]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/crypto/atmel-sha.c
Linux 5.6-rc7
[linux.git] / drivers / crypto / atmel-sha.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL SHA1/SHA256 HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-sham.c drivers.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <linux/cryptohash.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/algapi.h>
37 #include <crypto/sha.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42
43 #define ATMEL_SHA_PRIORITY      300
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY                  BIT(0)
47 #define SHA_FLAGS_FINAL                 BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
50 #define SHA_FLAGS_INIT                  BIT(4)
51 #define SHA_FLAGS_CPU                   BIT(5)
52 #define SHA_FLAGS_DMA_READY             BIT(6)
53 #define SHA_FLAGS_DUMP_REG      BIT(7)
54
55 /* bits[11:8] are reserved. */
56
57 #define SHA_FLAGS_FINUP         BIT(16)
58 #define SHA_FLAGS_SG            BIT(17)
59 #define SHA_FLAGS_ERROR         BIT(23)
60 #define SHA_FLAGS_PAD           BIT(24)
61 #define SHA_FLAGS_RESTORE       BIT(25)
62 #define SHA_FLAGS_IDATAR0       BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
64
65 #define SHA_OP_INIT     0
66 #define SHA_OP_UPDATE   1
67 #define SHA_OP_FINAL    2
68 #define SHA_OP_DIGEST   3
69
70 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
71
72 #define ATMEL_SHA_DMA_THRESHOLD         56
73
74 struct atmel_sha_caps {
75         bool    has_dma;
76         bool    has_dualbuff;
77         bool    has_sha224;
78         bool    has_sha_384_512;
79         bool    has_uihv;
80         bool    has_hmac;
81 };
82
83 struct atmel_sha_dev;
84
85 /*
86  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87  * tested by the ahash_prepare_alg() function.
88  */
89 struct atmel_sha_reqctx {
90         struct atmel_sha_dev    *dd;
91         unsigned long   flags;
92         unsigned long   op;
93
94         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95         u64     digcnt[2];
96         size_t  bufcnt;
97         size_t  buflen;
98         dma_addr_t      dma_addr;
99
100         /* walk state */
101         struct scatterlist      *sg;
102         unsigned int    offset; /* offset in current sg */
103         unsigned int    total;  /* total request */
104
105         size_t block_size;
106         size_t hash_size;
107
108         u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109 };
110
111 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113 struct atmel_sha_ctx {
114         struct atmel_sha_dev    *dd;
115         atmel_sha_fn_t          start;
116
117         unsigned long           flags;
118 };
119
120 #define ATMEL_SHA_QUEUE_LENGTH  50
121
122 struct atmel_sha_dma {
123         struct dma_chan                 *chan;
124         struct dma_slave_config dma_conf;
125         struct scatterlist      *sg;
126         int                     nents;
127         unsigned int            last_sg_length;
128 };
129
130 struct atmel_sha_dev {
131         struct list_head        list;
132         unsigned long           phys_base;
133         struct device           *dev;
134         struct clk                      *iclk;
135         int                                     irq;
136         void __iomem            *io_base;
137
138         spinlock_t              lock;
139         struct tasklet_struct   done_task;
140         struct tasklet_struct   queue_task;
141
142         unsigned long           flags;
143         struct crypto_queue     queue;
144         struct ahash_request    *req;
145         bool                    is_async;
146         bool                    force_complete;
147         atmel_sha_fn_t          resume;
148         atmel_sha_fn_t          cpu_transfer_complete;
149
150         struct atmel_sha_dma    dma_lch_in;
151
152         struct atmel_sha_caps   caps;
153
154         struct scatterlist      tmp;
155
156         u32     hw_version;
157 };
158
159 struct atmel_sha_drv {
160         struct list_head        dev_list;
161         spinlock_t              lock;
162 };
163
164 static struct atmel_sha_drv atmel_sha = {
165         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167 };
168
169 #ifdef VERBOSE_DEBUG
170 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171 {
172         switch (offset) {
173         case SHA_CR:
174                 return "CR";
175
176         case SHA_MR:
177                 return "MR";
178
179         case SHA_IER:
180                 return "IER";
181
182         case SHA_IDR:
183                 return "IDR";
184
185         case SHA_IMR:
186                 return "IMR";
187
188         case SHA_ISR:
189                 return "ISR";
190
191         case SHA_MSR:
192                 return "MSR";
193
194         case SHA_BCR:
195                 return "BCR";
196
197         case SHA_REG_DIN(0):
198         case SHA_REG_DIN(1):
199         case SHA_REG_DIN(2):
200         case SHA_REG_DIN(3):
201         case SHA_REG_DIN(4):
202         case SHA_REG_DIN(5):
203         case SHA_REG_DIN(6):
204         case SHA_REG_DIN(7):
205         case SHA_REG_DIN(8):
206         case SHA_REG_DIN(9):
207         case SHA_REG_DIN(10):
208         case SHA_REG_DIN(11):
209         case SHA_REG_DIN(12):
210         case SHA_REG_DIN(13):
211         case SHA_REG_DIN(14):
212         case SHA_REG_DIN(15):
213                 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214                 break;
215
216         case SHA_REG_DIGEST(0):
217         case SHA_REG_DIGEST(1):
218         case SHA_REG_DIGEST(2):
219         case SHA_REG_DIGEST(3):
220         case SHA_REG_DIGEST(4):
221         case SHA_REG_DIGEST(5):
222         case SHA_REG_DIGEST(6):
223         case SHA_REG_DIGEST(7):
224         case SHA_REG_DIGEST(8):
225         case SHA_REG_DIGEST(9):
226         case SHA_REG_DIGEST(10):
227         case SHA_REG_DIGEST(11):
228         case SHA_REG_DIGEST(12):
229         case SHA_REG_DIGEST(13):
230         case SHA_REG_DIGEST(14):
231         case SHA_REG_DIGEST(15):
232                 if (wr)
233                         snprintf(tmp, sz, "IDATAR[%u]",
234                                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235                 else
236                         snprintf(tmp, sz, "ODATAR[%u]",
237                                  (offset - SHA_REG_DIGEST(0)) >> 2);
238                 break;
239
240         case SHA_HW_VERSION:
241                 return "HWVER";
242
243         default:
244                 snprintf(tmp, sz, "0x%02x", offset);
245                 break;
246         }
247
248         return tmp;
249 }
250
251 #endif /* VERBOSE_DEBUG */
252
253 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254 {
255         u32 value = readl_relaxed(dd->io_base + offset);
256
257 #ifdef VERBOSE_DEBUG
258         if (dd->flags & SHA_FLAGS_DUMP_REG) {
259                 char tmp[16];
260
261                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263         }
264 #endif /* VERBOSE_DEBUG */
265
266         return value;
267 }
268
269 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270                                         u32 offset, u32 value)
271 {
272 #ifdef VERBOSE_DEBUG
273         if (dd->flags & SHA_FLAGS_DUMP_REG) {
274                 char tmp[16];
275
276                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278         }
279 #endif /* VERBOSE_DEBUG */
280
281         writel_relaxed(value, dd->io_base + offset);
282 }
283
284 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285 {
286         struct ahash_request *req = dd->req;
287
288         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289                        SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290                        SHA_FLAGS_DUMP_REG);
291
292         clk_disable(dd->iclk);
293
294         if ((dd->is_async || dd->force_complete) && req->base.complete)
295                 req->base.complete(&req->base, err);
296
297         /* handle new request */
298         tasklet_schedule(&dd->queue_task);
299
300         return err;
301 }
302
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304 {
305         size_t count;
306
307         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308                 count = min(ctx->sg->length - ctx->offset, ctx->total);
309                 count = min(count, ctx->buflen - ctx->bufcnt);
310
311                 if (count <= 0) {
312                         /*
313                         * Check if count <= 0 because the buffer is full or
314                         * because the sg length is 0. In the latest case,
315                         * check if there is another sg in the list, a 0 length
316                         * sg doesn't necessarily mean the end of the sg list.
317                         */
318                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319                                 ctx->sg = sg_next(ctx->sg);
320                                 continue;
321                         } else {
322                                 break;
323                         }
324                 }
325
326                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327                         ctx->offset, count, 0);
328
329                 ctx->bufcnt += count;
330                 ctx->offset += count;
331                 ctx->total -= count;
332
333                 if (ctx->offset == ctx->sg->length) {
334                         ctx->sg = sg_next(ctx->sg);
335                         if (ctx->sg)
336                                 ctx->offset = 0;
337                         else
338                                 ctx->total = 0;
339                 }
340         }
341
342         return 0;
343 }
344
345 /*
346  * The purpose of this padding is to ensure that the padded message is a
347  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348  * The bit "1" is appended at the end of the message followed by
349  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350  * 128 bits block (SHA384/SHA512) equals to the message length in bits
351  * is appended.
