]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
drm/amdkfd: add new vega10 pci ids
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31
32 #define MQD_SIZE_ALIGNED 768
33
34 /*
35  * kfd_locked is used to lock the kfd driver during suspend or reset
36  * once locked, kfd driver will stop any further GPU execution.
37  * create process (open) will return -EAGAIN.
38  */
39 static atomic_t kfd_locked = ATOMIC_INIT(0);
40
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info = {
43         .asic_family = CHIP_KAVERI,
44         .max_pasid_bits = 16,
45         /* max num of queues for KV.TODO should be a dynamic value */
46         .max_no_of_hqd  = 24,
47         .doorbell_size  = 4,
48         .ih_ring_entry_size = 4 * sizeof(uint32_t),
49         .event_interrupt_class = &event_interrupt_class_cik,
50         .num_of_watch_points = 4,
51         .mqd_size_aligned = MQD_SIZE_ALIGNED,
52         .supports_cwsr = false,
53         .needs_iommu_device = true,
54         .needs_pci_atomics = false,
55         .num_sdma_engines = 2,
56         .num_sdma_queues_per_engine = 2,
57 };
58
59 static const struct kfd_device_info carrizo_device_info = {
60         .asic_family = CHIP_CARRIZO,
61         .max_pasid_bits = 16,
62         /* max num of queues for CZ.TODO should be a dynamic value */
63         .max_no_of_hqd  = 24,
64         .doorbell_size  = 4,
65         .ih_ring_entry_size = 4 * sizeof(uint32_t),
66         .event_interrupt_class = &event_interrupt_class_cik,
67         .num_of_watch_points = 4,
68         .mqd_size_aligned = MQD_SIZE_ALIGNED,
69         .supports_cwsr = true,
70         .needs_iommu_device = true,
71         .needs_pci_atomics = false,
72         .num_sdma_engines = 2,
73         .num_sdma_queues_per_engine = 2,
74 };
75
76 static const struct kfd_device_info raven_device_info = {
77         .asic_family = CHIP_RAVEN,
78         .max_pasid_bits = 16,
79         .max_no_of_hqd  = 24,
80         .doorbell_size  = 8,
81         .ih_ring_entry_size = 8 * sizeof(uint32_t),
82         .event_interrupt_class = &event_interrupt_class_v9,
83         .num_of_watch_points = 4,
84         .mqd_size_aligned = MQD_SIZE_ALIGNED,
85         .supports_cwsr = true,
86         .needs_iommu_device = true,
87         .needs_pci_atomics = true,
88         .num_sdma_engines = 1,
89         .num_sdma_queues_per_engine = 2,
90 };
91 #endif
92
93 static const struct kfd_device_info hawaii_device_info = {
94         .asic_family = CHIP_HAWAII,
95         .max_pasid_bits = 16,
96         /* max num of queues for KV.TODO should be a dynamic value */
97         .max_no_of_hqd  = 24,
98         .doorbell_size  = 4,
99         .ih_ring_entry_size = 4 * sizeof(uint32_t),
100         .event_interrupt_class = &event_interrupt_class_cik,
101         .num_of_watch_points = 4,
102         .mqd_size_aligned = MQD_SIZE_ALIGNED,
103         .supports_cwsr = false,
104         .needs_iommu_device = false,
105         .needs_pci_atomics = false,
106         .num_sdma_engines = 2,
107         .num_sdma_queues_per_engine = 2,
108 };
109
110 static const struct kfd_device_info tonga_device_info = {
111         .asic_family = CHIP_TONGA,
112         .max_pasid_bits = 16,
113         .max_no_of_hqd  = 24,
114         .doorbell_size  = 4,
115         .ih_ring_entry_size = 4 * sizeof(uint32_t),
116         .event_interrupt_class = &event_interrupt_class_cik,
117         .num_of_watch_points = 4,
118         .mqd_size_aligned = MQD_SIZE_ALIGNED,
119         .supports_cwsr = false,
120         .needs_iommu_device = false,
121         .needs_pci_atomics = true,
122         .num_sdma_engines = 2,
123         .num_sdma_queues_per_engine = 2,
124 };
125
126 static const struct kfd_device_info fiji_device_info = {
127         .asic_family = CHIP_FIJI,
128         .max_pasid_bits = 16,
129         .max_no_of_hqd  = 24,
130         .doorbell_size  = 4,
131         .ih_ring_entry_size = 4 * sizeof(uint32_t),
132         .event_interrupt_class = &event_interrupt_class_cik,
133         .num_of_watch_points = 4,
134         .mqd_size_aligned = MQD_SIZE_ALIGNED,
