]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/edac/altera_edac.c
Merge tag 'gfs2-4.20.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2...
[linux.git] / drivers / edac / altera_edac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/genalloc.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqchip/chained_irq.h>
15 #include <linux/kernel.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/notifier.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/types.h>
24 #include <linux/uaccess.h>
25
26 #include "altera_edac.h"
27 #include "edac_module.h"
28
29 #define EDAC_MOD_STR            "altera_edac"
30 #define EDAC_DEVICE             "Altera"
31
32 static const struct altr_sdram_prv_data c5_data = {
33         .ecc_ctrl_offset    = CV_CTLCFG_OFST,
34         .ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
35         .ecc_stat_offset    = CV_DRAMSTS_OFST,
36         .ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
37         .ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
38         .ecc_saddr_offset   = CV_ERRADDR_OFST,
39         .ecc_daddr_offset   = CV_ERRADDR_OFST,
40         .ecc_cecnt_offset   = CV_SBECOUNT_OFST,
41         .ecc_uecnt_offset   = CV_DBECOUNT_OFST,
42         .ecc_irq_en_offset  = CV_DRAMINTR_OFST,
43         .ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
44         .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
45         .ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
46         .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
47         .ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
48         .ce_ue_trgr_offset  = CV_CTLCFG_OFST,
49         .ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
50         .ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
51 };
52
53 static const struct altr_sdram_prv_data a10_data = {
54         .ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
55         .ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
56         .ecc_stat_offset    = A10_INTSTAT_OFST,
57         .ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
58         .ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
59         .ecc_saddr_offset   = A10_SERRADDR_OFST,
60         .ecc_daddr_offset   = A10_DERRADDR_OFST,
61         .ecc_irq_en_offset  = A10_ERRINTEN_OFST,
62         .ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
63         .ecc_irq_clr_offset = A10_INTSTAT_OFST,
64         .ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
65         .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
66         .ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
67         .ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
68         .ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
69         .ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
70 };
71
72 static const struct altr_sdram_prv_data s10_data = {
73         .ecc_ctrl_offset    = S10_ECCCTRL1_OFST,
74         .ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
75         .ecc_stat_offset    = S10_INTSTAT_OFST,
76         .ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
77         .ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
78         .ecc_saddr_offset   = S10_SERRADDR_OFST,
79         .ecc_daddr_offset   = S10_DERRADDR_OFST,
80         .ecc_irq_en_offset  = S10_ERRINTEN_OFST,
81         .ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
82         .ecc_irq_clr_offset = S10_INTSTAT_OFST,
83         .ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
84         .ecc_cnt_rst_offset = S10_ECCCTRL1_OFST,
85         .ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
86         .ce_ue_trgr_offset  = S10_DIAGINTTEST_OFST,
87         .ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
88         .ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
89 };
90
91 /*********************** EDAC Memory Controller Functions ****************/
92
93 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
94
95 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
96 {
97         struct mem_ctl_info *mci = dev_id;
98         struct altr_sdram_mc_data *drvdata = mci->pvt_info;
99         const struct altr_sdram_prv_data *priv = drvdata->data;
100         u32 status, err_count = 1, err_addr;
101
102         regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
103
104         if (status & priv->ecc_stat_ue_mask) {
105                 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
106                             &err_addr);
107                 if (priv->ecc_uecnt_offset)
108                         regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
109                                     &err_count);
110                 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
111                       err_count, err_addr);
112         }
113         if (status & priv->ecc_stat_ce_mask) {
114                 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
115                             &err_addr);
116                 if (priv->ecc_uecnt_offset)
117                         regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
118                                     &err_count);
119                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
120                                      err_addr >> PAGE_SHIFT,
121                                      err_addr & ~PAGE_MASK, 0,
122                                      0, 0, -1, mci->ctl_name, "");
123                 /* Clear IRQ to resume */
124                 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
125                              priv->ecc_irq_clr_mask);
126
127                 return IRQ_HANDLED;
128         }
129         return IRQ_NONE;
130 }
131
132 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
133                                             const char __user *data,
134                                             size_t count, loff_t *ppos)
135 {
136         struct mem_ctl_info *mci = file->private_data;
137         struct altr_sdram_mc_data *drvdata = mci->pvt_info;
138         const struct altr_sdram_prv_data *priv = drvdata->data;
139         u32 *ptemp;
140         dma_addr_t dma_handle;
141         u32 reg, read_reg;
142
143         ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
144         if (!ptemp) {
145                 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
146                 edac_printk(KERN_ERR, EDAC_MC,
147                             "Inject: Buffer Allocation error\n");
148                 return -ENOMEM;
149         }
150
151         regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
152                     &read_reg);
153         read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
154
155         /* Error are injected by writing a word while the SBE or DBE
156          * bit in the CTLCFG register is set. Reading the word will
157          * trigger the SBE or DBE error and the corresponding IRQ.
158          */
159         if (count == 3) {
160                 edac_printk(KERN_ALERT, EDAC_MC,
161                             "Inject Double bit error\n");
162                 local_irq_disable();
163                 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
164                              (read_reg | priv->ue_set_mask));
165                 local_irq_enable();
166         } else {
167                 edac_printk(KERN_ALERT, EDAC_MC,
168                             "Inject Single bit error\n");
169                 local_irq_disable();
170                 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
171                              (read_reg | priv->ce_set_mask));
172                 local_irq_enable();
173         }
174
175         ptemp[0] = 0x5A5A5A5A;
176         ptemp[1] = 0xA5A5A5A5;
177
178         /* Clear the error injection bits */
179         regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
180         /* Ensure it has been written out */
181         wmb();
182
183         /*
184          * To trigger the error, we need to read the data back
185          * (the data was written with errors above).
186          * The READ_ONCE macros and printk are used to prevent the
187          * the compiler optimizing these reads out.
188          */
189         reg = READ_ONCE(ptemp[0]);
190         read_reg = READ_ONCE(ptemp[1]);
191         /* Force Read */
192         rmb();
193
194         edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
195                     reg, read_reg);
196
197         dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
198
199         return count;
200 }
201
202 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
203         .open = simple_open,
204         .write = altr_sdr_mc_err_inject_write,
205         .llseek = generic_file_llseek,
206 };
207
208 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
209 {
210         if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
211                 return;
212
213         if (!mci->debugfs)
214                 return;
215
216         edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
217                                  &altr_sdr_mc_debug_inject_fops);
218 }
219
220 /* Get total memory size from Open Firmware DTB */
221 static unsigned long get_total_mem(void)
222 {
223         struct device_node *np = NULL;
224         struct resource res;
225         int ret;
226         unsigned long total_mem = 0;
227
228         for_each_node_by_type(np, "memory") {
229                 ret = of_address_to_resource(np, 0, &res);
230                 if (ret)
231                         continue;
232
233                 total_mem += resource_size(&res);
234         }
235         edac_dbg(0, "total_mem 0x%lx\n", total_mem);
236         return total_mem;
237 }
238
239 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
240         { .compatible = "altr,sdram-edac", .data = &c5_data},
241         { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
242         { .compatible = "altr,sdram-edac-s10", .data = &s10_data},
243         {},
244 };
245 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
246
247 static int a10_init(struct regmap *mc_vbase)
248 {
249         if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
250                                A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
251                 edac_printk(KERN_ERR, EDAC_MC,
252                             "Error setting SB IRQ mode\n");
253                 return -ENODEV;
254         }
255
256         if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
257                 edac_printk(KERN_ERR, EDAC_MC,
258                             "Error setting trigger count\n");
259                 return -ENODEV;
260         }
261
262         return 0;
263 }
264
265 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
266 {
267         void __iomem  *sm_base;
268         int  ret = 0;
269
270         if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
271                                 dev_name(&pdev->dev))) {
272                 edac_printk(KERN_ERR, EDAC_MC,
273                             "Unable to request mem region\n");
274                 return -EBUSY;
275         }
276
277         sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
278         if (!sm_base) {
279                 edac_printk(KERN_ERR, EDAC_MC,
280                             "Unable to ioremap device\n");
281
282                 ret = -ENOMEM;
