]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/edac/edac_mc.c
Merge tag 'samsung-soc-4.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/krzk...
[linux.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46
47 /*
48  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49  *      apei/ghes and i7core_edac to be used at the same time.
50  */
51 static void const *edac_mc_owner;
52
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56                                  unsigned len)
57 {
58         struct mem_ctl_info *mci = dimm->mci;
59         int i, n, count = 0;
60         char *p = buf;
61
62         for (i = 0; i < mci->n_layers; i++) {
63                 n = snprintf(p, len, "%s %d ",
64                               edac_layer_name[mci->layers[i].type],
65                               dimm->location[i]);
66                 p += n;
67                 len -= n;
68                 count += n;
69                 if (!len)
70                         break;
71         }
72
73         return count;
74 }
75
76 #ifdef CONFIG_EDAC_DEBUG
77
78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
81         edac_dbg(4, "    channel = %p\n", chan);
82         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
83         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
84 }
85
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88         char location[80];
89
90         edac_dimm_info_location(dimm, location, sizeof(location));
91
92         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93                  dimm->mci->csbased ? "rank" : "dimm",
94                  number, location, dimm->csrow, dimm->cschannel);
95         edac_dbg(4, "  dimm = %p\n", dimm);
96         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
97         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
99         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105         edac_dbg(4, "  csrow = %p\n", csrow);
106         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
107         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
108         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
109         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
110         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
111         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
112 }
113
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116         edac_dbg(3, "\tmci = %p\n", mci);
117         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122                  mci->nr_csrows, mci->csrows);
123         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124                  mci->tot_dimms, mci->dimms);
125         edac_dbg(3, "\tdev = %p\n", mci->pdev);
126         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127                  mci->mod_name, mci->ctl_name);
128         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130
131 #endif                          /* CONFIG_EDAC_DEBUG */
132
133 const char * const edac_mem_types[] = {
134         [MEM_EMPTY]     = "Empty csrow",
135         [MEM_RESERVED]  = "Reserved csrow type",
136         [MEM_UNKNOWN]   = "Unknown csrow type",
137         [MEM_FPM]       = "Fast page mode RAM",
138         [MEM_EDO]       = "Extended data out RAM",
139         [MEM_BEDO]      = "Burst Extended data out RAM",
140         [MEM_SDR]       = "Single data rate SDRAM",
141         [MEM_RDR]       = "Registered single data rate SDRAM",
142         [MEM_DDR]       = "Double data rate SDRAM",
143         [MEM_RDDR]      = "Registered Double data rate SDRAM",
144         [MEM_RMBS]      = "Rambus DRAM",
145         [MEM_DDR2]      = "Unbuffered DDR2 RAM",
146         [MEM_FB_DDR2]   = "Fully buffered DDR2",
147         [MEM_RDDR2]     = "Registered DDR2 RAM",
148         [MEM_XDR]       = "Rambus XDR",
149         [MEM_DDR3]      = "Unbuffered DDR3 RAM",
150         [MEM_RDDR3]     = "Registered DDR3 RAM",
151         [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
152         [MEM_DDR4]      = "Unbuffered DDR4 RAM",
153         [MEM_RDDR4]     = "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156
157 /**
158  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159  * @p:          pointer to a pointer with the memory offset to be used. At
160  *              return, this will be incremented to point to the next offset
161  * @size:       Size of the data structure to be reserved
162  * @n_elems:    Number of elements that should be reserved
163  *
164  * If 'size' is a constant, the compiler will optimize this whole function
165  * down to either a no-op or the addition of a constant to the value of '*p'.
166  *
167  * The 'p' pointer is absolutely needed to keep the proper advancing
168  * further in memory to the proper offsets when allocating the struct along
169  * with its embedded structs, as edac_device_alloc_ctl_info() does it
170  * above, for example.
171  *
172  * At return, the pointer 'p' will be incremented to be used on a next call
173  * to this function.
174  */
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177         unsigned align, r;
178         void *ptr = *p;
179
180         *p += size * n_elems;
181
182         /*
183          * 'p' can possibly be an unaligned item X such that sizeof(X) is
184          * 'size'.  Adjust 'p' so that its alignment is at least as
185          * stringent as what the compiler would provide for X and return
186          * the aligned result.
187          * Here we assume that the alignment of a "long long" is the most
188          * stringent alignment that the compiler will ever provide by default.