352  *
353  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354  *  - if message length < 56 bytes then padlen = 56 - message length
355  *  - else padlen = 64 + 56 - message length
356  *
357  * For SHA384/SHA512, padlen is calculated as followed:
358  *  - if message length < 112 bytes then padlen = 112 - message length
359  *  - else padlen = 128 + 112 - message length
360  */
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362 {
363         unsigned int index, padlen;
364         __be64 bits[2];
365         u64 size[2];
366
367         size[0] = ctx->digcnt[0];
368         size[1] = ctx->digcnt[1];
369
370         size[0] += ctx->bufcnt;
371         if (size[0] < ctx->bufcnt)
372                 size[1]++;
373
374         size[0] += length;
375         if (size[0]  < length)
376                 size[1]++;
377
378         bits[1] = cpu_to_be64(size[0] << 3);
379         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382         case SHA_FLAGS_SHA384:
383         case SHA_FLAGS_SHA512:
384                 index = ctx->bufcnt & 0x7f;
385                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386                 *(ctx->buffer + ctx->bufcnt) = 0x80;
387                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389                 ctx->bufcnt += padlen + 16;
390                 ctx->flags |= SHA_FLAGS_PAD;
391                 break;
392
393         default:
394                 index = ctx->bufcnt & 0x3f;
395                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396                 *(ctx->buffer + ctx->bufcnt) = 0x80;
397                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399                 ctx->bufcnt += padlen + 8;
400                 ctx->flags |= SHA_FLAGS_PAD;
401                 break;
402         }
403 }
404
405 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406 {
407         struct atmel_sha_dev *dd = NULL;
408         struct atmel_sha_dev *tmp;
409
410         spin_lock_bh(&atmel_sha.lock);
411         if (!tctx->dd) {
412                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413                         dd = tmp;
414                         break;
415                 }
416                 tctx->dd = dd;
417         } else {
418                 dd = tctx->dd;
419         }
420
421         spin_unlock_bh(&atmel_sha.lock);
422
423         return dd;
424 }
425
426 static int atmel_sha_init(struct ahash_request *req)
427 {
428         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431         struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433         ctx->dd = dd;
434
435         ctx->flags = 0;
436
437         dev_dbg(dd->dev, "init: digest size: %d\n",
438                 crypto_ahash_digestsize(tfm));
439
440         switch (crypto_ahash_digestsize(tfm)) {
441         case SHA1_DIGEST_SIZE:
442                 ctx->flags |= SHA_FLAGS_SHA1;
443                 ctx->block_size = SHA1_BLOCK_SIZE;
444                 break;
445         case SHA224_DIGEST_SIZE:
446                 ctx->flags |= SHA_FLAGS_SHA224;
447                 ctx->block_size = SHA224_BLOCK_SIZE;
448                 break;
449         case SHA256_DIGEST_SIZE:
450                 ctx->flags |= SHA_FLAGS_SHA256;
451                 ctx->block_size = SHA256_BLOCK_SIZE;
452                 break;
453         case SHA384_DIGEST_SIZE:
454                 ctx->flags |= SHA_FLAGS_SHA384;
455                 ctx->block_size = SHA384_BLOCK_SIZE;
456                 break;
457         case SHA512_DIGEST_SIZE:
458                 ctx->flags |= SHA_FLAGS_SHA512;
459                 ctx->block_size = SHA512_BLOCK_SIZE;
460                 break;
461         default:
462                 return -EINVAL;
463                 break;
464         }
465
466         ctx->bufcnt = 0;
467         ctx->digcnt[0] = 0;
468         ctx->digcnt[1] = 0;
469         ctx->buflen = SHA_BUFFER_LEN;
470
471         return 0;
472 }
473
474 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
475 {
476         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
477         u32 valmr = SHA_MR_MODE_AUTO;
478         unsigned int i, hashsize = 0;
479
480         if (likely(dma)) {
481                 if (!dd->caps.has_dma)
482                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
483                 valmr = SHA_MR_MODE_PDC;
484                 if (dd->caps.has_dualbuff)
485                         valmr |= SHA_MR_DUALBUFF;
486         } else {
487                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
488         }
489
490         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
491         case SHA_FLAGS_SHA1:
492                 valmr |= SHA_MR_ALGO_SHA1;
493                 hashsize = SHA1_DIGEST_SIZE;
494                 break;
495
496         case SHA_FLAGS_SHA224:
497                 valmr |= SHA_MR_ALGO_SHA224;
498                 hashsize = SHA256_DIGEST_SIZE;
499                 break;
500
501         case SHA_FLAGS_SHA256:
502                 valmr |= SHA_MR_ALGO_SHA256;
503                 hashsize = SHA256_DIGEST_SIZE;
504                 break;
505
506         case SHA_FLAGS_SHA384:
507                 valmr |= SHA_MR_ALGO_SHA384;
508                 hashsize = SHA512_DIGEST_SIZE;
509                 break;
510
511         case SHA_FLAGS_SHA512:
512                 valmr |= SHA_MR_ALGO_SHA512;
513                 hashsize = SHA512_DIGEST_SIZE;
514                 break;
515
516         default:
517                 break;
518         }
519
520         /* Setting CR_FIRST only for the first iteration */
521         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
522                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
523         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
524                 const u32 *hash = (const u32 *)ctx->digest;
525
526                 /*
527                  * Restore the hardware context: update the User Initialize
528                  * Hash Value (UIHV) with the value saved when the latest
529                  * 'update' operation completed on this very same crypto
530                  * request.
531                  */
532                 ctx->flags &= ~SHA_FLAGS_RESTORE;
533                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
534                 for (i = 0; i < hashsize / sizeof(u32); ++i)
535                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
536                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
537                 valmr |= SHA_MR_UIHV;
538         }
539         /*
540          * WARNING: If the UIHV feature is not available, the hardware CANNOT
541          * process concurrent requests: the internal registers used to store
542          * the hash/digest are still set to the partial digest output values
543          * computed during the latest round.
544          */
545
546         atmel_sha_write(dd, SHA_MR, valmr);
547 }
548
549 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
550                                                 atmel_sha_fn_t resume)
551 {
552         u32 isr = atmel_sha_read(dd, SHA_ISR);
553
554         if (unlikely(isr & SHA_INT_DATARDY))
555                 return resume(dd);
556
557         dd->resume = resume;
558         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
559         return -EINPROGRESS;
560 }
561
562 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
563                               size_t length, int final)
564 {
565         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
566         int count, len32;
567         const u32 *buffer = (const u32 *)buf;
568
569         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
570                 ctx->digcnt[1], ctx->digcnt[0], length, final);
571
572         atmel_sha_write_ctrl(dd, 0);
573
574         /* should be non-zero before next lines to disable clocks later */
575         ctx->digcnt[0] += length;
576         if (ctx->digcnt[0] < length)
577                 ctx->digcnt[1]++;
578
579         if (final)
580                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
581
582         len32 = DIV_ROUND_UP(length, sizeof(u32));
583
584         dd->flags |= SHA_FLAGS_CPU;
585
586         for (count = 0; count < len32; count++)
587                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
588
589         return -EINPROGRESS;
590 }
591
592 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
593                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
594 {
595         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
596         int len32;
597
598         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
599                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
600
601         len32 = DIV_ROUND_UP(length1, sizeof(u32));
602         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
603         atmel_sha_write(dd, SHA_TPR, dma_addr1);
604         atmel_sha_write(dd, SHA_TCR, len32);
605
606         len32 = DIV_ROUND_UP(length2, sizeof(u32));
607         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
608         atmel_sha_write(dd, SHA_TNCR, len32);
609
610         atmel_sha_write_ctrl(dd, 1);
611
612         /* should be non-zero before next lines to disable clocks later */
613         ctx->digcnt[0] += length1;
614         if (ctx->digcnt[0] < length1)
615                 ctx->digcnt[1]++;
616
617         if (final)
618                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
619
620         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
621
622         /* Start DMA transfer */
623         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
624
625         return -EINPROGRESS;
626 }
627
628 static void atmel_sha_dma_callback(void *data)
629 {
630         struct atmel_sha_dev *dd = data;
631
632         dd->is_async = true;
633
634         /* dma_lch_in - completed - wait DATRDY */
635         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
636 }
637
638 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
639                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
640 {
641         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
642         struct dma_async_tx_descriptor  *in_desc;
643         struct scatterlist sg[2];
644
645         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
646                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
647
648         dd->dma_lch_in.dma_conf.src_maxburst = 16;
649         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
650
651         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
652
653         if (length2) {
654                 sg_init_table(sg, 2);
655                 sg_dma_address(&sg[0]) = dma_addr1;
656                 sg_dma_len(&sg[0]) = length1;
657                 sg_dma_address(&sg[1]) = dma_addr2;
658                 sg_dma_len(&sg[1]) = length2;
659                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
660                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
661         } else {
662                 sg_init_table(sg, 1);
663                 sg_dma_address(&sg[0]) = dma_addr1;
664                 sg_dma_len(&sg[0]) = length1;
665                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
666                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
667         }
668         if (!in_desc)
669                 return atmel_sha_complete(dd, -EINVAL);
670
671         in_desc->callback = atmel_sha_dma_callback;
672         in_desc->callback_param = dd;
673
674         atmel_sha_write_ctrl(dd, 1);
675
676         /* should be non-zero before next lines to disable clocks later */
677         ctx->digcnt[0] += length1;
678         if (ctx->digcnt[0] < length1)
679                 ctx->digcnt[1]++;
680
681         if (final)
682                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
683
684         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
685
686         /* Start DMA transfer */
687         dmaengine_submit(in_desc);
688         dma_async_issue_pending(dd->dma_lch_in.chan);
689
690         return -EINPROGRESS;
691 }
692
693 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
694                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
695 {
696         if (dd->caps.has_dma)
697                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
698                                 dma_addr2, length2, final);
699         else
700                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
701                                 dma_addr2, length2, final);
702 }
703
704 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
705 {
706         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
707         int bufcnt;
708
709         atmel_sha_append_sg(ctx);
710         atmel_sha_fill_padding(ctx, 0);
711         bufcnt = ctx->bufcnt;
712         ctx->bufcnt = 0;
713
714         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
715 }
716
717 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
718                                         struct atmel_sha_reqctx *ctx,
719                                         size_t length, int final)
720 {
721         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
722                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
723         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
724                 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
725                                 ctx->block_size);
726                 return atmel_sha_complete(dd, -EINVAL);
727         }