283                 goto release;
284         }
285
286         iowrite32(mask, sm_base);
287
288         iounmap(sm_base);
289
290 release:
291         release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
292
293         return ret;
294 }
295
296 static int altr_sdram_probe(struct platform_device *pdev)
297 {
298         const struct of_device_id *id;
299         struct edac_mc_layer layers[2];
300         struct mem_ctl_info *mci;
301         struct altr_sdram_mc_data *drvdata;
302         const struct altr_sdram_prv_data *priv;
303         struct regmap *mc_vbase;
304         struct dimm_info *dimm;
305         u32 read_reg;
306         int irq, irq2, res = 0;
307         unsigned long mem_size, irqflags = 0;
308
309         id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
310         if (!id)
311                 return -ENODEV;
312
313         /* Grab the register range from the sdr controller in device tree */
314         mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
315                                                    "altr,sdr-syscon");
316         if (IS_ERR(mc_vbase)) {
317                 edac_printk(KERN_ERR, EDAC_MC,
318                             "regmap for altr,sdr-syscon lookup failed.\n");
319                 return -ENODEV;
320         }
321
322         /* Check specific dependencies for the module */
323         priv = of_match_node(altr_sdram_ctrl_of_match,
324                              pdev->dev.of_node)->data;
325
326         /* Validate the SDRAM controller has ECC enabled */
327         if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
328             ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
329                 edac_printk(KERN_ERR, EDAC_MC,
330                             "No ECC/ECC disabled [0x%08X]\n", read_reg);
331                 return -ENODEV;
332         }
333
334         /* Grab memory size from device tree. */
335         mem_size = get_total_mem();
336         if (!mem_size) {
337                 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
338                 return -ENODEV;
339         }
340
341         /* Ensure the SDRAM Interrupt is disabled */
342         if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
343                                priv->ecc_irq_en_mask, 0)) {
344                 edac_printk(KERN_ERR, EDAC_MC,
345                             "Error disabling SDRAM ECC IRQ\n");
346                 return -ENODEV;
347         }
348
349         /* Toggle to clear the SDRAM Error count */
350         if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
351                                priv->ecc_cnt_rst_mask,
352                                priv->ecc_cnt_rst_mask)) {
353                 edac_printk(KERN_ERR, EDAC_MC,
354                             "Error clearing SDRAM ECC count\n");
355                 return -ENODEV;
356         }
357
358         if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
359                                priv->ecc_cnt_rst_mask, 0)) {
360                 edac_printk(KERN_ERR, EDAC_MC,
361                             "Error clearing SDRAM ECC count\n");
362                 return -ENODEV;
363         }
364
365         irq = platform_get_irq(pdev, 0);
366         if (irq < 0) {
367                 edac_printk(KERN_ERR, EDAC_MC,
368                             "No irq %d in DT\n", irq);
369                 return -ENODEV;
370         }
371
372         /* Arria10 has a 2nd IRQ */
373         irq2 = platform_get_irq(pdev, 1);
374
375         layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
376         layers[0].size = 1;
377         layers[0].is_virt_csrow = true;
378         layers[1].type = EDAC_MC_LAYER_CHANNEL;
379         layers[1].size = 1;
380         layers[1].is_virt_csrow = false;
381         mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
382                             sizeof(struct altr_sdram_mc_data));
383         if (!mci)
384                 return -ENOMEM;
385
386         mci->pdev = &pdev->dev;
387         drvdata = mci->pvt_info;
388         drvdata->mc_vbase = mc_vbase;
389         drvdata->data = priv;
390         platform_set_drvdata(pdev, mci);
391
392         if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
393                 edac_printk(KERN_ERR, EDAC_MC,
394                             "Unable to get managed device resource\n");
395                 res = -ENOMEM;
396                 goto free;
397         }
398
399         mci->mtype_cap = MEM_FLAG_DDR3;
400         mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
401         mci->edac_cap = EDAC_FLAG_SECDED;
402         mci->mod_name = EDAC_MOD_STR;
403         mci->ctl_name = dev_name(&pdev->dev);
404         mci->scrub_mode = SCRUB_SW_SRC;
405         mci->dev_name = dev_name(&pdev->dev);
406
407         dimm = *mci->dimms;
408         dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
409         dimm->grain = 8;
410         dimm->dtype = DEV_X8;
411         dimm->mtype = MEM_DDR3;
412         dimm->edac_mode = EDAC_SECDED;
413
414         res = edac_mc_add_mc(mci);
415         if (res < 0)
416                 goto err;
417
418         /* Only the Arria10 has separate IRQs */
419         if (irq2 > 0) {
420                 /* Arria10 specific initialization */
421                 res = a10_init(mc_vbase);
422                 if (res < 0)
423                         goto err2;
424
425                 res = devm_request_irq(&pdev->dev, irq2,
426                                        altr_sdram_mc_err_handler,
427                                        IRQF_SHARED, dev_name(&pdev->dev), mci);
428                 if (res < 0) {
429                         edac_mc_printk(mci, KERN_ERR,
430                                        "Unable to request irq %d\n", irq2);
431                         res = -ENODEV;
432                         goto err2;
433                 }
434
435                 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
436                 if (res < 0)
437                         goto err2;
438
439                 irqflags = IRQF_SHARED;
440         }
441
442         res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
443                                irqflags, dev_name(&pdev->dev), mci);
444         if (res < 0) {
445                 edac_mc_printk(mci, KERN_ERR,
446                                "Unable to request irq %d\n", irq);
447                 res = -ENODEV;
448                 goto err2;
449         }
450
451         /* Infrastructure ready - enable the IRQ */
452         if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
453                                priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
454                 edac_mc_printk(mci, KERN_ERR,
455                                "Error enabling SDRAM ECC IRQ\n");
456                 res = -ENODEV;
457                 goto err2;
458         }
459
460         altr_sdr_mc_create_debugfs_nodes(mci);
461
462         devres_close_group(&pdev->dev, NULL);
463
464         return 0;
465
466 err2:
467         edac_mc_del_mc(&pdev->dev);
468 err:
469         devres_release_group(&pdev->dev, NULL);
470 free:
471         edac_mc_free(mci);
472         edac_printk(KERN_ERR, EDAC_MC,
473                     "EDAC Probe Failed; Error %d\n", res);
474
475         return res;
476 }
477
478 static int altr_sdram_remove(struct platform_device *pdev)
479 {
480         struct mem_ctl_info *mci = platform_get_drvdata(pdev);
481
482         edac_mc_del_mc(&pdev->dev);
483         edac_mc_free(mci);
484         platform_set_drvdata(pdev, NULL);
485
486         return 0;
487 }
488
489 /**************** Stratix 10 EDAC Memory Controller Functions ************/
490
491 /**
492  * s10_protected_reg_write
493  * Write to a protected SMC register.
494  * @context: Not used.
495  * @reg: Address of register
496  * @value: Value to write
497  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
498  *         INTEL_SIP_SMC_REG_ERROR on error
499  *         INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
500  */
501 static int s10_protected_reg_write(void *context, unsigned int reg,
502                                    unsigned int val)
503 {
504         struct arm_smccc_res result;
505
506         arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, reg, val, 0, 0,
507                       0, 0, 0, &result);
508
509         return (int)result.a0;
510 }
511
512 /**
513  * s10_protected_reg_read
514  * Read the status of a protected SMC register
515  * @context: Not used.
516  * @reg: Address of register
517  * @value: Value read.
518  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
519  *         INTEL_SIP_SMC_REG_ERROR on error
520  *         INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
521  */
522 static int s10_protected_reg_read(void *context, unsigned int reg,
523                                   unsigned int *val)
524 {
525         struct arm_smccc_res result;
526
527         arm_smccc_smc(INTEL_SIP_SMC_REG_READ, reg, 0, 0, 0,
528                       0, 0, 0, &result);
529
530         *val = (unsigned int)result.a1;
531
532         return (int)result.a0;
533 }
534
535 static bool s10_sdram_writeable_reg(struct device *dev, unsigned int reg)
536 {
537         switch (reg) {
538         case S10_ECCCTRL1_OFST:
539         case S10_ERRINTEN_OFST:
540         case S10_INTMODE_OFST:
541         case S10_INTSTAT_OFST:
542         case S10_DIAGINTTEST_OFST:
543         case S10_SYSMGR_ECC_INTMASK_VAL_OFST:
544         case S10_SYSMGR_ECC_INTMASK_SET_OFST:
545         case S10_SYSMGR_ECC_INTMASK_CLR_OFST:
546                 return true;
547         }
548         return false;
549 }
550
551 static bool s10_sdram_readable_reg(struct device *dev, unsigned int reg)
552 {
553         switch (reg) {
554         case S10_ECCCTRL1_OFST:
555         case S10_ERRINTEN_OFST:
556         case S10_INTMODE_OFST:
557         case S10_INTSTAT_OFST:
558         case S10_DERRADDR_OFST:
559         case S10_SERRADDR_OFST:
560         case S10_DIAGINTTEST_OFST:
561         case S10_SYSMGR_ECC_INTMASK_VAL_OFST:
562         case S10_SYSMGR_ECC_INTMASK_SET_OFST:
563         case S10_SYSMGR_ECC_INTMASK_CLR_OFST:
564         case S10_SYSMGR_ECC_INTSTAT_SERR_OFST:
565         case S10_SYSMGR_ECC_INTSTAT_DERR_OFST:
566                 return true;
567         }
568         return false;
569 }
570
571 static bool s10_sdram_volatile_reg(struct device *dev, unsigned int reg)
572 {
573         switch (reg) {
574         case S10_ECCCTRL1_OFST:
575         case S10_ERRINTEN_OFST:
576         case S10_INTMODE_OFST:
577         case S10_INTSTAT_OFST:
578         case S10_DERRADDR_OFST:
579         case S10_SERRADDR_OFST:
580         case S10_DIAGINTTEST_OFST:
581         case S10_SYSMGR_ECC_INTMASK_VAL_OFST:
582         case S10_SYSMGR_ECC_INTMASK_SET_OFST:
583         case S10_SYSMGR_ECC_INTMASK_CLR_OFST:
584         case S10_SYSMGR_ECC_INTSTAT_SERR_OFST:
585         case S10_SYSMGR_ECC_INTSTAT_DERR_OFST:
586                 return true;
587         }
588         return false;
589 }
590
591 static const struct regmap_config s10_sdram_regmap_cfg = {
592         .name = "s10_ddr",
593         .reg_bits = 32,
594         .reg_stride = 4,
595         .val_bits = 32,
596         .max_register = 0xffffffff,
597         .writeable_reg = s10_sdram_writeable_reg,
598         .readable_reg = s10_sdram_readable_reg,
599         .volatile_reg = s10_sdram_volatile_reg,