189          * As far as I know, this is a reasonable assumption.
190          */
191         if (size > sizeof(long))
192                 align = sizeof(long long);
193         else if (size > sizeof(int))
194                 align = sizeof(long);
195         else if (size > sizeof(short))
196                 align = sizeof(int);
197         else if (size > sizeof(char))
198                 align = sizeof(short);
199         else
200                 return (char *)ptr;
201
202         r = (unsigned long)p % align;
203
204         if (r == 0)
205                 return (char *)ptr;
206
207         *p += align - r;
208
209         return (void *)(((unsigned long)ptr) + align - r);
210 }
211
212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214         int i, chn, row;
215         struct csrow_info *csr;
216         const unsigned int tot_dimms = mci->tot_dimms;
217         const unsigned int tot_channels = mci->num_cschannel;
218         const unsigned int tot_csrows = mci->nr_csrows;
219
220         if (mci->dimms) {
221                 for (i = 0; i < tot_dimms; i++)
222                         kfree(mci->dimms[i]);
223                 kfree(mci->dimms);
224         }
225         if (mci->csrows) {
226                 for (row = 0; row < tot_csrows; row++) {
227                         csr = mci->csrows[row];
228                         if (csr) {
229                                 if (csr->channels) {
230                                         for (chn = 0; chn < tot_channels; chn++)
231                                                 kfree(csr->channels[chn]);
232                                         kfree(csr->channels);
233                                 }
234                                 kfree(csr);
235                         }
236                 }
237                 kfree(mci->csrows);
238         }
239         kfree(mci);
240 }
241
242 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243                                    unsigned n_layers,
244                                    struct edac_mc_layer *layers,
245                                    unsigned sz_pvt)
246 {
247         struct mem_ctl_info *mci;
248         struct edac_mc_layer *layer;
249         struct csrow_info *csr;
250         struct rank_info *chan;
251         struct dimm_info *dimm;
252         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253         unsigned pos[EDAC_MAX_LAYERS];
254         unsigned size, tot_dimms = 1, count = 1;
255         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
256         void *pvt, *p, *ptr = NULL;
257         int i, j, row, chn, n, len, off;
258         bool per_rank = false;
259
260         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261         /*
262          * Calculate the total amount of dimms and csrows/cschannels while
263          * in the old API emulation mode
264          */
265         for (i = 0; i < n_layers; i++) {
266                 tot_dimms *= layers[i].size;
267                 if (layers[i].is_virt_csrow)
268                         tot_csrows *= layers[i].size;
269                 else
270                         tot_channels *= layers[i].size;
271
272                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273                         per_rank = true;
274         }
275
276         /* Figure out the offsets of the various items from the start of an mc
277          * structure.  We want the alignment of each item to be at least as
278          * stringent as what the compiler would provide if we could simply
279          * hardcode everything into a single struct.
280          */
281         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
282         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
283         for (i = 0; i < n_layers; i++) {
284                 count *= layers[i].size;
285                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
286                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288                 tot_errcount += 2 * count;
289         }
290
291         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
292         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
293         size = ((unsigned long)pvt) + sz_pvt;
294
295         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296                  size,
297                  tot_dimms,
298                  per_rank ? "ranks" : "dimms",
299                  tot_csrows * tot_channels);
300
301         mci = kzalloc(size, GFP_KERNEL);
302         if (mci == NULL)
303                 return NULL;
304
305         /* Adjust pointers so they point within the memory we just allocated
306          * rather than an imaginary chunk of memory located at address 0.
