]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/display/intel_display.c
e56a75c070437d8f84f18620de65fe1b76581b14
[linux.git] / drivers / gpu / drm / i915 / display / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fourcc.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_rect.h>
44 #include <drm/i915_drm.h>
45
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dsi.h"
50 #include "display/intel_dvo.h"
51 #include "display/intel_gmbus.h"
52 #include "display/intel_hdmi.h"
53 #include "display/intel_lvds.h"
54 #include "display/intel_sdvo.h"
55 #include "display/intel_tv.h"
56 #include "display/intel_vdsc.h"
57
58 #include "gt/intel_rps.h"
59
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_acpi.h"
63 #include "intel_atomic.h"
64 #include "intel_atomic_plane.h"
65 #include "intel_bw.h"
66 #include "intel_cdclk.h"
67 #include "intel_color.h"
68 #include "intel_display_types.h"
69 #include "intel_fbc.h"
70 #include "intel_fbdev.h"
71 #include "intel_fifo_underrun.h"
72 #include "intel_frontbuffer.h"
73 #include "intel_hdcp.h"
74 #include "intel_hotplug.h"
75 #include "intel_overlay.h"
76 #include "intel_pipe_crc.h"
77 #include "intel_pm.h"
78 #include "intel_psr.h"
79 #include "intel_quirks.h"
80 #include "intel_sideband.h"
81 #include "intel_sprite.h"
82 #include "intel_tc.h"
83 #include "intel_vga.h"
84
85 /* Primary plane formats for gen <= 3 */
86 static const u32 i8xx_primary_formats[] = {
87         DRM_FORMAT_C8,
88         DRM_FORMAT_RGB565,
89         DRM_FORMAT_XRGB1555,
90         DRM_FORMAT_XRGB8888,
91 };
92
93 /* Primary plane formats for ivb (no fp16 due to hw issue) */
94 static const u32 ivb_primary_formats[] = {
95         DRM_FORMAT_C8,
96         DRM_FORMAT_RGB565,
97         DRM_FORMAT_XRGB8888,
98         DRM_FORMAT_XBGR8888,
99         DRM_FORMAT_XRGB2101010,
100         DRM_FORMAT_XBGR2101010,
101 };
102
103 /* Primary plane formats for gen >= 4, except ivb */
104 static const u32 i965_primary_formats[] = {
105         DRM_FORMAT_C8,
106         DRM_FORMAT_RGB565,
107         DRM_FORMAT_XRGB8888,
108         DRM_FORMAT_XBGR8888,
109         DRM_FORMAT_XRGB2101010,
110         DRM_FORMAT_XBGR2101010,
111         DRM_FORMAT_XBGR16161616F,
112 };
113
114 static const u64 i9xx_format_modifiers[] = {
115         I915_FORMAT_MOD_X_TILED,
116         DRM_FORMAT_MOD_LINEAR,
117         DRM_FORMAT_MOD_INVALID
118 };
119
120 /* Cursor formats */
121 static const u32 intel_cursor_formats[] = {
122         DRM_FORMAT_ARGB8888,
123 };
124
125 static const u64 cursor_format_modifiers[] = {
126         DRM_FORMAT_MOD_LINEAR,
127         DRM_FORMAT_MOD_INVALID
128 };
129
130 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
131                                 struct intel_crtc_state *pipe_config);
132 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
133                                    struct intel_crtc_state *pipe_config);
134
135 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
136                                   struct drm_i915_gem_object *obj,
137                                   struct drm_mode_fb_cmd2 *mode_cmd);
138 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
139 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
140 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
141                                          const struct intel_link_m_n *m_n,
142                                          const struct intel_link_m_n *m2_n2);
143 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
144 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state);
145 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state);
146 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
147 static void vlv_prepare_pll(struct intel_crtc *crtc,
148                             const struct intel_crtc_state *pipe_config);
149 static void chv_prepare_pll(struct intel_crtc *crtc,
150                             const struct intel_crtc_state *pipe_config);
151 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
152                                     struct intel_crtc_state *crtc_state);
153 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state);
154 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state);
155 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state);
156 static void intel_modeset_setup_hw_state(struct drm_device *dev,
157                                          struct drm_modeset_acquire_ctx *ctx);
158 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
159
160 struct intel_limit {
161         struct {
162                 int min, max;
163         } dot, vco, n, m, m1, m2, p, p1;
164
165         struct {
166                 int dot_limit;
167                 int p2_slow, p2_fast;
168         } p2;
169 };
170
171 /* returns HPLL frequency in kHz */
172 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
173 {
174         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
175
176         /* Obtain SKU information */
177         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
178                 CCK_FUSE_HPLL_FREQ_MASK;
179
180         return vco_freq[hpll_freq] * 1000;
181 }
182
183 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
184                       const char *name, u32 reg, int ref_freq)
185 {
186         u32 val;
187         int divider;
188
189         val = vlv_cck_read(dev_priv, reg);
190         divider = val & CCK_FREQUENCY_VALUES;
191
192         WARN((val & CCK_FREQUENCY_STATUS) !=
193              (divider << CCK_FREQUENCY_STATUS_SHIFT),
194              "%s change in progress\n", name);
195
196         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
197 }
198
199 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
200                            const char *name, u32 reg)
201 {
202         int hpll;
203
204         vlv_cck_get(dev_priv);
205
206         if (dev_priv->hpll_freq == 0)
207                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
208
209         hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
210
211         vlv_cck_put(dev_priv);
212
213         return hpll;
214 }
215
216 static void intel_update_czclk(struct drm_i915_private *dev_priv)
217 {
218         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
219                 return;
220
221         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
222                                                       CCK_CZ_CLOCK_CONTROL);
223
224         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
225 }
226
227 static inline u32 /* units of 100MHz */
228 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
229                     const struct intel_crtc_state *pipe_config)
230 {
231         if (HAS_DDI(dev_priv))
232                 return pipe_config->port_clock; /* SPLL */
233         else
234                 return dev_priv->fdi_pll_freq;
235 }
236
237 static const struct intel_limit intel_limits_i8xx_dac = {
238         .dot = { .min = 25000, .max = 350000 },
239         .vco = { .min = 908000, .max = 1512000 },
240         .n = { .min = 2, .max = 16 },
241         .m = { .min = 96, .max = 140 },
242         .m1 = { .min = 18, .max = 26 },
243         .m2 = { .min = 6, .max = 16 },
244         .p = { .min = 4, .max = 128 },
245         .p1 = { .min = 2, .max = 33 },
246         .p2 = { .dot_limit = 165000,
247                 .p2_slow = 4, .p2_fast = 2 },
248 };
249
250 static const struct intel_limit intel_limits_i8xx_dvo = {
251         .dot = { .min = 25000, .max = 350000 },
252         .vco = { .min = 908000, .max = 1512000 },
253         .n = { .min = 2, .max = 16 },
254         .m = { .min = 96, .max = 140 },
255         .m1 = { .min = 18, .max = 26 },
256         .m2 = { .min = 6, .max = 16 },
257         .p = { .min = 4, .max = 128 },
258         .p1 = { .min = 2, .max = 33 },
259         .p2 = { .dot_limit = 165000,
260                 .p2_slow = 4, .p2_fast = 4 },
261 };
262
263 static const struct intel_limit intel_limits_i8xx_lvds = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 908000, .max = 1512000 },
266         .n = { .min = 2, .max = 16 },
267         .m = { .min = 96, .max = 140 },
268         .m1 = { .min = 18, .max = 26 },
269         .m2 = { .min = 6, .max = 16 },
270         .p = { .min = 4, .max = 128 },
271         .p1 = { .min = 1, .max = 6 },
272         .p2 = { .dot_limit = 165000,
273                 .p2_slow = 14, .p2_fast = 7 },
274 };
275
276 static const struct intel_limit intel_limits_i9xx_sdvo = {
277         .dot = { .min = 20000, .max = 400000 },
278         .vco = { .min = 1400000, .max = 2800000 },
279         .n = { .min = 1, .max = 6 },
280         .m = { .min = 70, .max = 120 },
281         .m1 = { .min = 8, .max = 18 },
282         .m2 = { .min = 3, .max = 7 },
283         .p = { .min = 5, .max = 80 },
284         .p1 = { .min = 1, .max = 8 },
285         .p2 = { .dot_limit = 200000,
286                 .p2_slow = 10, .p2_fast = 5 },
287 };
288
289 static const struct intel_limit intel_limits_i9xx_lvds = {
290         .dot = { .min = 20000, .max = 400000 },
291         .vco = { .min = 1400000, .max = 2800000 },
292         .n = { .min = 1, .max = 6 },
293         .m = { .min = 70, .max = 120 },
294         .m1 = { .min = 8, .max = 18 },
295         .m2 = { .min = 3, .max = 7 },
296         .p = { .min = 7, .max = 98 },
297         .p1 = { .min = 1, .max = 8 },
298         .p2 = { .dot_limit = 112000,
299                 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302
303 static const struct intel_limit intel_limits_g4x_sdvo = {
304         .dot = { .min = 25000, .max = 270000 },
305         .vco = { .min = 1750000, .max = 3500000},
306         .n = { .min = 1, .max = 4 },
307         .m = { .min = 104, .max = 138 },
308         .m1 = { .min = 17, .max = 23 },
309         .m2 = { .min = 5, .max = 11 },
310         .p = { .min = 10, .max = 30 },
311         .p1 = { .min = 1, .max = 3},
312         .p2 = { .dot_limit = 270000,
313                 .p2_slow = 10,
314                 .p2_fast = 10
315         },
316 };
317
318 static const struct intel_limit intel_limits_g4x_hdmi = {
319         .dot = { .min = 22000, .max = 400000 },
320         .vco = { .min = 1750000, .max = 3500000},
321         .n = { .min = 1, .max = 4 },
322         .m = { .min = 104, .max = 138 },
323         .m1 = { .min = 16, .max = 23 },
324         .m2 = { .min = 5, .max = 11 },
325         .p = { .min = 5, .max = 80 },
326         .p1 = { .min = 1, .max = 8},
327         .p2 = { .dot_limit = 165000,
328                 .p2_slow = 10, .p2_fast = 5 },
329 };
330
331 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
332         .dot = { .min = 20000, .max = 115000 },
333         .vco = { .min = 1750000, .max = 3500000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 104, .max = 138 },
336         .m1 = { .min = 17, .max = 23 },
337         .m2 = { .min = 5, .max = 11 },
338         .p = { .min = 28, .max = 112 },
339         .p1 = { .min = 2, .max = 8 },
340         .p2 = { .dot_limit = 0,
341                 .p2_slow = 14, .p2_fast = 14
342         },
343 };
344
345 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
346         .dot = { .min = 80000, .max = 224000 },
347         .vco = { .min = 1750000, .max = 3500000 },
348         .n = { .min = 1, .max = 3 },
349         .m = { .min = 104, .max = 138 },
350         .m1 = { .min = 17, .max = 23 },
351         .m2 = { .min = 5, .max = 11 },
352         .p = { .min = 14, .max = 42 },
353         .p1 = { .min = 2, .max = 6 },
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 7, .p2_fast = 7
356         },
357 };
358
359 static const struct intel_limit intel_limits_pineview_sdvo = {
360         .dot = { .min = 20000, .max = 400000},
361         .vco = { .min = 1700000, .max = 3500000 },
362         /* Pineview's Ncounter is a ring counter */
363         .n = { .min = 3, .max = 6 },
364         .m = { .min = 2, .max = 256 },
365         /* Pineview only has one combined m divider, which we treat as m2. */
366         .m1 = { .min = 0, .max = 0 },
367         .m2 = { .min = 0, .max = 254 },
368         .p = { .min = 5, .max = 80 },
369         .p1 = { .min = 1, .max = 8 },
370         .p2 = { .dot_limit = 200000,
371                 .p2_slow = 10, .p2_fast = 5 },
372 };
373
374 static const struct intel_limit intel_limits_pineview_lvds = {
375         .dot = { .min = 20000, .max = 400000 },
376         .vco = { .min = 1700000, .max = 3500000 },
377         .n = { .min = 3, .max = 6 },
378         .m = { .min = 2, .max = 256 },
379         .m1 = { .min = 0, .max = 0 },
380         .m2 = { .min = 0, .max = 254 },
381         .p = { .min = 7, .max = 112 },
382         .p1 = { .min = 1, .max = 8 },
383         .p2 = { .dot_limit = 112000,
384                 .p2_slow = 14, .p2_fast = 14 },
385 };
386
387 /* Ironlake / Sandybridge
388  *
389  * We calculate clock using (register_value + 2) for N/M1/M2, so here
390  * the range value for them is (actual_value - 2).
391  */
392 static const struct intel_limit intel_limits_ironlake_dac = {
393         .dot = { .min = 25000, .max = 350000 },
394         .vco = { .min = 1760000, .max = 3510000 },
395         .n = { .min = 1, .max = 5 },
396         .m = { .min = 79, .max = 127 },
397         .m1 = { .min = 12, .max = 22 },
398         .m2 = { .min = 5, .max = 9 },
399         .p = { .min = 5, .max = 80 },
400         .p1 = { .min = 1, .max = 8 },
401         .p2 = { .dot_limit = 225000,
402                 .p2_slow = 10, .p2_fast = 5 },
403 };
404
405 static const struct intel_limit intel_limits_ironlake_single_lvds = {
406         .dot = { .min = 25000, .max = 350000 },
407         .vco = { .min = 1760000, .max = 3510000 },
408         .n = { .min = 1, .max = 3 },
409         .m = { .min = 79, .max = 118 },
410         .m1 = { .min = 12, .max = 22 },
411         .m2 = { .min = 5, .max = 9 },
412         .p = { .min = 28, .max = 112 },
413         .p1 = { .min = 2, .max = 8 },
414         .p2 = { .dot_limit = 225000,
415                 .p2_slow = 14, .p2_fast = 14 },
416 };
417
418 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
419         .dot = { .min = 25000, .max = 350000 },
420         .vco = { .min = 1760000, .max = 3510000 },
421         .n = { .min = 1, .max = 3 },
422         .m = { .min = 79, .max = 127 },
423         .m1 = { .min = 12, .max = 22 },
424         .m2 = { .min = 5, .max = 9 },
425         .p = { .min = 14, .max = 56 },
426         .p1 = { .min = 2, .max = 8 },
427         .p2 = { .dot_limit = 225000,
428                 .p2_slow = 7, .p2_fast = 7 },
429 };
430
431 /* LVDS 100mhz refclk limits. */
432 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
433         .dot = { .min = 25000, .max = 350000 },
434         .vco = { .min = 1760000, .max = 3510000 },
435         .n = { .min = 1, .max = 2 },
436         .m = { .min = 79, .max = 126 },
437         .m1 = { .min = 12, .max = 22 },
438         .m2 = { .min = 5, .max = 9 },
439         .p = { .min = 28, .max = 112 },
440         .p1 = { .min = 2, .max = 8 },
441         .p2 = { .dot_limit = 225000,
442                 .p2_slow = 14, .p2_fast = 14 },
443 };
444
445 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
446         .dot = { .min = 25000, .max = 350000 },
447         .vco = { .min = 1760000, .max = 3510000 },
448         .n = { .min = 1, .max = 3 },
449         .m = { .min = 79, .max = 126 },
450         .m1 = { .min = 12, .max = 22 },
451         .m2 = { .min = 5, .max = 9 },
452         .p = { .min = 14, .max = 42 },
453         .p1 = { .min = 2, .max = 6 },
454         .p2 = { .dot_limit = 225000,
455                 .p2_slow = 7, .p2_fast = 7 },
456 };
457
458 static const struct intel_limit intel_limits_vlv = {
459          /*
460           * These are the data rate limits (measured in fast clocks)
461           * since those are the strictest limits we have. The fast
462           * clock and actual rate limits are more relaxed, so checking
463           * them would make no difference.
464           */
465         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
466         .vco = { .min = 4000000, .max = 6000000 },
467         .n = { .min = 1, .max = 7 },
468         .m1 = { .min = 2, .max = 3 },
469         .m2 = { .min = 11, .max = 156 },
470         .p1 = { .min = 2, .max = 3 },
471         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
472 };
473
474 static const struct intel_limit intel_limits_chv = {
475         /*
476          * These are the data rate limits (measured in fast clocks)
477          * since those are the strictest limits we have.  The fast
478          * clock and actual rate limits are more relaxed, so checking
479          * them would make no difference.
480          */
481         .dot = { .min = 25000 * 5, .max = 540000 * 5},
482         .vco = { .min = 4800000, .max = 6480000 },
483         .n = { .min = 1, .max = 1 },
484         .m1 = { .min = 2, .max = 2 },
485         .m2 = { .min = 24 << 22, .max = 175 << 22 },
486         .p1 = { .min = 2, .max = 4 },
487         .p2 = { .p2_slow = 1, .p2_fast = 14 },
488 };
489
490 static const struct intel_limit intel_limits_bxt = {
491         /* FIXME: find real dot limits */
492         .dot = { .min = 0, .max = INT_MAX },
493         .vco = { .min = 4800000, .max = 6700000 },
494         .n = { .min = 1, .max = 1 },
495         .m1 = { .min = 2, .max = 2 },
496         /* FIXME: find real m2 limits */
497         .m2 = { .min = 2 << 22, .max = 255 << 22 },
498         .p1 = { .min = 2, .max = 4 },
499         .p2 = { .p2_slow = 1, .p2_fast = 20 },
500 };
501
502 /* WA Display #0827: Gen9:all */
503 static void
504 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
505 {
506         if (enable)
507                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
508                            I915_READ(CLKGATE_DIS_PSL(pipe)) |
509                            DUPS1_GATING_DIS | DUPS2_GATING_DIS);
510         else
511                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
512                            I915_READ(CLKGATE_DIS_PSL(pipe)) &
513                            ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
514 }
515
516 /* Wa_2006604312:icl */
517 static void
518 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
519                        bool enable)
520 {
521         if (enable)
522                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
523                            I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
524         else
525                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
526                            I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
527 }
528
529 static bool
530 needs_modeset(const struct intel_crtc_state *state)
531 {
532         return drm_atomic_crtc_needs_modeset(&state->base);
533 }
534
535 bool
536 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
537 {
538         return (crtc_state->master_transcoder != INVALID_TRANSCODER ||
539                 crtc_state->sync_mode_slaves_mask);
540 }
541
542 static bool
543 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
544 {
545         return (crtc_state->master_transcoder == INVALID_TRANSCODER &&
546                 crtc_state->sync_mode_slaves_mask);
547 }
548
549 /*
550  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
551  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
552  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
553  * The helpers' return value is the rate of the clock that is fed to the
554  * display engine's pipe which can be the above fast dot clock rate or a
555  * divided-down version of it.
556  */
557 /* m1 is reserved as 0 in Pineview, n is a ring counter */
558 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
559 {
560         clock->m = clock->m2 + 2;
561         clock->p = clock->p1 * clock->p2;
562         if (WARN_ON(clock->n == 0 || clock->p == 0))
563                 return 0;
564         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
565         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
566
567         return clock->dot;
568 }
569
570 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
571 {
572         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
573 }
574
575 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
576 {
577         clock->m = i9xx_dpll_compute_m(clock);
578         clock->p = clock->p1 * clock->p2;
579         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
580                 return 0;
581         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
582         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
583
584         return clock->dot;
585 }
586
587 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
588 {
589         clock->m = clock->m1 * clock->m2;
590         clock->p = clock->p1 * clock->p2;
591         if (WARN_ON(clock->n == 0 || clock->p == 0))
592                 return 0;
593         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
594         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
595
596         return clock->dot / 5;
597 }
598
599 int chv_calc_dpll_params(int refclk, struct dpll *clock)
600 {
601         clock->m = clock->m1 * clock->m2;
602         clock->p = clock->p1 * clock->p2;
603         if (WARN_ON(clock->n == 0 || clock->p == 0))
604                 return 0;
605         clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
606                                            clock->n << 22);
607         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
608
609         return clock->dot / 5;
610 }
611
612 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
613
614 /*
615  * Returns whether the given set of divisors are valid for a given refclk with
616  * the given connectors.
617  */
618 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
619                                const struct intel_limit *limit,
620                                const struct dpll *clock)
621 {
622         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
623                 INTELPllInvalid("n out of range\n");
624         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
625                 INTELPllInvalid("p1 out of range\n");
626         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
627                 INTELPllInvalid("m2 out of range\n");
628         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
629                 INTELPllInvalid("m1 out of range\n");
630
631         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
632             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
633                 if (clock->m1 <= clock->m2)
634                         INTELPllInvalid("m1 <= m2\n");
635
636         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
637             !IS_GEN9_LP(dev_priv)) {
638                 if (clock->p < limit->p.min || limit->p.max < clock->p)
639                         INTELPllInvalid("p out of range\n");
640                 if (clock->m < limit->m.min || limit->m.max < clock->m)
641                         INTELPllInvalid("m out of range\n");
642         }
643
644         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
645                 INTELPllInvalid("vco out of range\n");
646         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
647          * connector, etc., rather than just a single range.
648          */
649         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
650                 INTELPllInvalid("dot out of range\n");
651
652         return true;
653 }
654
655 static int
656 i9xx_select_p2_div(const struct intel_limit *limit,
657                    const struct intel_crtc_state *crtc_state,
658                    int target)
659 {
660         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
661
662         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
663                 /*
664                  * For LVDS just rely on its current settings for dual-channel.
665                  * We haven't figured out how to reliably set up different
666                  * single/dual channel state, if we even can.
667                  */
668                 if (intel_is_dual_link_lvds(dev_priv))
669                         return limit->p2.p2_fast;
670                 else
671                         return limit->p2.p2_slow;
672         } else {
673                 if (target < limit->p2.dot_limit)
674                         return limit->p2.p2_slow;
675                 else
676                         return limit->p2.p2_fast;
677         }
678 }
679
680 /*
681  * Returns a set of divisors for the desired target clock with the given
682  * refclk, or FALSE.  The returned values represent the clock equation:
683  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
684  *
685  * Target and reference clocks are specified in kHz.
686  *
687  * If match_clock is provided, then best_clock P divider must match the P
688  * divider from @match_clock used for LVDS downclocking.
689  */
690 static bool
691 i9xx_find_best_dpll(const struct intel_limit *limit,
692                     struct intel_crtc_state *crtc_state,
693                     int target, int refclk, struct dpll *match_clock,
694                     struct dpll *best_clock)
695 {
696         struct drm_device *dev = crtc_state->base.crtc->dev;
697         struct dpll clock;
698         int err = target;
699
700         memset(best_clock, 0, sizeof(*best_clock));
701
702         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
703
704         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
705              clock.m1++) {
706                 for (clock.m2 = limit->m2.min;
707                      clock.m2 <= limit->m2.max; clock.m2++) {
708                         if (clock.m2 >= clock.m1)
709                                 break;
710                         for (clock.n = limit->n.min;
711                              clock.n <= limit->n.max; clock.n++) {
712                                 for (clock.p1 = limit->p1.min;
713                                         clock.p1 <= limit->p1.max; clock.p1++) {
714                                         int this_err;
715
716                                         i9xx_calc_dpll_params(refclk, &clock);
717                                         if (!intel_PLL_is_valid(to_i915(dev),
718                                                                 limit,
719                                                                 &clock))
720                                                 continue;
721                                         if (match_clock &&
722                                             clock.p != match_clock->p)
723                                                 continue;
724
725                                         this_err = abs(clock.dot - target);
726                                         if (this_err < err) {
727                                                 *best_clock = clock;
728                                                 err = this_err;
729                                         }
730                                 }
731                         }
732                 }
733         }
734
735         return (err != target);
736 }
737
738 /*
739  * Returns a set of divisors for the desired target clock with the given
740  * refclk, or FALSE.  The returned values represent the clock equation:
741  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
742  *
743  * Target and reference clocks are specified in kHz.
744  *
745  * If match_clock is provided, then best_clock P divider must match the P
746  * divider from @match_clock used for LVDS downclocking.
747  */
748 static bool
749 pnv_find_best_dpll(const struct intel_limit *limit,
750                    struct intel_crtc_state *crtc_state,
751                    int target, int refclk, struct dpll *match_clock,
752                    struct dpll *best_clock)
753 {
754         struct drm_device *dev = crtc_state->base.crtc->dev;
755         struct dpll clock;
756         int err = target;
757
758         memset(best_clock, 0, sizeof(*best_clock));
759
760         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
761
762         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
763              clock.m1++) {
764                 for (clock.m2 = limit->m2.min;
765                      clock.m2 <= limit->m2.max; clock.m2++) {
766                         for (clock.n = limit->n.min;
767                              clock.n <= limit->n.max; clock.n++) {
768                                 for (clock.p1 = limit->p1.min;
769                                         clock.p1 <= limit->p1.max; clock.p1++) {
770                                         int this_err;
771
772                                         pnv_calc_dpll_params(refclk, &clock);
773                                         if (!intel_PLL_is_valid(to_i915(dev),
774                                                                 limit,
775                                                                 &clock))
776                                                 continue;
777                                         if (match_clock &&
778                                             clock.p != match_clock->p)
779                                                 continue;
780
781                                         this_err = abs(clock.dot - target);
782                                         if (this_err < err) {
783                                                 *best_clock = clock;
784                                                 err = this_err;
785                                         }
786                                 }
787                         }
788                 }
789         }
790
791         return (err != target);
792 }
793
794 /*
795  * Returns a set of divisors for the desired target clock with the given
796  * refclk, or FALSE.  The returned values represent the clock equation:
797  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
798  *
799  * Target and reference clocks are specified in kHz.
800  *
801  * If match_clock is provided, then best_clock P divider must match the P
802  * divider from @match_clock used for LVDS downclocking.
803  */
804 static bool
805 g4x_find_best_dpll(const struct intel_limit *limit,
806                    struct intel_crtc_state *crtc_state,
807                    int target, int refclk, struct dpll *match_clock,
808                    struct dpll *best_clock)
809 {
810         struct drm_device *dev = crtc_state->base.crtc->dev;
811         struct dpll clock;
812         int max_n;
813         bool found = false;
814         /* approximately equals target * 0.00585 */
815         int err_most = (target >> 8) + (target >> 9);
816
817         memset(best_clock, 0, sizeof(*best_clock));
818
819         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
820
821         max_n = limit->n.max;
822         /* based on hardware requirement, prefer smaller n to precision */
823         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
824                 /* based on hardware requirement, prefere larger m1,m2 */
825                 for (clock.m1 = limit->m1.max;
826                      clock.m1 >= limit->m1.min; clock.m1--) {
827                         for (clock.m2 = limit->m2.max;
828                              clock.m2 >= limit->m2.min; clock.m2--) {
829                                 for (clock.p1 = limit->p1.max;
830                                      clock.p1 >= limit->p1.min; clock.p1--) {
831                                         int this_err;
832
833                                         i9xx_calc_dpll_params(refclk, &clock);
834                                         if (!intel_PLL_is_valid(to_i915(dev),
835                                                                 limit,
836                                                                 &clock))
837                                                 continue;
838
839                                         this_err = abs(clock.dot - target);
840                                         if (this_err < err_most) {
841                                                 *best_clock = clock;
842                                                 err_most = this_err;
843                                                 max_n = clock.n;
844                                                 found = true;
845                                         }
846                                 }
847                         }
848                 }
849         }
850         return found;
851 }
852
853 /*
854  * Check if the calculated PLL configuration is more optimal compared to the
855  * best configuration and error found so far. Return the calculated error.
856  */
857 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
858                                const struct dpll *calculated_clock,
859                                const struct dpll *best_clock,
860                                unsigned int best_error_ppm,
861                                unsigned int *error_ppm)
862 {
863         /*
864          * For CHV ignore the error and consider only the P value.
865          * Prefer a bigger P value based on HW requirements.
866          */
867         if (IS_CHERRYVIEW(to_i915(dev))) {
868                 *error_ppm = 0;
869
870                 return calculated_clock->p > best_clock->p;
871         }
872
873         if (WARN_ON_ONCE(!target_freq))
874                 return false;
875
876         *error_ppm = div_u64(1000000ULL *
877                                 abs(target_freq - calculated_clock->dot),
878                              target_freq);
879         /*
880          * Prefer a better P value over a better (smaller) error if the error
881          * is small. Ensure this preference for future configurations too by
882          * setting the error to 0.
