max_pstate;
1370         int tdp_ratio;
1371         int err;
1372
1373         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1374         max_pstate = (plat_info >> 8) & 0xFF;
1375
1376         tdp_ratio = core_get_tdp_ratio(plat_info);
1377         if (tdp_ratio <= 0)
1378                 return max_pstate;
1379
1380         if (hwp_active) {
1381                 /* Turbo activation ratio is not used on HWP platforms */
1382                 return tdp_ratio;
1383         }
1384
1385         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1386         if (!err) {
1387                 int tar_levels;
1388
1389                 /* Do some sanity checking for safety */
1390                 tar_levels = tar & 0xff;
1391                 if (tdp_ratio - 1 == tar_levels) {
1392                         max_pstate = tar_levels;
1393                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1394                 }
1395         }
1396
1397         return max_pstate;
1398 }
1399
1400 static int core_get_turbo_pstate(void)
1401 {
1402         u64 value;
1403         int nont, ret;
1404
1405         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1406         nont = core_get_max_pstate();
1407         ret = (value) & 255;
1408         if (ret <= nont)
1409                 ret = nont;
1410         return ret;
1411 }
1412
1413 static inline int core_get_scaling(void)
1414 {
1415         return 100000;
1416 }
1417
1418 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1419 {
1420         u64 val;
1421
1422         val = (u64)pstate << 8;
1423         if (global.no_turbo && !global.turbo_disabled)
1424                 val |= (u64)1 << 32;
1425
1426         return val;
1427 }
1428
1429 static int knl_get_aperf_mperf_shift(void)
1430 {
1431         return 10;
1432 }
1433
1434 static int knl_get_turbo_pstate(void)
1435 {
1436         u64 value;
1437         int nont, ret;
1438
1439         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1440         nont = core_get_max_pstate();
1441         ret = (((value) >> 8) & 0xFF);
1442         if (ret <= nont)
1443                 ret = nont;
1444         return ret;
1445 }
1446
1447 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1448 {
1449         return global.no_turbo || global.turbo_disabled ?
1450                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1451 }
1452
1453 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1454 {
1455         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1456         cpu->pstate.current_pstate = pstate;
1457         /*
1458          * Generally, there is no guarantee that this code will always run on
1459          * the CPU being updated, so force the register update to run on the
1460          * right CPU.
1461          */
1462         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1463                       pstate_funcs.get_val(cpu, pstate));
1464 }
1465
1466 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1467 {
1468         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1469 }
1470
1471 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1472 {
1473         int pstate;
1474
1475         update_turbo_state();
1476         pstate = intel_pstate_get_base_pstate(cpu);
1477         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1478         intel_pstate_set_pstate(cpu, pstate);
1479 }
1480
1481 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1482 {
1483         cpu->pstate.min_pstate = pstate_funcs.get_min();
1484         cpu->pstate.max_pstate = pstate_funcs.get_max();
1485         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1486         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1487         cpu->pstate.scaling = pstate_funcs.get_scaling();
1488         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1489
1490         if (hwp_active && !hwp_mode_bdw) {
1491                 unsigned int phy_max, current_max;
1492
1493                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1494                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1495         } else {
1496                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1497         }
1498
1499         if (pstate_funcs.get_aperf_mperf_shift)
1500                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1501
1502         if (pstate_funcs.get_vid)
1503                 pstate_funcs.get_vid(cpu);
1504
1505         intel_pstate_set_min_pstate(cpu);
1506 }
1507
1508 /*
1509  * Long hold time will keep high perf limits for long time,
1510  * which negatively impacts perf/watt for some workloads,
1511  * like specpower. 3ms is based on experiements on some
1512  * workoads.
1513  */
1514 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1515
1516 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1517 {
1518         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1519         u32 max_limit = (hwp_req & 0xff00) >> 8;
1520         u32 min_limit = (hwp_req & 0xff);
1521         u32 boost_level1;
1522
1523         /*
1524          * Cases to consider (User changes via sysfs or boot time):
1525          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1526          *      No boost, return.
1527          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1528          *     Should result in one level boost only for P0.
1529          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1530          *     Should result in two level boost:
1531          *         (min + p1)/2 and P1.
1532          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1533          *     Should result in three level boost:
1534          *        (min + p1)/2, P1 and P0.