135         .supports_cwsr = true,
136         .needs_iommu_device = false,
137         .needs_pci_atomics = true,
138         .num_sdma_engines = 2,
139         .num_sdma_queues_per_engine = 2,
140 };
141
142 static const struct kfd_device_info fiji_vf_device_info = {
143         .asic_family = CHIP_FIJI,
144         .max_pasid_bits = 16,
145         .max_no_of_hqd  = 24,
146         .doorbell_size  = 4,
147         .ih_ring_entry_size = 4 * sizeof(uint32_t),
148         .event_interrupt_class = &event_interrupt_class_cik,
149         .num_of_watch_points = 4,
150         .mqd_size_aligned = MQD_SIZE_ALIGNED,
151         .supports_cwsr = true,
152         .needs_iommu_device = false,
153         .needs_pci_atomics = false,
154         .num_sdma_engines = 2,
155         .num_sdma_queues_per_engine = 2,
156 };
157
158
159 static const struct kfd_device_info polaris10_device_info = {
160         .asic_family = CHIP_POLARIS10,
161         .max_pasid_bits = 16,
162         .max_no_of_hqd  = 24,
163         .doorbell_size  = 4,
164         .ih_ring_entry_size = 4 * sizeof(uint32_t),
165         .event_interrupt_class = &event_interrupt_class_cik,
166         .num_of_watch_points = 4,
167         .mqd_size_aligned = MQD_SIZE_ALIGNED,
168         .supports_cwsr = true,
169         .needs_iommu_device = false,
170         .needs_pci_atomics = true,
171         .num_sdma_engines = 2,
172         .num_sdma_queues_per_engine = 2,
173 };
174
175 static const struct kfd_device_info polaris10_vf_device_info = {
176         .asic_family = CHIP_POLARIS10,
177         .max_pasid_bits = 16,
178         .max_no_of_hqd  = 24,
179         .doorbell_size  = 4,
180         .ih_ring_entry_size = 4 * sizeof(uint32_t),
181         .event_interrupt_class = &event_interrupt_class_cik,
182         .num_of_watch_points = 4,
183         .mqd_size_aligned = MQD_SIZE_ALIGNED,
184         .supports_cwsr = true,
185         .needs_iommu_device = false,
186         .needs_pci_atomics = false,
187         .num_sdma_engines = 2,
188         .num_sdma_queues_per_engine = 2,
189 };
190
191 static const struct kfd_device_info polaris11_device_info = {
192         .asic_family = CHIP_POLARIS11,
193         .max_pasid_bits = 16,
194         .max_no_of_hqd  = 24,
195         .doorbell_size  = 4,
196         .ih_ring_entry_size = 4 * sizeof(uint32_t),
197         .event_interrupt_class = &event_interrupt_class_cik,
198         .num_of_watch_points = 4,
199         .mqd_size_aligned = MQD_SIZE_ALIGNED,
200         .supports_cwsr = true,
201         .needs_iommu_device = false,
202         .needs_pci_atomics = true,
203         .num_sdma_engines = 2,
204         .num_sdma_queues_per_engine = 2,
205 };
206
207 static const struct kfd_device_info vega10_device_info = {
208         .asic_family = CHIP_VEGA10,
209         .max_pasid_bits = 16,
210         .max_no_of_hqd  = 24,
211         .doorbell_size  = 8,
212         .ih_ring_entry_size = 8 * sizeof(uint32_t),
213         .event_interrupt_class = &event_interrupt_class_v9,
214         .num_of_watch_points = 4,
215         .mqd_size_aligned = MQD_SIZE_ALIGNED,
216         .supports_cwsr = true,
217         .needs_iommu_device = false,
218         .needs_pci_atomics = false,
219         .num_sdma_engines = 2,
220         .num_sdma_queues_per_engine = 2,
221 };
222
223 static const struct kfd_device_info vega10_vf_device_info = {
224         .asic_family = CHIP_VEGA10,
225         .max_pasid_bits = 16,
226         .max_no_of_hqd  = 24,
227         .doorbell_size  = 8,
228         .ih_ring_entry_size = 8 * sizeof(uint32_t),
229         .event_interrupt_class = &event_interrupt_class_v9,
230         .num_of_watch_points = 4,
231         .mqd_size_aligned = MQD_SIZE_ALIGNED,
232         .supports_cwsr = true,
233         .needs_iommu_device = false,
234         .needs_pci_atomics = false,
235         .num_sdma_engines = 2,
236         .num_sdma_queues_per_engine = 2,
237 };
238
239 static const struct kfd_device_info vega20_device_info = {
240         .asic_family = CHIP_VEGA20,
241         .max_pasid_bits = 16,
