]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/drm_blend.c
drm/ingenic: Hardcode panel type to DPI
[linux.git] / drivers / gpu / drm / drm_blend.c
1 /*
2  * Copyright (C) 2016 Samsung Electronics Co.Ltd
3  * Authors:
4  *      Marek Szyprowski <m.szyprowski@samsung.com>
5  *
6  * DRM core plane blending related functions
7  *
8  * Permission to use, copy, modify, distribute, and sell this software and its
9  * documentation for any purpose is hereby granted without fee, provided that
10  * the above copyright notice appear in all copies and that both that copyright
11  * notice and this permission notice appear in supporting documentation, and
12  * that the name of the copyright holders not be used in advertising or
13  * publicity pertaining to distribution of the software without specific,
14  * written prior permission.  The copyright holders make no representations
15  * about the suitability of this software for any purpose.  It is provided "as
16  * is" without express or implied warranty.
17  *
18  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
20  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
21  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
22  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
23  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/sort.h>
30
31 #include <drm/drm_atomic.h>
32 #include <drm/drm_blend.h>
33 #include <drm/drm_device.h>
34 #include <drm/drm_print.h>
35
36 #include "drm_crtc_internal.h"
37
38 /**
39  * DOC: overview
40  *
41  * The basic plane composition model supported by standard plane properties only
42  * has a source rectangle (in logical pixels within the &drm_framebuffer), with
43  * sub-pixel accuracy, which is scaled up to a pixel-aligned destination
44  * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is
45  * defined by the horizontal and vertical visible pixels (stored in @hdisplay
46  * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These
47  * two rectangles are both stored in the &drm_plane_state.
48  *
49  * For the atomic ioctl the following standard (atomic) properties on the plane object
50  * encode the basic plane composition model:
51  *
52  * SRC_X:
53  *      X coordinate offset for the source rectangle within the
54  *      &drm_framebuffer, in 16.16 fixed point. Must be positive.
55  * SRC_Y:
56  *      Y coordinate offset for the source rectangle within the
57  *      &drm_framebuffer, in 16.16 fixed point. Must be positive.
58  * SRC_W:
59  *      Width for the source rectangle within the &drm_framebuffer, in 16.16
60  *      fixed point. SRC_X plus SRC_W must be within the width of the source
61  *      framebuffer. Must be positive.
62  * SRC_H:
63  *      Height for the source rectangle within the &drm_framebuffer, in 16.16
64  *      fixed point. SRC_Y plus SRC_H must be within the height of the source
65  *      framebuffer. Must be positive.
66  * CRTC_X:
67  *      X coordinate offset for the destination rectangle. Can be negative.
68  * CRTC_Y:
69  *      Y coordinate offset for the destination rectangle. Can be negative.
70  * CRTC_W:
71  *      Width for the destination rectangle. CRTC_X plus CRTC_W can extend past
72  *      the currently visible horizontal area of the &drm_crtc.
73  * CRTC_H:
74  *      Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past
75  *      the currently visible vertical area of the &drm_crtc.
76  * FB_ID:
77  *      Mode object ID of the &drm_framebuffer this plane should scan out.
78  * CRTC_ID:
79  *      Mode object ID of the &drm_crtc this plane should be connected to.
80  *
81  * Note that the source rectangle must fully lie within the bounds of the
82  * &drm_framebuffer. The destination rectangle can lie outside of the visible
83  * area of the current mode of the CRTC. It must be apprpriately clipped by the
84  * driver, which can be done by calling drm_plane_helper_check_update(). Drivers
85  * are also allowed to round the subpixel sampling positions appropriately, but
86  * only to the next full pixel. No pixel outside of the source rectangle may
87  * ever be sampled, which is important when applying more sophisticated
88  * filtering than just a bilinear one when scaling. The filtering mode when
89  * scaling is unspecified.
90  *
91  * On top of this basic transformation additional properties can be exposed by
92  * the driver:
93  *
94  * alpha:
95  *      Alpha is setup with drm_plane_create_alpha_property(). It controls the
96  *      plane-wide opacity, from transparent (0) to opaque (0xffff). It can be
97  *      combined with pixel alpha.
98  *      The pixel values in the framebuffers are expected to not be
99  *      pre-multiplied by the global alpha associated to the plane.