883          */
884         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
885                 *error_ppm = 0;
886
887                 return true;
888         }
889
890         return *error_ppm + 10 < best_error_ppm;
891 }
892
893 /*
894  * Returns a set of divisors for the desired target clock with the given
895  * refclk, or FALSE.  The returned values represent the clock equation:
896  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
897  */
898 static bool
899 vlv_find_best_dpll(const struct intel_limit *limit,
900                    struct intel_crtc_state *crtc_state,
901                    int target, int refclk, struct dpll *match_clock,
902                    struct dpll *best_clock)
903 {
904         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
905         struct drm_device *dev = crtc->base.dev;
906         struct dpll clock;
907         unsigned int bestppm = 1000000;
908         /* min update 19.2 MHz */
909         int max_n = min(limit->n.max, refclk / 19200);
910         bool found = false;
911
912         target *= 5; /* fast clock */
913
914         memset(best_clock, 0, sizeof(*best_clock));
915
916         /* based on hardware requirement, prefer smaller n to precision */
917         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
918                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
919                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
920                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
921                                 clock.p = clock.p1 * clock.p2;
922                                 /* based on hardware requirement, prefer bigger m1,m2 values */
923                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
924                                         unsigned int ppm;
925
926                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
927                                                                      refclk * clock.m1);
928
929                                         vlv_calc_dpll_params(refclk, &clock);
930
931                                         if (!intel_PLL_is_valid(to_i915(dev),
932                                                                 limit,
933                                                                 &clock))
934                                                 continue;
935
936                                         if (!vlv_PLL_is_optimal(dev, target,
937                                                                 &clock,
938                                                                 best_clock,
939                                                                 bestppm, &ppm))
940                                                 continue;
941
942                                         *best_clock = clock;
943                                         bestppm = ppm;
944                                         found = true;
945                                 }
946                         }
947                 }
948         }
949
950         return found;
951 }
952
953 /*
954  * Returns a set of divisors for the desired target clock with the given
955  * refclk, or FALSE.  The returned values represent the clock equation:
956  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
957  */
958 static bool
959 chv_find_best_dpll(const struct intel_limit *limit,
960                    struct intel_crtc_state *crtc_state,
961                    int target, int refclk, struct dpll *match_clock,
962                    struct dpll *best_clock)
963 {
964         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
965         struct drm_device *dev = crtc->base.dev;
966         unsigned int best_error_ppm;
967         struct dpll clock;
968         u64 m2;
969         int found = false;
970
971         memset(best_clock, 0, sizeof(*best_clock));
972         best_error_ppm = 1000000;
973
974         /*
975          * Based on hardware doc, the n always set to 1, and m1 always
976          * set to 2.  If requires to support 200Mhz refclk, we need to
977          * revisit this because n may not 1 anymore.
978          */
979         clock.n = 1, clock.m1 = 2;
980         target *= 5;    /* fast clock */
981
982         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
983                 for (clock.p2 = limit->p2.p2_fast;
984                                 clock.p2 >= limit->p2.p2_slow;
985                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
986                         unsigned int error_ppm;
987
988                         clock.p = clock.p1 * clock.p2;
989
990                         m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
991                                                    refclk * clock.m1);
992
993                         if (m2 > INT_MAX/clock.m1)
994                                 continue;
995
996                         clock.m2 = m2;
997
998                         chv_calc_dpll_params(refclk, &clock);
999
1000                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
1001                                 continue;
1002
1003                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1004                                                 best_error_ppm, &error_ppm))
1005                                 continue;
1006
1007                         *best_clock = clock;
1008                         best_error_ppm = error_ppm;
1009                         found = true;
1010                 }
1011         }
1012
1013         return found;
1014 }
1015
1016 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1017                         struct dpll *best_clock)
1018 {
1019         int refclk = 100000;
1020         const struct intel_limit *limit = &intel_limits_bxt;
1021
1022         return chv_find_best_dpll(limit, crtc_state,
1023                                   crtc_state->port_clock, refclk,
1024                                   NULL, best_clock);
1025 }
1026
1027 bool intel_crtc_active(struct intel_crtc *crtc)
1028 {
1029         /* Be paranoid as we can arrive here with only partial
1030          * state retrieved from the hardware during setup.
1031          *
1032          * We can ditch the adjusted_mode.crtc_clock check as soon
1033          * as Haswell has gained clock readout/fastboot support.
1034          *
1035          * We can ditch the crtc->primary->state->fb check as soon as we can
1036          * properly reconstruct framebuffers.
1037          *
1038          * FIXME: The intel_crtc->active here should be switched to
1039          * crtc->state->active once we have proper CRTC states wired up
1040          * for atomic.
1041          */
1042         return crtc->active && crtc->base.primary->state->fb &&
1043                 crtc->config->base.adjusted_mode.crtc_clock;
1044 }
1045
1046 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1047                                              enum pipe pipe)
1048 {
1049         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1050
1051         return crtc->config->cpu_transcoder;
1052 }
1053
1054 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1055                                     enum pipe pipe)
1056 {
1057         i915_reg_t reg = PIPEDSL(pipe);
1058         u32 line1, line2;
1059         u32 line_mask;
1060
1061         if (IS_GEN(dev_priv, 2))
1062                 line_mask = DSL_LINEMASK_GEN2;
1063         else
1064                 line_mask = DSL_LINEMASK_GEN3;
1065
1066         line1 = I915_READ(reg) & line_mask;
1067         msleep(5);
1068         line2 = I915_READ(reg) & line_mask;
1069
1070         return line1 != line2;
1071 }
1072
1073 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1074 {
1075         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1076         enum pipe pipe = crtc->pipe;
1077
1078         /* Wait for the display line to settle/start moving */
1079         if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1080                 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1081                           pipe_name(pipe), onoff(state));
1082 }
1083
1084 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1085 {
1086         wait_for_pipe_scanline_moving(crtc, false);
1087 }
1088
1089 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1090 {
1091         wait_for_pipe_scanline_moving(crtc, true);
1092 }
1093
1094 static void
1095 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1096 {
1097         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1098         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1099
1100         if (INTEL_GEN(dev_priv) >= 4) {
1101                 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1102                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1103
1104                 /* Wait for the Pipe State to go off */
1105                 if (intel_de_wait_for_clear(dev_priv, reg,
1106                                             I965_PIPECONF_ACTIVE, 100))
1107                         WARN(1, "pipe_off wait timed out\n");
1108         } else {
1109                 intel_wait_for_pipe_scanline_stopped(crtc);
1110         }
1111 }
1112
1113 /* Only for pre-ILK configs */
1114 void assert_pll(struct drm_i915_private *dev_priv,
1115                 enum pipe pipe, bool state)
1116 {
1117         u32 val;
1118         bool cur_state;
1119
1120         val = I915_READ(DPLL(pipe));
1121         cur_state = !!(val & DPLL_VCO_ENABLE);
1122         I915_STATE_WARN(cur_state != state,
1123              "PLL state assertion failure (expected %s, current %s)\n",
1124                         onoff(state), onoff(cur_state));
1125 }
1126
1127 /* XXX: the dsi pll is shared between MIPI DSI ports */
1128 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1129 {
1130         u32 val;
1131         bool cur_state;
1132
1133         vlv_cck_get(dev_priv);
1134         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1135         vlv_cck_put(dev_priv);
1136
1137         cur_state = val & DSI_PLL_VCO_EN;
1138         I915_STATE_WARN(cur_state != state,
1139              "DSI PLL state assertion failure (expected %s, current %s)\n",
1140                         onoff(state), onoff(cur_state));
1141 }
1142
1143 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1144                           enum pipe pipe, bool state)
1145 {
1146         bool cur_state;
1147         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1148                                                                       pipe);
1149
1150         if (HAS_DDI(dev_priv)) {
1151                 /* DDI does not have a specific FDI_TX register */
1152                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1153                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1154         } else {
1155                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1156                 cur_state = !!(val & FDI_TX_ENABLE);
1157         }
1158         I915_STATE_WARN(cur_state != state,
1159              "FDI TX state assertion failure (expected %s, current %s)\n",
1160                         onoff(state), onoff(cur_state));
1161 }
1162 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1163 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1164
1165 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1166                           enum pipe pipe, bool state)
1167 {
1168         u32 val;
1169         bool cur_state;
1170
1171         val = I915_READ(FDI_RX_CTL(pipe));
1172         cur_state = !!(val & FDI_RX_ENABLE);
1173         I915_STATE_WARN(cur_state != state,
1174              "FDI RX state assertion failure (expected %s, current %s)\n",
1175                         onoff(state), onoff(cur_state));
1176 }
1177 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1178 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1179
1180 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1181                                       enum pipe pipe)
1182 {
1183         u32 val;
1184
1185         /* ILK FDI PLL is always enabled */
1186         if (IS_GEN(dev_priv, 5))
1187                 return;
1188
1189         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1190         if (HAS_DDI(dev_priv))
1191                 return;
1192
1193         val = I915_READ(FDI_TX_CTL(pipe));
1194         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1195 }
1196
1197 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1198                        enum pipe pipe, bool state)
1199 {
1200         u32 val;
1201         bool cur_state;
1202
1203         val = I915_READ(FDI_RX_CTL(pipe));
1204         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1205         I915_STATE_WARN(cur_state != state,
1206              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1207                         onoff(state), onoff(cur_state));
1208 }
1209
1210 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1211 {
1212         i915_reg_t pp_reg;
1213         u32 val;
1214         enum pipe panel_pipe = INVALID_PIPE;
1215         bool locked = true;
1216
1217         if (WARN_ON(HAS_DDI(dev_priv)))
1218                 return;
1219
1220         if (HAS_PCH_SPLIT(dev_priv)) {
1221                 u32 port_sel;
1222
1223                 pp_reg = PP_CONTROL(0);
1224                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1225
1226                 switch (port_sel) {
1227                 case PANEL_PORT_SELECT_LVDS:
1228                         intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1229                         break;
1230                 case PANEL_PORT_SELECT_DPA:
1231                         intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1232                         break;
1233                 case PANEL_PORT_SELECT_DPC:
1234                         intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1235                         break;
1236                 case PANEL_PORT_SELECT_DPD:
1237                         intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1238                         break;
1239                 default:
1240                         MISSING_CASE(port_sel);
1241                         break;
1242                 }
1243         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1244                 /* presumably write lock depends on pipe, not port select */
1245                 pp_reg = PP_CONTROL(pipe);
1246                 panel_pipe = pipe;
1247         } else {
1248                 u32 port_sel;
1249
1250                 pp_reg = PP_CONTROL(0);
1251                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1252
1253                 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1254                 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1255         }
1256
1257         val = I915_READ(pp_reg);
1258         if (!(val & PANEL_POWER_ON) ||
1259             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1260                 locked = false;
1261
1262         I915_STATE_WARN(panel_pipe == pipe && locked,
1263              "panel assertion failure, pipe %c regs locked\n",
1264              pipe_name(pipe));
1265 }
1266
1267 void assert_pipe(struct drm_i915_private *dev_priv,
1268                  enum pipe pipe, bool state)
1269 {
1270         bool cur_state;
1271         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1272                                                                       pipe);
1273         enum intel_display_power_domain power_domain;
1274         intel_wakeref_t wakeref;
1275
1276         /* we keep both pipes enabled on 830 */
1277         if (IS_I830(dev_priv))
1278                 state = true;
1279
1280         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1281         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1282         if (wakeref) {
1283                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1284                 cur_state = !!(val & PIPECONF_ENABLE);
1285
1286                 intel_display_power_put(dev_priv, power_domain, wakeref);
1287         } else {
1288                 cur_state = false;
1289         }
1290
1291         I915_STATE_WARN(cur_state != state,
1292              "pipe %c assertion failure (expected %s, current %s)\n",
1293                         pipe_name(pipe), onoff(state), onoff(cur_state));
1294 }
1295
1296 static void assert_plane(struct intel_plane *plane, bool state)
1297 {
1298         enum pipe pipe;
1299         bool cur_state;
1300
1301         cur_state = plane->get_hw_state(plane, &pipe);
1302
1303         I915_STATE_WARN(cur_state != state,
1304                         "%s assertion failure (expected %s, current %s)\n",
1305                         plane->base.name, onoff(state), onoff(cur_state));
1306 }
1307
1308 #define assert_plane_enabled(p) assert_plane(p, true)
1309 #define assert_plane_disabled(p) assert_plane(p, false)
1310
1311 static void assert_planes_disabled(struct intel_crtc *crtc)
1312 {
1313         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1314         struct intel_plane *plane;
1315
1316         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1317                 assert_plane_disabled(plane);
1318 }
1319
1320 static void assert_vblank_disabled(struct drm_crtc *crtc)
1321 {
1322         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1323                 drm_crtc_vblank_put(crtc);
1324 }
1325
1326 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                     enum pipe pipe)
1328 {
1329         u32 val;
1330         bool enabled;
1331
1332         val = I915_READ(PCH_TRANSCONF(pipe));
1333         enabled = !!(val & TRANS_ENABLE);
1334         I915_STATE_WARN(enabled,
1335              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1336              pipe_name(pipe));
1337 }
1338
1339 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1340                                    enum pipe pipe, enum port port,
1341                                    i915_reg_t dp_reg)
1342 {
1343         enum pipe port_pipe;
1344         bool state;
1345
1346         state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1347
1348         I915_STATE_WARN(state && port_pipe == pipe,
1349                         "PCH DP %c enabled on transcoder %c, should be disabled\n",
1350                         port_name(port), pipe_name(pipe));
1351
1352         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1353                         "IBX PCH DP %c still using transcoder B\n",
1354                         port_name(port));
1355 }
1356
1357 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1358                                      enum pipe pipe, enum port port,
1359                                      i915_reg_t hdmi_reg)
1360 {
1361         enum pipe port_pipe;
1362         bool state;
1363
1364         state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1365
1366         I915_STATE_WARN(state && port_pipe == pipe,
1367                         "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1368                         port_name(port), pipe_name(pipe));
1369
1370         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1371                         "IBX PCH HDMI %c still using transcoder B\n",
1372                         port_name(port));
1373 }
1374
1375 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1376                                       enum pipe pipe)
1377 {
1378         enum pipe port_pipe;
1379
1380         assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1381         assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1382         assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1383
1384         I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1385                         port_pipe == pipe,
1386                         "PCH VGA enabled on transcoder %c, should be disabled\n",
1387                         pipe_name(pipe));
1388
1389         I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1390                         port_pipe == pipe,
1391                         "PCH LVDS enabled on transcoder %c, should be disabled\n",
1392                         pipe_name(pipe));
1393
1394         /* PCH SDVOB multiplex with HDMIB */
1395         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1396         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1397         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1398 }
1399
1400 static void _vlv_enable_pll(struct intel_crtc *crtc,
1401                             const struct intel_crtc_state *pipe_config)
1402 {
1403         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1404         enum pipe pipe = crtc->pipe;
1405
1406         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1407         POSTING_READ(DPLL(pipe));
1408         udelay(150);
1409
1410         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1411                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1412 }
1413
1414 static void vlv_enable_pll(struct intel_crtc *crtc,
1415                            const struct intel_crtc_state *pipe_config)
1416 {
1417         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1418         enum pipe pipe = crtc->pipe;
1419
1420         assert_pipe_disabled(dev_priv, pipe);
1421
1422         /* PLL is protected by panel, make sure we can write it */
1423         assert_panel_unlocked(dev_priv, pipe);
1424
1425         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1426                 _vlv_enable_pll(crtc, pipe_config);
1427
1428         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1429         POSTING_READ(DPLL_MD(pipe));
1430 }
1431
1432
1433 static void _chv_enable_pll(struct intel_crtc *crtc,
1434                             const struct intel_crtc_state *pipe_config)
1435 {
1436         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1437         enum pipe pipe = crtc->pipe;
1438         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1439         u32 tmp;
1440
1441         vlv_dpio_get(dev_priv);
1442
1443         /* Enable back the 10bit clock to display controller */
1444         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1445         tmp |= DPIO_DCLKP_EN;
1446         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1447
1448         vlv_dpio_put(dev_priv);
1449
1450         /*
1451          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1452          */
1453         udelay(1);
1454
1455         /* Enable PLL */
1456         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1457
1458         /* Check PLL is locked */
1459         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1460                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1461 }
1462
1463 static void chv_enable_pll(struct intel_crtc *crtc,
1464                            const struct intel_crtc_state *pipe_config)
1465 {
1466         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1467         enum pipe pipe = crtc->pipe;
1468
1469         assert_pipe_disabled(dev_priv, pipe);
1470
1471         /* PLL is protected by panel, make sure we can write it */
1472         assert_panel_unlocked(dev_priv, pipe);
1473
1474         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1475                 _chv_enable_pll(crtc, pipe_config);
1476
1477         if (pipe != PIPE_A) {
1478                 /*
1479                  * WaPixelRepeatModeFixForC0:chv
1480                  *
1481                  * DPLLCMD is AWOL. Use chicken bits to propagate
1482                  * the value from DPLLBMD to either pipe B or C.
1483                  */
1484                 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1485                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1486                 I915_WRITE(CBR4_VLV, 0);
1487                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488
1489                 /*
1490                  * DPLLB VGA mode also seems to cause problems.
1491                  * We should always have it disabled.
1492                  */
1493                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1494         } else {
1495                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1496                 POSTING_READ(DPLL_MD(pipe));
1497         }
1498 }
1499
1500 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1501 {
1502         if (IS_I830(dev_priv))
1503                 return false;
1504
1505         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1506 }
1507
1508 static void i9xx_enable_pll(struct intel_crtc *crtc,
1509                             const struct intel_crtc_state *crtc_state)
1510 {
1511         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1512         i915_reg_t reg = DPLL(crtc->pipe);
1513         u32 dpll = crtc_state->dpll_hw_state.dpll;
1514         int i;
1515
1516         assert_pipe_disabled(dev_priv, crtc->pipe);
1517
1518         /* PLL is protected by panel, make sure we can write it */
1519         if (i9xx_has_pps(dev_priv))
1520                 assert_panel_unlocked(dev_priv, crtc->pipe);
1521
1522         /*
1523          * Apparently we need to have VGA mode enabled prior to changing
1524          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1525          * dividers, even though the register value does change.
1526          */
1527         I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1528         I915_WRITE(reg, dpll);
1529
1530         /* Wait for the clocks to stabilize. */
1531         POSTING_READ(reg);
1532         udelay(150);
1533
1534         if (INTEL_GEN(dev_priv) >= 4) {
1535                 I915_WRITE(DPLL_MD(crtc->pipe),
1536                            crtc_state->dpll_hw_state.dpll_md);
1537         } else {
1538                 /* The pixel multiplier can only be updated once the
1539                  * DPLL is enabled and the clocks are stable.
1540                  *
1541                  * So write it again.
1542                  */
1543                 I915_WRITE(reg, dpll);
1544         }
1545
1546         /* We do this three times for luck */
1547         for (i = 0; i < 3; i++) {
1548                 I915_WRITE(reg, dpll);
1549                 POSTING_READ(reg);
1550                 udelay(150); /* wait for warmup */
1551         }
1552 }
1553
1554 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1555 {
1556         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1557         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1558         enum pipe pipe = crtc->pipe;
1559
1560         /* Don't disable pipe or pipe PLLs if needed */
1561         if (IS_I830(dev_priv))
1562                 return;
1563
1564         /* Make sure the pipe isn't still relying on us */
1565         assert_pipe_disabled(dev_priv, pipe);
1566
1567         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1568         POSTING_READ(DPLL(pipe));
1569 }
1570
1571 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1572 {
1573         u32 val;
1574
1575         /* Make sure the pipe isn't still relying on us */
1576         assert_pipe_disabled(dev_priv, pipe);
1577
1578         val = DPLL_INTEGRATED_REF_CLK_VLV |
1579                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1580         if (pipe != PIPE_A)
1581                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1582
1583         I915_WRITE(DPLL(pipe), val);
1584         POSTING_READ(DPLL(pipe));
1585 }
1586
1587 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1588 {
1589         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1590         u32 val;
1591
1592         /* Make sure the pipe isn't still relying on us */
1593         assert_pipe_disabled(dev_priv, pipe);
1594
1595         val = DPLL_SSC_REF_CLK_CHV |
1596                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1597         if (pipe != PIPE_A)
1598                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1599
1600         I915_WRITE(DPLL(pipe), val);
1601         POSTING_READ(DPLL(pipe));
1602
1603         vlv_dpio_get(dev_priv);
1604
1605         /* Disable 10bit clock to display controller */
1606         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1607         val &= ~DPIO_DCLKP_EN;
1608         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1609
1610         vlv_dpio_put(dev_priv);
1611 }
1612
1613 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1614                          struct intel_digital_port *dport,
1615                          unsigned int expected_mask)
1616 {
1617         u32 port_mask;
1618         i915_reg_t dpll_reg;
1619
1620         switch (dport->base.port) {
1621         case PORT_B:
1622                 port_mask = DPLL_PORTB_READY_MASK;
1623                 dpll_reg = DPLL(0);
1624                 break;
1625         case PORT_C:
1626                 port_mask = DPLL_PORTC_READY_MASK;
1627                 dpll_reg = DPLL(0);
1628                 expected_mask <<= 4;
1629                 break;
1630         case PORT_D:
1631                 port_mask = DPLL_PORTD_READY_MASK;
1632                 dpll_reg = DPIO_PHY_STATUS;
1633                 break;
1634         default:
1635                 BUG();
1636         }
1637
1638         if (intel_de_wait_for_register(dev_priv, dpll_reg,
1639                                        port_mask, expected_mask, 1000))
1640                 WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1641                      dport->base.base.base.id, dport->base.base.name,
1642                      I915_READ(dpll_reg) & port_mask, expected_mask);
1643 }
1644
1645 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1646 {
1647         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1648         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1649         enum pipe pipe = crtc->pipe;
1650         i915_reg_t reg;
1651         u32 val, pipeconf_val;
1652
1653         /* Make sure PCH DPLL is enabled */
1654         assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1655
1656         /* FDI must be feeding us bits for PCH ports */
1657         assert_fdi_tx_enabled(dev_priv, pipe);
1658         assert_fdi_rx_enabled(dev_priv, pipe);
1659
1660         if (HAS_PCH_CPT(dev_priv)) {
1661                 /* Workaround: Set the timing override bit before enabling the
1662                  * pch transcoder. */
1663                 reg = TRANS_CHICKEN2(pipe);
1664                 val = I915_READ(reg);
1665                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1666                 I915_WRITE(reg, val);
1667         }
1668
1669         reg = PCH_TRANSCONF(pipe);
1670         val = I915_READ(reg);
1671         pipeconf_val = I915_READ(PIPECONF(pipe));
1672
1673         if (HAS_PCH_IBX(dev_priv)) {
1674                 /*
1675                  * Make the BPC in transcoder be consistent with
1676                  * that in pipeconf reg. For HDMI we must use 8bpc
1677                  * here for both 8bpc and 12bpc.
1678                  */
1679                 val &= ~PIPECONF_BPC_MASK;
1680                 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1681                         val |= PIPECONF_8BPC;
1682                 else
1683                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1684         }
1685
1686         val &= ~TRANS_INTERLACE_MASK;
1687         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1688                 if (HAS_PCH_IBX(dev_priv) &&
1689                     intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1690                         val |= TRANS_LEGACY_INTERLACED_ILK;
1691                 else
1692                         val |= TRANS_INTERLACED;
1693         } else {
1694                 val |= TRANS_PROGRESSIVE;
1695         }
1696
1697         I915_WRITE(reg, val | TRANS_ENABLE);
1698         if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1699                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1700 }
1701
1702 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1703                                       enum transcoder cpu_transcoder)
1704 {
1705         u32 val, pipeconf_val;
1706
1707         /* FDI must be feeding us bits for PCH ports */
1708         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1709         assert_fdi_rx_enabled(dev_priv, PIPE_A);
1710
1711         /* Workaround: set timing override bit. */
1712         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1713         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1714         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1715
1716         val = TRANS_ENABLE;
1717         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1718
1719         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1720             PIPECONF_INTERLACED_ILK)
1721                 val |= TRANS_INTERLACED;
1722         else
1723                 val |= TRANS_PROGRESSIVE;
1724
1725         I915_WRITE(LPT_TRANSCONF, val);
1726         if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1727                                   TRANS_STATE_ENABLE, 100))
1728                 DRM_ERROR("Failed to enable PCH transcoder\n");
1729 }
1730
1731 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1732                                             enum pipe pipe)
1733 {
1734         i915_reg_t reg;
1735         u32 val;
1736
1737         /* FDI relies on the transcoder */
1738         assert_fdi_tx_disabled(dev_priv, pipe);
1739         assert_fdi_rx_disabled(dev_priv, pipe);
1740
1741         /* Ports must be off as well */
1742         assert_pch_ports_disabled(dev_priv, pipe);
1743
1744         reg = PCH_TRANSCONF(pipe);
1745         val = I915_READ(reg);
1746         val &= ~TRANS_ENABLE;
1747         I915_WRITE(reg, val);
1748         /* wait for PCH transcoder off, transcoder state */
1749         if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1750                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1751
1752         if (HAS_PCH_CPT(dev_priv)) {
1753                 /* Workaround: Clear the timing override chicken bit again. */
1754                 reg = TRANS_CHICKEN2(pipe);
1755                 val = I915_READ(reg);
1756                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1757                 I915_WRITE(reg, val);
1758         }
1759 }
1760
1761 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1762 {
1763         u32 val;
1764
1765         val = I915_READ(LPT_TRANSCONF);
1766         val &= ~TRANS_ENABLE;
1767         I915_WRITE(LPT_TRANSCONF, val);
1768         /* wait for PCH transcoder off, transcoder state */
1769         if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1770                                     TRANS_STATE_ENABLE, 50))
1771                 DRM_ERROR("Failed to disable PCH transcoder\n");
1772
1773         /* Workaround: clear timing override bit. */
1774         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1775         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1777 }
1778
1779 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1780 {
1781         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1782
1783         if (HAS_PCH_LPT(dev_priv))
1784                 return PIPE_A;
1785         else
1786                 return crtc->pipe;
1787 }
1788
1789 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1790 {
1791         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1792
1793         /*
1794          * On i965gm the hardware frame counter reads
1795          * zero when the TV encoder is enabled :(
1796          */
1797         if (IS_I965GM(dev_priv) &&
1798             (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1799                 return 0;
1800
1801         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1802                 return 0xffffffff; /* full 32 bit counter */
1803         else if (INTEL_GEN(dev_priv) >= 3)
1804                 return 0xffffff; /* only 24 bits of frame count */
1805         else
1806                 return 0; /* Gen2 doesn't have a hardware frame counter */
1807 }
1808
1809 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1810 {
1811         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1812
1813         drm_crtc_set_max_vblank_count(&crtc->base,
1814                                       intel_crtc_max_vblank_count(crtc_state));
1815         drm_crtc_vblank_on(&crtc->base);
1816 }
1817
1818 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1819 {
1820         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1821         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1822         enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1823         enum pipe pipe = crtc->pipe;
1824         i915_reg_t reg;
1825         u32 val;
1826
1827         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1828
1829         assert_planes_disabled(crtc);
1830
1831         /*
1832          * A pipe without a PLL won't actually be able to drive bits from
1833          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1834          * need the check.
1835          */
1836         if (HAS_GMCH(dev_priv)) {
1837                 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1838                         assert_dsi_pll_enabled(dev_priv);
1839                 else
1840                         assert_pll_enabled(dev_priv, pipe);
1841         } else {
1842                 if (new_crtc_state->has_pch_encoder) {
1843                         /* if driving the PCH, we need FDI enabled */
1844                         assert_fdi_rx_pll_enabled(dev_priv,
1845                                                   intel_crtc_pch_transcoder(crtc));
1846                         assert_fdi_tx_pll_enabled(dev_priv,
1847                                                   (enum pipe) cpu_transcoder);
1848                 }
1849                 /* FIXME: assert CPU port conditions for SNB+ */
1850         }
1851
1852         trace_intel_pipe_enable(crtc);
1853
1854         reg = PIPECONF(cpu_transcoder);
1855         val = I915_READ(reg);
1856         if (val & PIPECONF_ENABLE) {
1857                 /* we keep both pipes enabled on 830 */
1858                 WARN_ON(!IS_I830(dev_priv));
1859                 return;
1860         }
1861
1862         I915_WRITE(reg, val | PIPECONF_ENABLE);
1863         POSTING_READ(reg);
1864
1865         /*
1866          * Until the pipe starts PIPEDSL reads will return a stale value,
1867          * which causes an apparent vblank timestamp jump when PIPEDSL
1868          * resets to its proper value. That also messes up the frame count
1869          * when it's derived from the timestamps. So let's wait for the
1870          * pipe to start properly before we call drm_crtc_vblank_on()
1871          */
1872         if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1873                 intel_wait_for_pipe_scanline_moving(crtc);
1874 }
1875
1876 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1877 {
1878         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1879         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1880         enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1881         enum pipe pipe = crtc->pipe;
1882         i915_reg_t reg;
1883         u32 val;
1884
1885         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1886
1887         /*
1888          * Make sure planes won't keep trying to pump pixels to us,
1889          * or we might hang the display.
1890          */
1891         assert_planes_disabled(crtc);
1892
1893         trace_intel_pipe_disable(crtc);
1894
1895         reg = PIPECONF(cpu_transcoder);
1896         val = I915_READ(reg);
1897         if ((val & PIPECONF_ENABLE) == 0)
1898                 return;
1899
1900         /*
1901          * Double wide has implications for planes
1902          * so best keep it disabled when not needed.
