]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/amd/powerplay/amdgpu_smu.c
drm/amdgpu/smu: make the set_performance_level logic easier to follow
[linux.git] / drivers / gpu / drm / amd / powerplay / amdgpu_smu.c
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/firmware.h>
24
25 #include "pp_debug.h"
26 #include "amdgpu.h"
27 #include "amdgpu_smu.h"
28 #include "smu_internal.h"
29 #include "soc15_common.h"
30 #include "smu_v11_0.h"
31 #include "smu_v12_0.h"
32 #include "atom.h"
33 #include "amd_pcie.h"
34 #include "vega20_ppt.h"
35 #include "arcturus_ppt.h"
36 #include "navi10_ppt.h"
37 #include "renoir_ppt.h"
38
39 #undef __SMU_DUMMY_MAP
40 #define __SMU_DUMMY_MAP(type)   #type
41 static const char* __smu_message_names[] = {
42         SMU_MESSAGE_TYPES
43 };
44
45 const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
46 {
47         if (type < 0 || type >= SMU_MSG_MAX_COUNT)
48                 return "unknown smu message";
49         return __smu_message_names[type];
50 }
51
52 #undef __SMU_DUMMY_MAP
53 #define __SMU_DUMMY_MAP(fea)    #fea
54 static const char* __smu_feature_names[] = {
55         SMU_FEATURE_MASKS
56 };
57
58 const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
59 {
60         if (feature < 0 || feature >= SMU_FEATURE_COUNT)
61                 return "unknown smu feature";
62         return __smu_feature_names[feature];
63 }
64
65 size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
66 {
67         size_t size = 0;
68         int ret = 0, i = 0;
69         uint32_t feature_mask[2] = { 0 };
70         int32_t feature_index = 0;
71         uint32_t count = 0;
72         uint32_t sort_feature[SMU_FEATURE_COUNT];
73         uint64_t hw_feature_count = 0;
74
75         mutex_lock(&smu->mutex);
76
77         ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
78         if (ret)
79                 goto failed;
80
81         size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
82                         feature_mask[1], feature_mask[0]);
83
84         for (i = 0; i < SMU_FEATURE_COUNT; i++) {
85                 feature_index = smu_feature_get_index(smu, i);
86                 if (feature_index < 0)
87                         continue;
88                 sort_feature[feature_index] = i;
89                 hw_feature_count++;
90         }
91
92         for (i = 0; i < hw_feature_count; i++) {
93                 size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
94                                count++,
95                                smu_get_feature_name(smu, sort_feature[i]),
96                                i,
97                                !!smu_feature_is_enabled(smu, sort_feature[i]) ?
98                                "enabled" : "disabled");
99         }
100
101 failed:
102         mutex_unlock(&smu->mutex);
103
104         return size;
105 }
106
107 static int smu_feature_update_enable_state(struct smu_context *smu,
108                                            uint64_t feature_mask,
109                                            bool enabled)
110 {
111         struct smu_feature *feature = &smu->smu_feature;
112         uint32_t feature_low = 0, feature_high = 0;
113         int ret = 0;
114
115         if (!smu->pm_enabled)
116                 return ret;
117
118         feature_low = (feature_mask >> 0 ) & 0xffffffff;
119         feature_high = (feature_mask >> 32) & 0xffffffff;
120
121         if (enabled) {
122                 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
123                                                   feature_low);
124                 if (ret)
125                         return ret;
126                 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
127                                                   feature_high);
128                 if (ret)
129                         return ret;
130         } else {
131                 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
132                                                   feature_low);
133                 if (ret)
134                         return ret;
135                 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
136                                                   feature_high);
137                 if (ret)
138                         return ret;
139         }
140
141         mutex_lock(&feature->mutex);
142         if (enabled)
143                 bitmap_or(feature->enabled, feature->enabled,
144                                 (unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
145         else
146                 bitmap_andnot(feature->enabled, feature->enabled,
147                                 (unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
148         mutex_unlock(&feature->mutex);
149
150         return ret;
151 }
152
153 int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
154 {
155         int ret = 0;
156         uint32_t feature_mask[2] = { 0 };
157         uint64_t feature_2_enabled = 0;
158         uint64_t feature_2_disabled = 0;
159         uint64_t feature_enables = 0;
160
161         mutex_lock(&smu->mutex);
162
163         ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
164         if (ret)
165                 goto out;
166
167         feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);
168
169         feature_2_enabled  = ~feature_enables & new_mask;
170         feature_2_disabled = feature_enables & ~new_mask;
171
172         if (feature_2_enabled) {
173                 ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
174                 if (ret)
175                         goto out;
176         }
177         if (feature_2_disabled) {
178                 ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
179                 if (ret)
180                         goto out;
181         }
182
183 out:
184         mutex_unlock(&smu->mutex);
185
186         return ret;
187 }
188
189 int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
190 {
191         int ret = 0;
192
193         if (!if_version && !smu_version)
194                 return -EINVAL;
195
196         if (if_version) {
197                 ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
198                 if (ret)
199                         return ret;
200
201                 ret = smu_read_smc_arg(smu, if_version);
202                 if (ret)
203                         return ret;
204         }
205
206         if (smu_version) {
207                 ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
208                 if (ret)
209                         return ret;
210
211                 ret = smu_read_smc_arg(smu, smu_version);
212                 if (ret)
213                         return ret;
214         }
215
216         return ret;
217 }
218
219 int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
220                             uint32_t min, uint32_t max)
221 {
222         int ret = 0;
223
224         if (min <= 0 && max <= 0)
225                 return -EINVAL;
226
227         if (!smu_clk_dpm_is_enabled(smu, clk_type))
228                 return 0;
229
230         ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
231         return ret;
232 }
233
234 int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
235                             uint32_t min, uint32_t max)
236 {
237         int ret = 0, clk_id = 0;
238         uint32_t param;
239
240         if (min <= 0 && max <= 0)
241                 return -EINVAL;
242
243         if (!smu_clk_dpm_is_enabled(smu, clk_type))
244                 return 0;
245
246         clk_id = smu_clk_get_index(smu, clk_type);
247         if (clk_id < 0)
248                 return clk_id;
249
250         if (max > 0) {
251                 param = (uint32_t)((clk_id << 16) | (max & 0xffff));
252                 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
253                                                   param);
254                 if (ret)
255                         return ret;
256         }
257
258         if (min > 0) {
259                 param = (uint32_t)((clk_id << 16) | (min & 0xffff));
260                 ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
261                                                   param);
262                 if (ret)
263                         return ret;
264         }
265
266
267         return ret;
268 }
269
270 int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
271                            uint32_t *min, uint32_t *max, bool lock_needed)
272 {
273         uint32_t clock_limit;
274         int ret = 0;
275
276         if (!min && !max)
277                 return -EINVAL;
278
279         if (lock_needed)
280                 mutex_lock(&smu->mutex);
281
282         if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
283                 switch (clk_type) {
284                 case SMU_MCLK:
285                 case SMU_UCLK:
286                         clock_limit = smu->smu_table.boot_values.uclk;
287                         break;
288                 case SMU_GFXCLK:
289                 case SMU_SCLK:
290                         clock_limit = smu->smu_table.boot_values.gfxclk;
291                         break;
292                 case SMU_SOCCLK:
293                         clock_limit = smu->smu_table.boot_values.socclk;
294                         break;
295                 default:
296                         clock_limit = 0;
297                         break;
298                 }
299
300                 /* clock in Mhz unit */
301                 if (min)
302                         *min = clock_limit / 100;
303                 if (max)
304                         *max = clock_limit / 100;
305         } else {
306                 /*
307                  * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
308                  * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
309                  */
310                 ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
311         }
312
313         if (lock_needed)
314                 mutex_unlock(&smu->mutex);
315
316         return ret;
317 }
318
319 int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
320                               uint16_t level, uint32_t *value)
321 {
322         int ret = 0, clk_id = 0;
323         uint32_t param;
324
325         if (!value)
326                 return -EINVAL;
327
328         if (!smu_clk_dpm_is_enabled(smu, clk_type))
329                 return 0;
330
331         clk_id = smu_clk_get_index(smu, clk_type);
332         if (clk_id < 0)
333                 return clk_id;
334
335         param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));
336
337         ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
338                                           param);
339         if (ret)
340                 return ret;
341
342         ret = smu_read_smc_arg(smu, &param);
343         if (ret)
344                 return ret;
345
346         /* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
347          * now, we un-support it */
348         *value = param & 0x7fffffff;
349
350         return ret;
351 }
352
353 int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
354                             uint32_t *value)
355 {
356         return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
357 }
358
359 bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
360 {
361         enum smu_feature_mask feature_id = 0;
362
363         switch (clk_type) {
364         case SMU_MCLK:
365         case SMU_UCLK:
366                 feature_id = SMU_FEATURE_DPM_UCLK_BIT;
367                 break;
368         case SMU_GFXCLK:
369         case SMU_SCLK:
370                 feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
371                 break;
372         case SMU_SOCCLK:
373                 feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
374                 break;
375         default:
376                 return true;
377         }
378
379         if(!smu_feature_is_enabled(smu, feature_id)) {
380                 return false;
381         }
382
383         return true;
384 }
385
386 /**
387  * smu_dpm_set_power_gate - power gate/ungate the specific IP block
388  *
389  * @smu:        smu_context pointer
390  * @block_type: the IP block to power gate/ungate
391  * @gate:       to power gate if true, ungate otherwise
392  *
393  * This API uses no smu->mutex lock protection due to:
394  * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
395  *    This is guarded to be race condition free by the caller.
