]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Operation mode control from sysfs
[linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #define ATOM_RATIOS             0x66a
43 #define ATOM_VIDS               0x66b
44 #define ATOM_TURBO_RATIOS       0x66c
45 #define ATOM_TURBO_VIDS         0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68         return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73         int mask, ret;
74
75         ret = fp_toint(x);
76         mask = (1 << FRAC_BITS) - 1;
77         if (x & mask)
78                 ret += 1;
79         return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93  * struct sample -      Store performance sample
94  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
95  *                      performance during last sample period
96  * @busy_scaled:        Scaled busy value which is used to calculate next
97  *                      P state. This can be different than core_avg_perf
98  *                      to account for cpu idle period
99  * @aperf:              Difference of actual performance frequency clock count
100  *                      read from APERF MSR between last and current sample
101  * @mperf:              Difference of maximum performance frequency clock count
102  *                      read from MPERF MSR between last and current sample
103  * @tsc:                Difference of time stamp counter between last and
104  *                      current sample
105  * @time:               Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111         int32_t core_avg_perf;
112         int32_t busy_scaled;
113         u64 aperf;
114         u64 mperf;
115         u64 tsc;
116         u64 time;
117 };
118
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:     Current requested P state
122  * @min_pstate:         Min P state possible for this platform
123  * @max_pstate:         Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *                      This can be higher than the max_pstate which can
126  *                      be limited by platform thermal design power limits
127  * @scaling:            Scaling factor to  convert frequency to cpufreq
128  *                      frequency units
129  * @turbo_pstate:       Max Turbo P state possible for this platform
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int max_freq;
143         unsigned int turbo_freq;
144 };
145
146 /**
147  * struct vid_data -    Stores voltage information data
148  * @min:                VID data for this platform corresponding to
149  *                      the lowest P state
150  * @max:                VID data corresponding to the highest P State.
151  * @turbo:              VID data for turbo P state
152  * @ratio:              Ratio of (vid max - vid min) /
153  *                      (max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160         int min;
161         int max;
162         int turbo;
163         int32_t ratio;
164 };
165
166 /**
167  * struct _pid -        Stores PID data
168  * @setpoint:           Target set point for busyness or performance
169  * @integral:           Storage for accumulated error values
170  * @p_gain:             PID proportional gain
171  * @i_gain:             PID integral gain
172  * @d_gain:             PID derivative gain
173  * @deadband:           PID deadband
174  * @last_err:           Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179         int setpoint;
180         int32_t integral;
181         int32_t p_gain;
182         int32_t i_gain;
183         int32_t d_gain;
184         int deadband;
185         int32_t last_err;
186 };
187
188 /**
189  * struct perf_limits - Store user and policy limits
190  * @no_turbo:           User requested turbo state from intel_pstate sysfs
191  * @turbo_disabled:     Platform turbo status either from msr
192  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
193  *                      matches the maximum turbo pstate
194  * @max_perf_pct:       Effective maximum performance limit in percentage, this
195  *                      is minimum of either limits enforced by cpufreq policy
196  *                      or limits from user set limits via intel_pstate sysfs
197  * @min_perf_pct:       Effective minimum performance limit in percentage, this
198  *                      is maximum of either limits enforced by cpufreq policy
199  *                      or limits from user set limits via intel_pstate sysfs
200  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
201  *                      This value is used to limit max pstate
202  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
203  *                      This value is used to limit min pstate
204  * @max_policy_pct:     The maximum performance in percentage enforced by
205  *                      cpufreq setpolicy interface
206  * @max_sysfs_pct:      The maximum performance in percentage enforced by
207  *                      intel pstate sysfs interface, unused when per cpu
208  *                      controls are enforced
209  * @min_policy_pct:     The minimum performance in percentage enforced by
210  *                      cpufreq setpolicy interface
211  * @min_sysfs_pct:      The minimum performance in percentage enforced by
212  *                      intel pstate sysfs interface, unused when per cpu
213  *                      controls are enforced
214  *
215  * Storage for user and policy defined limits.
216  */
217 struct perf_limits {
218         int no_turbo;
219         int turbo_disabled;
220         int max_perf_pct;
221         int min_perf_pct;
222         int32_t max_perf;
223         int32_t min_perf;
224         int max_policy_pct;
225         int max_sysfs_pct;
226         int min_policy_pct;
227         int min_sysfs_pct;
228 };
229
230 /**
231  * struct cpudata -     Per CPU instance data storage
232  * @cpu:                CPU number for this instance data
233  * @policy:             CPUFreq policy value
234  * @update_util:        CPUFreq utility callback information
235  * @update_util_set:    CPUFreq utility callback is set
236  * @iowait_boost:       iowait-related boost fraction
237  * @last_update:        Time of the last update.
238  * @pstate:             Stores P state limits for this CPU
239  * @vid:                Stores VID limits for this CPU
240  * @pid:                Stores PID parameters for this CPU
241  * @last_sample_time:   Last Sample time
242  * @prev_aperf:         Last APERF value read from APERF MSR
243  * @prev_mperf:         Last MPERF value read from MPERF MSR
244  * @prev_tsc:           Last timestamp counter (TSC) value
245  * @prev_cummulative_iowait: IO Wait time difference from last and
246  *                      current sample
247  * @sample:             Storage for storing last Sample data
248  * @perf_limits:        Pointer to perf_limit unique to this CPU
249  *                      Not all field in the structure are applicable
250  *                      when per cpu controls are enforced
251  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
252  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
253  * @epp_powersave:      Last saved HWP energy performance preference
254  *                      (EPP) or energy performance bias (EPB),
255  *                      when policy switched to performance
256  * @epp_policy:         Last saved policy used to set EPP/EPB
257  * @epp_default:        Power on default HWP energy performance
258  *                      preference/bias
259  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
260  *                      operation
261  *
262  * This structure stores per CPU instance data for all CPUs.
263  */
264 struct cpudata {
265         int cpu;
266
267         unsigned int policy;
268         struct update_util_data update_util;
269         bool   update_util_set;
270
271         struct pstate_data pstate;
272         struct vid_data vid;
273         struct _pid pid;
274
275         u64     last_update;
276         u64     last_sample_time;
277         u64     prev_aperf;
278         u64     prev_mperf;
279         u64     prev_tsc;
280         u64     prev_cummulative_iowait;
281         struct sample sample;
282         struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284         struct acpi_processor_performance acpi_perf_data;
285         bool valid_pss_table;
286 #endif
287         unsigned int iowait_boost;
288         s16 epp_powersave;
289         s16 epp_policy;
290         s16 epp_default;
291         s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297  * struct pstate_adjust_policy - Stores static PID configuration data
298  * @sample_rate_ms:     PID calculation sample rate in ms
299  * @sample_rate_ns:     Sample rate calculation in ns
300  * @deadband:           PID deadband
301  * @setpoint:           PID Setpoint
302  * @p_gain_pct:         PID proportional gain
303  * @i_gain_pct:         PID integral gain
304  * @d_gain_pct:         PID derivative gain
305  *
306  * Stores per CPU model static PID configuration data.
307  */
308 struct pstate_adjust_policy {
309         int sample_rate_ms;
310         s64 sample_rate_ns;
311         int deadband;
312         int setpoint;
313         int p_gain_pct;
314         int d_gain_pct;
315         int i_gain_pct;
316 };
317
318 /**
319  * struct pstate_funcs - Per CPU model specific callbacks
320  * @get_max:            Callback to get maximum non turbo effective P state
321  * @get_max_physical:   Callback to get maximum non turbo physical P state
322  * @get_min:            Callback to get minimum P state
323  * @get_turbo:          Callback to get turbo P state
324  * @get_scaling:        Callback to get frequency scaling factor
325  * @get_val:            Callback to convert P state to actual MSR write value
326  * @get_vid:            Callback to get VID data for Atom platforms
327  * @get_target_pstate:  Callback to a function to calculate next P state to use
328  *
329  * Core and Atom CPU models have different way to get P State limits. This
330  * structure is used to store those callbacks.
331  */
332 struct pstate_funcs {
333         int (*get_max)(void);
334         int (*get_max_physical)(void);
335         int (*get_min)(void);
336         int (*get_turbo)(void);
337         int (*get_scaling)(void);
338         u64 (*get_val)(struct cpudata*, int pstate);
339         void (*get_vid)(struct cpudata *);
340         int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344  * struct cpu_defaults- Per CPU model default config data
345  * @pid_policy: PID config data
346  * @funcs:              Callback function data
347  */
348 struct cpu_defaults {
349         struct pstate_adjust_policy pid_policy;
350         struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 static bool driver_registered __read_mostly;
362
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366
367 static struct perf_limits performance_limits = {
368         .no_turbo = 0,
369         .turbo_disabled = 0,
370         .max_perf_pct = 100,
371         .max_perf = int_ext_tofp(1),
372         .min_perf_pct = 100,
373         .min_perf = int_ext_tofp(1),
374         .max_policy_pct = 100,
375         .max_sysfs_pct = 100,
376         .min_policy_pct = 0,
377         .min_sysfs_pct = 0,
378 };
379
380 static struct perf_limits powersave_limits = {
381         .no_turbo = 0,
382         .turbo_disabled = 0,
383         .max_perf_pct = 100,
384         .max_perf = int_ext_tofp(1),
385         .min_perf_pct = 0,
386         .min_perf = 0,
387         .max_policy_pct = 100,
388         .max_sysfs_pct = 100,
389         .min_policy_pct = 0,
390         .min_sysfs_pct = 0,
391 };
392
393 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
394 static struct perf_limits *limits = &performance_limits;
395 #else
396 static struct perf_limits *limits = &powersave_limits;
397 #endif
398
399 static DEFINE_MUTEX(intel_pstate_driver_lock);
400 static DEFINE_MUTEX(intel_pstate_limits_lock);
401
402 #ifdef CONFIG_ACPI
403
404 static bool intel_pstate_get_ppc_enable_status(void)
405 {
406         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
407             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
408                 return true;
409
410         return acpi_ppc;
411 }
412
413 #ifdef CONFIG_ACPI_CPPC_LIB
414
415 /* The work item is needed to avoid CPU hotplug locking issues */
416 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
417 {
418         sched_set_itmt_support();
419 }
420
421 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
422
423 static void intel_pstate_set_itmt_prio(int cpu)
424 {
425         struct cppc_perf_caps cppc_perf;
426         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
427         int ret;
428
429         ret = cppc_get_perf_caps(cpu, &cppc_perf);
430         if (ret)
431                 return;
432
433         /*
434          * The priorities can be set regardless of whether or not
435          * sched_set_itmt_support(true) has been called and it is valid to
436          * update them at any time after it has been called.