1535          */
1536
1537         /* If max and min are equal or already at max, nothing to boost */
1538         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1539                 return;
1540
1541         if (!cpu->hwp_boost_min)
1542                 cpu->hwp_boost_min = min_limit;
1543
1544         /* level at half way mark between min and guranteed */
1545         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1546
1547         if (cpu->hwp_boost_min < boost_level1)
1548                 cpu->hwp_boost_min = boost_level1;
1549         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1550                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1551         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1552                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1553                 cpu->hwp_boost_min = max_limit;
1554         else
1555                 return;
1556
1557         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1558         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1559         cpu->last_update = cpu->sample.time;
1560 }
1561
1562 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1563 {
1564         if (cpu->hwp_boost_min) {
1565                 bool expired;
1566
1567                 /* Check if we are idle for hold time to boost down */
1568                 expired = time_after64(cpu->sample.time, cpu->last_update +
1569                                        hwp_boost_hold_time_ns);
1570                 if (expired) {
1571                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1572                         cpu->hwp_boost_min = 0;
1573                 }
1574         }
1575         cpu->last_update = cpu->sample.time;
1576 }
1577
1578 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1579                                                       u64 time)
1580 {
1581         cpu->sample.time = time;
1582
1583         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1584                 bool do_io = false;
1585
1586                 cpu->sched_flags = 0;
1587                 /*
1588                  * Set iowait_boost flag and update time. Since IO WAIT flag
1589                  * is set all the time, we can't just conclude that there is
1590                  * some IO bound activity is scheduled on this CPU with just
1591                  * one occurrence. If we receive at least two in two
1592                  * consecutive ticks, then we treat as boost candidate.
1593                  */
1594                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1595                         do_io = true;
1596
1597                 cpu->last_io_update = time;
1598
1599                 if (do_io)
1600                         intel_pstate_hwp_boost_up(cpu);
1601
1602         } else {
1603                 intel_pstate_hwp_boost_down(cpu);
1604         }
1605 }
1606
1607 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1608                                                 u64 time, unsigned int flags)
1609 {
1610         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1611
1612         cpu->sched_flags |= flags;
1613
1614         if (smp_processor_id() == cpu->cpu)
1615                 intel_pstate_update_util_hwp_local(cpu, time);
1616 }
1617
1618 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1619 {
1620         struct sample *sample = &cpu->sample;
1621
1622         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1623 }
1624
1625 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1626 {
1627         u64 aperf, mperf;
1628         unsigned long flags;
1629         u64 tsc;
1630
1631         local_irq_save(flags);
1632         rdmsrl(MSR_IA32_APERF, aperf);
1633         rdmsrl(MSR_IA32_MPERF, mperf);
1634         tsc = rdtsc();
1635         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1636                 local_irq_restore(flags);
1637                 return false;
1638         }
1639         local_irq_restore(flags);
1640
1641         cpu->last_sample_time = cpu->sample.time;
1642         cpu->sample.time = time;
1643         cpu->sample.aperf = aperf;
1644         cpu->sample.mperf = mperf;
1645         cpu->sample.tsc =  tsc;
1646         cpu->sample.aperf -= cpu->prev_aperf;
1647         cpu->sample.mperf -= cpu->prev_mperf;
1648         cpu->sample.tsc -= cpu->prev_tsc;
1649
1650         cpu->prev_aperf = aperf;
1651         cpu->prev_mperf = mperf;
1652         cpu->prev_tsc = tsc;
1653         /*
1654          * First time this function is invoked in a given cycle, all of the
1655          * previous sample data fields are equal to zero or stale and they must
1656          * be populated with meaningful numbers for things to work, so assume
1657          * that sample.time will always be reset before setting the utilization
1658          * update hook and make the caller skip the sample then.
1659          */
1660         if (cpu->last_sample_time) {
1661                 intel_pstate_calc_avg_perf(cpu);
1662                 return true;
1663         }
1664         return false;
1665 }
1666
1667 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1668 {
1669         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1670 }
1671
1672 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1673 {
1674         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1675                           cpu->sample.core_avg_perf);
1676 }
1677
1678 static inline int32_t get_target_pstate(struct cpudata *cpu)
1679 {
1680         struct sample *sample = &cpu->sample;
1681         int32_t busy_frac, boost;
1682         int target, avg_pstate;
1683
1684         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1685                            sample->tsc);
1686
1687         boost = cpu->iowait_boost;
1688         cpu->iowait_boost >>= 1;
1689
1690         if (busy_frac < boost)
1691                 busy_frac = boost;
1692
1693         sample->busy_scaled = busy_frac * 100;
1694
1695         target = global.no_turbo || global.turbo_disabled ?
1696                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1697         target += target >> 2;
1698         target = mul_fp(target, busy_frac);
1699         if (target < cpu->pstate.min_pstate)
1700                 target = cpu->pstate.min_pstate;
1701
1702         /*
1703          * If the average P-state during the previous cycle was higher than the
1704          * current target, add 50% of the difference to the target to reduce
1705          * possible performance oscillations and offset possible performance
1706          * loss related to moving the workload from one CPU to another within
1707          * a package/module.