396  * 2. Or get called on user setting request of power_dpm_force_performance_level.
397  *    Under this case, the smu->mutex lock protection is already enforced on
398  *    the parent API smu_force_performance_level of the call path.
399  */
400 int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
401                            bool gate)
402 {
403         int ret = 0;
404
405         switch (block_type) {
406         case AMD_IP_BLOCK_TYPE_UVD:
407                 ret = smu_dpm_set_uvd_enable(smu, gate);
408                 break;
409         case AMD_IP_BLOCK_TYPE_VCE:
410                 ret = smu_dpm_set_vce_enable(smu, gate);
411                 break;
412         case AMD_IP_BLOCK_TYPE_GFX:
413                 ret = smu_gfx_off_control(smu, gate);
414                 break;
415         case AMD_IP_BLOCK_TYPE_SDMA:
416                 ret = smu_powergate_sdma(smu, gate);
417                 break;
418         case AMD_IP_BLOCK_TYPE_JPEG:
419                 ret = smu_dpm_set_jpeg_enable(smu, gate);
420                 break;
421         default:
422                 break;
423         }
424
425         return ret;
426 }
427
428 int smu_get_power_num_states(struct smu_context *smu,
429                              struct pp_states_info *state_info)
430 {
431         if (!state_info)
432                 return -EINVAL;
433
434         /* not support power state */
435         memset(state_info, 0, sizeof(struct pp_states_info));
436         state_info->nums = 1;
437         state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
438
439         return 0;
440 }
441
442 int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
443                            void *data, uint32_t *size)
444 {
445         struct smu_power_context *smu_power = &smu->smu_power;
446         struct smu_power_gate *power_gate = &smu_power->power_gate;
447         int ret = 0;
448
449         if(!data || !size)
450                 return -EINVAL;
451
452         switch (sensor) {
453         case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
454                 *((uint32_t *)data) = smu->pstate_sclk;
455                 *size = 4;
456                 break;
457         case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
458                 *((uint32_t *)data) = smu->pstate_mclk;
459                 *size = 4;
460                 break;
461         case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
462                 ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
463                 *size = 8;
464                 break;
465         case AMDGPU_PP_SENSOR_UVD_POWER:
466                 *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
467                 *size = 4;
468                 break;
469         case AMDGPU_PP_SENSOR_VCE_POWER:
470                 *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
471                 *size = 4;
472                 break;
473         case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
474                 *(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
475                 *size = 4;
476                 break;
477         default:
478                 ret = -EINVAL;
479                 break;
480         }
481
482         if (ret)
483                 *size = 0;
484
485         return ret;
486 }
487
488 int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
489                      void *table_data, bool drv2smu)
490 {
491         struct smu_table_context *smu_table = &smu->smu_table;
492         struct amdgpu_device *adev = smu->adev;
493         struct smu_table *table = NULL;
494         int ret = 0;
495         int table_id = smu_table_get_index(smu, table_index);
496
497         if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
498                 return -EINVAL;
499
500         table = &smu_table->tables[table_index];
501
502         if (drv2smu)
503                 memcpy(table->cpu_addr, table_data, table->size);
504
505         ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
506                                           upper_32_bits(table->mc_address));
507         if (ret)
508                 return ret;
509         ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
510                                           lower_32_bits(table->mc_address));
511         if (ret)
512                 return ret;
513         ret = smu_send_smc_msg_with_param(smu, drv2smu ?
514                                           SMU_MSG_TransferTableDram2Smu :
515                                           SMU_MSG_TransferTableSmu2Dram,
516                                           table_id | ((argument & 0xFFFF) << 16));
517         if (ret)
518                 return ret;
519
520         /* flush hdp cache */
521         adev->nbio.funcs->hdp_flush(adev, NULL);
522
523         if (!drv2smu)
524                 memcpy(table_data, table->cpu_addr, table->size);
525
526         return ret;
527 }
528
529 bool is_support_sw_smu(struct amdgpu_device *adev)
530 {
531         if (adev->asic_type == CHIP_VEGA20)
532                 return (amdgpu_dpm == 2) ? true : false;
533         else if (adev->asic_type >= CHIP_ARCTURUS) {
534                 if (amdgpu_sriov_vf(adev))
535                         return false;
536                 else
537                         return true;
538         } else
539                 return false;
540 }
541
542 bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
543 {
544         if (!is_support_sw_smu(adev))
545                 return false;
546
547         if (adev->asic_type == CHIP_VEGA20)
548                 return true;
549
550         return false;
551 }
552
553 int smu_sys_get_pp_table(struct smu_context *smu, void **table)
554 {
555         struct smu_table_context *smu_table = &smu->smu_table;
556         uint32_t powerplay_table_size;
557
558         if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
559                 return -EINVAL;
560
561         mutex_lock(&smu->mutex);
562
563         if (smu_table->hardcode_pptable)
564                 *table = smu_table->hardcode_pptable;
565         else
566                 *table = smu_table->power_play_table;
567
568         powerplay_table_size = smu_table->power_play_table_size;
569
570         mutex_unlock(&smu->mutex);
571
572         return powerplay_table_size;
573 }
574
575 int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
576 {
577         struct smu_table_context *smu_table = &smu->smu_table;
578         ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
579         int ret = 0;
580
581         if (!smu->pm_enabled)
582                 return -EINVAL;
583         if (header->usStructureSize != size) {
584                 pr_err("pp table size not matched !\n");
585                 return -EIO;
586         }
587
588         mutex_lock(&smu->mutex);
589         if (!smu_table->hardcode_pptable)
590                 smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
591         if (!smu_table->hardcode_pptable) {
592                 ret = -ENOMEM;
593                 goto failed;
594         }
595
596         memcpy(smu_table->hardcode_pptable, buf, size);
597         smu_table->power_play_table = smu_table->hardcode_pptable;
598         smu_table->power_play_table_size = size;
599
600         /*
601          * Special hw_fini action(for Navi1x, the DPMs disablement will be
602          * skipped) may be needed for custom pptable uploading.