242         .max_no_of_hqd  = 24,
243         .doorbell_size  = 8,
244         .ih_ring_entry_size = 8 * sizeof(uint32_t),
245         .event_interrupt_class = &event_interrupt_class_v9,
246         .num_of_watch_points = 4,
247         .mqd_size_aligned = MQD_SIZE_ALIGNED,
248         .supports_cwsr = true,
249         .needs_iommu_device = false,
250         .needs_pci_atomics = false,
251         .num_sdma_engines = 2,
252         .num_sdma_queues_per_engine = 8,
253 };
254
255 struct kfd_deviceid {
256         unsigned short did;
257         const struct kfd_device_info *device_info;
258 };
259
260 static const struct kfd_deviceid supported_devices[] = {
261 #ifdef KFD_SUPPORT_IOMMU_V2
262         { 0x1304, &kaveri_device_info },        /* Kaveri */
263         { 0x1305, &kaveri_device_info },        /* Kaveri */
264         { 0x1306, &kaveri_device_info },        /* Kaveri */
265         { 0x1307, &kaveri_device_info },        /* Kaveri */
266         { 0x1309, &kaveri_device_info },        /* Kaveri */
267         { 0x130A, &kaveri_device_info },        /* Kaveri */
268         { 0x130B, &kaveri_device_info },        /* Kaveri */
269         { 0x130C, &kaveri_device_info },        /* Kaveri */
270         { 0x130D, &kaveri_device_info },        /* Kaveri */
271         { 0x130E, &kaveri_device_info },        /* Kaveri */
272         { 0x130F, &kaveri_device_info },        /* Kaveri */
273         { 0x1310, &kaveri_device_info },        /* Kaveri */
274         { 0x1311, &kaveri_device_info },        /* Kaveri */
275         { 0x1312, &kaveri_device_info },        /* Kaveri */
276         { 0x1313, &kaveri_device_info },        /* Kaveri */
277         { 0x1315, &kaveri_device_info },        /* Kaveri */
278         { 0x1316, &kaveri_device_info },        /* Kaveri */
279         { 0x1317, &kaveri_device_info },        /* Kaveri */
280         { 0x1318, &kaveri_device_info },        /* Kaveri */
281         { 0x131B, &kaveri_device_info },        /* Kaveri */
282         { 0x131C, &kaveri_device_info },        /* Kaveri */
283         { 0x131D, &kaveri_device_info },        /* Kaveri */
284         { 0x9870, &carrizo_device_info },       /* Carrizo */
285         { 0x9874, &carrizo_device_info },       /* Carrizo */
286         { 0x9875, &carrizo_device_info },       /* Carrizo */
287         { 0x9876, &carrizo_device_info },       /* Carrizo */
288         { 0x9877, &carrizo_device_info },       /* Carrizo */
289         { 0x15DD, &raven_device_info },         /* Raven */
290 #endif
291         { 0x67A0, &hawaii_device_info },        /* Hawaii */
292         { 0x67A1, &hawaii_device_info },        /* Hawaii */
293         { 0x67A2, &hawaii_device_info },        /* Hawaii */
294         { 0x67A8, &hawaii_device_info },        /* Hawaii */
295         { 0x67A9, &hawaii_device_info },        /* Hawaii */
296         { 0x67AA, &hawaii_device_info },        /* Hawaii */
297         { 0x67B0, &hawaii_device_info },        /* Hawaii */
298         { 0x67B1, &hawaii_device_info },        /* Hawaii */
299         { 0x67B8, &hawaii_device_info },        /* Hawaii */
300         { 0x67B9, &hawaii_device_info },        /* Hawaii */
301         { 0x67BA, &hawaii_device_info },        /* Hawaii */
302         { 0x67BE, &hawaii_device_info },        /* Hawaii */
303         { 0x6920, &tonga_device_info },         /* Tonga */
304         { 0x6921, &tonga_device_info },         /* Tonga */
305         { 0x6928, &tonga_device_info },         /* Tonga */
306         { 0x6929, &tonga_device_info },         /* Tonga */
307         { 0x692B, &tonga_device_info },         /* Tonga */
308         { 0x6938, &tonga_device_info },         /* Tonga */
309         { 0x6939, &tonga_device_info },         /* Tonga */
310         { 0x7300, &fiji_device_info },          /* Fiji */
311         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
312         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
313         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
314         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