1903          */
1904         if (old_crtc_state->double_wide)
1905                 val &= ~PIPECONF_DOUBLE_WIDE;
1906
1907         /* Don't disable pipe or pipe PLLs if needed */
1908         if (!IS_I830(dev_priv))
1909                 val &= ~PIPECONF_ENABLE;
1910
1911         I915_WRITE(reg, val);
1912         if ((val & PIPECONF_ENABLE) == 0)
1913                 intel_wait_for_pipe_off(old_crtc_state);
1914 }
1915
1916 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1917 {
1918         return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1919 }
1920
1921 static unsigned int
1922 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
1923 {
1924         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1925         unsigned int cpp = fb->format->cpp[color_plane];
1926
1927         switch (fb->modifier) {
1928         case DRM_FORMAT_MOD_LINEAR:
1929                 return intel_tile_size(dev_priv);
1930         case I915_FORMAT_MOD_X_TILED:
1931                 if (IS_GEN(dev_priv, 2))
1932                         return 128;
1933                 else
1934                         return 512;
1935         case I915_FORMAT_MOD_Y_TILED_CCS:
1936                 if (color_plane == 1)
1937                         return 128;
1938                 /* fall through */
1939         case I915_FORMAT_MOD_Y_TILED:
1940                 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
1941                         return 128;
1942                 else
1943                         return 512;
1944         case I915_FORMAT_MOD_Yf_TILED_CCS:
1945                 if (color_plane == 1)
1946                         return 128;
1947                 /* fall through */
1948         case I915_FORMAT_MOD_Yf_TILED:
1949                 switch (cpp) {
1950                 case 1:
1951                         return 64;
1952                 case 2:
1953                 case 4:
1954                         return 128;
1955                 case 8:
1956                 case 16:
1957                         return 256;
1958                 default:
1959                         MISSING_CASE(cpp);
1960                         return cpp;
1961                 }
1962                 break;
1963         default:
1964                 MISSING_CASE(fb->modifier);
1965                 return cpp;
1966         }
1967 }
1968
1969 static unsigned int
1970 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
1971 {
1972         return intel_tile_size(to_i915(fb->dev)) /
1973                 intel_tile_width_bytes(fb, color_plane);
1974 }
1975
1976 /* Return the tile dimensions in pixel units */
1977 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
1978                             unsigned int *tile_width,
1979                             unsigned int *tile_height)
1980 {
1981         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
1982         unsigned int cpp = fb->format->cpp[color_plane];
1983
1984         *tile_width = tile_width_bytes / cpp;
1985         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
1986 }
1987
1988 unsigned int
1989 intel_fb_align_height(const struct drm_framebuffer *fb,
1990                       int color_plane, unsigned int height)
1991 {
1992         unsigned int tile_height = intel_tile_height(fb, color_plane);
1993
1994         return ALIGN(height, tile_height);
1995 }
1996
1997 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
1998 {
1999         unsigned int size = 0;
2000         int i;
2001
2002         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2003                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2004
2005         return size;
2006 }
2007
2008 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2009 {
2010         unsigned int size = 0;
2011         int i;
2012
2013         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2014                 size += rem_info->plane[i].width * rem_info->plane[i].height;
2015
2016         return size;
2017 }
2018
2019 static void
2020 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2021                         const struct drm_framebuffer *fb,
2022                         unsigned int rotation)
2023 {
2024         view->type = I915_GGTT_VIEW_NORMAL;
2025         if (drm_rotation_90_or_270(rotation)) {
2026                 view->type = I915_GGTT_VIEW_ROTATED;
2027                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2028         }
2029 }
2030
2031 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2032 {
2033         if (IS_I830(dev_priv))
2034                 return 16 * 1024;
2035         else if (IS_I85X(dev_priv))
2036                 return 256;
2037         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2038                 return 32;
2039         else
2040                 return 4 * 1024;
2041 }
2042
2043 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2044 {
2045         if (INTEL_GEN(dev_priv) >= 9)
2046                 return 256 * 1024;
2047         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2048                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2049                 return 128 * 1024;
2050         else if (INTEL_GEN(dev_priv) >= 4)
2051                 return 4 * 1024;
2052         else
2053                 return 0;
2054 }
2055
2056 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2057                                          int color_plane)
2058 {
2059         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2060
2061         /* AUX_DIST needs only 4K alignment */
2062         if (color_plane == 1)
2063                 return 4096;
2064
2065         switch (fb->modifier) {
2066         case DRM_FORMAT_MOD_LINEAR:
2067                 return intel_linear_alignment(dev_priv);
2068         case I915_FORMAT_MOD_X_TILED:
2069                 if (INTEL_GEN(dev_priv) >= 9)
2070                         return 256 * 1024;
2071                 return 0;
2072         case I915_FORMAT_MOD_Y_TILED_CCS:
2073         case I915_FORMAT_MOD_Yf_TILED_CCS:
2074         case I915_FORMAT_MOD_Y_TILED:
2075         case I915_FORMAT_MOD_Yf_TILED:
2076                 return 1 * 1024 * 1024;
2077         default:
2078                 MISSING_CASE(fb->modifier);
2079                 return 0;
2080         }
2081 }
2082
2083 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2084 {
2085         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2086         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2087
2088         return INTEL_GEN(dev_priv) < 4 ||
2089                 (plane->has_fbc &&
2090                  plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2091 }
2092
2093 struct i915_vma *
2094 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2095                            const struct i915_ggtt_view *view,
2096                            bool uses_fence,
2097                            unsigned long *out_flags)
2098 {
2099         struct drm_device *dev = fb->dev;
2100         struct drm_i915_private *dev_priv = to_i915(dev);
2101         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2102         intel_wakeref_t wakeref;
2103         struct i915_vma *vma;
2104         unsigned int pinctl;
2105         u32 alignment;
2106
2107         if (WARN_ON(!i915_gem_object_is_framebuffer(obj)))
2108                 return ERR_PTR(-EINVAL);
2109
2110         alignment = intel_surf_alignment(fb, 0);
2111
2112         /* Note that the w/a also requires 64 PTE of padding following the
2113          * bo. We currently fill all unused PTE with the shadow page and so
2114          * we should always have valid PTE following the scanout preventing
2115          * the VT-d warning.
2116          */
2117         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2118                 alignment = 256 * 1024;
2119
2120         /*
2121          * Global gtt pte registers are special registers which actually forward
2122          * writes to a chunk of system memory. Which means that there is no risk
2123          * that the register values disappear as soon as we call
2124          * intel_runtime_pm_put(), so it is correct to wrap only the
2125          * pin/unpin/fence and not more.
2126          */
2127         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2128         i915_gem_object_lock(obj);
2129
2130         atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2131
2132         pinctl = 0;
2133
2134         /* Valleyview is definitely limited to scanning out the first
2135          * 512MiB. Lets presume this behaviour was inherited from the
2136          * g4x display engine and that all earlier gen are similarly
2137          * limited. Testing suggests that it is a little more
2138          * complicated than this. For example, Cherryview appears quite
2139          * happy to scanout from anywhere within its global aperture.
2140          */
2141         if (HAS_GMCH(dev_priv))
2142                 pinctl |= PIN_MAPPABLE;
2143
2144         vma = i915_gem_object_pin_to_display_plane(obj,
2145                                                    alignment, view, pinctl);
2146         if (IS_ERR(vma))
2147                 goto err;
2148
2149         if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2150                 int ret;
2151
2152                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2153                  * fence, whereas 965+ only requires a fence if using
2154                  * framebuffer compression.  For simplicity, we always, when
2155                  * possible, install a fence as the cost is not that onerous.
2156                  *
2157                  * If we fail to fence the tiled scanout, then either the
2158                  * modeset will reject the change (which is highly unlikely as
2159                  * the affected systems, all but one, do not have unmappable
2160                  * space) or we will not be able to enable full powersaving
2161                  * techniques (also likely not to apply due to various limits
2162                  * FBC and the like impose on the size of the buffer, which
2163                  * presumably we violated anyway with this unmappable buffer).
2164                  * Anyway, it is presumably better to stumble onwards with
2165                  * something and try to run the system in a "less than optimal"
2166                  * mode that matches the user configuration.
2167                  */
2168                 ret = i915_vma_pin_fence(vma);
2169                 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2170                         i915_gem_object_unpin_from_display_plane(vma);
2171                         vma = ERR_PTR(ret);
2172                         goto err;
2173                 }
2174
2175                 if (ret == 0 && vma->fence)
2176                         *out_flags |= PLANE_HAS_FENCE;
2177         }
2178
2179         i915_vma_get(vma);
2180 err:
2181         atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2182
2183         i915_gem_object_unlock(obj);
2184         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2185         return vma;
2186 }
2187
2188 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2189 {
2190         i915_gem_object_lock(vma->obj);
2191         if (flags & PLANE_HAS_FENCE)
2192                 i915_vma_unpin_fence(vma);
2193         i915_gem_object_unpin_from_display_plane(vma);
2194         i915_gem_object_unlock(vma->obj);
2195
2196         i915_vma_put(vma);
2197 }
2198
2199 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2200                           unsigned int rotation)
2201 {
2202         if (drm_rotation_90_or_270(rotation))
2203                 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2204         else
2205                 return fb->pitches[color_plane];
2206 }
2207
2208 /*
2209  * Convert the x/y offsets into a linear offset.
2210  * Only valid with 0/180 degree rotation, which is fine since linear
2211  * offset is only used with linear buffers on pre-hsw and tiled buffers
2212  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2213  */
2214 u32 intel_fb_xy_to_linear(int x, int y,
2215                           const struct intel_plane_state *state,
2216                           int color_plane)
2217 {
2218         const struct drm_framebuffer *fb = state->base.fb;
2219         unsigned int cpp = fb->format->cpp[color_plane];
2220         unsigned int pitch = state->color_plane[color_plane].stride;
2221
2222         return y * pitch + x * cpp;
2223 }
2224
2225 /*
2226  * Add the x/y offsets derived from fb->offsets[] to the user
2227  * specified plane src x/y offsets. The resulting x/y offsets
2228  * specify the start of scanout from the beginning of the gtt mapping.
2229  */
2230 void intel_add_fb_offsets(int *x, int *y,
2231                           const struct intel_plane_state *state,
2232                           int color_plane)
2233
2234 {
2235         *x += state->color_plane[color_plane].x;
2236         *y += state->color_plane[color_plane].y;
2237 }
2238
2239 static u32 intel_adjust_tile_offset(int *x, int *y,
2240                                     unsigned int tile_width,
2241                                     unsigned int tile_height,
2242                                     unsigned int tile_size,
2243                                     unsigned int pitch_tiles,
2244                                     u32 old_offset,
2245                                     u32 new_offset)
2246 {
2247         unsigned int pitch_pixels = pitch_tiles * tile_width;
2248         unsigned int tiles;
2249
2250         WARN_ON(old_offset & (tile_size - 1));
2251         WARN_ON(new_offset & (tile_size - 1));
2252         WARN_ON(new_offset > old_offset);
2253
2254         tiles = (old_offset - new_offset) / tile_size;
2255
2256         *y += tiles / pitch_tiles * tile_height;
2257         *x += tiles % pitch_tiles * tile_width;
2258
2259         /* minimize x in case it got needlessly big */
2260         *y += *x / pitch_pixels * tile_height;
2261         *x %= pitch_pixels;
2262
2263         return new_offset;
2264 }
2265
2266 static bool is_surface_linear(u64 modifier, int color_plane)
2267 {
2268         return modifier == DRM_FORMAT_MOD_LINEAR;
2269 }
2270
2271 static u32 intel_adjust_aligned_offset(int *x, int *y,
2272                                        const struct drm_framebuffer *fb,
2273                                        int color_plane,
2274                                        unsigned int rotation,
2275                                        unsigned int pitch,
2276                                        u32 old_offset, u32 new_offset)
2277 {
2278         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2279         unsigned int cpp = fb->format->cpp[color_plane];
2280
2281         WARN_ON(new_offset > old_offset);
2282
2283         if (!is_surface_linear(fb->modifier, color_plane)) {
2284                 unsigned int tile_size, tile_width, tile_height;
2285                 unsigned int pitch_tiles;
2286
2287                 tile_size = intel_tile_size(dev_priv);
2288                 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2289
2290                 if (drm_rotation_90_or_270(rotation)) {
2291                         pitch_tiles = pitch / tile_height;
2292                         swap(tile_width, tile_height);
2293                 } else {
2294                         pitch_tiles = pitch / (tile_width * cpp);
2295                 }
2296
2297                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2298                                          tile_size, pitch_tiles,
2299                                          old_offset, new_offset);
2300         } else {
2301                 old_offset += *y * pitch + *x * cpp;
2302
2303                 *y = (old_offset - new_offset) / pitch;
2304                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2305         }
2306
2307         return new_offset;
2308 }
2309
2310 /*
2311  * Adjust the tile offset by moving the difference into
2312  * the x/y offsets.
2313  */
2314 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2315                                              const struct intel_plane_state *state,
2316                                              int color_plane,
2317                                              u32 old_offset, u32 new_offset)
2318 {
2319         return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane,
2320                                            state->base.rotation,
2321                                            state->color_plane[color_plane].stride,
2322                                            old_offset, new_offset);
2323 }
2324
2325 /*
2326  * Computes the aligned offset to the base tile and adjusts
2327  * x, y. bytes per pixel is assumed to be a power-of-two.
2328  *
2329  * In the 90/270 rotated case, x and y are assumed
2330  * to be already rotated to match the rotated GTT view, and
2331  * pitch is the tile_height aligned framebuffer height.
2332  *
2333  * This function is used when computing the derived information
2334  * under intel_framebuffer, so using any of that information
2335  * here is not allowed. Anything under drm_framebuffer can be
2336  * used. This is why the user has to pass in the pitch since it
2337  * is specified in the rotated orientation.
2338  */
2339 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2340                                         int *x, int *y,
2341                                         const struct drm_framebuffer *fb,
2342                                         int color_plane,
2343                                         unsigned int pitch,
2344                                         unsigned int rotation,
2345                                         u32 alignment)
2346 {
2347         unsigned int cpp = fb->format->cpp[color_plane];
2348         u32 offset, offset_aligned;
2349
2350         if (alignment)
2351                 alignment--;
2352
2353         if (!is_surface_linear(fb->modifier, color_plane)) {
2354                 unsigned int tile_size, tile_width, tile_height;
2355                 unsigned int tile_rows, tiles, pitch_tiles;
2356
2357                 tile_size = intel_tile_size(dev_priv);
2358                 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2359
2360                 if (drm_rotation_90_or_270(rotation)) {
2361                         pitch_tiles = pitch / tile_height;
2362                         swap(tile_width, tile_height);
2363                 } else {
2364                         pitch_tiles = pitch / (tile_width * cpp);
2365                 }
2366
2367                 tile_rows = *y / tile_height;
2368                 *y %= tile_height;
2369
2370                 tiles = *x / tile_width;
2371                 *x %= tile_width;
2372
2373                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2374                 offset_aligned = offset & ~alignment;
2375
2376                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2377                                          tile_size, pitch_tiles,
2378                                          offset, offset_aligned);
2379         } else {
2380                 offset = *y * pitch + *x * cpp;
2381                 offset_aligned = offset & ~alignment;
2382
2383                 *y = (offset & alignment) / pitch;
2384                 *x = ((offset & alignment) - *y * pitch) / cpp;
2385         }
2386
2387         return offset_aligned;
2388 }
2389
2390 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2391                                               const struct intel_plane_state *state,
2392                                               int color_plane)
2393 {
2394         struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2395         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2396         const struct drm_framebuffer *fb = state->base.fb;
2397         unsigned int rotation = state->base.rotation;
2398         int pitch = state->color_plane[color_plane].stride;
2399         u32 alignment;
2400
2401         if (intel_plane->id == PLANE_CURSOR)
2402                 alignment = intel_cursor_alignment(dev_priv);
2403         else
2404                 alignment = intel_surf_alignment(fb, color_plane);
2405
2406         return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2407                                             pitch, rotation, alignment);
2408 }
2409
2410 /* Convert the fb->offset[] into x/y offsets */
2411 static int intel_fb_offset_to_xy(int *x, int *y,
2412                                  const struct drm_framebuffer *fb,
2413                                  int color_plane)
2414 {
2415         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2416         unsigned int height;
2417
2418         if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2419             fb->offsets[color_plane] % intel_tile_size(dev_priv)) {
2420                 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2421                               fb->offsets[color_plane], color_plane);
2422                 return -EINVAL;
2423         }
2424
2425         height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2426         height = ALIGN(height, intel_tile_height(fb, color_plane));
2427
2428         /* Catch potential overflows early */
2429         if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2430                             fb->offsets[color_plane])) {
2431                 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2432                               fb->offsets[color_plane], fb->pitches[color_plane],
2433                               color_plane);
2434                 return -ERANGE;
2435         }
2436
2437         *x = 0;
2438         *y = 0;
2439
2440         intel_adjust_aligned_offset(x, y,
2441                                     fb, color_plane, DRM_MODE_ROTATE_0,
2442                                     fb->pitches[color_plane],
2443                                     fb->offsets[color_plane], 0);
2444
2445         return 0;
2446 }
2447
2448 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2449 {
2450         switch (fb_modifier) {
2451         case I915_FORMAT_MOD_X_TILED:
2452                 return I915_TILING_X;
2453         case I915_FORMAT_MOD_Y_TILED:
2454         case I915_FORMAT_MOD_Y_TILED_CCS:
2455                 return I915_TILING_Y;
2456         default:
2457                 return I915_TILING_NONE;
2458         }
2459 }
2460
2461 /*
2462  * From the Sky Lake PRM:
2463  * "The Color Control Surface (CCS) contains the compression status of
2464  *  the cache-line pairs. The compression state of the cache-line pair
2465  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2466  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2467  *  cache-line-pairs. CCS is always Y tiled."
2468  *
2469  * Since cache line pairs refers to horizontally adjacent cache lines,
2470  * each cache line in the CCS corresponds to an area of 32x16 cache
2471  * lines on the main surface. Since each pixel is 4 bytes, this gives
2472  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2473  * main surface.
2474  */
2475 static const struct drm_format_info ccs_formats[] = {
2476         { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2477           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2478         { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2479           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2480         { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2481           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2482         { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2483           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2484 };
2485
2486 static const struct drm_format_info *
2487 lookup_format_info(const struct drm_format_info formats[],
2488                    int num_formats, u32 format)
2489 {
2490         int i;
2491
2492         for (i = 0; i < num_formats; i++) {
2493                 if (formats[i].format == format)
2494                         return &formats[i];
2495         }
2496
2497         return NULL;
2498 }
2499
2500 static const struct drm_format_info *
2501 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2502 {
2503         switch (cmd->modifier[0]) {
2504         case I915_FORMAT_MOD_Y_TILED_CCS:
2505         case I915_FORMAT_MOD_Yf_TILED_CCS:
2506                 return lookup_format_info(ccs_formats,
2507                                           ARRAY_SIZE(ccs_formats),
2508                                           cmd->pixel_format);
2509         default:
2510                 return NULL;
2511         }
2512 }
2513
2514 bool is_ccs_modifier(u64 modifier)
2515 {
2516         return modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2517                modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2518 }
2519
2520 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2521                               u32 pixel_format, u64 modifier)
2522 {
2523         struct intel_crtc *crtc;
2524         struct intel_plane *plane;
2525
2526         /*
2527          * We assume the primary plane for pipe A has
2528          * the highest stride limits of them all.
2529          */
2530         crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2531         plane = to_intel_plane(crtc->base.primary);
2532
2533         return plane->max_stride(plane, pixel_format, modifier,
2534                                  DRM_MODE_ROTATE_0);
2535 }
2536
2537 static
2538 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2539                         u32 pixel_format, u64 modifier)
2540 {
2541         /*
2542          * Arbitrary limit for gen4+ chosen to match the
2543          * render engine max stride.
2544          *
2545          * The new CCS hash mode makes remapping impossible
2546          */
2547         if (!is_ccs_modifier(modifier)) {
2548                 if (INTEL_GEN(dev_priv) >= 7)
2549                         return 256*1024;
2550                 else if (INTEL_GEN(dev_priv) >= 4)
2551                         return 128*1024;
2552         }
2553
2554         return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2555 }
2556
2557 static u32
2558 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2559 {
2560         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2561
2562         if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2563                 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2564                                                            fb->format->format,
2565                                                            fb->modifier);
2566
2567                 /*
2568                  * To make remapping with linear generally feasible
2569                  * we need the stride to be page aligned.
2570                  */
2571                 if (fb->pitches[color_plane] > max_stride)
2572                         return intel_tile_size(dev_priv);
2573                 else
2574                         return 64;
2575         } else {
2576                 return intel_tile_width_bytes(fb, color_plane);
2577         }
2578 }
2579
2580 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2581 {
2582         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2583         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2584         const struct drm_framebuffer *fb = plane_state->base.fb;
2585         int i;
2586
2587         /* We don't want to deal with remapping with cursors */
2588         if (plane->id == PLANE_CURSOR)
2589                 return false;
2590
2591         /*
2592          * The display engine limits already match/exceed the
2593          * render engine limits, so not much point in remapping.
2594          * Would also need to deal with the fence POT alignment
2595          * and gen2 2KiB GTT tile size.
2596          */
2597         if (INTEL_GEN(dev_priv) < 4)
2598                 return false;
2599
2600         /*
2601          * The new CCS hash mode isn't compatible with remapping as
2602          * the virtual address of the pages affects the compressed data.
2603          */
2604         if (is_ccs_modifier(fb->modifier))
2605                 return false;
2606
2607         /* Linear needs a page aligned stride for remapping */
2608         if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2609                 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2610
2611                 for (i = 0; i < fb->format->num_planes; i++) {
2612                         if (fb->pitches[i] & alignment)
2613                                 return false;
2614                 }
2615         }
2616
2617         return true;
2618 }
2619
2620 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2621 {
2622         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2623         const struct drm_framebuffer *fb = plane_state->base.fb;
2624         unsigned int rotation = plane_state->base.rotation;
2625         u32 stride, max_stride;
2626
2627         /*
2628          * No remapping for invisible planes since we don't have
2629          * an actual source viewport to remap.
2630          */
2631         if (!plane_state->base.visible)
2632                 return false;
2633
2634         if (!intel_plane_can_remap(plane_state))
2635                 return false;
2636
2637         /*
2638          * FIXME: aux plane limits on gen9+ are
2639          * unclear in Bspec, for now no checking.
2640          */
2641         stride = intel_fb_pitch(fb, 0, rotation);
2642         max_stride = plane->max_stride(plane, fb->format->format,
2643                                        fb->modifier, rotation);
2644
2645         return stride > max_stride;
2646 }
2647
2648 static int
2649 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2650                    struct drm_framebuffer *fb)
2651 {
2652         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2653         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2654         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2655         u32 gtt_offset_rotated = 0;
2656         unsigned int max_size = 0;
2657         int i, num_planes = fb->format->num_planes;
2658         unsigned int tile_size = intel_tile_size(dev_priv);
2659
2660         for (i = 0; i < num_planes; i++) {
2661                 unsigned int width, height;
2662                 unsigned int cpp, size;
2663                 u32 offset;
2664                 int x, y;
2665                 int ret;
2666
2667                 cpp = fb->format->cpp[i];
2668                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2669                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2670
2671                 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2672                 if (ret) {
2673                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2674                                       i, fb->offsets[i]);
2675                         return ret;
2676                 }
2677
2678                 if (is_ccs_modifier(fb->modifier) && i == 1) {
2679                         int hsub = fb->format->hsub;
2680                         int vsub = fb->format->vsub;
2681                         int tile_width, tile_height;
2682                         int main_x, main_y;
2683                         int ccs_x, ccs_y;
2684
2685                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2686                         tile_width *= hsub;
2687                         tile_height *= vsub;
2688
2689                         ccs_x = (x * hsub) % tile_width;
2690                         ccs_y = (y * vsub) % tile_height;
2691                         main_x = intel_fb->normal[0].x % tile_width;
2692                         main_y = intel_fb->normal[0].y % tile_height;
2693
2694                         /*
2695                          * CCS doesn't have its own x/y offset register, so the intra CCS tile
2696                          * x/y offsets must match between CCS and the main surface.
2697                          */
2698                         if (main_x != ccs_x || main_y != ccs_y) {
2699                                 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2700                                               main_x, main_y,
2701                                               ccs_x, ccs_y,
2702                                               intel_fb->normal[0].x,
2703                                               intel_fb->normal[0].y,
2704                                               x, y);
2705                                 return -EINVAL;
2706                         }
2707                 }
2708
2709                 /*
2710                  * The fence (if used) is aligned to the start of the object
2711                  * so having the framebuffer wrap around across the edge of the
2712                  * fenced region doesn't really work. We have no API to configure
2713                  * the fence start offset within the object (nor could we probably
2714                  * on gen2/3). So it's just easier if we just require that the
2715                  * fb layout agrees with the fence layout. We already check that the
2716                  * fb stride matches the fence stride elsewhere.
2717                  */
2718                 if (i == 0 && i915_gem_object_is_tiled(obj) &&
2719                     (x + width) * cpp > fb->pitches[i]) {
2720                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2721                                       i, fb->offsets[i]);
2722                         return -EINVAL;
2723                 }
2724
2725                 /*
2726                  * First pixel of the framebuffer from
2727                  * the start of the normal gtt mapping.
2728                  */
2729                 intel_fb->normal[i].x = x;
2730                 intel_fb->normal[i].y = y;
2731
2732                 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
2733                                                       fb->pitches[i],
2734                                                       DRM_MODE_ROTATE_0,
2735                                                       tile_size);
2736                 offset /= tile_size;
2737
2738                 if (!is_surface_linear(fb->modifier, i)) {
2739                         unsigned int tile_width, tile_height;
2740                         unsigned int pitch_tiles;
2741                         struct drm_rect r;
2742
2743                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2744
2745                         rot_info->plane[i].offset = offset;
2746                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2747                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2748                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2749
2750                         intel_fb->rotated[i].pitch =
2751                                 rot_info->plane[i].height * tile_height;
2752
2753                         /* how many tiles does this plane need */
2754                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2755                         /*
2756                          * If the plane isn't horizontally tile aligned,
2757                          * we need one more tile.
2758                          */
2759                         if (x != 0)
2760                                 size++;
2761
2762                         /* rotate the x/y offsets to match the GTT view */
2763                         drm_rect_init(&r, x, y, width, height);
2764                         drm_rect_rotate(&r,
2765                                         rot_info->plane[i].width * tile_width,
2766                                         rot_info->plane[i].height * tile_height,
2767                                         DRM_MODE_ROTATE_270);
2768                         x = r.x1;
2769                         y = r.y1;
2770
2771                         /* rotate the tile dimensions to match the GTT view */
2772                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2773                         swap(tile_width, tile_height);
2774
2775                         /*
2776                          * We only keep the x/y offsets, so push all of the
2777                          * gtt offset into the x/y offsets.
2778                          */
2779                         intel_adjust_tile_offset(&x, &y,
2780                                                  tile_width, tile_height,
2781                                                  tile_size, pitch_tiles,
2782                                                  gtt_offset_rotated * tile_size, 0);
2783
2784                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2785
2786                         /*
2787                          * First pixel of the framebuffer from
2788                          * the start of the rotated gtt mapping.
2789                          */
2790                         intel_fb->rotated[i].x = x;
2791                         intel_fb->rotated[i].y = y;
2792                 } else {
2793                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2794                                             x * cpp, tile_size);
2795                 }
2796
2797                 /* how many tiles in total needed in the bo */
2798                 max_size = max(max_size, offset + size);
2799         }
2800
2801         if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
2802                 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
2803                               mul_u32_u32(max_size, tile_size), obj->base.size);
2804                 return -EINVAL;
2805         }
2806
2807         return 0;
2808 }
2809
2810 static void
2811 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
2812 {
2813         struct drm_i915_private *dev_priv =
2814                 to_i915(plane_state->base.plane->dev);
2815         struct drm_framebuffer *fb = plane_state->base.fb;
2816         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2817         struct intel_rotation_info *info = &plane_state->view.rotated;
2818         unsigned int rotation = plane_state->base.rotation;
2819         int i, num_planes = fb->format->num_planes;
2820         unsigned int tile_size = intel_tile_size(dev_priv);
2821         unsigned int src_x, src_y;
2822         unsigned int src_w, src_h;
2823         u32 gtt_offset = 0;
2824
2825         memset(&plane_state->view, 0, sizeof(plane_state->view));
2826         plane_state->view.type = drm_rotation_90_or_270(rotation) ?
2827                 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
2828
2829         src_x = plane_state->base.src.x1 >> 16;
2830         src_y = plane_state->base.src.y1 >> 16;
2831         src_w = drm_rect_width(&plane_state->base.src) >> 16;
2832         src_h = drm_rect_height(&plane_state->base.src) >> 16;
2833
2834         WARN_ON(is_ccs_modifier(fb->modifier));
2835
2836         /* Make src coordinates relative to the viewport */
2837         drm_rect_translate(&plane_state->base.src,
2838                            -(src_x << 16), -(src_y << 16));
2839
2840         /* Rotate src coordinates to match rotated GTT view */
2841         if (drm_rotation_90_or_270(rotation))
2842                 drm_rect_rotate(&plane_state->base.src,
2843                                 src_w << 16, src_h << 16,
2844                                 DRM_MODE_ROTATE_270);
2845
2846         for (i = 0; i < num_planes; i++) {
2847                 unsigned int hsub = i ? fb->format->hsub : 1;
2848                 unsigned int vsub = i ? fb->format->vsub : 1;
2849                 unsigned int cpp = fb->format->cpp[i];
2850                 unsigned int tile_width, tile_height;
2851                 unsigned int width, height;
2852                 unsigned int pitch_tiles;
2853                 unsigned int x, y;
2854                 u32 offset;
2855
2856                 intel_tile_dims(fb, i, &tile_width, &tile_height);
2857
2858                 x = src_x / hsub;
2859                 y = src_y / vsub;
2860                 width = src_w / hsub;
2861                 height = src_h / vsub;
2862
2863                 /*
2864                  * First pixel of the src viewport from the
2865                  * start of the normal gtt mapping.