437          */
438         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
439
440         if (max_highest_perf <= min_highest_perf) {
441                 if (cppc_perf.highest_perf > max_highest_perf)
442                         max_highest_perf = cppc_perf.highest_perf;
443
444                 if (cppc_perf.highest_perf < min_highest_perf)
445                         min_highest_perf = cppc_perf.highest_perf;
446
447                 if (max_highest_perf > min_highest_perf) {
448                         /*
449                          * This code can be run during CPU online under the
450                          * CPU hotplug locks, so sched_set_itmt_support()
451                          * cannot be called from here.  Queue up a work item
452                          * to invoke it.
453                          */
454                         schedule_work(&sched_itmt_work);
455                 }
456         }
457 }
458 #else
459 static void intel_pstate_set_itmt_prio(int cpu)
460 {
461 }
462 #endif
463
464 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
465 {
466         struct cpudata *cpu;
467         int ret;
468         int i;
469
470         if (hwp_active) {
471                 intel_pstate_set_itmt_prio(policy->cpu);
472                 return;
473         }
474
475         if (!intel_pstate_get_ppc_enable_status())
476                 return;
477
478         cpu = all_cpu_data[policy->cpu];
479
480         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
481                                                   policy->cpu);
482         if (ret)
483                 return;
484
485         /*
486          * Check if the control value in _PSS is for PERF_CTL MSR, which should
487          * guarantee that the states returned by it map to the states in our
488          * list directly.
489          */
490         if (cpu->acpi_perf_data.control_register.space_id !=
491                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
492                 goto err;
493
494         /*
495          * If there is only one entry _PSS, simply ignore _PSS and continue as
496          * usual without taking _PSS into account
497          */
498         if (cpu->acpi_perf_data.state_count < 2)
499                 goto err;
500
501         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
502         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
503                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
504                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
505                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
506                          (u32) cpu->acpi_perf_data.states[i].power,
507                          (u32) cpu->acpi_perf_data.states[i].control);
508         }
509
510         /*
511          * The _PSS table doesn't contain whole turbo frequency range.
512          * This just contains +1 MHZ above the max non turbo frequency,
513          * with control value corresponding to max turbo ratio. But
514          * when cpufreq set policy is called, it will call with this
515          * max frequency, which will cause a reduced performance as
516          * this driver uses real max turbo frequency as the max
517          * frequency. So correct this frequency in _PSS table to
518          * correct max turbo frequency based on the turbo state.
519          * Also need to convert to MHz as _PSS freq is in MHz.
520          */
521         if (!limits->turbo_disabled)
522                 cpu->acpi_perf_data.states[0].core_frequency =
523                                         policy->cpuinfo.max_freq / 1000;
524         cpu->valid_pss_table = true;
525         pr_debug("_PPC limits will be enforced\n");
526
527         return;
528
529  err:
530         cpu->valid_pss_table = false;
531         acpi_processor_unregister_performance(policy->cpu);
532 }
533
534 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
535 {
536         struct cpudata *cpu;
537
538         cpu = all_cpu_data[policy->cpu];
539         if (!cpu->valid_pss_table)
540                 return;
541
542         acpi_processor_unregister_performance(policy->cpu);
543 }
544 #else
545 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
546 {
547 }
548
549 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
550 {
551 }
552 #endif
553
554 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
555                              int deadband, int integral) {
556         pid->setpoint = int_tofp(setpoint);
557         pid->deadband  = int_tofp(deadband);
558         pid->integral  = int_tofp(integral);
559         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
560 }
561
562 static inline void pid_p_gain_set(struct _pid *pid, int percent)
563 {
564         pid->p_gain = div_fp(percent, 100);
565 }
566
567 static inline void pid_i_gain_set(struct _pid *pid, int percent)
568 {
569         pid->i_gain = div_fp(percent, 100);
570 }
571
572 static inline void pid_d_gain_set(struct _pid *pid, int percent)
573 {
574         pid->d_gain = div_fp(percent, 100);
575 }
576
577 static signed int pid_calc(struct _pid *pid, int32_t busy)
578 {
579         signed int result;
580         int32_t pterm, dterm, fp_error;
581         int32_t integral_limit;
582
583         fp_error = pid->setpoint - busy;
584
585         if (abs(fp_error) <= pid->deadband)
586                 return 0;
587
588         pterm = mul_fp(pid->p_gain, fp_error);
589
590         pid->integral += fp_error;
591
592         /*
593          * We limit the integral here so that it will never
594          * get higher than 30.  This prevents it from becoming
595          * too large an input over long periods of time and allows
596          * it to get factored out sooner.
597          *
598          * The value of 30 was chosen through experimentation.
599          */
600         integral_limit = int_tofp(30);
601         if (pid->integral > integral_limit)
602                 pid->integral = integral_limit;
603         if (pid->integral < -integral_limit)
604                 pid->integral = -integral_limit;
605
606         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
607         pid->last_err = fp_error;
608
609         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
610         result = result + (1 << (FRAC_BITS-1));
611         return (signed int)fp_toint(result);
612 }
613
614 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
615 {
616         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
617         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
618         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
619
620         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
621 }
622
623 static inline void intel_pstate_reset_all_pid(void)
624 {
625         unsigned int cpu;
626
627         for_each_online_cpu(cpu) {
628                 if (all_cpu_data[cpu])
629                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
630         }
631 }
632
633 static inline void update_turbo_state(void)
634 {
635         u64 misc_en;
636         struct cpudata *cpu;
637
638         cpu = all_cpu_data[0];
639         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
640         limits->turbo_disabled =
641                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
642                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
643 }
644
645 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
646 {
647         u64 epb;
648         int ret;
649
650         if (!static_cpu_has(X86_FEATURE_EPB))
651                 return -ENXIO;
652
653         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
654         if (ret)
655                 return (s16)ret;
656
657         return (s16)(epb & 0x0f);
658 }
659
660 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
661 {
662         s16 epp;
663
664         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665                 /*
666                  * When hwp_req_data is 0, means that caller didn't read
667                  * MSR_HWP_REQUEST, so need to read and get EPP.
668                  */
669                 if (!hwp_req_data) {
670                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
671                                             &hwp_req_data);
672                         if (epp)
673                                 return epp;
674                 }
675                 epp = (hwp_req_data >> 24) & 0xff;
676         } else {
677                 /* When there is no EPP present, HWP uses EPB settings */
678                 epp = intel_pstate_get_epb(cpu_data);
679         }
680
681         return epp;
682 }
683
684 static int intel_pstate_set_epb(int cpu, s16 pref)
685 {
686         u64 epb;
687         int ret;
688
689         if (!static_cpu_has(X86_FEATURE_EPB))
690                 return -ENXIO;
691
692         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
693         if (ret)
694                 return ret;
695
696         epb = (epb & ~0x0f) | pref;
697         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
698
699         return 0;
700 }
701
702 /*
703  * EPP/EPB display strings corresponding to EPP index in the
704  * energy_perf_strings[]
705  *      index           String
706  *-------------------------------------
707  *      0               default
708  *      1               performance
709  *      2               balance_performance
710  *      3               balance_power
711  *      4               power
712  */
713 static const char * const energy_perf_strings[] = {
714         "default",
715         "performance",
716         "balance_performance",
717         "balance_power",
718         "power",
719         NULL
720 };
721
722 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
723 {
724         s16 epp;
725         int index = -EINVAL;
726
727         epp = intel_pstate_get_epp(cpu_data, 0);
728         if (epp < 0)
729                 return epp;
730
731         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
732                 /*
733                  * Range:
734                  *      0x00-0x3F       :       Performance
735                  *      0x40-0x7F       :       Balance performance
736                  *      0x80-0xBF       :       Balance power
737                  *      0xC0-0xFF       :       Power
738                  * The EPP is a 8 bit value, but our ranges restrict the
739                  * value which can be set. Here only using top two bits
740                  * effectively.
741                  */
742                 index = (epp >> 6) + 1;
743         } else if (static_cpu_has(X86_FEATURE_EPB)) {
744                 /*
745                  * Range:
746                  *      0x00-0x03       :       Performance
747                  *      0x04-0x07       :       Balance performance
748                  *      0x08-0x0B       :       Balance power
749                  *      0x0C-0x0F       :       Power
750                  * The EPB is a 4 bit value, but our ranges restrict the
751                  * value which can be set. Here only using top two bits
752                  * effectively.
753                  */
754                 index = (epp >> 2) + 1;
755         }
756
757         return index;
758 }
759
760 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
761                                               int pref_index)
762 {
763         int epp = -EINVAL;
764         int ret;
765
766         if (!pref_index)
767                 epp = cpu_data->epp_default;
768
769         mutex_lock(&intel_pstate_limits_lock);
770
771         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
772                 u64 value;
773
774                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
775                 if (ret)
776                         goto return_pref;
777
778                 value &= ~GENMASK_ULL(31, 24);
779
780                 /*
781                  * If epp is not default, convert from index into
782                  * energy_perf_strings to epp value, by shifting 6
783                  * bits left to use only top two bits in epp.