600         .reg_read = s10_protected_reg_read,
601         .reg_write = s10_protected_reg_write,
602         .use_single_read = true,
603         .use_single_write = true,
604 };
605
606 static int altr_s10_sdram_probe(struct platform_device *pdev)
607 {
608         const struct of_device_id *id;
609         struct edac_mc_layer layers[2];
610         struct mem_ctl_info *mci;
611         struct altr_sdram_mc_data *drvdata;
612         const struct altr_sdram_prv_data *priv;
613         struct regmap *regmap;
614         struct dimm_info *dimm;
615         u32 read_reg;
616         int irq, ret = 0;
617         unsigned long mem_size;
618
619         id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
620         if (!id)
621                 return -ENODEV;
622
623         /* Grab specific offsets and masks for Stratix10 */
624         priv = of_match_node(altr_sdram_ctrl_of_match,
625                              pdev->dev.of_node)->data;
626
627         regmap = devm_regmap_init(&pdev->dev, NULL, (void *)priv,
628                                   &s10_sdram_regmap_cfg);
629         if (IS_ERR(regmap))
630                 return PTR_ERR(regmap);
631
632         /* Validate the SDRAM controller has ECC enabled */
633         if (regmap_read(regmap, priv->ecc_ctrl_offset, &read_reg) ||
634             ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
635                 edac_printk(KERN_ERR, EDAC_MC,
636                             "No ECC/ECC disabled [0x%08X]\n", read_reg);
637                 return -ENODEV;
638         }
639
640         /* Grab memory size from device tree. */
641         mem_size = get_total_mem();
642         if (!mem_size) {
643                 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
644                 return -ENODEV;
645         }
646
647         /* Ensure the SDRAM Interrupt is disabled */
648         if (regmap_update_bits(regmap, priv->ecc_irq_en_offset,
649                                priv->ecc_irq_en_mask, 0)) {
650                 edac_printk(KERN_ERR, EDAC_MC,
651                             "Error disabling SDRAM ECC IRQ\n");
652                 return -ENODEV;
653         }
654
655         /* Toggle to clear the SDRAM Error count */
656         if (regmap_update_bits(regmap, priv->ecc_cnt_rst_offset,
657                                priv->ecc_cnt_rst_mask,
658                                priv->ecc_cnt_rst_mask)) {
659                 edac_printk(KERN_ERR, EDAC_MC,
660                             "Error clearing SDRAM ECC count\n");
661                 return -ENODEV;
662         }
663
664         if (regmap_update_bits(regmap, priv->ecc_cnt_rst_offset,
665                                priv->ecc_cnt_rst_mask, 0)) {
666                 edac_printk(KERN_ERR, EDAC_MC,
667                             "Error clearing SDRAM ECC count\n");
668                 return -ENODEV;
669         }
670
671         irq = platform_get_irq(pdev, 0);
672         if (irq < 0) {
673                 edac_printk(KERN_ERR, EDAC_MC,
674                             "No irq %d in DT\n", irq);
675                 return -ENODEV;
676         }
677
678         layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
679         layers[0].size = 1;
680         layers[0].is_virt_csrow = true;
681         layers[1].type = EDAC_MC_LAYER_CHANNEL;
682         layers[1].size = 1;
683         layers[1].is_virt_csrow = false;
684         mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
685                             sizeof(struct altr_sdram_mc_data));
686         if (!mci)
687                 return -ENOMEM;
688
689         mci->pdev = &pdev->dev;
690         drvdata = mci->pvt_info;
691         drvdata->mc_vbase = regmap;
692         drvdata->data = priv;
693         platform_set_drvdata(pdev, mci);
694
695         if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
696                 edac_printk(KERN_ERR, EDAC_MC,
697                             "Unable to get managed device resource\n");
698                 ret = -ENOMEM;
699                 goto free;
700         }
701
702         mci->mtype_cap = MEM_FLAG_DDR3;
703         mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
704         mci->edac_cap = EDAC_FLAG_SECDED;
705         mci->mod_name = EDAC_MOD_STR;
706         mci->ctl_name = dev_name(&pdev->dev);
707         mci->scrub_mode = SCRUB_SW_SRC;
708         mci->dev_name = dev_name(&pdev->dev);
709
710         dimm = *mci->dimms;
711         dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
712         dimm->grain = 8;
713         dimm->dtype = DEV_X8;
714         dimm->mtype = MEM_DDR3;
715         dimm->edac_mode = EDAC_SECDED;
716
717         ret = edac_mc_add_mc(mci);
718         if (ret < 0)
719                 goto err;
720
721         ret = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
722                                IRQF_SHARED, dev_name(&pdev->dev), mci);
723         if (ret < 0) {
724                 edac_mc_printk(mci, KERN_ERR,
725                                "Unable to request irq %d\n", irq);
726                 ret = -ENODEV;
727                 goto err2;
728         }
729
730         if (regmap_write(regmap, S10_SYSMGR_ECC_INTMASK_CLR_OFST,
731                          S10_DDR0_IRQ_MASK)) {
732                 edac_printk(KERN_ERR, EDAC_MC,
733                             "Error clearing SDRAM ECC count\n");
734                 ret = -ENODEV;
735                 goto err2;
736         }
737
738         if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
739                                priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
740                 edac_mc_printk(mci, KERN_ERR,
741                                "Error enabling SDRAM ECC IRQ\n");
742                 ret = -ENODEV;
743                 goto err2;
744         }
745
746         altr_sdr_mc_create_debugfs_nodes(mci);
747
748         devres_close_group(&pdev->dev, NULL);
749
750         return 0;
751
752 err2:
753         edac_mc_del_mc(&pdev->dev);
754 err:
755         devres_release_group(&pdev->dev, NULL);
756 free:
757         edac_mc_free(mci);
758         edac_printk(KERN_ERR, EDAC_MC,
759                     "EDAC Probe Failed; Error %d\n", ret);
760
761         return ret;
762 }
763
764 static int altr_s10_sdram_remove(struct platform_device *pdev)
765 {
766         struct mem_ctl_info *mci = platform_get_drvdata(pdev);
767
768         edac_mc_del_mc(&pdev->dev);
769         edac_mc_free(mci);
770         platform_set_drvdata(pdev, NULL);
771
772         return 0;
773 }
774
775 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
776
777 /*
778  * If you want to suspend, need to disable EDAC by removing it
779  * from the device tree or defconfig.
780  */
781 #ifdef CONFIG_PM
782 static int altr_sdram_prepare(struct device *dev)
783 {
784         pr_err("Suspend not allowed when EDAC is enabled.\n");
785
786         return -EPERM;
787 }
788
789 static const struct dev_pm_ops altr_sdram_pm_ops = {
790         .prepare = altr_sdram_prepare,
791 };
792 #endif
793
794 static struct platform_driver altr_sdram_edac_driver = {
795         .probe = altr_sdram_probe,
796         .remove = altr_sdram_remove,
797         .driver = {
798                 .name = "altr_sdram_edac",
799 #ifdef CONFIG_PM
800                 .pm = &altr_sdram_pm_ops,
801 #endif
802                 .of_match_table = altr_sdram_ctrl_of_match,
803         },
804 };
805
806 module_platform_driver(altr_sdram_edac_driver);
807
808 static struct platform_driver altr_s10_sdram_edac_driver = {
809         .probe = altr_s10_sdram_probe,
810         .remove = altr_s10_sdram_remove,
811         .driver = {
812                 .name = "altr_s10_sdram_edac",
813 #ifdef CONFIG_PM
814                 .pm = &altr_sdram_pm_ops,
815 #endif
816                 .of_match_table = altr_sdram_ctrl_of_match,
817         },
818 };
819
820 module_platform_driver(altr_s10_sdram_edac_driver);
821
822 /************************* EDAC Parent Probe *************************/
823
824 static const struct of_device_id altr_edac_device_of_match[];
825
826 static const struct of_device_id altr_edac_of_match[] = {
827         { .compatible = "altr,socfpga-ecc-manager" },
828         {},
829 };
830 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
831
832 static int altr_edac_probe(struct platform_device *pdev)
833 {
834         of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
835                              NULL, &pdev->dev);
836         return 0;
837 }
838
839 static struct platform_driver altr_edac_driver = {
840         .probe =  altr_edac_probe,
841         .driver = {
842                 .name = "socfpga_ecc_manager",
843                 .of_match_table = altr_edac_of_match,
844         },
845 };
846 module_platform_driver(altr_edac_driver);
847
848 /************************* EDAC Device Functions *************************/
849
850 /*
851  * EDAC Device Functions (shared between various IPs).
852  * The discrete memories use the EDAC Device framework. The probe
853  * and error handling functions are very similar between memories
854  * so they are shared. The memory allocation and freeing for EDAC
855  * trigger testing are different for each memory.
856  */
857
858 static const struct edac_device_prv_data ocramecc_data;
859 static const struct edac_device_prv_data l2ecc_data;
860 static const struct edac_device_prv_data a10_ocramecc_data;
861 static const struct edac_device_prv_data a10_l2ecc_data;
862
863 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
864 {
865         irqreturn_t ret_value = IRQ_NONE;
866         struct edac_device_ctl_info *dci = dev_id;
867         struct altr_edac_device_dev *drvdata = dci->pvt_info;
868         const struct edac_device_prv_data *priv = drvdata->data;
869
870         if (irq == drvdata->sb_irq) {
871                 if (priv->ce_clear_mask)
872                         writel(priv->ce_clear_mask, drvdata->base);
873                 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
874                 ret_value = IRQ_HANDLED;
875         } else if (irq == drvdata->db_irq) {
876                 if (priv->ue_clear_mask)
877                         writel(priv->ue_clear_mask, drvdata->base);
878                 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
879                 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
880                 ret_value = IRQ_HANDLED;
881         } else {
882                 WARN_ON(1);
883         }
884
885         return ret_value;
886 }
887
888 static ssize_t altr_edac_device_trig(struct file *file,
889                                      const char __user *user_buf,
890                                      size_t count, loff_t *ppos)
891
892 {
893         u32 *ptemp, i, error_mask;
894         int result = 0;
895         u8 trig_type;
896         unsigned long flags;
897         struct edac_device_ctl_info *edac_dci = file->private_data;
898         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
899         const struct edac_device_prv_data *priv = drvdata->data;
900         void *generic_ptr = edac_dci->dev;
901
902         if (!user_buf || get_user(trig_type, user_buf))
903                 return -EFAULT;
904
905         if (!priv->alloc_mem)
906                 return -ENOMEM;
907
908         /*
909          * Note that generic_ptr is initialized to the device * but in
910          * some alloc_functions, this is overridden and returns data.