315         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
316         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
317         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
318         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
319         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
320         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
321         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
322         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
323         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
324         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
325         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
326         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
327         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
328         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
329         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
330         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
331         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
332         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
333         { 0x6860, &vega10_device_info },        /* Vega10 */
334         { 0x6861, &vega10_device_info },        /* Vega10 */
335         { 0x6862, &vega10_device_info },        /* Vega10 */
336         { 0x6863, &vega10_device_info },        /* Vega10 */
337         { 0x6864, &vega10_device_info },        /* Vega10 */
338         { 0x6867, &vega10_device_info },        /* Vega10 */
339         { 0x6868, &vega10_device_info },        /* Vega10 */
340         { 0x6869, &vega10_device_info },        /* Vega10 */
341         { 0x686A, &vega10_device_info },        /* Vega10 */
342         { 0x686B, &vega10_device_info },        /* Vega10 */
343         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
344         { 0x686D, &vega10_device_info },        /* Vega10 */
345         { 0x686E, &vega10_device_info },        /* Vega10 */
346         { 0x686F, &vega10_device_info },        /* Vega10 */
347         { 0x687F, &vega10_device_info },        /* Vega10 */
348         { 0x66a0, &vega20_device_info },        /* Vega20 */
349         { 0x66a1, &vega20_device_info },        /* Vega20 */
350         { 0x66a2, &vega20_device_info },        /* Vega20 */
351         { 0x66a3, &vega20_device_info },        /* Vega20 */
352         { 0x66a7, &vega20_device_info },        /* Vega20 */
353         { 0x66af, &vega20_device_info }         /* Vega20 */
354 };
355
356 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
357                                 unsigned int chunk_size);
358 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
359
360 static int kfd_resume(struct kfd_dev *kfd);
361
362 static const struct kfd_device_info *lookup_device_info(unsigned short did)
363 {
364         size_t i;
365
366         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
367                 if (supported_devices[i].did == did) {
368                         WARN_ON(!supported_devices[i].device_info);
369                         return supported_devices[i].device_info;
370                 }
371         }
372
373         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
374                  did);
375
376         return NULL;
377 }
378
379 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
380         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
381 {
382         struct kfd_dev *kfd;
383         int ret;
384         const struct kfd_device_info *device_info =
385                                         lookup_device_info(pdev->device);
386
387         if (!device_info) {
388                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
389                 return NULL;
390         }
391
392         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
393         if (!kfd)
394                 return NULL;
395
396         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
397          * 32 and 64-bit requests are possible and must be
398          * supported.