2866                  */
2867                 x += intel_fb->normal[i].x;
2868                 y += intel_fb->normal[i].y;
2869
2870                 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
2871                                                       fb, i, fb->pitches[i],
2872                                                       DRM_MODE_ROTATE_0, tile_size);
2873                 offset /= tile_size;
2874
2875                 info->plane[i].offset = offset;
2876                 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
2877                                                      tile_width * cpp);
2878                 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2879                 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2880
2881                 if (drm_rotation_90_or_270(rotation)) {
2882                         struct drm_rect r;
2883
2884                         /* rotate the x/y offsets to match the GTT view */
2885                         drm_rect_init(&r, x, y, width, height);
2886                         drm_rect_rotate(&r,
2887                                         info->plane[i].width * tile_width,
2888                                         info->plane[i].height * tile_height,
2889                                         DRM_MODE_ROTATE_270);
2890                         x = r.x1;
2891                         y = r.y1;
2892
2893                         pitch_tiles = info->plane[i].height;
2894                         plane_state->color_plane[i].stride = pitch_tiles * tile_height;
2895
2896                         /* rotate the tile dimensions to match the GTT view */
2897                         swap(tile_width, tile_height);
2898                 } else {
2899                         pitch_tiles = info->plane[i].width;
2900                         plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
2901                 }
2902
2903                 /*
2904                  * We only keep the x/y offsets, so push all of the
2905                  * gtt offset into the x/y offsets.
2906                  */
2907                 intel_adjust_tile_offset(&x, &y,
2908                                          tile_width, tile_height,
2909                                          tile_size, pitch_tiles,
2910                                          gtt_offset * tile_size, 0);
2911
2912                 gtt_offset += info->plane[i].width * info->plane[i].height;
2913
2914                 plane_state->color_plane[i].offset = 0;
2915                 plane_state->color_plane[i].x = x;
2916                 plane_state->color_plane[i].y = y;
2917         }
2918 }
2919
2920 static int
2921 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
2922 {
2923         const struct intel_framebuffer *fb =
2924                 to_intel_framebuffer(plane_state->base.fb);
2925         unsigned int rotation = plane_state->base.rotation;
2926         int i, num_planes;
2927
2928         if (!fb)
2929                 return 0;
2930
2931         num_planes = fb->base.format->num_planes;
2932
2933         if (intel_plane_needs_remap(plane_state)) {
2934                 intel_plane_remap_gtt(plane_state);
2935
2936                 /*
2937                  * Sometimes even remapping can't overcome
2938                  * the stride limitations :( Can happen with
2939                  * big plane sizes and suitably misaligned
2940                  * offsets.
2941                  */
2942                 return intel_plane_check_stride(plane_state);
2943         }
2944
2945         intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
2946
2947         for (i = 0; i < num_planes; i++) {
2948                 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
2949                 plane_state->color_plane[i].offset = 0;
2950
2951                 if (drm_rotation_90_or_270(rotation)) {
2952                         plane_state->color_plane[i].x = fb->rotated[i].x;
2953                         plane_state->color_plane[i].y = fb->rotated[i].y;
2954                 } else {
2955                         plane_state->color_plane[i].x = fb->normal[i].x;
2956                         plane_state->color_plane[i].y = fb->normal[i].y;
2957                 }
2958         }
2959
2960         /* Rotate src coordinates to match rotated GTT view */
2961         if (drm_rotation_90_or_270(rotation))
2962                 drm_rect_rotate(&plane_state->base.src,
2963                                 fb->base.width << 16, fb->base.height << 16,
2964                                 DRM_MODE_ROTATE_270);
2965
2966         return intel_plane_check_stride(plane_state);
2967 }
2968
2969 static int i9xx_format_to_fourcc(int format)
2970 {
2971         switch (format) {
2972         case DISPPLANE_8BPP:
2973                 return DRM_FORMAT_C8;
2974         case DISPPLANE_BGRX555:
2975                 return DRM_FORMAT_XRGB1555;
2976         case DISPPLANE_BGRX565:
2977                 return DRM_FORMAT_RGB565;
2978         default:
2979         case DISPPLANE_BGRX888:
2980                 return DRM_FORMAT_XRGB8888;
2981         case DISPPLANE_RGBX888:
2982                 return DRM_FORMAT_XBGR8888;
2983         case DISPPLANE_BGRX101010:
2984                 return DRM_FORMAT_XRGB2101010;
2985         case DISPPLANE_RGBX101010:
2986                 return DRM_FORMAT_XBGR2101010;
2987         case DISPPLANE_RGBX161616:
2988                 return DRM_FORMAT_XBGR16161616F;
2989         }
2990 }
2991
2992 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2993 {
2994         switch (format) {
2995         case PLANE_CTL_FORMAT_RGB_565:
2996                 return DRM_FORMAT_RGB565;
2997         case PLANE_CTL_FORMAT_NV12:
2998                 return DRM_FORMAT_NV12;
2999         case PLANE_CTL_FORMAT_P010:
3000                 return DRM_FORMAT_P010;
3001         case PLANE_CTL_FORMAT_P012:
3002                 return DRM_FORMAT_P012;
3003         case PLANE_CTL_FORMAT_P016:
3004                 return DRM_FORMAT_P016;
3005         case PLANE_CTL_FORMAT_Y210:
3006                 return DRM_FORMAT_Y210;
3007         case PLANE_CTL_FORMAT_Y212:
3008                 return DRM_FORMAT_Y212;
3009         case PLANE_CTL_FORMAT_Y216:
3010                 return DRM_FORMAT_Y216;
3011         case PLANE_CTL_FORMAT_Y410:
3012                 return DRM_FORMAT_XVYU2101010;
3013         case PLANE_CTL_FORMAT_Y412:
3014                 return DRM_FORMAT_XVYU12_16161616;
3015         case PLANE_CTL_FORMAT_Y416:
3016                 return DRM_FORMAT_XVYU16161616;
3017         default:
3018         case PLANE_CTL_FORMAT_XRGB_8888:
3019                 if (rgb_order) {
3020                         if (alpha)
3021                                 return DRM_FORMAT_ABGR8888;
3022                         else
3023                                 return DRM_FORMAT_XBGR8888;
3024                 } else {
3025                         if (alpha)
3026                                 return DRM_FORMAT_ARGB8888;
3027                         else
3028                                 return DRM_FORMAT_XRGB8888;
3029                 }
3030         case PLANE_CTL_FORMAT_XRGB_2101010:
3031                 if (rgb_order)
3032                         return DRM_FORMAT_XBGR2101010;
3033                 else
3034                         return DRM_FORMAT_XRGB2101010;
3035         case PLANE_CTL_FORMAT_XRGB_16161616F:
3036                 if (rgb_order) {
3037                         if (alpha)
3038                                 return DRM_FORMAT_ABGR16161616F;
3039                         else
3040                                 return DRM_FORMAT_XBGR16161616F;
3041                 } else {
3042                         if (alpha)
3043                                 return DRM_FORMAT_ARGB16161616F;
3044                         else
3045                                 return DRM_FORMAT_XRGB16161616F;
3046                 }
3047         }
3048 }
3049
3050 static bool
3051 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3052                               struct intel_initial_plane_config *plane_config)
3053 {
3054         struct drm_device *dev = crtc->base.dev;
3055         struct drm_i915_private *dev_priv = to_i915(dev);
3056         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3057         struct drm_framebuffer *fb = &plane_config->fb->base;
3058         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3059         u32 size_aligned = round_up(plane_config->base + plane_config->size,
3060                                     PAGE_SIZE);
3061         struct drm_i915_gem_object *obj;
3062         bool ret = false;
3063
3064         size_aligned -= base_aligned;
3065
3066         if (plane_config->size == 0)
3067                 return false;
3068
3069         /* If the FB is too big, just don't use it since fbdev is not very
3070          * important and we should probably use that space with FBC or other
3071          * features. */
3072         if (size_aligned * 2 > dev_priv->stolen_usable_size)
3073                 return false;
3074
3075         switch (fb->modifier) {
3076         case DRM_FORMAT_MOD_LINEAR:
3077         case I915_FORMAT_MOD_X_TILED:
3078         case I915_FORMAT_MOD_Y_TILED:
3079                 break;
3080         default:
3081                 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3082                                  fb->modifier);
3083                 return false;
3084         }
3085
3086         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3087                                                              base_aligned,
3088                                                              base_aligned,
3089                                                              size_aligned);
3090         if (IS_ERR(obj))
3091                 return false;
3092
3093         switch (plane_config->tiling) {
3094         case I915_TILING_NONE:
3095                 break;
3096         case I915_TILING_X:
3097         case I915_TILING_Y:
3098                 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3099                 break;
3100         default:
3101                 MISSING_CASE(plane_config->tiling);
3102                 goto out;
3103         }
3104
3105         mode_cmd.pixel_format = fb->format->format;
3106         mode_cmd.width = fb->width;
3107         mode_cmd.height = fb->height;
3108         mode_cmd.pitches[0] = fb->pitches[0];
3109         mode_cmd.modifier[0] = fb->modifier;
3110         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3111
3112         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3113                 DRM_DEBUG_KMS("intel fb init failed\n");
3114                 goto out;
3115         }
3116
3117
3118         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3119         ret = true;
3120 out:
3121         i915_gem_object_put(obj);
3122         return ret;
3123 }
3124
3125 static void
3126 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3127                         struct intel_plane_state *plane_state,
3128                         bool visible)
3129 {
3130         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3131
3132         plane_state->base.visible = visible;
3133
3134         if (visible)
3135                 crtc_state->base.plane_mask |= drm_plane_mask(&plane->base);
3136         else
3137                 crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base);
3138 }
3139
3140 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3141 {
3142         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3143         struct drm_plane *plane;
3144
3145         /*
3146          * Active_planes aliases if multiple "primary" or cursor planes
3147          * have been used on the same (or wrong) pipe. plane_mask uses
3148          * unique ids, hence we can use that to reconstruct active_planes.
3149          */
3150         crtc_state->active_planes = 0;
3151
3152         drm_for_each_plane_mask(plane, &dev_priv->drm,
3153                                 crtc_state->base.plane_mask)
3154                 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3155 }
3156
3157 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3158                                          struct intel_plane *plane)
3159 {
3160         struct intel_crtc_state *crtc_state =
3161                 to_intel_crtc_state(crtc->base.state);
3162         struct intel_plane_state *plane_state =
3163                 to_intel_plane_state(plane->base.state);
3164
3165         DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3166                       plane->base.base.id, plane->base.name,
3167                       crtc->base.base.id, crtc->base.name);
3168
3169         intel_set_plane_visible(crtc_state, plane_state, false);
3170         fixup_active_planes(crtc_state);
3171         crtc_state->data_rate[plane->id] = 0;
3172         crtc_state->min_cdclk[plane->id] = 0;
3173
3174         if (plane->id == PLANE_PRIMARY)
3175                 intel_pre_disable_primary_noatomic(&crtc->base);
3176
3177         intel_disable_plane(plane, crtc_state);
3178 }
3179
3180 static struct intel_frontbuffer *
3181 to_intel_frontbuffer(struct drm_framebuffer *fb)
3182 {
3183         return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3184 }
3185
3186 static void
3187 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3188                              struct intel_initial_plane_config *plane_config)
3189 {
3190         struct drm_device *dev = intel_crtc->base.dev;
3191         struct drm_i915_private *dev_priv = to_i915(dev);
3192         struct drm_crtc *c;
3193         struct drm_plane *primary = intel_crtc->base.primary;
3194         struct drm_plane_state *plane_state = primary->state;
3195         struct intel_plane *intel_plane = to_intel_plane(primary);
3196         struct intel_plane_state *intel_state =
3197                 to_intel_plane_state(plane_state);
3198         struct drm_framebuffer *fb;
3199
3200         if (!plane_config->fb)
3201                 return;
3202
3203         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3204                 fb = &plane_config->fb->base;
3205                 goto valid_fb;
3206         }
3207
3208         kfree(plane_config->fb);
3209
3210         /*
3211          * Failed to alloc the obj, check to see if we should share
3212          * an fb with another CRTC instead
3213          */
3214         for_each_crtc(dev, c) {
3215                 struct intel_plane_state *state;
3216
3217                 if (c == &intel_crtc->base)
3218                         continue;
3219
3220                 if (!to_intel_crtc(c)->active)
3221                         continue;
3222
3223                 state = to_intel_plane_state(c->primary->state);
3224                 if (!state->vma)
3225                         continue;
3226
3227                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3228                         fb = state->base.fb;
3229                         drm_framebuffer_get(fb);
3230                         goto valid_fb;
3231                 }
3232         }
3233
3234         /*
3235          * We've failed to reconstruct the BIOS FB.  Current display state
3236          * indicates that the primary plane is visible, but has a NULL FB,
3237          * which will lead to problems later if we don't fix it up.  The
3238          * simplest solution is to just disable the primary plane now and
3239          * pretend the BIOS never had it enabled.
3240          */
3241         intel_plane_disable_noatomic(intel_crtc, intel_plane);
3242
3243         return;
3244
3245 valid_fb:
3246         intel_state->base.rotation = plane_config->rotation;
3247         intel_fill_fb_ggtt_view(&intel_state->view, fb,
3248                                 intel_state->base.rotation);
3249         intel_state->color_plane[0].stride =
3250                 intel_fb_pitch(fb, 0, intel_state->base.rotation);
3251
3252         intel_state->vma =
3253                 intel_pin_and_fence_fb_obj(fb,
3254                                            &intel_state->view,
3255                                            intel_plane_uses_fence(intel_state),
3256                                            &intel_state->flags);
3257         if (IS_ERR(intel_state->vma)) {
3258                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3259                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
3260
3261                 intel_state->vma = NULL;
3262                 drm_framebuffer_put(fb);
3263                 return;
3264         }
3265
3266         intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3267
3268         plane_state->src_x = 0;
3269         plane_state->src_y = 0;
3270         plane_state->src_w = fb->width << 16;
3271         plane_state->src_h = fb->height << 16;
3272
3273         plane_state->crtc_x = 0;
3274         plane_state->crtc_y = 0;
3275         plane_state->crtc_w = fb->width;
3276         plane_state->crtc_h = fb->height;
3277
3278         intel_state->base.src = drm_plane_state_src(plane_state);
3279         intel_state->base.dst = drm_plane_state_dest(plane_state);
3280
3281         if (plane_config->tiling)
3282                 dev_priv->preserve_bios_swizzle = true;
3283
3284         plane_state->fb = fb;
3285         plane_state->crtc = &intel_crtc->base;
3286
3287         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3288                   &to_intel_frontbuffer(fb)->bits);
3289 }
3290
3291 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3292                                int color_plane,
3293                                unsigned int rotation)
3294 {
3295         int cpp = fb->format->cpp[color_plane];
3296
3297         switch (fb->modifier) {
3298         case DRM_FORMAT_MOD_LINEAR:
3299         case I915_FORMAT_MOD_X_TILED:
3300                 /*
3301                  * Validated limit is 4k, but has 5k should
3302                  * work apart from the following features:
3303                  * - Ytile (already limited to 4k)
3304                  * - FP16 (already limited to 4k)
3305                  * - render compression (already limited to 4k)
3306                  * - KVMR sprite and cursor (don't care)
3307                  * - horizontal panning (TODO verify this)
3308                  * - pipe and plane scaling (TODO verify this)
3309                  */
3310                 if (cpp == 8)
3311                         return 4096;
3312                 else
3313                         return 5120;
3314         case I915_FORMAT_MOD_Y_TILED_CCS:
3315         case I915_FORMAT_MOD_Yf_TILED_CCS:
3316                 /* FIXME AUX plane? */
3317         case I915_FORMAT_MOD_Y_TILED:
3318         case I915_FORMAT_MOD_Yf_TILED:
3319                 if (cpp == 8)
3320                         return 2048;
3321                 else
3322                         return 4096;
3323         default:
3324                 MISSING_CASE(fb->modifier);
3325                 return 2048;
3326         }
3327 }
3328
3329 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3330                                int color_plane,
3331                                unsigned int rotation)
3332 {
3333         int cpp = fb->format->cpp[color_plane];
3334
3335         switch (fb->modifier) {
3336         case DRM_FORMAT_MOD_LINEAR:
3337         case I915_FORMAT_MOD_X_TILED:
3338                 if (cpp == 8)
3339                         return 4096;
3340                 else
3341                         return 5120;
3342         case I915_FORMAT_MOD_Y_TILED_CCS:
3343         case I915_FORMAT_MOD_Yf_TILED_CCS:
3344                 /* FIXME AUX plane? */
3345         case I915_FORMAT_MOD_Y_TILED:
3346         case I915_FORMAT_MOD_Yf_TILED:
3347                 if (cpp == 8)
3348                         return 2048;
3349                 else
3350                         return 5120;
3351         default:
3352                 MISSING_CASE(fb->modifier);
3353                 return 2048;
3354         }
3355 }
3356
3357 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3358                                int color_plane,
3359                                unsigned int rotation)
3360 {
3361         return 5120;
3362 }
3363
3364 static int skl_max_plane_height(void)
3365 {
3366         return 4096;
3367 }
3368
3369 static int icl_max_plane_height(void)
3370 {
3371         return 4320;
3372 }
3373
3374 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3375                                            int main_x, int main_y, u32 main_offset)
3376 {
3377         const struct drm_framebuffer *fb = plane_state->base.fb;
3378         int hsub = fb->format->hsub;
3379         int vsub = fb->format->vsub;
3380         int aux_x = plane_state->color_plane[1].x;
3381         int aux_y = plane_state->color_plane[1].y;
3382         u32 aux_offset = plane_state->color_plane[1].offset;
3383         u32 alignment = intel_surf_alignment(fb, 1);
3384
3385         while (aux_offset >= main_offset && aux_y <= main_y) {
3386                 int x, y;
3387
3388                 if (aux_x == main_x && aux_y == main_y)
3389                         break;
3390
3391                 if (aux_offset == 0)
3392                         break;
3393
3394                 x = aux_x / hsub;
3395                 y = aux_y / vsub;
3396                 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1,
3397                                                                aux_offset, aux_offset - alignment);
3398                 aux_x = x * hsub + aux_x % hsub;
3399                 aux_y = y * vsub + aux_y % vsub;
3400         }
3401
3402         if (aux_x != main_x || aux_y != main_y)
3403                 return false;
3404
3405         plane_state->color_plane[1].offset = aux_offset;
3406         plane_state->color_plane[1].x = aux_x;
3407         plane_state->color_plane[1].y = aux_y;
3408
3409         return true;
3410 }
3411
3412 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3413 {
3414         struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
3415         const struct drm_framebuffer *fb = plane_state->base.fb;
3416         unsigned int rotation = plane_state->base.rotation;
3417         int x = plane_state->base.src.x1 >> 16;
3418         int y = plane_state->base.src.y1 >> 16;
3419         int w = drm_rect_width(&plane_state->base.src) >> 16;
3420         int h = drm_rect_height(&plane_state->base.src) >> 16;
3421         int max_width;
3422         int max_height;
3423         u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset;
3424
3425         if (INTEL_GEN(dev_priv) >= 11)
3426                 max_width = icl_max_plane_width(fb, 0, rotation);
3427         else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3428                 max_width = glk_max_plane_width(fb, 0, rotation);
3429         else
3430                 max_width = skl_max_plane_width(fb, 0, rotation);
3431
3432         if (INTEL_GEN(dev_priv) >= 11)
3433                 max_height = icl_max_plane_height();
3434         else
3435                 max_height = skl_max_plane_height();
3436
3437         if (w > max_width || h > max_height) {
3438                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3439                               w, h, max_width, max_height);
3440                 return -EINVAL;
3441         }
3442
3443         intel_add_fb_offsets(&x, &y, plane_state, 0);
3444         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3445         alignment = intel_surf_alignment(fb, 0);
3446
3447         /*
3448          * AUX surface offset is specified as the distance from the
3449          * main surface offset, and it must be non-negative. Make
3450          * sure that is what we will get.
3451          */
3452         if (offset > aux_offset)
3453                 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3454                                                            offset, aux_offset & ~(alignment - 1));
3455
3456         /*
3457          * When using an X-tiled surface, the plane blows up
3458          * if the x offset + width exceed the stride.
3459          *
3460          * TODO: linear and Y-tiled seem fine, Yf untested,
3461          */
3462         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3463                 int cpp = fb->format->cpp[0];
3464
3465                 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3466                         if (offset == 0) {
3467                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3468                                 return -EINVAL;
3469                         }
3470
3471                         offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3472                                                                    offset, offset - alignment);
3473                 }
3474         }
3475
3476         /*
3477          * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3478          * they match with the main surface x/y offsets.
3479          */
3480         if (is_ccs_modifier(fb->modifier)) {
3481                 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3482                         if (offset == 0)
3483                                 break;
3484
3485                         offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3486                                                                    offset, offset - alignment);
3487                 }
3488
3489                 if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) {
3490                         DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3491                         return -EINVAL;
3492                 }
3493         }
3494
3495         plane_state->color_plane[0].offset = offset;
3496         plane_state->color_plane[0].x = x;
3497         plane_state->color_plane[0].y = y;
3498
3499         /*
3500          * Put the final coordinates back so that the src
3501          * coordinate checks will see the right values.
3502          */
3503         drm_rect_translate_to(&plane_state->base.src,
3504                               x << 16, y << 16);
3505
3506         return 0;
3507 }
3508
3509 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3510 {
3511         const struct drm_framebuffer *fb = plane_state->base.fb;
3512         unsigned int rotation = plane_state->base.rotation;
3513         int max_width = skl_max_plane_width(fb, 1, rotation);
3514         int max_height = 4096;
3515         int x = plane_state->base.src.x1 >> 17;
3516         int y = plane_state->base.src.y1 >> 17;
3517         int w = drm_rect_width(&plane_state->base.src) >> 17;
3518         int h = drm_rect_height(&plane_state->base.src) >> 17;
3519         u32 offset;
3520
3521         intel_add_fb_offsets(&x, &y, plane_state, 1);
3522         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3523
3524         /* FIXME not quite sure how/if these apply to the chroma plane */
3525         if (w > max_width || h > max_height) {
3526                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3527                               w, h, max_width, max_height);
3528                 return -EINVAL;
3529         }
3530
3531         plane_state->color_plane[1].offset = offset;
3532         plane_state->color_plane[1].x = x;
3533         plane_state->color_plane[1].y = y;
3534
3535         return 0;
3536 }
3537
3538 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3539 {
3540         const struct drm_framebuffer *fb = plane_state->base.fb;
3541         int src_x = plane_state->base.src.x1 >> 16;
3542         int src_y = plane_state->base.src.y1 >> 16;
3543         int hsub = fb->format->hsub;
3544         int vsub = fb->format->vsub;
3545         int x = src_x / hsub;
3546         int y = src_y / vsub;
3547         u32 offset;
3548
3549         intel_add_fb_offsets(&x, &y, plane_state, 1);
3550         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3551
3552         plane_state->color_plane[1].offset = offset;
3553         plane_state->color_plane[1].x = x * hsub + src_x % hsub;
3554         plane_state->color_plane[1].y = y * vsub + src_y % vsub;
3555
3556         return 0;
3557 }
3558
3559 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3560 {
3561         const struct drm_framebuffer *fb = plane_state->base.fb;
3562         int ret;
3563
3564         ret = intel_plane_compute_gtt(plane_state);
3565         if (ret)
3566                 return ret;
3567
3568         if (!plane_state->base.visible)
3569                 return 0;
3570
3571         /*
3572          * Handle the AUX surface first since
3573          * the main surface setup depends on it.
3574          */
3575         if (drm_format_info_is_yuv_semiplanar(fb->format)) {
3576                 ret = skl_check_nv12_aux_surface(plane_state);
3577                 if (ret)
3578                         return ret;
3579         } else if (is_ccs_modifier(fb->modifier)) {
3580                 ret = skl_check_ccs_aux_surface(plane_state);
3581                 if (ret)
3582                         return ret;
3583         } else {
3584                 plane_state->color_plane[1].offset = ~0xfff;
3585                 plane_state->color_plane[1].x = 0;
3586                 plane_state->color_plane[1].y = 0;
3587         }
3588
3589         ret = skl_check_main_surface(plane_state);
3590         if (ret)
3591                 return ret;
3592
3593         return 0;
3594 }
3595
3596 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
3597                              const struct intel_plane_state *plane_state,
3598                              unsigned int *num, unsigned int *den)
3599 {
3600         const struct drm_framebuffer *fb = plane_state->base.fb;
3601         unsigned int cpp = fb->format->cpp[0];
3602
3603         /*
3604          * g4x bspec says 64bpp pixel rate can't exceed 80%
3605          * of cdclk when the sprite plane is enabled on the
3606          * same pipe. ilk/snb bspec says 64bpp pixel rate is
3607          * never allowed to exceed 80% of cdclk. Let's just go
3608          * with the ilk/snb limit always.
3609          */
3610         if (cpp == 8) {
3611                 *num = 10;
3612                 *den = 8;
3613         } else {
3614                 *num = 1;
3615                 *den = 1;
3616         }
3617 }
3618
3619 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
3620                                 const struct intel_plane_state *plane_state)
3621 {
3622         unsigned int pixel_rate;
3623         unsigned int num, den;
3624
3625         /*
3626          * Note that crtc_state->pixel_rate accounts for both
3627          * horizontal and vertical panel fitter downscaling factors.
3628          * Pre-HSW bspec tells us to only consider the horizontal
3629          * downscaling factor here. We ignore that and just consider
3630          * both for simplicity.
3631          */
3632         pixel_rate = crtc_state->pixel_rate;
3633
3634         i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
3635
3636         /* two pixels per clock with double wide pipe */
3637         if (crtc_state->double_wide)
3638                 den *= 2;
3639
3640         return DIV_ROUND_UP(pixel_rate * num, den);
3641 }
3642
3643 unsigned int
3644 i9xx_plane_max_stride(struct intel_plane *plane,
3645                       u32 pixel_format, u64 modifier,
3646                       unsigned int rotation)
3647 {
3648         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3649
3650         if (!HAS_GMCH(dev_priv)) {
3651                 return 32*1024;
3652         } else if (INTEL_GEN(dev_priv) >= 4) {
3653                 if (modifier == I915_FORMAT_MOD_X_TILED)
3654                         return 16*1024;
3655                 else
3656                         return 32*1024;
3657         } else if (INTEL_GEN(dev_priv) >= 3) {
3658                 if (modifier == I915_FORMAT_MOD_X_TILED)
3659                         return 8*1024;
3660                 else
3661                         return 16*1024;
3662         } else {
3663                 if (plane->i9xx_plane == PLANE_C)
3664                         return 4*1024;
3665                 else
3666                         return 8*1024;
3667         }
3668 }
3669
3670 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
3671 {
3672         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3673         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3674         u32 dspcntr = 0;
3675
3676         if (crtc_state->gamma_enable)
3677                 dspcntr |= DISPPLANE_GAMMA_ENABLE;
3678
3679         if (crtc_state->csc_enable)
3680                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3681
3682         if (INTEL_GEN(dev_priv) < 5)
3683                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3684
3685         return dspcntr;
3686 }
3687
3688 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3689                           const struct intel_plane_state *plane_state)
3690 {
3691         struct drm_i915_private *dev_priv =
3692                 to_i915(plane_state->base.plane->dev);
3693         const struct drm_framebuffer *fb = plane_state->base.fb;
3694         unsigned int rotation = plane_state->base.rotation;
3695         u32 dspcntr;
3696
3697         dspcntr = DISPLAY_PLANE_ENABLE;
3698
3699         if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
3700             IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
3701                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3702
3703         switch (fb->format->format) {
3704         case DRM_FORMAT_C8:
3705                 dspcntr |= DISPPLANE_8BPP;
3706                 break;
3707         case DRM_FORMAT_XRGB1555:
3708                 dspcntr |= DISPPLANE_BGRX555;
3709                 break;
3710         case DRM_FORMAT_RGB565:
3711                 dspcntr |= DISPPLANE_BGRX565;
3712                 break;
3713         case DRM_FORMAT_XRGB8888:
3714                 dspcntr |= DISPPLANE_BGRX888;
3715                 break;
3716         case DRM_FORMAT_XBGR8888:
3717                 dspcntr |= DISPPLANE_RGBX888;
3718                 break;
3719         case DRM_FORMAT_XRGB2101010:
3720                 dspcntr |= DISPPLANE_BGRX101010;
3721                 break;
3722         case DRM_FORMAT_XBGR2101010:
3723                 dspcntr |= DISPPLANE_RGBX101010;
3724                 break;
3725         case DRM_FORMAT_XBGR16161616F:
3726                 dspcntr |= DISPPLANE_RGBX161616;
3727                 break;
3728         default:
3729                 MISSING_CASE(fb->format->format);
3730                 return 0;
3731         }
3732
3733         if (INTEL_GEN(dev_priv) >= 4 &&
3734             fb->modifier == I915_FORMAT_MOD_X_TILED)
3735                 dspcntr |= DISPPLANE_TILED;
3736
3737         if (rotation & DRM_MODE_ROTATE_180)
3738                 dspcntr |= DISPPLANE_ROTATE_180;
3739
3740         if (rotation & DRM_MODE_REFLECT_X)
3741                 dspcntr |= DISPPLANE_MIRROR;
3742
3743         return dspcntr;
3744 }
3745
3746 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3747 {
3748         struct drm_i915_private *dev_priv =
3749                 to_i915(plane_state->base.plane->dev);
3750         const struct drm_framebuffer *fb = plane_state->base.fb;
3751         int src_x, src_y, src_w;
3752         u32 offset;
3753         int ret;
3754
3755         ret = intel_plane_compute_gtt(plane_state);
3756         if (ret)
3757                 return ret;
3758
3759         if (!plane_state->base.visible)
3760                 return 0;
3761
3762         src_w = drm_rect_width(&plane_state->base.src) >> 16;
3763         src_x = plane_state->base.src.x1 >> 16;
3764         src_y = plane_state->base.src.y1 >> 16;
3765
3766         /* Undocumented hardware limit on i965/g4x/vlv/chv */
3767         if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
3768                 return -EINVAL;
3769
3770         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3771
3772         if (INTEL_GEN(dev_priv) >= 4)
3773                 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
3774                                                             plane_state, 0);
3775         else
3776                 offset = 0;
3777
3778         /*
3779          * Put the final coordinates back so that the src
3780          * coordinate checks will see the right values.