911          */
912         ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
913         if (!ptemp) {
914                 edac_printk(KERN_ERR, EDAC_DEVICE,
915                             "Inject: Buffer Allocation error\n");
916                 return -ENOMEM;
917         }
918
919         if (trig_type == ALTR_UE_TRIGGER_CHAR)
920                 error_mask = priv->ue_set_mask;
921         else
922                 error_mask = priv->ce_set_mask;
923
924         edac_printk(KERN_ALERT, EDAC_DEVICE,
925                     "Trigger Error Mask (0x%X)\n", error_mask);
926
927         local_irq_save(flags);
928         /* write ECC corrupted data out. */
929         for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
930                 /* Read data so we're in the correct state */
931                 rmb();
932                 if (READ_ONCE(ptemp[i]))
933                         result = -1;
934                 /* Toggle Error bit (it is latched), leave ECC enabled */
935                 writel(error_mask, (drvdata->base + priv->set_err_ofst));
936                 writel(priv->ecc_enable_mask, (drvdata->base +
937                                                priv->set_err_ofst));
938                 ptemp[i] = i;
939         }
940         /* Ensure it has been written out */
941         wmb();
942         local_irq_restore(flags);
943
944         if (result)
945                 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
946
947         /* Read out written data. ECC error caused here */
948         for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
949                 if (READ_ONCE(ptemp[i]) != i)
950                         edac_printk(KERN_ERR, EDAC_DEVICE,
951                                     "Read doesn't match written data\n");
952
953         if (priv->free_mem)
954                 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
955
956         return count;
957 }
958
959 static const struct file_operations altr_edac_device_inject_fops = {
960         .open = simple_open,
961         .write = altr_edac_device_trig,
962         .llseek = generic_file_llseek,
963 };
964
965 static ssize_t altr_edac_a10_device_trig(struct file *file,
966                                          const char __user *user_buf,
967                                          size_t count, loff_t *ppos);
968
969 static const struct file_operations altr_edac_a10_device_inject_fops = {
970         .open = simple_open,
971         .write = altr_edac_a10_device_trig,
972         .llseek = generic_file_llseek,
973 };
974
975 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
976                                       const struct edac_device_prv_data *priv)
977 {
978         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
979
980         if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
981                 return;
982
983         drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
984         if (!drvdata->debugfs_dir)
985                 return;
986
987         if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
988                                       drvdata->debugfs_dir, edac_dci,
989                                       priv->inject_fops))
990                 debugfs_remove_recursive(drvdata->debugfs_dir);
991 }
992
993 static const struct of_device_id altr_edac_device_of_match[] = {
994 #ifdef CONFIG_EDAC_ALTERA_L2C
995         { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
996 #endif
997 #ifdef CONFIG_EDAC_ALTERA_OCRAM
998         { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
999 #endif
1000         {},
1001 };
1002 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
1003
1004 /*
1005  * altr_edac_device_probe()
1006  *      This is a generic EDAC device driver that will support
1007  *      various Altera memory devices such as the L2 cache ECC and
1008  *      OCRAM ECC as well as the memories for other peripherals.
1009  *      Module specific initialization is done by passing the
1010  *      function index in the device tree.
1011  */
1012 static int altr_edac_device_probe(struct platform_device *pdev)
1013 {
1014         struct edac_device_ctl_info *dci;
1015         struct altr_edac_device_dev *drvdata;
1016         struct resource *r;
1017         int res = 0;
1018         struct device_node *np = pdev->dev.of_node;
1019         char *ecc_name = (char *)np->name;
1020         static int dev_instance;
1021
1022         if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
1023                 edac_printk(KERN_ERR, EDAC_DEVICE,
1024                             "Unable to open devm\n");
1025                 return -ENOMEM;
1026         }
1027
1028         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1029         if (!r) {
1030                 edac_printk(KERN_ERR, EDAC_DEVICE,
1031                             "Unable to get mem resource\n");
1032                 res = -ENODEV;
1033                 goto fail;
1034         }
1035
1036         if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
1037                                      dev_name(&pdev->dev))) {
1038                 edac_printk(KERN_ERR, EDAC_DEVICE,
1039                             "%s:Error requesting mem region\n", ecc_name);
1040                 res = -EBUSY;
1041                 goto fail;
1042         }
1043
1044         dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
1045                                          1, ecc_name, 1, 0, NULL, 0,
1046                                          dev_instance++);
1047
1048         if (!dci) {
1049                 edac_printk(KERN_ERR, EDAC_DEVICE,
1050                             "%s: Unable to allocate EDAC device\n", ecc_name);
1051                 res = -ENOMEM;
1052                 goto fail;
1053         }
1054
1055         drvdata = dci->pvt_info;
1056         dci->dev = &pdev->dev;
1057         platform_set_drvdata(pdev, dci);
1058         drvdata->edac_dev_name = ecc_name;
1059
1060         drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
1061         if (!drvdata->base) {
1062                 res = -ENOMEM;
1063                 goto fail1;
1064         }
1065
1066         /* Get driver specific data for this EDAC device */
1067         drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
1068
1069         /* Check specific dependencies for the module */
1070         if (drvdata->data->setup) {
1071                 res = drvdata->data->setup(drvdata);
1072                 if (res)
1073                         goto fail1;
1074         }
1075
1076         drvdata->sb_irq = platform_get_irq(pdev, 0);
1077         res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
1078                                altr_edac_device_handler,
1079                                0, dev_name(&pdev->dev), dci);
1080         if (res)
1081                 goto fail1;
1082
1083         drvdata->db_irq = platform_get_irq(pdev, 1);
1084         res = devm_request_irq(&pdev->dev, drvdata->db_irq,
1085                                altr_edac_device_handler,
1086                                0, dev_name(&pdev->dev), dci);
1087         if (res)
1088                 goto fail1;
1089
1090         dci->mod_name = "Altera ECC Manager";
1091         dci->dev_name = drvdata->edac_dev_name;
1092
1093         res = edac_device_add_device(dci);
1094         if (res)
1095                 goto fail1;
1096
1097         altr_create_edacdev_dbgfs(dci, drvdata->data);
1098
1099         devres_close_group(&pdev->dev, NULL);
1100
1101         return 0;
1102
1103 fail1:
1104         edac_device_free_ctl_info(dci);
1105 fail:
1106         devres_release_group(&pdev->dev, NULL);
1107         edac_printk(KERN_ERR, EDAC_DEVICE,
1108                     "%s:Error setting up EDAC device: %d\n", ecc_name, res);
1109
1110         return res;
1111 }
1112
1113 static int altr_edac_device_remove(struct platform_device *pdev)
1114 {
1115         struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
1116         struct altr_edac_device_dev *drvdata = dci->pvt_info;
1117
1118         debugfs_remove_recursive(drvdata->debugfs_dir);
1119         edac_device_del_device(&pdev->dev);
1120         edac_device_free_ctl_info(dci);
1121
1122         return 0;
1123 }
1124
1125 static struct platform_driver altr_edac_device_driver = {
1126         .probe =  altr_edac_device_probe,
1127         .remove = altr_edac_device_remove,
1128         .driver = {
1129                 .name = "altr_edac_device",
1130                 .of_match_table = altr_edac_device_of_match,
1131         },
1132 };
1133 module_platform_driver(altr_edac_device_driver);
1134
1135 /******************* Arria10 Device ECC Shared Functions *****************/
1136
1137 /*
1138  *  Test for memory's ECC dependencies upon entry because platform specific
1139  *  startup should have initialized the memory and enabled the ECC.
1140  *  Can't turn on ECC here because accessing un-initialized memory will
1141  *  cause CE/UE errors possibly causing an ABORT.
