]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/dma/imx-sdma.c
dmaengine: imx-sdma: implement channel termination via worker
[linux.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
339  * @event_id0:          aka dma request line
340  * @event_id1:          for channels that use 2 events
341  * @word_size:          peripheral access size
342  * @pc_from_device:     script address for those device_2_memory
343  * @pc_to_device:       script address for those memory_2_device
344  * @device_to_device:   script address for those device_2_device
345  * @pc_to_pc:           script address for those memory_2_memory
346  * @flags:              loop mode or not
347  * @per_address:        peripheral source or destination address in common case
348  *                      destination address in p_2_p case
349  * @per_address2:       peripheral source address in p_2_p case
350  * @event_mask:         event mask used in p_2_p script
351  * @watermark_level:    value for gReg[7], some script will extend it from
352  *                      basic watermark such as p_2_p
353  * @shp_addr:           value for gReg[6]
354  * @per_addr:           value for gReg[2]
355  * @status:             status of dma channel
356  * @data:               specific sdma interface structure
357  * @bd_pool:            dma_pool for bd
358  */
359 struct sdma_channel {
360         struct virt_dma_chan            vc;
361         struct sdma_desc                *desc;
362         struct sdma_engine              *sdma;
363         unsigned int                    channel;
364         enum dma_transfer_direction             direction;
365         enum sdma_peripheral_type       peripheral_type;
366         unsigned int                    event_id0;
367         unsigned int                    event_id1;
368         enum dma_slave_buswidth         word_size;
369         unsigned int                    pc_from_device, pc_to_device;
370         unsigned int                    device_to_device;
371         unsigned int                    pc_to_pc;
372         unsigned long                   flags;
373         dma_addr_t                      per_address, per_address2;
374         unsigned long                   event_mask[2];
375         unsigned long                   watermark_level;
376         u32                             shp_addr, per_addr;
377         enum dma_status                 status;
378         struct imx_dma_data             data;
379         struct work_struct              terminate_worker;
380 };
381
382 #define IMX_DMA_SG_LOOP         BIT(0)
383
384 #define MAX_DMA_CHANNELS 32
385 #define MXC_SDMA_DEFAULT_PRIORITY 1
386 #define MXC_SDMA_MIN_PRIORITY 1
387 #define MXC_SDMA_MAX_PRIORITY 7
388
389 #define SDMA_FIRMWARE_MAGIC 0x414d4453
390
391 /**
392  * struct sdma_firmware_header - Layout of the firmware image
393  *
394  * @magic:              "SDMA"
395  * @version_major:      increased whenever layout of struct
396  *                      sdma_script_start_addrs changes.
397  * @version_minor:      firmware minor version (for binary compatible changes)
398  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
399  * @num_script_addrs:   Number of script addresses in this image
400  * @ram_code_start:     offset of SDMA ram image in this firmware image
401  * @ram_code_size:      size of SDMA ram image
402  * @script_addrs:       Stores the start address of the SDMA scripts
403  *                      (in SDMA memory space)
404  */
405 struct sdma_firmware_header {
406         u32     magic;
407         u32     version_major;
408         u32     version_minor;
409         u32     script_addrs_start;
410         u32     num_script_addrs;
411         u32     ram_code_start;
412         u32     ram_code_size;
413 };
414
415 struct sdma_driver_data {
416         int chnenbl0;
417         int num_events;
418         struct sdma_script_start_addrs  *script_addrs;
419 };
420
421 struct sdma_engine {
422         struct device                   *dev;
423         struct device_dma_parameters    dma_parms;
424         struct sdma_channel             channel[MAX_DMA_CHANNELS];
425         struct sdma_channel_control     *channel_control;
426         void __iomem                    *regs;
427         struct sdma_context_data        *context;
428         dma_addr_t                      context_phys;
429         struct dma_device               dma_device;
430         struct clk                      *clk_ipg;
431         struct clk                      *clk_ahb;
432         spinlock_t                      channel_0_lock;
433         u32                             script_number;
434         struct sdma_script_start_addrs  *script_addrs;
435         const struct sdma_driver_data   *drvdata;
436         u32                             spba_start_addr;
437         u32                             spba_end_addr;
438         unsigned int                    irq;
439         dma_addr_t                      bd0_phys;
440         struct sdma_buffer_descriptor   *bd0;
441 };
442
443 static struct sdma_driver_data sdma_imx31 = {
444         .chnenbl0 = SDMA_CHNENBL0_IMX31,
445         .num_events = 32,
446 };
447
448 static struct sdma_script_start_addrs sdma_script_imx25 = {
449         .ap_2_ap_addr = 729,
450         .uart_2_mcu_addr = 904,
451         .per_2_app_addr = 1255,
452         .mcu_2_app_addr = 834,
453         .uartsh_2_mcu_addr = 1120,
454         .per_2_shp_addr = 1329,
455         .mcu_2_shp_addr = 1048,
456         .ata_2_mcu_addr = 1560,
457         .mcu_2_ata_addr = 1479,
458         .app_2_per_addr = 1189,
459         .app_2_mcu_addr = 770,
460         .shp_2_per_addr = 1407,
461         .shp_2_mcu_addr = 979,
462 };
463
464 static struct sdma_driver_data sdma_imx25 = {
465         .chnenbl0 = SDMA_CHNENBL0_IMX35,
466         .num_events = 48,
467         .script_addrs = &sdma_script_imx25,
468 };
469
470 static struct sdma_driver_data sdma_imx35 = {
471         .chnenbl0 = SDMA_CHNENBL0_IMX35,
472         .num_events = 48,
473 };
474
475 static struct sdma_script_start_addrs sdma_script_imx51 = {
476         .ap_2_ap_addr = 642,
477         .uart_2_mcu_addr = 817,
478         .mcu_2_app_addr = 747,
479         .mcu_2_shp_addr = 961,
480         .ata_2_mcu_addr = 1473,
481         .mcu_2_ata_addr = 1392,
482         .app_2_per_addr = 1033,
483         .app_2_mcu_addr = 683,
484         .shp_2_per_addr = 1251,
485         .shp_2_mcu_addr = 892,
486 };
487
488 static struct sdma_driver_data sdma_imx51 = {
489         .chnenbl0 = SDMA_CHNENBL0_IMX35,
490         .num_events = 48,
491         .script_addrs = &sdma_script_imx51,
492 };
493
494 static struct sdma_script_start_addrs sdma_script_imx53 = {
495         .ap_2_ap_addr = 642,
496         .app_2_mcu_addr = 683,
497         .mcu_2_app_addr = 747,
498         .uart_2_mcu_addr = 817,
499         .shp_2_mcu_addr = 891,
500         .mcu_2_shp_addr = 960,
501         .uartsh_2_mcu_addr = 1032,
502         .spdif_2_mcu_addr = 1100,
503         .mcu_2_spdif_addr = 1134,
504         .firi_2_mcu_addr = 1193,
505         .mcu_2_firi_addr = 1290,
506 };
507
508 static struct sdma_driver_data sdma_imx53 = {
509         .chnenbl0 = SDMA_CHNENBL0_IMX35,
510         .num_events = 48,
511         .script_addrs = &sdma_script_imx53,
512 };
513
514 static struct sdma_script_start_addrs sdma_script_imx6q = {
515         .ap_2_ap_addr = 642,
516         .uart_2_mcu_addr = 817,
517         .mcu_2_app_addr = 747,
518         .per_2_per_addr = 6331,
519         .uartsh_2_mcu_addr = 1032,
520         .mcu_2_shp_addr = 960,
521         .app_2_mcu_addr = 683,
522         .shp_2_mcu_addr = 891,
523         .spdif_2_mcu_addr = 1100,
524         .mcu_2_spdif_addr = 1134,
525 };
526
527 static struct sdma_driver_data sdma_imx6q = {
528         .chnenbl0 = SDMA_CHNENBL0_IMX35,
529         .num_events = 48,
530         .script_addrs = &sdma_script_imx6q,
531 };
532
533 static struct sdma_script_start_addrs sdma_script_imx7d = {