1708          */
1709         avg_pstate = get_avg_pstate(cpu);
1710         if (avg_pstate > target)
1711                 target += (avg_pstate - target) >> 1;
1712
1713         return target;
1714 }
1715
1716 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1717 {
1718         int max_pstate = intel_pstate_get_base_pstate(cpu);
1719         int min_pstate;
1720
1721         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1722         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1723         return clamp_t(int, pstate, min_pstate, max_pstate);
1724 }
1725
1726 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1727 {
1728         if (pstate == cpu->pstate.current_pstate)
1729                 return;
1730
1731         cpu->pstate.current_pstate = pstate;
1732         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1733 }
1734
1735 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1736 {
1737         int from = cpu->pstate.current_pstate;
1738         struct sample *sample;
1739         int target_pstate;
1740
1741         update_turbo_state();
1742
1743         target_pstate = get_target_pstate(cpu);
1744         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1745         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1746         intel_pstate_update_pstate(cpu, target_pstate);
1747
1748         sample = &cpu->sample;
1749         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1750                 fp_toint(sample->busy_scaled),
1751                 from,
1752                 cpu->pstate.current_pstate,
1753                 sample->mperf,
1754                 sample->aperf,
1755                 sample->tsc,
1756                 get_avg_frequency(cpu),
1757                 fp_toint(cpu->iowait_boost * 100));
1758 }
1759
1760 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1761                                      unsigned int flags)
1762 {
1763         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1764         u64 delta_ns;
1765
1766         /* Don't allow remote callbacks */
1767         if (smp_processor_id() != cpu->cpu)
1768                 return;
1769
1770         if (flags & SCHED_CPUFREQ_IOWAIT) {
1771                 cpu->iowait_boost = int_tofp(1);
1772                 cpu->last_update = time;
1773                 /*
1774                  * The last time the busy was 100% so P-state was max anyway
1775                  * so avoid overhead of computation.
1776                  */
1777                 if (fp_toint(cpu->sample.busy_scaled) == 100)
1778                         return;
1779
1780                 goto set_pstate;
1781         } else if (cpu->iowait_boost) {
1782                 /* Clear iowait_boost if the CPU may have been idle. */
1783                 delta_ns = time - cpu->last_update;
1784                 if (delta_ns > TICK_NSEC)
1785                         cpu->iowait_boost = 0;
1786         }
1787         cpu->last_update = time;
1788         delta_ns = time - cpu->sample.time;
1789         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1790                 return;
1791
1792 set_pstate:
1793         if (intel_pstate_sample(cpu, time))
1794                 intel_pstate_adjust_pstate(cpu);
1795 }
1796
1797 static struct pstate_funcs core_funcs = {
1798         .get_max = core_get_max_pstate,
1799         .get_max_physical = core_get_max_pstate_physical,
1800         .get_min = core_get_min_pstate,
1801         .get_turbo = core_get_turbo_pstate,
1802         .get_scaling = core_get_scaling,
1803         .get_val = core_get_val,
1804 };
1805
1806 static const struct pstate_funcs silvermont_funcs = {
1807         .get_max = atom_get_max_pstate,
1808         .get_max_physical = atom_get_max_pstate,
1809         .get_min = atom_get_min_pstate,
1810         .get_turbo = atom_get_turbo_pstate,
1811         .get_val = atom_get_val,
1812         .get_scaling = silvermont_get_scaling,
1813         .get_vid = atom_get_vid,
1814 };
1815
1816 static const struct pstate_funcs airmont_funcs = {
1817         .get_max = atom_get_max_pstate,
1818         .get_max_physical = atom_get_max_pstate,
1819         .get_min = atom_get_min_pstate,
1820         .get_turbo = atom_get_turbo_pstate,
1821         .get_val = atom_get_val,
1822         .get_scaling = airmont_get_scaling,
1823         .get_vid = atom_get_vid,
1824 };
1825
1826 static const struct pstate_funcs knl_funcs = {
1827         .get_max = core_get_max_pstate,
1828         .get_max_physical = core_get_max_pstate_physical,
1829         .get_min = core_get_min_pstate,
1830         .get_turbo = knl_get_turbo_pstate,
1831         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1832         .get_scaling = core_get_scaling,
1833         .get_val = core_get_val,
1834 };
1835
1836 #define ICPU(model, policy) \
1837         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1838                         (unsigned long)&policy }
1839
1840 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1841         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1842         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1843         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1844         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1845         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1846         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1847         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1848         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1849         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1850         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1851         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1852         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1853         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1854         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1855         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1856         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1857         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1858         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1859         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1860         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1861         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1862         {}
1863 };
1864 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1865
1866 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1867         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1868         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1869         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1870         {}