603          */
604         smu->uploading_custom_pp_table = true;
605
606         ret = smu_reset(smu);
607         if (ret)
608                 pr_info("smu reset failed, ret = %d\n", ret);
609
610         smu->uploading_custom_pp_table = false;
611
612 failed:
613         mutex_unlock(&smu->mutex);
614         return ret;
615 }
616
617 int smu_feature_init_dpm(struct smu_context *smu)
618 {
619         struct smu_feature *feature = &smu->smu_feature;
620         int ret = 0;
621         uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
622
623         if (!smu->pm_enabled)
624                 return ret;
625         mutex_lock(&feature->mutex);
626         bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
627         mutex_unlock(&feature->mutex);
628
629         ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
630                                              SMU_FEATURE_MAX/32);
631         if (ret)
632                 return ret;
633
634         mutex_lock(&feature->mutex);
635         bitmap_or(feature->allowed, feature->allowed,
636                       (unsigned long *)allowed_feature_mask,
637                       feature->feature_num);
638         mutex_unlock(&feature->mutex);
639
640         return ret;
641 }
642
643
644 int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
645 {
646         struct amdgpu_device *adev = smu->adev;
647         struct smu_feature *feature = &smu->smu_feature;
648         int feature_id;
649         int ret = 0;
650
651         if (adev->flags & AMD_IS_APU)
652                 return 1;
653
654         feature_id = smu_feature_get_index(smu, mask);
655         if (feature_id < 0)
656                 return 0;
657
658         WARN_ON(feature_id > feature->feature_num);
659
660         mutex_lock(&feature->mutex);
661         ret = test_bit(feature_id, feature->enabled);
662         mutex_unlock(&feature->mutex);
663
664         return ret;
665 }
666
667 int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
668                             bool enable)
669 {
670         struct smu_feature *feature = &smu->smu_feature;
671         int feature_id;
672
673         feature_id = smu_feature_get_index(smu, mask);
674         if (feature_id < 0)
675                 return -EINVAL;
676
677         WARN_ON(feature_id > feature->feature_num);
678
679         return smu_feature_update_enable_state(smu,
680                                                1ULL << feature_id,
681                                                enable);
682 }
683
684 int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
685 {
686         struct smu_feature *feature = &smu->smu_feature;
687         int feature_id;
688         int ret = 0;
689
690         feature_id = smu_feature_get_index(smu, mask);
691         if (feature_id < 0)
692                 return 0;
693
694         WARN_ON(feature_id > feature->feature_num);
695
696         mutex_lock(&feature->mutex);
697         ret = test_bit(feature_id, feature->supported);
698         mutex_unlock(&feature->mutex);
699
700         return ret;
701 }
702
703 int smu_feature_set_supported(struct smu_context *smu,
704                               enum smu_feature_mask mask,
705                               bool enable)
706 {
707         struct smu_feature *feature = &smu->smu_feature;
708         int feature_id;
709         int ret = 0;
710
711         feature_id = smu_feature_get_index(smu, mask);
712         if (feature_id < 0)
713                 return -EINVAL;
714
715         WARN_ON(feature_id > feature->feature_num);
716
717         mutex_lock(&feature->mutex);
718         if (enable)
719                 test_and_set_bit(feature_id, feature->supported);
720         else
721                 test_and_clear_bit(feature_id, feature->supported);
722         mutex_unlock(&feature->mutex);
723
724         return ret;
725 }
726
727 static int smu_set_funcs(struct amdgpu_device *adev)
728 {
729         struct smu_context *smu = &adev->smu;
730
731         if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
732                 smu->od_enabled = true;
733
734         switch (adev->asic_type) {
735         case CHIP_VEGA20:
736                 adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
737                 vega20_set_ppt_funcs(smu);
738                 break;
739         case CHIP_NAVI10:
740         case CHIP_NAVI14:
741         case CHIP_NAVI12:
742                 navi10_set_ppt_funcs(smu);
743                 break;
744         case CHIP_ARCTURUS:
745                 adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
746                 arcturus_set_ppt_funcs(smu);
747                 /* OD is not supported on Arcturus */
748                 smu->od_enabled =false;
749                 break;
750         case CHIP_RENOIR:
751                 renoir_set_ppt_funcs(smu);
752                 break;
753         default:
754                 return -EINVAL;
755         }
756
757         return 0;
758 }
759
760 static int smu_early_init(void *handle)
761 {
762         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
763         struct smu_context *smu = &adev->smu;
764
765         smu->adev = adev;
766         smu->pm_enabled = !!amdgpu_dpm;
767         smu->is_apu = false;
768         mutex_init(&smu->mutex);
769
770         return smu_set_funcs(adev);
771 }
772
773 static int smu_late_init(void *handle)
774 {
775         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
776         struct smu_context *smu = &adev->smu;
777
778         if (!smu->pm_enabled)
779                 return 0;
780
781         smu_handle_task(&adev->smu,
782                         smu->smu_dpm.dpm_level,
783                         AMD_PP_TASK_COMPLETE_INIT,
784                         false);
785
786         return 0;
787 }
788
789 int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
790                             uint16_t *size, uint8_t *frev, uint8_t *crev,
791                             uint8_t **addr)
792 {
793         struct amdgpu_device *adev = smu->adev;
794         uint16_t data_start;
795
796         if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
797                                            size, frev, crev, &data_start))
798                 return -EINVAL;
799
800         *addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;
801
802         return 0;
803 }
804
805 static int smu_initialize_pptable(struct smu_context *smu)
806 {
807         /* TODO */
808         return 0;
809 }
810
811 static int smu_smc_table_sw_init(struct smu_context *smu)
812 {
813         int ret;
814
815         ret = smu_initialize_pptable(smu);
816         if (ret) {
817                 pr_err("Failed to init smu_initialize_pptable!\n");
818                 return ret;
819         }
820
821         /**
822          * Create smu_table structure, and init smc tables such as
823          * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
824          */
825         ret = smu_init_smc_tables(smu);
826         if (ret) {
827                 pr_err("Failed to init smc tables!\n");
828                 return ret;
829         }
830
831         /**
832          * Create smu_power_context structure, and allocate smu_dpm_context and
833          * context size to fill the smu_power_context data.
834          */
835         ret = smu_init_power(smu);
836         if (ret) {
837                 pr_err("Failed to init smu_init_power!\n");
838                 return ret;
839         }
840
841         return 0;
842 }
843
844 static int smu_smc_table_sw_fini(struct smu_context *smu)
845 {
846         int ret;
847
848         ret = smu_fini_smc_tables(smu);
849         if (ret) {
850                 pr_err("Failed to smu_fini_smc_tables!\n");
851                 return ret;
852         }
853
854         return 0;
855 }
856
857 static int smu_sw_init(void *handle)
858 {
859         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
860         struct smu_context *smu = &adev->smu;
861         int ret;
862
863         smu->pool_size = adev->pm.smu_prv_buffer_size;
864         smu->smu_feature.feature_num = SMU_FEATURE_MAX;
865         mutex_init(&smu->smu_feature.mutex);
866         bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
867         bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
868         bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
869
870         mutex_init(&smu->smu_baco.mutex);
871         smu->smu_baco.state = SMU_BACO_STATE_EXIT;
872         smu->smu_baco.platform_support = false;
873
874         mutex_init(&smu->sensor_lock);
875         mutex_init(&smu->metrics_lock);
876
877         smu->watermarks_bitmap = 0;
878         smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
879         smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
880
881         smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
882         smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
883         smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
884         smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
885         smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
886         smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
887         smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
888         smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;
889
890         smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
891         smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
892         smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
893         smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
894         smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
895         smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
896         smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
897         smu->display_config = &adev->pm.pm_display_cfg;
898
899         smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
900         smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
901         ret = smu_init_microcode(smu);
902         if (ret) {
903                 pr_err("Failed to load smu firmware!\n");
904                 return ret;
905         }
906
907         ret = smu_smc_table_sw_init(smu);
908         if (ret) {
909                 pr_err("Failed to sw init smc table!\n");
910                 return ret;
911         }
912
913         ret = smu_register_irq_handler(smu);
914         if (ret) {
915                 pr_err("Failed to register smc irq handler!\n");
916                 return ret;
917         }
918
919         return 0;
920 }
921
922 static int smu_sw_fini(void *handle)
923 {
924         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
925         struct smu_context *smu = &adev->smu;
926         int ret;
927
928         kfree(smu->irq_source);
929         smu->irq_source = NULL;
930
931         ret = smu_smc_table_sw_fini(smu);
932         if (ret) {
933                 pr_err("Failed to sw fini smc table!\n");
934                 return ret;
935         }
936
937         ret = smu_fini_power(smu);
938         if (ret) {
939                 pr_err("Failed to init smu_fini_power!\n");
940                 return ret;
941         }
942
943         return 0;
944 }
945
946 static int smu_init_fb_allocations(struct smu_context *smu)
947 {
948         struct amdgpu_device *adev = smu->adev;
949         struct smu_table_context *smu_table = &smu->smu_table;
950         struct smu_table *tables = smu_table->tables;
951         int ret, i;
952
953         for (i = 0; i < SMU_TABLE_COUNT; i++) {
954                 if (tables[i].size == 0)
955                         continue;
956                 ret = amdgpu_bo_create_kernel(adev,
957                                               tables[i].size,
958                                               tables[i].align,
959                                               tables[i].domain,
960                                               &tables[i].bo,
961                                               &tables[i].mc_address,
962                                               &tables[i].cpu_addr);
963                 if (ret)
964                         goto failed;
965         }
966
967         return 0;
968 failed:
969         while (--i >= 0) {
970                 if (tables[i].size == 0)
971                         continue;
972                 amdgpu_bo_free_kernel(&tables[i].bo,
973                                       &tables[i].mc_address,
974                                       &tables[i].cpu_addr);
975
976         }
977         return ret;
978 }
979
980 static int smu_fini_fb_allocations(struct smu_context *smu)
981 {
982         struct smu_table_context *smu_table = &smu->smu_table;
983         struct smu_table *tables = smu_table->tables;
984         uint32_t i = 0;
985
986         if (!tables)
987                 return 0;
988
989         for (i = 0; i < SMU_TABLE_COUNT; i++) {
990                 if (tables[i].size == 0)
991                         continue;
992                 amdgpu_bo_free_kernel(&tables[i].bo,
993                                       &tables[i].mc_address,
994                                       &tables[i].cpu_addr);
995         }
996
997         return 0;
998 }
999
1000 static int smu_smc_table_hw_init(struct smu_context *smu,
1001                                  bool initialize)
1002 {
1003         struct amdgpu_device *adev = smu->adev;
1004         int ret;
1005
1006         if (smu_is_dpm_running(smu) && adev->in_suspend) {
1007                 pr_info("dpm has been enabled\n");
1008                 return 0;
1009         }
1010
1011         if (adev->asic_type != CHIP_ARCTURUS) {
1012                 ret = smu_init_display_count(smu, 0);
1013                 if (ret)
1014                         return ret;
1015         }
1016
1017         if (initialize) {
1018                 /* get boot_values from vbios to set revision, gfxclk, and etc. */
1019                 ret = smu_get_vbios_bootup_values(smu);
1020                 if (ret)
1021                         return ret;
1022
1023                 ret = smu_setup_pptable(smu);
1024                 if (ret)
1025                         return ret;
1026
1027                 ret = smu_get_clk_info_from_vbios(smu);
1028                 if (ret)
1029                         return ret;
1030
1031                 /*
1032                  * check if the format_revision in vbios is up to pptable header
1033                  * version, and the structure size is not 0.