3781          */
3782         drm_rect_translate_to(&plane_state->base.src,
3783                               src_x << 16, src_y << 16);
3784
3785         /* HSW/BDW do this automagically in hardware */
3786         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3787                 unsigned int rotation = plane_state->base.rotation;
3788                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3789                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3790
3791                 if (rotation & DRM_MODE_ROTATE_180) {
3792                         src_x += src_w - 1;
3793                         src_y += src_h - 1;
3794                 } else if (rotation & DRM_MODE_REFLECT_X) {
3795                         src_x += src_w - 1;
3796                 }
3797         }
3798
3799         plane_state->color_plane[0].offset = offset;
3800         plane_state->color_plane[0].x = src_x;
3801         plane_state->color_plane[0].y = src_y;
3802
3803         return 0;
3804 }
3805
3806 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
3807 {
3808         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3809         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3810
3811         if (IS_CHERRYVIEW(dev_priv))
3812                 return i9xx_plane == PLANE_B;
3813         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3814                 return false;
3815         else if (IS_GEN(dev_priv, 4))
3816                 return i9xx_plane == PLANE_C;
3817         else
3818                 return i9xx_plane == PLANE_B ||
3819                         i9xx_plane == PLANE_C;
3820 }
3821
3822 static int
3823 i9xx_plane_check(struct intel_crtc_state *crtc_state,
3824                  struct intel_plane_state *plane_state)
3825 {
3826         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3827         int ret;
3828
3829         ret = chv_plane_check_rotation(plane_state);
3830         if (ret)
3831                 return ret;
3832
3833         ret = drm_atomic_helper_check_plane_state(&plane_state->base,
3834                                                   &crtc_state->base,
3835                                                   DRM_PLANE_HELPER_NO_SCALING,
3836                                                   DRM_PLANE_HELPER_NO_SCALING,
3837                                                   i9xx_plane_has_windowing(plane),
3838                                                   true);
3839         if (ret)
3840                 return ret;
3841
3842         ret = i9xx_check_plane_surface(plane_state);
3843         if (ret)
3844                 return ret;
3845
3846         if (!plane_state->base.visible)
3847                 return 0;
3848
3849         ret = intel_plane_check_src_coordinates(plane_state);
3850         if (ret)
3851                 return ret;
3852
3853         plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
3854
3855         return 0;
3856 }
3857
3858 static void i9xx_update_plane(struct intel_plane *plane,
3859                               const struct intel_crtc_state *crtc_state,
3860                               const struct intel_plane_state *plane_state)
3861 {
3862         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3863         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3864         u32 linear_offset;
3865         int x = plane_state->color_plane[0].x;
3866         int y = plane_state->color_plane[0].y;
3867         int crtc_x = plane_state->base.dst.x1;
3868         int crtc_y = plane_state->base.dst.y1;
3869         int crtc_w = drm_rect_width(&plane_state->base.dst);
3870         int crtc_h = drm_rect_height(&plane_state->base.dst);
3871         unsigned long irqflags;
3872         u32 dspaddr_offset;
3873         u32 dspcntr;
3874
3875         dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
3876
3877         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3878
3879         if (INTEL_GEN(dev_priv) >= 4)
3880                 dspaddr_offset = plane_state->color_plane[0].offset;
3881         else
3882                 dspaddr_offset = linear_offset;
3883
3884         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3885
3886         I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
3887
3888         if (INTEL_GEN(dev_priv) < 4) {
3889                 /*
3890                  * PLANE_A doesn't actually have a full window
3891                  * generator but let's assume we still need to
3892                  * program whatever is there.
3893                  */
3894                 I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
3895                 I915_WRITE_FW(DSPSIZE(i9xx_plane),
3896                               ((crtc_h - 1) << 16) | (crtc_w - 1));
3897         } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
3898                 I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
3899                 I915_WRITE_FW(PRIMSIZE(i9xx_plane),
3900                               ((crtc_h - 1) << 16) | (crtc_w - 1));
3901                 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
3902         }
3903
3904         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3905                 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
3906         } else if (INTEL_GEN(dev_priv) >= 4) {
3907                 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
3908                 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
3909         }
3910
3911         /*
3912          * The control register self-arms if the plane was previously
3913          * disabled. Try to make the plane enable atomic by writing
3914          * the control register just before the surface register.
3915          */
3916         I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3917         if (INTEL_GEN(dev_priv) >= 4)
3918                 I915_WRITE_FW(DSPSURF(i9xx_plane),
3919                               intel_plane_ggtt_offset(plane_state) +
3920                               dspaddr_offset);
3921         else
3922                 I915_WRITE_FW(DSPADDR(i9xx_plane),
3923                               intel_plane_ggtt_offset(plane_state) +
3924                               dspaddr_offset);
3925
3926         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3927 }
3928
3929 static void i9xx_disable_plane(struct intel_plane *plane,
3930                                const struct intel_crtc_state *crtc_state)
3931 {
3932         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3933         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3934         unsigned long irqflags;
3935         u32 dspcntr;
3936
3937         /*
3938          * DSPCNTR pipe gamma enable on g4x+ and pipe csc
3939          * enable on ilk+ affect the pipe bottom color as
3940          * well, so we must configure them even if the plane
3941          * is disabled.
3942          *
3943          * On pre-g4x there is no way to gamma correct the
3944          * pipe bottom color but we'll keep on doing this
3945          * anyway so that the crtc state readout works correctly.
3946          */
3947         dspcntr = i9xx_plane_ctl_crtc(crtc_state);
3948
3949         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3950
3951         I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3952         if (INTEL_GEN(dev_priv) >= 4)
3953                 I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
3954         else
3955                 I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
3956
3957         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3958 }
3959
3960 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
3961                                     enum pipe *pipe)
3962 {
3963         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3964         enum intel_display_power_domain power_domain;
3965         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3966         intel_wakeref_t wakeref;
3967         bool ret;
3968         u32 val;
3969
3970         /*
3971          * Not 100% correct for planes that can move between pipes,
3972          * but that's only the case for gen2-4 which don't have any
3973          * display power wells.
3974          */
3975         power_domain = POWER_DOMAIN_PIPE(plane->pipe);
3976         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
3977         if (!wakeref)
3978                 return false;
3979
3980         val = I915_READ(DSPCNTR(i9xx_plane));
3981
3982         ret = val & DISPLAY_PLANE_ENABLE;
3983
3984         if (INTEL_GEN(dev_priv) >= 5)
3985                 *pipe = plane->pipe;
3986         else
3987                 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
3988                         DISPPLANE_SEL_PIPE_SHIFT;
3989
3990         intel_display_power_put(dev_priv, power_domain, wakeref);
3991
3992         return ret;
3993 }
3994
3995 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3996 {
3997         struct drm_device *dev = intel_crtc->base.dev;
3998         struct drm_i915_private *dev_priv = to_i915(dev);
3999
4000         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4001         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4002         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4003 }
4004
4005 /*
4006  * This function detaches (aka. unbinds) unused scalers in hardware
4007  */
4008 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4009 {
4010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4011         const struct intel_crtc_scaler_state *scaler_state =
4012                 &crtc_state->scaler_state;
4013         int i;
4014
4015         /* loop through and disable scalers that aren't in use */
4016         for (i = 0; i < intel_crtc->num_scalers; i++) {
4017                 if (!scaler_state->scalers[i].in_use)
4018                         skl_detach_scaler(intel_crtc, i);
4019         }
4020 }
4021
4022 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4023                                           int color_plane, unsigned int rotation)
4024 {
4025         /*
4026          * The stride is either expressed as a multiple of 64 bytes chunks for
4027          * linear buffers or in number of tiles for tiled buffers.
4028          */
4029         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
4030                 return 64;
4031         else if (drm_rotation_90_or_270(rotation))
4032                 return intel_tile_height(fb, color_plane);
4033         else
4034                 return intel_tile_width_bytes(fb, color_plane);
4035 }
4036
4037 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4038                      int color_plane)
4039 {
4040         const struct drm_framebuffer *fb = plane_state->base.fb;
4041         unsigned int rotation = plane_state->base.rotation;
4042         u32 stride = plane_state->color_plane[color_plane].stride;
4043
4044         if (color_plane >= fb->format->num_planes)
4045                 return 0;
4046
4047         return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4048 }
4049
4050 static u32 skl_plane_ctl_format(u32 pixel_format)
4051 {
4052         switch (pixel_format) {
4053         case DRM_FORMAT_C8:
4054                 return PLANE_CTL_FORMAT_INDEXED;
4055         case DRM_FORMAT_RGB565:
4056                 return PLANE_CTL_FORMAT_RGB_565;
4057         case DRM_FORMAT_XBGR8888:
4058         case DRM_FORMAT_ABGR8888:
4059                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4060         case DRM_FORMAT_XRGB8888:
4061         case DRM_FORMAT_ARGB8888:
4062                 return PLANE_CTL_FORMAT_XRGB_8888;
4063         case DRM_FORMAT_XBGR2101010:
4064                 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4065         case DRM_FORMAT_XRGB2101010:
4066                 return PLANE_CTL_FORMAT_XRGB_2101010;
4067         case DRM_FORMAT_XBGR16161616F:
4068         case DRM_FORMAT_ABGR16161616F:
4069                 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4070         case DRM_FORMAT_XRGB16161616F:
4071         case DRM_FORMAT_ARGB16161616F:
4072                 return PLANE_CTL_FORMAT_XRGB_16161616F;
4073         case DRM_FORMAT_YUYV:
4074                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4075         case DRM_FORMAT_YVYU:
4076                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4077         case DRM_FORMAT_UYVY:
4078                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4079         case DRM_FORMAT_VYUY:
4080                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4081         case DRM_FORMAT_NV12:
4082                 return PLANE_CTL_FORMAT_NV12;
4083         case DRM_FORMAT_P010:
4084                 return PLANE_CTL_FORMAT_P010;
4085         case DRM_FORMAT_P012:
4086                 return PLANE_CTL_FORMAT_P012;
4087         case DRM_FORMAT_P016:
4088                 return PLANE_CTL_FORMAT_P016;
4089         case DRM_FORMAT_Y210:
4090                 return PLANE_CTL_FORMAT_Y210;
4091         case DRM_FORMAT_Y212:
4092                 return PLANE_CTL_FORMAT_Y212;
4093         case DRM_FORMAT_Y216:
4094                 return PLANE_CTL_FORMAT_Y216;
4095         case DRM_FORMAT_XVYU2101010:
4096                 return PLANE_CTL_FORMAT_Y410;
4097         case DRM_FORMAT_XVYU12_16161616:
4098                 return PLANE_CTL_FORMAT_Y412;
4099         case DRM_FORMAT_XVYU16161616:
4100                 return PLANE_CTL_FORMAT_Y416;
4101         default:
4102                 MISSING_CASE(pixel_format);
4103         }
4104
4105         return 0;
4106 }
4107
4108 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4109 {
4110         if (!plane_state->base.fb->format->has_alpha)
4111                 return PLANE_CTL_ALPHA_DISABLE;
4112
4113         switch (plane_state->base.pixel_blend_mode) {
4114         case DRM_MODE_BLEND_PIXEL_NONE:
4115                 return PLANE_CTL_ALPHA_DISABLE;
4116         case DRM_MODE_BLEND_PREMULTI:
4117                 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4118         case DRM_MODE_BLEND_COVERAGE:
4119                 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4120         default:
4121                 MISSING_CASE(plane_state->base.pixel_blend_mode);
4122                 return PLANE_CTL_ALPHA_DISABLE;
4123         }
4124 }
4125
4126 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4127 {
4128         if (!plane_state->base.fb->format->has_alpha)
4129                 return PLANE_COLOR_ALPHA_DISABLE;
4130
4131         switch (plane_state->base.pixel_blend_mode) {
4132         case DRM_MODE_BLEND_PIXEL_NONE:
4133                 return PLANE_COLOR_ALPHA_DISABLE;
4134         case DRM_MODE_BLEND_PREMULTI:
4135                 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4136         case DRM_MODE_BLEND_COVERAGE:
4137                 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4138         default:
4139                 MISSING_CASE(plane_state->base.pixel_blend_mode);
4140                 return PLANE_COLOR_ALPHA_DISABLE;
4141         }
4142 }
4143
4144 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4145 {
4146         switch (fb_modifier) {
4147         case DRM_FORMAT_MOD_LINEAR:
4148                 break;
4149         case I915_FORMAT_MOD_X_TILED:
4150                 return PLANE_CTL_TILED_X;
4151         case I915_FORMAT_MOD_Y_TILED:
4152                 return PLANE_CTL_TILED_Y;
4153         case I915_FORMAT_MOD_Y_TILED_CCS:
4154                 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4155         case I915_FORMAT_MOD_Yf_TILED:
4156                 return PLANE_CTL_TILED_YF;
4157         case I915_FORMAT_MOD_Yf_TILED_CCS:
4158                 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4159         default:
4160                 MISSING_CASE(fb_modifier);
4161         }
4162
4163         return 0;
4164 }
4165
4166 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4167 {
4168         switch (rotate) {
4169         case DRM_MODE_ROTATE_0:
4170                 break;
4171         /*
4172          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4173          * while i915 HW rotation is clockwise, thats why this swapping.
4174          */
4175         case DRM_MODE_ROTATE_90:
4176                 return PLANE_CTL_ROTATE_270;
4177         case DRM_MODE_ROTATE_180:
4178                 return PLANE_CTL_ROTATE_180;
4179         case DRM_MODE_ROTATE_270:
4180                 return PLANE_CTL_ROTATE_90;
4181         default:
4182                 MISSING_CASE(rotate);
4183         }
4184
4185         return 0;
4186 }
4187
4188 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4189 {
4190         switch (reflect) {
4191         case 0:
4192                 break;
4193         case DRM_MODE_REFLECT_X:
4194                 return PLANE_CTL_FLIP_HORIZONTAL;
4195         case DRM_MODE_REFLECT_Y:
4196         default:
4197                 MISSING_CASE(reflect);
4198         }
4199
4200         return 0;
4201 }
4202
4203 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4204 {
4205         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4206         u32 plane_ctl = 0;
4207
4208         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4209                 return plane_ctl;
4210
4211         if (crtc_state->gamma_enable)
4212                 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4213
4214         if (crtc_state->csc_enable)
4215                 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4216
4217         return plane_ctl;
4218 }
4219
4220 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4221                   const struct intel_plane_state *plane_state)
4222 {
4223         struct drm_i915_private *dev_priv =
4224                 to_i915(plane_state->base.plane->dev);
4225         const struct drm_framebuffer *fb = plane_state->base.fb;
4226         unsigned int rotation = plane_state->base.rotation;
4227         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4228         u32 plane_ctl;
4229
4230         plane_ctl = PLANE_CTL_ENABLE;
4231
4232         if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4233                 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4234                 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4235
4236                 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4237                         plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4238
4239                 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4240                         plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4241         }
4242
4243         plane_ctl |= skl_plane_ctl_format(fb->format->format);
4244         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4245         plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4246
4247         if (INTEL_GEN(dev_priv) >= 10)
4248                 plane_ctl |= cnl_plane_ctl_flip(rotation &
4249                                                 DRM_MODE_REFLECT_MASK);
4250
4251         if (key->flags & I915_SET_COLORKEY_DESTINATION)
4252                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4253         else if (key->flags & I915_SET_COLORKEY_SOURCE)
4254                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4255
4256         return plane_ctl;
4257 }
4258
4259 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4260 {
4261         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4262         u32 plane_color_ctl = 0;
4263
4264         if (INTEL_GEN(dev_priv) >= 11)
4265                 return plane_color_ctl;
4266
4267         if (crtc_state->gamma_enable)
4268                 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4269
4270         if (crtc_state->csc_enable)
4271                 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4272
4273         return plane_color_ctl;
4274 }
4275
4276 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4277                         const struct intel_plane_state *plane_state)
4278 {
4279         struct drm_i915_private *dev_priv =
4280                 to_i915(plane_state->base.plane->dev);
4281         const struct drm_framebuffer *fb = plane_state->base.fb;
4282         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4283         u32 plane_color_ctl = 0;
4284
4285         plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4286         plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4287
4288         if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4289                 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4290                         plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4291                 else
4292                         plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4293
4294                 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4295                         plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4296         } else if (fb->format->is_yuv) {
4297                 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4298         }
4299
4300         return plane_color_ctl;
4301 }
4302
4303 static int
4304 __intel_display_resume(struct drm_device *dev,
4305                        struct drm_atomic_state *state,
4306                        struct drm_modeset_acquire_ctx *ctx)
4307 {
4308         struct drm_crtc_state *crtc_state;
4309         struct drm_crtc *crtc;
4310         int i, ret;
4311
4312         intel_modeset_setup_hw_state(dev, ctx);
4313         intel_vga_redisable(to_i915(dev));
4314
4315         if (!state)
4316                 return 0;
4317
4318         /*
4319          * We've duplicated the state, pointers to the old state are invalid.
4320          *
4321          * Don't attempt to use the old state until we commit the duplicated state.
4322          */
4323         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4324                 /*
4325                  * Force recalculation even if we restore
4326                  * current state. With fast modeset this may not result
4327                  * in a modeset when the state is compatible.
4328                  */
4329                 crtc_state->mode_changed = true;
4330         }
4331
4332         /* ignore any reset values/BIOS leftovers in the WM registers */
4333         if (!HAS_GMCH(to_i915(dev)))
4334                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4335
4336         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4337
4338         WARN_ON(ret == -EDEADLK);
4339         return ret;
4340 }
4341
4342 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4343 {
4344         return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4345                 intel_has_gpu_reset(&dev_priv->gt));
4346 }
4347
4348 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4349 {
4350         struct drm_device *dev = &dev_priv->drm;
4351         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4352         struct drm_atomic_state *state;
4353         int ret;
4354
4355         /* reset doesn't touch the display */
4356         if (!i915_modparams.force_reset_modeset_test &&
4357             !gpu_reset_clobbers_display(dev_priv))
4358                 return;
4359
4360         /* We have a modeset vs reset deadlock, defensively unbreak it. */
4361         set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4362         smp_mb__after_atomic();
4363         wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4364
4365         if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4366                 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4367                 intel_gt_set_wedged(&dev_priv->gt);
4368         }
4369
4370         /*
4371          * Need mode_config.mutex so that we don't
4372          * trample ongoing ->detect() and whatnot.
4373          */
4374         mutex_lock(&dev->mode_config.mutex);
4375         drm_modeset_acquire_init(ctx, 0);
4376         while (1) {
4377                 ret = drm_modeset_lock_all_ctx(dev, ctx);
4378                 if (ret != -EDEADLK)
4379                         break;
4380
4381                 drm_modeset_backoff(ctx);
4382         }
4383         /*
4384          * Disabling the crtcs gracefully seems nicer. Also the
4385          * g33 docs say we should at least disable all the planes.
4386          */
4387         state = drm_atomic_helper_duplicate_state(dev, ctx);
4388         if (IS_ERR(state)) {
4389                 ret = PTR_ERR(state);
4390                 DRM_ERROR("Duplicating state failed with %i\n", ret);
4391                 return;
4392         }
4393
4394         ret = drm_atomic_helper_disable_all(dev, ctx);
4395         if (ret) {
4396                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4397                 drm_atomic_state_put(state);
4398                 return;
4399         }
4400
4401         dev_priv->modeset_restore_state = state;
4402         state->acquire_ctx = ctx;
4403 }
4404
4405 void intel_finish_reset(struct drm_i915_private *dev_priv)
4406 {
4407         struct drm_device *dev = &dev_priv->drm;
4408         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4409         struct drm_atomic_state *state;
4410         int ret;
4411
4412         /* reset doesn't touch the display */
4413         if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4414                 return;
4415
4416         state = fetch_and_zero(&dev_priv->modeset_restore_state);
4417         if (!state)
4418                 goto unlock;
4419
4420         /* reset doesn't touch the display */
4421         if (!gpu_reset_clobbers_display(dev_priv)) {
4422                 /* for testing only restore the display */
4423                 ret = __intel_display_resume(dev, state, ctx);
4424                 if (ret)
4425                         DRM_ERROR("Restoring old state failed with %i\n", ret);
4426         } else {
4427                 /*
4428                  * The display has been reset as well,
4429                  * so need a full re-initialization.
4430                  */
4431                 intel_pps_unlock_regs_wa(dev_priv);
4432                 intel_modeset_init_hw(dev_priv);
4433                 intel_init_clock_gating(dev_priv);
4434
4435                 spin_lock_irq(&dev_priv->irq_lock);
4436                 if (dev_priv->display.hpd_irq_setup)
4437                         dev_priv->display.hpd_irq_setup(dev_priv);
4438                 spin_unlock_irq(&dev_priv->irq_lock);
4439
4440                 ret = __intel_display_resume(dev, state, ctx);
4441                 if (ret)
4442                         DRM_ERROR("Restoring old state failed with %i\n", ret);
4443
4444                 intel_hpd_init(dev_priv);
4445         }
4446
4447         drm_atomic_state_put(state);
4448 unlock:
4449         drm_modeset_drop_locks(ctx);
4450         drm_modeset_acquire_fini(ctx);
4451         mutex_unlock(&dev->mode_config.mutex);
4452
4453         clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4454 }
4455
4456 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4457 {
4458         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4459         enum pipe pipe = crtc->pipe;
4460         u32 tmp;
4461
4462         tmp = I915_READ(PIPE_CHICKEN(pipe));
4463
4464         /*
4465          * Display WA #1153: icl
4466          * enable hardware to bypass the alpha math
4467          * and rounding for per-pixel values 00 and 0xff
4468          */
4469         tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4470         /*
4471          * Display WA # 1605353570: icl
4472          * Set the pixel rounding bit to 1 for allowing
4473          * passthrough of Frame buffer pixels unmodified
4474          * across pipe
4475          */
4476         tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4477         I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4478 }
4479
4480 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state)
4481 {
4482         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4483         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4484         u32 trans_ddi_func_ctl2_val;
4485         u8 master_select;
4486
4487         /*
4488          * Configure the master select and enable Transcoder Port Sync for
4489          * Slave CRTCs transcoder.