728
729         ctx->flags &= ~SHA_FLAGS_SG;
730
731         /* next call does not fail... so no unmap in the case of error */
732         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
733 }
734
735 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
736 {
737         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
738         unsigned int final;
739         size_t count;
740
741         atmel_sha_append_sg(ctx);
742
743         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
744
745         dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
746                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
747
748         if (final)
749                 atmel_sha_fill_padding(ctx, 0);
750
751         if (final || (ctx->bufcnt == ctx->buflen)) {
752                 count = ctx->bufcnt;
753                 ctx->bufcnt = 0;
754                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
755         }
756
757         return 0;
758 }
759
760 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
761 {
762         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
763         unsigned int length, final, tail;
764         struct scatterlist *sg;
765         unsigned int count;
766
767         if (!ctx->total)
768                 return 0;
769
770         if (ctx->bufcnt || ctx->offset)
771                 return atmel_sha_update_dma_slow(dd);
772
773         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
774                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
775
776         sg = ctx->sg;
777
778         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
779                 return atmel_sha_update_dma_slow(dd);
780
781         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
782                 /* size is not ctx->block_size aligned */
783                 return atmel_sha_update_dma_slow(dd);
784
785         length = min(ctx->total, sg->length);
786
787         if (sg_is_last(sg)) {
788                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
789                         /* not last sg must be ctx->block_size aligned */
790                         tail = length & (ctx->block_size - 1);
791                         length -= tail;
792                 }
793         }
794
795         ctx->total -= length;
796         ctx->offset = length; /* offset where to start slow */
797
798         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
799
800         /* Add padding */
801         if (final) {
802                 tail = length & (ctx->block_size - 1);
803                 length -= tail;
804                 ctx->total += tail;
805                 ctx->offset = length; /* offset where to start slow */
806
807                 sg = ctx->sg;
808                 atmel_sha_append_sg(ctx);
809
810                 atmel_sha_fill_padding(ctx, length);
811
812                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
813                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
814                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
815                         dev_err(dd->dev, "dma %zu bytes error\n",
816                                 ctx->buflen + ctx->block_size);
817                         return atmel_sha_complete(dd, -EINVAL);
818                 }
819
820                 if (length == 0) {
821                         ctx->flags &= ~SHA_FLAGS_SG;
822                         count = ctx->bufcnt;
823                         ctx->bufcnt = 0;
824                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
825                                         0, final);
826                 } else {
827                         ctx->sg = sg;
828                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
829                                 DMA_TO_DEVICE)) {
830                                         dev_err(dd->dev, "dma_map_sg  error\n");
831                                         return atmel_sha_complete(dd, -EINVAL);
832                         }
833
834                         ctx->flags |= SHA_FLAGS_SG;
835
836                         count = ctx->bufcnt;
837                         ctx->bufcnt = 0;
838                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
839                                         length, ctx->dma_addr, count, final);
840                 }
841         }
842
843         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
844                 dev_err(dd->dev, "dma_map_sg  error\n");
845                 return atmel_sha_complete(dd, -EINVAL);
846         }
847
848         ctx->flags |= SHA_FLAGS_SG;
849
850         /* next call does not fail... so no unmap in the case of error */
851         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
852                                                                 0, final);
853 }
854
855 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
856 {
857         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
858
859         if (ctx->flags & SHA_FLAGS_SG) {
860                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
861                 if (ctx->sg->length == ctx->offset) {
862                         ctx->sg = sg_next(ctx->sg);
863                         if (ctx->sg)
864                                 ctx->offset = 0;
865                 }
866                 if (ctx->flags & SHA_FLAGS_PAD) {
867                         dma_unmap_single(dd->dev, ctx->dma_addr,
868                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
869                 }
870         } else {
871                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
872                                                 ctx->block_size, DMA_TO_DEVICE);
873         }
874 }
875
876 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
877 {
878         struct ahash_request *req = dd->req;
879         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
880         int err;
881
882         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
883                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
884
885         if (ctx->flags & SHA_FLAGS_CPU)
886                 err = atmel_sha_update_cpu(dd);
887         else
888                 err = atmel_sha_update_dma_start(dd);
889
890         /* wait for dma completion before can take more data */
891         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
892                         err, ctx->digcnt[1], ctx->digcnt[0]);
893
894         return err;
895 }
896
897 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
898 {
899         struct ahash_request *req = dd->req;
900         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
901         int err = 0;
902         int count;
903
904         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
905                 atmel_sha_fill_padding(ctx, 0);
906                 count = ctx->bufcnt;
907                 ctx->bufcnt = 0;
908                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
909         }
910         /* faster to handle last block with cpu */
911         else {
912                 atmel_sha_fill_padding(ctx, 0);
913                 count = ctx->bufcnt;
914                 ctx->bufcnt = 0;
915                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
916         }
917
918         dev_dbg(dd->dev, "final_req: err: %d\n", err);
919
920         return err;
921 }
922
923 static void atmel_sha_copy_hash(struct ahash_request *req)
924 {
925         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
926         u32 *hash = (u32 *)ctx->digest;
927         unsigned int i, hashsize;
928
929         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
930         case SHA_FLAGS_SHA1:
931                 hashsize = SHA1_DIGEST_SIZE;
932                 break;
933
934         case SHA_FLAGS_SHA224:
935         case SHA_FLAGS_SHA256:
936                 hashsize = SHA256_DIGEST_SIZE;
937                 break;
938
939         case SHA_FLAGS_SHA384:
940         case SHA_FLAGS_SHA512:
941                 hashsize = SHA512_DIGEST_SIZE;
942                 break;
943
944         default:
945                 /* Should not happen... */
946                 return;
947         }
948
949         for (i = 0; i < hashsize / sizeof(u32); ++i)
950                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
951         ctx->flags |= SHA_FLAGS_RESTORE;
952 }
953
954 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
955 {
956         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
957
958         if (!req->result)
959                 return;
960
961         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
962         default:
963         case SHA_FLAGS_SHA1:
964                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
965                 break;
966
967         case SHA_FLAGS_SHA224:
968                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
969                 break;
970
971         case SHA_FLAGS_SHA256:
972                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
973                 break;
974
975         case SHA_FLAGS_SHA384:
976                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
977                 break;
978
979         case SHA_FLAGS_SHA512:
980                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
981                 break;
982         }
983 }
984
985 static int atmel_sha_finish(struct ahash_request *req)
986 {
987         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
988         struct atmel_sha_dev *dd = ctx->dd;
989
990         if (ctx->digcnt[0] || ctx->digcnt[1])
991                 atmel_sha_copy_ready_hash(req);
992
993         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
994                 ctx->digcnt[0], ctx->bufcnt);
995
996         return 0;
997 }
998
999 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1000 {
1001         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1002         struct atmel_sha_dev *dd = ctx->dd;
1003
1004         if (!err) {
1005                 atmel_sha_copy_hash(req);
1006                 if (SHA_FLAGS_FINAL & dd->flags)
1007                         err = atmel_sha_finish(req);
1008         } else {
1009                 ctx->flags |= SHA_FLAGS_ERROR;
1010         }
1011
1012         /* atomic operation is not needed here */
1013         (void)atmel_sha_complete(dd, err);
1014 }
1015
1016 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1017 {
1018         int err;
1019
1020         err = clk_enable(dd->iclk);
1021         if (err)
1022                 return err;
1023
1024         if (!(SHA_FLAGS_INIT & dd->flags)) {
1025                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1026                 dd->flags |= SHA_FLAGS_INIT;
1027         }
1028
1029         return 0;
1030 }
1031
1032 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1033 {
1034         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1035 }
1036
1037 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1038 {
1039         int err;
1040
1041         err = atmel_sha_hw_init(dd);
1042         if (err)
1043                 return err;
1044
1045         dd->hw_version = atmel_sha_get_version(dd);
1046
1047         dev_info(dd->dev,
1048                         "version: 0x%x\n", dd->hw_version);
1049
1050         clk_disable(dd->iclk);
1051
1052         return 0;
1053 }
1054
1055 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1056                                   struct ahash_request *req)
1057 {
1058         struct crypto_async_request *async_req, *backlog;
1059         struct atmel_sha_ctx *ctx;
1060         unsigned long flags;
1061         bool start_async;
1062         int err = 0, ret = 0;
1063
1064         spin_lock_irqsave(&dd->lock, flags);
1065         if (req)
1066                 ret = ahash_enqueue_request(&dd->queue, req);
1067
1068         if (SHA_FLAGS_BUSY & dd->flags) {
1069                 spin_unlock_irqrestore(&dd->lock, flags);
1070                 return ret;
1071         }
1072
1073         backlog = crypto_get_backlog(&dd->queue);
1074         async_req = crypto_dequeue_request(&dd->queue);
1075         if (async_req)
1076                 dd->flags |= SHA_FLAGS_BUSY;
1077
1078         spin_unlock_irqrestore(&dd->lock, flags);
1079
1080         if (!async_req)
1081                 return ret;
1082
1083         if (backlog)
1084                 backlog->complete(backlog, -EINPROGRESS);
1085
1086         ctx = crypto_tfm_ctx(async_req->tfm);
1087
1088         dd->req = ahash_request_cast(async_req);
1089         start_async = (dd->req != req);
1090         dd->is_async = start_async;
1091         dd->force_complete = false;
1092
1093         /* WARNING: ctx->start() MAY change dd->is_async. */
1094         err = ctx->start(dd);
1095         return (start_async) ? ret : err;
1096 }
1097
1098 static int atmel_sha_done(struct atmel_sha_dev *dd);
1099
1100 static int atmel_sha_start(struct atmel_sha_dev *dd)
1101 {
1102         struct ahash_request *req = dd->req;
1103         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1104         int err;
1105
1106         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1107                                                 ctx->op, req->nbytes);
1108
1109         err = atmel_sha_hw_init(dd);
1110         if (err)
1111                 return atmel_sha_complete(dd, err);
1112
1113         /*
1114          * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1115          *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1116          *                its job later in the done_task.