1034                  */
1035                 ret = smu_check_pptable(smu);
1036                 if (ret)
1037                         return ret;
1038
1039                 /*
1040                  * allocate vram bos to store smc table contents.
1041                  */
1042                 ret = smu_init_fb_allocations(smu);
1043                 if (ret)
1044                         return ret;
1045
1046                 /*
1047                  * Parse pptable format and fill PPTable_t smc_pptable to
1048                  * smu_table_context structure. And read the smc_dpm_table from vbios,
1049                  * then fill it into smc_pptable.
1050                  */
1051                 ret = smu_parse_pptable(smu);
1052                 if (ret)
1053                         return ret;
1054
1055                 /*
1056                  * Send msg GetDriverIfVersion to check if the return value is equal
1057                  * with DRIVER_IF_VERSION of smc header.
1058                  */
1059                 ret = smu_check_fw_version(smu);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         /* smu_dump_pptable(smu); */
1065
1066         /*
1067          * Copy pptable bo in the vram to smc with SMU MSGs such as
1068          * SetDriverDramAddr and TransferTableDram2Smu.
1069          */
1070         ret = smu_write_pptable(smu);
1071         if (ret)
1072                 return ret;
1073
1074         /* issue Run*Btc msg */
1075         ret = smu_run_btc(smu);
1076         if (ret)
1077                 return ret;
1078
1079         ret = smu_feature_set_allowed_mask(smu);
1080         if (ret)
1081                 return ret;
1082
1083         ret = smu_system_features_control(smu, true);
1084         if (ret)
1085                 return ret;
1086
1087         if (adev->asic_type != CHIP_ARCTURUS) {
1088                 ret = smu_notify_display_change(smu);
1089                 if (ret)
1090                         return ret;
1091
1092                 /*
1093                  * Set min deep sleep dce fclk with bootup value from vbios via
1094                  * SetMinDeepSleepDcefclk MSG.
1095                  */
1096                 ret = smu_set_min_dcef_deep_sleep(smu);
1097                 if (ret)
1098                         return ret;
1099         }
1100
1101         /*
1102          * Set initialized values (get from vbios) to dpm tables context such as
1103          * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
1104          * type of clks.
1105          */
1106         if (initialize) {
1107                 ret = smu_populate_smc_tables(smu);
1108                 if (ret)
1109                         return ret;
1110
1111                 ret = smu_init_max_sustainable_clocks(smu);
1112                 if (ret)
1113                         return ret;
1114         }
1115
1116         if (adev->asic_type != CHIP_ARCTURUS) {
1117                 ret = smu_override_pcie_parameters(smu);
1118                 if (ret)
1119                         return ret;
1120         }
1121
1122         ret = smu_set_default_od_settings(smu, initialize);
1123         if (ret)
1124                 return ret;
1125
1126         if (initialize) {
1127                 ret = smu_populate_umd_state_clk(smu);
1128                 if (ret)
1129                         return ret;
1130
1131                 ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1132                 if (ret)
1133                         return ret;
1134         }
1135
1136         /*
1137          * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
1138          */
1139         ret = smu_set_tool_table_location(smu);
1140
1141         if (!smu_is_dpm_running(smu))
1142                 pr_info("dpm has been disabled\n");
1143
1144         return ret;
1145 }
1146
1147 /**
1148  * smu_alloc_memory_pool - allocate memory pool in the system memory
1149  *
1150  * @smu: amdgpu_device pointer
1151  *
1152  * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
1153  * and DramLogSetDramAddr can notify it changed.
1154  *
1155  * Returns 0 on success, error on failure.
1156  */
1157 static int smu_alloc_memory_pool(struct smu_context *smu)
1158 {
1159         struct amdgpu_device *adev = smu->adev;
1160         struct smu_table_context *smu_table = &smu->smu_table;
1161         struct smu_table *memory_pool = &smu_table->memory_pool;
1162         uint64_t pool_size = smu->pool_size;
1163         int ret = 0;
1164
1165         if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
1166                 return ret;
1167
1168         memory_pool->size = pool_size;
1169         memory_pool->align = PAGE_SIZE;
1170         memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;
1171
1172         switch (pool_size) {
1173         case SMU_MEMORY_POOL_SIZE_256_MB:
1174         case SMU_MEMORY_POOL_SIZE_512_MB:
1175         case SMU_MEMORY_POOL_SIZE_1_GB:
1176         case SMU_MEMORY_POOL_SIZE_2_GB:
1177                 ret = amdgpu_bo_create_kernel(adev,
1178                                               memory_pool->size,
1179                                               memory_pool->align,
1180                                               memory_pool->domain,
1181                                               &memory_pool->bo,
1182                                               &memory_pool->mc_address,
1183                                               &memory_pool->cpu_addr);
1184                 break;
1185         default:
1186                 break;
1187         }
1188
1189         return ret;
1190 }
1191
1192 static int smu_free_memory_pool(struct smu_context *smu)
1193 {
1194         struct smu_table_context *smu_table = &smu->smu_table;
1195         struct smu_table *memory_pool = &smu_table->memory_pool;
1196
1197         if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
1198                 return 0;
1199
1200         amdgpu_bo_free_kernel(&memory_pool->bo,
1201                               &memory_pool->mc_address,
1202                               &memory_pool->cpu_addr);
1203
1204         memset(memory_pool, 0, sizeof(struct smu_table));
1205
1206         return 0;
1207 }
1208
1209 static int smu_start_smc_engine(struct smu_context *smu)
1210 {
1211         struct amdgpu_device *adev = smu->adev;
1212         int ret = 0;
1213
1214         if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1215                 if (adev->asic_type < CHIP_NAVI10) {
1216                         if (smu->ppt_funcs->load_microcode) {
1217                                 ret = smu->ppt_funcs->load_microcode(smu);
1218                                 if (ret)
1219                                         return ret;
1220                         }
1221                 }
1222         }
1223
1224         if (smu->ppt_funcs->check_fw_status) {
1225                 ret = smu->ppt_funcs->check_fw_status(smu);
1226                 if (ret)
1227                         pr_err("SMC is not ready\n");
1228         }
1229
1230         return ret;
1231 }
1232
1233 static int smu_hw_init(void *handle)
1234 {
1235         int ret;
1236         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1237         struct smu_context *smu = &adev->smu;
1238
1239         ret = smu_start_smc_engine(smu);
1240         if (ret) {
1241                 pr_err("SMU is not ready yet!\n");
1242                 return ret;
1243         }
1244
1245         if (adev->flags & AMD_IS_APU) {
1246                 smu_powergate_sdma(&adev->smu, false);
1247                 smu_powergate_vcn(&adev->smu, false);
1248                 smu_powergate_jpeg(&adev->smu, false);
1249                 smu_set_gfx_cgpg(&adev->smu, true);
1250         }
1251
1252         if (!smu->pm_enabled)
1253                 return 0;
1254
1255         ret = smu_feature_init_dpm(smu);
1256         if (ret)
1257                 goto failed;
1258
1259         ret = smu_smc_table_hw_init(smu, true);
1260         if (ret)
1261                 goto failed;
1262
1263         ret = smu_alloc_memory_pool(smu);
1264         if (ret)
1265                 goto failed;
1266
1267         /*
1268          * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
1269          * pool location.
1270          */
1271         ret = smu_notify_memory_pool_location(smu);
1272         if (ret)
1273                 goto failed;
1274
1275         ret = smu_start_thermal_control(smu);
1276         if (ret)
1277                 goto failed;
1278
1279         if (!smu->pm_enabled)
1280                 adev->pm.dpm_enabled = false;
1281         else
1282                 adev->pm.dpm_enabled = true;    /* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1283
1284         pr_info("SMU is initialized successfully!\n");
1285
1286         return 0;
1287
1288 failed:
1289         return ret;
1290 }
1291
1292 static int smu_stop_dpms(struct smu_context *smu)
1293 {
1294         return smu_send_smc_msg(smu, SMU_MSG_DisableAllSmuFeatures);
1295 }
1296
1297 static int smu_hw_fini(void *handle)
1298 {
1299         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1300         struct smu_context *smu = &adev->smu;
1301         struct smu_table_context *table_context = &smu->smu_table;
1302         int ret = 0;
1303
1304         if (adev->flags & AMD_IS_APU) {
1305                 smu_powergate_sdma(&adev->smu, true);
1306                 smu_powergate_vcn(&adev->smu, true);
1307                 smu_powergate_jpeg(&adev->smu, true);
1308         }
1309
1310         ret = smu_stop_thermal_control(smu);
1311         if (ret) {
1312                 pr_warn("Fail to stop thermal control!\n");
1313                 return ret;
1314         }
1315
1316         /*
1317          * For custom pptable uploading, skip the DPM features
1318          * disable process on Navi1x ASICs.