1142  */
1143 static int __maybe_unused
1144 altr_check_ecc_deps(struct altr_edac_device_dev *device)
1145 {
1146         void __iomem  *base = device->base;
1147         const struct edac_device_prv_data *prv = device->data;
1148
1149         if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
1150                 return 0;
1151
1152         edac_printk(KERN_ERR, EDAC_DEVICE,
1153                     "%s: No ECC present or ECC disabled.\n",
1154                     device->edac_dev_name);
1155         return -ENODEV;
1156 }
1157
1158 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
1159 {
1160         struct altr_edac_device_dev *dci = dev_id;
1161         void __iomem  *base = dci->base;
1162
1163         if (irq == dci->sb_irq) {
1164                 writel(ALTR_A10_ECC_SERRPENA,
1165                        base + ALTR_A10_ECC_INTSTAT_OFST);
1166                 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1167
1168                 return IRQ_HANDLED;
1169         } else if (irq == dci->db_irq) {
1170                 writel(ALTR_A10_ECC_DERRPENA,
1171                        base + ALTR_A10_ECC_INTSTAT_OFST);
1172                 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1173                 if (dci->data->panic)
1174                         panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1175
1176                 return IRQ_HANDLED;
1177         }
1178
1179         WARN_ON(1);
1180
1181         return IRQ_NONE;
1182 }
1183
1184 /******************* Arria10 Memory Buffer Functions *********************/
1185
1186 static inline int a10_get_irq_mask(struct device_node *np)
1187 {
1188         int irq;
1189         const u32 *handle = of_get_property(np, "interrupts", NULL);
1190
1191         if (!handle)
1192                 return -ENODEV;
1193         irq = be32_to_cpup(handle);
1194         return irq;
1195 }
1196
1197 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
1198 {
1199         u32 value = readl(ioaddr);
1200
1201         value |= bit_mask;
1202         writel(value, ioaddr);
1203 }
1204
1205 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
1206 {
1207         u32 value = readl(ioaddr);
1208
1209         value &= ~bit_mask;
1210         writel(value, ioaddr);
1211 }
1212
1213 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
1214 {
1215         u32 value = readl(ioaddr);
1216
1217         return (value & bit_mask) ? 1 : 0;
1218 }
1219
1220 /*
1221  * This function uses the memory initialization block in the Arria10 ECC
1222  * controller to initialize/clear the entire memory data and ECC data.
1223  */
1224 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
1225 {
1226         int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
1227         u32 init_mask, stat_mask, clear_mask;
1228         int ret = 0;
1229
1230         if (port) {
1231                 init_mask = ALTR_A10_ECC_INITB;
1232                 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
1233                 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
1234         } else {
1235                 init_mask = ALTR_A10_ECC_INITA;
1236                 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
1237                 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
1238         }
1239
1240         ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
1241         while (limit--) {
1242                 if (ecc_test_bits(stat_mask,
1243                                   (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
1244                         break;
1245                 udelay(1);
1246         }
1247         if (limit < 0)
1248                 ret = -EBUSY;
1249
1250         /* Clear any pending ECC interrupts */
1251         writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1252
1253         return ret;
1254 }
1255
1256 static __init int __maybe_unused
1257 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1258                         u32 ecc_ctrl_en_mask, bool dual_port)
1259 {
1260         int ret = 0;
1261         void __iomem *ecc_block_base;
1262         struct regmap *ecc_mgr_map;
1263         char *ecc_name;
1264         struct device_node *np_eccmgr;
1265
1266         ecc_name = (char *)np->name;
1267
1268         /* Get the ECC Manager - parent of the device EDACs */
1269         np_eccmgr = of_get_parent(np);
1270         ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1271                                                       "altr,sysmgr-syscon");
1272         of_node_put(np_eccmgr);
1273         if (IS_ERR(ecc_mgr_map)) {
1274                 edac_printk(KERN_ERR, EDAC_DEVICE,
1275                             "Unable to get syscon altr,sysmgr-syscon\n");
1276                 return -ENODEV;
1277         }
1278
1279         /* Map the ECC Block */
1280         ecc_block_base = of_iomap(np, 0);
1281         if (!ecc_block_base) {
1282                 edac_printk(KERN_ERR, EDAC_DEVICE,
1283                             "Unable to map %s ECC block\n", ecc_name);
1284                 return -ENODEV;
1285         }
1286
1287         /* Disable ECC */
1288         regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1289         writel(ALTR_A10_ECC_SERRINTEN,
1290                (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1291         ecc_clear_bits(ecc_ctrl_en_mask,
1292                        (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1293         /* Ensure all writes complete */
1294         wmb();
1295         /* Use HW initialization block to initialize memory for ECC */
1296         ret = altr_init_memory_port(ecc_block_base, 0);
1297         if (ret) {
1298                 edac_printk(KERN_ERR, EDAC_DEVICE,
1299                             "ECC: cannot init %s PORTA memory\n", ecc_name);
1300                 goto out;
1301         }
1302
1303         if (dual_port) {
1304                 ret = altr_init_memory_port(ecc_block_base, 1);
1305                 if (ret) {
1306                         edac_printk(KERN_ERR, EDAC_DEVICE,
1307                                     "ECC: cannot init %s PORTB memory\n",
1308                                     ecc_name);
1309                         goto out;
1310                 }
1311         }
1312
1313         /* Interrupt mode set to every SBERR */
1314         regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1315                      ALTR_A10_ECC_INTMODE);
1316         /* Enable ECC */
1317         ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1318                                         ALTR_A10_ECC_CTRL_OFST));
1319         writel(ALTR_A10_ECC_SERRINTEN,
1320                (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1321         regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1322         /* Ensure all writes complete */
1323         wmb();
1324 out:
1325         iounmap(ecc_block_base);
1326         return ret;
1327 }
1328
1329 static int socfpga_is_a10(void)
1330 {
1331         return of_machine_is_compatible("altr,socfpga-arria10");
1332 }
1333
1334 static int validate_parent_available(struct device_node *np);
1335 static const struct of_device_id altr_edac_a10_device_of_match[];
1336 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1337 {
1338         int irq;
1339         struct device_node *child, *np;
1340
1341         if (!socfpga_is_a10())
1342                 return -ENODEV;
1343
1344         np = of_find_compatible_node(NULL, NULL,
1345                                      "altr,socfpga-a10-ecc-manager");
1346         if (!np) {
1347                 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1348                 return -ENODEV;
1349         }
1350
1351         for_each_child_of_node(np, child) {
1352                 const struct of_device_id *pdev_id;
1353                 const struct edac_device_prv_data *prv;
1354
1355                 if (!of_device_is_available(child))
1356                         continue;
1357                 if (!of_device_is_compatible(child, compat))
1358                         continue;
1359
1360                 if (validate_parent_available(child))
1361                         continue;
1362
1363                 irq = a10_get_irq_mask(child);
1364                 if (irq < 0)
1365                         continue;
1366
1367                 /* Get matching node and check for valid result */
1368                 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1369                 if (IS_ERR_OR_NULL(pdev_id))
1370                         continue;
1371
1372                 /* Validate private data pointer before dereferencing */
1373                 prv = pdev_id->data;
1374                 if (!prv)
1375                         continue;
1376
1377                 altr_init_a10_ecc_block(child, BIT(irq),
1378                                         prv->ecc_enable_mask, 0);
1379         }
1380
1381         of_node_put(np);
1382         return 0;
1383 }
1384
1385 /*********************** OCRAM EDAC Device Functions *********************/
1386
1387 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1388
1389 static void *ocram_alloc_mem(size_t size, void **other)
1390 {
1391         struct device_node *np;
1392         struct gen_pool *gp;
1393         void *sram_addr;
1394
1395         np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1396         if (!np)
1397                 return NULL;
1398
1399         gp = of_gen_pool_get(np, "iram", 0);
1400         of_node_put(np);
1401         if (!gp)
1402                 return NULL;
1403
1404         sram_addr = (void *)gen_pool_alloc(gp, size);
1405         if (!sram_addr)
1406                 return NULL;
1407
1408         memset(sram_addr, 0, size);
1409         /* Ensure data is written out */
1410         wmb();
1411
1412         /* Remember this handle for freeing  later */
1413         *other = gp;
1414
1415         return sram_addr;
1416 }
1417
1418 static void ocram_free_mem(void *p, size_t size, void *other)
1419 {
1420         gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1421 }
1422
1423 static const struct edac_device_prv_data ocramecc_data = {
1424         .setup = altr_check_ecc_deps,
1425         .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1426         .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1427         .alloc_mem = ocram_alloc_mem,
1428         .free_mem = ocram_free_mem,
1429         .ecc_enable_mask = ALTR_OCR_ECC_EN,
1430         .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1431         .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1432         .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1433         .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1434         .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1435         .inject_fops = &altr_edac_device_inject_fops,
1436 };
1437
1438 static const struct edac_device_prv_data a10_ocramecc_data = {
1439         .setup = altr_check_ecc_deps,
1440         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1441         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1442         .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1443         .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1444         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1445         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1446         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1447         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1448         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1449         .inject_fops = &altr_edac_a10_device_inject_fops,
1450         /*
1451          * OCRAM panic on uncorrectable error because sleep/resume
1452          * functions and FPGA contents are stored in OCRAM. Prefer
1453          * a kernel panic over executing/loading corrupted data.
1454          */
1455         .panic = true,
1456 };
1457
1458 #endif  /* CONFIG_EDAC_ALTERA_OCRAM */
1459
1460 /********************* L2 Cache EDAC Device Functions ********************/
1461
1462 #ifdef CONFIG_EDAC_ALTERA_L2C
1463
1464 static void *l2_alloc_mem(size_t size, void **other)
1465 {
1466         struct device *dev = *other;
1467         void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1468
1469         if (!ptemp)
1470                 return NULL;
1471
1472         /* Make sure everything is written out */
1473         wmb();
1474
1475         /*
1476          * Clean all cache levels up to LoC (includes L2)
1477          * This ensures the corrupted data is written into
1478          * L2 cache for readback test (which causes ECC error).
1479          */
1480         flush_cache_all();
1481
1482         return ptemp;
1483 }
1484
1485 static void l2_free_mem(void *p, size_t size, void *other)
1486 {
1487         struct device *dev = other;
1488
1489         if (dev && p)
1490                 devm_kfree(dev, p);
1491 }
1492
1493 /*
1494  * altr_l2_check_deps()
1495  *      Test for L2 cache ECC dependencies upon entry because
1496  *      platform specific startup should have initialized the L2
1497  *      memory and enabled the ECC.
1498  *      Bail if ECC is not enabled.
1499  *      Note that L2 Cache Enable is forced at build time.