534         .ap_2_ap_addr = 644,
535         .uart_2_mcu_addr = 819,
536         .mcu_2_app_addr = 749,
537         .uartsh_2_mcu_addr = 1034,
538         .mcu_2_shp_addr = 962,
539         .app_2_mcu_addr = 685,
540         .shp_2_mcu_addr = 893,
541         .spdif_2_mcu_addr = 1102,
542         .mcu_2_spdif_addr = 1136,
543 };
544
545 static struct sdma_driver_data sdma_imx7d = {
546         .chnenbl0 = SDMA_CHNENBL0_IMX35,
547         .num_events = 48,
548         .script_addrs = &sdma_script_imx7d,
549 };
550
551 static const struct platform_device_id sdma_devtypes[] = {
552         {
553                 .name = "imx25-sdma",
554                 .driver_data = (unsigned long)&sdma_imx25,
555         }, {
556                 .name = "imx31-sdma",
557                 .driver_data = (unsigned long)&sdma_imx31,
558         }, {
559                 .name = "imx35-sdma",
560                 .driver_data = (unsigned long)&sdma_imx35,
561         }, {
562                 .name = "imx51-sdma",
563                 .driver_data = (unsigned long)&sdma_imx51,
564         }, {
565                 .name = "imx53-sdma",
566                 .driver_data = (unsigned long)&sdma_imx53,
567         }, {
568                 .name = "imx6q-sdma",
569                 .driver_data = (unsigned long)&sdma_imx6q,
570         }, {
571                 .name = "imx7d-sdma",
572                 .driver_data = (unsigned long)&sdma_imx7d,
573         }, {
574                 /* sentinel */
575         }
576 };
577 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
578
579 static const struct of_device_id sdma_dt_ids[] = {
580         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
581         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
582         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
583         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
584         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
585         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
586         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
587         { /* sentinel */ }
588 };
589 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
590
591 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
592 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
593 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
594 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
595
596 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
597 {
598         u32 chnenbl0 = sdma->drvdata->chnenbl0;
599         return chnenbl0 + event * 4;
600 }
601
602 static int sdma_config_ownership(struct sdma_channel *sdmac,
603                 bool event_override, bool mcu_override, bool dsp_override)
604 {
605         struct sdma_engine *sdma = sdmac->sdma;
606         int channel = sdmac->channel;
607         unsigned long evt, mcu, dsp;
608
609         if (event_override && mcu_override && dsp_override)
610                 return -EINVAL;
611
612         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
613         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
614         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
615
616         if (dsp_override)
617                 __clear_bit(channel, &dsp);
618         else
619                 __set_bit(channel, &dsp);
620
621         if (event_override)
622                 __clear_bit(channel, &evt);
623         else
624                 __set_bit(channel, &evt);
625
626         if (mcu_override)
627                 __clear_bit(channel, &mcu);
628         else
629                 __set_bit(channel, &mcu);
630
631         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
632         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
633         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
634
635         return 0;
636 }
637
638 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
639 {
640         writel(BIT(channel), sdma->regs + SDMA_H_START);
641 }
642
643 /*
644  * sdma_run_channel0 - run a channel and wait till it's done
645  */
646 static int sdma_run_channel0(struct sdma_engine *sdma)
647 {
648         int ret;
649         u32 reg;
650
651         sdma_enable_channel(sdma, 0);
652
653         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
654                                                 reg, !(reg & 1), 1, 500);
655         if (ret)
656                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
657
658         /* Set bits of CONFIG register with dynamic context switching */
659         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
660                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
661
662         return ret;
663 }
664
665 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
666                 u32 address)
667 {
668         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
669         void *buf_virt;
670         dma_addr_t buf_phys;
671         int ret;
672         unsigned long flags;
673
674         buf_virt = dma_alloc_coherent(NULL,
675                         size,
676                         &buf_phys, GFP_KERNEL);
677         if (!buf_virt) {
678                 return -ENOMEM;
679         }
680
681         spin_lock_irqsave(&sdma->channel_0_lock, flags);
682
683         bd0->mode.command = C0_SETPM;
684         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
685         bd0->mode.count = size / 2;
686         bd0->buffer_addr = buf_phys;
687         bd0->ext_buffer_addr = address;
688
689         memcpy(buf_virt, buf, size);
690
691         ret = sdma_run_channel0(sdma);
692
693         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
694
695         dma_free_coherent(NULL, size, buf_virt, buf_phys);
696
697         return ret;
698 }
699
700 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
701 {
702         struct sdma_engine *sdma = sdmac->sdma;
703         int channel = sdmac->channel;
704         unsigned long val;
705         u32 chnenbl = chnenbl_ofs(sdma, event);
706
707         val = readl_relaxed(sdma->regs + chnenbl);
708         __set_bit(channel, &val);
709         writel_relaxed(val, sdma->regs + chnenbl);
710 }
711
712 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
713 {
714         struct sdma_engine *sdma = sdmac->sdma;
715         int channel = sdmac->channel;
716         u32 chnenbl = chnenbl_ofs(sdma, event);
717         unsigned long val;
718
719         val = readl_relaxed(sdma->regs + chnenbl);
720         __clear_bit(channel, &val);
721         writel_relaxed(val, sdma->regs + chnenbl);
722 }
723
724 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
725 {
726         return container_of(t, struct sdma_desc, vd.tx);
727 }
728
729 static void sdma_start_desc(struct sdma_channel *sdmac)
730 {
731         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
732         struct sdma_desc *desc;
733         struct sdma_engine *sdma = sdmac->sdma;
734         int channel = sdmac->channel;
735
736         if (!vd) {
737                 sdmac->desc = NULL;
738                 return;
739         }
740         sdmac->desc = desc = to_sdma_desc(&vd->tx);
741         /*
742          * Do not delete the node in desc_issued list in cyclic mode, otherwise
743          * the desc allocated will never be freed in vchan_dma_desc_free_list
744          */
745         if (!(sdmac->flags & IMX_DMA_SG_LOOP))
746                 list_del(&vd->node);
747
748         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
749         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
750         sdma_enable_channel(sdma, sdmac->channel);
751 }
752
753 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
754 {
755         struct sdma_buffer_descriptor *bd;
756         int error = 0;
757         enum dma_status old_status = sdmac->status;
758
759         /*
760          * loop mode. Iterate over descriptors, re-setup them and
761          * call callback function.