784                  * The resultant epp need to shifted by 24 bits to
785                  * epp position in MSR_HWP_REQUEST.
786                  */
787                 if (epp == -EINVAL)
788                         epp = (pref_index - 1) << 6;
789
790                 value |= (u64)epp << 24;
791                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
792         } else {
793                 if (epp == -EINVAL)
794                         epp = (pref_index - 1) << 2;
795                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
796         }
797 return_pref:
798         mutex_unlock(&intel_pstate_limits_lock);
799
800         return ret;
801 }
802
803 static ssize_t show_energy_performance_available_preferences(
804                                 struct cpufreq_policy *policy, char *buf)
805 {
806         int i = 0;
807         int ret = 0;
808
809         while (energy_perf_strings[i] != NULL)
810                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
811
812         ret += sprintf(&buf[ret], "\n");
813
814         return ret;
815 }
816
817 cpufreq_freq_attr_ro(energy_performance_available_preferences);
818
819 static ssize_t store_energy_performance_preference(
820                 struct cpufreq_policy *policy, const char *buf, size_t count)
821 {
822         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
823         char str_preference[21];
824         int ret, i = 0;
825
826         ret = sscanf(buf, "%20s", str_preference);
827         if (ret != 1)
828                 return -EINVAL;
829
830         while (energy_perf_strings[i] != NULL) {
831                 if (!strcmp(str_preference, energy_perf_strings[i])) {
832                         intel_pstate_set_energy_pref_index(cpu_data, i);
833                         return count;
834                 }
835                 ++i;
836         }
837
838         return -EINVAL;
839 }
840
841 static ssize_t show_energy_performance_preference(
842                                 struct cpufreq_policy *policy, char *buf)
843 {
844         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
845         int preference;
846
847         preference = intel_pstate_get_energy_pref_index(cpu_data);
848         if (preference < 0)
849                 return preference;
850
851         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
852 }
853
854 cpufreq_freq_attr_rw(energy_performance_preference);
855
856 static struct freq_attr *hwp_cpufreq_attrs[] = {
857         &energy_performance_preference,
858         &energy_performance_available_preferences,
859         NULL,
860 };
861
862 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
863 {
864         int min, hw_min, max, hw_max, cpu, range, adj_range;
865         struct perf_limits *perf_limits = limits;
866         u64 value, cap;
867
868         for_each_cpu(cpu, policy->cpus) {
869                 int max_perf_pct, min_perf_pct;
870                 struct cpudata *cpu_data = all_cpu_data[cpu];
871                 s16 epp;
872
873                 if (per_cpu_limits)
874                         perf_limits = all_cpu_data[cpu]->perf_limits;
875
876                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
877                 hw_min = HWP_LOWEST_PERF(cap);
878                 hw_max = HWP_HIGHEST_PERF(cap);
879                 range = hw_max - hw_min;
880
881                 max_perf_pct = perf_limits->max_perf_pct;
882                 min_perf_pct = perf_limits->min_perf_pct;
883
884                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
885                 adj_range = min_perf_pct * range / 100;
886                 min = hw_min + adj_range;
887                 value &= ~HWP_MIN_PERF(~0L);
888                 value |= HWP_MIN_PERF(min);
889
890                 adj_range = max_perf_pct * range / 100;
891                 max = hw_min + adj_range;
892                 if (limits->no_turbo) {
893                         hw_max = HWP_GUARANTEED_PERF(cap);
894                         if (hw_max < max)
895                                 max = hw_max;
896                 }
897
898                 value &= ~HWP_MAX_PERF(~0L);
899                 value |= HWP_MAX_PERF(max);
900
901                 if (cpu_data->epp_policy == cpu_data->policy)
902                         goto skip_epp;
903
904                 cpu_data->epp_policy = cpu_data->policy;
905
906                 if (cpu_data->epp_saved >= 0) {
907                         epp = cpu_data->epp_saved;
908                         cpu_data->epp_saved = -EINVAL;
909                         goto update_epp;
910                 }
911
912                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
913                         epp = intel_pstate_get_epp(cpu_data, value);
914                         cpu_data->epp_powersave = epp;
915                         /* If EPP read was failed, then don't try to write */
916                         if (epp < 0)
917                                 goto skip_epp;
918
919
920                         epp = 0;
921                 } else {
922                         /* skip setting EPP, when saved value is invalid */
923                         if (cpu_data->epp_powersave < 0)
924                                 goto skip_epp;
925
926                         /*
927                          * No need to restore EPP when it is not zero. This
928                          * means:
929                          *  - Policy is not changed
930                          *  - user has manually changed
931                          *  - Error reading EPB
932                          */
933                         epp = intel_pstate_get_epp(cpu_data, value);
934                         if (epp)
935                                 goto skip_epp;
936
937                         epp = cpu_data->epp_powersave;
938                 }
939 update_epp:
940                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
941                         value &= ~GENMASK_ULL(31, 24);
942                         value |= (u64)epp << 24;
943                 } else {
944                         intel_pstate_set_epb(cpu, epp);
945                 }
946 skip_epp:
947                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
948         }
949 }
950
951 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
952 {
953         if (hwp_active)
954                 intel_pstate_hwp_set(policy);
955
956         return 0;
957 }
958
959 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
960 {
961         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
962
963         if (!hwp_active)
964                 return 0;
965
966         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
967
968         return 0;
969 }
970
971 static int intel_pstate_resume(struct cpufreq_policy *policy)
972 {
973         int ret;
974
975         if (!hwp_active)
976                 return 0;
977
978         mutex_lock(&intel_pstate_limits_lock);
979
980         all_cpu_data[policy->cpu]->epp_policy = 0;
981
982         ret = intel_pstate_hwp_set_policy(policy);
983
984         mutex_unlock(&intel_pstate_limits_lock);
985
986         return ret;
987 }
988
989 static void intel_pstate_update_policies(void)
990 {
991         int cpu;
992
993         for_each_possible_cpu(cpu)
994                 cpufreq_update_policy(cpu);
995 }
996
997 /************************** debugfs begin ************************/
998 static int pid_param_set(void *data, u64 val)
999 {
1000         *(u32 *)data = val;
1001         intel_pstate_reset_all_pid();
1002         return 0;
1003 }
1004
1005 static int pid_param_get(void *data, u64 *val)
1006 {
1007         *val = *(u32 *)data;
1008         return 0;
1009 }
1010 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1011
1012 static struct dentry *debugfs_parent;
1013
1014 struct pid_param {
1015         char *name;
1016         void *value;
1017         struct dentry *dentry;
1018 };
1019
1020 static struct pid_param pid_files[] = {
1021         {"sample_rate_ms", &pid_params.sample_rate_ms, },
1022         {"d_gain_pct", &pid_params.d_gain_pct, },
1023         {"i_gain_pct", &pid_params.i_gain_pct, },
1024         {"deadband", &pid_params.deadband, },
1025         {"setpoint", &pid_params.setpoint, },
1026         {"p_gain_pct", &pid_params.p_gain_pct, },
1027         {NULL, NULL, }
1028 };
1029
1030 static void intel_pstate_debug_expose_params(void)
1031 {
1032         int i;
1033
1034         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1035         if (IS_ERR_OR_NULL(debugfs_parent))
1036                 return;
1037
1038         for (i = 0; pid_files[i].name; i++) {
1039                 struct dentry *dentry;
1040
1041                 dentry = debugfs_create_file(pid_files[i].name, 0660,
1042                                              debugfs_parent, pid_files[i].value,
1043                                              &fops_pid_param);
1044                 if (!IS_ERR(dentry))
1045                         pid_files[i].dentry = dentry;
1046         }
1047 }
1048
1049 static void intel_pstate_debug_hide_params(void)
1050 {
1051         int i;
1052
1053         if (IS_ERR_OR_NULL(debugfs_parent))
1054                 return;
1055
1056         for (i = 0; pid_files[i].name; i++) {
1057                 debugfs_remove(pid_files[i].dentry);
1058                 pid_files[i].dentry = NULL;
1059         }
1060
1061         debugfs_remove(debugfs_parent);
1062         debugfs_parent = NULL;
1063 }
1064
1065 /************************** debugfs end ************************/
1066
1067 /************************** sysfs begin ************************/
1068 #define show_one(file_name, object)                                     \
1069         static ssize_t show_##file_name                                 \
1070         (struct kobject *kobj, struct attribute *attr, char *buf)       \
1071         {                                                               \
1072                 return sprintf(buf, "%u\n", limits->object);            \
1073         }
1074
1075 static ssize_t intel_pstate_show_status(char *buf);
1076 static int intel_pstate_update_status(const char *buf, size_t size);
1077
1078 static ssize_t show_status(struct kobject *kobj,
1079                            struct attribute *attr, char *buf)
1080 {
1081         ssize_t ret;
1082
1083         mutex_lock(&intel_pstate_driver_lock);
1084         ret = intel_pstate_show_status(buf);
1085         mutex_unlock(&intel_pstate_driver_lock);
1086
1087         return ret;
1088 }
1089
1090 static ssize_t store_status(struct kobject *a, struct attribute *b,
1091                             const char *buf, size_t count)
1092 {
1093         char *p = memchr(buf, '\n', count);
1094         int ret;
1095
1096         mutex_lock(&intel_pstate_driver_lock);
1097         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1098         mutex_unlock(&intel_pstate_driver_lock);
1099
1100         return ret < 0 ? ret : count;
1101 }
1102
1103 static ssize_t show_turbo_pct(struct kobject *kobj,
1104                                 struct attribute *attr, char *buf)