1500  */
1501 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1502 {
1503         void __iomem *base = device->base;
1504         const struct edac_device_prv_data *prv = device->data;
1505
1506         if ((readl(base) & prv->ecc_enable_mask) ==
1507              prv->ecc_enable_mask)
1508                 return 0;
1509
1510         edac_printk(KERN_ERR, EDAC_DEVICE,
1511                     "L2: No ECC present, or ECC disabled\n");
1512         return -ENODEV;
1513 }
1514
1515 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1516 {
1517         struct altr_edac_device_dev *dci = dev_id;
1518
1519         if (irq == dci->sb_irq) {
1520                 regmap_write(dci->edac->ecc_mgr_map,
1521                              A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1522                              A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1523                 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1524
1525                 return IRQ_HANDLED;
1526         } else if (irq == dci->db_irq) {
1527                 regmap_write(dci->edac->ecc_mgr_map,
1528                              A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1529                              A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1530                 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1531                 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1532
1533                 return IRQ_HANDLED;
1534         }
1535
1536         WARN_ON(1);
1537
1538         return IRQ_NONE;
1539 }
1540
1541 static const struct edac_device_prv_data l2ecc_data = {
1542         .setup = altr_l2_check_deps,
1543         .ce_clear_mask = 0,
1544         .ue_clear_mask = 0,
1545         .alloc_mem = l2_alloc_mem,
1546         .free_mem = l2_free_mem,
1547         .ecc_enable_mask = ALTR_L2_ECC_EN,
1548         .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1549         .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1550         .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1551         .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1552         .inject_fops = &altr_edac_device_inject_fops,
1553 };
1554
1555 static const struct edac_device_prv_data a10_l2ecc_data = {
1556         .setup = altr_l2_check_deps,
1557         .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1558         .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1559         .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1560         .alloc_mem = l2_alloc_mem,
1561         .free_mem = l2_free_mem,
1562         .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1563         .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1564         .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1565         .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1566         .ecc_irq_handler = altr_edac_a10_l2_irq,
1567         .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1568         .inject_fops = &altr_edac_device_inject_fops,
1569 };
1570
1571 #endif  /* CONFIG_EDAC_ALTERA_L2C */
1572
1573 /********************* Ethernet Device Functions ********************/
1574
1575 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1576
1577 static const struct edac_device_prv_data a10_enetecc_data = {
1578         .setup = altr_check_ecc_deps,
1579         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1580         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1581         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1582         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1583         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1584         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1585         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1586         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1587         .inject_fops = &altr_edac_a10_device_inject_fops,
1588 };
1589
1590 static int __init socfpga_init_ethernet_ecc(void)
1591 {
1592         return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1593 }
1594
1595 early_initcall(socfpga_init_ethernet_ecc);
1596
1597 #endif  /* CONFIG_EDAC_ALTERA_ETHERNET */
1598
1599 /********************** NAND Device Functions **********************/
1600
1601 #ifdef CONFIG_EDAC_ALTERA_NAND
1602
1603 static const struct edac_device_prv_data a10_nandecc_data = {
1604         .setup = altr_check_ecc_deps,
1605         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1606         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1607         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1608         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1609         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1610         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1611         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1612         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1613         .inject_fops = &altr_edac_a10_device_inject_fops,
1614 };
1615
1616 static int __init socfpga_init_nand_ecc(void)
1617 {
1618         return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1619 }
1620
1621 early_initcall(socfpga_init_nand_ecc);
1622
1623 #endif  /* CONFIG_EDAC_ALTERA_NAND */
1624
1625 /********************** DMA Device Functions **********************/
1626
1627 #ifdef CONFIG_EDAC_ALTERA_DMA
1628
1629 static const struct edac_device_prv_data a10_dmaecc_data = {
1630         .setup = altr_check_ecc_deps,
1631         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1632         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1633         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1634         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1635         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1636         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1637         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1638         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1639         .inject_fops = &altr_edac_a10_device_inject_fops,
1640 };
1641
1642 static int __init socfpga_init_dma_ecc(void)
1643 {
1644         return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1645 }
1646
1647 early_initcall(socfpga_init_dma_ecc);
1648
1649 #endif  /* CONFIG_EDAC_ALTERA_DMA */
1650
1651 /********************** USB Device Functions **********************/
1652
1653 #ifdef CONFIG_EDAC_ALTERA_USB
1654
1655 static const struct edac_device_prv_data a10_usbecc_data = {
1656         .setup = altr_check_ecc_deps,
1657         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1658         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1659         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1660         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1661         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1662         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1663         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1664         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1665         .inject_fops = &altr_edac_a10_device_inject_fops,
1666 };
1667
1668 static int __init socfpga_init_usb_ecc(void)
1669 {
1670         return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1671 }
1672
1673 early_initcall(socfpga_init_usb_ecc);
1674
1675 #endif  /* CONFIG_EDAC_ALTERA_USB */
1676
1677 /********************** QSPI Device Functions **********************/
1678
1679 #ifdef CONFIG_EDAC_ALTERA_QSPI
1680
1681 static const struct edac_device_prv_data a10_qspiecc_data = {
1682         .setup = altr_check_ecc_deps,
1683         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1684         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1685         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1686         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1687         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1688         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1689         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1690         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1691         .inject_fops = &altr_edac_a10_device_inject_fops,
1692 };
1693
1694 static int __init socfpga_init_qspi_ecc(void)
1695 {
1696         return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1697 }
1698
1699 early_initcall(socfpga_init_qspi_ecc);
1700
1701 #endif  /* CONFIG_EDAC_ALTERA_QSPI */
1702
1703 /********************* SDMMC Device Functions **********************/
1704
1705 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1706
1707 static const struct edac_device_prv_data a10_sdmmceccb_data;
1708 static int altr_portb_setup(struct altr_edac_device_dev *device)
1709 {
1710         struct edac_device_ctl_info *dci;
1711         struct altr_edac_device_dev *altdev;
1712         char *ecc_name = "sdmmcb-ecc";
1713         int edac_idx, rc;
1714         struct device_node *np;
1715         const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1716
1717         rc = altr_check_ecc_deps(device);
1718         if (rc)
1719                 return rc;
1720
1721         np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1722         if (!np) {
1723                 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1724                 return -ENODEV;
1725         }
1726
1727         /* Create the PortB EDAC device */
1728         edac_idx = edac_device_alloc_index();
1729         dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1730                                          ecc_name, 1, 0, NULL, 0, edac_idx);
1731         if (!dci) {
1732                 edac_printk(KERN_ERR, EDAC_DEVICE,
1733                             "%s: Unable to allocate PortB EDAC device\n",
1734                             ecc_name);
1735                 return -ENOMEM;
1736         }
1737
1738         /* Initialize the PortB EDAC device structure from PortA structure */
1739         altdev = dci->pvt_info;
1740         *altdev = *device;
1741
1742         if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1743                 return -ENOMEM;
1744
1745         /* Update PortB specific values */
1746         altdev->edac_dev_name = ecc_name;
1747         altdev->edac_idx = edac_idx;
1748         altdev->edac_dev = dci;
1749         altdev->data = prv;
1750         dci->dev = &altdev->ddev;
1751         dci->ctl_name = "Altera ECC Manager";
1752         dci->mod_name = ecc_name;
1753         dci->dev_name = ecc_name;
1754
1755         /* Update the IRQs for PortB */
1756         altdev->sb_irq = irq_of_parse_and_map(np, 2);
1757         if (!altdev->sb_irq) {
1758                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1759                 rc = -ENODEV;
1760                 goto err_release_group_1;
1761         }
1762         rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1763                               prv->ecc_irq_handler,
1764                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1765                               ecc_name, altdev);
1766         if (rc) {
1767                 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1768                 goto err_release_group_1;
1769         }
1770
1771         altdev->db_irq = irq_of_parse_and_map(np, 3);
1772         if (!altdev->db_irq) {
1773                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1774                 rc = -ENODEV;
1775                 goto err_release_group_1;
1776         }
1777         rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1778                               prv->ecc_irq_handler,
1779                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1780                               ecc_name, altdev);
1781         if (rc) {
1782                 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1783                 goto err_release_group_1;
1784         }
1785
1786         rc = edac_device_add_device(dci);
1787         if (rc) {
1788                 edac_printk(KERN_ERR, EDAC_DEVICE,
1789                             "edac_device_add_device portB failed\n");
1790                 rc = -ENOMEM;
1791                 goto err_release_group_1;
1792         }
1793         altr_create_edacdev_dbgfs(dci, prv);
1794
1795         list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1796
1797         devres_remove_group(&altdev->ddev, altr_portb_setup);
1798
1799         return 0;
1800
1801 err_release_group_1:
1802         edac_device_free_ctl_info(dci);
1803         devres_release_group(&altdev->ddev, altr_portb_setup);
1804         edac_printk(KERN_ERR, EDAC_DEVICE,
1805                     "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1806         return rc;
1807 }
1808
1809 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1810 {
1811         struct altr_edac_device_dev *ad = dev_id;
1812         void __iomem  *base = ad->base;
1813         const struct edac_device_prv_data *priv = ad->data;
1814
1815         if (irq == ad->sb_irq) {
1816                 writel(priv->ce_clear_mask,
1817                        base + ALTR_A10_ECC_INTSTAT_OFST);
1818                 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1819                 return IRQ_HANDLED;
1820         } else if (irq == ad->db_irq) {
1821                 writel(priv->ue_clear_mask,
1822                        base + ALTR_A10_ECC_INTSTAT_OFST);
1823                 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1824                 return IRQ_HANDLED;
1825         }
1826
1827         WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1828
1829         return IRQ_NONE;
1830 }
1831
1832 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1833         .setup = altr_portb_setup,
1834         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1835         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1836         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1837         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1838         .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1839         .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1840         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1841         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1842         .inject_fops = &altr_edac_a10_device_inject_fops,
1843 };
1844
1845 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1846         .setup = altr_portb_setup,
1847         .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1848         .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1849         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1850         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1851         .ce_set_mask = ALTR_A10_ECC_TSERRB,
1852         .ue_set_mask = ALTR_A10_ECC_TDERRB,
1853         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1854         .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1855         .inject_fops = &altr_edac_a10_device_inject_fops,
1856 };
1857
1858 static int __init socfpga_init_sdmmc_ecc(void)
1859 {
1860         int rc = -ENODEV;
1861         struct device_node *child;
1862
1863         if (!socfpga_is_a10())
1864                 return -ENODEV;
1865
1866         child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1867         if (!child) {
1868                 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1869                 return -ENODEV;
1870         }
1871
1872         if (!of_device_is_available(child))
1873                 goto exit;
1874
1875         if (validate_parent_available(child))
1876                 goto exit;
1877
1878         rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1879                                      a10_sdmmcecca_data.ecc_enable_mask, 1);
1880 exit:
1881         of_node_put(child);
1882         return rc;
1883 }
1884
1885 early_initcall(socfpga_init_sdmmc_ecc);
1886
1887 #endif  /* CONFIG_EDAC_ALTERA_SDMMC */
1888
1889 /********************* Arria10 EDAC Device Functions *************************/
1890 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1891 #ifdef CONFIG_EDAC_ALTERA_L2C
1892         { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1893 #endif
1894 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1895         { .compatible = "altr,socfpga-a10-ocram-ecc",
1896           .data = &a10_ocramecc_data },
1897 #endif
1898 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1899         { .compatible = "altr,socfpga-eth-mac-ecc",
1900           .data = &a10_enetecc_data },
1901 #endif
1902 #ifdef CONFIG_EDAC_ALTERA_NAND
1903         { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1904 #endif
1905 #ifdef CONFIG_EDAC_ALTERA_DMA
1906         { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1907 #endif
1908 #ifdef CONFIG_EDAC_ALTERA_USB
1909         { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1910 #endif
1911 #ifdef CONFIG_EDAC_ALTERA_QSPI
1912         { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1913 #endif
1914 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1915         { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1916 #endif
1917         {},
1918 };
1919 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1920
1921 /*
1922  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1923  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1924  * manager manages the IRQs and the children.