1871 };
1872
1873 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1874         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1875         {}
1876 };
1877
1878 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1879         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1880         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1881         {}
1882 };
1883
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886         struct cpudata *cpu;
1887
1888         cpu = all_cpu_data[cpunum];
1889
1890         if (!cpu) {
1891                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892                 if (!cpu)
1893                         return -ENOMEM;
1894
1895                 all_cpu_data[cpunum] = cpu;
1896
1897                 cpu->epp_default = -EINVAL;
1898                 cpu->epp_powersave = -EINVAL;
1899                 cpu->epp_saved = -EINVAL;
1900         }
1901
1902         cpu = all_cpu_data[cpunum];
1903
1904         cpu->cpu = cpunum;
1905
1906         if (hwp_active) {
1907                 const struct x86_cpu_id *id;
1908
1909                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910                 if (id)
1911                         intel_pstate_disable_ee(cpunum);
1912
1913                 intel_pstate_hwp_enable(cpu);
1914
1915                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1916                 if (id && intel_pstate_acpi_pm_profile_server())
1917                         hwp_boost = true;
1918         }
1919
1920         intel_pstate_get_cpu_pstates(cpu);
1921
1922         pr_debug("controlling: cpu %d\n", cpunum);
1923
1924         return 0;
1925 }
1926
1927 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1928 {
1929         struct cpudata *cpu = all_cpu_data[cpu_num];
1930
1931         if (hwp_active && !hwp_boost)
1932                 return;
1933
1934         if (cpu->update_util_set)
1935                 return;
1936
1937         /* Prevent intel_pstate_update_util() from using stale data. */
1938         cpu->sample.time = 0;
1939         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1940                                      (hwp_active ?
1941                                       intel_pstate_update_util_hwp :
1942                                       intel_pstate_update_util));
1943         cpu->update_util_set = true;
1944 }
1945
1946 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1947 {
1948         struct cpudata *cpu_data = all_cpu_data[cpu];
1949
1950         if (!cpu_data->update_util_set)
1951                 return;
1952
1953         cpufreq_remove_update_util_hook(cpu);
1954         cpu_data->update_util_set = false;
1955         synchronize_rcu();
1956 }
1957
1958 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1959 {
1960         return global.turbo_disabled || global.no_turbo ?
1961                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1962 }
1963
1964 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965                                             struct cpudata *cpu)
1966 {
1967         int max_freq = intel_pstate_get_max_freq(cpu);
1968         int32_t max_policy_perf, min_policy_perf;
1969         int max_state, turbo_max;
1970
1971         /*
1972          * HWP needs some special consideration, because on BDX the
1973          * HWP_REQUEST uses abstract value to represent performance
1974          * rather than pure ratios.
1975          */
1976         if (hwp_active) {
1977                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1978         } else {
1979                 max_state = intel_pstate_get_base_pstate(cpu);
1980                 turbo_max = cpu->pstate.turbo_pstate;
1981         }
1982
1983         max_policy_perf = max_state * policy->max / max_freq;
1984         if (policy->max == policy->min) {
1985                 min_policy_perf = max_policy_perf;
1986         } else {
1987                 min_policy_perf = max_state * policy->min / max_freq;
1988                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1989                                           0, max_policy_perf);
1990         }
1991
1992         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1993                  policy->cpu, max_state,
1994                  min_policy_perf, max_policy_perf);
1995
1996         /* Normalize user input to [min_perf, max_perf] */
1997         if (per_cpu_limits) {
1998                 cpu->min_perf_ratio = min_policy_perf;
1999                 cpu->max_perf_ratio = max_policy_perf;
2000         } else {
2001                 int32_t global_min, global_max;
2002
2003                 /* Global limits are in percent of the maximum turbo P-state. */
2004                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2005                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2006                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2007
2008                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2009                          global_min, global_max);
2010
2011                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2012                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2013                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2014                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2015
2016                 /* Make sure min_perf <= max_perf */
2017                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2018                                           cpu->max_perf_ratio);
2019
2020         }
2021         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2022                  cpu->max_perf_ratio,
2023                  cpu->min_perf_ratio);
2024 }
2025
2026 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2027 {
2028         struct cpudata *cpu;
2029
2030         if (!policy->cpuinfo.max_freq)
2031                 return -ENODEV;
2032
2033         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2034                  policy->cpuinfo.max_freq, policy->max);
2035
2036         cpu = all_cpu_data[policy->cpu];
2037         cpu->policy = policy->policy;
2038
2039         mutex_lock(&intel_pstate_limits_lock);
2040
2041         intel_pstate_update_perf_limits(policy, cpu);
2042
2043         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2044                 /*
2045                  * NOHZ_FULL CPUs need this as the governor callback may not
2046                  * be invoked on them.