1105 {
1106         struct cpudata *cpu;
1107         int total, no_turbo, turbo_pct;
1108         uint32_t turbo_fp;
1109
1110         mutex_lock(&intel_pstate_driver_lock);
1111
1112         if (!driver_registered) {
1113                 mutex_unlock(&intel_pstate_driver_lock);
1114                 return -EAGAIN;
1115         }
1116
1117         cpu = all_cpu_data[0];
1118
1119         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1120         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1121         turbo_fp = div_fp(no_turbo, total);
1122         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1123
1124         mutex_unlock(&intel_pstate_driver_lock);
1125
1126         return sprintf(buf, "%u\n", turbo_pct);
1127 }
1128
1129 static ssize_t show_num_pstates(struct kobject *kobj,
1130                                 struct attribute *attr, char *buf)
1131 {
1132         struct cpudata *cpu;
1133         int total;
1134
1135         mutex_lock(&intel_pstate_driver_lock);
1136
1137         if (!driver_registered) {
1138                 mutex_unlock(&intel_pstate_driver_lock);
1139                 return -EAGAIN;
1140         }
1141
1142         cpu = all_cpu_data[0];
1143         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1144
1145         mutex_unlock(&intel_pstate_driver_lock);
1146
1147         return sprintf(buf, "%u\n", total);
1148 }
1149
1150 static ssize_t show_no_turbo(struct kobject *kobj,
1151                              struct attribute *attr, char *buf)
1152 {
1153         ssize_t ret;
1154
1155         mutex_lock(&intel_pstate_driver_lock);
1156
1157         if (!driver_registered) {
1158                 mutex_unlock(&intel_pstate_driver_lock);
1159                 return -EAGAIN;
1160         }
1161
1162         update_turbo_state();
1163         if (limits->turbo_disabled)
1164                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1165         else
1166                 ret = sprintf(buf, "%u\n", limits->no_turbo);
1167
1168         mutex_unlock(&intel_pstate_driver_lock);
1169
1170         return ret;
1171 }
1172
1173 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1174                               const char *buf, size_t count)
1175 {
1176         unsigned int input;
1177         int ret;
1178
1179         ret = sscanf(buf, "%u", &input);
1180         if (ret != 1)
1181                 return -EINVAL;
1182
1183         mutex_lock(&intel_pstate_driver_lock);
1184
1185         if (!driver_registered) {
1186                 mutex_unlock(&intel_pstate_driver_lock);
1187                 return -EAGAIN;
1188         }
1189
1190         mutex_lock(&intel_pstate_limits_lock);
1191
1192         update_turbo_state();
1193         if (limits->turbo_disabled) {
1194                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1195                 mutex_unlock(&intel_pstate_limits_lock);
1196                 mutex_unlock(&intel_pstate_driver_lock);
1197                 return -EPERM;
1198         }
1199
1200         limits->no_turbo = clamp_t(int, input, 0, 1);
1201
1202         mutex_unlock(&intel_pstate_limits_lock);
1203
1204         intel_pstate_update_policies();
1205
1206         mutex_unlock(&intel_pstate_driver_lock);
1207
1208         return count;
1209 }
1210
1211 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1212                                   const char *buf, size_t count)
1213 {
1214         unsigned int input;
1215         int ret;
1216
1217         ret = sscanf(buf, "%u", &input);
1218         if (ret != 1)
1219                 return -EINVAL;
1220
1221         mutex_lock(&intel_pstate_driver_lock);
1222
1223         if (!driver_registered) {
1224                 mutex_unlock(&intel_pstate_driver_lock);
1225                 return -EAGAIN;
1226         }
1227
1228         mutex_lock(&intel_pstate_limits_lock);
1229
1230         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1231         limits->max_perf_pct = min(limits->max_policy_pct,
1232                                    limits->max_sysfs_pct);
1233         limits->max_perf_pct = max(limits->min_policy_pct,
1234                                    limits->max_perf_pct);
1235         limits->max_perf_pct = max(limits->min_perf_pct,
1236                                    limits->max_perf_pct);
1237         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1238
1239         mutex_unlock(&intel_pstate_limits_lock);
1240
1241         intel_pstate_update_policies();
1242
1243         mutex_unlock(&intel_pstate_driver_lock);
1244
1245         return count;
1246 }
1247
1248 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1249                                   const char *buf, size_t count)
1250 {
1251         unsigned int input;
1252         int ret;
1253
1254         ret = sscanf(buf, "%u", &input);
1255         if (ret != 1)
1256                 return -EINVAL;
1257
1258         mutex_lock(&intel_pstate_driver_lock);
1259
1260         if (!driver_registered) {
1261                 mutex_unlock(&intel_pstate_driver_lock);
1262                 return -EAGAIN;
1263         }
1264
1265         mutex_lock(&intel_pstate_limits_lock);
1266
1267         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1268         limits->min_perf_pct = max(limits->min_policy_pct,
1269                                    limits->min_sysfs_pct);
1270         limits->min_perf_pct = min(limits->max_policy_pct,
1271                                    limits->min_perf_pct);
1272         limits->min_perf_pct = min(limits->max_perf_pct,
1273                                    limits->min_perf_pct);
1274         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1275
1276         mutex_unlock(&intel_pstate_limits_lock);
1277
1278         intel_pstate_update_policies();
1279
1280         mutex_unlock(&intel_pstate_driver_lock);
1281
1282         return count;
1283 }
1284
1285 show_one(max_perf_pct, max_perf_pct);
1286 show_one(min_perf_pct, min_perf_pct);
1287
1288 define_one_global_rw(status);
1289 define_one_global_rw(no_turbo);
1290 define_one_global_rw(max_perf_pct);
1291 define_one_global_rw(min_perf_pct);
1292 define_one_global_ro(turbo_pct);
1293 define_one_global_ro(num_pstates);
1294
1295 static struct attribute *intel_pstate_attributes[] = {
1296         &status.attr,
1297         &no_turbo.attr,
1298         &turbo_pct.attr,
1299         &num_pstates.attr,
1300         NULL
1301 };
1302
1303 static struct attribute_group intel_pstate_attr_group = {
1304         .attrs = intel_pstate_attributes,
1305 };
1306
1307 static void __init intel_pstate_sysfs_expose_params(void)
1308 {
1309         struct kobject *intel_pstate_kobject;
1310         int rc;
1311
1312         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1313                                                 &cpu_subsys.dev_root->kobj);
1314         if (WARN_ON(!intel_pstate_kobject))
1315                 return;
1316
1317         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1318         if (WARN_ON(rc))
1319                 return;
1320
1321         /*
1322          * If per cpu limits are enforced there are no global limits, so
1323          * return without creating max/min_perf_pct attributes
1324          */
1325         if (per_cpu_limits)
1326                 return;
1327
1328         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1329         WARN_ON(rc);
1330
1331         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1332         WARN_ON(rc);
1333
1334 }
1335 /************************** sysfs end ************************/
1336
1337 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1338 {
1339         /* First disable HWP notification interrupt as we don't process them */
1340         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1341                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1342
1343         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1344         cpudata->epp_policy = 0;
1345         if (cpudata->epp_default == -EINVAL)
1346                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1347 }
1348
1349 static int atom_get_min_pstate(void)
1350 {
1351         u64 value;
1352
1353         rdmsrl(ATOM_RATIOS, value);
1354         return (value >> 8) & 0x7F;
1355 }
1356
1357 static int atom_get_max_pstate(void)
1358 {
1359         u64 value;
1360
1361         rdmsrl(ATOM_RATIOS, value);
1362         return (value >> 16) & 0x7F;
1363 }
1364
1365 static int atom_get_turbo_pstate(void)
1366 {
1367         u64 value;
1368
1369         rdmsrl(ATOM_TURBO_RATIOS, value);
1370         return value & 0x7F;
1371 }
1372
1373 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1374 {
1375         u64 val;
1376         int32_t vid_fp;
1377         u32 vid;
1378
1379         val = (u64)pstate << 8;
1380         if (limits->no_turbo && !limits->turbo_disabled)
1381                 val |= (u64)1 << 32;
1382
1383         vid_fp = cpudata->vid.min + mul_fp(
1384                 int_tofp(pstate - cpudata->pstate.min_pstate),
1385                 cpudata->vid.ratio);
1386
1387         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1388         vid = ceiling_fp(vid_fp);
1389
1390         if (pstate > cpudata->pstate.max_pstate)
1391                 vid = cpudata->vid.turbo;
1392
1393         return val | vid;
1394 }
1395
1396 static int silvermont_get_scaling(void)
1397 {
1398         u64 value;
1399         int i;
1400         /* Defined in Table 35-6 from SDM (Sept 2015) */
1401         static int silvermont_freq_table[] = {
1402                 83300, 100000, 133300, 116700, 80000};
1403
1404         rdmsrl(MSR_FSB_FREQ, value);
1405         i = value & 0x7;
1406         WARN_ON(i > 4);
1407
1408         return silvermont_freq_table[i];
1409 }
1410
1411 static int airmont_get_scaling(void)
1412 {
1413         u64 value;
1414         int i;
1415         /* Defined in Table 35-10 from SDM (Sept 2015) */
1416         static int airmont_freq_table[] = {
1417                 83300, 100000, 133300, 116700, 80000,
1418                 93300, 90000, 88900, 87500};
1419
1420         rdmsrl(MSR_FSB_FREQ, value);
1421         i = value & 0xF;
1422         WARN_ON(i > 8);
1423
1424         return airmont_freq_table[i];
1425 }
1426
1427 static void atom_get_vid(struct cpudata *cpudata)
1428 {
1429         u64 value;
1430
1431         rdmsrl(ATOM_VIDS, value);
1432         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1433         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1434         cpudata->vid.ratio = div_fp(
1435                 cpudata->vid.max - cpudata->vid.min,
1436                 int_tofp(cpudata->pstate.max_pstate -
1437                         cpudata->pstate.min_pstate));
1438
1439         rdmsrl(ATOM_TURBO_VIDS, value);
1440         cpudata->vid.turbo = value & 0x7f;
1441 }
1442
1443 static int core_get_min_pstate(void)
1444 {
1445         u64 value;
1446
1447         rdmsrl(MSR_PLATFORM_INFO, value);
1448         return (value >> 40) & 0xFF;
1449 }
1450
1451 static int core_get_max_pstate_physical(void)
1452 {
1453         u64 value;
1454