762          */
763         while (sdmac->desc) {
764                 struct sdma_desc *desc = sdmac->desc;
765
766                 bd = &desc->bd[desc->buf_tail];
767
768                 if (bd->mode.status & BD_DONE)
769                         break;
770
771                 if (bd->mode.status & BD_RROR) {
772                         bd->mode.status &= ~BD_RROR;
773                         sdmac->status = DMA_ERROR;
774                         error = -EIO;
775                 }
776
777                /*
778                 * We use bd->mode.count to calculate the residue, since contains
779                 * the number of bytes present in the current buffer descriptor.
780                 */
781
782                 desc->chn_real_count = bd->mode.count;
783                 bd->mode.status |= BD_DONE;
784                 bd->mode.count = desc->period_len;
785                 desc->buf_ptail = desc->buf_tail;
786                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
787
788                 /*
789                  * The callback is called from the interrupt context in order
790                  * to reduce latency and to avoid the risk of altering the
791                  * SDMA transaction status by the time the client tasklet is
792                  * executed.
793                  */
794                 spin_unlock(&sdmac->vc.lock);
795                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
796                 spin_lock(&sdmac->vc.lock);
797
798                 if (error)
799                         sdmac->status = old_status;
800         }
801 }
802
803 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
804 {
805         struct sdma_channel *sdmac = (struct sdma_channel *) data;
806         struct sdma_buffer_descriptor *bd;
807         int i, error = 0;
808
809         sdmac->desc->chn_real_count = 0;
810         /*
811          * non loop mode. Iterate over all descriptors, collect
812          * errors and call callback function
813          */
814         for (i = 0; i < sdmac->desc->num_bd; i++) {
815                 bd = &sdmac->desc->bd[i];
816
817                  if (bd->mode.status & (BD_DONE | BD_RROR))
818                         error = -EIO;
819                  sdmac->desc->chn_real_count += bd->mode.count;
820         }
821
822         if (error)
823                 sdmac->status = DMA_ERROR;
824         else
825                 sdmac->status = DMA_COMPLETE;
826 }
827
828 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
829 {
830         struct sdma_engine *sdma = dev_id;
831         unsigned long stat;
832
833         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
834         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
835         /* channel 0 is special and not handled here, see run_channel0() */
836         stat &= ~1;
837
838         while (stat) {
839                 int channel = fls(stat) - 1;
840                 struct sdma_channel *sdmac = &sdma->channel[channel];
841                 struct sdma_desc *desc;
842
843                 spin_lock(&sdmac->vc.lock);
844                 desc = sdmac->desc;
845                 if (desc) {
846                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
847                                 sdma_update_channel_loop(sdmac);
848                         } else {
849                                 mxc_sdma_handle_channel_normal(sdmac);
850                                 vchan_cookie_complete(&desc->vd);
851                                 sdma_start_desc(sdmac);
852                         }
853                 }
854
855                 spin_unlock(&sdmac->vc.lock);
856                 __clear_bit(channel, &stat);
857         }
858
859         return IRQ_HANDLED;
860 }
861
862 /*
863  * sets the pc of SDMA script according to the peripheral type
864  */
865 static void sdma_get_pc(struct sdma_channel *sdmac,
866                 enum sdma_peripheral_type peripheral_type)
867 {
868         struct sdma_engine *sdma = sdmac->sdma;
869         int per_2_emi = 0, emi_2_per = 0;
870         /*
871          * These are needed once we start to support transfers between
872          * two peripherals or memory-to-memory transfers
873          */
874         int per_2_per = 0, emi_2_emi = 0;
875
876         sdmac->pc_from_device = 0;
877         sdmac->pc_to_device = 0;
878         sdmac->device_to_device = 0;
879         sdmac->pc_to_pc = 0;
880
881         switch (peripheral_type) {
882         case IMX_DMATYPE_MEMORY:
883                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
884                 break;
885         case IMX_DMATYPE_DSP:
886                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
887                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
888                 break;
889         case IMX_DMATYPE_FIRI:
890                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
891                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
892                 break;
893         case IMX_DMATYPE_UART:
894                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
895                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
896                 break;
897         case IMX_DMATYPE_UART_SP:
898                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
899                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
900                 break;
901         case IMX_DMATYPE_ATA:
902                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
903                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
904                 break;
905         case IMX_DMATYPE_CSPI:
906         case IMX_DMATYPE_EXT:
907         case IMX_DMATYPE_SSI:
908         case IMX_DMATYPE_SAI:
909                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
910                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
911                 break;
912         case IMX_DMATYPE_SSI_DUAL:
913                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
914                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
915                 break;
916         case IMX_DMATYPE_SSI_SP:
917         case IMX_DMATYPE_MMC:
918         case IMX_DMATYPE_SDHC:
919         case IMX_DMATYPE_CSPI_SP:
920         case IMX_DMATYPE_ESAI:
921         case IMX_DMATYPE_MSHC_SP:
922                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
923                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
924                 break;
925         case IMX_DMATYPE_ASRC:
926                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
927                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
928                 per_2_per = sdma->script_addrs->per_2_per_addr;
929                 break;
930         case IMX_DMATYPE_ASRC_SP:
931                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
932                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
933                 per_2_per = sdma->script_addrs->per_2_per_addr;
934                 break;
935         case IMX_DMATYPE_MSHC:
936                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
937                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
938                 break;
939         case IMX_DMATYPE_CCM:
940                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
941                 break;
942         case IMX_DMATYPE_SPDIF:
943                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
944                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
945                 break;
946         case IMX_DMATYPE_IPU_MEMORY:
947                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
948                 break;
949         default:
950                 break;
951         }
952
953         sdmac->pc_from_device = per_2_emi;
954         sdmac->pc_to_device = emi_2_per;
955         sdmac->device_to_device = per_2_per;
956         sdmac->pc_to_pc = emi_2_emi;
957 }
958
959 static int sdma_load_context(struct sdma_channel *sdmac)
960 {
961         struct sdma_engine *sdma = sdmac->sdma;
962         int channel = sdmac->channel;
963         int load_address;
964         struct sdma_context_data *context = sdma->context;
965         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
966         int ret;
967         unsigned long flags;
968
969         if (sdmac->direction == DMA_DEV_TO_MEM)
970                 load_address = sdmac->pc_from_device;
971         else if (sdmac->direction == DMA_DEV_TO_DEV)
972                 load_address = sdmac->device_to_device;
973         else if (sdmac->direction == DMA_MEM_TO_MEM)
974                 load_address = sdmac->pc_to_pc;
975         else
976                 load_address = sdmac->pc_to_device;
977
978         if (load_address < 0)
979                 return load_address;
980
981         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
982         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
983         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
984         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
985         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
986         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
987
988         spin_lock_irqsave(&sdma->channel_0_lock, flags);
989
990         memset(context, 0, sizeof(*context));
991         context->channel_state.pc = load_address;
992
993         /* Send by context the event mask,base address for peripheral
994          * and watermark level
995          */
996         context->gReg[0] = sdmac->event_mask[1];
997         context->gReg[1] = sdmac->event_mask[0];
998         context->gReg[2] = sdmac->per_addr;
999         context->gReg[6] = sdmac->shp_addr;
1000         context->gReg[7] = sdmac->watermark_level;
1001
1002         bd0->mode.command = C0_SETDM;
1003         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
1004         bd0->mode.count = sizeof(*context) / 4;
1005         bd0->buffer_addr = sdma->context_phys;
1006         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1007         ret = sdma_run_channel0(sdma);
1008
1009         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1010
1011         return ret;
1012 }
1013
1014 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1015 {
1016         return container_of(chan, struct sdma_channel, vc.chan);
1017 }
1018
1019 static int sdma_disable_channel(struct dma_chan *chan)
1020 {
1021         struct sdma_channel *sdmac = to_sdma_chan(chan);
1022         struct sdma_engine *sdma = sdmac->sdma;
1023         int channel = sdmac->channel;
1024
1025         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1026         sdmac->status = DMA_ERROR;
1027
1028         return 0;
1029 }
1030 static void sdma_channel_terminate_work(struct work_struct *work)
1031 {
1032         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1033                                                   terminate_worker);
1034         unsigned long flags;
1035         LIST_HEAD(head);
1036
1037         /*
1038          * According to NXP R&D team a delay of one BD SDMA cost time
1039          * (maximum is 1ms) should be added after disable of the channel
1040          * bit, to ensure SDMA core has really been stopped after SDMA
1041          * clients call .device_terminate_all.