1319          *   - As the gfx related features are under control of
1320          *     RLC on those ASICs. RLC reinitialization will be
1321          *     needed to reenable them. That will cost much more
1322          *     efforts.
1323          *
1324          *   - SMU firmware can handle the DPM reenablement
1325          *     properly.
1326          */
1327         if (!smu->uploading_custom_pp_table ||
1328             !((adev->asic_type >= CHIP_NAVI10) &&
1329               (adev->asic_type <= CHIP_NAVI12))) {
1330                 ret = smu_stop_dpms(smu);
1331                 if (ret) {
1332                         pr_warn("Fail to stop Dpms!\n");
1333                         return ret;
1334                 }
1335         }
1336
1337         kfree(table_context->driver_pptable);
1338         table_context->driver_pptable = NULL;
1339
1340         kfree(table_context->max_sustainable_clocks);
1341         table_context->max_sustainable_clocks = NULL;
1342
1343         kfree(table_context->overdrive_table);
1344         table_context->overdrive_table = NULL;
1345
1346         ret = smu_fini_fb_allocations(smu);
1347         if (ret)
1348                 return ret;
1349
1350         ret = smu_free_memory_pool(smu);
1351         if (ret)
1352                 return ret;
1353
1354         return 0;
1355 }
1356
1357 int smu_reset(struct smu_context *smu)
1358 {
1359         struct amdgpu_device *adev = smu->adev;
1360         int ret = 0;
1361
1362         ret = smu_hw_fini(adev);
1363         if (ret)
1364                 return ret;
1365
1366         ret = smu_hw_init(adev);
1367         if (ret)
1368                 return ret;
1369
1370         return ret;
1371 }
1372
1373 static int smu_suspend(void *handle)
1374 {
1375         int ret;
1376         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1377         struct smu_context *smu = &adev->smu;
1378         bool baco_feature_is_enabled = false;
1379
1380         if(!(adev->flags & AMD_IS_APU))
1381                 baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
1382
1383         ret = smu_system_features_control(smu, false);
1384         if (ret)
1385                 return ret;
1386
1387         if (baco_feature_is_enabled) {
1388                 ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
1389                 if (ret) {
1390                         pr_warn("set BACO feature enabled failed, return %d\n", ret);
1391                         return ret;
1392                 }
1393         }
1394
1395         smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);
1396
1397         if (adev->asic_type >= CHIP_NAVI10 &&
1398             adev->gfx.rlc.funcs->stop)
1399                 adev->gfx.rlc.funcs->stop(adev);
1400         if (smu->is_apu)
1401                 smu_set_gfx_cgpg(&adev->smu, false);
1402
1403         return 0;
1404 }
1405
1406 static int smu_resume(void *handle)
1407 {
1408         int ret;
1409         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1410         struct smu_context *smu = &adev->smu;
1411
1412         pr_info("SMU is resuming...\n");
1413
1414         ret = smu_start_smc_engine(smu);
1415         if (ret) {
1416                 pr_err("SMU is not ready yet!\n");
1417                 goto failed;
1418         }
1419
1420         ret = smu_smc_table_hw_init(smu, false);
1421         if (ret)
1422                 goto failed;
1423
1424         ret = smu_start_thermal_control(smu);
1425         if (ret)
1426                 goto failed;
1427
1428         if (smu->is_apu)
1429                 smu_set_gfx_cgpg(&adev->smu, true);
1430
1431         smu->disable_uclk_switch = 0;
1432
1433         pr_info("SMU is resumed successfully!\n");
1434
1435         return 0;
1436
1437 failed:
1438         return ret;
1439 }
1440
1441 int smu_display_configuration_change(struct smu_context *smu,
1442                                      const struct amd_pp_display_configuration *display_config)
1443 {
1444         int index = 0;
1445         int num_of_active_display = 0;
1446
1447         if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1448                 return -EINVAL;
1449
1450         if (!display_config)
1451                 return -EINVAL;
1452
1453         mutex_lock(&smu->mutex);
1454
1455         if (smu->ppt_funcs->set_deep_sleep_dcefclk)
1456                 smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1457                                 display_config->min_dcef_deep_sleep_set_clk / 100);
1458
1459         for (index = 0; index < display_config->num_path_including_non_display; index++) {
1460                 if (display_config->displays[index].controller_id != 0)
1461                         num_of_active_display++;
1462         }
1463
1464         smu_set_active_display_count(smu, num_of_active_display);
1465
1466         smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
1467                            display_config->cpu_cc6_disable,
1468                            display_config->cpu_pstate_disable,
1469                            display_config->nb_pstate_switch_disable);
1470
1471         mutex_unlock(&smu->mutex);
1472
1473         return 0;
1474 }
1475
1476 static int smu_get_clock_info(struct smu_context *smu,
1477                               struct smu_clock_info *clk_info,
1478                               enum smu_perf_level_designation designation)
1479 {
1480         int ret;
1481         struct smu_performance_level level = {0};
1482
1483         if (!clk_info)
1484                 return -EINVAL;
1485
1486         ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
1487         if (ret)
1488                 return -EINVAL;
1489
1490         clk_info->min_mem_clk = level.memory_clock;
1491         clk_info->min_eng_clk = level.core_clock;
1492         clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;
1493
1494         ret = smu_get_perf_level(smu, designation, &level);
1495         if (ret)
1496                 return -EINVAL;
1497
1498         clk_info->min_mem_clk = level.memory_clock;
1499         clk_info->min_eng_clk = level.core_clock;
1500         clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;
1501
1502         return 0;
1503 }
1504
1505 int smu_get_current_clocks(struct smu_context *smu,
1506                            struct amd_pp_clock_info *clocks)
1507 {
1508         struct amd_pp_simple_clock_info simple_clocks = {0};
1509         struct smu_clock_info hw_clocks;
1510         int ret = 0;
1511
1512         if (!is_support_sw_smu(smu->adev))
1513                 return -EINVAL;
1514
1515         mutex_lock(&smu->mutex);
1516
1517         smu_get_dal_power_level(smu, &simple_clocks);
1518
1519         if (smu->support_power_containment)
1520                 ret = smu_get_clock_info(smu, &hw_clocks,
1521                                          PERF_LEVEL_POWER_CONTAINMENT);
1522         else
1523                 ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);
1524
1525         if (ret) {
1526                 pr_err("Error in smu_get_clock_info\n");
1527                 goto failed;
1528         }
1529
1530         clocks->min_engine_clock = hw_clocks.min_eng_clk;
1531         clocks->max_engine_clock = hw_clocks.max_eng_clk;
1532         clocks->min_memory_clock = hw_clocks.min_mem_clk;
1533         clocks->max_memory_clock = hw_clocks.max_mem_clk;
1534         clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
1535         clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
1536         clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
1537         clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
1538
1539         if (simple_clocks.level == 0)
1540                 clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
1541         else
1542                 clocks->max_clocks_state = simple_clocks.level;
1543
1544         if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
1545                 clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
1546                 clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
1547         }
1548
1549 failed:
1550         mutex_unlock(&smu->mutex);
1551         return ret;
1552 }
1553
1554 static int smu_set_clockgating_state(void *handle,
1555                                      enum amd_clockgating_state state)
1556 {
1557         return 0;
1558 }
1559
1560 static int smu_set_powergating_state(void *handle,
1561                                      enum amd_powergating_state state)
1562 {
1563         return 0;
1564 }
1565
1566 static int smu_enable_umd_pstate(void *handle,
1567                       enum amd_dpm_forced_level *level)
1568 {
1569         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
1570                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
1571                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
1572                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
1573
1574         struct smu_context *smu = (struct smu_context*)(handle);
1575         struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1576
1577         if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1578                 return -EINVAL;
1579
1580         if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
1581                 /* enter umd pstate, save current level, disable gfx cg*/
1582                 if (*level & profile_mode_mask) {
1583                         smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
1584                         smu_dpm_ctx->enable_umd_pstate = true;
1585                         amdgpu_device_ip_set_clockgating_state(smu->adev,
1586                                                                AMD_IP_BLOCK_TYPE_GFX,
1587                                                                AMD_CG_STATE_UNGATE);
1588                         amdgpu_device_ip_set_powergating_state(smu->adev,
1589                                                                AMD_IP_BLOCK_TYPE_GFX,