2047                  */
2048                 intel_pstate_clear_update_util_hook(policy->cpu);
2049                 intel_pstate_max_within_limits(cpu);
2050         } else {
2051                 intel_pstate_set_update_util_hook(policy->cpu);
2052         }
2053
2054         if (hwp_active) {
2055                 /*
2056                  * When hwp_boost was active before and dynamically it
2057                  * was turned off, in that case we need to clear the
2058                  * update util hook.
2059                  */
2060                 if (!hwp_boost)
2061                         intel_pstate_clear_update_util_hook(policy->cpu);
2062                 intel_pstate_hwp_set(policy->cpu);
2063         }
2064
2065         mutex_unlock(&intel_pstate_limits_lock);
2066
2067         return 0;
2068 }
2069
2070 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2071                                          struct cpudata *cpu)
2072 {
2073         if (!hwp_active &&
2074             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2075             policy->max < policy->cpuinfo.max_freq &&
2076             policy->max > cpu->pstate.max_freq) {
2077                 pr_debug("policy->max > max non turbo frequency\n");
2078                 policy->max = policy->cpuinfo.max_freq;
2079         }
2080 }
2081
2082 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2083 {
2084         struct cpudata *cpu = all_cpu_data[policy->cpu];
2085
2086         update_turbo_state();
2087         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2088                                      intel_pstate_get_max_freq(cpu));
2089
2090         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2091             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2092                 return -EINVAL;
2093
2094         intel_pstate_adjust_policy_max(policy, cpu);
2095
2096         return 0;
2097 }
2098
2099 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2100 {
2101         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2102 }
2103
2104 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2105 {
2106         pr_debug("CPU %d exiting\n", policy->cpu);
2107
2108         intel_pstate_clear_update_util_hook(policy->cpu);
2109         if (hwp_active) {
2110                 intel_pstate_hwp_save_state(policy);
2111                 intel_pstate_hwp_force_min_perf(policy->cpu);
2112         } else {
2113                 intel_cpufreq_stop_cpu(policy);
2114         }
2115 }
2116
2117 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2118 {
2119         intel_pstate_exit_perf_limits(policy);
2120
2121         policy->fast_switch_possible = false;
2122
2123         return 0;
2124 }
2125
2126 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2127 {
2128         struct cpudata *cpu;
2129         int rc;
2130
2131         rc = intel_pstate_init_cpu(policy->cpu);
2132         if (rc)
2133                 return rc;
2134
2135         cpu = all_cpu_data[policy->cpu];
2136
2137         cpu->max_perf_ratio = 0xFF;
2138         cpu->min_perf_ratio = 0;
2139
2140         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2141         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2142
2143         /* cpuinfo and default policy values */
2144         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2145         update_turbo_state();
2146         policy->cpuinfo.max_freq = global.turbo_disabled ?
2147                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2148         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2149
2150         if (hwp_active) {
2151                 unsigned int max_freq;
2152
2153                 max_freq = global.turbo_disabled ?
2154                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2155                 if (max_freq < policy->cpuinfo.max_freq)
2156                         policy->cpuinfo.max_freq = max_freq;
2157         }
2158
2159         intel_pstate_init_acpi_perf_limits(policy);
2160
2161         policy->fast_switch_possible = true;
2162
2163         return 0;
2164 }
2165
2166 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2167 {
2168         int ret = __intel_pstate_cpu_init(policy);
2169
2170         if (ret)
2171                 return ret;
2172
2173         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2174                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2175         else
2176                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2177
2178         return 0;
2179 }
2180
2181 static struct cpufreq_driver intel_pstate = {
2182         .flags          = CPUFREQ_CONST_LOOPS,
2183         .verify         = intel_pstate_verify_policy,
2184         .setpolicy      = intel_pstate_set_policy,
2185         .suspend        = intel_pstate_hwp_save_state,
2186         .resume         = intel_pstate_resume,
2187         .init           = intel_pstate_cpu_init,
2188         .exit           = intel_pstate_cpu_exit,
2189         .stop_cpu       = intel_pstate_stop_cpu,
2190         .name           = "intel_pstate",
2191 };
2192
2193 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2194 {
2195         struct cpudata *cpu = all_cpu_data[policy->cpu];
2196
2197         update_turbo_state();
2198         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2199                                      intel_pstate_get_max_freq(cpu));
2200
2201         intel_pstate_adjust_policy_max(policy, cpu);
2202
2203         intel_pstate_update_perf_limits(policy, cpu);
2204
2205         return 0;
2206 }
2207
2208 /* Use of trace in passive mode:
2209  *
2210  * In passive mode the trace core_busy field (also known as the
2211  * performance field, and lablelled as such on the graphs; also known as
2212  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2213  * driver call was via the normal or fast switch path. Various graphs
2214  * output from the intel_pstate_tracer.py utility that include core_busy
2215  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2216  * so we use 10 to indicate the the normal path through the driver, and
2217  * 90 to indicate the fast switch path through the driver.