307          */
308         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
309         for (i = 0; i < n_layers; i++) {
310                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312         }
313         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
314
315         /* setup index and various internal pointers */
316         mci->mc_idx = mc_num;
317         mci->tot_dimms = tot_dimms;
318         mci->pvt_info = pvt;
319         mci->n_layers = n_layers;
320         mci->layers = layer;
321         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322         mci->nr_csrows = tot_csrows;
323         mci->num_cschannel = tot_channels;
324         mci->csbased = per_rank;
325
326         /*
327          * Alocate and fill the csrow/channels structs
328          */
329         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
330         if (!mci->csrows)
331                 goto error;
332         for (row = 0; row < tot_csrows; row++) {
333                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334                 if (!csr)
335                         goto error;
336                 mci->csrows[row] = csr;
337                 csr->csrow_idx = row;
338                 csr->mci = mci;
339                 csr->nr_channels = tot_channels;
340                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
341                                         GFP_KERNEL);
342                 if (!csr->channels)
343                         goto error;
344
345                 for (chn = 0; chn < tot_channels; chn++) {
346                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347                         if (!chan)
348                                 goto error;
349                         csr->channels[chn] = chan;
350                         chan->chan_idx = chn;
351                         chan->csrow = csr;
352                 }
353         }
354
355         /*
356          * Allocate and fill the dimm structs
357          */
358         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
359         if (!mci->dimms)
360                 goto error;
361
362         memset(&pos, 0, sizeof(pos));
363         row = 0;
364         chn = 0;
365         for (i = 0; i < tot_dimms; i++) {
366                 chan = mci->csrows[row]->channels[chn];
367                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368                 if (off < 0 || off >= tot_dimms) {
369                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370                         goto error;
371                 }
372
373                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
374                 if (!dimm)
375                         goto error;
376                 mci->dimms[off] = dimm;
377                 dimm->mci = mci;
378
379                 /*
380                  * Copy DIMM location and initialize it.
381                  */
382                 len = sizeof(dimm->label);
383                 p = dimm->label;
384                 n = snprintf(p, len, "mc#%u", mc_num);
385                 p += n;
386                 len -= n;
387                 for (j = 0; j < n_layers; j++) {
388                         n = snprintf(p, len, "%s#%u",
389                                      edac_layer_name[layers[j].type],
390                                      pos[j]);
391                         p += n;
392                         len -= n;
393                         dimm->location[j] = pos[j];
394
395                         if (len <= 0)
396                                 break;
397                 }
398
399                 /* Link it to the csrows old API data */
400                 chan->dimm = dimm;
401                 dimm->csrow = row;
402                 dimm->cschannel = chn;
403
404                 /* Increment csrow location */
405                 if (layers[0].is_virt_csrow) {
406                         chn++;
407                         if (chn == tot_channels) {
408                                 chn = 0;
409                                 row++;
410                         }
411                 } else {
412                         row++;
413                         if (row == tot_csrows) {
414                                 row = 0;
415                                 chn++;
416                         }
417                 }
418
419                 /* Increment dimm location */
420                 for (j = n_layers - 1; j >= 0; j--) {
421                         pos[j]++;
422                         if (pos[j] < layers[j].size)
423                                 break;
424                         pos[j] = 0;
425                 }
426         }
427
428         mci->op_state = OP_ALLOC;
429
430         return mci;
431
432 error:
433         _edac_mc_free(mci);
434
435         return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438
439 void edac_mc_free(struct mem_ctl_info *mci)
440 {
441         edac_dbg(1, "\n");
442
443         /* If we're not yet registered with sysfs free only what was allocated
444          * in edac_mc_alloc().
445          */
446         if (!device_is_registered(&mci->dev)) {
447                 _edac_mc_free(mci);
448                 return;
449         }
450
451         /* the mci instance is freed here, when the sysfs object is dropped */
452         edac_unregister_sysfs(mci);
453 }
454 EXPORT_SYMBOL_GPL(edac_mc_free);
455
456 /* Caller must hold mem_ctls_mutex */
457 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