1042          */
1043         usleep_range(1000, 2000);
1044
1045         spin_lock_irqsave(&sdmac->vc.lock, flags);
1046         vchan_get_all_descriptors(&sdmac->vc, &head);
1047         sdmac->desc = NULL;
1048         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1049         vchan_dma_desc_free_list(&sdmac->vc, &head);
1050 }
1051
1052 static int sdma_disable_channel_async(struct dma_chan *chan)
1053 {
1054         struct sdma_channel *sdmac = to_sdma_chan(chan);
1055
1056         sdma_disable_channel(chan);
1057
1058         if (sdmac->desc)
1059                 schedule_work(&sdmac->terminate_worker);
1060
1061         return 0;
1062 }
1063
1064 static void sdma_channel_synchronize(struct dma_chan *chan)
1065 {
1066         struct sdma_channel *sdmac = to_sdma_chan(chan);
1067
1068         vchan_synchronize(&sdmac->vc);
1069
1070         flush_work(&sdmac->terminate_worker);
1071 }
1072
1073 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1074 {
1075         struct sdma_engine *sdma = sdmac->sdma;
1076
1077         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1078         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1079
1080         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1081         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1082
1083         if (sdmac->event_id0 > 31)
1084                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1085
1086         if (sdmac->event_id1 > 31)
1087                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1088
1089         /*
1090          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1091          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1092          * r0(event_mask[1]) and r1(event_mask[0]).
1093          */
1094         if (lwml > hwml) {
1095                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1096                                                 SDMA_WATERMARK_LEVEL_HWML);
1097                 sdmac->watermark_level |= hwml;
1098                 sdmac->watermark_level |= lwml << 16;
1099                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1100         }
1101
1102         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1103                         sdmac->per_address2 <= sdma->spba_end_addr)
1104                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1105
1106         if (sdmac->per_address >= sdma->spba_start_addr &&
1107                         sdmac->per_address <= sdma->spba_end_addr)
1108                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1109
1110         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1111 }
1112
1113 static int sdma_config_channel(struct dma_chan *chan)
1114 {
1115         struct sdma_channel *sdmac = to_sdma_chan(chan);
1116         int ret;
1117
1118         sdma_disable_channel(chan);
1119
1120         sdmac->event_mask[0] = 0;
1121         sdmac->event_mask[1] = 0;
1122         sdmac->shp_addr = 0;
1123         sdmac->per_addr = 0;
1124
1125         if (sdmac->event_id0) {
1126                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1127                         return -EINVAL;
1128                 sdma_event_enable(sdmac, sdmac->event_id0);
1129         }
1130
1131         if (sdmac->event_id1) {
1132                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1133                         return -EINVAL;
1134                 sdma_event_enable(sdmac, sdmac->event_id1);
1135         }
1136
1137         switch (sdmac->peripheral_type) {
1138         case IMX_DMATYPE_DSP:
1139                 sdma_config_ownership(sdmac, false, true, true);
1140                 break;
1141         case IMX_DMATYPE_MEMORY:
1142                 sdma_config_ownership(sdmac, false, true, false);
1143                 break;
1144         default:
1145                 sdma_config_ownership(sdmac, true, true, false);
1146                 break;
1147         }
1148
1149         sdma_get_pc(sdmac, sdmac->peripheral_type);
1150
1151         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1152                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1153                 /* Handle multiple event channels differently */
1154                 if (sdmac->event_id1) {
1155                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1156                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1157                                 sdma_set_watermarklevel_for_p2p(sdmac);
1158                 } else
1159                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1160
1161                 /* Address */
1162                 sdmac->shp_addr = sdmac->per_address;
1163                 sdmac->per_addr = sdmac->per_address2;
1164         } else {
1165                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1166         }
1167
1168         ret = sdma_load_context(sdmac);
1169
1170         return ret;
1171 }
1172
1173 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1174                 unsigned int priority)
1175 {
1176         struct sdma_engine *sdma = sdmac->sdma;
1177         int channel = sdmac->channel;
1178
1179         if (priority < MXC_SDMA_MIN_PRIORITY
1180             || priority > MXC_SDMA_MAX_PRIORITY) {
1181                 return -EINVAL;
1182         }
1183
1184         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1185
1186         return 0;
1187 }
1188
1189 static int sdma_request_channel0(struct sdma_engine *sdma)
1190 {
1191         int ret = -EBUSY;
1192
1193         sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
1194                                         GFP_NOWAIT);
1195         if (!sdma->bd0) {
1196                 ret = -ENOMEM;
1197                 goto out;
1198         }
1199
1200         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1201         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1202
1203         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1204         return 0;
1205 out:
1206
1207         return ret;
1208 }
1209
1210
1211 static int sdma_alloc_bd(struct sdma_desc *desc)
1212 {
1213         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1214         int ret = 0;
1215
1216         desc->bd = dma_zalloc_coherent(NULL, bd_size, &desc->bd_phys,
1217                                         GFP_ATOMIC);
1218         if (!desc->bd) {
1219                 ret = -ENOMEM;
1220                 goto out;
1221         }
1222 out:
1223         return ret;
1224 }
1225
1226 static void sdma_free_bd(struct sdma_desc *desc)
1227 {
1228         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1229
1230         dma_free_coherent(NULL, bd_size, desc->bd, desc->bd_phys);
1231 }
1232
1233 static void sdma_desc_free(struct virt_dma_desc *vd)
1234 {
1235         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1236
1237         sdma_free_bd(desc);
1238         kfree(desc);
1239 }
1240
1241 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1242 {
1243         struct sdma_channel *sdmac = to_sdma_chan(chan);
1244         struct imx_dma_data *data = chan->private;
1245         struct imx_dma_data mem_data;
1246         int prio, ret;
1247
1248         /*
1249          * MEMCPY may never setup chan->private by filter function such as
1250          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1251          * Please note in any other slave case, you have to setup chan->private
1252          * with 'struct imx_dma_data' in your own filter function if you want to
1253          * request dma channel by dma_request_channel() rather than
1254          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1255          * to warn you to correct your filter function.