4490          */
4491         if (crtc_state->master_transcoder == INVALID_TRANSCODER)
4492                 return;
4493
4494         if (crtc_state->master_transcoder == TRANSCODER_EDP)
4495                 master_select = 0;
4496         else
4497                 master_select = crtc_state->master_transcoder + 1;
4498
4499         /* Set the master select bits for Tranascoder Port Sync */
4500         trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) &
4501                                    PORT_SYNC_MODE_MASTER_SELECT_MASK) <<
4502                 PORT_SYNC_MODE_MASTER_SELECT_SHIFT;
4503         /* Enable Transcoder Port Sync */
4504         trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE;
4505
4506         I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder),
4507                    trans_ddi_func_ctl2_val);
4508 }
4509
4510 static void icl_disable_transcoder_port_sync(const struct intel_crtc_state *old_crtc_state)
4511 {
4512         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4513         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4514         i915_reg_t reg;
4515         u32 trans_ddi_func_ctl2_val;
4516
4517         if (old_crtc_state->master_transcoder == INVALID_TRANSCODER)
4518                 return;
4519
4520         DRM_DEBUG_KMS("Disabling Transcoder Port Sync on Slave Transcoder %s\n",
4521                       transcoder_name(old_crtc_state->cpu_transcoder));
4522
4523         reg = TRANS_DDI_FUNC_CTL2(old_crtc_state->cpu_transcoder);
4524         trans_ddi_func_ctl2_val = ~(PORT_SYNC_MODE_ENABLE |
4525                                     PORT_SYNC_MODE_MASTER_SELECT_MASK);
4526         I915_WRITE(reg, trans_ddi_func_ctl2_val);
4527 }
4528
4529 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4530 {
4531         struct drm_device *dev = crtc->base.dev;
4532         struct drm_i915_private *dev_priv = to_i915(dev);
4533         enum pipe pipe = crtc->pipe;
4534         i915_reg_t reg;
4535         u32 temp;
4536
4537         /* enable normal train */
4538         reg = FDI_TX_CTL(pipe);
4539         temp = I915_READ(reg);
4540         if (IS_IVYBRIDGE(dev_priv)) {
4541                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4542                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4543         } else {
4544                 temp &= ~FDI_LINK_TRAIN_NONE;
4545                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4546         }
4547         I915_WRITE(reg, temp);
4548
4549         reg = FDI_RX_CTL(pipe);
4550         temp = I915_READ(reg);
4551         if (HAS_PCH_CPT(dev_priv)) {
4552                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4553                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4554         } else {
4555                 temp &= ~FDI_LINK_TRAIN_NONE;
4556                 temp |= FDI_LINK_TRAIN_NONE;
4557         }
4558         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
4559
4560         /* wait one idle pattern time */
4561         POSTING_READ(reg);
4562         udelay(1000);
4563
4564         /* IVB wants error correction enabled */
4565         if (IS_IVYBRIDGE(dev_priv))
4566                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
4567                            FDI_FE_ERRC_ENABLE);
4568 }
4569
4570 /* The FDI link training functions for ILK/Ibexpeak. */
4571 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
4572                                     const struct intel_crtc_state *crtc_state)
4573 {
4574         struct drm_device *dev = crtc->base.dev;
4575         struct drm_i915_private *dev_priv = to_i915(dev);
4576         enum pipe pipe = crtc->pipe;
4577         i915_reg_t reg;
4578         u32 temp, tries;
4579
4580         /* FDI needs bits from pipe first */
4581         assert_pipe_enabled(dev_priv, pipe);
4582
4583         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4584            for train result */
4585         reg = FDI_RX_IMR(pipe);
4586         temp = I915_READ(reg);
4587         temp &= ~FDI_RX_SYMBOL_LOCK;
4588         temp &= ~FDI_RX_BIT_LOCK;
4589         I915_WRITE(reg, temp);
4590         I915_READ(reg);
4591         udelay(150);
4592
4593         /* enable CPU FDI TX and PCH FDI RX */
4594         reg = FDI_TX_CTL(pipe);
4595         temp = I915_READ(reg);
4596         temp &= ~FDI_DP_PORT_WIDTH_MASK;
4597         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4598         temp &= ~FDI_LINK_TRAIN_NONE;
4599         temp |= FDI_LINK_TRAIN_PATTERN_1;
4600         I915_WRITE(reg, temp | FDI_TX_ENABLE);
4601
4602         reg = FDI_RX_CTL(pipe);
4603         temp = I915_READ(reg);
4604         temp &= ~FDI_LINK_TRAIN_NONE;
4605         temp |= FDI_LINK_TRAIN_PATTERN_1;
4606         I915_WRITE(reg, temp | FDI_RX_ENABLE);
4607
4608         POSTING_READ(reg);
4609         udelay(150);
4610
4611         /* Ironlake workaround, enable clock pointer after FDI enable*/
4612         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4613         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
4614                    FDI_RX_PHASE_SYNC_POINTER_EN);
4615
4616         reg = FDI_RX_IIR(pipe);
4617         for (tries = 0; tries < 5; tries++) {
4618                 temp = I915_READ(reg);
4619                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4620
4621                 if ((temp & FDI_RX_BIT_LOCK)) {
4622                         DRM_DEBUG_KMS("FDI train 1 done.\n");
4623                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4624                         break;
4625                 }
4626         }
4627         if (tries == 5)
4628                 DRM_ERROR("FDI train 1 fail!\n");
4629
4630         /* Train 2 */
4631         reg = FDI_TX_CTL(pipe);
4632         temp = I915_READ(reg);
4633         temp &= ~FDI_LINK_TRAIN_NONE;
4634         temp |= FDI_LINK_TRAIN_PATTERN_2;
4635         I915_WRITE(reg, temp);
4636
4637         reg = FDI_RX_CTL(pipe);
4638         temp = I915_READ(reg);
4639         temp &= ~FDI_LINK_TRAIN_NONE;
4640         temp |= FDI_LINK_TRAIN_PATTERN_2;
4641         I915_WRITE(reg, temp);
4642
4643         POSTING_READ(reg);
4644         udelay(150);
4645
4646         reg = FDI_RX_IIR(pipe);
4647         for (tries = 0; tries < 5; tries++) {
4648                 temp = I915_READ(reg);
4649                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4650
4651                 if (temp & FDI_RX_SYMBOL_LOCK) {
4652                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4653                         DRM_DEBUG_KMS("FDI train 2 done.\n");
4654                         break;
4655                 }
4656         }
4657         if (tries == 5)
4658                 DRM_ERROR("FDI train 2 fail!\n");
4659
4660         DRM_DEBUG_KMS("FDI train done\n");
4661
4662 }
4663
4664 static const int snb_b_fdi_train_param[] = {
4665         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
4666         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
4667         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
4668         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
4669 };
4670
4671 /* The FDI link training functions for SNB/Cougarpoint. */
4672 static void gen6_fdi_link_train(struct intel_crtc *crtc,
4673                                 const struct intel_crtc_state *crtc_state)
4674 {
4675         struct drm_device *dev = crtc->base.dev;
4676         struct drm_i915_private *dev_priv = to_i915(dev);
4677         enum pipe pipe = crtc->pipe;
4678         i915_reg_t reg;
4679         u32 temp, i, retry;
4680
4681         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4682            for train result */
4683         reg = FDI_RX_IMR(pipe);
4684         temp = I915_READ(reg);
4685         temp &= ~FDI_RX_SYMBOL_LOCK;
4686         temp &= ~FDI_RX_BIT_LOCK;
4687         I915_WRITE(reg, temp);
4688
4689         POSTING_READ(reg);
4690         udelay(150);
4691
4692         /* enable CPU FDI TX and PCH FDI RX */
4693         reg = FDI_TX_CTL(pipe);
4694         temp = I915_READ(reg);
4695         temp &= ~FDI_DP_PORT_WIDTH_MASK;
4696         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4697         temp &= ~FDI_LINK_TRAIN_NONE;
4698         temp |= FDI_LINK_TRAIN_PATTERN_1;
4699         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4700         /* SNB-B */
4701         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4702         I915_WRITE(reg, temp | FDI_TX_ENABLE);
4703
4704         I915_WRITE(FDI_RX_MISC(pipe),
4705                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4706
4707         reg = FDI_RX_CTL(pipe);
4708         temp = I915_READ(reg);
4709         if (HAS_PCH_CPT(dev_priv)) {
4710                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4711                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4712         } else {
4713                 temp &= ~FDI_LINK_TRAIN_NONE;
4714                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4715         }
4716         I915_WRITE(reg, temp | FDI_RX_ENABLE);
4717
4718         POSTING_READ(reg);
4719         udelay(150);
4720
4721         for (i = 0; i < 4; i++) {
4722                 reg = FDI_TX_CTL(pipe);
4723                 temp = I915_READ(reg);
4724                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4725                 temp |= snb_b_fdi_train_param[i];
4726                 I915_WRITE(reg, temp);
4727
4728                 POSTING_READ(reg);
4729                 udelay(500);
4730
4731                 for (retry = 0; retry < 5; retry++) {
4732                         reg = FDI_RX_IIR(pipe);
4733                         temp = I915_READ(reg);
4734                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4735                         if (temp & FDI_RX_BIT_LOCK) {
4736                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4737                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
4738                                 break;
4739                         }
4740                         udelay(50);
4741                 }
4742                 if (retry < 5)
4743                         break;
4744         }
4745         if (i == 4)
4746                 DRM_ERROR("FDI train 1 fail!\n");
4747
4748         /* Train 2 */
4749         reg = FDI_TX_CTL(pipe);
4750         temp = I915_READ(reg);
4751         temp &= ~FDI_LINK_TRAIN_NONE;
4752         temp |= FDI_LINK_TRAIN_PATTERN_2;
4753         if (IS_GEN(dev_priv, 6)) {
4754                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4755                 /* SNB-B */
4756                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4757         }
4758         I915_WRITE(reg, temp);
4759
4760         reg = FDI_RX_CTL(pipe);
4761         temp = I915_READ(reg);
4762         if (HAS_PCH_CPT(dev_priv)) {
4763                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4764                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4765         } else {
4766                 temp &= ~FDI_LINK_TRAIN_NONE;
4767                 temp |= FDI_LINK_TRAIN_PATTERN_2;
4768         }
4769         I915_WRITE(reg, temp);
4770
4771         POSTING_READ(reg);
4772         udelay(150);
4773
4774         for (i = 0; i < 4; i++) {
4775                 reg = FDI_TX_CTL(pipe);
4776                 temp = I915_READ(reg);
4777                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4778                 temp |= snb_b_fdi_train_param[i];
4779                 I915_WRITE(reg, temp);
4780
4781                 POSTING_READ(reg);
4782                 udelay(500);
4783
4784                 for (retry = 0; retry < 5; retry++) {
4785                         reg = FDI_RX_IIR(pipe);
4786                         temp = I915_READ(reg);
4787                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4788                         if (temp & FDI_RX_SYMBOL_LOCK) {
4789                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4790                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
4791                                 break;
4792                         }
4793                         udelay(50);
4794                 }
4795                 if (retry < 5)
4796                         break;
4797         }
4798         if (i == 4)
4799                 DRM_ERROR("FDI train 2 fail!\n");
4800
4801         DRM_DEBUG_KMS("FDI train done.\n");
4802 }
4803
4804 /* Manual link training for Ivy Bridge A0 parts */
4805 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
4806                                       const struct intel_crtc_state *crtc_state)
4807 {
4808         struct drm_device *dev = crtc->base.dev;
4809         struct drm_i915_private *dev_priv = to_i915(dev);
4810         enum pipe pipe = crtc->pipe;
4811         i915_reg_t reg;
4812         u32 temp, i, j;
4813
4814         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4815            for train result */
4816         reg = FDI_RX_IMR(pipe);
4817         temp = I915_READ(reg);
4818         temp &= ~FDI_RX_SYMBOL_LOCK;
4819         temp &= ~FDI_RX_BIT_LOCK;
4820         I915_WRITE(reg, temp);
4821
4822         POSTING_READ(reg);
4823         udelay(150);
4824
4825         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4826                       I915_READ(FDI_RX_IIR(pipe)));
4827
4828         /* Try each vswing and preemphasis setting twice before moving on */
4829         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4830                 /* disable first in case we need to retry */
4831                 reg = FDI_TX_CTL(pipe);
4832                 temp = I915_READ(reg);
4833                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4834                 temp &= ~FDI_TX_ENABLE;
4835                 I915_WRITE(reg, temp);
4836
4837                 reg = FDI_RX_CTL(pipe);
4838                 temp = I915_READ(reg);
4839                 temp &= ~FDI_LINK_TRAIN_AUTO;
4840                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4841                 temp &= ~FDI_RX_ENABLE;
4842                 I915_WRITE(reg, temp);
4843
4844                 /* enable CPU FDI TX and PCH FDI RX */
4845                 reg = FDI_TX_CTL(pipe);
4846                 temp = I915_READ(reg);
4847                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4848                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4849                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4850                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4851                 temp |= snb_b_fdi_train_param[j/2];
4852                 temp |= FDI_COMPOSITE_SYNC;
4853                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4854
4855                 I915_WRITE(FDI_RX_MISC(pipe),
4856                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4857
4858                 reg = FDI_RX_CTL(pipe);
4859                 temp = I915_READ(reg);
4860                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4861                 temp |= FDI_COMPOSITE_SYNC;
4862                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4863
4864                 POSTING_READ(reg);
4865                 udelay(1); /* should be 0.5us */
4866
4867                 for (i = 0; i < 4; i++) {
4868                         reg = FDI_RX_IIR(pipe);
4869                         temp = I915_READ(reg);
4870                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4871
4872                         if (temp & FDI_RX_BIT_LOCK ||
4873                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4874                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4875                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4876                                               i);
4877                                 break;
4878                         }
4879                         udelay(1); /* should be 0.5us */
4880                 }
4881                 if (i == 4) {
4882                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4883                         continue;
4884                 }
4885
4886                 /* Train 2 */
4887                 reg = FDI_TX_CTL(pipe);
4888                 temp = I915_READ(reg);
4889                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4890                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4891                 I915_WRITE(reg, temp);
4892
4893                 reg = FDI_RX_CTL(pipe);
4894                 temp = I915_READ(reg);
4895                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4896                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4897                 I915_WRITE(reg, temp);
4898
4899                 POSTING_READ(reg);
4900                 udelay(2); /* should be 1.5us */
4901
4902                 for (i = 0; i < 4; i++) {
4903                         reg = FDI_RX_IIR(pipe);
4904                         temp = I915_READ(reg);
4905                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4906
4907                         if (temp & FDI_RX_SYMBOL_LOCK ||
4908                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4909                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4910                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4911                                               i);
4912                                 goto train_done;
4913                         }
4914                         udelay(2); /* should be 1.5us */
4915                 }
4916                 if (i == 4)
4917                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4918         }
4919
4920 train_done:
4921         DRM_DEBUG_KMS("FDI train done.\n");
4922 }
4923
4924 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
4925 {
4926         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4927         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4928         enum pipe pipe = intel_crtc->pipe;
4929         i915_reg_t reg;
4930         u32 temp;
4931
4932         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4933         reg = FDI_RX_CTL(pipe);
4934         temp = I915_READ(reg);
4935         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4936         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4937         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4938         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4939
4940         POSTING_READ(reg);
4941         udelay(200);
4942
4943         /* Switch from Rawclk to PCDclk */
4944         temp = I915_READ(reg);
4945         I915_WRITE(reg, temp | FDI_PCDCLK);
4946
4947         POSTING_READ(reg);
4948         udelay(200);
4949
4950         /* Enable CPU FDI TX PLL, always on for Ironlake */
4951         reg = FDI_TX_CTL(pipe);
4952         temp = I915_READ(reg);
4953         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4954                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4955
4956                 POSTING_READ(reg);
4957                 udelay(100);
4958         }
4959 }
4960
4961 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4962 {
4963         struct drm_device *dev = intel_crtc->base.dev;
4964         struct drm_i915_private *dev_priv = to_i915(dev);
4965         enum pipe pipe = intel_crtc->pipe;
4966         i915_reg_t reg;
4967         u32 temp;
4968
4969         /* Switch from PCDclk to Rawclk */
4970         reg = FDI_RX_CTL(pipe);
4971         temp = I915_READ(reg);
4972         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4973
4974         /* Disable CPU FDI TX PLL */
4975         reg = FDI_TX_CTL(pipe);
4976         temp = I915_READ(reg);
4977         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4978
4979         POSTING_READ(reg);
4980         udelay(100);
4981
4982         reg = FDI_RX_CTL(pipe);
4983         temp = I915_READ(reg);
4984         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4985
4986         /* Wait for the clocks to turn off. */
4987         POSTING_READ(reg);
4988         udelay(100);
4989 }
4990
4991 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4992 {
4993         struct drm_device *dev = crtc->dev;
4994         struct drm_i915_private *dev_priv = to_i915(dev);
4995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4996         enum pipe pipe = intel_crtc->pipe;
4997         i915_reg_t reg;
4998         u32 temp;
4999
5000         /* disable CPU FDI tx and PCH FDI rx */
5001         reg = FDI_TX_CTL(pipe);
5002         temp = I915_READ(reg);
5003         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
5004         POSTING_READ(reg);
5005
5006         reg = FDI_RX_CTL(pipe);
5007         temp = I915_READ(reg);
5008         temp &= ~(0x7 << 16);
5009         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5010         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
5011
5012         POSTING_READ(reg);
5013         udelay(100);
5014
5015         /* Ironlake workaround, disable clock pointer after downing FDI */
5016         if (HAS_PCH_IBX(dev_priv))
5017                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5018
5019         /* still set train pattern 1 */
5020         reg = FDI_TX_CTL(pipe);
5021         temp = I915_READ(reg);
5022         temp &= ~FDI_LINK_TRAIN_NONE;
5023         temp |= FDI_LINK_TRAIN_PATTERN_1;
5024         I915_WRITE(reg, temp);
5025
5026         reg = FDI_RX_CTL(pipe);
5027         temp = I915_READ(reg);
5028         if (HAS_PCH_CPT(dev_priv)) {
5029                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5030                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5031         } else {
5032                 temp &= ~FDI_LINK_TRAIN_NONE;
5033                 temp |= FDI_LINK_TRAIN_PATTERN_1;
5034         }
5035         /* BPC in FDI rx is consistent with that in PIPECONF */
5036         temp &= ~(0x07 << 16);
5037         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5038         I915_WRITE(reg, temp);
5039
5040         POSTING_READ(reg);
5041         udelay(100);
5042 }
5043
5044 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5045 {
5046         struct drm_crtc *crtc;
5047         bool cleanup_done;
5048
5049         drm_for_each_crtc(crtc, &dev_priv->drm) {
5050                 struct drm_crtc_commit *commit;
5051                 spin_lock(&crtc->commit_lock);
5052                 commit = list_first_entry_or_null(&crtc->commit_list,
5053                                                   struct drm_crtc_commit, commit_entry);
5054                 cleanup_done = commit ?
5055                         try_wait_for_completion(&commit->cleanup_done) : true;
5056                 spin_unlock(&crtc->commit_lock);
5057
5058                 if (cleanup_done)
5059                         continue;
5060
5061                 drm_crtc_wait_one_vblank(crtc);
5062
5063                 return true;
5064         }
5065
5066         return false;
5067 }
5068
5069 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5070 {
5071         u32 temp;
5072
5073         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
5074
5075         mutex_lock(&dev_priv->sb_lock);
5076
5077         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5078         temp |= SBI_SSCCTL_DISABLE;
5079         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5080
5081         mutex_unlock(&dev_priv->sb_lock);
5082 }
5083
5084 /* Program iCLKIP clock to the desired frequency */
5085 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5086 {
5087         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5088         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5089         int clock = crtc_state->base.adjusted_mode.crtc_clock;
5090         u32 divsel, phaseinc, auxdiv, phasedir = 0;
5091         u32 temp;
5092
5093         lpt_disable_iclkip(dev_priv);
5094
5095         /* The iCLK virtual clock root frequency is in MHz,
5096          * but the adjusted_mode->crtc_clock in in KHz. To get the
5097          * divisors, it is necessary to divide one by another, so we
5098          * convert the virtual clock precision to KHz here for higher
5099          * precision.
5100          */
5101         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5102                 u32 iclk_virtual_root_freq = 172800 * 1000;
5103                 u32 iclk_pi_range = 64;
5104                 u32 desired_divisor;
5105
5106                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5107                                                     clock << auxdiv);
5108                 divsel = (desired_divisor / iclk_pi_range) - 2;
5109                 phaseinc = desired_divisor % iclk_pi_range;
5110
5111                 /*
5112                  * Near 20MHz is a corner case which is
5113                  * out of range for the 7-bit divisor
5114                  */
5115                 if (divsel <= 0x7f)
5116                         break;
5117         }
5118
5119         /* This should not happen with any sane values */
5120         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5121                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5122         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
5123                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5124
5125         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5126                         clock,
5127                         auxdiv,
5128                         divsel,
5129                         phasedir,
5130                         phaseinc);
5131
5132         mutex_lock(&dev_priv->sb_lock);
5133
5134         /* Program SSCDIVINTPHASE6 */
5135         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5136         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5137         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5138         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5139         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5140         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5141         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5142         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5143
5144         /* Program SSCAUXDIV */
5145         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5146         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5147         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5148         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5149
5150         /* Enable modulator and associated divider */
5151         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5152         temp &= ~SBI_SSCCTL_DISABLE;
5153         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5154
5155         mutex_unlock(&dev_priv->sb_lock);
5156
5157         /* Wait for initialization time */
5158         udelay(24);
5159
5160         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5161 }
5162
5163 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5164 {
5165         u32 divsel, phaseinc, auxdiv;
5166         u32 iclk_virtual_root_freq = 172800 * 1000;
5167         u32 iclk_pi_range = 64;
5168         u32 desired_divisor;
5169         u32 temp;
5170
5171         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5172                 return 0;
5173
5174         mutex_lock(&dev_priv->sb_lock);
5175
5176         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5177         if (temp & SBI_SSCCTL_DISABLE) {
5178                 mutex_unlock(&dev_priv->sb_lock);
5179                 return 0;
5180         }
5181
5182         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5183         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5184                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5185         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5186                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5187
5188         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5189         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5190                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5191
5192         mutex_unlock(&dev_priv->sb_lock);
5193
5194         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5195
5196         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5197                                  desired_divisor << auxdiv);
5198 }
5199
5200 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5201                                                 enum pipe pch_transcoder)
5202 {
5203         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5204         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5205         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5206
5207         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5208                    I915_READ(HTOTAL(cpu_transcoder)));
5209         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5210                    I915_READ(HBLANK(cpu_transcoder)));
5211         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5212                    I915_READ(HSYNC(cpu_transcoder)));
5213
5214         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5215                    I915_READ(VTOTAL(cpu_transcoder)));
5216         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5217                    I915_READ(VBLANK(cpu_transcoder)));
5218         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5219                    I915_READ(VSYNC(cpu_transcoder)));
5220         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5221                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
5222 }
5223
5224 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5225 {
5226         u32 temp;
5227
5228         temp = I915_READ(SOUTH_CHICKEN1);
5229         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5230                 return;
5231
5232         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5233         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5234
5235         temp &= ~FDI_BC_BIFURCATION_SELECT;
5236         if (enable)
5237                 temp |= FDI_BC_BIFURCATION_SELECT;
5238
5239         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5240         I915_WRITE(SOUTH_CHICKEN1, temp);
5241         POSTING_READ(SOUTH_CHICKEN1);
5242 }
5243
5244 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5245 {
5246         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5247         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5248
5249         switch (crtc->pipe) {
5250         case PIPE_A:
5251                 break;
5252         case PIPE_B:
5253                 if (crtc_state->fdi_lanes > 2)
5254                         cpt_set_fdi_bc_bifurcation(dev_priv, false);
5255                 else
5256                         cpt_set_fdi_bc_bifurcation(dev_priv, true);
5257
5258                 break;
5259         case PIPE_C:
5260                 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5261
5262                 break;
5263         default:
5264                 BUG();
5265         }
5266 }
5267
5268 /*
5269  * Finds the encoder associated with the given CRTC. This can only be
5270  * used when we know that the CRTC isn't feeding multiple encoders!
5271  */
5272 static struct intel_encoder *
5273 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5274                            const struct intel_crtc_state *crtc_state)
5275 {
5276         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5277         const struct drm_connector_state *connector_state;
5278         const struct drm_connector *connector;
5279         struct intel_encoder *encoder = NULL;
5280         int num_encoders = 0;
5281         int i;
5282
5283         for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5284                 if (connector_state->crtc != &crtc->base)
5285                         continue;
5286
5287                 encoder = to_intel_encoder(connector_state->best_encoder);
5288                 num_encoders++;
5289         }
5290
5291         WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5292              num_encoders, pipe_name(crtc->pipe));
5293
5294         return encoder;
5295 }
5296
5297 /*
5298  * Enable PCH resources required for PCH ports:
5299  *   - PCH PLLs
5300  *   - FDI training & RX/TX
5301  *   - update transcoder timings
5302  *   - DP transcoding bits
5303  *   - transcoder
5304  */
5305 static void ironlake_pch_enable(const struct intel_atomic_state *state,
5306                                 const struct intel_crtc_state *crtc_state)
5307 {
5308         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5309         struct drm_device *dev = crtc->base.dev;
5310         struct drm_i915_private *dev_priv = to_i915(dev);
5311         enum pipe pipe = crtc->pipe;
5312         u32 temp;
5313
5314         assert_pch_transcoder_disabled(dev_priv, pipe);
5315
5316         if (IS_IVYBRIDGE(dev_priv))
5317                 ivybridge_update_fdi_bc_bifurcation(crtc_state);
5318
5319         /* Write the TU size bits before fdi link training, so that error
5320          * detection works. */
5321         I915_WRITE(FDI_RX_TUSIZE1(pipe),
5322                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5323
5324         /* For PCH output, training FDI link */
5325         dev_priv->display.fdi_link_train(crtc, crtc_state);
5326
5327         /* We need to program the right clock selection before writing the pixel
5328          * mutliplier into the DPLL. */
5329         if (HAS_PCH_CPT(dev_priv)) {
5330                 u32 sel;
5331
5332                 temp = I915_READ(PCH_DPLL_SEL);
5333                 temp |= TRANS_DPLL_ENABLE(pipe);
5334                 sel = TRANS_DPLLB_SEL(pipe);
5335                 if (crtc_state->shared_dpll ==
5336                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5337                         temp |= sel;
5338                 else
5339                         temp &= ~sel;
5340                 I915_WRITE(PCH_DPLL_SEL, temp);
5341         }
5342
5343         /* XXX: pch pll's can be enabled any time before we enable the PCH
5344          * transcoder, and we actually should do this to not upset any PCH
5345          * transcoder that already use the clock when we share it.
5346          *
5347          * Note that enable_shared_dpll tries to do the right thing, but
5348          * get_shared_dpll unconditionally resets the pll - we need that to have
5349          * the right LVDS enable sequence. */
5350         intel_enable_shared_dpll(crtc_state);
5351
5352         /* set transcoder timing, panel must allow it */
5353         assert_panel_unlocked(dev_priv, pipe);
5354         ironlake_pch_transcoder_set_timings(crtc_state, pipe);
5355
5356         intel_fdi_normal_train(crtc);
5357
5358         /* For PCH DP, enable TRANS_DP_CTL */
5359         if (HAS_PCH_CPT(dev_priv) &&
5360             intel_crtc_has_dp_encoder(crtc_state)) {
5361                 const struct drm_display_mode *adjusted_mode =
5362                         &crtc_state->base.adjusted_mode;
5363                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5364                 i915_reg_t reg = TRANS_DP_CTL(pipe);
5365                 enum port port;
5366
5367                 temp = I915_READ(reg);
5368                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5369                           TRANS_DP_SYNC_MASK |
5370                           TRANS_DP_BPC_MASK);
5371                 temp |= TRANS_DP_OUTPUT_ENABLE;
5372                 temp |= bpc << 9; /* same format but at 11:9 */
5373
5374                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5375                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5376                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5377                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5378
5379                 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5380                 WARN_ON(port < PORT_B || port > PORT_D);
5381                 temp |= TRANS_DP_PORT_SEL(port);
5382
5383                 I915_WRITE(reg, temp);
5384         }
5385
5386         ironlake_enable_pch_transcoder(crtc_state);
5387 }
5388
5389 static void lpt_pch_enable(const struct intel_atomic_state *state,
5390                            const struct intel_crtc_state *crtc_state)
5391 {
5392         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5393         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5394         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5395
5396         assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5397
5398         lpt_program_iclkip(crtc_state);
5399
5400         /* Set transcoder timing. */
5401         ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A);
5402
5403         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5404 }
5405
5406 static void cpt_verify_modeset(struct drm_device *dev, enum pipe pipe)
5407 {
5408         struct drm_i915_private *dev_priv = to_i915(dev);
5409         i915_reg_t dslreg = PIPEDSL(pipe);
5410         u32 temp;
5411
5412         temp = I915_READ(dslreg);
5413         udelay(500);
5414         if (wait_for(I915_READ(dslreg) != temp, 5)) {
5415                 if (wait_for(I915_READ(dslreg) != temp, 5))
5416                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5417         }
5418 }
5419
5420 /*
5421  * The hardware phase 0.0 refers to the center of the pixel.
5422  * We want to start from the top/left edge which is phase
5423  * -0.5. That matches how the hardware calculates the scaling
5424  * factors (from top-left of the first pixel to bottom-right
5425  * of the last pixel, as opposed to the pixel centers).
5426  *
5427  * For 4:2:0 subsampled chroma planes we obviously have to
5428  * adjust that so that the chroma sample position lands in
5429  * the right spot.
5430  *
5431  * Note that for packed YCbCr 4:2:2 formats there is no way to
5432  * control chroma siting. The hardware simply replicates the
5433  * chroma samples for both of the luma samples, and thus we don't
5434  * actually get the expected MPEG2 chroma siting convention :(
5435  * The same behaviour is observed on pre-SKL platforms as well.
5436  *
5437  * Theory behind the formula (note that we ignore sub-pixel
5438  * source coordinates):
5439  * s = source sample position
5440  * d = destination sample position
5441  *
5442  * Downscaling 4:1:
5443  * -0.5
5444  * | 0.0
5445  * | |     1.5 (initial phase)
5446  * | |     |
5447  * v v     v
5448  * | s | s | s | s |
5449  * |       d       |
5450  *
5451  * Upscaling 1:4:
5452  * -0.5
5453  * | -0.375 (initial phase)
5454  * | |     0.0
5455  * | |     |
5456  * v v     v
5457  * |       s       |
5458  * | d | d | d | d |
5459  */
5460 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5461 {
5462         int phase = -0x8000;
5463         u16 trip = 0;
5464
5465         if (chroma_cosited)
5466                 phase += (sub - 1) * 0x8000 / sub;
5467
5468         phase += scale / (2 * sub);
5469
5470         /*
5471          * Hardware initial phase limited to [-0.5:1.5].
5472          * Since the max hardware scale factor is 3.0, we
5473          * should never actually excdeed 1.0 here.
5474          */
5475         WARN_ON(phase < -0x8000 || phase > 0x18000);
5476
5477         if (phase < 0)
5478                 phase = 0x10000 + phase;
5479         else
5480                 trip = PS_PHASE_TRIP;
5481
5482         return ((phase >> 2) & PS_PHASE_MASK) | trip;
5483 }
5484
5485 #define SKL_MIN_SRC_W 8
5486 #define SKL_MAX_SRC_W 4096
5487 #define SKL_MIN_SRC_H 8
5488 #define SKL_MAX_SRC_H 4096
5489 #define SKL_MIN_DST_W 8
5490 #define SKL_MAX_DST_W 4096
5491 #define SKL_MIN_DST_H 8
5492 #define SKL_MAX_DST_H 4096
5493 #define ICL_MAX_SRC_W 5120
5494 #define ICL_MAX_SRC_H 4096
5495 #define ICL_MAX_DST_W 5120
5496 #define ICL_MAX_DST_H 4096
5497 #define SKL_MIN_YUV_420_SRC_W 16
5498 #define SKL_MIN_YUV_420_SRC_H 16
5499
5500 static int
5501 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5502                   unsigned int scaler_user, int *scaler_id,
5503                   int src_w, int src_h, int dst_w, int dst_h,
5504                   const struct drm_format_info *format, bool need_scaler)
5505 {
5506         struct intel_crtc_scaler_state *scaler_state =
5507                 &crtc_state->scaler_state;
5508         struct intel_crtc *intel_crtc =
5509                 to_intel_crtc(crtc_state->base.crtc);
5510         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5511         const struct drm_display_mode *adjusted_mode =
5512                 &crtc_state->base.adjusted_mode;
5513
5514         /*
5515          * Src coordinates are already rotated by 270 degrees for
5516          * the 90/270 degree plane rotation cases (to match the
5517          * GTT mapping), hence no need to account for rotation here.
5518          */
5519         if (src_w != dst_w || src_h != dst_h)
5520                 need_scaler = true;
5521
5522         /*
5523          * Scaling/fitting not supported in IF-ID mode in GEN9+
5524          * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5525          * Once NV12 is enabled, handle it here while allocating scaler
5526          * for NV12.
5527          */
5528         if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
5529             need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5530                 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5531                 return -EINVAL;
5532         }
5533
5534         /*
5535          * if plane is being disabled or scaler is no more required or force detach
5536          *  - free scaler binded to this plane/crtc
5537          *  - in order to do this, update crtc->scaler_usage
5538          *
5539          * Here scaler state in crtc_state is set free so that
5540          * scaler can be assigned to other user. Actual register
5541          * update to free the scaler is done in plane/panel-fit programming.
5542          * For this purpose crtc/plane_state->scaler_id isn't reset here.