1925  * Based on xgene_edac.c peripheral code.
1926  */
1927
1928 static ssize_t altr_edac_a10_device_trig(struct file *file,
1929                                          const char __user *user_buf,
1930                                          size_t count, loff_t *ppos)
1931 {
1932         struct edac_device_ctl_info *edac_dci = file->private_data;
1933         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1934         const struct edac_device_prv_data *priv = drvdata->data;
1935         void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1936         unsigned long flags;
1937         u8 trig_type;
1938
1939         if (!user_buf || get_user(trig_type, user_buf))
1940                 return -EFAULT;
1941
1942         local_irq_save(flags);
1943         if (trig_type == ALTR_UE_TRIGGER_CHAR)
1944                 writel(priv->ue_set_mask, set_addr);
1945         else
1946                 writel(priv->ce_set_mask, set_addr);
1947         /* Ensure the interrupt test bits are set */
1948         wmb();
1949         local_irq_restore(flags);
1950
1951         return count;
1952 }
1953
1954 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1955 {
1956         int dberr, bit, sm_offset, irq_status;
1957         struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1958         struct irq_chip *chip = irq_desc_get_chip(desc);
1959         int irq = irq_desc_get_irq(desc);
1960
1961         dberr = (irq == edac->db_irq) ? 1 : 0;
1962         sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1963                             A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1964
1965         chained_irq_enter(chip, desc);
1966
1967         regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1968
1969         for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1970                 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1971                 if (irq)
1972                         generic_handle_irq(irq);
1973         }
1974
1975         chained_irq_exit(chip, desc);
1976 }
1977
1978 static int validate_parent_available(struct device_node *np)
1979 {
1980         struct device_node *parent;
1981         int ret = 0;
1982
1983         /* Ensure parent device is enabled if parent node exists */
1984         parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1985         if (parent && !of_device_is_available(parent))
1986                 ret = -ENODEV;
1987
1988         of_node_put(parent);
1989         return ret;
1990 }
1991
1992 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1993                                     struct device_node *np)
1994 {
1995         struct edac_device_ctl_info *dci;
1996         struct altr_edac_device_dev *altdev;
1997         char *ecc_name = (char *)np->name;
1998         struct resource res;
1999         int edac_idx;
2000         int rc = 0;
2001         const struct edac_device_prv_data *prv;
2002         /* Get matching node and check for valid result */
2003         const struct of_device_id *pdev_id =
2004                 of_match_node(altr_edac_a10_device_of_match, np);
2005         if (IS_ERR_OR_NULL(pdev_id))
2006                 return -ENODEV;
2007
2008         /* Get driver specific data for this EDAC device */
2009         prv = pdev_id->data;
2010         if (IS_ERR_OR_NULL(prv))
2011                 return -ENODEV;
2012
2013         if (validate_parent_available(np))
2014                 return -ENODEV;
2015
2016         if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
2017                 return -ENOMEM;
2018
2019         rc = of_address_to_resource(np, 0, &res);
2020         if (rc < 0) {
2021                 edac_printk(KERN_ERR, EDAC_DEVICE,
2022                             "%s: no resource address\n", ecc_name);
2023                 goto err_release_group;
2024         }
2025
2026         edac_idx = edac_device_alloc_index();
2027         dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
2028                                          1, ecc_name, 1, 0, NULL, 0,
2029                                          edac_idx);
2030
2031         if (!dci) {
2032                 edac_printk(KERN_ERR, EDAC_DEVICE,
2033                             "%s: Unable to allocate EDAC device\n", ecc_name);
2034                 rc = -ENOMEM;
2035                 goto err_release_group;
2036         }
2037
2038         altdev = dci->pvt_info;
2039         dci->dev = edac->dev;
2040         altdev->edac_dev_name = ecc_name;
2041         altdev->edac_idx = edac_idx;
2042         altdev->edac = edac;
2043         altdev->edac_dev = dci;
2044         altdev->data = prv;
2045         altdev->ddev = *edac->dev;
2046         dci->dev = &altdev->ddev;
2047         dci->ctl_name = "Altera ECC Manager";
2048         dci->mod_name = ecc_name;
2049         dci->dev_name = ecc_name;
2050
2051         altdev->base = devm_ioremap_resource(edac->dev, &res);
2052         if (IS_ERR(altdev->base)) {
2053                 rc = PTR_ERR(altdev->base);
2054                 goto err_release_group1;
2055         }
2056
2057         /* Check specific dependencies for the module */
2058         if (altdev->data->setup) {
2059                 rc = altdev->data->setup(altdev);
2060                 if (rc)
2061                         goto err_release_group1;
2062         }
2063
2064         altdev->sb_irq = irq_of_parse_and_map(np, 0);
2065         if (!altdev->sb_irq) {
2066                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
2067                 rc = -ENODEV;
2068                 goto err_release_group1;
2069         }
2070         rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
2071                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2072                               ecc_name, altdev);
2073         if (rc) {
2074                 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
2075                 goto err_release_group1;
2076         }
2077
2078         altdev->db_irq = irq_of_parse_and_map(np, 1);
2079         if (!altdev->db_irq) {
2080                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
2081                 rc = -ENODEV;
2082                 goto err_release_group1;
2083         }
2084         rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2085                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2086                               ecc_name, altdev);
2087         if (rc) {
2088                 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2089                 goto err_release_group1;
2090         }
2091
2092         rc = edac_device_add_device(dci);
2093         if (rc) {
2094                 dev_err(edac->dev, "edac_device_add_device failed\n");
2095                 rc = -ENOMEM;
2096                 goto err_release_group1;
2097         }
2098
2099         altr_create_edacdev_dbgfs(dci, prv);
2100
2101         list_add(&altdev->next, &edac->a10_ecc_devices);
2102
2103         devres_remove_group(edac->dev, altr_edac_a10_device_add);
2104
2105         return 0;
2106
2107 err_release_group1:
2108         edac_device_free_ctl_info(dci);
2109 err_release_group:
2110         devres_release_group(edac->dev, NULL);
2111         edac_printk(KERN_ERR, EDAC_DEVICE,
2112                     "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2113
2114         return rc;
2115 }
2116
2117 static void a10_eccmgr_irq_mask(struct irq_data *d)
2118 {
2119         struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2120
2121         regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2122                      BIT(d->hwirq));
2123 }
2124
2125 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2126 {
2127         struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2128
2129         regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2130                      BIT(d->hwirq));
2131 }
2132
2133 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2134                                     irq_hw_number_t hwirq)
2135 {
2136         struct altr_arria10_edac *edac = d->host_data;
2137
2138         irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2139         irq_set_chip_data(irq, edac);
2140         irq_set_noprobe(irq);
2141
2142         return 0;
2143 }
2144
2145 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2146         .map = a10_eccmgr_irqdomain_map,
2147         .xlate = irq_domain_xlate_twocell,
2148 };
2149
2150 static int altr_edac_a10_probe(struct platform_device *pdev)
2151 {
2152         struct altr_arria10_edac *edac;
2153         struct device_node *child;
2154
2155         edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2156         if (!edac)
2157                 return -ENOMEM;
2158
2159         edac->dev = &pdev->dev;
2160         platform_set_drvdata(pdev, edac);
2161         INIT_LIST_HEAD(&edac->a10_ecc_devices);
2162
2163         edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2164                                                         "altr,sysmgr-syscon");
2165         if (IS_ERR(edac->ecc_mgr_map)) {
2166                 edac_printk(KERN_ERR, EDAC_DEVICE,
2167                             "Unable to get syscon altr,sysmgr-syscon\n");
2168                 return PTR_ERR(edac->ecc_mgr_map);
2169         }
2170
2171         edac->irq_chip.name = pdev->dev.of_node->name;
2172         edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2173         edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2174         edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2175                                              &a10_eccmgr_ic_ops, edac);
2176         if (!edac->domain) {