399          */
400         ret = pci_enable_atomic_ops_to_root(pdev,
401                         PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
402                         PCI_EXP_DEVCAP2_ATOMIC_COMP64);
403         if (device_info->needs_pci_atomics && ret < 0) {
404                 dev_info(kfd_device,
405                          "skipped device %x:%x, PCI rejects atomics\n",
406                          pdev->vendor, pdev->device);
407                 kfree(kfd);
408                 return NULL;
409         } else if (!ret)
410                 kfd->pci_atomic_requested = true;
411
412         kfd->kgd = kgd;
413         kfd->device_info = device_info;
414         kfd->pdev = pdev;
415         kfd->init_complete = false;
416         kfd->kfd2kgd = f2g;
417
418         mutex_init(&kfd->doorbell_mutex);
419         memset(&kfd->doorbell_available_index, 0,
420                 sizeof(kfd->doorbell_available_index));
421
422         return kfd;
423 }
424
425 static void kfd_cwsr_init(struct kfd_dev *kfd)
426 {
427         if (cwsr_enable && kfd->device_info->supports_cwsr) {
428                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
429                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
430                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
431                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
432                 } else {
433                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
434                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
435                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
436                 }
437
438                 kfd->cwsr_enabled = true;
439         }
440 }
441
442 bool kgd2kfd_device_init(struct kfd_dev *kfd,
443                          const struct kgd2kfd_shared_resources *gpu_resources)
444 {
445         unsigned int size;
446
447         kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
448                         KGD_ENGINE_MEC1);
449         kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
450                         KGD_ENGINE_SDMA1);
451         kfd->shared_resources = *gpu_resources;
452
453         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
454         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
455         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
456                         - kfd->vm_info.first_vmid_kfd + 1;
457
458         /* Verify module parameters regarding mapped process number*/
459         if ((hws_max_conc_proc < 0)
460                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
461                 dev_err(kfd_device,
462                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
463                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
464                         kfd->vm_info.vmid_num_kfd);
465                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
466         } else
467                 kfd->max_proc_per_quantum = hws_max_conc_proc;
468
469         /* calculate max size of mqds needed for queues */
470         size = max_num_of_queues_per_device *
471                         kfd->device_info->mqd_size_aligned;
472
473         /*
474          * calculate max size of runlist packet.
475          * There can be only 2 packets at once
476          */
477         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
478                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
479                 + sizeof(struct pm4_mes_runlist)) * 2;
480
481         /* Add size of HIQ & DIQ */
482         size += KFD_KERNEL_QUEUE_SIZE * 2;
483
484         /* add another 512KB for all other allocations on gart (HPD, fences) */
485         size += 512 * 1024;
486
487         if (kfd->kfd2kgd->init_gtt_mem_allocation(
488                         kfd->kgd, size, &kfd->gtt_mem,
489                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
490                         false)) {
491                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
492                 goto out;
493         }
494
495         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
496
497         /* Initialize GTT sa with 512 byte chunk size */
498         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
499                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
500                 goto kfd_gtt_sa_init_error;
501         }
502
503         if (kfd_doorbell_init(kfd)) {
504                 dev_err(kfd_device,
505                         "Error initializing doorbell aperture\n");
506                 goto kfd_doorbell_error;
507         }
508
509         if (kfd->kfd2kgd->get_hive_id)
510                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
511
512         if (kfd_topology_add_device(kfd)) {
513                 dev_err(kfd_device, "Error adding device to topology\n");
514                 goto kfd_topology_add_device_error;
515         }
516
517         if (kfd_interrupt_init(kfd)) {
518                 dev_err(kfd_device, "Error initializing interrupts\n");
519                 goto kfd_interrupt_error;
520         }
521
522         kfd->dqm = device_queue_manager_init(kfd);
523         if (!kfd->dqm) {
524                 dev_err(kfd_device, "Error initializing queue manager\n");
525                 goto device_queue_manager_error;
526         }
527
528         if (kfd_iommu_device_init(kfd)) {
529                 dev_err(kfd_device, "Error initializing iommuv2\n");
530                 goto device_iommu_error;
531         }
532
533         kfd_cwsr_init(kfd);
534