1590                                                                AMD_PG_STATE_UNGATE);
1591                 }
1592         } else {
1593                 /* exit umd pstate, restore level, enable gfx cg*/
1594                 if (!(*level & profile_mode_mask)) {
1595                         if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
1596                                 *level = smu_dpm_ctx->saved_dpm_level;
1597                         smu_dpm_ctx->enable_umd_pstate = false;
1598                         amdgpu_device_ip_set_clockgating_state(smu->adev,
1599                                                                AMD_IP_BLOCK_TYPE_GFX,
1600                                                                AMD_CG_STATE_GATE);
1601                         amdgpu_device_ip_set_powergating_state(smu->adev,
1602                                                                AMD_IP_BLOCK_TYPE_GFX,
1603                                                                AMD_PG_STATE_GATE);
1604                 }
1605         }
1606
1607         return 0;
1608 }
1609
1610 int smu_adjust_power_state_dynamic(struct smu_context *smu,
1611                                    enum amd_dpm_forced_level level,
1612                                    bool skip_display_settings)
1613 {
1614         int ret = 0;
1615         int index = 0;
1616         long workload;
1617         struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1618
1619         if (!smu->pm_enabled)
1620                 return -EINVAL;
1621
1622         if (!skip_display_settings) {
1623                 ret = smu_display_config_changed(smu);
1624                 if (ret) {
1625                         pr_err("Failed to change display config!");
1626                         return ret;
1627                 }
1628         }
1629
1630         ret = smu_apply_clocks_adjust_rules(smu);
1631         if (ret) {
1632                 pr_err("Failed to apply clocks adjust rules!");
1633                 return ret;
1634         }
1635
1636         if (!skip_display_settings) {
1637                 ret = smu_notify_smc_display_config(smu);
1638                 if (ret) {
1639                         pr_err("Failed to notify smc display config!");
1640                         return ret;
1641                 }
1642         }
1643
1644         if (smu_dpm_ctx->dpm_level != level) {
1645                 ret = smu_asic_set_performance_level(smu, level);
1646                 if (ret) {
1647                         pr_err("Failed to set performance level!");
1648                         return ret;
1649                 }
1650
1651                 /* update the saved copy */
1652                 smu_dpm_ctx->dpm_level = level;
1653         }
1654
1655         if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
1656                 index = fls(smu->workload_mask);
1657                 index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
1658                 workload = smu->workload_setting[index];
1659
1660                 if (smu->power_profile_mode != workload)
1661                         smu_set_power_profile_mode(smu, &workload, 0, false);
1662         }
1663
1664         return ret;
1665 }
1666
1667 int smu_handle_task(struct smu_context *smu,
1668                     enum amd_dpm_forced_level level,
1669                     enum amd_pp_task task_id,
1670                     bool lock_needed)
1671 {
1672         int ret = 0;
1673
1674         if (lock_needed)
1675                 mutex_lock(&smu->mutex);
1676
1677         switch (task_id) {
1678         case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
1679                 ret = smu_pre_display_config_changed(smu);
1680                 if (ret)
1681                         goto out;
1682                 ret = smu_set_cpu_power_state(smu);
1683                 if (ret)
1684                         goto out;
1685                 ret = smu_adjust_power_state_dynamic(smu, level, false);
1686                 break;
1687         case AMD_PP_TASK_COMPLETE_INIT:
1688         case AMD_PP_TASK_READJUST_POWER_STATE:
1689                 ret = smu_adjust_power_state_dynamic(smu, level, true);
1690                 break;
1691         default:
1692                 break;
1693         }
1694
1695 out:
1696         if (lock_needed)
1697                 mutex_unlock(&smu->mutex);
1698
1699         return ret;
1700 }
1701
1702 int smu_switch_power_profile(struct smu_context *smu,
1703                              enum PP_SMC_POWER_PROFILE type,
1704                              bool en)
1705 {
1706         struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1707         long workload;
1708         uint32_t index;
1709
1710         if (!smu->pm_enabled)
1711                 return -EINVAL;
1712
1713         if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
1714                 return -EINVAL;
1715
1716         mutex_lock(&smu->mutex);
1717
1718         if (!en) {
1719                 smu->workload_mask &= ~(1 << smu->workload_prority[type]);
1720                 index = fls(smu->workload_mask);
1721                 index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
1722                 workload = smu->workload_setting[index];
1723         } else {
1724                 smu->workload_mask |= (1 << smu->workload_prority[type]);
1725                 index = fls(smu->workload_mask);
1726                 index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
1727                 workload = smu->workload_setting[index];
1728         }
1729
1730         if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1731                 smu_set_power_profile_mode(smu, &workload, 0, false);
1732
1733         mutex_unlock(&smu->mutex);
1734
1735         return 0;
1736 }
1737
1738 enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
1739 {
1740         struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1741         enum amd_dpm_forced_level level;
1742
1743         if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1744                 return -EINVAL;
1745
1746         mutex_lock(&(smu->mutex));
1747         level = smu_dpm_ctx->dpm_level;
1748         mutex_unlock(&(smu->mutex));
1749
1750         return level;
1751 }
1752
1753 int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
1754 {
1755         struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1756         int ret = 0;
1757
1758         if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1759                 return -EINVAL;
1760
1761         mutex_lock(&smu->mutex);
1762
1763         ret = smu_enable_umd_pstate(smu, &level);
1764         if (ret) {
1765                 mutex_unlock(&smu->mutex);
1766                 return ret;
1767         }
1768
1769         ret = smu_handle_task(smu, level,
1770                               AMD_PP_TASK_READJUST_POWER_STATE,
1771                               false);
1772
1773         mutex_unlock(&smu->mutex);
1774
1775         return ret;
1776 }
1777
1778 int smu_set_display_count(struct smu_context *smu, uint32_t count)
1779 {
1780         int ret = 0;
1781
1782         mutex_lock(&smu->mutex);
1783         ret = smu_init_display_count(smu, count);
1784         mutex_unlock(&smu->mutex);
1785
1786         return ret;
1787 }
1788
1789 int smu_force_clk_levels(struct smu_context *smu,
1790                          enum smu_clk_type clk_type,
1791                          uint32_t mask,
1792                          bool lock_needed)
1793 {
1794         struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1795         int ret = 0;
1796
1797         if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
1798                 pr_debug("force clock level is for dpm manual mode only.\n");
1799                 return -EINVAL;
1800         }
1801
1802         if (lock_needed)
1803                 mutex_lock(&smu->mutex);
1804
1805         if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
1806                 ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);
1807
1808         if (lock_needed)
1809                 mutex_unlock(&smu->mutex);
1810
1811         return ret;
1812 }
1813
1814 int smu_set_mp1_state(struct smu_context *smu,
1815                       enum pp_mp1_state mp1_state)
1816 {
1817         uint16_t msg;
1818         int ret;
1819
1820         /*
1821          * The SMC is not fully ready. That may be
1822          * expected as the IP may be masked.
1823          * So, just return without error.
1824          */
1825         if (!smu->pm_enabled)
1826                 return 0;
1827
1828         mutex_lock(&smu->mutex);
1829
1830         switch (mp1_state) {
1831         case PP_MP1_STATE_SHUTDOWN:
1832                 msg = SMU_MSG_PrepareMp1ForShutdown;
1833                 break;
1834         case PP_MP1_STATE_UNLOAD:
1835                 msg = SMU_MSG_PrepareMp1ForUnload;
1836                 break;
1837         case PP_MP1_STATE_RESET:
1838                 msg = SMU_MSG_PrepareMp1ForReset;
1839                 break;
1840         case PP_MP1_STATE_NONE:
1841         default:
1842                 mutex_unlock(&smu->mutex);
1843                 return 0;
1844         }
1845
1846         /* some asics may not support those messages */
1847         if (smu_msg_get_index(smu, msg) < 0) {
1848                 mutex_unlock(&smu->mutex);
1849                 return 0;
1850         }
1851
1852         ret = smu_send_smc_msg(smu, msg);
1853         if (ret)
1854                 pr_err("[PrepareMp1] Failed!\n");
1855
1856         mutex_unlock(&smu->mutex);
1857
1858         return ret;
1859 }
1860
1861 int smu_set_df_cstate(struct smu_context *smu,
1862                       enum pp_df_cstate state)
1863 {
1864         int ret = 0;
1865
1866         /*
1867          * The SMC is not fully ready. That may be
1868          * expected as the IP may be masked.
1869          * So, just return without error.