100  *
101  * rotation:
102  *      Rotation is set up with drm_plane_create_rotation_property(). It adds a
103  *      rotation and reflection step between the source and destination rectangles.
104  *      Without this property the rectangle is only scaled, but not rotated or
105  *      reflected.
106  *
107  *      Possbile values:
108  *
109  *      "rotate-<degrees>":
110  *              Signals that a drm plane is rotated <degrees> degrees in counter
111  *              clockwise direction.
112  *
113  *      "reflect-<axis>":
114  *              Signals that the contents of a drm plane is reflected along the
115  *              <axis> axis, in the same way as mirroring.
116  *
117  *      reflect-x::
118  *
119  *                      |o |    | o|
120  *                      |  | -> |  |
121  *                      | v|    |v |
122  *
123  *      reflect-y::
124  *
125  *                      |o |    | ^|
126  *                      |  | -> |  |
127  *                      | v|    |o |
128  *
129  * zpos:
130  *      Z position is set up with drm_plane_create_zpos_immutable_property() and
131  *      drm_plane_create_zpos_property(). It controls the visibility of overlapping
132  *      planes. Without this property the primary plane is always below the cursor
133  *      plane, and ordering between all other planes is undefined.
134  *
135  * pixel blend mode:
136  *      Pixel blend mode is set up with drm_plane_create_blend_mode_property().
137  *      It adds a blend mode for alpha blending equation selection, describing
138  *      how the pixels from the current plane are composited with the
139  *      background.
140  *
141  *       Three alpha blending equations are defined:
142  *
143  *       "None":
144  *               Blend formula that ignores the pixel alpha::
145  *
146  *                       out.rgb = plane_alpha * fg.rgb +
147  *                               (1 - plane_alpha) * bg.rgb
148  *
149  *       "Pre-multiplied":
150  *               Blend formula that assumes the pixel color values
151  *               have been already pre-multiplied with the alpha
152  *               channel values::
153  *
154  *                       out.rgb = plane_alpha * fg.rgb +
155  *                               (1 - (plane_alpha * fg.alpha)) * bg.rgb
156  *
157  *       "Coverage":
158  *               Blend formula that assumes the pixel color values have not
159  *               been pre-multiplied and will do so when blending them to the
160  *               background color values::
161  *
162  *                       out.rgb = plane_alpha * fg.alpha * fg.rgb +
163  *                               (1 - (plane_alpha * fg.alpha)) * bg.rgb
164  *
165  *       Using the following symbols:
166  *
167  *       "fg.rgb":
168  *               Each of the RGB component values from the plane's pixel
169  *       "fg.alpha":
170  *               Alpha component value from the plane's pixel. If the plane's
171  *               pixel format has no alpha component, then this is assumed to be
172  *               1.0. In these cases, this property has no effect, as all three
173  *               equations become equivalent.
174  *       "bg.rgb":
175  *               Each of the RGB component values from the background
176  *       "plane_alpha":
177  *               Plane alpha value set by the plane "alpha" property. If the
178  *               plane does not expose the "alpha" property, then this is
179  *               assumed to be 1.0
180  *
181  * Note that all the property extensions described here apply either to the
182  * plane or the CRTC (e.g. for the background color, which currently is not
183  * exposed and assumed to be black).
184  */
185
186 /**
187  * drm_plane_create_alpha_property - create a new alpha property
188  * @plane: drm plane
189  *
190  * This function creates a generic, mutable, alpha property and enables support
191  * for it in the DRM core. It is attached to @plane.
192  *
193  * The alpha property will be allowed to be within the bounds of 0
194  * (transparent) to 0xffff (opaque).
195  *
196  * Returns:
197  * 0 on success, negative error code on failure.
198  */
199 int drm_plane_create_alpha_property(struct drm_plane *plane)
200 {
201         struct drm_property *prop;
202
203         prop = drm_property_create_range(plane->dev, 0, "alpha",
204                                          0, DRM_BLEND_ALPHA_OPAQUE);
205         if (!prop)
206                 return -ENOMEM;
207
208         drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE);
209         plane->alpha_property = prop;
210
211         if (plane->state)
212                 plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE;
213
214         return 0;
215 }
216 EXPORT_SYMBOL(drm_plane_create_alpha_property);
217
218 /**
219  * drm_plane_create_rotation_property - create a new rotation property
220  * @plane: drm plane
221  * @rotation: initial value of the rotation property
222  * @supported_rotations: bitmask of supported rotations and reflections
223  *
224  * This creates a new property with the selected support for transformations.