458 {
459         struct mem_ctl_info *mci;
460         struct list_head *item;
461
462         edac_dbg(3, "\n");
463
464         list_for_each(item, &mc_devices) {
465                 mci = list_entry(item, struct mem_ctl_info, link);
466
467                 if (mci->pdev == dev)
468                         return mci;
469         }
470
471         return NULL;
472 }
473
474 /**
475  * find_mci_by_dev
476  *
477  *      scan list of controllers looking for the one that manages
478  *      the 'dev' device
479  * @dev: pointer to a struct device related with the MCI
480  */
481 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
482 {
483         struct mem_ctl_info *ret;
484
485         mutex_lock(&mem_ctls_mutex);
486         ret = __find_mci_by_dev(dev);
487         mutex_unlock(&mem_ctls_mutex);
488
489         return ret;
490 }
491 EXPORT_SYMBOL_GPL(find_mci_by_dev);
492
493 /*
494  * handler for EDAC to check if NMI type handler has asserted interrupt
495  */
496 static int edac_mc_assert_error_check_and_clear(void)
497 {
498         int old_state;
499
500         if (edac_op_state == EDAC_OPSTATE_POLL)
501                 return 1;
502
503         old_state = edac_err_assert;
504         edac_err_assert = 0;
505
506         return old_state;
507 }
508
509 /*
510  * edac_mc_workq_function
511  *      performs the operation scheduled by a workq request
512  */
513 static void edac_mc_workq_function(struct work_struct *work_req)
514 {
515         struct delayed_work *d_work = to_delayed_work(work_req);
516         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
517
518         mutex_lock(&mem_ctls_mutex);
519
520         if (mci->op_state != OP_RUNNING_POLL) {
521                 mutex_unlock(&mem_ctls_mutex);
522                 return;
523         }
524
525         if (edac_mc_assert_error_check_and_clear())
526                 mci->edac_check(mci);
527
528         mutex_unlock(&mem_ctls_mutex);
529
530         /* Queue ourselves again. */
531         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
532 }
533
534 /*
535  * edac_mc_reset_delay_period(unsigned long value)
536  *
537  *      user space has updated our poll period value, need to
538  *      reset our workq delays
539  */
540 void edac_mc_reset_delay_period(unsigned long value)
541 {
542         struct mem_ctl_info *mci;
543         struct list_head *item;
544
545         mutex_lock(&mem_ctls_mutex);
546
547         list_for_each(item, &mc_devices) {
548                 mci = list_entry(item, struct mem_ctl_info, link);
549
550                 if (mci->op_state == OP_RUNNING_POLL)
551                         edac_mod_work(&mci->work, value);
552         }
553         mutex_unlock(&mem_ctls_mutex);
554 }
555
556
557
558 /* Return 0 on success, 1 on failure.
559  * Before calling this function, caller must
560  * assign a unique value to mci->mc_idx.
561  *
562  *      locking model:
563  *
564  *              called with the mem_ctls_mutex lock held
565  */
566 static int add_mc_to_global_list(struct mem_ctl_info *mci)
567 {
568         struct list_head *item, *insert_before;
569         struct mem_ctl_info *p;
570
571         insert_before = &mc_devices;
572
573         p = __find_mci_by_dev(mci->pdev);
574         if (unlikely(p != NULL))
575                 goto fail0;
576
577         list_for_each(item, &mc_devices) {
578                 p = list_entry(item, struct mem_ctl_info, link);
579
580                 if (p->mc_idx >= mci->mc_idx) {
581                         if (unlikely(p->mc_idx == mci->mc_idx))
582                                 goto fail1;
583
584                         insert_before = item;
585                         break;
586                 }
587         }
588
589         list_add_tail_rcu(&mci->link, insert_before);
590         atomic_inc(&edac_handlers);
591         return 0;
592
593 fail0:
594         edac_printk(KERN_WARNING, EDAC_MC,
595                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
596                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
597         return 1;
598
599 fail1:
600         edac_printk(KERN_WARNING, EDAC_MC,
601                 "bug in low-level driver: attempt to assign\n"
602                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
603         return 1;
604 }
605
606 static int del_mc_from_global_list(struct mem_ctl_info *mci)
607 {
608         int handlers = atomic_dec_return(&edac_handlers);
609         list_del_rcu(&mci->link);
610
611         /* these are for safe removal of devices from global list while
612          * NMI handlers may be traversing list
613          */
614         synchronize_rcu();
615         INIT_LIST_HEAD(&mci->link);
616
617         return handlers;
618 }
619
620 struct mem_ctl_info *edac_mc_find(int idx)
621 {
622         struct mem_ctl_info *mci = NULL;
623         struct list_head *item;
624
625         mutex_lock(&mem_ctls_mutex);
626
627         list_for_each(item, &mc_devices) {
628                 mci = list_entry(item, struct mem_ctl_info, link);
629
630                 if (mci->mc_idx >= idx) {
631                         if (mci->mc_idx == idx) {
632                                 goto unlock;
633                         }
634                         break;
635                 }
636         }
637
638 unlock:
639         mutex_unlock(&mem_ctls_mutex);
640         return mci;
641 }
642 EXPORT_SYMBOL(edac_mc_find);
643
644
645 /* FIXME - should a warning be printed if no error detection? correction? */