1870          */
1871         if (!smu->pm_enabled)
1872                 return 0;
1873
1874         if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
1875                 return 0;
1876
1877         mutex_lock(&smu->mutex);
1878
1879         ret = smu->ppt_funcs->set_df_cstate(smu, state);
1880         if (ret)
1881                 pr_err("[SetDfCstate] failed!\n");
1882
1883         mutex_unlock(&smu->mutex);
1884
1885         return ret;
1886 }
1887
1888 int smu_write_watermarks_table(struct smu_context *smu)
1889 {
1890         int ret = 0;
1891         struct smu_table_context *smu_table = &smu->smu_table;
1892         struct smu_table *table = NULL;
1893
1894         table = &smu_table->tables[SMU_TABLE_WATERMARKS];
1895
1896         if (!table->cpu_addr)
1897                 return -EINVAL;
1898
1899         ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
1900                                 true);
1901
1902         return ret;
1903 }
1904
1905 int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
1906                 struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
1907 {
1908         struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1909         void *table = watermarks->cpu_addr;
1910
1911         mutex_lock(&smu->mutex);
1912
1913         if (!smu->disable_watermark &&
1914                         smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
1915                         smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1916                 smu_set_watermarks_table(smu, table, clock_ranges);
1917                 smu->watermarks_bitmap |= WATERMARKS_EXIST;
1918                 smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
1919         }
1920
1921         mutex_unlock(&smu->mutex);
1922
1923         return 0;
1924 }
1925
1926 const struct amd_ip_funcs smu_ip_funcs = {
1927         .name = "smu",
1928         .early_init = smu_early_init,
1929         .late_init = smu_late_init,
1930         .sw_init = smu_sw_init,
1931         .sw_fini = smu_sw_fini,
1932         .hw_init = smu_hw_init,
1933         .hw_fini = smu_hw_fini,
1934         .suspend = smu_suspend,
1935         .resume = smu_resume,
1936         .is_idle = NULL,
1937         .check_soft_reset = NULL,
1938         .wait_for_idle = NULL,
1939         .soft_reset = NULL,
1940         .set_clockgating_state = smu_set_clockgating_state,
1941         .set_powergating_state = smu_set_powergating_state,
1942         .enable_umd_pstate = smu_enable_umd_pstate,
1943 };
1944
1945 const struct amdgpu_ip_block_version smu_v11_0_ip_block =
1946 {
1947         .type = AMD_IP_BLOCK_TYPE_SMC,
1948         .major = 11,
1949         .minor = 0,
1950         .rev = 0,
1951         .funcs = &smu_ip_funcs,
1952 };
1953
1954 const struct amdgpu_ip_block_version smu_v12_0_ip_block =
1955 {
1956         .type = AMD_IP_BLOCK_TYPE_SMC,
1957         .major = 12,
1958         .minor = 0,
1959         .rev = 0,
1960         .funcs = &smu_ip_funcs,
1961 };
1962
1963 int smu_load_microcode(struct smu_context *smu)
1964 {
1965         int ret = 0;
1966
1967         mutex_lock(&smu->mutex);
1968
1969         if (smu->ppt_funcs->load_microcode)
1970                 ret = smu->ppt_funcs->load_microcode(smu);
1971
1972         mutex_unlock(&smu->mutex);
1973
1974         return ret;
1975 }
1976
1977 int smu_check_fw_status(struct smu_context *smu)
1978 {
1979         int ret = 0;
1980
1981         mutex_lock(&smu->mutex);
1982
1983         if (smu->ppt_funcs->check_fw_status)
1984                 ret = smu->ppt_funcs->check_fw_status(smu);
1985
1986         mutex_unlock(&smu->mutex);
1987
1988         return ret;
1989 }
1990
1991 int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
1992 {
1993         int ret = 0;
1994
1995         mutex_lock(&smu->mutex);
1996
1997         if (smu->ppt_funcs->set_gfx_cgpg)
1998                 ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
1999
2000         mutex_unlock(&smu->mutex);
2001
2002         return ret;
2003 }
2004
2005 int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
2006 {
2007         int ret = 0;
2008
2009         mutex_lock(&smu->mutex);
2010
2011         if (smu->ppt_funcs->set_fan_speed_rpm)
2012                 ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2013
2014         mutex_unlock(&smu->mutex);
2015
2016         return ret;
2017 }
2018
2019 int smu_get_power_limit(struct smu_context *smu,
2020                         uint32_t *limit,
2021                         bool def,
2022                         bool lock_needed)
2023 {
2024         int ret = 0;
2025
2026         if (lock_needed)
2027                 mutex_lock(&smu->mutex);
2028
2029         if (smu->ppt_funcs->get_power_limit)
2030                 ret = smu->ppt_funcs->get_power_limit(smu, limit, def);
2031
2032         if (lock_needed)
2033                 mutex_unlock(&smu->mutex);
2034
2035         return ret;
2036 }
2037
2038 int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
2039 {
2040         int ret = 0;
2041
2042         mutex_lock(&smu->mutex);
2043
2044         if (smu->ppt_funcs->set_power_limit)
2045                 ret = smu->ppt_funcs->set_power_limit(smu, limit);
2046
2047         mutex_unlock(&smu->mutex);
2048
2049         return ret;
2050 }
2051
2052 int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
2053 {
2054         int ret = 0;
2055
2056         mutex_lock(&smu->mutex);
2057
2058         if (smu->ppt_funcs->print_clk_levels)
2059                 ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);
2060
2061         mutex_unlock(&smu->mutex);
2062
2063         return ret;
2064 }
2065
2066 int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
2067 {
2068         int ret = 0;
2069
2070         mutex_lock(&smu->mutex);
2071
2072         if (smu->ppt_funcs->get_od_percentage)
2073                 ret = smu->ppt_funcs->get_od_percentage(smu, type);
2074
2075         mutex_unlock(&smu->mutex);
2076
2077         return ret;
2078 }
2079
2080 int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
2081 {
2082         int ret = 0;
2083
2084         mutex_lock(&smu->mutex);
2085
2086         if (smu->ppt_funcs->set_od_percentage)
2087                 ret = smu->ppt_funcs->set_od_percentage(smu, type, value);
2088
2089         mutex_unlock(&smu->mutex);
2090
2091         return ret;
2092 }
2093
2094 int smu_od_edit_dpm_table(struct smu_context *smu,
2095                           enum PP_OD_DPM_TABLE_COMMAND type,
2096                           long *input, uint32_t size)
2097 {
2098         int ret = 0;
2099
2100         mutex_lock(&smu->mutex);
2101
2102         if (smu->ppt_funcs->od_edit_dpm_table)
2103                 ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);
2104
2105         mutex_unlock(&smu->mutex);
2106
2107         return ret;
2108 }
2109
2110 int smu_read_sensor(struct smu_context *smu,
2111                     enum amd_pp_sensors sensor,
2112                     void *data, uint32_t *size)
2113 {
2114         int ret = 0;
2115
2116         mutex_lock(&smu->mutex);
2117
2118         if (smu->ppt_funcs->read_sensor)
2119                 ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);
2120
2121         mutex_unlock(&smu->mutex);
2122
2123         return ret;
2124 }
2125
2126 int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
2127 {
2128         int ret = 0;
2129
2130         mutex_lock(&smu->mutex);
2131
2132         if (smu->ppt_funcs->get_power_profile_mode)
2133                 ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);
2134
2135         mutex_unlock(&smu->mutex);
2136
2137         return ret;
2138 }
2139
2140 int smu_set_power_profile_mode(struct smu_context *smu,
2141                                long *param,
2142                                uint32_t param_size,
2143                                bool lock_needed)
2144 {
2145         int ret = 0;
2146
2147         if (lock_needed)
2148                 mutex_lock(&smu->mutex);
2149
2150         if (smu->ppt_funcs->set_power_profile_mode)
2151                 ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);
2152
2153         if (lock_needed)
2154                 mutex_unlock(&smu->mutex);
2155
2156         return ret;
2157 }
2158
2159
2160 int smu_get_fan_control_mode(struct smu_context *smu)
2161 {
2162         int ret = 0;
2163
2164         mutex_lock(&smu->mutex);
2165
2166         if (smu->ppt_funcs->get_fan_control_mode)
2167                 ret = smu->ppt_funcs->get_fan_control_mode(smu);
2168
2169         mutex_unlock(&smu->mutex);
2170
2171         return ret;
2172 }
2173
2174 int smu_set_fan_control_mode(struct smu_context *smu, int value)
2175 {
2176         int ret = 0;
2177
2178         mutex_lock(&smu->mutex);
2179
2180         if (smu->ppt_funcs->set_fan_control_mode)
2181                 ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2182
2183         mutex_unlock(&smu->mutex);
2184
2185         return ret;
2186 }
2187
2188 int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
2189 {
2190         int ret = 0;
2191
2192         mutex_lock(&smu->mutex);
2193
2194         if (smu->ppt_funcs->get_fan_speed_percent)
2195                 ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);
2196
2197         mutex_unlock(&smu->mutex);
2198
2199         return ret;