225  *
226  * Since a rotation by 180° degress is the same as reflecting both along the x
227  * and the y axis the rotation property is somewhat redundant. Drivers can use
228  * drm_rotation_simplify() to normalize values of this property.
229  *
230  * The property exposed to userspace is a bitmask property (see
231  * drm_property_create_bitmask()) called "rotation" and has the following
232  * bitmask enumaration values:
233  *
234  * DRM_MODE_ROTATE_0:
235  *      "rotate-0"
236  * DRM_MODE_ROTATE_90:
237  *      "rotate-90"
238  * DRM_MODE_ROTATE_180:
239  *      "rotate-180"
240  * DRM_MODE_ROTATE_270:
241  *      "rotate-270"
242  * DRM_MODE_REFLECT_X:
243  *      "reflect-x"
244  * DRM_MODE_REFLECT_Y:
245  *      "reflect-y"
246  *
247  * Rotation is the specified amount in degrees in counter clockwise direction,
248  * the X and Y axis are within the source rectangle, i.e.  the X/Y axis before
249  * rotation. After reflection, the rotation is applied to the image sampled from
250  * the source rectangle, before scaling it to fit the destination rectangle.
251  */
252 int drm_plane_create_rotation_property(struct drm_plane *plane,
253                                        unsigned int rotation,
254                                        unsigned int supported_rotations)
255 {
256         static const struct drm_prop_enum_list props[] = {
257                 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1,   "rotate-0" },
258                 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1,  "rotate-90" },
259                 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" },
260                 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" },
261                 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1,  "reflect-x" },
262                 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1,  "reflect-y" },
263         };
264         struct drm_property *prop;
265
266         WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0);
267         WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK));
268         WARN_ON(rotation & ~supported_rotations);
269
270         prop = drm_property_create_bitmask(plane->dev, 0, "rotation",
271                                            props, ARRAY_SIZE(props),
272                                            supported_rotations);
273         if (!prop)
274                 return -ENOMEM;
275
276         drm_object_attach_property(&plane->base, prop, rotation);
277
278         if (plane->state)
279                 plane->state->rotation = rotation;
280
281         plane->rotation_property = prop;
282
283         return 0;
284 }
285 EXPORT_SYMBOL(drm_plane_create_rotation_property);
286
287 /**
288  * drm_rotation_simplify() - Try to simplify the rotation
289  * @rotation: Rotation to be simplified
290  * @supported_rotations: Supported rotations
291  *
292  * Attempt to simplify the rotation to a form that is supported.
293  * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X
294  * one could call this function like this:
295  *
296  * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 |
297  *                       DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 |
298  *                       DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y);
299  *
300  * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of
301  * transforms the hardware supports, this function may not
302  * be able to produce a supported transform, so the caller should
303  * check the result afterwards.
304  */
305 unsigned int drm_rotation_simplify(unsigned int rotation,
306                                    unsigned int supported_rotations)
307 {
308         if (rotation & ~supported_rotations) {
309                 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y;
310                 rotation = (rotation & DRM_MODE_REFLECT_MASK) |
311                            BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1)
312                            % 4);
313         }
314
315         return rotation;
316 }
317 EXPORT_SYMBOL(drm_rotation_simplify);
318
319 /**
320  * drm_plane_create_zpos_property - create mutable zpos property
321  * @plane: drm plane
322  * @zpos: initial value of zpos property
323  * @min: minimal possible value of zpos property
324  * @max: maximal possible value of zpos property
325  *
326  * This function initializes generic mutable zpos property and enables support
327  * for it in drm core. Drivers can then attach this property to planes to enable
328  * support for configurable planes arrangement during blending operation.
329  * Drivers that attach a mutable zpos property to any plane should call the
330  * drm_atomic_normalize_zpos() helper during their implementation of
331  * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos
332  * values and store them in &drm_plane_state.normalized_zpos. Usually min
333  * should be set to 0 and max to maximal number of planes for given crtc - 1.