1455         rdmsrl(MSR_PLATFORM_INFO, value);
1456         return (value >> 8) & 0xFF;
1457 }
1458
1459 static int core_get_max_pstate(void)
1460 {
1461         u64 tar;
1462         u64 plat_info;
1463         int max_pstate;
1464         int err;
1465
1466         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1467         max_pstate = (plat_info >> 8) & 0xFF;
1468
1469         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1470         if (!err) {
1471                 /* Do some sanity checking for safety */
1472                 if (plat_info & 0x600000000) {
1473                         u64 tdp_ctrl;
1474                         u64 tdp_ratio;
1475                         int tdp_msr;
1476
1477                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1478                         if (err)
1479                                 goto skip_tar;
1480
1481                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1482                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1483                         if (err)
1484                                 goto skip_tar;
1485
1486                         /* For level 1 and 2, bits[23:16] contain the ratio */
1487                         if (tdp_ctrl)
1488                                 tdp_ratio >>= 16;
1489
1490                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1491                         if (tdp_ratio - 1 == tar) {
1492                                 max_pstate = tar;
1493                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
1494                         } else {
1495                                 goto skip_tar;
1496                         }
1497                 }
1498         }
1499
1500 skip_tar:
1501         return max_pstate;
1502 }
1503
1504 static int core_get_turbo_pstate(void)
1505 {
1506         u64 value;
1507         int nont, ret;
1508
1509         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1510         nont = core_get_max_pstate();
1511         ret = (value) & 255;
1512         if (ret <= nont)
1513                 ret = nont;
1514         return ret;
1515 }
1516
1517 static inline int core_get_scaling(void)
1518 {
1519         return 100000;
1520 }
1521
1522 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1523 {
1524         u64 val;
1525
1526         val = (u64)pstate << 8;
1527         if (limits->no_turbo && !limits->turbo_disabled)
1528                 val |= (u64)1 << 32;
1529
1530         return val;
1531 }
1532
1533 static int knl_get_turbo_pstate(void)
1534 {
1535         u64 value;
1536         int nont, ret;
1537
1538         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1539         nont = core_get_max_pstate();
1540         ret = (((value) >> 8) & 0xFF);
1541         if (ret <= nont)
1542                 ret = nont;
1543         return ret;
1544 }
1545
1546 static struct cpu_defaults core_params = {
1547         .pid_policy = {
1548                 .sample_rate_ms = 10,
1549                 .deadband = 0,
1550                 .setpoint = 97,
1551                 .p_gain_pct = 20,
1552                 .d_gain_pct = 0,
1553                 .i_gain_pct = 0,
1554         },
1555         .funcs = {
1556                 .get_max = core_get_max_pstate,
1557                 .get_max_physical = core_get_max_pstate_physical,
1558                 .get_min = core_get_min_pstate,
1559                 .get_turbo = core_get_turbo_pstate,
1560                 .get_scaling = core_get_scaling,
1561                 .get_val = core_get_val,
1562                 .get_target_pstate = get_target_pstate_use_performance,
1563         },
1564 };
1565
1566 static const struct cpu_defaults silvermont_params = {
1567         .pid_policy = {
1568                 .sample_rate_ms = 10,
1569                 .deadband = 0,
1570                 .setpoint = 60,
1571                 .p_gain_pct = 14,
1572                 .d_gain_pct = 0,
1573                 .i_gain_pct = 4,
1574         },
1575         .funcs = {
1576                 .get_max = atom_get_max_pstate,
1577                 .get_max_physical = atom_get_max_pstate,
1578                 .get_min = atom_get_min_pstate,
1579                 .get_turbo = atom_get_turbo_pstate,
1580                 .get_val = atom_get_val,
1581                 .get_scaling = silvermont_get_scaling,
1582                 .get_vid = atom_get_vid,
1583                 .get_target_pstate = get_target_pstate_use_cpu_load,
1584         },
1585 };
1586
1587 static const struct cpu_defaults airmont_params = {
1588         .pid_policy = {
1589                 .sample_rate_ms = 10,
1590                 .deadband = 0,
1591                 .setpoint = 60,
1592                 .p_gain_pct = 14,
1593                 .d_gain_pct = 0,
1594                 .i_gain_pct = 4,
1595         },
1596         .funcs = {
1597                 .get_max = atom_get_max_pstate,
1598                 .get_max_physical = atom_get_max_pstate,
1599                 .get_min = atom_get_min_pstate,
1600                 .get_turbo = atom_get_turbo_pstate,
1601                 .get_val = atom_get_val,
1602                 .get_scaling = airmont_get_scaling,
1603                 .get_vid = atom_get_vid,
1604                 .get_target_pstate = get_target_pstate_use_cpu_load,
1605         },
1606 };
1607
1608 static const struct cpu_defaults knl_params = {
1609         .pid_policy = {
1610                 .sample_rate_ms = 10,
1611                 .deadband = 0,
1612                 .setpoint = 97,
1613                 .p_gain_pct = 20,
1614                 .d_gain_pct = 0,
1615                 .i_gain_pct = 0,
1616         },
1617         .funcs = {
1618                 .get_max = core_get_max_pstate,
1619                 .get_max_physical = core_get_max_pstate_physical,
1620                 .get_min = core_get_min_pstate,
1621                 .get_turbo = knl_get_turbo_pstate,
1622                 .get_scaling = core_get_scaling,
1623                 .get_val = core_get_val,
1624                 .get_target_pstate = get_target_pstate_use_performance,
1625         },
1626 };
1627
1628 static const struct cpu_defaults bxt_params = {
1629         .pid_policy = {
1630                 .sample_rate_ms = 10,
1631                 .deadband = 0,
1632                 .setpoint = 60,
1633                 .p_gain_pct = 14,
1634                 .d_gain_pct = 0,
1635                 .i_gain_pct = 4,
1636         },
1637         .funcs = {
1638                 .get_max = core_get_max_pstate,
1639                 .get_max_physical = core_get_max_pstate_physical,
1640                 .get_min = core_get_min_pstate,
1641                 .get_turbo = core_get_turbo_pstate,
1642                 .get_scaling = core_get_scaling,
1643                 .get_val = core_get_val,
1644                 .get_target_pstate = get_target_pstate_use_cpu_load,
1645         },
1646 };
1647
1648 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1649 {
1650         int max_perf = cpu->pstate.turbo_pstate;
1651         int max_perf_adj;
1652         int min_perf;
1653         struct perf_limits *perf_limits = limits;
1654
1655         if (limits->no_turbo || limits->turbo_disabled)
1656                 max_perf = cpu->pstate.max_pstate;
1657
1658         if (per_cpu_limits)
1659                 perf_limits = cpu->perf_limits;
1660
1661         /*
1662          * performance can be limited by user through sysfs, by cpufreq
1663          * policy, or by cpu specific default values determined through
1664          * experimentation.
1665          */
1666         max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1667         *max = clamp_t(int, max_perf_adj,
1668                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1669
1670         min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1671         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1672 }
1673
1674 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1675 {
1676         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1677         cpu->pstate.current_pstate = pstate;
1678         /*
1679          * Generally, there is no guarantee that this code will always run on
1680          * the CPU being updated, so force the register update to run on the
1681          * right CPU.
1682          */
1683         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1684                       pstate_funcs.get_val(cpu, pstate));
1685 }
1686
1687 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1688 {
1689         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1690 }
1691
1692 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1693 {
1694         int min_pstate, max_pstate;
1695
1696         update_turbo_state();
1697         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1698         intel_pstate_set_pstate(cpu, max_pstate);
1699 }
1700
1701 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1702 {
1703         cpu->pstate.min_pstate = pstate_funcs.get_min();
1704         cpu->pstate.max_pstate = pstate_funcs.get_max();
1705         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1706         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1707         cpu->pstate.scaling = pstate_funcs.get_scaling();
1708         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1709         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1710
1711         if (pstate_funcs.get_vid)
1712                 pstate_funcs.get_vid(cpu);
1713
1714         intel_pstate_set_min_pstate(cpu);
1715 }
1716
1717 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1718 {
1719         struct sample *sample = &cpu->sample;
1720
1721         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1722 }
1723
1724 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1725 {
1726         u64 aperf, mperf;
1727         unsigned long flags;
1728         u64 tsc;
1729
1730         local_irq_save(flags);
1731         rdmsrl(MSR_IA32_APERF, aperf);
1732         rdmsrl(MSR_IA32_MPERF, mperf);
1733         tsc = rdtsc();
1734         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1735                 local_irq_restore(flags);
1736                 return false;
1737         }
1738         local_irq_restore(flags);
1739
1740         cpu->last_sample_time = cpu->sample.time;
1741         cpu->sample.time = time;
1742         cpu->sample.aperf = aperf;
1743         cpu->sample.mperf = mperf;
1744         cpu->sample.tsc =  tsc;
1745         cpu->sample.aperf -= cpu->prev_aperf;
1746         cpu->sample.mperf -= cpu->prev_mperf;
1747         cpu->sample.tsc -= cpu->prev_tsc;
1748
1749         cpu->prev_aperf = aperf;
1750         cpu->prev_mperf = mperf;
1751         cpu->prev_tsc = tsc;
1752         /*
1753          * First time this function is invoked in a given cycle, all of the
1754          * previous sample data fields are equal to zero or stale and they must
1755          * be populated with meaningful numbers for things to work, so assume
1756          * that sample.time will always be reset before setting the utilization
1757          * update hook and make the caller skip the sample then.