1256          */
1257         if (!data) {
1258                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1259                 mem_data.priority = 2;
1260                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1261                 mem_data.dma_request = 0;
1262                 mem_data.dma_request2 = 0;
1263                 data = &mem_data;
1264
1265                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1266         }
1267
1268         switch (data->priority) {
1269         case DMA_PRIO_HIGH:
1270                 prio = 3;
1271                 break;
1272         case DMA_PRIO_MEDIUM:
1273                 prio = 2;
1274                 break;
1275         case DMA_PRIO_LOW:
1276         default:
1277                 prio = 1;
1278                 break;
1279         }
1280
1281         sdmac->peripheral_type = data->peripheral_type;
1282         sdmac->event_id0 = data->dma_request;
1283         sdmac->event_id1 = data->dma_request2;
1284
1285         ret = clk_enable(sdmac->sdma->clk_ipg);
1286         if (ret)
1287                 return ret;
1288         ret = clk_enable(sdmac->sdma->clk_ahb);
1289         if (ret)
1290                 goto disable_clk_ipg;
1291
1292         ret = sdma_set_channel_priority(sdmac, prio);
1293         if (ret)
1294                 goto disable_clk_ahb;
1295
1296         return 0;
1297
1298 disable_clk_ahb:
1299         clk_disable(sdmac->sdma->clk_ahb);
1300 disable_clk_ipg:
1301         clk_disable(sdmac->sdma->clk_ipg);
1302         return ret;
1303 }
1304
1305 static void sdma_free_chan_resources(struct dma_chan *chan)
1306 {
1307         struct sdma_channel *sdmac = to_sdma_chan(chan);
1308         struct sdma_engine *sdma = sdmac->sdma;
1309
1310         sdma_disable_channel_async(chan);
1311
1312         sdma_channel_synchronize(chan);
1313
1314         if (sdmac->event_id0)
1315                 sdma_event_disable(sdmac, sdmac->event_id0);
1316         if (sdmac->event_id1)
1317                 sdma_event_disable(sdmac, sdmac->event_id1);
1318
1319         sdmac->event_id0 = 0;
1320         sdmac->event_id1 = 0;
1321
1322         sdma_set_channel_priority(sdmac, 0);
1323
1324         clk_disable(sdma->clk_ipg);
1325         clk_disable(sdma->clk_ahb);
1326 }
1327
1328 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1329                                 enum dma_transfer_direction direction, u32 bds)
1330 {
1331         struct sdma_desc *desc;
1332
1333         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1334         if (!desc)
1335                 goto err_out;
1336
1337         sdmac->status = DMA_IN_PROGRESS;
1338         sdmac->direction = direction;
1339         sdmac->flags = 0;
1340
1341         desc->chn_count = 0;
1342         desc->chn_real_count = 0;
1343         desc->buf_tail = 0;
1344         desc->buf_ptail = 0;
1345         desc->sdmac = sdmac;
1346         desc->num_bd = bds;
1347
1348         if (sdma_alloc_bd(desc))
1349                 goto err_desc_out;
1350
1351         /* No slave_config called in MEMCPY case, so do here */
1352         if (direction == DMA_MEM_TO_MEM)
1353                 sdma_config_ownership(sdmac, false, true, false);
1354
1355         if (sdma_load_context(sdmac))
1356                 goto err_desc_out;
1357
1358         return desc;
1359
1360 err_desc_out:
1361         kfree(desc);
1362 err_out:
1363         return NULL;
1364 }
1365
1366 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1367                 struct dma_chan *chan, dma_addr_t dma_dst,
1368                 dma_addr_t dma_src, size_t len, unsigned long flags)
1369 {
1370         struct sdma_channel *sdmac = to_sdma_chan(chan);
1371         struct sdma_engine *sdma = sdmac->sdma;
1372         int channel = sdmac->channel;
1373         size_t count;
1374         int i = 0, param;
1375         struct sdma_buffer_descriptor *bd;
1376         struct sdma_desc *desc;
1377
1378         if (!chan || !len)
1379                 return NULL;
1380
1381         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1382                 &dma_src, &dma_dst, len, channel);
1383
1384         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1385                                         len / SDMA_BD_MAX_CNT + 1);
1386         if (!desc)
1387                 return NULL;
1388
1389         do {
1390                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1391                 bd = &desc->bd[i];
1392                 bd->buffer_addr = dma_src;
1393                 bd->ext_buffer_addr = dma_dst;
1394                 bd->mode.count = count;
1395                 desc->chn_count += count;
1396                 bd->mode.command = 0;
1397
1398                 dma_src += count;
1399                 dma_dst += count;
1400                 len -= count;
1401                 i++;
1402
1403                 param = BD_DONE | BD_EXTD | BD_CONT;
1404                 /* last bd */
1405                 if (!len) {
1406                         param |= BD_INTR;
1407                         param |= BD_LAST;
1408                         param &= ~BD_CONT;
1409                 }
1410
1411                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1412                                 i, count, bd->buffer_addr,
1413                                 param & BD_WRAP ? "wrap" : "",
1414                                 param & BD_INTR ? " intr" : "");
1415
1416                 bd->mode.status = param;
1417         } while (len);
1418
1419         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1420 }
1421
1422 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1423                 struct dma_chan *chan, struct scatterlist *sgl,
1424                 unsigned int sg_len, enum dma_transfer_direction direction,
1425                 unsigned long flags, void *context)
1426 {
1427         struct sdma_channel *sdmac = to_sdma_chan(chan);
1428         struct sdma_engine *sdma = sdmac->sdma;
1429         int i, count;
1430         int channel = sdmac->channel;
1431         struct scatterlist *sg;
1432         struct sdma_desc *desc;
1433
1434         desc = sdma_transfer_init(sdmac, direction, sg_len);
1435         if (!desc)
1436                 goto err_out;
1437
1438         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1439                         sg_len, channel);
1440
1441         for_each_sg(sgl, sg, sg_len, i) {
1442                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1443                 int param;
1444
1445                 bd->buffer_addr = sg->dma_address;
1446
1447                 count = sg_dma_len(sg);
1448
1449                 if (count > SDMA_BD_MAX_CNT) {
1450                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1451                                         channel, count, SDMA_BD_MAX_CNT);
1452                         goto err_bd_out;
1453                 }
1454
1455                 bd->mode.count = count;
1456                 desc->chn_count += count;
1457
1458                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1459                         goto err_bd_out;
1460
1461                 switch (sdmac->word_size) {
1462                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1463                         bd->mode.command = 0;
1464                         if (count & 3 || sg->dma_address & 3)
1465                                 goto err_bd_out;
1466                         break;
1467                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1468                         bd->mode.command = 2;
1469                         if (count & 1 || sg->dma_address & 1)
1470                                 goto err_bd_out;
1471                         break;
1472                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1473                         bd->mode.command = 1;
1474                         break;
1475                 default:
1476                         goto err_bd_out;
1477                 }
1478
1479                 param = BD_DONE | BD_EXTD | BD_CONT;
1480
1481                 if (i + 1 == sg_len) {
1482                         param |= BD_INTR;
1483                         param |= BD_LAST;
1484                         param &= ~BD_CONT;
1485                 }
1486