2218  * The scaled_busy field is not used, and is set to 0.
2219  */
2220
2221 #define INTEL_PSTATE_TRACE_TARGET 10
2222 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2223
2224 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2225 {
2226         struct sample *sample;
2227
2228         if (!trace_pstate_sample_enabled())
2229                 return;
2230
2231         if (!intel_pstate_sample(cpu, ktime_get()))
2232                 return;
2233
2234         sample = &cpu->sample;
2235         trace_pstate_sample(trace_type,
2236                 0,
2237                 old_pstate,
2238                 cpu->pstate.current_pstate,
2239                 sample->mperf,
2240                 sample->aperf,
2241                 sample->tsc,
2242                 get_avg_frequency(cpu),
2243                 fp_toint(cpu->iowait_boost * 100));
2244 }
2245
2246 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2247                                 unsigned int target_freq,
2248                                 unsigned int relation)
2249 {
2250         struct cpudata *cpu = all_cpu_data[policy->cpu];
2251         struct cpufreq_freqs freqs;
2252         int target_pstate, old_pstate;
2253
2254         update_turbo_state();
2255
2256         freqs.old = policy->cur;
2257         freqs.new = target_freq;
2258
2259         cpufreq_freq_transition_begin(policy, &freqs);
2260         switch (relation) {
2261         case CPUFREQ_RELATION_L:
2262                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2263                 break;
2264         case CPUFREQ_RELATION_H:
2265                 target_pstate = freqs.new / cpu->pstate.scaling;
2266                 break;
2267         default:
2268                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2269                 break;
2270         }
2271         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2272         old_pstate = cpu->pstate.current_pstate;
2273         if (target_pstate != cpu->pstate.current_pstate) {
2274                 cpu->pstate.current_pstate = target_pstate;
2275                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2276                               pstate_funcs.get_val(cpu, target_pstate));
2277         }
2278         freqs.new = target_pstate * cpu->pstate.scaling;
2279         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2280         cpufreq_freq_transition_end(policy, &freqs, false);
2281
2282         return 0;
2283 }
2284
2285 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2286                                               unsigned int target_freq)
2287 {
2288         struct cpudata *cpu = all_cpu_data[policy->cpu];
2289         int target_pstate, old_pstate;
2290
2291         update_turbo_state();
2292
2293         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2294         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2295         old_pstate = cpu->pstate.current_pstate;
2296         intel_pstate_update_pstate(cpu, target_pstate);
2297         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2298         return target_pstate * cpu->pstate.scaling;
2299 }
2300
2301 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2302 {
2303         int ret = __intel_pstate_cpu_init(policy);
2304
2305         if (ret)
2306                 return ret;
2307
2308         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2309         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2310         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2311         policy->cur = policy->cpuinfo.min_freq;
2312
2313         return 0;
2314 }
2315
2316 static struct cpufreq_driver intel_cpufreq = {
2317         .flags          = CPUFREQ_CONST_LOOPS,
2318         .verify         = intel_cpufreq_verify_policy,
2319         .target         = intel_cpufreq_target,
2320         .fast_switch    = intel_cpufreq_fast_switch,
2321         .init           = intel_cpufreq_cpu_init,
2322         .exit           = intel_pstate_cpu_exit,
2323         .stop_cpu       = intel_cpufreq_stop_cpu,
2324         .name           = "intel_cpufreq",
2325 };
2326
2327 static struct cpufreq_driver *default_driver = &intel_pstate;
2328
2329 static void intel_pstate_driver_cleanup(void)
2330 {
2331         unsigned int cpu;
2332
2333         get_online_cpus();
2334         for_each_online_cpu(cpu) {
2335                 if (all_cpu_data[cpu]) {
2336                         if (intel_pstate_driver == &intel_pstate)
2337                                 intel_pstate_clear_update_util_hook(cpu);
2338
2339                         kfree(all_cpu_data[cpu]);
2340                         all_cpu_data[cpu] = NULL;
2341                 }
2342         }
2343         put_online_cpus();
2344         intel_pstate_driver = NULL;
2345 }
2346
2347 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2348 {
2349         int ret;
2350
2351         memset(&global, 0, sizeof(global));
2352         global.max_perf_pct = 100;
2353
2354         intel_pstate_driver = driver;
2355         ret = cpufreq_register_driver(intel_pstate_driver);
2356         if (ret) {
2357                 intel_pstate_driver_cleanup();
2358                 return ret;
2359         }
2360
2361         global.min_perf_pct = min_perf_pct_min();
2362
2363         return 0;
2364 }
2365
2366 static int intel_pstate_unregister_driver(void)
2367 {
2368         if (hwp_active)
2369                 return -EBUSY;
2370
2371         cpufreq_unregister_driver(intel_pstate_driver);
2372         intel_pstate_driver_cleanup();
2373
2374         return 0;
2375 }
2376
2377 static ssize_t intel_pstate_show_status(char *buf)
2378 {
2379         if (!intel_pstate_driver)
2380                 return sprintf(buf, "off\n");
2381
2382         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2383                                         "active" : "passive");
2384 }
2385
2386 static int intel_pstate_update_status(const char *buf, size_t size)
2387 {
2388         int ret;
2389
2390         if (size == 3 && !strncmp(buf, "off", size))
2391                 return intel_pstate_driver ?