1117          *                This is the main path.
1118          *
1119          * 0: the SHA driver can continue its job then release the hardware
1120          *    later, if needed, with atmel_sha_finish_req().
1121          *    This is the alternate path.
1122          *
1123          * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1124          *      been called, hence the hardware has been released.
1125          *      The SHA driver must stop its job without calling
1126          *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1127          *      called a second time.
1128          *
1129          * Please note that currently, atmel_sha_final_req() never returns 0.
1130          */
1131
1132         dd->resume = atmel_sha_done;
1133         if (ctx->op == SHA_OP_UPDATE) {
1134                 err = atmel_sha_update_req(dd);
1135                 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1136                         /* no final() after finup() */
1137                         err = atmel_sha_final_req(dd);
1138         } else if (ctx->op == SHA_OP_FINAL) {
1139                 err = atmel_sha_final_req(dd);
1140         }
1141
1142         if (!err)
1143                 /* done_task will not finish it, so do it here */
1144                 atmel_sha_finish_req(req, err);
1145
1146         dev_dbg(dd->dev, "exit, err: %d\n", err);
1147
1148         return err;
1149 }
1150
1151 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1152 {
1153         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1154         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1155         struct atmel_sha_dev *dd = tctx->dd;
1156
1157         ctx->op = op;
1158
1159         return atmel_sha_handle_queue(dd, req);
1160 }
1161
1162 static int atmel_sha_update(struct ahash_request *req)
1163 {
1164         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1165
1166         if (!req->nbytes)
1167                 return 0;
1168
1169         ctx->total = req->nbytes;
1170         ctx->sg = req->src;
1171         ctx->offset = 0;
1172
1173         if (ctx->flags & SHA_FLAGS_FINUP) {
1174                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1175                         /* faster to use CPU for short transfers */
1176                         ctx->flags |= SHA_FLAGS_CPU;
1177         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1178                 atmel_sha_append_sg(ctx);
1179                 return 0;
1180         }
1181         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1182 }
1183
1184 static int atmel_sha_final(struct ahash_request *req)
1185 {
1186         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1187
1188         ctx->flags |= SHA_FLAGS_FINUP;
1189
1190         if (ctx->flags & SHA_FLAGS_ERROR)
1191                 return 0; /* uncompleted hash is not needed */
1192
1193         if (ctx->flags & SHA_FLAGS_PAD)
1194                 /* copy ready hash (+ finalize hmac) */
1195                 return atmel_sha_finish(req);
1196
1197         return atmel_sha_enqueue(req, SHA_OP_FINAL);
1198 }
1199
1200 static int atmel_sha_finup(struct ahash_request *req)
1201 {
1202         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1203         int err1, err2;
1204
1205         ctx->flags |= SHA_FLAGS_FINUP;
1206
1207         err1 = atmel_sha_update(req);
1208         if (err1 == -EINPROGRESS ||
1209             (err1 == -EBUSY && (ahash_request_flags(req) &
1210                                 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1211                 return err1;
1212
1213         /*
1214          * final() has to be always called to cleanup resources
1215          * even if udpate() failed, except EINPROGRESS
1216          */
1217         err2 = atmel_sha_final(req);
1218
1219         return err1 ?: err2;
1220 }
1221
1222 static int atmel_sha_digest(struct ahash_request *req)
1223 {
1224         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1225 }
1226
1227
1228 static int atmel_sha_export(struct ahash_request *req, void *out)
1229 {
1230         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1231
1232         memcpy(out, ctx, sizeof(*ctx));
1233         return 0;
1234 }
1235
1236 static int atmel_sha_import(struct ahash_request *req, const void *in)
1237 {
1238         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1239
1240         memcpy(ctx, in, sizeof(*ctx));
1241         return 0;
1242 }
1243
1244 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1245 {
1246         struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1247
1248         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1249                                  sizeof(struct atmel_sha_reqctx));
1250         ctx->start = atmel_sha_start;
1251
1252         return 0;
1253 }
1254
1255 static void atmel_sha_alg_init(struct ahash_alg *alg)
1256 {
1257         alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1258         alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1259         alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1260         alg->halg.base.cra_module = THIS_MODULE;
1261         alg->halg.base.cra_init = atmel_sha_cra_init;
1262
1263         alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1264
1265         alg->init = atmel_sha_init;
1266         alg->update = atmel_sha_update;
1267         alg->final = atmel_sha_final;
1268         alg->finup = atmel_sha_finup;
1269         alg->digest = atmel_sha_digest;
1270         alg->export = atmel_sha_export;
1271         alg->import = atmel_sha_import;
1272 }
1273
1274 static struct ahash_alg sha_1_256_algs[] = {
1275 {
1276         .halg.base.cra_name             = "sha1",
1277         .halg.base.cra_driver_name      = "atmel-sha1",
1278         .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
1279
1280         .halg.digestsize = SHA1_DIGEST_SIZE,
1281 },
1282 {
1283         .halg.base.cra_name             = "sha256",
1284         .halg.base.cra_driver_name      = "atmel-sha256",
1285         .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
1286
1287         .halg.digestsize = SHA256_DIGEST_SIZE,
1288 },
1289 };
1290
1291 static struct ahash_alg sha_224_alg = {
1292         .halg.base.cra_name             = "sha224",
1293         .halg.base.cra_driver_name      = "atmel-sha224",
1294         .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
1295
1296         .halg.digestsize = SHA224_DIGEST_SIZE,
1297 };
1298
1299 static struct ahash_alg sha_384_512_algs[] = {
1300 {
1301         .halg.base.cra_name             = "sha384",
1302         .halg.base.cra_driver_name      = "atmel-sha384",
1303         .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
1304         .halg.base.cra_alignmask        = 0x3,
1305
1306         .halg.digestsize = SHA384_DIGEST_SIZE,
1307 },
1308 {
1309         .halg.base.cra_name             = "sha512",
1310         .halg.base.cra_driver_name      = "atmel-sha512",
1311         .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
1312         .halg.base.cra_alignmask        = 0x3,
1313
1314         .halg.digestsize = SHA512_DIGEST_SIZE,
1315 },
1316 };
1317
1318 static void atmel_sha_queue_task(unsigned long data)
1319 {
1320         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1321
1322         atmel_sha_handle_queue(dd, NULL);
1323 }
1324
1325 static int atmel_sha_done(struct atmel_sha_dev *dd)
1326 {
1327         int err = 0;
1328
1329         if (SHA_FLAGS_CPU & dd->flags) {
1330                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1331                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1332                         goto finish;
1333                 }
1334         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1335                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1336                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1337                         atmel_sha_update_dma_stop(dd);
1338                 }
1339                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1340                         /* hash or semi-hash ready */
1341                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1342                                                 SHA_FLAGS_OUTPUT_READY);
1343                         err = atmel_sha_update_dma_start(dd);
1344                         if (err != -EINPROGRESS)
1345                                 goto finish;
1346                 }
1347         }
1348         return err;
1349
1350 finish:
1351         /* finish curent request */
1352         atmel_sha_finish_req(dd->req, err);
1353
1354         return err;
1355 }
1356
1357 static void atmel_sha_done_task(unsigned long data)
1358 {
1359         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1360
1361         dd->is_async = true;
1362         (void)dd->resume(dd);
1363 }
1364
1365 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1366 {
1367         struct atmel_sha_dev *sha_dd = dev_id;
1368         u32 reg;
1369
1370         reg = atmel_sha_read(sha_dd, SHA_ISR);
1371         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1372                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1373                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1374                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1375                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1376                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1377                         tasklet_schedule(&sha_dd->done_task);
1378                 } else {
1379                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1380                 }
1381                 return IRQ_HANDLED;
1382         }
1383
1384         return IRQ_NONE;
1385 }
1386
1387
1388 /* DMA transfer functions */
1389
1390 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1391                                         struct scatterlist *sg,
1392                                         size_t len)
1393 {
1394         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1395         struct ahash_request *req = dd->req;
1396         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1397         size_t bs = ctx->block_size;
1398         int nents;
1399
1400         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1401                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1402                         return false;
1403
1404                 /*
1405                  * This is the last sg, the only one that is allowed to
1406                  * have an unaligned length.