1487                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1488                                 i, count, (u64)sg->dma_address,
1489                                 param & BD_WRAP ? "wrap" : "",
1490                                 param & BD_INTR ? " intr" : "");
1491
1492                 bd->mode.status = param;
1493         }
1494
1495         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1496 err_bd_out:
1497         sdma_free_bd(desc);
1498         kfree(desc);
1499 err_out:
1500         sdmac->status = DMA_ERROR;
1501         return NULL;
1502 }
1503
1504 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1505                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1506                 size_t period_len, enum dma_transfer_direction direction,
1507                 unsigned long flags)
1508 {
1509         struct sdma_channel *sdmac = to_sdma_chan(chan);
1510         struct sdma_engine *sdma = sdmac->sdma;
1511         int num_periods = buf_len / period_len;
1512         int channel = sdmac->channel;
1513         int i = 0, buf = 0;
1514         struct sdma_desc *desc;
1515
1516         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1517
1518         desc = sdma_transfer_init(sdmac, direction, num_periods);
1519         if (!desc)
1520                 goto err_out;
1521
1522         desc->period_len = period_len;
1523
1524         sdmac->flags |= IMX_DMA_SG_LOOP;
1525
1526         if (period_len > SDMA_BD_MAX_CNT) {
1527                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1528                                 channel, period_len, SDMA_BD_MAX_CNT);
1529                 goto err_bd_out;
1530         }
1531
1532         while (buf < buf_len) {
1533                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1534                 int param;
1535
1536                 bd->buffer_addr = dma_addr;
1537
1538                 bd->mode.count = period_len;
1539
1540                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1541                         goto err_bd_out;
1542                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1543                         bd->mode.command = 0;
1544                 else
1545                         bd->mode.command = sdmac->word_size;
1546
1547                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1548                 if (i + 1 == num_periods)
1549                         param |= BD_WRAP;
1550
1551                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1552                                 i, period_len, (u64)dma_addr,
1553                                 param & BD_WRAP ? "wrap" : "",
1554                                 param & BD_INTR ? " intr" : "");
1555
1556                 bd->mode.status = param;
1557
1558                 dma_addr += period_len;
1559                 buf += period_len;
1560
1561                 i++;
1562         }
1563
1564         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1565 err_bd_out:
1566         sdma_free_bd(desc);
1567         kfree(desc);
1568 err_out:
1569         sdmac->status = DMA_ERROR;
1570         return NULL;
1571 }
1572
1573 static int sdma_config(struct dma_chan *chan,
1574                        struct dma_slave_config *dmaengine_cfg)
1575 {
1576         struct sdma_channel *sdmac = to_sdma_chan(chan);
1577
1578         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1579                 sdmac->per_address = dmaengine_cfg->src_addr;
1580                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1581                         dmaengine_cfg->src_addr_width;
1582                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1583         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1584                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1585                 sdmac->per_address = dmaengine_cfg->dst_addr;
1586                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1587                         SDMA_WATERMARK_LEVEL_LWML;
1588                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1589                         SDMA_WATERMARK_LEVEL_HWML;
1590                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1591         } else {
1592                 sdmac->per_address = dmaengine_cfg->dst_addr;
1593                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1594                         dmaengine_cfg->dst_addr_width;
1595                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1596         }
1597         sdmac->direction = dmaengine_cfg->direction;
1598         return sdma_config_channel(chan);
1599 }
1600
1601 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1602                                       dma_cookie_t cookie,
1603                                       struct dma_tx_state *txstate)
1604 {
1605         struct sdma_channel *sdmac = to_sdma_chan(chan);
1606         struct sdma_desc *desc;
1607         u32 residue;
1608         struct virt_dma_desc *vd;
1609         enum dma_status ret;
1610         unsigned long flags;
1611
1612         ret = dma_cookie_status(chan, cookie, txstate);
1613         if (ret == DMA_COMPLETE || !txstate)
1614                 return ret;
1615
1616         spin_lock_irqsave(&sdmac->vc.lock, flags);
1617         vd = vchan_find_desc(&sdmac->vc, cookie);
1618         if (vd) {
1619                 desc = to_sdma_desc(&vd->tx);
1620                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1621                         residue = (desc->num_bd - desc->buf_ptail) *
1622                                 desc->period_len - desc->chn_real_count;
1623                 else
1624                         residue = desc->chn_count - desc->chn_real_count;
1625         } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1626                 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1627         } else {
1628                 residue = 0;
1629         }
1630         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1631
1632         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1633                          residue);
1634
1635         return sdmac->status;
1636 }
1637
1638 static void sdma_issue_pending(struct dma_chan *chan)
1639 {
1640         struct sdma_channel *sdmac = to_sdma_chan(chan);
1641         unsigned long flags;
1642
1643         spin_lock_irqsave(&sdmac->vc.lock, flags);
1644         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1645                 sdma_start_desc(sdmac);
1646         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1647 }
1648
1649 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1650 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1651 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1652 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1653
1654 static void sdma_add_scripts(struct sdma_engine *sdma,
1655                 const struct sdma_script_start_addrs *addr)
1656 {
1657         s32 *addr_arr = (u32 *)addr;
1658         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1659         int i;
1660
1661         /* use the default firmware in ROM if missing external firmware */
1662         if (!sdma->script_number)
1663                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1664
1665         for (i = 0; i < sdma->script_number; i++)
1666                 if (addr_arr[i] > 0)
1667                         saddr_arr[i] = addr_arr[i];
1668 }
1669
1670 static void sdma_load_firmware(const struct firmware *fw, void *context)
1671 {
1672         struct sdma_engine *sdma = context;
1673         const struct sdma_firmware_header *header;
1674         const struct sdma_script_start_addrs *addr;
1675         unsigned short *ram_code;
1676
1677         if (!fw) {
1678                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1679                 /* In this case we just use the ROM firmware. */
1680                 return;
1681         }
1682
1683         if (fw->size < sizeof(*header))
1684                 goto err_firmware;
1685
1686         header = (struct sdma_firmware_header *)fw->data;
1687
1688         if (header->magic != SDMA_FIRMWARE_MAGIC)
1689                 goto err_firmware;
1690         if (header->ram_code_start + header->ram_code_size > fw->size)
1691                 goto err_firmware;
1692         switch (header->version_major) {