334  *
335  * If zpos of some planes cannot be changed (like fixed background or
336  * cursor/topmost planes), driver should adjust min/max values and assign those
337  * planes immutable zpos property with lower or higher values (for more
338  * information, see drm_plane_create_zpos_immutable_property() function). In such
339  * case driver should also assign proper initial zpos values for all planes in
340  * its plane_reset() callback, so the planes will be always sorted properly.
341  *
342  * See also drm_atomic_normalize_zpos().
343  *
344  * The property exposed to userspace is called "zpos".
345  *
346  * Returns:
347  * Zero on success, negative errno on failure.
348  */
349 int drm_plane_create_zpos_property(struct drm_plane *plane,
350                                    unsigned int zpos,
351                                    unsigned int min, unsigned int max)
352 {
353         struct drm_property *prop;
354
355         prop = drm_property_create_range(plane->dev, 0, "zpos", min, max);
356         if (!prop)
357                 return -ENOMEM;
358
359         drm_object_attach_property(&plane->base, prop, zpos);
360
361         plane->zpos_property = prop;
362
363         if (plane->state) {
364                 plane->state->zpos = zpos;
365                 plane->state->normalized_zpos = zpos;
366         }
367
368         return 0;
369 }
370 EXPORT_SYMBOL(drm_plane_create_zpos_property);
371
372 /**
373  * drm_plane_create_zpos_immutable_property - create immuttable zpos property
374  * @plane: drm plane
375  * @zpos: value of zpos property
376  *
377  * This function initializes generic immutable zpos property and enables
378  * support for it in drm core. Using this property driver lets userspace
379  * to get the arrangement of the planes for blending operation and notifies
380  * it that the hardware (or driver) doesn't support changing of the planes'
381  * order. For mutable zpos see drm_plane_create_zpos_property().
382  *
383  * The property exposed to userspace is called "zpos".
384  *
385  * Returns:
386  * Zero on success, negative errno on failure.
387  */
388 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane,
389                                              unsigned int zpos)
390 {
391         struct drm_property *prop;
392
393         prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE,
394                                          "zpos", zpos, zpos);
395         if (!prop)
396                 return -ENOMEM;
397
398         drm_object_attach_property(&plane->base, prop, zpos);
399
400         plane->zpos_property = prop;
401
402         if (plane->state) {
403                 plane->state->zpos = zpos;
404                 plane->state->normalized_zpos = zpos;
405         }
406
407         return 0;
408 }
409 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property);
410
411 static int drm_atomic_state_zpos_cmp(const void *a, const void *b)
412 {
413         const struct drm_plane_state *sa = *(struct drm_plane_state **)a;
414         const struct drm_plane_state *sb = *(struct drm_plane_state **)b;
415
416         if (sa->zpos != sb->zpos)
417                 return sa->zpos - sb->zpos;
418         else
419                 return sa->plane->base.id - sb->plane->base.id;
420 }
421
422 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc,
423                                           struct drm_crtc_state *crtc_state)
424 {
425         struct drm_atomic_state *state = crtc_state->state;
426         struct drm_device *dev = crtc->dev;
427         int total_planes = dev->mode_config.num_total_plane;
428         struct drm_plane_state **states;
429         struct drm_plane *plane;
430         int i, n = 0;
431         int ret = 0;
432
433         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n",
434                          crtc->base.id, crtc->name);
435
436         states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL);
437         if (!states)
438                 return -ENOMEM;
439
440         /*
441          * Normalization process might create new states for planes which
442          * normalized_zpos has to be recalculated.
443          */
444         drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) {
445                 struct drm_plane_state *plane_state =
446                         drm_atomic_get_plane_state(state, plane);
447                 if (IS_ERR(plane_state)) {
448                         ret = PTR_ERR(plane_state);
449                         goto done;
450                 }
451                 states[n++] = plane_state;
452                 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n",
453                                  plane->base.id, plane->name,
454                                  plane_state->zpos);
455         }
456
457         sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL);
458
459         for (i = 0; i < n; i++) {
460                 plane = states[i]->plane;
461
462                 states[i]->normalized_zpos = i;
463                 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n",
464                                  plane->base.id, plane->name, i);
465         }
466         crtc_state->zpos_changed = true;
467
468 done:
469         kfree(states);
470         return ret;
471 }
472
473 /**
474  * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs
475  * @dev: DRM device
476  * @state: atomic state of DRM device
477  *
478  * This function calculates normalized zpos value for all modified planes in
479  * the provided atomic state of DRM device.