1407                  */
1408                 if (len <= sg->length) {
1409                         dma->nents = nents + 1;
1410                         dma->last_sg_length = sg->length;
1411                         sg->length = ALIGN(len, sizeof(u32));
1412                         return true;
1413                 }
1414
1415                 /* All other sg lengths MUST be aligned to the block size. */
1416                 if (!IS_ALIGNED(sg->length, bs))
1417                         return false;
1418
1419                 len -= sg->length;
1420         }
1421
1422         return false;
1423 }
1424
1425 static void atmel_sha_dma_callback2(void *data)
1426 {
1427         struct atmel_sha_dev *dd = data;
1428         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1429         struct scatterlist *sg;
1430         int nents;
1431
1432         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1433
1434         sg = dma->sg;
1435         for (nents = 0; nents < dma->nents - 1; ++nents)
1436                 sg = sg_next(sg);
1437         sg->length = dma->last_sg_length;
1438
1439         dd->is_async = true;
1440         (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1441 }
1442
1443 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1444                                struct scatterlist *src,
1445                                size_t len,
1446                                atmel_sha_fn_t resume)
1447 {
1448         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1449         struct dma_slave_config *config = &dma->dma_conf;
1450         struct dma_chan *chan = dma->chan;
1451         struct dma_async_tx_descriptor *desc;
1452         dma_cookie_t cookie;
1453         unsigned int sg_len;
1454         int err;
1455
1456         dd->resume = resume;
1457
1458         /*
1459          * dma->nents has already been initialized by
1460          * atmel_sha_dma_check_aligned().
1461          */
1462         dma->sg = src;
1463         sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1464         if (!sg_len) {
1465                 err = -ENOMEM;
1466                 goto exit;
1467         }
1468
1469         config->src_maxburst = 16;
1470         config->dst_maxburst = 16;
1471         err = dmaengine_slave_config(chan, config);
1472         if (err)
1473                 goto unmap_sg;
1474
1475         desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1476                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1477         if (!desc) {
1478                 err = -ENOMEM;
1479                 goto unmap_sg;
1480         }
1481
1482         desc->callback = atmel_sha_dma_callback2;
1483         desc->callback_param = dd;
1484         cookie = dmaengine_submit(desc);
1485         err = dma_submit_error(cookie);
1486         if (err)
1487                 goto unmap_sg;
1488
1489         dma_async_issue_pending(chan);
1490
1491         return -EINPROGRESS;
1492
1493 unmap_sg:
1494         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1495 exit:
1496         return atmel_sha_complete(dd, err);
1497 }
1498
1499
1500 /* CPU transfer functions */
1501
1502 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1503 {
1504         struct ahash_request *req = dd->req;
1505         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1506         const u32 *words = (const u32 *)ctx->buffer;
1507         size_t i, num_words;
1508         u32 isr, din, din_inc;
1509
1510         din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1511         for (;;) {
1512                 /* Write data into the Input Data Registers. */
1513                 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1514                 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1515                         atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1516
1517                 ctx->offset += ctx->bufcnt;
1518                 ctx->total -= ctx->bufcnt;
1519
1520                 if (!ctx->total)
1521                         break;
1522
1523                 /*
1524                  * Prepare next block:
1525                  * Fill ctx->buffer now with the next data to be written into
1526                  * IDATARx: it gives time for the SHA hardware to process
1527                  * the current data so the SHA_INT_DATARDY flag might be set
1528                  * in SHA_ISR when polling this register at the beginning of
1529                  * the next loop.
1530                  */
1531                 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1532                 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1533                                          ctx->offset, ctx->bufcnt, 0);
1534
1535                 /* Wait for hardware to be ready again. */
1536                 isr = atmel_sha_read(dd, SHA_ISR);
1537                 if (!(isr & SHA_INT_DATARDY)) {
1538                         /* Not ready yet. */
1539                         dd->resume = atmel_sha_cpu_transfer;
1540                         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1541                         return -EINPROGRESS;
1542                 }
1543         }
1544
1545         if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1546                 return dd->cpu_transfer_complete(dd);
1547
1548         return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1549 }
1550
1551 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1552                                struct scatterlist *sg,
1553                                unsigned int len,
1554                                bool idatar0_only,
1555                                bool wait_data_ready,
1556                                atmel_sha_fn_t resume)
1557 {
1558         struct ahash_request *req = dd->req;
1559         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1560
1561         if (!len)
1562                 return resume(dd);
1563
1564         ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1565
1566         if (idatar0_only)
1567                 ctx->flags |= SHA_FLAGS_IDATAR0;
1568
1569         if (wait_data_ready)
1570                 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1571
1572         ctx->sg = sg;
1573         ctx->total = len;
1574         ctx->offset = 0;
1575
1576         /* Prepare the first block to be written. */
1577         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1578         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1579                                  ctx->offset, ctx->bufcnt, 0);
1580
1581         dd->cpu_transfer_complete = resume;
1582         return atmel_sha_cpu_transfer(dd);
1583 }
1584
1585 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1586                               const void *data, unsigned int datalen,
1587                               bool auto_padding,
1588                               atmel_sha_fn_t resume)
1589 {
1590         struct ahash_request *req = dd->req;
1591         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1592         u32 msglen = (auto_padding) ? datalen : 0;
1593         u32 mr = SHA_MR_MODE_AUTO;
1594
1595         if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1596                 return atmel_sha_complete(dd, -EINVAL);
1597
1598         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1599         atmel_sha_write(dd, SHA_MR, mr);
1600         atmel_sha_write(dd, SHA_MSR, msglen);
1601         atmel_sha_write(dd, SHA_BCR, msglen);
1602         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1603
1604         sg_init_one(&dd->tmp, data, datalen);
1605         return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1606 }
1607
1608
1609 /* hmac functions */
1610
1611 struct atmel_sha_hmac_key {
1612         bool                    valid;
1613         unsigned int            keylen;
1614         u8                      buffer[SHA512_BLOCK_SIZE];
1615         u8                      *keydup;
1616 };
1617
1618 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1619 {
1620         memset(hkey, 0, sizeof(*hkey));
1621 }
1622
1623 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1624 {
1625         kfree(hkey->keydup);
1626         memset(hkey, 0, sizeof(*hkey));
1627 }
1628
1629 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1630                                          const u8 *key,
1631                                          unsigned int keylen)
1632 {
1633         atmel_sha_hmac_key_release(hkey);
1634
1635         if (keylen > sizeof(hkey->buffer)) {
1636                 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1637                 if (!hkey->keydup)
1638                         return -ENOMEM;
1639
1640         } else {
1641                 memcpy(hkey->buffer, key, keylen);
1642         }
1643
1644         hkey->valid = true;
1645         hkey->keylen = keylen;
1646         return 0;
1647 }
1648
1649 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1650                                           const u8 **key,
1651                                           unsigned int *keylen)
1652 {
1653         if (!hkey->valid)
1654                 return false;
1655
1656         *keylen = hkey->keylen;
1657         *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1658         return true;
1659 }
1660
1661
1662 struct atmel_sha_hmac_ctx {
1663         struct atmel_sha_ctx    base;
1664
1665         struct atmel_sha_hmac_key       hkey;
1666         u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667         u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1668         atmel_sha_fn_t          resume;
1669 };
1670
1671 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1672                                 atmel_sha_fn_t resume);
1673 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1674                                       const u8 *key, unsigned int keylen);
1675 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1676 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1677 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1678 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1679
1680 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1681 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1682 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1683 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1684
1685 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1686                                 atmel_sha_fn_t resume)
1687 {
1688         struct ahash_request *req = dd->req;
1689         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1690         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1691         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1692         unsigned int keylen;
1693         const u8 *key;
1694         size_t bs;
1695
1696         hmac->resume = resume;
1697         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1698         case SHA_FLAGS_SHA1:
1699                 ctx->block_size = SHA1_BLOCK_SIZE;
1700                 ctx->hash_size = SHA1_DIGEST_SIZE;
1701                 break;
1702
1703         case SHA_FLAGS_SHA224:
1704                 ctx->block_size = SHA224_BLOCK_SIZE;
1705                 ctx->hash_size = SHA256_DIGEST_SIZE;
1706                 break;
1707
1708         case SHA_FLAGS_SHA256:
1709                 ctx->block_size = SHA256_BLOCK_SIZE;
1710                 ctx->hash_size = SHA256_DIGEST_SIZE;
1711                 break;
1712
1713         case SHA_FLAGS_SHA384:
1714                 ctx->block_size = SHA384_BLOCK_SIZE;
1715                 ctx->hash_size = SHA512_DIGEST_SIZE;
1716                 break;
1717
1718         case SHA_FLAGS_SHA512:
1719                 ctx->block_size = SHA512_BLOCK_SIZE;
1720                 ctx->hash_size = SHA512_DIGEST_SIZE;
1721                 break;
1722
1723         default:
1724                 return atmel_sha_complete(dd, -EINVAL);
1725         }