1758          */
1759         return !!cpu->last_sample_time;
1760 }
1761
1762 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1763 {
1764         return mul_ext_fp(cpu->sample.core_avg_perf,
1765                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1766 }
1767
1768 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1769 {
1770         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1771                           cpu->sample.core_avg_perf);
1772 }
1773
1774 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1775 {
1776         struct sample *sample = &cpu->sample;
1777         int32_t busy_frac, boost;
1778         int target, avg_pstate;
1779
1780         busy_frac = div_fp(sample->mperf, sample->tsc);
1781
1782         boost = cpu->iowait_boost;
1783         cpu->iowait_boost >>= 1;
1784
1785         if (busy_frac < boost)
1786                 busy_frac = boost;
1787
1788         sample->busy_scaled = busy_frac * 100;
1789
1790         target = limits->no_turbo || limits->turbo_disabled ?
1791                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1792         target += target >> 2;
1793         target = mul_fp(target, busy_frac);
1794         if (target < cpu->pstate.min_pstate)
1795                 target = cpu->pstate.min_pstate;
1796
1797         /*
1798          * If the average P-state during the previous cycle was higher than the
1799          * current target, add 50% of the difference to the target to reduce
1800          * possible performance oscillations and offset possible performance
1801          * loss related to moving the workload from one CPU to another within
1802          * a package/module.
1803          */
1804         avg_pstate = get_avg_pstate(cpu);
1805         if (avg_pstate > target)
1806                 target += (avg_pstate - target) >> 1;
1807
1808         return target;
1809 }
1810
1811 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1812 {
1813         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1814         u64 duration_ns;
1815
1816         /*
1817          * perf_scaled is the ratio of the average P-state during the last
1818          * sampling period to the P-state requested last time (in percent).
1819          *
1820          * That measures the system's response to the previous P-state
1821          * selection.
1822          */
1823         max_pstate = cpu->pstate.max_pstate_physical;
1824         current_pstate = cpu->pstate.current_pstate;
1825         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1826                                div_fp(100 * max_pstate, current_pstate));
1827
1828         /*
1829          * Since our utilization update callback will not run unless we are
1830          * in C0, check if the actual elapsed time is significantly greater (3x)
1831          * than our sample interval.  If it is, then we were idle for a long
1832          * enough period of time to adjust our performance metric.
1833          */
1834         duration_ns = cpu->sample.time - cpu->last_sample_time;
1835         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1836                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1837                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1838         } else {
1839                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1840                 if (sample_ratio < int_tofp(1))
1841                         perf_scaled = 0;
1842         }
1843
1844         cpu->sample.busy_scaled = perf_scaled;
1845         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1846 }
1847
1848 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1849 {
1850         int max_perf, min_perf;
1851
1852         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1853         pstate = clamp_t(int, pstate, min_perf, max_perf);
1854         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1855         return pstate;
1856 }
1857
1858 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1859 {
1860         pstate = intel_pstate_prepare_request(cpu, pstate);
1861         if (pstate == cpu->pstate.current_pstate)
1862                 return;
1863
1864         cpu->pstate.current_pstate = pstate;
1865         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1866 }
1867
1868 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1869 {
1870         int from, target_pstate;
1871         struct sample *sample;
1872
1873         from = cpu->pstate.current_pstate;
1874
1875         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1876                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1877
1878         update_turbo_state();
1879
1880         intel_pstate_update_pstate(cpu, target_pstate);
1881
1882         sample = &cpu->sample;
1883         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1884                 fp_toint(sample->busy_scaled),
1885                 from,
1886                 cpu->pstate.current_pstate,
1887                 sample->mperf,
1888                 sample->aperf,
1889                 sample->tsc,
1890                 get_avg_frequency(cpu),
1891                 fp_toint(cpu->iowait_boost * 100));
1892 }
1893
1894 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1895                                      unsigned int flags)
1896 {
1897         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1898         u64 delta_ns;
1899
1900         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1901                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1902                         cpu->iowait_boost = int_tofp(1);
1903                 } else if (cpu->iowait_boost) {
1904                         /* Clear iowait_boost if the CPU may have been idle. */
1905                         delta_ns = time - cpu->last_update;
1906                         if (delta_ns > TICK_NSEC)
1907                                 cpu->iowait_boost = 0;
1908                 }
1909                 cpu->last_update = time;
1910         }
1911
1912         delta_ns = time - cpu->sample.time;
1913         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1914                 bool sample_taken = intel_pstate_sample(cpu, time);
1915
1916                 if (sample_taken) {
1917                         intel_pstate_calc_avg_perf(cpu);
1918                         if (!hwp_active)
1919                                 intel_pstate_adjust_busy_pstate(cpu);
1920                 }
1921         }
1922 }
1923
1924 #define ICPU(model, policy) \
1925         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1926                         (unsigned long)&policy }
1927
1928 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1929         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1930         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1931         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1932         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1933         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1934         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1935         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1936         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1937         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1938         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1939         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1940         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1941         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1942         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1943         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1944         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1945         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1946         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1947         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1948         {}
1949 };
1950 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1951
1952 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1953         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1954         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1955         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1956         {}
1957 };
1958
1959 static int intel_pstate_init_cpu(unsigned int cpunum)
1960 {
1961         struct cpudata *cpu;
1962
1963         cpu = all_cpu_data[cpunum];
1964
1965         if (!cpu) {
1966                 unsigned int size = sizeof(struct cpudata);
1967
1968                 if (per_cpu_limits)
1969                         size += sizeof(struct perf_limits);
1970
1971                 cpu = kzalloc(size, GFP_KERNEL);
1972                 if (!cpu)
1973                         return -ENOMEM;
1974
1975                 all_cpu_data[cpunum] = cpu;
1976                 if (per_cpu_limits)
1977                         cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1978
1979                 cpu->epp_default = -EINVAL;
1980                 cpu->epp_powersave = -EINVAL;
1981                 cpu->epp_saved = -EINVAL;
1982         }
1983
1984         cpu = all_cpu_data[cpunum];
1985
1986         cpu->cpu = cpunum;
1987
1988         if (hwp_active) {
1989                 intel_pstate_hwp_enable(cpu);
1990                 pid_params.sample_rate_ms = 50;
1991                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1992         }
1993
1994         intel_pstate_get_cpu_pstates(cpu);
1995
1996         intel_pstate_busy_pid_reset(cpu);
1997
1998         pr_debug("controlling: cpu %d\n", cpunum);
1999
2000         return 0;
2001 }
2002
2003 static unsigned int intel_pstate_get(unsigned int cpu_num)
2004 {
2005         struct cpudata *cpu = all_cpu_data[cpu_num];
2006
2007         return cpu ? get_avg_frequency(cpu) : 0;
2008 }
2009
2010 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2011 {
2012         struct cpudata *cpu = all_cpu_data[cpu_num];
2013
2014         if (cpu->update_util_set)
2015                 return;
2016
2017         /* Prevent intel_pstate_update_util() from using stale data. */
2018         cpu->sample.time = 0;
2019         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2020                                      intel_pstate_update_util);
2021         cpu->update_util_set = true;
2022 }
2023
2024 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2025 {
2026         struct cpudata *cpu_data = all_cpu_data[cpu];
2027
2028         if (!cpu_data->update_util_set)
2029                 return;
2030
2031         cpufreq_remove_update_util_hook(cpu);
2032         cpu_data->update_util_set = false;
2033         synchronize_sched();
2034 }
2035
2036 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
2037 {
2038         limits->no_turbo = 0;
2039         limits->turbo_disabled = 0;
2040         limits->max_perf_pct = 100;
2041         limits->max_perf = int_ext_tofp(1);
2042         limits->min_perf_pct = 100;
2043         limits->min_perf = int_ext_tofp(1);
2044         limits->max_policy_pct = 100;
2045         limits->max_sysfs_pct = 100;
2046         limits->min_policy_pct = 0;
2047         limits->min_sysfs_pct = 0;
2048 }
2049
2050 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2051                                             struct perf_limits *limits)
2052 {
2053
2054         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2055                                               policy->cpuinfo.max_freq);
2056         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2057         if (policy->max == policy->min) {
2058                 limits->min_policy_pct = limits->max_policy_pct;
2059         } else {
2060                 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2061                                                       policy->cpuinfo.max_freq);
2062                 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2063                                                  0, 100);
2064         }
2065
2066         /* Normalize user input to [min_policy_pct, max_policy_pct] */
2067         limits->min_perf_pct = max(limits->min_policy_pct,
2068                                    limits->min_sysfs_pct);
2069         limits->min_perf_pct = min(limits->max_policy_pct,
2070                                    limits->min_perf_pct);
2071         limits->max_perf_pct = min(limits->max_policy_pct,
2072                                    limits->max_sysfs_pct);
2073         limits->max_perf_pct = max(limits->min_policy_pct,
2074                                    limits->max_perf_pct);
2075
2076         /* Make sure min_perf_pct <= max_perf_pct */
2077         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2078
2079         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2080         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2081         limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2082         limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2083
2084         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2085                  limits->max_perf_pct, limits->min_perf_pct);
2086 }
2087
2088 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2089 {
2090         struct cpudata *cpu;
2091         struct perf_limits *perf_limits = NULL;
2092
2093         if (!policy->cpuinfo.max_freq)
2094                 return -ENODEV;
2095
2096         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2097                  policy->cpuinfo.max_freq, policy->max);
2098
2099         cpu = all_cpu_data[policy->cpu];
2100         cpu->policy = policy->policy;
2101
2102         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2103             policy->max < policy->cpuinfo.max_freq &&
2104             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2105                 pr_debug("policy->max > max non turbo frequency\n");
2106                 policy->max = policy->cpuinfo.max_freq;
2107         }
2108
2109         if (per_cpu_limits)
2110                 perf_limits = cpu->perf_limits;
2111
2112         mutex_lock(&intel_pstate_limits_lock);
2113
2114         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2115                 if (!perf_limits) {
2116                         limits = &performance_limits;
2117                         perf_limits = limits;
2118                 }
2119                 if (policy->max >= policy->cpuinfo.max_freq &&
2120                     !limits->no_turbo) {
2121                         pr_debug("set performance\n");
2122                         intel_pstate_set_performance_limits(perf_limits);
2123                         goto out;
2124                 }
2125         } else {
2126                 pr_debug("set powersave\n");
2127                 if (!perf_limits) {
2128                         limits = &powersave_limits;
2129                         perf_limits = limits;
2130                 }
2131
2132         }
2133
2134         intel_pstate_update_perf_limits(policy, perf_limits);
2135  out:
2136         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2137                 /*
2138                  * NOHZ_FULL CPUs need this as the governor callback may not
2139                  * be invoked on them.