480  *
481  * For every CRTC this function checks new states of all planes assigned to
482  * it and calculates normalized zpos value for these planes. Planes are compared
483  * first by their zpos values, then by plane id (if zpos is equal). The plane
484  * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos
485  * is then filled with unique values from 0 to number of active planes in crtc
486  * minus one.
487  *
488  * RETURNS
489  * Zero for success or -errno
490  */
491 int drm_atomic_normalize_zpos(struct drm_device *dev,
492                               struct drm_atomic_state *state)
493 {
494         struct drm_crtc *crtc;
495         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
496         struct drm_plane *plane;
497         struct drm_plane_state *old_plane_state, *new_plane_state;
498         int i, ret = 0;
499
500         for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
501                 crtc = new_plane_state->crtc;
502                 if (!crtc)
503                         continue;
504                 if (old_plane_state->zpos != new_plane_state->zpos) {
505                         new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
506                         new_crtc_state->zpos_changed = true;
507                 }
508         }
509
510         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
511                 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask ||
512                     new_crtc_state->zpos_changed) {
513                         ret = drm_atomic_helper_crtc_normalize_zpos(crtc,
514                                                                     new_crtc_state);
515                         if (ret)
516                                 return ret;
517                 }
518         }
519         return 0;
520 }
521 EXPORT_SYMBOL(drm_atomic_normalize_zpos);
522
523 /**
524  * drm_plane_create_blend_mode_property - create a new blend mode property
525  * @plane: drm plane
526  * @supported_modes: bitmask of supported modes, must include
527  *                   BIT(DRM_MODE_BLEND_PREMULTI). Current DRM assumption is
528  *                   that alpha is premultiplied, and old userspace can break if
529  *                   the property defaults to anything else.
530  *
531  * This creates a new property describing the blend mode.
532  *
533  * The property exposed to userspace is an enumeration property (see
534  * drm_property_create_enum()) called "pixel blend mode" and has the
535  * following enumeration values:
536  *
537  * "None":
538  *      Blend formula that ignores the pixel alpha.
539  *
540  * "Pre-multiplied":
541  *      Blend formula that assumes the pixel color values have been already
542  *      pre-multiplied with the alpha channel values.
543  *
544  * "Coverage":
545  *      Blend formula that assumes the pixel color values have not been
546  *      pre-multiplied and will do so when blending them to the background color
547  *      values.
548  *
549  * RETURNS:
550  * Zero for success or -errno
551  */
552 int drm_plane_create_blend_mode_property(struct drm_plane *plane,
553                                          unsigned int supported_modes)
554 {
555         struct drm_device *dev = plane->dev;
556         struct drm_property *prop;
557         static const struct drm_prop_enum_list props[] = {
558                 { DRM_MODE_BLEND_PIXEL_NONE, "None" },
559                 { DRM_MODE_BLEND_PREMULTI, "Pre-multiplied" },
560                 { DRM_MODE_BLEND_COVERAGE, "Coverage" },
561         };
562         unsigned int valid_mode_mask = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
563                                        BIT(DRM_MODE_BLEND_PREMULTI)   |
564                                        BIT(DRM_MODE_BLEND_COVERAGE);
565         int i;
566
567         if (WARN_ON((supported_modes & ~valid_mode_mask) ||
568                     ((supported_modes & BIT(DRM_MODE_BLEND_PREMULTI)) == 0)))
569                 return -EINVAL;
570
571         prop = drm_property_create(dev, DRM_MODE_PROP_ENUM,
572                                    "pixel blend mode",
573                                    hweight32(supported_modes));
574         if (!prop)
575                 return -ENOMEM;
576
577         for (i = 0; i < ARRAY_SIZE(props); i++) {
578                 int ret;
579
580                 if (!(BIT(props[i].type) & supported_modes))
581                         continue;
582
583                 ret = drm_property_add_enum(prop, props[i].type,
584                                             props[i].name);
585
586                 if (ret) {
587                         drm_property_destroy(dev, prop);
588
589                         return ret;
590                 }
591         }
592
593         drm_object_attach_property(&plane->base, prop, DRM_MODE_BLEND_PREMULTI);
594         plane->blend_mode_property = prop;
595
596         return 0;
597 }
598 EXPORT_SYMBOL(drm_plane_create_blend_mode_property);