1693         case 1:
1694                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1695                 break;
1696         case 2:
1697                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1698                 break;
1699         case 3:
1700                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1701                 break;
1702         case 4:
1703                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1704                 break;
1705         default:
1706                 dev_err(sdma->dev, "unknown firmware version\n");
1707                 goto err_firmware;
1708         }
1709
1710         addr = (void *)header + header->script_addrs_start;
1711         ram_code = (void *)header + header->ram_code_start;
1712
1713         clk_enable(sdma->clk_ipg);
1714         clk_enable(sdma->clk_ahb);
1715         /* download the RAM image for SDMA */
1716         sdma_load_script(sdma, ram_code,
1717                         header->ram_code_size,
1718                         addr->ram_code_start_addr);
1719         clk_disable(sdma->clk_ipg);
1720         clk_disable(sdma->clk_ahb);
1721
1722         sdma_add_scripts(sdma, addr);
1723
1724         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1725                         header->version_major,
1726                         header->version_minor);
1727
1728 err_firmware:
1729         release_firmware(fw);
1730 }
1731
1732 #define EVENT_REMAP_CELLS 3
1733
1734 static int sdma_event_remap(struct sdma_engine *sdma)
1735 {
1736         struct device_node *np = sdma->dev->of_node;
1737         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1738         struct property *event_remap;
1739         struct regmap *gpr;
1740         char propname[] = "fsl,sdma-event-remap";
1741         u32 reg, val, shift, num_map, i;
1742         int ret = 0;
1743
1744         if (IS_ERR(np) || IS_ERR(gpr_np))
1745                 goto out;
1746
1747         event_remap = of_find_property(np, propname, NULL);
1748         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1749         if (!num_map) {
1750                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1751                 goto out;
1752         } else if (num_map % EVENT_REMAP_CELLS) {
1753                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1754                                 propname, EVENT_REMAP_CELLS);
1755                 ret = -EINVAL;
1756                 goto out;
1757         }
1758
1759         gpr = syscon_node_to_regmap(gpr_np);
1760         if (IS_ERR(gpr)) {
1761                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1762                 ret = PTR_ERR(gpr);
1763                 goto out;
1764         }
1765
1766         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1767                 ret = of_property_read_u32_index(np, propname, i, &reg);
1768                 if (ret) {
1769                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1770                                         propname, i);
1771                         goto out;
1772                 }
1773
1774                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1775                 if (ret) {
1776                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1777                                         propname, i + 1);
1778                         goto out;
1779                 }
1780
1781                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1782                 if (ret) {
1783                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1784                                         propname, i + 2);
1785                         goto out;
1786                 }
1787
1788                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1789         }
1790
1791 out:
1792         if (!IS_ERR(gpr_np))
1793                 of_node_put(gpr_np);
1794
1795         return ret;
1796 }
1797
1798 static int sdma_get_firmware(struct sdma_engine *sdma,
1799                 const char *fw_name)
1800 {
1801         int ret;
1802
1803         ret = request_firmware_nowait(THIS_MODULE,
1804                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1805                         GFP_KERNEL, sdma, sdma_load_firmware);
1806
1807         return ret;
1808 }
1809
1810 static int sdma_init(struct sdma_engine *sdma)
1811 {
1812         int i, ret;
1813         dma_addr_t ccb_phys;
1814
1815         ret = clk_enable(sdma->clk_ipg);
1816         if (ret)
1817                 return ret;
1818         ret = clk_enable(sdma->clk_ahb);
1819         if (ret)
1820                 goto disable_clk_ipg;
1821
1822         /* Be sure SDMA has not started yet */
1823         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1824
1825         sdma->channel_control = dma_alloc_coherent(NULL,
1826                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1827                         sizeof(struct sdma_context_data),
1828                         &ccb_phys, GFP_KERNEL);
1829
1830         if (!sdma->channel_control) {
1831                 ret = -ENOMEM;
1832                 goto err_dma_alloc;
1833         }
1834
1835         sdma->context = (void *)sdma->channel_control +
1836                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1837         sdma->context_phys = ccb_phys +
1838                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1839
1840         /* Zero-out the CCB structures array just allocated */
1841         memset(sdma->channel_control, 0,
1842                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1843
1844         /* disable all channels */
1845         for (i = 0; i < sdma->drvdata->num_events; i++)
1846                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1847
1848         /* All channels have priority 0 */
1849         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1850                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1851
1852         ret = sdma_request_channel0(sdma);
1853         if (ret)
1854                 goto err_dma_alloc;
1855
1856         sdma_config_ownership(&sdma->channel[0], false, true, false);
1857
1858         /* Set Command Channel (Channel Zero) */
1859         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1860
1861         /* Set bits of CONFIG register but with static context switching */
1862         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1863         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1864
1865         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1866
1867         /* Initializes channel's priorities */
1868         sdma_set_channel_priority(&sdma->channel[0], 7);
1869
1870         clk_disable(sdma->clk_ipg);
1871         clk_disable(sdma->clk_ahb);
1872
1873         return 0;
1874
1875 err_dma_alloc:
1876         clk_disable(sdma->clk_ahb);
1877 disable_clk_ipg:
1878         clk_disable(sdma->clk_ipg);
1879         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1880         return ret;
1881 }
1882
1883 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1884 {
1885         struct sdma_channel *sdmac = to_sdma_chan(chan);
1886         struct imx_dma_data *data = fn_param;
1887
1888         if (!imx_dma_is_general_purpose(chan))
1889                 return false;
1890
1891         sdmac->data = *data;
1892         chan->private = &sdmac->data;
1893
1894         return true;
1895 }
1896
1897 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1898                                    struct of_dma *ofdma)
1899 {
1900         struct sdma_engine *sdma = ofdma->of_dma_data;
1901         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1902         struct imx_dma_data data;
1903
1904         if (dma_spec->args_count != 3)
1905                 return NULL;
1906
1907         data.dma_request = dma_spec->args[0];
1908         data.peripheral_type = dma_spec->args[1];
1909         data.priority = dma_spec->args[2];
1910         /*
1911          * init dma_request2 to zero, which is not used by the dts.
1912          * For P2P, dma_request2 is init from dma_request_channel(),
1913          * chan->private will point to the imx_dma_data, and in
1914          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1915          * be set to sdmac->event_id1.