646 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
647                                const struct attribute_group **groups)
648 {
649         int ret = -EINVAL;
650         edac_dbg(0, "\n");
651
652         if (mci->mc_idx >= EDAC_MAX_MCS) {
653                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
654                 return -ENODEV;
655         }
656
657 #ifdef CONFIG_EDAC_DEBUG
658         if (edac_debug_level >= 3)
659                 edac_mc_dump_mci(mci);
660
661         if (edac_debug_level >= 4) {
662                 int i;
663
664                 for (i = 0; i < mci->nr_csrows; i++) {
665                         struct csrow_info *csrow = mci->csrows[i];
666                         u32 nr_pages = 0;
667                         int j;
668
669                         for (j = 0; j < csrow->nr_channels; j++)
670                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
671                         if (!nr_pages)
672                                 continue;
673                         edac_mc_dump_csrow(csrow);
674                         for (j = 0; j < csrow->nr_channels; j++)
675                                 if (csrow->channels[j]->dimm->nr_pages)
676                                         edac_mc_dump_channel(csrow->channels[j]);
677                 }
678                 for (i = 0; i < mci->tot_dimms; i++)
679                         if (mci->dimms[i]->nr_pages)
680                                 edac_mc_dump_dimm(mci->dimms[i], i);
681         }
682 #endif
683         mutex_lock(&mem_ctls_mutex);
684
685         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
686                 ret = -EPERM;
687                 goto fail0;
688         }
689
690         if (add_mc_to_global_list(mci))
691                 goto fail0;
692
693         /* set load time so that error rate can be tracked */
694         mci->start_time = jiffies;
695
696         mci->bus = &mc_bus[mci->mc_idx];
697
698         if (edac_create_sysfs_mci_device(mci, groups)) {
699                 edac_mc_printk(mci, KERN_WARNING,
700                         "failed to create sysfs device\n");
701                 goto fail1;
702         }
703
704         if (mci->edac_check) {
705                 mci->op_state = OP_RUNNING_POLL;
706
707                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
708                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
709
710         } else {
711                 mci->op_state = OP_RUNNING_INTERRUPT;
712         }
713
714         /* Report action taken */
715         edac_mc_printk(mci, KERN_INFO,
716                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
717                 mci->mod_name, mci->ctl_name, mci->dev_name,
718                 edac_op_state_to_string(mci->op_state));
719
720         edac_mc_owner = mci->mod_name;
721
722         mutex_unlock(&mem_ctls_mutex);
723         return 0;
724
725 fail1:
726         del_mc_from_global_list(mci);
727
728 fail0:
729         mutex_unlock(&mem_ctls_mutex);
730         return ret;
731 }
732 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
733
734 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
735 {
736         struct mem_ctl_info *mci;
737
738         edac_dbg(0, "\n");
739
740         mutex_lock(&mem_ctls_mutex);
741
742         /* find the requested mci struct in the global list */
743         mci = __find_mci_by_dev(dev);
744         if (mci == NULL) {
745                 mutex_unlock(&mem_ctls_mutex);
746                 return NULL;
747         }
748
749         /* mark MCI offline: */
750         mci->op_state = OP_OFFLINE;
751
752         if (!del_mc_from_global_list(mci))
753                 edac_mc_owner = NULL;
754
755         mutex_unlock(&mem_ctls_mutex);
756
757         if (mci->edac_check)
758                 edac_stop_work(&mci->work);
759
760         /* remove from sysfs */
761         edac_remove_sysfs_mci_device(mci);
762
763         edac_printk(KERN_INFO, EDAC_MC,
764                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
765                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
766
767         return mci;
768 }
769 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
770
771 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
772                                 u32 size)
773 {
774         struct page *pg;
775         void *virt_addr;
776         unsigned long flags = 0;
777
778         edac_dbg(3, "\n");
779
780         /* ECC error page was not in our memory. Ignore it. */
781         if (!pfn_valid(page))
782                 return;
783
784         /* Find the actual page structure then map it and fix */
785         pg = pfn_to_page(page);
786
787         if (PageHighMem(pg))
788                 local_irq_save(flags);
789
790         virt_addr = kmap_atomic(pg);
791
792         /* Perform architecture specific atomic scrub operation */
793         edac_atomic_scrub(virt_addr + offset, size);
794
795         /* Unmap and complete */
796         kunmap_atomic(virt_addr);
797
798         if (PageHighMem(pg))
799                 local_irq_restore(flags);
800 }
801
802 /* FIXME - should return -1 */
803 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
804 {
805         struct csrow_info **csrows = mci->csrows;
806         int row, i, j, n;
807
808         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
809         row = -1;
810
811         for (i = 0; i < mci->nr_csrows; i++) {
812                 struct csrow_info *csrow = csrows[i];