1726         bs = ctx->block_size;
1727
1728         if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1729                 return resume(dd);
1730
1731         /* Compute K' from K. */
1732         if (unlikely(keylen > bs))
1733                 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1734
1735         /* Prepare ipad. */
1736         memcpy((u8 *)hmac->ipad, key, keylen);
1737         memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1738         return atmel_sha_hmac_compute_ipad_hash(dd);
1739 }
1740
1741 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742                                       const u8 *key, unsigned int keylen)
1743 {
1744         return atmel_sha_cpu_hash(dd, key, keylen, true,
1745                                   atmel_sha_hmac_prehash_key_done);
1746 }
1747
1748 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1749 {
1750         struct ahash_request *req = dd->req;
1751         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1752         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1753         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1754         size_t ds = crypto_ahash_digestsize(tfm);
1755         size_t bs = ctx->block_size;
1756         size_t i, num_words = ds / sizeof(u32);
1757
1758         /* Prepare ipad. */
1759         for (i = 0; i < num_words; ++i)
1760                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1761         memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1762         return atmel_sha_hmac_compute_ipad_hash(dd);
1763 }
1764
1765 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1766 {
1767         struct ahash_request *req = dd->req;
1768         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1769         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1770         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1771         size_t bs = ctx->block_size;
1772         size_t i, num_words = bs / sizeof(u32);
1773
1774         memcpy(hmac->opad, hmac->ipad, bs);
1775         for (i = 0; i < num_words; ++i) {
1776                 hmac->ipad[i] ^= 0x36363636;
1777                 hmac->opad[i] ^= 0x5c5c5c5c;
1778         }
1779
1780         return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1781                                   atmel_sha_hmac_compute_opad_hash);
1782 }
1783
1784 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1785 {
1786         struct ahash_request *req = dd->req;
1787         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1788         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1789         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1790         size_t bs = ctx->block_size;
1791         size_t hs = ctx->hash_size;
1792         size_t i, num_words = hs / sizeof(u32);
1793
1794         for (i = 0; i < num_words; ++i)
1795                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1796         return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1797                                   atmel_sha_hmac_setup_done);
1798 }
1799
1800 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1801 {
1802         struct ahash_request *req = dd->req;
1803         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1804         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1805         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1806         size_t hs = ctx->hash_size;
1807         size_t i, num_words = hs / sizeof(u32);
1808
1809         for (i = 0; i < num_words; ++i)
1810                 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1811         atmel_sha_hmac_key_release(&hmac->hkey);
1812         return hmac->resume(dd);
1813 }
1814
1815 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1816 {
1817         struct ahash_request *req = dd->req;
1818         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819         int err;
1820
1821         err = atmel_sha_hw_init(dd);
1822         if (err)
1823                 return atmel_sha_complete(dd, err);
1824
1825         switch (ctx->op) {
1826         case SHA_OP_INIT:
1827                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1828                 break;
1829
1830         case SHA_OP_UPDATE:
1831                 dd->resume = atmel_sha_done;
1832                 err = atmel_sha_update_req(dd);
1833                 break;
1834
1835         case SHA_OP_FINAL:
1836                 dd->resume = atmel_sha_hmac_final;
1837                 err = atmel_sha_final_req(dd);
1838                 break;
1839
1840         case SHA_OP_DIGEST:
1841                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1842                 break;
1843
1844         default:
1845                 return atmel_sha_complete(dd, -EINVAL);
1846         }
1847
1848         return err;
1849 }
1850
1851 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1852                                  unsigned int keylen)
1853 {
1854         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1855
1856         return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1857 }
1858
1859 static int atmel_sha_hmac_init(struct ahash_request *req)
1860 {
1861         int err;
1862
1863         err = atmel_sha_init(req);
1864         if (err)
1865                 return err;
1866
1867         return atmel_sha_enqueue(req, SHA_OP_INIT);
1868 }
1869
1870 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1871 {
1872         struct ahash_request *req = dd->req;
1873         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1875         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1876         size_t bs = ctx->block_size;
1877         size_t hs = ctx->hash_size;
1878
1879         ctx->bufcnt = 0;
1880         ctx->digcnt[0] = bs;
1881         ctx->digcnt[1] = 0;
1882         ctx->flags |= SHA_FLAGS_RESTORE;
1883         memcpy(ctx->digest, hmac->ipad, hs);
1884         return atmel_sha_complete(dd, 0);
1885 }
1886
1887 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1888 {
1889         struct ahash_request *req = dd->req;
1890         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1891         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1892         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1893         u32 *digest = (u32 *)ctx->digest;
1894         size_t ds = crypto_ahash_digestsize(tfm);
1895         size_t bs = ctx->block_size;
1896         size_t hs = ctx->hash_size;
1897         size_t i, num_words;
1898         u32 mr;
1899
1900         /* Save d = SHA((K' + ipad) | msg). */
1901         num_words = ds / sizeof(u32);
1902         for (i = 0; i < num_words; ++i)
1903                 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1904
1905         /* Restore context to finish computing SHA((K' + opad) | d). */
1906         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1907         num_words = hs / sizeof(u32);
1908         for (i = 0; i < num_words; ++i)
1909                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1910
1911         mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1912         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1913         atmel_sha_write(dd, SHA_MR, mr);
1914         atmel_sha_write(dd, SHA_MSR, bs + ds);
1915         atmel_sha_write(dd, SHA_BCR, ds);
1916         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1917
1918         sg_init_one(&dd->tmp, digest, ds);
1919         return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1920                                    atmel_sha_hmac_final_done);
1921 }
1922
1923 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1924 {
1925         /*
1926          * req->result might not be sizeof(u32) aligned, so copy the
1927          * digest into ctx->digest[] before memcpy() the data into
1928          * req->result.
1929          */
1930         atmel_sha_copy_hash(dd->req);
1931         atmel_sha_copy_ready_hash(dd->req);
1932         return atmel_sha_complete(dd, 0);
1933 }
1934
1935 static int atmel_sha_hmac_digest(struct ahash_request *req)
1936 {
1937         int err;
1938
1939         err = atmel_sha_init(req);
1940         if (err)
1941                 return err;
1942
1943         return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1944 }
1945
1946 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1947 {
1948         struct ahash_request *req = dd->req;
1949         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1950         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1951         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1952         size_t hs = ctx->hash_size;
1953         size_t i, num_words = hs / sizeof(u32);
1954         bool use_dma = false;
1955         u32 mr;
1956
1957         /* Special case for empty message. */
1958         if (!req->nbytes)
1959                 return atmel_sha_complete(dd, -EINVAL); // TODO:
1960
1961         /* Check DMA threshold and alignment. */
1962         if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1963             atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1964                 use_dma = true;
1965
1966         /* Write both initial hash values to compute a HMAC. */
1967         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1968         for (i = 0; i < num_words; ++i)
1969                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1970
1971         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1972         for (i = 0; i < num_words; ++i)
1973                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1974
1975         /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1976         mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1977         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1978         if (use_dma)
1979                 mr |= SHA_MR_MODE_IDATAR0;
1980         else
1981                 mr |= SHA_MR_MODE_AUTO;
1982         atmel_sha_write(dd, SHA_MR, mr);
1983
1984         atmel_sha_write(dd, SHA_MSR, req->nbytes);
1985         atmel_sha_write(dd, SHA_BCR, req->nbytes);
1986
1987         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1988
1989         /* Process data. */
1990         if (use_dma)
1991                 return atmel_sha_dma_start(dd, req->src, req->nbytes,
1992                                            atmel_sha_hmac_final_done);
1993
1994         return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1995                                    atmel_sha_hmac_final_done);
1996 }
1997
1998 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1999 {
2000         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2001
2002         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2003                                  sizeof(struct atmel_sha_reqctx));
2004         hmac->base.start = atmel_sha_hmac_start;
2005         atmel_sha_hmac_key_init(&hmac->hkey);
2006
2007         return 0;
2008 }
2009
2010 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2011 {
2012         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2013
2014         atmel_sha_hmac_key_release(&hmac->hkey);
2015 }
2016
2017 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2018 {
2019         alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2020         alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2021         alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2022         alg->halg.base.cra_module = THIS_MODULE;
2023         alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2024         alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2025
2026         alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2027
2028         alg->init = atmel_sha_hmac_init;
2029         alg->update = atmel_sha_update;
2030         alg->final = atmel_sha_final;
2031         alg->digest = atmel_sha_hmac_digest;
2032         alg->setkey = atmel_sha_hmac_setkey;
2033         alg->export = atmel_sha_export;