535         if (kfd_resume(kfd))
536                 goto kfd_resume_error;
537
538         kfd->dbgmgr = NULL;
539
540         kfd->init_complete = true;
541         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
542                  kfd->pdev->device);
543
544         pr_debug("Starting kfd with the following scheduling policy %d\n",
545                 kfd->dqm->sched_policy);
546
547         goto out;
548
549 kfd_resume_error:
550 device_iommu_error:
551         device_queue_manager_uninit(kfd->dqm);
552 device_queue_manager_error:
553         kfd_interrupt_exit(kfd);
554 kfd_interrupt_error:
555         kfd_topology_remove_device(kfd);
556 kfd_topology_add_device_error:
557         kfd_doorbell_fini(kfd);
558 kfd_doorbell_error:
559         kfd_gtt_sa_fini(kfd);
560 kfd_gtt_sa_init_error:
561         kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
562         dev_err(kfd_device,
563                 "device %x:%x NOT added due to errors\n",
564                 kfd->pdev->vendor, kfd->pdev->device);
565 out:
566         return kfd->init_complete;
567 }
568
569 void kgd2kfd_device_exit(struct kfd_dev *kfd)
570 {
571         if (kfd->init_complete) {
572                 kgd2kfd_suspend(kfd);
573                 device_queue_manager_uninit(kfd->dqm);
574                 kfd_interrupt_exit(kfd);
575                 kfd_topology_remove_device(kfd);
576                 kfd_doorbell_fini(kfd);
577                 kfd_gtt_sa_fini(kfd);
578                 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
579         }
580
581         kfree(kfd);
582 }
583
584 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
585 {
586         if (!kfd->init_complete)
587                 return 0;
588         kgd2kfd_suspend(kfd);
589
590         /* hold dqm->lock to prevent further execution*/
591         dqm_lock(kfd->dqm);
592
593         kfd_signal_reset_event(kfd);
594         return 0;
595 }
596
597 /*
598  * Fix me. KFD won't be able to resume existing process for now.
599  * We will keep all existing process in a evicted state and
600  * wait the process to be terminated.
601  */
602
603 int kgd2kfd_post_reset(struct kfd_dev *kfd)
604 {
605         int ret, count;
606
607         if (!kfd->init_complete)
608                 return 0;
609
610         dqm_unlock(kfd->dqm);
611
612         ret = kfd_resume(kfd);
613         if (ret)
614                 return ret;
615         count = atomic_dec_return(&kfd_locked);
616         WARN_ONCE(count != 0, "KFD reset ref. error");
617         return 0;
618 }
619
620 bool kfd_is_locked(void)
621 {
622         return  (atomic_read(&kfd_locked) > 0);
623 }
624
625 void kgd2kfd_suspend(struct kfd_dev *kfd)
626 {
627         if (!kfd->init_complete)
628                 return;
629
630         /* For first KFD device suspend all the KFD processes */
631         if (atomic_inc_return(&kfd_locked) == 1)
632                 kfd_suspend_all_processes();
633
634         kfd->dqm->ops.stop(kfd->dqm);
635
636         kfd_iommu_suspend(kfd);
637 }
638
639 int kgd2kfd_resume(struct kfd_dev *kfd)
640 {
641         int ret, count;
642
643         if (!kfd->init_complete)
644                 return 0;
645
646         ret = kfd_resume(kfd);
647         if (ret)
648                 return ret;
649
650         count = atomic_dec_return(&kfd_locked);
651         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
652         if (count == 0)
653                 ret = kfd_resume_all_processes();
654
655         return ret;
656 }
657
658 static int kfd_resume(struct kfd_dev *kfd)
659 {
660         int err = 0;
661
662         err = kfd_iommu_resume(kfd);
663         if (err) {
664                 dev_err(kfd_device,
665                         "Failed to resume IOMMU for device %x:%x\n",
666                         kfd->pdev->vendor, kfd->pdev->device);
667                 return err;
668         }
669
670         err = kfd->dqm->ops.start(kfd->dqm);
671         if (err) {
672                 dev_err(kfd_device,
673                         "Error starting queue manager for device %x:%x\n",
674                         kfd->pdev->vendor, kfd->pdev->device);
675                 goto dqm_start_error;
676         }
677
678         return err;
679
680 dqm_start_error:
681         kfd_iommu_suspend(kfd);
682         return err;
683 }
684
685 /* This is called directly from KGD at ISR. */
686 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
687 {
688         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
689         bool is_patched = false;
690
691         if (!kfd->init_complete)
692                 return;
693
694         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
695                 dev_err_once(kfd_device, "Ring entry too small\n");
696                 return;
697         }
698
699         spin_lock(&kfd->interrupt_lock);
700
701         if (kfd->interrupts_active
702             && interrupt_is_wanted(kfd, ih_ring_entry,
703                                    patched_ihre, &is_patched)
704             && enqueue_ih_ring_entry(kfd,
705                                      is_patched ? patched_ihre : ih_ring_entry))
706                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
707
708         spin_unlock(&kfd->interrupt_lock);
709 }
710
711 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
712 {
713         struct kfd_process *p;
714         int r;
715
716         /* Because we are called from arbitrary context (workqueue) as opposed
717          * to process context, kfd_process could attempt to exit while we are
718          * running so the lookup function increments the process ref count.