813                 n = 0;
814                 for (j = 0; j < csrow->nr_channels; j++) {
815                         struct dimm_info *dimm = csrow->channels[j]->dimm;
816                         n += dimm->nr_pages;
817                 }
818                 if (n == 0)
819                         continue;
820
821                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
822                          mci->mc_idx,
823                          csrow->first_page, page, csrow->last_page,
824                          csrow->page_mask);
825
826                 if ((page >= csrow->first_page) &&
827                     (page <= csrow->last_page) &&
828                     ((page & csrow->page_mask) ==
829                      (csrow->first_page & csrow->page_mask))) {
830                         row = i;
831                         break;
832                 }
833         }
834
835         if (row == -1)
836                 edac_mc_printk(mci, KERN_ERR,
837                         "could not look up page error address %lx\n",
838                         (unsigned long)page);
839
840         return row;
841 }
842 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
843
844 const char *edac_layer_name[] = {
845         [EDAC_MC_LAYER_BRANCH] = "branch",
846         [EDAC_MC_LAYER_CHANNEL] = "channel",
847         [EDAC_MC_LAYER_SLOT] = "slot",
848         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
849         [EDAC_MC_LAYER_ALL_MEM] = "memory",
850 };
851 EXPORT_SYMBOL_GPL(edac_layer_name);
852
853 static void edac_inc_ce_error(struct mem_ctl_info *mci,
854                               bool enable_per_layer_report,
855                               const int pos[EDAC_MAX_LAYERS],
856                               const u16 count)
857 {
858         int i, index = 0;
859
860         mci->ce_mc += count;
861
862         if (!enable_per_layer_report) {
863                 mci->ce_noinfo_count += count;
864                 return;
865         }
866
867         for (i = 0; i < mci->n_layers; i++) {
868                 if (pos[i] < 0)
869                         break;
870                 index += pos[i];
871                 mci->ce_per_layer[i][index] += count;
872
873                 if (i < mci->n_layers - 1)
874                         index *= mci->layers[i + 1].size;
875         }
876 }
877
878 static void edac_inc_ue_error(struct mem_ctl_info *mci,
879                                     bool enable_per_layer_report,
880                                     const int pos[EDAC_MAX_LAYERS],
881                                     const u16 count)
882 {
883         int i, index = 0;
884
885         mci->ue_mc += count;
886
887         if (!enable_per_layer_report) {
888                 mci->ue_noinfo_count += count;
889                 return;
890         }
891
892         for (i = 0; i < mci->n_layers; i++) {
893                 if (pos[i] < 0)
894                         break;
895                 index += pos[i];
896                 mci->ue_per_layer[i][index] += count;
897
898                 if (i < mci->n_layers - 1)
899                         index *= mci->layers[i + 1].size;
900         }
901 }
902
903 static void edac_ce_error(struct mem_ctl_info *mci,
904                           const u16 error_count,
905                           const int pos[EDAC_MAX_LAYERS],
906                           const char *msg,
907                           const char *location,
908                           const char *label,
909                           const char *detail,
910                           const char *other_detail,
911                           const bool enable_per_layer_report,
912                           const unsigned long page_frame_number,
913                           const unsigned long offset_in_page,
914                           long grain)
915 {
916         unsigned long remapped_page;
917         char *msg_aux = "";
918
919         if (*msg)
920                 msg_aux = " ";
921
922         if (edac_mc_get_log_ce()) {
923                 if (other_detail && *other_detail)
924                         edac_mc_printk(mci, KERN_WARNING,
925                                        "%d CE %s%son %s (%s %s - %s)\n",
926                                        error_count, msg, msg_aux, label,
927                                        location, detail, other_detail);
928                 else
929                         edac_mc_printk(mci, KERN_WARNING,
930                                        "%d CE %s%son %s (%s %s)\n",
931                                        error_count, msg, msg_aux, label,
932                                        location, detail);
933         }
934         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
935
936         if (mci->scrub_mode == SCRUB_SW_SRC) {
937                 /*
938                         * Some memory controllers (called MCs below) can remap
939                         * memory so that it is still available at a different
940                         * address when PCI devices map into memory.
941                         * MC's that can't do this, lose the memory where PCI
942                         * devices are mapped. This mapping is MC-dependent
943                         * and so we call back into the MC driver for it to
944                         * map the MC page to a physical (CPU) page which can
945                         * then be mapped to a virtual page - which can then
946                         * be scrubbed.