5543          */
5544         if (force_detach || !need_scaler) {
5545                 if (*scaler_id >= 0) {
5546                         scaler_state->scaler_users &= ~(1 << scaler_user);
5547                         scaler_state->scalers[*scaler_id].in_use = 0;
5548
5549                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
5550                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
5551                                 intel_crtc->pipe, scaler_user, *scaler_id,
5552                                 scaler_state->scaler_users);
5553                         *scaler_id = -1;
5554                 }
5555                 return 0;
5556         }
5557
5558         if (format && drm_format_info_is_yuv_semiplanar(format) &&
5559             (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
5560                 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
5561                 return -EINVAL;
5562         }
5563
5564         /* range checks */
5565         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
5566             dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
5567             (INTEL_GEN(dev_priv) >= 11 &&
5568              (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
5569               dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
5570             (INTEL_GEN(dev_priv) < 11 &&
5571              (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
5572               dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
5573                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
5574                         "size is out of scaler range\n",
5575                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
5576                 return -EINVAL;
5577         }
5578
5579         /* mark this plane as a scaler user in crtc_state */
5580         scaler_state->scaler_users |= (1 << scaler_user);
5581         DRM_DEBUG_KMS("scaler_user index %u.%u: "
5582                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
5583                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
5584                 scaler_state->scaler_users);
5585
5586         return 0;
5587 }
5588
5589 /**
5590  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
5591  *
5592  * @state: crtc's scaler state
5593  *
5594  * Return
5595  *     0 - scaler_usage updated successfully
5596  *    error - requested scaling cannot be supported or other error condition
5597  */
5598 int skl_update_scaler_crtc(struct intel_crtc_state *state)
5599 {
5600         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
5601         bool need_scaler = false;
5602
5603         if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5604                 need_scaler = true;
5605
5606         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
5607                                  &state->scaler_state.scaler_id,
5608                                  state->pipe_src_w, state->pipe_src_h,
5609                                  adjusted_mode->crtc_hdisplay,
5610                                  adjusted_mode->crtc_vdisplay, NULL, need_scaler);
5611 }
5612
5613 /**
5614  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
5615  * @crtc_state: crtc's scaler state
5616  * @plane_state: atomic plane state to update
5617  *
5618  * Return
5619  *     0 - scaler_usage updated successfully
5620  *    error - requested scaling cannot be supported or other error condition
5621  */
5622 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
5623                                    struct intel_plane_state *plane_state)
5624 {
5625         struct intel_plane *intel_plane =
5626                 to_intel_plane(plane_state->base.plane);
5627         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
5628         struct drm_framebuffer *fb = plane_state->base.fb;
5629         int ret;
5630         bool force_detach = !fb || !plane_state->base.visible;
5631         bool need_scaler = false;
5632
5633         /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
5634         if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
5635             fb && drm_format_info_is_yuv_semiplanar(fb->format))
5636                 need_scaler = true;
5637
5638         ret = skl_update_scaler(crtc_state, force_detach,
5639                                 drm_plane_index(&intel_plane->base),
5640                                 &plane_state->scaler_id,
5641                                 drm_rect_width(&plane_state->base.src) >> 16,
5642                                 drm_rect_height(&plane_state->base.src) >> 16,
5643                                 drm_rect_width(&plane_state->base.dst),
5644                                 drm_rect_height(&plane_state->base.dst),
5645                                 fb ? fb->format : NULL, need_scaler);
5646
5647         if (ret || plane_state->scaler_id < 0)
5648                 return ret;
5649
5650         /* check colorkey */
5651         if (plane_state->ckey.flags) {
5652                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
5653                               intel_plane->base.base.id,
5654                               intel_plane->base.name);
5655                 return -EINVAL;
5656         }
5657
5658         /* Check src format */
5659         switch (fb->format->format) {
5660         case DRM_FORMAT_RGB565:
5661         case DRM_FORMAT_XBGR8888:
5662         case DRM_FORMAT_XRGB8888:
5663         case DRM_FORMAT_ABGR8888:
5664         case DRM_FORMAT_ARGB8888:
5665         case DRM_FORMAT_XRGB2101010:
5666         case DRM_FORMAT_XBGR2101010:
5667         case DRM_FORMAT_YUYV:
5668         case DRM_FORMAT_YVYU:
5669         case DRM_FORMAT_UYVY:
5670         case DRM_FORMAT_VYUY:
5671         case DRM_FORMAT_NV12:
5672         case DRM_FORMAT_P010:
5673         case DRM_FORMAT_P012:
5674         case DRM_FORMAT_P016:
5675         case DRM_FORMAT_Y210:
5676         case DRM_FORMAT_Y212:
5677         case DRM_FORMAT_Y216:
5678         case DRM_FORMAT_XVYU2101010:
5679         case DRM_FORMAT_XVYU12_16161616:
5680         case DRM_FORMAT_XVYU16161616:
5681                 break;
5682         case DRM_FORMAT_XBGR16161616F:
5683         case DRM_FORMAT_ABGR16161616F:
5684         case DRM_FORMAT_XRGB16161616F:
5685         case DRM_FORMAT_ARGB16161616F:
5686                 if (INTEL_GEN(dev_priv) >= 11)
5687                         break;
5688                 /* fall through */
5689         default:
5690                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
5691                               intel_plane->base.base.id, intel_plane->base.name,
5692                               fb->base.id, fb->format->format);
5693                 return -EINVAL;
5694         }
5695
5696         return 0;
5697 }
5698
5699 static void skylake_scaler_disable(struct intel_crtc *crtc)
5700 {
5701         int i;
5702
5703         for (i = 0; i < crtc->num_scalers; i++)
5704                 skl_detach_scaler(crtc, i);
5705 }
5706
5707 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state)
5708 {
5709         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5710         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5711         enum pipe pipe = crtc->pipe;
5712         const struct intel_crtc_scaler_state *scaler_state =
5713                 &crtc_state->scaler_state;
5714
5715         if (crtc_state->pch_pfit.enabled) {
5716                 u16 uv_rgb_hphase, uv_rgb_vphase;
5717                 int pfit_w, pfit_h, hscale, vscale;
5718                 int id;
5719
5720                 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
5721                         return;
5722
5723                 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
5724                 pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
5725
5726                 hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
5727                 vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
5728
5729                 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
5730                 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
5731
5732                 id = scaler_state->scaler_id;
5733                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
5734                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
5735                 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
5736                               PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
5737                 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
5738                               PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
5739                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
5740                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
5741         }
5742 }
5743
5744 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state)
5745 {
5746         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5747         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5748         enum pipe pipe = crtc->pipe;
5749
5750         if (crtc_state->pch_pfit.enabled) {
5751                 /* Force use of hard-coded filter coefficients
5752                  * as some pre-programmed values are broken,
5753                  * e.g. x201.
5754                  */
5755                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
5756                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
5757                                                  PF_PIPE_SEL_IVB(pipe));
5758                 else
5759                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
5760                 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
5761                 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
5762         }
5763 }
5764
5765 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
5766 {
5767         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5768         struct drm_device *dev = crtc->base.dev;
5769         struct drm_i915_private *dev_priv = to_i915(dev);
5770
5771         if (!crtc_state->ips_enabled)
5772                 return;
5773
5774         /*
5775          * We can only enable IPS after we enable a plane and wait for a vblank
5776          * This function is called from post_plane_update, which is run after
5777          * a vblank wait.
5778          */
5779         WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
5780
5781         if (IS_BROADWELL(dev_priv)) {
5782                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
5783                                                 IPS_ENABLE | IPS_PCODE_CONTROL));
5784                 /* Quoting Art Runyan: "its not safe to expect any particular
5785                  * value in IPS_CTL bit 31 after enabling IPS through the
5786                  * mailbox." Moreover, the mailbox may return a bogus state,
5787                  * so we need to just enable it and continue on.
5788                  */
5789         } else {
5790                 I915_WRITE(IPS_CTL, IPS_ENABLE);
5791                 /* The bit only becomes 1 in the next vblank, so this wait here
5792                  * is essentially intel_wait_for_vblank. If we don't have this
5793                  * and don't wait for vblanks until the end of crtc_enable, then
5794                  * the HW state readout code will complain that the expected
5795                  * IPS_CTL value is not the one we read. */
5796                 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
5797                         DRM_ERROR("Timed out waiting for IPS enable\n");
5798         }
5799 }
5800
5801 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
5802 {
5803         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5804         struct drm_device *dev = crtc->base.dev;
5805         struct drm_i915_private *dev_priv = to_i915(dev);
5806
5807         if (!crtc_state->ips_enabled)
5808                 return;
5809
5810         if (IS_BROADWELL(dev_priv)) {
5811                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
5812                 /*
5813                  * Wait for PCODE to finish disabling IPS. The BSpec specified
5814                  * 42ms timeout value leads to occasional timeouts so use 100ms
5815                  * instead.
5816                  */
5817                 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
5818                         DRM_ERROR("Timed out waiting for IPS disable\n");
5819         } else {
5820                 I915_WRITE(IPS_CTL, 0);
5821                 POSTING_READ(IPS_CTL);
5822         }
5823
5824         /* We need to wait for a vblank before we can disable the plane. */
5825         intel_wait_for_vblank(dev_priv, crtc->pipe);
5826 }
5827
5828 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
5829 {
5830         if (intel_crtc->overlay)
5831                 (void) intel_overlay_switch_off(intel_crtc->overlay);
5832
5833         /* Let userspace switch the overlay on again. In most cases userspace
5834          * has to recompute where to put it anyway.
5835          */
5836 }
5837
5838 /**
5839  * intel_post_enable_primary - Perform operations after enabling primary plane
5840  * @crtc: the CRTC whose primary plane was just enabled
5841  * @new_crtc_state: the enabling state
5842  *
5843  * Performs potentially sleeping operations that must be done after the primary
5844  * plane is enabled, such as updating FBC and IPS.  Note that this may be
5845  * called due to an explicit primary plane update, or due to an implicit
5846  * re-enable that is caused when a sprite plane is updated to no longer
5847  * completely hide the primary plane.
5848  */
5849 static void
5850 intel_post_enable_primary(struct drm_crtc *crtc,
5851                           const struct intel_crtc_state *new_crtc_state)
5852 {
5853         struct drm_device *dev = crtc->dev;
5854         struct drm_i915_private *dev_priv = to_i915(dev);
5855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5856         enum pipe pipe = intel_crtc->pipe;
5857
5858         /*
5859          * Gen2 reports pipe underruns whenever all planes are disabled.
5860          * So don't enable underrun reporting before at least some planes
5861          * are enabled.
5862          * FIXME: Need to fix the logic to work when we turn off all planes
5863          * but leave the pipe running.
5864          */
5865         if (IS_GEN(dev_priv, 2))
5866                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5867
5868         /* Underruns don't always raise interrupts, so check manually. */
5869         intel_check_cpu_fifo_underruns(dev_priv);
5870         intel_check_pch_fifo_underruns(dev_priv);
5871 }
5872
5873 /* FIXME get rid of this and use pre_plane_update */
5874 static void
5875 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5876 {
5877         struct drm_device *dev = crtc->dev;
5878         struct drm_i915_private *dev_priv = to_i915(dev);
5879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5880         enum pipe pipe = intel_crtc->pipe;
5881
5882         /*
5883          * Gen2 reports pipe underruns whenever all planes are disabled.
5884          * So disable underrun reporting before all the planes get disabled.
5885          */
5886         if (IS_GEN(dev_priv, 2))
5887                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5888
5889         hsw_disable_ips(to_intel_crtc_state(crtc->state));
5890
5891         /*
5892          * Vblank time updates from the shadow to live plane control register
5893          * are blocked if the memory self-refresh mode is active at that
5894          * moment. So to make sure the plane gets truly disabled, disable
5895          * first the self-refresh mode. The self-refresh enable bit in turn
5896          * will be checked/applied by the HW only at the next frame start
5897          * event which is after the vblank start event, so we need to have a
5898          * wait-for-vblank between disabling the plane and the pipe.
5899          */
5900         if (HAS_GMCH(dev_priv) &&
5901             intel_set_memory_cxsr(dev_priv, false))
5902                 intel_wait_for_vblank(dev_priv, pipe);
5903 }
5904
5905 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
5906                                        const struct intel_crtc_state *new_crtc_state)
5907 {
5908         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5909         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5910
5911         if (!old_crtc_state->ips_enabled)
5912                 return false;
5913
5914         if (needs_modeset(new_crtc_state))
5915                 return true;
5916
5917         /*
5918          * Workaround : Do not read or write the pipe palette/gamma data while
5919          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5920          *
5921          * Disable IPS before we program the LUT.
5922          */
5923         if (IS_HASWELL(dev_priv) &&
5924             (new_crtc_state->base.color_mgmt_changed ||
5925              new_crtc_state->update_pipe) &&
5926             new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5927                 return true;
5928
5929         return !new_crtc_state->ips_enabled;
5930 }
5931
5932 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
5933                                        const struct intel_crtc_state *new_crtc_state)
5934 {
5935         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5936         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5937
5938         if (!new_crtc_state->ips_enabled)
5939                 return false;
5940
5941         if (needs_modeset(new_crtc_state))
5942                 return true;
5943
5944         /*
5945          * Workaround : Do not read or write the pipe palette/gamma data while
5946          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5947          *
5948          * Re-enable IPS after the LUT has been programmed.
5949          */
5950         if (IS_HASWELL(dev_priv) &&
5951             (new_crtc_state->base.color_mgmt_changed ||
5952              new_crtc_state->update_pipe) &&
5953             new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5954                 return true;
5955
5956         /*
5957          * We can't read out IPS on broadwell, assume the worst and
5958          * forcibly enable IPS on the first fastset.
5959          */
5960         if (new_crtc_state->update_pipe &&
5961             old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
5962                 return true;
5963
5964         return !old_crtc_state->ips_enabled;
5965 }
5966
5967 static bool needs_nv12_wa(struct drm_i915_private *dev_priv,
5968                           const struct intel_crtc_state *crtc_state)
5969 {
5970         if (!crtc_state->nv12_planes)
5971                 return false;
5972
5973         /* WA Display #0827: Gen9:all */
5974         if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
5975                 return true;
5976
5977         return false;
5978 }
5979
5980 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv,
5981                                const struct intel_crtc_state *crtc_state)
5982 {
5983         /* Wa_2006604312:icl */
5984         if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
5985                 return true;
5986
5987         return false;
5988 }
5989
5990 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5991 {
5992         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5993         struct drm_device *dev = crtc->base.dev;
5994         struct drm_i915_private *dev_priv = to_i915(dev);
5995         struct drm_atomic_state *state = old_crtc_state->base.state;
5996         struct intel_crtc_state *pipe_config =
5997                 intel_atomic_get_new_crtc_state(to_intel_atomic_state(state),
5998                                                 crtc);
5999         struct drm_plane *primary = crtc->base.primary;
6000         struct drm_plane_state *old_primary_state =
6001                 drm_atomic_get_old_plane_state(state, primary);
6002
6003         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
6004
6005         if (pipe_config->update_wm_post && pipe_config->base.active)
6006                 intel_update_watermarks(crtc);
6007
6008         if (hsw_post_update_enable_ips(old_crtc_state, pipe_config))
6009                 hsw_enable_ips(pipe_config);
6010
6011         if (old_primary_state) {
6012                 struct drm_plane_state *new_primary_state =
6013                         drm_atomic_get_new_plane_state(state, primary);
6014
6015                 intel_fbc_post_update(crtc);
6016
6017                 if (new_primary_state->visible &&
6018                     (needs_modeset(pipe_config) ||
6019                      !old_primary_state->visible))
6020                         intel_post_enable_primary(&crtc->base, pipe_config);
6021         }
6022
6023         if (needs_nv12_wa(dev_priv, old_crtc_state) &&
6024             !needs_nv12_wa(dev_priv, pipe_config))
6025                 skl_wa_827(dev_priv, crtc->pipe, false);
6026
6027         if (needs_scalerclk_wa(dev_priv, old_crtc_state) &&
6028             !needs_scalerclk_wa(dev_priv, pipe_config))
6029                 icl_wa_scalerclkgating(dev_priv, crtc->pipe, false);
6030 }
6031
6032 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
6033                                    struct intel_crtc_state *pipe_config)
6034 {
6035         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6036         struct drm_device *dev = crtc->base.dev;
6037         struct drm_i915_private *dev_priv = to_i915(dev);
6038         struct drm_atomic_state *state = old_crtc_state->base.state;
6039         struct drm_plane *primary = crtc->base.primary;
6040         struct drm_plane_state *old_primary_state =
6041                 drm_atomic_get_old_plane_state(state, primary);
6042         bool modeset = needs_modeset(pipe_config);
6043         struct intel_atomic_state *intel_state =
6044                 to_intel_atomic_state(state);
6045
6046         if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config))
6047                 hsw_disable_ips(old_crtc_state);
6048
6049         if (old_primary_state) {
6050                 struct intel_plane_state *new_primary_state =
6051                         intel_atomic_get_new_plane_state(intel_state,
6052                                                          to_intel_plane(primary));
6053
6054                 intel_fbc_pre_update(crtc, pipe_config, new_primary_state);
6055                 /*
6056                  * Gen2 reports pipe underruns whenever all planes are disabled.
6057                  * So disable underrun reporting before all the planes get disabled.
6058                  */
6059                 if (IS_GEN(dev_priv, 2) && old_primary_state->visible &&
6060                     (modeset || !new_primary_state->base.visible))
6061                         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
6062         }
6063
6064         /* Display WA 827 */
6065         if (!needs_nv12_wa(dev_priv, old_crtc_state) &&
6066             needs_nv12_wa(dev_priv, pipe_config))
6067                 skl_wa_827(dev_priv, crtc->pipe, true);
6068
6069         /* Wa_2006604312:icl */
6070         if (!needs_scalerclk_wa(dev_priv, old_crtc_state) &&
6071             needs_scalerclk_wa(dev_priv, pipe_config))
6072                 icl_wa_scalerclkgating(dev_priv, crtc->pipe, true);
6073
6074         /*
6075          * Vblank time updates from the shadow to live plane control register
6076          * are blocked if the memory self-refresh mode is active at that
6077          * moment. So to make sure the plane gets truly disabled, disable
6078          * first the self-refresh mode. The self-refresh enable bit in turn
6079          * will be checked/applied by the HW only at the next frame start
6080          * event which is after the vblank start event, so we need to have a
6081          * wait-for-vblank between disabling the plane and the pipe.
6082          */
6083         if (HAS_GMCH(dev_priv) && old_crtc_state->base.active &&
6084             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6085                 intel_wait_for_vblank(dev_priv, crtc->pipe);
6086
6087         /*
6088          * IVB workaround: must disable low power watermarks for at least
6089          * one frame before enabling scaling.  LP watermarks can be re-enabled
6090          * when scaling is disabled.
6091          *
6092          * WaCxSRDisabledForSpriteScaling:ivb
6093          */
6094         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) &&
6095             old_crtc_state->base.active)
6096                 intel_wait_for_vblank(dev_priv, crtc->pipe);
6097
6098         /*
6099          * If we're doing a modeset, we're done.  No need to do any pre-vblank
6100          * watermark programming here.
6101          */
6102         if (needs_modeset(pipe_config))
6103                 return;
6104
6105         /*
6106          * For platforms that support atomic watermarks, program the
6107          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6108          * will be the intermediate values that are safe for both pre- and
6109          * post- vblank; when vblank happens, the 'active' values will be set
6110          * to the final 'target' values and we'll do this again to get the
6111          * optimal watermarks.  For gen9+ platforms, the values we program here
6112          * will be the final target values which will get automatically latched
6113          * at vblank time; no further programming will be necessary.
6114          *
6115          * If a platform hasn't been transitioned to atomic watermarks yet,
6116          * we'll continue to update watermarks the old way, if flags tell
6117          * us to.
6118          */
6119         if (dev_priv->display.initial_watermarks != NULL)
6120                 dev_priv->display.initial_watermarks(intel_state,
6121                                                      pipe_config);
6122         else if (pipe_config->update_wm_pre)
6123                 intel_update_watermarks(crtc);
6124 }
6125
6126 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6127                                       struct intel_crtc *crtc)
6128 {
6129         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6130         const struct intel_crtc_state *new_crtc_state =
6131                 intel_atomic_get_new_crtc_state(state, crtc);
6132         unsigned int update_mask = new_crtc_state->update_planes;
6133         const struct intel_plane_state *old_plane_state;
6134         struct intel_plane *plane;
6135         unsigned fb_bits = 0;
6136         int i;
6137
6138         intel_crtc_dpms_overlay_disable(crtc);
6139
6140         for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6141                 if (crtc->pipe != plane->pipe ||
6142                     !(update_mask & BIT(plane->id)))
6143                         continue;
6144
6145                 intel_disable_plane(plane, new_crtc_state);
6146
6147                 if (old_plane_state->base.visible)
6148                         fb_bits |= plane->frontbuffer_bit;
6149         }
6150
6151         intel_frontbuffer_flip(dev_priv, fb_bits);
6152 }
6153
6154 /*
6155  * intel_connector_primary_encoder - get the primary encoder for a connector
6156  * @connector: connector for which to return the encoder
6157  *
6158  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6159  * all connectors to their encoder, except for DP-MST connectors which have
6160  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6161  * pointed to by as many DP-MST connectors as there are pipes.
6162  */
6163 static struct intel_encoder *
6164 intel_connector_primary_encoder(struct intel_connector *connector)
6165 {
6166         struct intel_encoder *encoder;
6167
6168         if (connector->mst_port)
6169                 return &dp_to_dig_port(connector->mst_port)->base;
6170
6171         encoder = intel_attached_encoder(&connector->base);
6172         WARN_ON(!encoder);
6173
6174         return encoder;
6175 }
6176
6177 static bool
6178 intel_connector_needs_modeset(struct intel_atomic_state *state,
6179                               const struct drm_connector_state *old_conn_state,
6180                               const struct drm_connector_state *new_conn_state)
6181 {
6182         struct intel_crtc *old_crtc = old_conn_state->crtc ?
6183                                       to_intel_crtc(old_conn_state->crtc) : NULL;
6184         struct intel_crtc *new_crtc = new_conn_state->crtc ?
6185                                       to_intel_crtc(new_conn_state->crtc) : NULL;
6186
6187         return new_crtc != old_crtc ||
6188                (new_crtc &&
6189                 needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc)));
6190 }
6191
6192 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6193 {
6194         struct drm_connector_state *old_conn_state;
6195         struct drm_connector_state *new_conn_state;
6196         struct drm_connector *conn;
6197         int i;
6198
6199         for_each_oldnew_connector_in_state(&state->base, conn,
6200                                            old_conn_state, new_conn_state, i) {
6201                 struct intel_encoder *encoder;
6202                 struct intel_crtc *crtc;
6203
6204                 if (!intel_connector_needs_modeset(state,
6205                                                    old_conn_state,
6206                                                    new_conn_state))
6207                         continue;
6208
6209                 encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6210                 if (!encoder->update_prepare)
6211                         continue;
6212
6213                 crtc = new_conn_state->crtc ?
6214                         to_intel_crtc(new_conn_state->crtc) : NULL;
6215                 encoder->update_prepare(state, encoder, crtc);
6216         }
6217 }
6218
6219 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6220 {
6221         struct drm_connector_state *old_conn_state;
6222         struct drm_connector_state *new_conn_state;
6223         struct drm_connector *conn;
6224         int i;
6225
6226         for_each_oldnew_connector_in_state(&state->base, conn,
6227                                            old_conn_state, new_conn_state, i) {
6228                 struct intel_encoder *encoder;
6229                 struct intel_crtc *crtc;
6230
6231                 if (!intel_connector_needs_modeset(state,
6232                                                    old_conn_state,
6233                                                    new_conn_state))
6234                         continue;
6235
6236                 encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6237                 if (!encoder->update_complete)
6238                         continue;
6239
6240                 crtc = new_conn_state->crtc ?
6241                         to_intel_crtc(new_conn_state->crtc) : NULL;
6242                 encoder->update_complete(state, encoder, crtc);
6243         }
6244 }
6245
6246 static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc,
6247                                           struct intel_crtc_state *crtc_state,
6248                                           struct intel_atomic_state *state)
6249 {
6250         struct drm_connector_state *conn_state;
6251         struct drm_connector *conn;
6252         int i;
6253
6254         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6255                 struct intel_encoder *encoder =
6256                         to_intel_encoder(conn_state->best_encoder);
6257
6258                 if (conn_state->crtc != &crtc->base)
6259                         continue;
6260
6261                 if (encoder->pre_pll_enable)
6262                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6263         }
6264 }
6265
6266 static void intel_encoders_pre_enable(struct intel_crtc *crtc,
6267                                       struct intel_crtc_state *crtc_state,
6268                                       struct intel_atomic_state *state)
6269 {
6270         struct drm_connector_state *conn_state;
6271         struct drm_connector *conn;
6272         int i;
6273
6274         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6275                 struct intel_encoder *encoder =
6276                         to_intel_encoder(conn_state->best_encoder);
6277
6278                 if (conn_state->crtc != &crtc->base)
6279                         continue;
6280
6281                 if (encoder->pre_enable)
6282                         encoder->pre_enable(encoder, crtc_state, conn_state);
6283         }
6284 }
6285
6286 static void intel_encoders_enable(struct intel_crtc *crtc,
6287                                   struct intel_crtc_state *crtc_state,
6288                                   struct intel_atomic_state *state)
6289 {
6290         struct drm_connector_state *conn_state;
6291         struct drm_connector *conn;
6292         int i;
6293
6294         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6295                 struct intel_encoder *encoder =
6296                         to_intel_encoder(conn_state->best_encoder);
6297
6298                 if (conn_state->crtc != &crtc->base)
6299                         continue;
6300
6301                 if (encoder->enable)
6302                         encoder->enable(encoder, crtc_state, conn_state);
6303                 intel_opregion_notify_encoder(encoder, true);
6304         }
6305 }
6306
6307 static void intel_encoders_disable(struct intel_crtc *crtc,
6308                                    struct intel_crtc_state *old_crtc_state,
6309                                    struct intel_atomic_state *state)
6310 {
6311         struct drm_connector_state *old_conn_state;
6312         struct drm_connector *conn;
6313         int i;
6314
6315         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6316                 struct intel_encoder *encoder =
6317                         to_intel_encoder(old_conn_state->best_encoder);
6318
6319                 if (old_conn_state->crtc != &crtc->base)
6320                         continue;
6321
6322                 intel_opregion_notify_encoder(encoder, false);
6323                 if (encoder->disable)
6324                         encoder->disable(encoder, old_crtc_state, old_conn_state);
6325         }
6326 }
6327
6328 static void intel_encoders_post_disable(struct intel_crtc *crtc,
6329                                         struct intel_crtc_state *old_crtc_state,
6330                                         struct intel_atomic_state *state)
6331 {
6332         struct drm_connector_state *old_conn_state;
6333         struct drm_connector *conn;
6334         int i;
6335
6336         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6337                 struct intel_encoder *encoder =
6338                         to_intel_encoder(old_conn_state->best_encoder);
6339
6340                 if (old_conn_state->crtc != &crtc->base)
6341                         continue;
6342
6343                 if (encoder->post_disable)
6344                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6345         }
6346 }
6347
6348 static void intel_encoders_post_pll_disable(struct intel_crtc *crtc,
6349                                             struct intel_crtc_state *old_crtc_state,
6350                                             struct intel_atomic_state *state)
6351 {
6352         struct drm_connector_state *old_conn_state;
6353         struct drm_connector *conn;
6354         int i;
6355
6356         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6357                 struct intel_encoder *encoder =
6358                         to_intel_encoder(old_conn_state->best_encoder);
6359
6360                 if (old_conn_state->crtc != &crtc->base)
6361                         continue;
6362
6363                 if (encoder->post_pll_disable)
6364                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6365         }
6366 }
6367
6368 static void intel_encoders_update_pipe(struct intel_crtc *crtc,
6369                                        struct intel_crtc_state *crtc_state,
6370                                        struct intel_atomic_state *state)
6371 {
6372         struct drm_connector_state *conn_state;
6373         struct drm_connector *conn;
6374         int i;
6375
6376         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6377                 struct intel_encoder *encoder =
6378                         to_intel_encoder(conn_state->best_encoder);
6379
6380                 if (conn_state->crtc != &crtc->base)
6381                         continue;
6382
6383                 if (encoder->update_pipe)
6384                         encoder->update_pipe(encoder, crtc_state, conn_state);
6385         }
6386 }
6387
6388 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6389 {
6390         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6391         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6392
6393         plane->disable_plane(plane, crtc_state);
6394 }
6395
6396 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
6397                                  struct intel_atomic_state *state)
6398 {
6399         struct drm_crtc *crtc = pipe_config->base.crtc;
6400         struct drm_device *dev = crtc->dev;
6401         struct drm_i915_private *dev_priv = to_i915(dev);
6402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6403         enum pipe pipe = intel_crtc->pipe;
6404
6405         if (WARN_ON(intel_crtc->active))
6406                 return;
6407
6408         /*
6409          * Sometimes spurious CPU pipe underruns happen during FDI
6410          * training, at least with VGA+HDMI cloning. Suppress them.
6411          *
6412          * On ILK we get an occasional spurious CPU pipe underruns
6413          * between eDP port A enable and vdd enable. Also PCH port
6414          * enable seems to result in the occasional CPU pipe underrun.
6415          *
6416          * Spurious PCH underruns also occur during PCH enabling.