719          */
720         p = kfd_lookup_process_by_mm(mm);
721         if (!p)
722                 return -ESRCH;
723
724         r = kfd_process_evict_queues(p);
725
726         kfd_unref_process(p);
727         return r;
728 }
729
730 int kgd2kfd_resume_mm(struct mm_struct *mm)
731 {
732         struct kfd_process *p;
733         int r;
734
735         /* Because we are called from arbitrary context (workqueue) as opposed
736          * to process context, kfd_process could attempt to exit while we are
737          * running so the lookup function increments the process ref count.
738          */
739         p = kfd_lookup_process_by_mm(mm);
740         if (!p)
741                 return -ESRCH;
742
743         r = kfd_process_restore_queues(p);
744
745         kfd_unref_process(p);
746         return r;
747 }
748
749 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
750  *   prepare for safe eviction of KFD BOs that belong to the specified
751  *   process.
752  *
753  * @mm: mm_struct that identifies the specified KFD process
754  * @fence: eviction fence attached to KFD process BOs
755  *
756  */
757 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
758                                                struct dma_fence *fence)
759 {
760         struct kfd_process *p;
761         unsigned long active_time;
762         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
763
764         if (!fence)
765                 return -EINVAL;
766
767         if (dma_fence_is_signaled(fence))
768                 return 0;
769
770         p = kfd_lookup_process_by_mm(mm);
771         if (!p)
772                 return -ENODEV;
773
774         if (fence->seqno == p->last_eviction_seqno)
775                 goto out;
776
777         p->last_eviction_seqno = fence->seqno;
778
779         /* Avoid KFD process starvation. Wait for at least
780          * PROCESS_ACTIVE_TIME_MS before evicting the process again
781          */
782         active_time = get_jiffies_64() - p->last_restore_timestamp;
783         if (delay_jiffies > active_time)
784                 delay_jiffies -= active_time;
785         else
786                 delay_jiffies = 0;
787
788         /* During process initialization eviction_work.dwork is initialized
789          * to kfd_evict_bo_worker
790          */
791         schedule_delayed_work(&p->eviction_work, delay_jiffies);
792 out:
793         kfd_unref_process(p);
794         return 0;
795 }
796
797 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
798                                 unsigned int chunk_size)
799 {
800         unsigned int num_of_longs;
801
802         if (WARN_ON(buf_size < chunk_size))
803                 return -EINVAL;
804         if (WARN_ON(buf_size == 0))
805                 return -EINVAL;
806         if (WARN_ON(chunk_size == 0))
807                 return -EINVAL;
808
809         kfd->gtt_sa_chunk_size = chunk_size;
810         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
811
812         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
813                 BITS_PER_LONG;
814
815         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
816
817         if (!kfd->gtt_sa_bitmap)
818                 return -ENOMEM;
819
820         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
821                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
822
823         mutex_init(&kfd->gtt_sa_lock);
824
825         return 0;
826
827 }
828
829 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
830 {
831         mutex_destroy(&kfd->gtt_sa_lock);
832         kfree(kfd->gtt_sa_bitmap);
833 }
834
835 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
836                                                 unsigned int bit_num,
837                                                 unsigned int chunk_size)
838 {
839         return start_addr + bit_num * chunk_size;
840 }
841
842 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
843                                                 unsigned int bit_num,
844                                                 unsigned int chunk_size)
845 {
846         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
847 }
848
849 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
850                         struct kfd_mem_obj **mem_obj)
851 {
852         unsigned int found, start_search, cur_size;
853
854         if (size == 0)
855                 return -EINVAL;
856
857         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
858                 return -ENOMEM;
859
860         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
861         if (!(*mem_obj))
862                 return -ENOMEM;
863
864         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
865
866         start_search = 0;
867
868         mutex_lock(&kfd->gtt_sa_lock);
869
870 kfd_gtt_restart_search:
871         /* Find the first chunk that is free */