947                         */
948                 remapped_page = mci->ctl_page_to_phys ?
949                         mci->ctl_page_to_phys(mci, page_frame_number) :
950                         page_frame_number;
951
952                 edac_mc_scrub_block(remapped_page,
953                                         offset_in_page, grain);
954         }
955 }
956
957 static void edac_ue_error(struct mem_ctl_info *mci,
958                           const u16 error_count,
959                           const int pos[EDAC_MAX_LAYERS],
960                           const char *msg,
961                           const char *location,
962                           const char *label,
963                           const char *detail,
964                           const char *other_detail,
965                           const bool enable_per_layer_report)
966 {
967         char *msg_aux = "";
968
969         if (*msg)
970                 msg_aux = " ";
971
972         if (edac_mc_get_log_ue()) {
973                 if (other_detail && *other_detail)
974                         edac_mc_printk(mci, KERN_WARNING,
975                                        "%d UE %s%son %s (%s %s - %s)\n",
976                                        error_count, msg, msg_aux, label,
977                                        location, detail, other_detail);
978                 else
979                         edac_mc_printk(mci, KERN_WARNING,
980                                        "%d UE %s%son %s (%s %s)\n",
981                                        error_count, msg, msg_aux, label,
982                                        location, detail);
983         }
984
985         if (edac_mc_get_panic_on_ue()) {
986                 if (other_detail && *other_detail)
987                         panic("UE %s%son %s (%s%s - %s)\n",
988                               msg, msg_aux, label, location, detail, other_detail);
989                 else
990                         panic("UE %s%son %s (%s%s)\n",
991                               msg, msg_aux, label, location, detail);
992         }
993
994         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
995 }
996
997 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
998                               struct mem_ctl_info *mci,
999                               struct edac_raw_error_desc *e)
1000 {
1001         char detail[80];
1002         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1003
1004         /* Memory type dependent details about the error */
1005         if (type == HW_EVENT_ERR_CORRECTED) {
1006                 snprintf(detail, sizeof(detail),
1007                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1008                         e->page_frame_number, e->offset_in_page,
1009                         e->grain, e->syndrome);
1010                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1011                               detail, e->other_detail, e->enable_per_layer_report,
1012                               e->page_frame_number, e->offset_in_page, e->grain);
1013         } else {
1014                 snprintf(detail, sizeof(detail),
1015                         "page:0x%lx offset:0x%lx grain:%ld",
1016                         e->page_frame_number, e->offset_in_page, e->grain);
1017
1018                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1019                               detail, e->other_detail, e->enable_per_layer_report);
1020         }
1021
1022
1023 }
1024 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1025
1026 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1027                           struct mem_ctl_info *mci,
1028                           const u16 error_count,
1029                           const unsigned long page_frame_number,
1030                           const unsigned long offset_in_page,
1031                           const unsigned long syndrome,
1032                           const int top_layer,
1033                           const int mid_layer,
1034                           const int low_layer,
1035                           const char *msg,
1036                           const char *other_detail)
1037 {
1038         char *p;
1039         int row = -1, chan = -1;
1040         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1041         int i, n_labels = 0;
1042         u8 grain_bits;
1043         struct edac_raw_error_desc *e = &mci->error_desc;
1044
1045         edac_dbg(3, "MC%d\n", mci->mc_idx);
1046
1047         /* Fills the error report buffer */
1048         memset(e, 0, sizeof (*e));
1049         e->error_count = error_count;
1050         e->top_layer = top_layer;
1051         e->mid_layer = mid_layer;
1052         e->low_layer = low_layer;
1053         e->page_frame_number = page_frame_number;
1054         e->offset_in_page = offset_in_page;
1055         e->syndrome = syndrome;
1056         e->msg = msg;
1057         e->other_detail = other_detail;
1058
1059         /*
1060          * Check if the event report is consistent and if the memory
1061          * location is known. If it is known, enable_per_layer_report will be
1062          * true, the DIMM(s) label info will be filled and the per-layer
1063          * error counters will be incremented.