1916          */
1917         data.dma_request2 = 0;
1918
1919         return dma_request_channel(mask, sdma_filter_fn, &data);
1920 }
1921
1922 static int sdma_probe(struct platform_device *pdev)
1923 {
1924         const struct of_device_id *of_id =
1925                         of_match_device(sdma_dt_ids, &pdev->dev);
1926         struct device_node *np = pdev->dev.of_node;
1927         struct device_node *spba_bus;
1928         const char *fw_name;
1929         int ret;
1930         int irq;
1931         struct resource *iores;
1932         struct resource spba_res;
1933         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1934         int i;
1935         struct sdma_engine *sdma;
1936         s32 *saddr_arr;
1937         const struct sdma_driver_data *drvdata = NULL;
1938
1939         if (of_id)
1940                 drvdata = of_id->data;
1941         else if (pdev->id_entry)
1942                 drvdata = (void *)pdev->id_entry->driver_data;
1943
1944         if (!drvdata) {
1945                 dev_err(&pdev->dev, "unable to find driver data\n");
1946                 return -EINVAL;
1947         }
1948
1949         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1950         if (ret)
1951                 return ret;
1952
1953         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1954         if (!sdma)
1955                 return -ENOMEM;
1956
1957         spin_lock_init(&sdma->channel_0_lock);
1958
1959         sdma->dev = &pdev->dev;
1960         sdma->drvdata = drvdata;
1961
1962         irq = platform_get_irq(pdev, 0);
1963         if (irq < 0)
1964                 return irq;
1965
1966         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1967         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1968         if (IS_ERR(sdma->regs))
1969                 return PTR_ERR(sdma->regs);
1970
1971         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1972         if (IS_ERR(sdma->clk_ipg))
1973                 return PTR_ERR(sdma->clk_ipg);
1974
1975         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1976         if (IS_ERR(sdma->clk_ahb))
1977                 return PTR_ERR(sdma->clk_ahb);
1978
1979         ret = clk_prepare(sdma->clk_ipg);
1980         if (ret)
1981                 return ret;
1982
1983         ret = clk_prepare(sdma->clk_ahb);
1984         if (ret)
1985                 goto err_clk;
1986
1987         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1988                                sdma);
1989         if (ret)
1990                 goto err_irq;
1991
1992         sdma->irq = irq;
1993
1994         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1995         if (!sdma->script_addrs) {
1996                 ret = -ENOMEM;
1997                 goto err_irq;
1998         }
1999
2000         /* initially no scripts available */
2001         saddr_arr = (s32 *)sdma->script_addrs;
2002         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2003                 saddr_arr[i] = -EINVAL;
2004
2005         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2006         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2007         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2008
2009         INIT_LIST_HEAD(&sdma->dma_device.channels);
2010         /* Initialize channel parameters */
2011         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2012                 struct sdma_channel *sdmac = &sdma->channel[i];
2013
2014                 sdmac->sdma = sdma;
2015
2016                 sdmac->channel = i;
2017                 sdmac->vc.desc_free = sdma_desc_free;
2018                 INIT_WORK(&sdmac->terminate_worker,
2019                                 sdma_channel_terminate_work);
2020                 /*
2021                  * Add the channel to the DMAC list. Do not add channel 0 though
2022                  * because we need it internally in the SDMA driver. This also means
2023                  * that channel 0 in dmaengine counting matches sdma channel 1.
2024                  */
2025                 if (i)
2026                         vchan_init(&sdmac->vc, &sdma->dma_device);
2027         }
2028
2029         ret = sdma_init(sdma);
2030         if (ret)
2031                 goto err_init;
2032
2033         ret = sdma_event_remap(sdma);
2034         if (ret)
2035                 goto err_init;
2036
2037         if (sdma->drvdata->script_addrs)
2038                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2039         if (pdata && pdata->script_addrs)
2040                 sdma_add_scripts(sdma, pdata->script_addrs);
2041
2042         if (pdata) {
2043                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2044                 if (ret)
2045                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2046         } else {
2047                 /*
2048                  * Because that device tree does not encode ROM script address,
2049                  * the RAM script in firmware is mandatory for device tree
2050                  * probe, otherwise it fails.
2051                  */
2052                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2053                                               &fw_name);
2054                 if (ret)
2055                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2056                 else {
2057                         ret = sdma_get_firmware(sdma, fw_name);
2058                         if (ret)
2059                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2060                 }
2061         }
2062
2063         sdma->dma_device.dev = &pdev->dev;
2064
2065         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2066         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2067         sdma->dma_device.device_tx_status = sdma_tx_status;
2068         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2069         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2070         sdma->dma_device.device_config = sdma_config;
2071         sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2072         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2073         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2074         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2075         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2076         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2077         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2078         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2079         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2080         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2081
2082         platform_set_drvdata(pdev, sdma);
2083
2084         ret = dma_async_device_register(&sdma->dma_device);
2085         if (ret) {
2086                 dev_err(&pdev->dev, "unable to register\n");
2087                 goto err_init;
2088         }
2089
2090         if (np) {
2091                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2092                 if (ret) {
2093                         dev_err(&pdev->dev, "failed to register controller\n");
2094                         goto err_register;
2095                 }
2096
2097                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2098                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2099                 if (!ret) {
2100                         sdma->spba_start_addr = spba_res.start;
2101                         sdma->spba_end_addr = spba_res.end;
2102                 }
2103                 of_node_put(spba_bus);
2104         }
2105
2106         return 0;
2107
2108 err_register:
2109         dma_async_device_unregister(&sdma->dma_device);
2110 err_init:
2111         kfree(sdma->script_addrs);
2112 err_irq:
2113         clk_unprepare(sdma->clk_ahb);
2114 err_clk:
2115         clk_unprepare(sdma->clk_ipg);
2116         return ret;
2117 }
2118
2119 static int sdma_remove(struct platform_device *pdev)
2120 {
2121         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2122         int i;
2123
2124         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2125         dma_async_device_unregister(&sdma->dma_device);
2126         kfree(sdma->script_addrs);
2127         clk_unprepare(sdma->clk_ahb);
2128         clk_unprepare(sdma->clk_ipg);
2129         /* Kill the tasklet */
2130         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2131                 struct sdma_channel *sdmac = &sdma->channel[i];
2132
2133                 tasklet_kill(&sdmac->vc.task);
2134                 sdma_free_chan_resources(&sdmac->vc.chan);
2135         }
2136
2137         platform_set_drvdata(pdev, NULL);
2138         return 0;
2139 }
2140
2141 static struct platform_driver sdma_driver = {
2142         .driver         = {
2143                 .name   = "imx-sdma",
2144                 .of_match_table = sdma_dt_ids,
2145         },
2146         .id_table       = sdma_devtypes,
2147         .remove         = sdma_remove,
2148         .probe          = sdma_probe,
2149 };
2150
2151 module_platform_driver(sdma_driver);
2152
2153 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2154 MODULE_DESCRIPTION("i.MX SDMA driver");
2155 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2156 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2157 #endif
2158 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2159 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2160 #endif
2161 MODULE_LICENSE("GPL");