2140                  */
2141                 intel_pstate_clear_update_util_hook(policy->cpu);
2142                 intel_pstate_max_within_limits(cpu);
2143         }
2144
2145         intel_pstate_set_update_util_hook(policy->cpu);
2146
2147         intel_pstate_hwp_set_policy(policy);
2148
2149         mutex_unlock(&intel_pstate_limits_lock);
2150
2151         return 0;
2152 }
2153
2154 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2155 {
2156         cpufreq_verify_within_cpu_limits(policy);
2157
2158         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2159             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2160                 return -EINVAL;
2161
2162         /* When per-CPU limits are used, sysfs limits are not used */
2163         if (!per_cpu_limits) {
2164                 unsigned int max_freq, min_freq;
2165
2166                 max_freq = policy->cpuinfo.max_freq *
2167                                                 limits->max_sysfs_pct / 100;
2168                 min_freq = policy->cpuinfo.max_freq *
2169                                                 limits->min_sysfs_pct / 100;
2170                 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2171         }
2172
2173         return 0;
2174 }
2175
2176 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2177 {
2178         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2179 }
2180
2181 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2182 {
2183         pr_debug("CPU %d exiting\n", policy->cpu);
2184
2185         intel_pstate_clear_update_util_hook(policy->cpu);
2186         if (hwp_active)
2187                 intel_pstate_hwp_save_state(policy);
2188         else
2189                 intel_cpufreq_stop_cpu(policy);
2190 }
2191
2192 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2193 {
2194         intel_pstate_exit_perf_limits(policy);
2195
2196         policy->fast_switch_possible = false;
2197
2198         return 0;
2199 }
2200
2201 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2202 {
2203         struct cpudata *cpu;
2204         int rc;
2205
2206         rc = intel_pstate_init_cpu(policy->cpu);
2207         if (rc)
2208                 return rc;
2209
2210         cpu = all_cpu_data[policy->cpu];
2211
2212         /*
2213          * We need sane value in the cpu->perf_limits, so inherit from global
2214          * perf_limits limits, which are seeded with values based on the
2215          * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2216          */
2217         if (per_cpu_limits)
2218                 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2219
2220         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2221         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2222
2223         /* cpuinfo and default policy values */
2224         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2225         update_turbo_state();
2226         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2227                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2228         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2229
2230         intel_pstate_init_acpi_perf_limits(policy);
2231         cpumask_set_cpu(policy->cpu, policy->cpus);
2232
2233         policy->fast_switch_possible = true;
2234
2235         return 0;
2236 }
2237
2238 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2239 {
2240         int ret = __intel_pstate_cpu_init(policy);
2241
2242         if (ret)
2243                 return ret;
2244
2245         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2246         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2247                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2248         else
2249                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2250
2251         return 0;
2252 }
2253
2254 static struct cpufreq_driver intel_pstate = {
2255         .flags          = CPUFREQ_CONST_LOOPS,
2256         .verify         = intel_pstate_verify_policy,
2257         .setpolicy      = intel_pstate_set_policy,
2258         .suspend        = intel_pstate_hwp_save_state,
2259         .resume         = intel_pstate_resume,
2260         .get            = intel_pstate_get,
2261         .init           = intel_pstate_cpu_init,
2262         .exit           = intel_pstate_cpu_exit,
2263         .stop_cpu       = intel_pstate_stop_cpu,
2264         .name           = "intel_pstate",
2265 };
2266
2267 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2268 {
2269         struct cpudata *cpu = all_cpu_data[policy->cpu];
2270         struct perf_limits *perf_limits = limits;
2271
2272         update_turbo_state();
2273         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2274                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2275
2276         cpufreq_verify_within_cpu_limits(policy);
2277
2278         if (per_cpu_limits)
2279                 perf_limits = cpu->perf_limits;
2280
2281         mutex_lock(&intel_pstate_limits_lock);
2282
2283         intel_pstate_update_perf_limits(policy, perf_limits);
2284
2285         mutex_unlock(&intel_pstate_limits_lock);
2286
2287         return 0;
2288 }
2289
2290 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2291                                                struct cpufreq_policy *policy,
2292                                                unsigned int target_freq)
2293 {
2294         unsigned int max_freq;
2295
2296         update_turbo_state();
2297
2298         max_freq = limits->no_turbo || limits->turbo_disabled ?
2299                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2300         policy->cpuinfo.max_freq = max_freq;
2301         if (policy->max > max_freq)
2302                 policy->max = max_freq;
2303
2304         if (target_freq > max_freq)
2305                 target_freq = max_freq;
2306
2307         return target_freq;
2308 }
2309
2310 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2311                                 unsigned int target_freq,
2312                                 unsigned int relation)
2313 {
2314         struct cpudata *cpu = all_cpu_data[policy->cpu];
2315         struct cpufreq_freqs freqs;
2316         int target_pstate;
2317
2318         freqs.old = policy->cur;
2319         freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2320
2321         cpufreq_freq_transition_begin(policy, &freqs);
2322         switch (relation) {
2323         case CPUFREQ_RELATION_L:
2324                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2325                 break;
2326         case CPUFREQ_RELATION_H:
2327                 target_pstate = freqs.new / cpu->pstate.scaling;
2328                 break;
2329         default:
2330                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2331                 break;
2332         }
2333         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2334         if (target_pstate != cpu->pstate.current_pstate) {
2335                 cpu->pstate.current_pstate = target_pstate;
2336                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2337                               pstate_funcs.get_val(cpu, target_pstate));
2338         }
2339         cpufreq_freq_transition_end(policy, &freqs, false);
2340
2341         return 0;
2342 }
2343
2344 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2345                                               unsigned int target_freq)
2346 {
2347         struct cpudata *cpu = all_cpu_data[policy->cpu];
2348         int target_pstate;
2349
2350         target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2351         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2352         intel_pstate_update_pstate(cpu, target_pstate);
2353         return target_freq;
2354 }
2355
2356 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2357 {
2358         int ret = __intel_pstate_cpu_init(policy);
2359
2360         if (ret)
2361                 return ret;
2362
2363         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2364         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2365         policy->cur = policy->cpuinfo.min_freq;
2366
2367         return 0;
2368 }
2369
2370 static struct cpufreq_driver intel_cpufreq = {
2371         .flags          = CPUFREQ_CONST_LOOPS,
2372         .verify         = intel_cpufreq_verify_policy,
2373         .target         = intel_cpufreq_target,
2374         .fast_switch    = intel_cpufreq_fast_switch,
2375         .init           = intel_cpufreq_cpu_init,
2376         .exit           = intel_pstate_cpu_exit,
2377         .stop_cpu       = intel_cpufreq_stop_cpu,
2378         .name           = "intel_cpufreq",
2379 };
2380
2381 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2382
2383 static void intel_pstate_driver_cleanup(void)
2384 {
2385         unsigned int cpu;
2386
2387         get_online_cpus();
2388         for_each_online_cpu(cpu) {
2389                 if (all_cpu_data[cpu]) {
2390                         if (intel_pstate_driver == &intel_pstate)
2391                                 intel_pstate_clear_update_util_hook(cpu);
2392
2393                         kfree(all_cpu_data[cpu]);
2394                         all_cpu_data[cpu] = NULL;
2395                 }
2396         }
2397         put_online_cpus();
2398 }
2399
2400 static int intel_pstate_register_driver(void)
2401 {
2402         int ret;
2403
2404         ret = cpufreq_register_driver(intel_pstate_driver);
2405         if (ret) {
2406                 intel_pstate_driver_cleanup();
2407                 return ret;
2408         }
2409
2410         mutex_lock(&intel_pstate_limits_lock);
2411         driver_registered = true;
2412         mutex_unlock(&intel_pstate_limits_lock);
2413
2414         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2415             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2416                 intel_pstate_debug_expose_params();
2417
2418         return 0;
2419 }
2420
2421 static int intel_pstate_unregister_driver(void)
2422 {
2423         if (hwp_active)
2424                 return -EBUSY;
2425
2426         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2427             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2428                 intel_pstate_debug_hide_params();
2429
2430         mutex_lock(&intel_pstate_limits_lock);
2431         driver_registered = false;
2432         mutex_unlock(&intel_pstate_limits_lock);
2433
2434         cpufreq_unregister_driver(intel_pstate_driver);
2435         intel_pstate_driver_cleanup();
2436
2437         return 0;
2438 }
2439
2440 static ssize_t intel_pstate_show_status(char *buf)
2441 {
2442         if (!driver_registered)
2443                 return sprintf(buf, "off\n");
2444
2445         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2446                                         "active" : "passive");
2447 }
2448
2449 static int intel_pstate_update_status(const char *buf, size_t size)
2450 {
2451         int ret;
2452
2453         if (size == 3 && !strncmp(buf, "off", size))
2454                 return driver_registered ?