1064          */
1065         for (i = 0; i < mci->n_layers; i++) {
1066                 if (pos[i] >= (int)mci->layers[i].size) {
1067
1068                         edac_mc_printk(mci, KERN_ERR,
1069                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1070                                        edac_layer_name[mci->layers[i].type],
1071                                        pos[i], mci->layers[i].size);
1072                         /*
1073                          * Instead of just returning it, let's use what's
1074                          * known about the error. The increment routines and
1075                          * the DIMM filter logic will do the right thing by
1076                          * pointing the likely damaged DIMMs.
1077                          */
1078                         pos[i] = -1;
1079                 }
1080                 if (pos[i] >= 0)
1081                         e->enable_per_layer_report = true;
1082         }
1083
1084         /*
1085          * Get the dimm label/grain that applies to the match criteria.
1086          * As the error algorithm may not be able to point to just one memory
1087          * stick, the logic here will get all possible labels that could
1088          * pottentially be affected by the error.
1089          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1090          * to have only the MC channel and the MC dimm (also called "branch")
1091          * but the channel is not known, as the memory is arranged in pairs,
1092          * where each memory belongs to a separate channel within the same
1093          * branch.
1094          */
1095         p = e->label;
1096         *p = '\0';
1097
1098         for (i = 0; i < mci->tot_dimms; i++) {
1099                 struct dimm_info *dimm = mci->dimms[i];
1100
1101                 if (top_layer >= 0 && top_layer != dimm->location[0])
1102                         continue;
1103                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1104                         continue;
1105                 if (low_layer >= 0 && low_layer != dimm->location[2])
1106                         continue;
1107
1108                 /* get the max grain, over the error match range */
1109                 if (dimm->grain > e->grain)
1110                         e->grain = dimm->grain;
1111
1112                 /*
1113                  * If the error is memory-controller wide, there's no need to
1114                  * seek for the affected DIMMs because the whole
1115                  * channel/memory controller/...  may be affected.
1116                  * Also, don't show errors for empty DIMM slots.
1117                  */
1118                 if (e->enable_per_layer_report && dimm->nr_pages) {
1119                         if (n_labels >= EDAC_MAX_LABELS) {
1120                                 e->enable_per_layer_report = false;
1121                                 break;
1122                         }
1123                         n_labels++;
1124                         if (p != e->label) {
1125                                 strcpy(p, OTHER_LABEL);
1126                                 p += strlen(OTHER_LABEL);
1127                         }
1128                         strcpy(p, dimm->label);
1129                         p += strlen(p);
1130                         *p = '\0';
1131
1132                         /*
1133                          * get csrow/channel of the DIMM, in order to allow
1134                          * incrementing the compat API counters
1135                          */
1136                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1137                                  mci->csbased ? "rank" : "dimm",
1138                                  dimm->csrow, dimm->cschannel);
1139                         if (row == -1)
1140                                 row = dimm->csrow;
1141                         else if (row >= 0 && row != dimm->csrow)
1142                                 row = -2;
1143
1144                         if (chan == -1)
1145                                 chan = dimm->cschannel;
1146                         else if (chan >= 0 && chan != dimm->cschannel)
1147                                 chan = -2;
1148                 }
1149         }
1150
1151         if (!e->enable_per_layer_report) {
1152                 strcpy(e->label, "any memory");
1153         } else {
1154                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1155                 if (p == e->label)
1156                         strcpy(e->label, "unknown memory");
1157                 if (type == HW_EVENT_ERR_CORRECTED) {
1158                         if (row >= 0) {
1159                                 mci->csrows[row]->ce_count += error_count;
1160                                 if (chan >= 0)
1161                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1162                         }
1163                 } else
1164                         if (row >= 0)
1165                                 mci->csrows[row]->ue_count += error_count;
1166         }
1167
1168         /* Fill the RAM location data */
1169         p = e->location;
1170
1171         for (i = 0; i < mci->n_layers; i++) {
1172                 if (pos[i] < 0)
1173                         continue;
1174
1175                 p += sprintf(p, "%s:%d ",
1176                              edac_layer_name[mci->layers[i].type],
1177                              pos[i]);
1178         }
1179         if (p > e->location)
1180                 *(p - 1) = '\0';
1181
1182         /* Report the error via the trace interface */
1183         grain_bits = fls_long(e->grain) + 1;
1184         trace_mc_event(type, e->msg, e->label, e->error_count,
1185                        mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1186                        (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1187                        grain_bits, e->syndrome, e->other_detail);
1188
1189         edac_raw_mc_handle_error(type, mci, e);
1190 }
1191 EXPORT_SYMBOL_GPL(edac_mc_handle_error);