2392                         intel_pstate_unregister_driver() : -EINVAL;
2393
2394         if (size == 6 && !strncmp(buf, "active", size)) {
2395                 if (intel_pstate_driver) {
2396                         if (intel_pstate_driver == &intel_pstate)
2397                                 return 0;
2398
2399                         ret = intel_pstate_unregister_driver();
2400                         if (ret)
2401                                 return ret;
2402                 }
2403
2404                 return intel_pstate_register_driver(&intel_pstate);
2405         }
2406
2407         if (size == 7 && !strncmp(buf, "passive", size)) {
2408                 if (intel_pstate_driver) {
2409                         if (intel_pstate_driver == &intel_cpufreq)
2410                                 return 0;
2411
2412                         ret = intel_pstate_unregister_driver();
2413                         if (ret)
2414                                 return ret;
2415                 }
2416
2417                 return intel_pstate_register_driver(&intel_cpufreq);
2418         }
2419
2420         return -EINVAL;
2421 }
2422
2423 static int no_load __initdata;
2424 static int no_hwp __initdata;
2425 static int hwp_only __initdata;
2426 static unsigned int force_load __initdata;
2427
2428 static int __init intel_pstate_msrs_not_valid(void)
2429 {
2430         if (!pstate_funcs.get_max() ||
2431             !pstate_funcs.get_min() ||
2432             !pstate_funcs.get_turbo())
2433                 return -ENODEV;
2434
2435         return 0;
2436 }
2437
2438 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2439 {
2440         pstate_funcs.get_max   = funcs->get_max;
2441         pstate_funcs.get_max_physical = funcs->get_max_physical;
2442         pstate_funcs.get_min   = funcs->get_min;
2443         pstate_funcs.get_turbo = funcs->get_turbo;
2444         pstate_funcs.get_scaling = funcs->get_scaling;
2445         pstate_funcs.get_val   = funcs->get_val;
2446         pstate_funcs.get_vid   = funcs->get_vid;
2447         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2448 }
2449
2450 #ifdef CONFIG_ACPI
2451
2452 static bool __init intel_pstate_no_acpi_pss(void)
2453 {
2454         int i;
2455
2456         for_each_possible_cpu(i) {
2457                 acpi_status status;
2458                 union acpi_object *pss;
2459                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2460                 struct acpi_processor *pr = per_cpu(processors, i);
2461
2462                 if (!pr)
2463                         continue;
2464
2465                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2466                 if (ACPI_FAILURE(status))
2467                         continue;
2468
2469                 pss = buffer.pointer;
2470                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2471                         kfree(pss);
2472                         return false;
2473                 }
2474
2475                 kfree(pss);
2476         }
2477
2478         return true;
2479 }
2480
2481 static bool __init intel_pstate_no_acpi_pcch(void)
2482 {
2483         acpi_status status;
2484         acpi_handle handle;
2485
2486         status = acpi_get_handle(NULL, "\\_SB", &handle);
2487         if (ACPI_FAILURE(status))
2488                 return true;
2489
2490         return !acpi_has_method(handle, "PCCH");
2491 }
2492
2493 static bool __init intel_pstate_has_acpi_ppc(void)
2494 {
2495         int i;
2496
2497         for_each_possible_cpu(i) {
2498                 struct acpi_processor *pr = per_cpu(processors, i);
2499
2500                 if (!pr)
2501                         continue;
2502                 if (acpi_has_method(pr->handle, "_PPC"))
2503                         return true;
2504         }
2505         return false;
2506 }
2507
2508 enum {
2509         PSS,
2510         PPC,
2511 };
2512
2513 /* Hardware vendor-specific info that has its own power management modes */
2514 static struct acpi_platform_list plat_info[] __initdata = {
2515         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2516         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2517         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2518         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2519         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2520         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2521         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2522         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2523         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2524         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2525         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2526         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2527         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2528         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2529         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2530         { } /* End */
2531 };
2532
2533 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2534 {
2535         const struct x86_cpu_id *id;
2536         u64 misc_pwr;
2537         int idx;
2538
2539         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2540         if (id) {
2541                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2542                 if ( misc_pwr & (1 << 8))
2543                         return true;
2544         }
2545
2546         idx = acpi_match_platform_list(plat_info);
2547         if (idx < 0)
2548                 return false;
2549
2550         switch (plat_info[idx].data) {
2551         case PSS:
2552                 if (!intel_pstate_no_acpi_pss())
2553                         return false;
2554
2555                 return intel_pstate_no_acpi_pcch();
2556         case PPC:
2557                 return intel_pstate_has_acpi_ppc() && !force_load;
2558         }
2559
2560         return false;
2561 }
2562
2563 static void intel_pstate_request_control_from_smm(void)
2564 {
2565         /*
2566          * It may be unsafe to request P-states control from SMM if _PPC support
2567          * has not been enabled.