2034         alg->import = atmel_sha_import;
2035 }
2036
2037 static struct ahash_alg sha_hmac_algs[] = {
2038 {
2039         .halg.base.cra_name             = "hmac(sha1)",
2040         .halg.base.cra_driver_name      = "atmel-hmac-sha1",
2041         .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
2042
2043         .halg.digestsize = SHA1_DIGEST_SIZE,
2044 },
2045 {
2046         .halg.base.cra_name             = "hmac(sha224)",
2047         .halg.base.cra_driver_name      = "atmel-hmac-sha224",
2048         .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
2049
2050         .halg.digestsize = SHA224_DIGEST_SIZE,
2051 },
2052 {
2053         .halg.base.cra_name             = "hmac(sha256)",
2054         .halg.base.cra_driver_name      = "atmel-hmac-sha256",
2055         .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
2056
2057         .halg.digestsize = SHA256_DIGEST_SIZE,
2058 },
2059 {
2060         .halg.base.cra_name             = "hmac(sha384)",
2061         .halg.base.cra_driver_name      = "atmel-hmac-sha384",
2062         .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
2063
2064         .halg.digestsize = SHA384_DIGEST_SIZE,
2065 },
2066 {
2067         .halg.base.cra_name             = "hmac(sha512)",
2068         .halg.base.cra_driver_name      = "atmel-hmac-sha512",
2069         .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
2070
2071         .halg.digestsize = SHA512_DIGEST_SIZE,
2072 },
2073 };
2074
2075 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2076 /* authenc functions */
2077
2078 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2079 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2080 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2081
2082
2083 struct atmel_sha_authenc_ctx {
2084         struct crypto_ahash     *tfm;
2085 };
2086
2087 struct atmel_sha_authenc_reqctx {
2088         struct atmel_sha_reqctx base;
2089
2090         atmel_aes_authenc_fn_t  cb;
2091         struct atmel_aes_dev    *aes_dev;
2092
2093         /* _init() parameters. */
2094         struct scatterlist      *assoc;
2095         u32                     assoclen;
2096         u32                     textlen;
2097
2098         /* _final() parameters. */
2099         u32                     *digest;
2100         unsigned int            digestlen;
2101 };
2102
2103 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2104                                        int err)
2105 {
2106         struct ahash_request *req = areq->data;
2107         struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2108
2109         authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2110 }
2111
2112 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2113 {
2114         struct ahash_request *req = dd->req;
2115         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2116         int err;
2117
2118         /*
2119          * Force atmel_sha_complete() to call req->base.complete(), ie
2120          * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2121          */
2122         dd->force_complete = true;
2123
2124         err = atmel_sha_hw_init(dd);
2125         return authctx->cb(authctx->aes_dev, err, dd->is_async);
2126 }
2127
2128 bool atmel_sha_authenc_is_ready(void)
2129 {
2130         struct atmel_sha_ctx dummy;
2131
2132         dummy.dd = NULL;
2133         return (atmel_sha_find_dev(&dummy) != NULL);
2134 }
2135 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2136
2137 unsigned int atmel_sha_authenc_get_reqsize(void)
2138 {
2139         return sizeof(struct atmel_sha_authenc_reqctx);
2140 }
2141 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2142
2143 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2144 {
2145         struct atmel_sha_authenc_ctx *auth;
2146         struct crypto_ahash *tfm;
2147         struct atmel_sha_ctx *tctx;
2148         const char *name;
2149         int err = -EINVAL;
2150
2151         switch (mode & SHA_FLAGS_MODE_MASK) {
2152         case SHA_FLAGS_HMAC_SHA1:
2153                 name = "atmel-hmac-sha1";
2154                 break;
2155
2156         case SHA_FLAGS_HMAC_SHA224:
2157                 name = "atmel-hmac-sha224";
2158                 break;
2159
2160         case SHA_FLAGS_HMAC_SHA256:
2161                 name = "atmel-hmac-sha256";
2162                 break;
2163
2164         case SHA_FLAGS_HMAC_SHA384:
2165                 name = "atmel-hmac-sha384";
2166                 break;
2167
2168         case SHA_FLAGS_HMAC_SHA512:
2169                 name = "atmel-hmac-sha512";
2170                 break;
2171
2172         default:
2173                 goto error;
2174         }
2175
2176         tfm = crypto_alloc_ahash(name, 0, 0);
2177         if (IS_ERR(tfm)) {
2178                 err = PTR_ERR(tfm);
2179                 goto error;
2180         }
2181         tctx = crypto_ahash_ctx(tfm);
2182         tctx->start = atmel_sha_authenc_start;
2183         tctx->flags = mode;
2184
2185         auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2186         if (!auth) {
2187                 err = -ENOMEM;
2188                 goto err_free_ahash;
2189         }
2190         auth->tfm = tfm;
2191
2192         return auth;
2193
2194 err_free_ahash:
2195         crypto_free_ahash(tfm);
2196 error:
2197         return ERR_PTR(err);
2198 }
2199 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2200
2201 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2202 {
2203         if (auth)
2204                 crypto_free_ahash(auth->tfm);
2205         kfree(auth);
2206 }
2207 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2208
2209 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2210                              const u8 *key, unsigned int keylen, u32 flags)
2211 {
2212         struct crypto_ahash *tfm = auth->tfm;
2213
2214         crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2215         crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2216         return crypto_ahash_setkey(tfm, key, keylen);
2217 }
2218 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2219
2220 int atmel_sha_authenc_schedule(struct ahash_request *req,
2221                                struct atmel_sha_authenc_ctx *auth,
2222                                atmel_aes_authenc_fn_t cb,
2223                                struct atmel_aes_dev *aes_dev)
2224 {
2225         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2226         struct atmel_sha_reqctx *ctx = &authctx->base;
2227         struct crypto_ahash *tfm = auth->tfm;
2228         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2229         struct atmel_sha_dev *dd;
2230
2231         /* Reset request context (MUST be done first). */
2232         memset(authctx, 0, sizeof(*authctx));
2233
2234         /* Get SHA device. */
2235         dd = atmel_sha_find_dev(tctx);
2236         if (!dd)
2237                 return cb(aes_dev, -ENODEV, false);
2238
2239         /* Init request context. */
2240         ctx->dd = dd;
2241         ctx->buflen = SHA_BUFFER_LEN;
2242         authctx->cb = cb;
2243         authctx->aes_dev = aes_dev;
2244         ahash_request_set_tfm(req, tfm);
2245         ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2246
2247         return atmel_sha_handle_queue(dd, req);
2248 }
2249 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2250
2251 int atmel_sha_authenc_init(struct ahash_request *req,
2252                            struct scatterlist *assoc, unsigned int assoclen,
2253                            unsigned int textlen,
2254                            atmel_aes_authenc_fn_t cb,
2255                            struct atmel_aes_dev *aes_dev)
2256 {
2257         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2258         struct atmel_sha_reqctx *ctx = &authctx->base;
2259         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2260         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2261         struct atmel_sha_dev *dd = ctx->dd;
2262
2263         if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2264                 return atmel_sha_complete(dd, -EINVAL);
2265
2266         authctx->cb = cb;
2267         authctx->aes_dev = aes_dev;
2268         authctx->assoc = assoc;
2269         authctx->assoclen = assoclen;
2270         authctx->textlen = textlen;
2271
2272         ctx->flags = hmac->base.flags;
2273         return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2274 }
2275 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2276
2277 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2278 {
2279         struct ahash_request *req = dd->req;
2280         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281         struct atmel_sha_reqctx *ctx = &authctx->base;
2282         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284         size_t hs = ctx->hash_size;
2285         size_t i, num_words = hs / sizeof(u32);
2286         u32 mr, msg_size;
2287
2288         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2289         for (i = 0; i < num_words; ++i)
2290                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2291
2292         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2293         for (i = 0; i < num_words; ++i)
2294                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2295
2296         mr = (SHA_MR_MODE_IDATAR0 |
2297               SHA_MR_HMAC |
2298               SHA_MR_DUALBUFF);
2299         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2300         atmel_sha_write(dd, SHA_MR, mr);
2301
2302         msg_size = authctx->assoclen + authctx->textlen;
2303         atmel_sha_write(dd, SHA_MSR, msg_size);
2304         atmel_sha_write(dd, SHA_BCR, msg_size);
2305
2306         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2307
2308         /* Process assoc data. */
2309         return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2310                                    true, false,
2311                                    atmel_sha_authenc_init_done);
2312 }
2313
2314 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2315 {
2316         struct ahash_request *req = dd->req;
2317         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2318
2319         return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2320 }
2321
2322 int atmel_sha_authenc_final(struct ahash_request *req,
2323                             u32 *digest, unsigned int digestlen,
2324                             atmel_aes_authenc_fn_t cb,
2325                             struct atmel_aes_dev *aes_dev)
2326 {
2327         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2328         struct atmel_sha_reqctx *ctx = &authctx->base;
2329         struct atmel_sha_dev *dd = ctx->dd;
2330
2331         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2332         case SHA_FLAGS_SHA1:
2333                 authctx->digestlen = SHA1_DIGEST_SIZE;
2334                 break;
2335
2336         case SHA_FLAGS_SHA224:
2337                 authctx->digestlen = SHA224_DIGEST_SIZE;
2338                 break;
2339
2340         case SHA_FLAGS_SHA256:
2341                 authctx->digestlen = SHA256_DIGEST_SIZE;
2342                 break;
2343
2344         case SHA_FLAGS_SHA384:
2345                 authctx->digestlen = SHA384_DIGEST_SIZE;
2346                 break;
2347
2348         case SHA_FLAGS_SHA512:
2349                 authctx->digestlen = SHA512_DIGEST_SIZE;
2350                 break;
2351
2352         default:
2353                 return atmel_sha_complete(dd, -EINVAL);
2354         }
2355         if (authctx->digestlen > digestlen)
2356                 authctx->digestlen = digestlen;
2357
2358         authctx->cb = cb;
2359         authctx->aes_dev = aes_dev;
2360         authctx->digest = digest;
2361         return atmel_sha_wait_for_data_ready(dd,
2362                                              atmel_sha_authenc_final_done);
2363 }
2364 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2365