2455                         intel_pstate_unregister_driver() : -EINVAL;
2456
2457         if (size == 6 && !strncmp(buf, "active", size)) {
2458                 if (driver_registered) {
2459                         if (intel_pstate_driver == &intel_pstate)
2460                                 return 0;
2461
2462                         ret = intel_pstate_unregister_driver();
2463                         if (ret)
2464                                 return ret;
2465                 }
2466
2467                 intel_pstate_driver = &intel_pstate;
2468                 return intel_pstate_register_driver();
2469         }
2470
2471         if (size == 7 && !strncmp(buf, "passive", size)) {
2472                 if (driver_registered) {
2473                         if (intel_pstate_driver != &intel_pstate)
2474                                 return 0;
2475
2476                         ret = intel_pstate_unregister_driver();
2477                         if (ret)
2478                                 return ret;
2479                 }
2480
2481                 intel_pstate_driver = &intel_cpufreq;
2482                 return intel_pstate_register_driver();
2483         }
2484
2485         return -EINVAL;
2486 }
2487
2488 static int no_load __initdata;
2489 static int no_hwp __initdata;
2490 static int hwp_only __initdata;
2491 static unsigned int force_load __initdata;
2492
2493 static int __init intel_pstate_msrs_not_valid(void)
2494 {
2495         if (!pstate_funcs.get_max() ||
2496             !pstate_funcs.get_min() ||
2497             !pstate_funcs.get_turbo())
2498                 return -ENODEV;
2499
2500         return 0;
2501 }
2502
2503 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2504 {
2505         pid_params.sample_rate_ms = policy->sample_rate_ms;
2506         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2507         pid_params.p_gain_pct = policy->p_gain_pct;
2508         pid_params.i_gain_pct = policy->i_gain_pct;
2509         pid_params.d_gain_pct = policy->d_gain_pct;
2510         pid_params.deadband = policy->deadband;
2511         pid_params.setpoint = policy->setpoint;
2512 }
2513
2514 #ifdef CONFIG_ACPI
2515 static void intel_pstate_use_acpi_profile(void)
2516 {
2517         if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2518                 pstate_funcs.get_target_pstate =
2519                                 get_target_pstate_use_cpu_load;
2520 }
2521 #else
2522 static void intel_pstate_use_acpi_profile(void)
2523 {
2524 }
2525 #endif
2526
2527 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2528 {
2529         pstate_funcs.get_max   = funcs->get_max;
2530         pstate_funcs.get_max_physical = funcs->get_max_physical;
2531         pstate_funcs.get_min   = funcs->get_min;
2532         pstate_funcs.get_turbo = funcs->get_turbo;
2533         pstate_funcs.get_scaling = funcs->get_scaling;
2534         pstate_funcs.get_val   = funcs->get_val;
2535         pstate_funcs.get_vid   = funcs->get_vid;
2536         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2537
2538         intel_pstate_use_acpi_profile();
2539 }
2540
2541 #ifdef CONFIG_ACPI
2542
2543 static bool __init intel_pstate_no_acpi_pss(void)
2544 {
2545         int i;
2546
2547         for_each_possible_cpu(i) {
2548                 acpi_status status;
2549                 union acpi_object *pss;
2550                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2551                 struct acpi_processor *pr = per_cpu(processors, i);
2552
2553                 if (!pr)
2554                         continue;
2555
2556                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2557                 if (ACPI_FAILURE(status))
2558                         continue;
2559
2560                 pss = buffer.pointer;
2561                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2562                         kfree(pss);
2563                         return false;
2564                 }
2565
2566                 kfree(pss);
2567         }
2568
2569         return true;
2570 }
2571
2572 static bool __init intel_pstate_has_acpi_ppc(void)
2573 {
2574         int i;
2575
2576         for_each_possible_cpu(i) {
2577                 struct acpi_processor *pr = per_cpu(processors, i);
2578
2579                 if (!pr)
2580                         continue;
2581                 if (acpi_has_method(pr->handle, "_PPC"))
2582                         return true;
2583         }
2584         return false;
2585 }
2586
2587 enum {
2588         PSS,
2589         PPC,
2590 };
2591
2592 struct hw_vendor_info {
2593         u16  valid;
2594         char oem_id[ACPI_OEM_ID_SIZE];
2595         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2596         int  oem_pwr_table;
2597 };
2598
2599 /* Hardware vendor-specific info that has its own power management modes */
2600 static struct hw_vendor_info vendor_info[] __initdata = {
2601         {1, "HP    ", "ProLiant", PSS},
2602         {1, "ORACLE", "X4-2    ", PPC},
2603         {1, "ORACLE", "X4-2L   ", PPC},
2604         {1, "ORACLE", "X4-2B   ", PPC},
2605         {1, "ORACLE", "X3-2    ", PPC},
2606         {1, "ORACLE", "X3-2L   ", PPC},
2607         {1, "ORACLE", "X3-2B   ", PPC},
2608         {1, "ORACLE", "X4470M2 ", PPC},
2609         {1, "ORACLE", "X4270M3 ", PPC},
2610         {1, "ORACLE", "X4270M2 ", PPC},
2611         {1, "ORACLE", "X4170M2 ", PPC},
2612         {1, "ORACLE", "X4170 M3", PPC},
2613         {1, "ORACLE", "X4275 M3", PPC},
2614         {1, "ORACLE", "X6-2    ", PPC},
2615         {1, "ORACLE", "Sudbury ", PPC},
2616         {0, "", ""},
2617 };
2618
2619 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2620 {
2621         struct acpi_table_header hdr;
2622         struct hw_vendor_info *v_info;
2623         const struct x86_cpu_id *id;
2624         u64 misc_pwr;
2625
2626         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2627         if (id) {
2628                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2629                 if ( misc_pwr & (1 << 8))
2630                         return true;
2631         }
2632
2633         if (acpi_disabled ||
2634             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2635                 return false;
2636
2637         for (v_info = vendor_info; v_info->valid; v_info++) {
2638                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2639                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2640                                                 ACPI_OEM_TABLE_ID_SIZE))
2641                         switch (v_info->oem_pwr_table) {
2642                         case PSS:
2643                                 return intel_pstate_no_acpi_pss();
2644                         case PPC:
2645                                 return intel_pstate_has_acpi_ppc() &&
2646                                         (!force_load);
2647                         }
2648         }
2649
2650         return false;
2651 }
2652
2653 static void intel_pstate_request_control_from_smm(void)
2654 {
2655         /*
2656          * It may be unsafe to request P-states control from SMM if _PPC support
2657          * has not been enabled.
2658          */
2659         if (acpi_ppc)
2660                 acpi_processor_pstate_control();
2661 }
2662 #else /* CONFIG_ACPI not enabled */
2663 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2664 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2665 static inline void intel_pstate_request_control_from_smm(void) {}
2666 #endif /* CONFIG_ACPI */
2667
2668 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2669         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2670         {}
2671 };
2672
2673 static int __init intel_pstate_init(void)
2674 {
2675         const struct x86_cpu_id *id;
2676         struct cpu_defaults *cpu_def;
2677         int rc = 0;
2678
2679         if (no_load)
2680                 return -ENODEV;
2681
2682         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2683                 copy_cpu_funcs(&core_params.funcs);
2684                 hwp_active++;
2685                 intel_pstate.attr = hwp_cpufreq_attrs;
2686                 goto hwp_cpu_matched;
2687         }
2688
2689         id = x86_match_cpu(intel_pstate_cpu_ids);
2690         if (!id)
2691                 return -ENODEV;
2692
2693         cpu_def = (struct cpu_defaults *)id->driver_data;
2694
2695         copy_pid_params(&cpu_def->pid_policy);
2696         copy_cpu_funcs(&cpu_def->funcs);
2697
2698         if (intel_pstate_msrs_not_valid())
2699                 return -ENODEV;
2700
2701 hwp_cpu_matched:
2702         /*
2703          * The Intel pstate driver will be ignored if the platform
2704          * firmware has its own power management modes.
2705          */
2706         if (intel_pstate_platform_pwr_mgmt_exists())
2707                 return -ENODEV;
2708
2709         if (!hwp_active && hwp_only)
2710                 return -ENOTSUPP;
2711
2712         pr_info("Intel P-state driver initializing\n");
2713
2714         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2715         if (!all_cpu_data)
2716                 return -ENOMEM;
2717
2718         intel_pstate_request_control_from_smm();
2719
2720         intel_pstate_sysfs_expose_params();
2721
2722         mutex_lock(&intel_pstate_driver_lock);
2723         rc = intel_pstate_register_driver();
2724         mutex_unlock(&intel_pstate_driver_lock);
2725         if (rc)
2726                 return rc;
2727
2728         if (hwp_active)
2729                 pr_info("HWP enabled\n");
2730
2731         return 0;
2732 }
2733 device_initcall(intel_pstate_init);
2734
2735 static int __init intel_pstate_setup(char *str)
2736 {
2737         if (!str)
2738                 return -EINVAL;
2739
2740         if (!strcmp(str, "disable")) {
2741                 no_load = 1;
2742         } else if (!strcmp(str, "passive")) {
2743                 pr_info("Passive mode enabled\n");
2744                 intel_pstate_driver = &intel_cpufreq;
2745                 no_hwp = 1;
2746         }
2747         if (!strcmp(str, "no_hwp")) {
2748                 pr_info("HWP disabled\n");
2749                 no_hwp = 1;
2750         }
2751         if (!strcmp(str, "force"))
2752                 force_load = 1;
2753         if (!strcmp(str, "hwp_only"))
2754                 hwp_only = 1;
2755         if (!strcmp(str, "per_cpu_perf_limits"))
2756                 per_cpu_limits = true;
2757
2758 #ifdef CONFIG_ACPI
2759         if (!strcmp(str, "support_acpi_ppc"))
2760                 acpi_ppc = true;
2761 #endif
2762
2763         return 0;
2764 }
2765 early_param("intel_pstate", intel_pstate_setup);
2766
2767 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2768 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2769 MODULE_LICENSE("GPL");