2177                 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2178                 return -ENOMEM;
2179         }
2180
2181         edac->sb_irq = platform_get_irq(pdev, 0);
2182         if (edac->sb_irq < 0) {
2183                 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2184                 return edac->sb_irq;
2185         }
2186
2187         irq_set_chained_handler_and_data(edac->sb_irq,
2188                                          altr_edac_a10_irq_handler,
2189                                          edac);
2190
2191         edac->db_irq = platform_get_irq(pdev, 1);
2192         if (edac->db_irq < 0) {
2193                 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2194                 return edac->db_irq;
2195         }
2196         irq_set_chained_handler_and_data(edac->db_irq,
2197                                          altr_edac_a10_irq_handler,
2198                                          edac);
2199
2200         for_each_child_of_node(pdev->dev.of_node, child) {
2201                 if (!of_device_is_available(child))
2202                         continue;
2203
2204                 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") || 
2205                     of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2206                     of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2207                     of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2208                     of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2209                     of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2210                     of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2211                     of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2212
2213                         altr_edac_a10_device_add(edac, child);
2214
2215                 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2216                         of_platform_populate(pdev->dev.of_node,
2217                                              altr_sdram_ctrl_of_match,
2218                                              NULL, &pdev->dev);
2219         }
2220
2221         return 0;
2222 }
2223
2224 static const struct of_device_id altr_edac_a10_of_match[] = {
2225         { .compatible = "altr,socfpga-a10-ecc-manager" },
2226         {},
2227 };
2228 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2229
2230 static struct platform_driver altr_edac_a10_driver = {
2231         .probe =  altr_edac_a10_probe,
2232         .driver = {
2233                 .name = "socfpga_a10_ecc_manager",
2234                 .of_match_table = altr_edac_a10_of_match,
2235         },
2236 };
2237 module_platform_driver(altr_edac_a10_driver);
2238
2239 /************** Stratix 10 EDAC Device Controller Functions> ************/
2240
2241 #define to_s10edac(p, m) container_of(p, struct altr_stratix10_edac, m)
2242
2243 /*
2244  * The double bit error is handled through SError which is fatal. This is
2245  * called as a panic notifier to printout ECC error info as part of the panic.
2246  */
2247 static int s10_edac_dberr_handler(struct notifier_block *this,
2248                                   unsigned long event, void *ptr)
2249 {
2250         struct altr_stratix10_edac *edac = to_s10edac(this, panic_notifier);
2251         int err_addr, dberror;
2252
2253         s10_protected_reg_read(edac, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2254                                &dberror);
2255         /* Remember the UE Errors for a reboot */
2256         s10_protected_reg_write(edac, S10_SYSMGR_UE_VAL_OFST, dberror);
2257         if (dberror & S10_DDR0_IRQ_MASK) {
2258                 s10_protected_reg_read(edac, S10_DERRADDR_OFST, &err_addr);
2259                 /* Remember the UE Error address */
2260                 s10_protected_reg_write(edac, S10_SYSMGR_UE_ADDR_OFST,
2261                                         err_addr);
2262                 edac_printk(KERN_ERR, EDAC_MC,
2263                             "EDAC: [Uncorrectable errors @ 0x%08X]\n\n",
2264                             err_addr);
2265         }
2266
2267         return NOTIFY_DONE;
2268 }
2269
2270 static void altr_edac_s10_irq_handler(struct irq_desc *desc)
2271 {
2272         struct altr_stratix10_edac *edac = irq_desc_get_handler_data(desc);
2273         struct irq_chip *chip = irq_desc_get_chip(desc);
2274         int irq = irq_desc_get_irq(desc);
2275         int bit, sm_offset, irq_status;
2276
2277         sm_offset = S10_SYSMGR_ECC_INTSTAT_SERR_OFST;
2278
2279         chained_irq_enter(chip, desc);
2280
2281         s10_protected_reg_read(NULL, sm_offset, &irq_status);
2282
2283         for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
2284                 irq = irq_linear_revmap(edac->domain, bit);
2285                 if (irq)
2286                         generic_handle_irq(irq);
2287         }
2288
2289         chained_irq_exit(chip, desc);
2290 }
2291
2292 static void s10_eccmgr_irq_mask(struct irq_data *d)
2293 {
2294         struct altr_stratix10_edac *edac = irq_data_get_irq_chip_data(d);
2295
2296         s10_protected_reg_write(edac, S10_SYSMGR_ECC_INTMASK_SET_OFST,
2297                                 BIT(d->hwirq));
2298 }
2299
2300 static void s10_eccmgr_irq_unmask(struct irq_data *d)
2301 {
2302         struct altr_stratix10_edac *edac = irq_data_get_irq_chip_data(d);
2303
2304         s10_protected_reg_write(edac, S10_SYSMGR_ECC_INTMASK_CLR_OFST,
2305                                 BIT(d->hwirq));
2306 }
2307
2308 static int s10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2309                                     irq_hw_number_t hwirq)
2310 {
2311         struct altr_stratix10_edac *edac = d->host_data;
2312
2313         irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2314         irq_set_chip_data(irq, edac);
2315         irq_set_noprobe(irq);
2316
2317         return 0;
2318 }
2319
2320 static const struct irq_domain_ops s10_eccmgr_ic_ops = {
2321         .map = s10_eccmgr_irqdomain_map,
2322         .xlate = irq_domain_xlate_twocell,
2323 };
2324
2325 static int altr_edac_s10_probe(struct platform_device *pdev)
2326 {
2327         struct altr_stratix10_edac *edac;
2328         struct device_node *child;
2329         int dberror, err_addr;
2330
2331         edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2332         if (!edac)
2333                 return -ENOMEM;
2334
2335         edac->dev = &pdev->dev;
2336         platform_set_drvdata(pdev, edac);
2337         INIT_LIST_HEAD(&edac->s10_ecc_devices);
2338
2339         edac->irq_chip.name = pdev->dev.of_node->name;
2340         edac->irq_chip.irq_mask = s10_eccmgr_irq_mask;
2341         edac->irq_chip.irq_unmask = s10_eccmgr_irq_unmask;
2342         edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2343                                              &s10_eccmgr_ic_ops, edac);
2344         if (!edac->domain) {
2345                 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2346                 return -ENOMEM;
2347         }
2348
2349         edac->sb_irq = platform_get_irq(pdev, 0);
2350         if (edac->sb_irq < 0) {
2351                 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2352                 return edac->sb_irq;
2353         }
2354
2355         irq_set_chained_handler_and_data(edac->sb_irq,
2356                                          altr_edac_s10_irq_handler,
2357                                          edac);
2358
2359         edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2360         atomic_notifier_chain_register(&panic_notifier_list,
2361                                        &edac->panic_notifier);
2362
2363         /* Printout a message if uncorrectable error previously. */
2364         s10_protected_reg_read(edac, S10_SYSMGR_UE_VAL_OFST, &dberror);
2365         if (dberror) {
2366                 s10_protected_reg_read(edac, S10_SYSMGR_UE_ADDR_OFST,
2367                                        &err_addr);
2368                 edac_printk(KERN_ERR, EDAC_DEVICE,
2369                             "Previous Boot UE detected[0x%X] @ 0x%X\n",
2370                             dberror, err_addr);
2371                 /* Reset the sticky registers */
2372                 s10_protected_reg_write(edac, S10_SYSMGR_UE_VAL_OFST, 0);
2373                 s10_protected_reg_write(edac, S10_SYSMGR_UE_ADDR_OFST, 0);
2374         }
2375
2376         for_each_child_of_node(pdev->dev.of_node, child) {
2377                 if (!of_device_is_available(child))
2378                         continue;
2379
2380                 if (of_device_is_compatible(child, "altr,sdram-edac-s10"))
2381                         of_platform_populate(pdev->dev.of_node,
2382                                              altr_sdram_ctrl_of_match,
2383                                              NULL, &pdev->dev);
2384         }
2385
2386         return 0;
2387 }
2388
2389 static const struct of_device_id altr_edac_s10_of_match[] = {
2390         { .compatible = "altr,socfpga-s10-ecc-manager" },
2391         {},
2392 };
2393 MODULE_DEVICE_TABLE(of, altr_edac_s10_of_match);
2394
2395 static struct platform_driver altr_edac_s10_driver = {
2396         .probe =  altr_edac_s10_probe,
2397         .driver = {
2398                 .name = "socfpga_s10_ecc_manager",
2399                 .of_match_table = altr_edac_s10_of_match,
2400         },
2401 };
2402 module_platform_driver(altr_edac_s10_driver);
2403
2404 MODULE_LICENSE("GPL v2");
2405 MODULE_AUTHOR("Thor Thayer");
2406 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");