2200 }
2201
2202 int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
2203 {
2204         int ret = 0;
2205
2206         mutex_lock(&smu->mutex);
2207
2208         if (smu->ppt_funcs->set_fan_speed_percent)
2209                 ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2210
2211         mutex_unlock(&smu->mutex);
2212
2213         return ret;
2214 }
2215
2216 int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
2217 {
2218         int ret = 0;
2219
2220         mutex_lock(&smu->mutex);
2221
2222         if (smu->ppt_funcs->get_fan_speed_rpm)
2223                 ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);
2224
2225         mutex_unlock(&smu->mutex);
2226
2227         return ret;
2228 }
2229
2230 int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
2231 {
2232         int ret = 0;
2233
2234         mutex_lock(&smu->mutex);
2235
2236         if (smu->ppt_funcs->set_deep_sleep_dcefclk)
2237                 ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2238
2239         mutex_unlock(&smu->mutex);
2240
2241         return ret;
2242 }
2243
2244 int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
2245 {
2246         int ret = 0;
2247
2248         mutex_lock(&smu->mutex);
2249
2250         if (smu->ppt_funcs->set_active_display_count)
2251                 ret = smu->ppt_funcs->set_active_display_count(smu, count);
2252
2253         mutex_unlock(&smu->mutex);
2254
2255         return ret;
2256 }
2257
2258 int smu_get_clock_by_type(struct smu_context *smu,
2259                           enum amd_pp_clock_type type,
2260                           struct amd_pp_clocks *clocks)
2261 {
2262         int ret = 0;
2263
2264         mutex_lock(&smu->mutex);
2265
2266         if (smu->ppt_funcs->get_clock_by_type)
2267                 ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2268
2269         mutex_unlock(&smu->mutex);
2270
2271         return ret;
2272 }
2273
2274 int smu_get_max_high_clocks(struct smu_context *smu,
2275                             struct amd_pp_simple_clock_info *clocks)
2276 {
2277         int ret = 0;
2278
2279         mutex_lock(&smu->mutex);
2280
2281         if (smu->ppt_funcs->get_max_high_clocks)
2282                 ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2283
2284         mutex_unlock(&smu->mutex);
2285
2286         return ret;
2287 }
2288
2289 int smu_get_clock_by_type_with_latency(struct smu_context *smu,
2290                                        enum smu_clk_type clk_type,
2291                                        struct pp_clock_levels_with_latency *clocks)
2292 {
2293         int ret = 0;
2294
2295         mutex_lock(&smu->mutex);
2296
2297         if (smu->ppt_funcs->get_clock_by_type_with_latency)
2298                 ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);
2299
2300         mutex_unlock(&smu->mutex);
2301
2302         return ret;
2303 }
2304
2305 int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
2306                                        enum amd_pp_clock_type type,
2307                                        struct pp_clock_levels_with_voltage *clocks)
2308 {
2309         int ret = 0;
2310
2311         mutex_lock(&smu->mutex);
2312
2313         if (smu->ppt_funcs->get_clock_by_type_with_voltage)
2314                 ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);
2315
2316         mutex_unlock(&smu->mutex);
2317
2318         return ret;
2319 }
2320
2321
2322 int smu_display_clock_voltage_request(struct smu_context *smu,
2323                                       struct pp_display_clock_request *clock_req)
2324 {
2325         int ret = 0;
2326
2327         mutex_lock(&smu->mutex);
2328
2329         if (smu->ppt_funcs->display_clock_voltage_request)
2330                 ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2331
2332         mutex_unlock(&smu->mutex);
2333
2334         return ret;
2335 }
2336
2337
2338 int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
2339 {
2340         int ret = -EINVAL;
2341
2342         mutex_lock(&smu->mutex);
2343
2344         if (smu->ppt_funcs->display_disable_memory_clock_switch)
2345                 ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);
2346
2347         mutex_unlock(&smu->mutex);
2348
2349         return ret;
2350 }
2351
2352 int smu_notify_smu_enable_pwe(struct smu_context *smu)
2353 {
2354         int ret = 0;
2355
2356         mutex_lock(&smu->mutex);
2357
2358         if (smu->ppt_funcs->notify_smu_enable_pwe)
2359                 ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2360
2361         mutex_unlock(&smu->mutex);
2362
2363         return ret;
2364 }
2365
2366 int smu_set_xgmi_pstate(struct smu_context *smu,
2367                         uint32_t pstate)
2368 {
2369         int ret = 0;
2370
2371         mutex_lock(&smu->mutex);
2372
2373         if (smu->ppt_funcs->set_xgmi_pstate)
2374                 ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2375
2376         mutex_unlock(&smu->mutex);
2377
2378         return ret;
2379 }
2380
2381 int smu_set_azalia_d3_pme(struct smu_context *smu)
2382 {
2383         int ret = 0;
2384
2385         mutex_lock(&smu->mutex);
2386
2387         if (smu->ppt_funcs->set_azalia_d3_pme)
2388                 ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2389
2390         mutex_unlock(&smu->mutex);
2391
2392         return ret;
2393 }
2394
2395 bool smu_baco_is_support(struct smu_context *smu)
2396 {
2397         bool ret = false;
2398
2399         mutex_lock(&smu->mutex);
2400
2401         if (smu->ppt_funcs->baco_is_support)
2402                 ret = smu->ppt_funcs->baco_is_support(smu);
2403
2404         mutex_unlock(&smu->mutex);
2405
2406         return ret;
2407 }
2408
2409 int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
2410 {
2411         if (smu->ppt_funcs->baco_get_state)
2412                 return -EINVAL;
2413
2414         mutex_lock(&smu->mutex);
2415         *state = smu->ppt_funcs->baco_get_state(smu);
2416         mutex_unlock(&smu->mutex);
2417
2418         return 0;
2419 }
2420
2421 int smu_baco_enter(struct smu_context *smu)
2422 {
2423         int ret = 0;
2424
2425         mutex_lock(&smu->mutex);
2426
2427         if (smu->ppt_funcs->baco_enter)
2428                 ret = smu->ppt_funcs->baco_enter(smu);
2429
2430         mutex_unlock(&smu->mutex);
2431
2432         return ret;
2433 }
2434
2435 int smu_baco_exit(struct smu_context *smu)
2436 {
2437         int ret = 0;
2438
2439         mutex_lock(&smu->mutex);
2440
2441         if (smu->ppt_funcs->baco_exit)
2442                 ret = smu->ppt_funcs->baco_exit(smu);
2443
2444         mutex_unlock(&smu->mutex);
2445
2446         return ret;
2447 }
2448
2449 int smu_mode2_reset(struct smu_context *smu)
2450 {
2451         int ret = 0;
2452
2453         mutex_lock(&smu->mutex);
2454
2455         if (smu->ppt_funcs->mode2_reset)
2456                 ret = smu->ppt_funcs->mode2_reset(smu);
2457
2458         mutex_unlock(&smu->mutex);
2459
2460         return ret;
2461 }
2462
2463 int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
2464                                          struct pp_smu_nv_clock_table *max_clocks)
2465 {
2466         int ret = 0;
2467
2468         mutex_lock(&smu->mutex);
2469
2470         if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
2471                 ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2472
2473         mutex_unlock(&smu->mutex);
2474
2475         return ret;
2476 }
2477
2478 int smu_get_uclk_dpm_states(struct smu_context *smu,
2479                             unsigned int *clock_values_in_khz,
2480                             unsigned int *num_states)
2481 {
2482         int ret = 0;
2483
2484         mutex_lock(&smu->mutex);
2485
2486         if (smu->ppt_funcs->get_uclk_dpm_states)
2487                 ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);
2488
2489         mutex_unlock(&smu->mutex);
2490
2491         return ret;
2492 }
2493
2494 enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
2495 {
2496         enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;
2497
2498         mutex_lock(&smu->mutex);
2499
2500         if (smu->ppt_funcs->get_current_power_state)
2501                 pm_state = smu->ppt_funcs->get_current_power_state(smu);
2502
2503         mutex_unlock(&smu->mutex);
2504
2505         return pm_state;
2506 }
2507
2508 int smu_get_dpm_clock_table(struct smu_context *smu,
2509                             struct dpm_clocks *clock_table)
2510 {
2511         int ret = 0;
2512
2513         mutex_lock(&smu->mutex);
2514
2515         if (smu->ppt_funcs->get_dpm_clock_table)
2516                 ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);
2517
2518         mutex_unlock(&smu->mutex);
2519
2520         return ret;
2521 }
2522
2523 uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
2524 {
2525         uint32_t ret = 0;
2526
2527         if (smu->ppt_funcs->get_pptable_power_limit)
2528                 ret = smu->ppt_funcs->get_pptable_power_limit(smu);
2529
2530         return ret;
2531 }
2532
2533 int smu_send_smc_msg(struct smu_context *smu,
2534                      enum smu_message_type msg)
2535 {
2536         int ret;
2537
2538         ret = smu_send_smc_msg_with_param(smu, msg, 0);
2539         return ret;
2540 }