2568          */
2569         if (acpi_ppc)
2570                 acpi_processor_pstate_control();
2571 }
2572 #else /* CONFIG_ACPI not enabled */
2573 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2574 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2575 static inline void intel_pstate_request_control_from_smm(void) {}
2576 #endif /* CONFIG_ACPI */
2577
2578 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2579
2580 #define ICPU_HWP(model, hwp_mode) \
2581         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2582
2583 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2584         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2585         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2586         ICPU_HWP(X86_MODEL_ANY, 0),
2587         {}
2588 };
2589
2590 static int __init intel_pstate_init(void)
2591 {
2592         const struct x86_cpu_id *id;
2593         int rc;
2594
2595         if (no_load)
2596                 return -ENODEV;
2597
2598         id = x86_match_cpu(hwp_support_ids);
2599         if (id) {
2600                 copy_cpu_funcs(&core_funcs);
2601                 if (!no_hwp) {
2602                         hwp_active++;
2603                         hwp_mode_bdw = id->driver_data;
2604                         intel_pstate.attr = hwp_cpufreq_attrs;
2605                         goto hwp_cpu_matched;
2606                 }
2607         } else {
2608                 id = x86_match_cpu(intel_pstate_cpu_ids);
2609                 if (!id)
2610                         return -ENODEV;
2611
2612                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2613         }
2614
2615         if (intel_pstate_msrs_not_valid())
2616                 return -ENODEV;
2617
2618 hwp_cpu_matched:
2619         /*
2620          * The Intel pstate driver will be ignored if the platform
2621          * firmware has its own power management modes.
2622          */
2623         if (intel_pstate_platform_pwr_mgmt_exists())
2624                 return -ENODEV;
2625
2626         if (!hwp_active && hwp_only)
2627                 return -ENOTSUPP;
2628
2629         pr_info("Intel P-state driver initializing\n");
2630
2631         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2632         if (!all_cpu_data)
2633                 return -ENOMEM;
2634
2635         intel_pstate_request_control_from_smm();
2636
2637         intel_pstate_sysfs_expose_params();
2638
2639         mutex_lock(&intel_pstate_driver_lock);
2640         rc = intel_pstate_register_driver(default_driver);
2641         mutex_unlock(&intel_pstate_driver_lock);
2642         if (rc)
2643                 return rc;
2644
2645         if (hwp_active)
2646                 pr_info("HWP enabled\n");
2647
2648         return 0;
2649 }
2650 device_initcall(intel_pstate_init);
2651
2652 static int __init intel_pstate_setup(char *str)
2653 {
2654         if (!str)
2655                 return -EINVAL;
2656
2657         if (!strcmp(str, "disable")) {
2658                 no_load = 1;
2659         } else if (!strcmp(str, "passive")) {
2660                 pr_info("Passive mode enabled\n");
2661                 default_driver = &intel_cpufreq;
2662                 no_hwp = 1;
2663         }
2664         if (!strcmp(str, "no_hwp")) {
2665                 pr_info("HWP disabled\n");
2666                 no_hwp = 1;
2667         }
2668         if (!strcmp(str, "force"))
2669                 force_load = 1;
2670         if (!strcmp(str, "hwp_only"))
2671                 hwp_only = 1;
2672         if (!strcmp(str, "per_cpu_perf_limits"))
2673                 per_cpu_limits = true;
2674
2675 #ifdef CONFIG_ACPI
2676         if (!strcmp(str, "support_acpi_ppc"))
2677                 acpi_ppc = true;
2678 #endif
2679
2680         return 0;
2681 }
2682 early_param("intel_pstate", intel_pstate_setup);
2683
2684 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2685 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2686 MODULE_LICENSE("GPL");