872         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
873                                         kfd->gtt_sa_num_of_chunks,
874                                         start_search);
875
876         pr_debug("Found = %d\n", found);
877
878         /* If there wasn't any free chunk, bail out */
879         if (found == kfd->gtt_sa_num_of_chunks)
880                 goto kfd_gtt_no_free_chunk;
881
882         /* Update fields of mem_obj */
883         (*mem_obj)->range_start = found;
884         (*mem_obj)->range_end = found;
885         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
886                                         kfd->gtt_start_gpu_addr,
887                                         found,
888                                         kfd->gtt_sa_chunk_size);
889         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
890                                         kfd->gtt_start_cpu_ptr,
891                                         found,
892                                         kfd->gtt_sa_chunk_size);
893
894         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
895                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
896
897         /* If we need only one chunk, mark it as allocated and get out */
898         if (size <= kfd->gtt_sa_chunk_size) {
899                 pr_debug("Single bit\n");
900                 set_bit(found, kfd->gtt_sa_bitmap);
901                 goto kfd_gtt_out;
902         }
903
904         /* Otherwise, try to see if we have enough contiguous chunks */
905         cur_size = size - kfd->gtt_sa_chunk_size;
906         do {
907                 (*mem_obj)->range_end =
908                         find_next_zero_bit(kfd->gtt_sa_bitmap,
909                                         kfd->gtt_sa_num_of_chunks, ++found);
910                 /*
911                  * If next free chunk is not contiguous than we need to
912                  * restart our search from the last free chunk we found (which
913                  * wasn't contiguous to the previous ones
914                  */
915                 if ((*mem_obj)->range_end != found) {
916                         start_search = found;
917                         goto kfd_gtt_restart_search;
918                 }
919
920                 /*
921                  * If we reached end of buffer, bail out with error
922                  */
923                 if (found == kfd->gtt_sa_num_of_chunks)
924                         goto kfd_gtt_no_free_chunk;
925
926                 /* Check if we don't need another chunk */
927                 if (cur_size <= kfd->gtt_sa_chunk_size)
928                         cur_size = 0;
929                 else
930                         cur_size -= kfd->gtt_sa_chunk_size;
931
932         } while (cur_size > 0);
933
934         pr_debug("range_start = %d, range_end = %d\n",
935                 (*mem_obj)->range_start, (*mem_obj)->range_end);
936
937         /* Mark the chunks as allocated */
938         for (found = (*mem_obj)->range_start;
939                 found <= (*mem_obj)->range_end;
940                 found++)
941                 set_bit(found, kfd->gtt_sa_bitmap);
942
943 kfd_gtt_out:
944         mutex_unlock(&kfd->gtt_sa_lock);
945         return 0;
946
947 kfd_gtt_no_free_chunk:
948         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
949         mutex_unlock(&kfd->gtt_sa_lock);
950         kfree(mem_obj);
951         return -ENOMEM;
952 }
953
954 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
955 {
956         unsigned int bit;
957
958         /* Act like kfree when trying to free a NULL object */
959         if (!mem_obj)
960                 return 0;
961
962         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
963                         mem_obj, mem_obj->range_start, mem_obj->range_end);
964
965         mutex_lock(&kfd->gtt_sa_lock);
966
967         /* Mark the chunks as free */
968         for (bit = mem_obj->range_start;
969                 bit <= mem_obj->range_end;
970                 bit++)
971                 clear_bit(bit, kfd->gtt_sa_bitmap);
972
973         mutex_unlock(&kfd->gtt_sa_lock);
974
975         kfree(mem_obj);
976         return 0;
977 }
978
979 #if defined(CONFIG_DEBUG_FS)
980
981 /* This function will send a package to HIQ to hang the HWS
982  * which will trigger a GPU reset and bring the HWS back to normal state
983  */
984 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
985 {
986         int r = 0;
987
988         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
989                 pr_err("HWS is not enabled");
990                 return -EINVAL;
991         }
992
993         r = pm_debugfs_hang_hws(&dev->dqm->packets);
994         if (!r)
995                 r = dqm_debugfs_execute_queues(dev->dqm);
996
997         return r;
998 }
999
1000 #endif