2366 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2367 {
2368         struct ahash_request *req = dd->req;
2369         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2370         size_t i, num_words = authctx->digestlen / sizeof(u32);
2371
2372         for (i = 0; i < num_words; ++i)
2373                 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2374
2375         return atmel_sha_complete(dd, 0);
2376 }
2377
2378 void atmel_sha_authenc_abort(struct ahash_request *req)
2379 {
2380         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2381         struct atmel_sha_reqctx *ctx = &authctx->base;
2382         struct atmel_sha_dev *dd = ctx->dd;
2383
2384         /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2385         dd->is_async = false;
2386         dd->force_complete = false;
2387         (void)atmel_sha_complete(dd, 0);
2388 }
2389 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2390
2391 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2392
2393
2394 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2395 {
2396         int i;
2397
2398         if (dd->caps.has_hmac)
2399                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2400                         crypto_unregister_ahash(&sha_hmac_algs[i]);
2401
2402         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2403                 crypto_unregister_ahash(&sha_1_256_algs[i]);
2404
2405         if (dd->caps.has_sha224)
2406                 crypto_unregister_ahash(&sha_224_alg);
2407
2408         if (dd->caps.has_sha_384_512) {
2409                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2410                         crypto_unregister_ahash(&sha_384_512_algs[i]);
2411         }
2412 }
2413
2414 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2415 {
2416         int err, i, j;
2417
2418         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2419                 atmel_sha_alg_init(&sha_1_256_algs[i]);
2420
2421                 err = crypto_register_ahash(&sha_1_256_algs[i]);
2422                 if (err)
2423                         goto err_sha_1_256_algs;
2424         }
2425
2426         if (dd->caps.has_sha224) {
2427                 atmel_sha_alg_init(&sha_224_alg);
2428
2429                 err = crypto_register_ahash(&sha_224_alg);
2430                 if (err)
2431                         goto err_sha_224_algs;
2432         }
2433
2434         if (dd->caps.has_sha_384_512) {
2435                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2436                         atmel_sha_alg_init(&sha_384_512_algs[i]);
2437
2438                         err = crypto_register_ahash(&sha_384_512_algs[i]);
2439                         if (err)
2440                                 goto err_sha_384_512_algs;
2441                 }
2442         }
2443
2444         if (dd->caps.has_hmac) {
2445                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2446                         atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2447
2448                         err = crypto_register_ahash(&sha_hmac_algs[i]);
2449                         if (err)
2450                                 goto err_sha_hmac_algs;
2451                 }
2452         }
2453
2454         return 0;
2455
2456         /*i = ARRAY_SIZE(sha_hmac_algs);*/
2457 err_sha_hmac_algs:
2458         for (j = 0; j < i; j++)
2459                 crypto_unregister_ahash(&sha_hmac_algs[j]);
2460         i = ARRAY_SIZE(sha_384_512_algs);
2461 err_sha_384_512_algs:
2462         for (j = 0; j < i; j++)
2463                 crypto_unregister_ahash(&sha_384_512_algs[j]);
2464         crypto_unregister_ahash(&sha_224_alg);
2465 err_sha_224_algs:
2466         i = ARRAY_SIZE(sha_1_256_algs);
2467 err_sha_1_256_algs:
2468         for (j = 0; j < i; j++)
2469                 crypto_unregister_ahash(&sha_1_256_algs[j]);
2470
2471         return err;
2472 }
2473
2474 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2475 {
2476         dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2477         if (IS_ERR(dd->dma_lch_in.chan)) {
2478                 dev_err(dd->dev, "DMA channel is not available\n");
2479                 return PTR_ERR(dd->dma_lch_in.chan);
2480         }
2481
2482         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2483                 SHA_REG_DIN(0);
2484         dd->dma_lch_in.dma_conf.src_maxburst = 1;
2485         dd->dma_lch_in.dma_conf.src_addr_width =
2486                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2487         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2488         dd->dma_lch_in.dma_conf.dst_addr_width =
2489                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2490         dd->dma_lch_in.dma_conf.device_fc = false;
2491
2492         return 0;
2493 }
2494
2495 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2496 {
2497         dma_release_channel(dd->dma_lch_in.chan);
2498 }
2499
2500 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2501 {
2502
2503         dd->caps.has_dma = 0;
2504         dd->caps.has_dualbuff = 0;
2505         dd->caps.has_sha224 = 0;
2506         dd->caps.has_sha_384_512 = 0;
2507         dd->caps.has_uihv = 0;
2508         dd->caps.has_hmac = 0;
2509
2510         /* keep only major version number */
2511         switch (dd->hw_version & 0xff0) {
2512         case 0x510:
2513                 dd->caps.has_dma = 1;
2514                 dd->caps.has_dualbuff = 1;
2515                 dd->caps.has_sha224 = 1;
2516                 dd->caps.has_sha_384_512 = 1;
2517                 dd->caps.has_uihv = 1;
2518                 dd->caps.has_hmac = 1;
2519                 break;
2520         case 0x420:
2521                 dd->caps.has_dma = 1;
2522                 dd->caps.has_dualbuff = 1;
2523                 dd->caps.has_sha224 = 1;
2524                 dd->caps.has_sha_384_512 = 1;
2525                 dd->caps.has_uihv = 1;
2526                 break;
2527         case 0x410:
2528                 dd->caps.has_dma = 1;
2529                 dd->caps.has_dualbuff = 1;
2530                 dd->caps.has_sha224 = 1;
2531                 dd->caps.has_sha_384_512 = 1;
2532                 break;
2533         case 0x400:
2534                 dd->caps.has_dma = 1;
2535                 dd->caps.has_dualbuff = 1;
2536                 dd->caps.has_sha224 = 1;
2537                 break;
2538         case 0x320:
2539                 break;
2540         default:
2541                 dev_warn(dd->dev,
2542                                 "Unmanaged sha version, set minimum capabilities\n");
2543                 break;
2544         }
2545 }
2546
2547 #if defined(CONFIG_OF)
2548 static const struct of_device_id atmel_sha_dt_ids[] = {
2549         { .compatible = "atmel,at91sam9g46-sha" },
2550         { /* sentinel */ }
2551 };
2552
2553 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554 #endif
2555
2556 static int atmel_sha_probe(struct platform_device *pdev)
2557 {
2558         struct atmel_sha_dev *sha_dd;
2559         struct device *dev = &pdev->dev;
2560         struct resource *sha_res;
2561         int err;
2562
2563         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564         if (!sha_dd)
2565                 return -ENOMEM;
2566
2567         sha_dd->dev = dev;
2568
2569         platform_set_drvdata(pdev, sha_dd);
2570
2571         INIT_LIST_HEAD(&sha_dd->list);
2572         spin_lock_init(&sha_dd->lock);
2573
2574         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575                                         (unsigned long)sha_dd);
2576         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577                                         (unsigned long)sha_dd);
2578
2579         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2580
2581         /* Get the base address */
2582         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583         if (!sha_res) {
2584                 dev_err(dev, "no MEM resource info\n");
2585                 err = -ENODEV;
2586                 goto err_tasklet_kill;
2587         }
2588         sha_dd->phys_base = sha_res->start;
2589
2590         /* Get the IRQ */
2591         sha_dd->irq = platform_get_irq(pdev,  0);
2592         if (sha_dd->irq < 0) {
2593                 err = sha_dd->irq;
2594                 goto err_tasklet_kill;
2595         }
2596
2597         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598                                IRQF_SHARED, "atmel-sha", sha_dd);
2599         if (err) {
2600                 dev_err(dev, "unable to request sha irq.\n");
2601                 goto err_tasklet_kill;
2602         }
2603
2604         /* Initializing the clock */
2605         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606         if (IS_ERR(sha_dd->iclk)) {
2607                 dev_err(dev, "clock initialization failed.\n");
2608                 err = PTR_ERR(sha_dd->iclk);
2609                 goto err_tasklet_kill;
2610         }
2611
2612         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613         if (IS_ERR(sha_dd->io_base)) {
2614                 dev_err(dev, "can't ioremap\n");
2615                 err = PTR_ERR(sha_dd->io_base);
2616                 goto err_tasklet_kill;
2617         }
2618
2619         err = clk_prepare(sha_dd->iclk);
2620         if (err)
2621                 goto err_tasklet_kill;
2622
2623         err = atmel_sha_hw_version_init(sha_dd);
2624         if (err)
2625                 goto err_iclk_unprepare;
2626
2627         atmel_sha_get_cap(sha_dd);
2628
2629         if (sha_dd->caps.has_dma) {
2630                 err = atmel_sha_dma_init(sha_dd);
2631                 if (err)
2632                         goto err_iclk_unprepare;
2633
2634                 dev_info(dev, "using %s for DMA transfers\n",
2635                                 dma_chan_name(sha_dd->dma_lch_in.chan));
2636         }
2637
2638         spin_lock(&atmel_sha.lock);
2639         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640         spin_unlock(&atmel_sha.lock);
2641
2642         err = atmel_sha_register_algs(sha_dd);
2643         if (err)
2644                 goto err_algs;
2645
2646         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2649
2650         return 0;
2651
2652 err_algs:
2653         spin_lock(&atmel_sha.lock);
2654         list_del(&sha_dd->list);
2655         spin_unlock(&atmel_sha.lock);
2656         if (sha_dd->caps.has_dma)
2657                 atmel_sha_dma_cleanup(sha_dd);
2658 err_iclk_unprepare:
2659         clk_unprepare(sha_dd->iclk);
2660 err_tasklet_kill:
2661         tasklet_kill(&sha_dd->queue_task);
2662         tasklet_kill(&sha_dd->done_task);
2663
2664         return err;
2665 }
2666
2667 static int atmel_sha_remove(struct platform_device *pdev)
2668 {
2669         struct atmel_sha_dev *sha_dd;
2670
2671         sha_dd = platform_get_drvdata(pdev);
2672         if (!sha_dd)
2673                 return -ENODEV;
2674         spin_lock(&atmel_sha.lock);
2675         list_del(&sha_dd->list);
2676         spin_unlock(&atmel_sha.lock);
2677
2678         atmel_sha_unregister_algs(sha_dd);
2679
2680         tasklet_kill(&sha_dd->queue_task);
2681         tasklet_kill(&sha_dd->done_task);
2682
2683         if (sha_dd->caps.has_dma)
2684                 atmel_sha_dma_cleanup(sha_dd);
2685
2686         clk_unprepare(sha_dd->iclk);
2687
2688         return 0;
2689 }
2690
2691 static struct platform_driver atmel_sha_driver = {
2692         .probe          = atmel_sha_probe,
2693         .remove         = atmel_sha_remove,
2694         .driver         = {
2695                 .name   = "atmel_sha",
2696                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2697         },
2698 };
2699
2700 module_platform_driver(atmel_sha_driver);
2701
2702 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2703 MODULE_LICENSE("GPL v2");
2704 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");