6417          */
6418         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6419         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6420
6421         if (pipe_config->has_pch_encoder)
6422                 intel_prepare_shared_dpll(pipe_config);
6423
6424         if (intel_crtc_has_dp_encoder(pipe_config))
6425                 intel_dp_set_m_n(pipe_config, M1_N1);
6426
6427         intel_set_pipe_timings(pipe_config);
6428         intel_set_pipe_src_size(pipe_config);
6429
6430         if (pipe_config->has_pch_encoder) {
6431                 intel_cpu_transcoder_set_m_n(pipe_config,
6432                                              &pipe_config->fdi_m_n, NULL);
6433         }
6434
6435         ironlake_set_pipeconf(pipe_config);
6436
6437         intel_crtc->active = true;
6438
6439         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6440
6441         if (pipe_config->has_pch_encoder) {
6442                 /* Note: FDI PLL enabling _must_ be done before we enable the
6443                  * cpu pipes, hence this is separate from all the other fdi/pch
6444                  * enabling. */
6445                 ironlake_fdi_pll_enable(pipe_config);
6446         } else {
6447                 assert_fdi_tx_disabled(dev_priv, pipe);
6448                 assert_fdi_rx_disabled(dev_priv, pipe);
6449         }
6450
6451         ironlake_pfit_enable(pipe_config);
6452
6453         /*
6454          * On ILK+ LUT must be loaded before the pipe is running but with
6455          * clocks enabled
6456          */
6457         intel_color_load_luts(pipe_config);
6458         intel_color_commit(pipe_config);
6459         /* update DSPCNTR to configure gamma for pipe bottom color */
6460         intel_disable_primary_plane(pipe_config);
6461
6462         if (dev_priv->display.initial_watermarks != NULL)
6463                 dev_priv->display.initial_watermarks(state, pipe_config);
6464         intel_enable_pipe(pipe_config);
6465
6466         if (pipe_config->has_pch_encoder)
6467                 ironlake_pch_enable(state, pipe_config);
6468
6469         assert_vblank_disabled(crtc);
6470         intel_crtc_vblank_on(pipe_config);
6471
6472         intel_encoders_enable(intel_crtc, pipe_config, state);
6473
6474         if (HAS_PCH_CPT(dev_priv))
6475                 cpt_verify_modeset(dev, intel_crtc->pipe);
6476
6477         /*
6478          * Must wait for vblank to avoid spurious PCH FIFO underruns.
6479          * And a second vblank wait is needed at least on ILK with
6480          * some interlaced HDMI modes. Let's do the double wait always
6481          * in case there are more corner cases we don't know about.
6482          */
6483         if (pipe_config->has_pch_encoder) {
6484                 intel_wait_for_vblank(dev_priv, pipe);
6485                 intel_wait_for_vblank(dev_priv, pipe);
6486         }
6487         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6488         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6489 }
6490
6491 /* IPS only exists on ULT machines and is tied to pipe A. */
6492 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6493 {
6494         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6495 }
6496
6497 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6498                                             enum pipe pipe, bool apply)
6499 {
6500         u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6501         u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6502
6503         if (apply)
6504                 val |= mask;
6505         else
6506                 val &= ~mask;
6507
6508         I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6509 }
6510
6511 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6512 {
6513         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6514         enum pipe pipe = crtc->pipe;
6515         u32 val;
6516
6517         val = MBUS_DBOX_A_CREDIT(2);
6518
6519         if (INTEL_GEN(dev_priv) >= 12) {
6520                 val |= MBUS_DBOX_BW_CREDIT(2);
6521                 val |= MBUS_DBOX_B_CREDIT(12);
6522         } else {
6523                 val |= MBUS_DBOX_BW_CREDIT(1);
6524                 val |= MBUS_DBOX_B_CREDIT(8);
6525         }
6526
6527         I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6528 }
6529
6530 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
6531                                 struct intel_atomic_state *state)
6532 {
6533         struct drm_crtc *crtc = pipe_config->base.crtc;
6534         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6536         enum pipe pipe = intel_crtc->pipe, hsw_workaround_pipe;
6537         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6538         bool psl_clkgate_wa;
6539
6540         if (WARN_ON(intel_crtc->active))
6541                 return;
6542
6543         intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state);
6544
6545         if (pipe_config->shared_dpll)
6546                 intel_enable_shared_dpll(pipe_config);
6547
6548         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6549
6550         if (intel_crtc_has_dp_encoder(pipe_config))
6551                 intel_dp_set_m_n(pipe_config, M1_N1);
6552
6553         if (!transcoder_is_dsi(cpu_transcoder))
6554                 intel_set_pipe_timings(pipe_config);
6555
6556         if (INTEL_GEN(dev_priv) >= 11)
6557                 icl_enable_trans_port_sync(pipe_config);
6558
6559         intel_set_pipe_src_size(pipe_config);
6560
6561         if (cpu_transcoder != TRANSCODER_EDP &&
6562             !transcoder_is_dsi(cpu_transcoder)) {
6563                 I915_WRITE(PIPE_MULT(cpu_transcoder),
6564                            pipe_config->pixel_multiplier - 1);
6565         }
6566
6567         if (pipe_config->has_pch_encoder) {
6568                 intel_cpu_transcoder_set_m_n(pipe_config,
6569                                              &pipe_config->fdi_m_n, NULL);
6570         }
6571
6572         if (!transcoder_is_dsi(cpu_transcoder))
6573                 haswell_set_pipeconf(pipe_config);
6574
6575         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6576                 bdw_set_pipemisc(pipe_config);
6577
6578         intel_crtc->active = true;
6579
6580         /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6581         psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6582                          pipe_config->pch_pfit.enabled;
6583         if (psl_clkgate_wa)
6584                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6585
6586         if (INTEL_GEN(dev_priv) >= 9)
6587                 skylake_pfit_enable(pipe_config);
6588         else
6589                 ironlake_pfit_enable(pipe_config);
6590
6591         /*
6592          * On ILK+ LUT must be loaded before the pipe is running but with
6593          * clocks enabled
6594          */
6595         intel_color_load_luts(pipe_config);
6596         intel_color_commit(pipe_config);
6597         /* update DSPCNTR to configure gamma/csc for pipe bottom color */
6598         if (INTEL_GEN(dev_priv) < 9)
6599                 intel_disable_primary_plane(pipe_config);
6600
6601         if (INTEL_GEN(dev_priv) >= 11)
6602                 icl_set_pipe_chicken(intel_crtc);
6603
6604         if (!transcoder_is_dsi(cpu_transcoder))
6605                 intel_ddi_enable_transcoder_func(pipe_config);
6606
6607         if (dev_priv->display.initial_watermarks != NULL)
6608                 dev_priv->display.initial_watermarks(state, pipe_config);
6609
6610         if (INTEL_GEN(dev_priv) >= 11)
6611                 icl_pipe_mbus_enable(intel_crtc);
6612
6613         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6614         if (!transcoder_is_dsi(cpu_transcoder))
6615                 intel_enable_pipe(pipe_config);
6616
6617         if (pipe_config->has_pch_encoder)
6618                 lpt_pch_enable(state, pipe_config);
6619
6620         if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
6621                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
6622
6623         assert_vblank_disabled(crtc);
6624         intel_crtc_vblank_on(pipe_config);
6625
6626         intel_encoders_enable(intel_crtc, pipe_config, state);
6627
6628         if (psl_clkgate_wa) {
6629                 intel_wait_for_vblank(dev_priv, pipe);
6630                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
6631         }
6632
6633         /* If we change the relative order between pipe/planes enabling, we need
6634          * to change the workaround. */
6635         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
6636         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
6637                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6638                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6639         }
6640 }
6641
6642 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6643 {
6644         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6645         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6646         enum pipe pipe = crtc->pipe;
6647
6648         /* To avoid upsetting the power well on haswell only disable the pfit if
6649          * it's in use. The hw state code will make sure we get this right. */
6650         if (old_crtc_state->pch_pfit.enabled) {
6651                 I915_WRITE(PF_CTL(pipe), 0);
6652                 I915_WRITE(PF_WIN_POS(pipe), 0);
6653                 I915_WRITE(PF_WIN_SZ(pipe), 0);
6654         }
6655 }
6656
6657 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
6658                                   struct intel_atomic_state *state)
6659 {
6660         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6661         struct drm_device *dev = crtc->dev;
6662         struct drm_i915_private *dev_priv = to_i915(dev);
6663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6664         enum pipe pipe = intel_crtc->pipe;
6665
6666         /*
6667          * Sometimes spurious CPU pipe underruns happen when the
6668          * pipe is already disabled, but FDI RX/TX is still enabled.
6669          * Happens at least with VGA+HDMI cloning. Suppress them.
6670          */
6671         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6672         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6673
6674         intel_encoders_disable(intel_crtc, old_crtc_state, state);
6675
6676         drm_crtc_vblank_off(crtc);
6677         assert_vblank_disabled(crtc);
6678
6679         intel_disable_pipe(old_crtc_state);
6680
6681         ironlake_pfit_disable(old_crtc_state);
6682
6683         if (old_crtc_state->has_pch_encoder)
6684                 ironlake_fdi_disable(crtc);
6685
6686         intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
6687
6688         if (old_crtc_state->has_pch_encoder) {
6689                 ironlake_disable_pch_transcoder(dev_priv, pipe);
6690
6691                 if (HAS_PCH_CPT(dev_priv)) {
6692                         i915_reg_t reg;
6693                         u32 temp;
6694
6695                         /* disable TRANS_DP_CTL */
6696                         reg = TRANS_DP_CTL(pipe);
6697                         temp = I915_READ(reg);
6698                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
6699                                   TRANS_DP_PORT_SEL_MASK);
6700                         temp |= TRANS_DP_PORT_SEL_NONE;
6701                         I915_WRITE(reg, temp);
6702
6703                         /* disable DPLL_SEL */
6704                         temp = I915_READ(PCH_DPLL_SEL);
6705                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6706                         I915_WRITE(PCH_DPLL_SEL, temp);
6707                 }
6708
6709                 ironlake_fdi_pll_disable(intel_crtc);
6710         }
6711
6712         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6713         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6714 }
6715
6716 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
6717                                  struct intel_atomic_state *state)
6718 {
6719         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6720         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6721         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6722         enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
6723
6724         intel_encoders_disable(intel_crtc, old_crtc_state, state);
6725
6726         drm_crtc_vblank_off(crtc);
6727         assert_vblank_disabled(crtc);
6728
6729         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6730         if (!transcoder_is_dsi(cpu_transcoder))
6731                 intel_disable_pipe(old_crtc_state);
6732
6733         if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST))
6734                 intel_ddi_set_vc_payload_alloc(old_crtc_state, false);
6735
6736         if (INTEL_GEN(dev_priv) >= 11)
6737                 icl_disable_transcoder_port_sync(old_crtc_state);
6738
6739         if (!transcoder_is_dsi(cpu_transcoder))
6740                 intel_ddi_disable_transcoder_func(old_crtc_state);
6741
6742         intel_dsc_disable(old_crtc_state);
6743
6744         if (INTEL_GEN(dev_priv) >= 9)
6745                 skylake_scaler_disable(intel_crtc);
6746         else
6747                 ironlake_pfit_disable(old_crtc_state);
6748
6749         intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
6750
6751         intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state);
6752 }
6753
6754 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
6755 {
6756         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6757         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6758
6759         if (!crtc_state->gmch_pfit.control)
6760                 return;
6761
6762         /*
6763          * The panel fitter should only be adjusted whilst the pipe is disabled,
6764          * according to register description and PRM.
6765          */
6766         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
6767         assert_pipe_disabled(dev_priv, crtc->pipe);
6768
6769         I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
6770         I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
6771
6772         /* Border color in case we don't scale up to the full screen. Black by
6773          * default, change to something else for debugging. */
6774         I915_WRITE(BCLRPAT(crtc->pipe), 0);
6775 }
6776
6777 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
6778 {
6779         if (phy == PHY_NONE)
6780                 return false;
6781
6782         if (IS_ELKHARTLAKE(dev_priv))
6783                 return phy <= PHY_C;
6784
6785         if (INTEL_GEN(dev_priv) >= 11)
6786                 return phy <= PHY_B;
6787
6788         return false;
6789 }
6790
6791 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
6792 {
6793         if (INTEL_GEN(dev_priv) >= 12)
6794                 return phy >= PHY_D && phy <= PHY_I;
6795
6796         if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
6797                 return phy >= PHY_C && phy <= PHY_F;
6798
6799         return false;
6800 }
6801
6802 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
6803 {
6804         if (IS_ELKHARTLAKE(i915) && port == PORT_D)
6805                 return PHY_A;
6806
6807         return (enum phy)port;
6808 }
6809
6810 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
6811 {
6812         if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
6813                 return PORT_TC_NONE;
6814
6815         if (INTEL_GEN(dev_priv) >= 12)
6816                 return port - PORT_D;
6817
6818         return port - PORT_C;
6819 }
6820
6821 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
6822 {
6823         switch (port) {
6824         case PORT_A:
6825                 return POWER_DOMAIN_PORT_DDI_A_LANES;
6826         case PORT_B:
6827                 return POWER_DOMAIN_PORT_DDI_B_LANES;
6828         case PORT_C:
6829                 return POWER_DOMAIN_PORT_DDI_C_LANES;
6830         case PORT_D:
6831                 return POWER_DOMAIN_PORT_DDI_D_LANES;
6832         case PORT_E:
6833                 return POWER_DOMAIN_PORT_DDI_E_LANES;
6834         case PORT_F:
6835                 return POWER_DOMAIN_PORT_DDI_F_LANES;
6836         case PORT_G:
6837                 return POWER_DOMAIN_PORT_DDI_G_LANES;
6838         default:
6839                 MISSING_CASE(port);
6840                 return POWER_DOMAIN_PORT_OTHER;
6841         }
6842 }
6843
6844 enum intel_display_power_domain
6845 intel_aux_power_domain(struct intel_digital_port *dig_port)
6846 {
6847         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
6848         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
6849
6850         if (intel_phy_is_tc(dev_priv, phy) &&
6851             dig_port->tc_mode == TC_PORT_TBT_ALT) {
6852                 switch (dig_port->aux_ch) {
6853                 case AUX_CH_C:
6854                         return POWER_DOMAIN_AUX_C_TBT;
6855                 case AUX_CH_D:
6856                         return POWER_DOMAIN_AUX_D_TBT;
6857                 case AUX_CH_E:
6858                         return POWER_DOMAIN_AUX_E_TBT;
6859                 case AUX_CH_F:
6860                         return POWER_DOMAIN_AUX_F_TBT;
6861                 case AUX_CH_G:
6862                         return POWER_DOMAIN_AUX_G_TBT;
6863                 default:
6864                         MISSING_CASE(dig_port->aux_ch);
6865                         return POWER_DOMAIN_AUX_C_TBT;
6866                 }
6867         }
6868
6869         switch (dig_port->aux_ch) {
6870         case AUX_CH_A:
6871                 return POWER_DOMAIN_AUX_A;
6872         case AUX_CH_B:
6873                 return POWER_DOMAIN_AUX_B;
6874         case AUX_CH_C:
6875                 return POWER_DOMAIN_AUX_C;
6876         case AUX_CH_D:
6877                 return POWER_DOMAIN_AUX_D;
6878         case AUX_CH_E:
6879                 return POWER_DOMAIN_AUX_E;
6880         case AUX_CH_F:
6881                 return POWER_DOMAIN_AUX_F;
6882         case AUX_CH_G:
6883                 return POWER_DOMAIN_AUX_G;
6884         default:
6885                 MISSING_CASE(dig_port->aux_ch);
6886                 return POWER_DOMAIN_AUX_A;
6887         }
6888 }
6889
6890 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
6891 {
6892         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6893         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6894         struct drm_encoder *encoder;
6895         enum pipe pipe = crtc->pipe;
6896         u64 mask;
6897         enum transcoder transcoder = crtc_state->cpu_transcoder;
6898
6899         if (!crtc_state->base.active)
6900                 return 0;
6901
6902         mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
6903         mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
6904         if (crtc_state->pch_pfit.enabled ||
6905             crtc_state->pch_pfit.force_thru)
6906                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6907
6908         drm_for_each_encoder_mask(encoder, &dev_priv->drm,
6909                                   crtc_state->base.encoder_mask) {
6910                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6911
6912                 mask |= BIT_ULL(intel_encoder->power_domain);
6913         }
6914
6915         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
6916                 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
6917
6918         if (crtc_state->shared_dpll)
6919                 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
6920
6921         return mask;
6922 }
6923
6924 static u64
6925 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
6926 {
6927         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6928         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6929         enum intel_display_power_domain domain;
6930         u64 domains, new_domains, old_domains;
6931
6932         old_domains = crtc->enabled_power_domains;
6933         crtc->enabled_power_domains = new_domains =
6934                 get_crtc_power_domains(crtc_state);
6935
6936         domains = new_domains & ~old_domains;
6937
6938         for_each_power_domain(domain, domains)
6939                 intel_display_power_get(dev_priv, domain);
6940
6941         return old_domains & ~new_domains;
6942 }
6943
6944 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
6945                                       u64 domains)
6946 {
6947         enum intel_display_power_domain domain;
6948
6949         for_each_power_domain(domain, domains)
6950                 intel_display_power_put_unchecked(dev_priv, domain);
6951 }
6952
6953 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6954                                    struct intel_atomic_state *state)
6955 {
6956         struct drm_crtc *crtc = pipe_config->base.crtc;
6957         struct drm_device *dev = crtc->dev;
6958         struct drm_i915_private *dev_priv = to_i915(dev);
6959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6960         enum pipe pipe = intel_crtc->pipe;
6961
6962         if (WARN_ON(intel_crtc->active))
6963                 return;
6964
6965         if (intel_crtc_has_dp_encoder(pipe_config))
6966                 intel_dp_set_m_n(pipe_config, M1_N1);
6967
6968         intel_set_pipe_timings(pipe_config);
6969         intel_set_pipe_src_size(pipe_config);
6970
6971         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6972                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6973                 I915_WRITE(CHV_CANVAS(pipe), 0);
6974         }
6975
6976         i9xx_set_pipeconf(pipe_config);
6977
6978         intel_crtc->active = true;
6979
6980         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6981
6982         intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state);
6983
6984         if (IS_CHERRYVIEW(dev_priv)) {
6985                 chv_prepare_pll(intel_crtc, pipe_config);
6986                 chv_enable_pll(intel_crtc, pipe_config);
6987         } else {
6988                 vlv_prepare_pll(intel_crtc, pipe_config);
6989                 vlv_enable_pll(intel_crtc, pipe_config);
6990         }
6991
6992         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6993
6994         i9xx_pfit_enable(pipe_config);
6995
6996         intel_color_load_luts(pipe_config);
6997         intel_color_commit(pipe_config);
6998         /* update DSPCNTR to configure gamma for pipe bottom color */
6999         intel_disable_primary_plane(pipe_config);
7000
7001         dev_priv->display.initial_watermarks(state, pipe_config);
7002         intel_enable_pipe(pipe_config);
7003
7004         assert_vblank_disabled(crtc);
7005         intel_crtc_vblank_on(pipe_config);
7006
7007         intel_encoders_enable(intel_crtc, pipe_config, state);
7008 }
7009
7010 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7011 {
7012         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7013         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7014
7015         I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
7016         I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
7017 }
7018
7019 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
7020                              struct intel_atomic_state *state)
7021 {
7022         struct drm_crtc *crtc = pipe_config->base.crtc;
7023         struct drm_device *dev = crtc->dev;
7024         struct drm_i915_private *dev_priv = to_i915(dev);
7025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7026         enum pipe pipe = intel_crtc->pipe;
7027
7028         if (WARN_ON(intel_crtc->active))
7029                 return;
7030
7031         i9xx_set_pll_dividers(pipe_config);
7032
7033         if (intel_crtc_has_dp_encoder(pipe_config))
7034                 intel_dp_set_m_n(pipe_config, M1_N1);
7035
7036         intel_set_pipe_timings(pipe_config);
7037         intel_set_pipe_src_size(pipe_config);
7038
7039         i9xx_set_pipeconf(pipe_config);
7040
7041         intel_crtc->active = true;
7042
7043         if (!IS_GEN(dev_priv, 2))
7044                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7045
7046         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
7047
7048         i9xx_enable_pll(intel_crtc, pipe_config);
7049
7050         i9xx_pfit_enable(pipe_config);
7051
7052         intel_color_load_luts(pipe_config);
7053         intel_color_commit(pipe_config);
7054         /* update DSPCNTR to configure gamma for pipe bottom color */
7055         intel_disable_primary_plane(pipe_config);
7056
7057         if (dev_priv->display.initial_watermarks != NULL)
7058                 dev_priv->display.initial_watermarks(state,
7059                                                      pipe_config);
7060         else
7061                 intel_update_watermarks(intel_crtc);
7062         intel_enable_pipe(pipe_config);
7063
7064         assert_vblank_disabled(crtc);
7065         intel_crtc_vblank_on(pipe_config);
7066
7067         intel_encoders_enable(intel_crtc, pipe_config, state);
7068 }
7069
7070 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7071 {
7072         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
7073         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7074
7075         if (!old_crtc_state->gmch_pfit.control)
7076                 return;
7077
7078         assert_pipe_disabled(dev_priv, crtc->pipe);
7079
7080         DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
7081                       I915_READ(PFIT_CONTROL));
7082         I915_WRITE(PFIT_CONTROL, 0);
7083 }
7084
7085 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
7086                               struct intel_atomic_state *state)
7087 {
7088         struct drm_crtc *crtc = old_crtc_state->base.crtc;
7089         struct drm_device *dev = crtc->dev;
7090         struct drm_i915_private *dev_priv = to_i915(dev);
7091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7092         enum pipe pipe = intel_crtc->pipe;
7093
7094         /*
7095          * On gen2 planes are double buffered but the pipe isn't, so we must
7096          * wait for planes to fully turn off before disabling the pipe.
7097          */
7098         if (IS_GEN(dev_priv, 2))
7099                 intel_wait_for_vblank(dev_priv, pipe);
7100
7101         intel_encoders_disable(intel_crtc, old_crtc_state, state);
7102
7103         drm_crtc_vblank_off(crtc);
7104         assert_vblank_disabled(crtc);
7105
7106         intel_disable_pipe(old_crtc_state);
7107
7108         i9xx_pfit_disable(old_crtc_state);
7109
7110         intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
7111
7112         if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7113                 if (IS_CHERRYVIEW(dev_priv))
7114                         chv_disable_pll(dev_priv, pipe);
7115                 else if (IS_VALLEYVIEW(dev_priv))
7116                         vlv_disable_pll(dev_priv, pipe);
7117                 else
7118                         i9xx_disable_pll(old_crtc_state);
7119         }
7120
7121         intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state);
7122
7123         if (!IS_GEN(dev_priv, 2))
7124                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7125
7126         if (!dev_priv->display.initial_watermarks)
7127                 intel_update_watermarks(intel_crtc);
7128
7129         /* clock the pipe down to 640x480@60 to potentially save power */
7130         if (IS_I830(dev_priv))
7131                 i830_enable_pipe(dev_priv, pipe);
7132 }
7133
7134 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
7135                                         struct drm_modeset_acquire_ctx *ctx)
7136 {
7137         struct intel_encoder *encoder;
7138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7139         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7140         struct intel_bw_state *bw_state =
7141                 to_intel_bw_state(dev_priv->bw_obj.state);
7142         enum intel_display_power_domain domain;
7143         struct intel_plane *plane;
7144         u64 domains;
7145         struct drm_atomic_state *state;
7146         struct intel_crtc_state *crtc_state;
7147         int ret;
7148
7149         if (!intel_crtc->active)
7150                 return;
7151
7152         for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
7153                 const struct intel_plane_state *plane_state =
7154                         to_intel_plane_state(plane->base.state);
7155
7156                 if (plane_state->base.visible)
7157                         intel_plane_disable_noatomic(intel_crtc, plane);
7158         }
7159
7160         state = drm_atomic_state_alloc(crtc->dev);
7161         if (!state) {
7162                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
7163                               crtc->base.id, crtc->name);
7164                 return;
7165         }
7166
7167         state->acquire_ctx = ctx;
7168
7169         /* Everything's already locked, -EDEADLK can't happen. */
7170         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
7171         ret = drm_atomic_add_affected_connectors(state, crtc);
7172
7173         WARN_ON(IS_ERR(crtc_state) || ret);
7174
7175         dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state));
7176
7177         drm_atomic_state_put(state);
7178
7179         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7180                       crtc->base.id, crtc->name);
7181
7182         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
7183         crtc->state->active = false;
7184         intel_crtc->active = false;
7185         crtc->enabled = false;
7186         crtc->state->connector_mask = 0;
7187         crtc->state->encoder_mask = 0;
7188
7189         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
7190                 encoder->base.crtc = NULL;
7191
7192         intel_fbc_disable(intel_crtc);
7193         intel_update_watermarks(intel_crtc);
7194         intel_disable_shared_dpll(to_intel_crtc_state(crtc->state));
7195
7196         domains = intel_crtc->enabled_power_domains;
7197         for_each_power_domain(domain, domains)
7198                 intel_display_power_put_unchecked(dev_priv, domain);
7199         intel_crtc->enabled_power_domains = 0;
7200
7201         dev_priv->active_pipes &= ~BIT(intel_crtc->pipe);
7202         dev_priv->min_cdclk[intel_crtc->pipe] = 0;
7203         dev_priv->min_voltage_level[intel_crtc->pipe] = 0;
7204
7205         bw_state->data_rate[intel_crtc->pipe] = 0;
7206         bw_state->num_active_planes[intel_crtc->pipe] = 0;
7207 }
7208
7209 /*
7210  * turn all crtc's off, but do not adjust state
7211  * This has to be paired with a call to intel_modeset_setup_hw_state.
7212  */
7213 int intel_display_suspend(struct drm_device *dev)
7214 {
7215         struct drm_i915_private *dev_priv = to_i915(dev);
7216         struct drm_atomic_state *state;
7217         int ret;
7218
7219         state = drm_atomic_helper_suspend(dev);
7220         ret = PTR_ERR_OR_ZERO(state);
7221         if (ret)
7222                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
7223         else
7224                 dev_priv->modeset_restore_state = state;
7225         return ret;
7226 }
7227
7228 void intel_encoder_destroy(struct drm_encoder *encoder)
7229 {
7230         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7231
7232         drm_encoder_cleanup(encoder);
7233         kfree(intel_encoder);
7234 }
7235
7236 /* Cross check the actual hw state with our own modeset state tracking (and it's
7237  * internal consistency). */
7238 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7239                                          struct drm_connector_state *conn_state)
7240 {
7241         struct intel_connector *connector = to_intel_connector(conn_state->connector);
7242
7243         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
7244                       connector->base.base.id,
7245                       connector->base.name);
7246
7247         if (connector->get_hw_state(connector)) {
7248                 struct intel_encoder *encoder = connector->encoder;
7249
7250                 I915_STATE_WARN(!crtc_state,
7251                          "connector enabled without attached crtc\n");
7252
7253                 if (!crtc_state)
7254                         return;
7255
7256                 I915_STATE_WARN(!crtc_state->base.active,
7257                       "connector is active, but attached crtc isn't\n");
7258
7259                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7260                         return;
7261
7262                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7263                         "atomic encoder doesn't match attached encoder\n");
7264
7265                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7266                         "attached encoder crtc differs from connector crtc\n");
7267         } else {
7268                 I915_STATE_WARN(crtc_state && crtc_state->base.active,
7269                         "attached crtc is active, but connector isn't\n");
7270                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7271                         "best encoder set without crtc!\n");
7272         }
7273 }
7274
7275 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7276 {
7277         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7278                 return crtc_state->fdi_lanes;
7279
7280         return 0;
7281 }
7282
7283 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7284                                      struct intel_crtc_state *pipe_config)
7285 {
7286         struct drm_i915_private *dev_priv = to_i915(dev);
7287         struct drm_atomic_state *state = pipe_config->base.state;
7288         struct intel_crtc *other_crtc;
7289         struct intel_crtc_state *other_crtc_state;
7290
7291         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7292                       pipe_name(pipe), pipe_config->fdi_lanes);
7293         if (pipe_config->fdi_lanes > 4) {
7294                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7295                               pipe_name(pipe), pipe_config->fdi_lanes);
7296                 return -EINVAL;
7297         }
7298
7299         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7300                 if (pipe_config->fdi_lanes > 2) {
7301                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7302                                       pipe_config->fdi_lanes);
7303                         return -EINVAL;
7304                 } else {
7305                         return 0;
7306                 }
7307         }
7308
7309         if (INTEL_NUM_PIPES(dev_priv) == 2)
7310                 return 0;
7311
7312         /* Ivybridge 3 pipe is really complicated */
7313         switch (pipe) {
7314         case PIPE_A:
7315                 return 0;
7316         case PIPE_B:
7317                 if (pipe_config->fdi_lanes <= 2)
7318                         return 0;
7319
7320                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7321                 other_crtc_state =
7322                         intel_atomic_get_crtc_state(state, other_crtc);
7323                 if (IS_ERR(other_crtc_state))
7324                         return PTR_ERR(other_crtc_state);
7325
7326                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7327                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7328                                       pipe_name(pipe), pipe_config->fdi_lanes);
7329                         return -EINVAL;
7330                 }
7331                 return 0;
7332         case PIPE_C:
7333                 if (pipe_config->fdi_lanes > 2) {
7334                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7335                                       pipe_name(pipe), pipe_config->fdi_lanes);
7336                         return -EINVAL;
7337                 }
7338
7339                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7340                 other_crtc_state =
7341                         intel_atomic_get_crtc_state(state, other_crtc);
7342                 if (IS_ERR(other_crtc_state))
7343                         return PTR_ERR(other_crtc_state);
7344
7345                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7346                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7347                         return -EINVAL;
7348                 }
7349                 return 0;
7350         default:
7351                 BUG();
7352         }
7353 }
7354
7355 #define RETRY 1
7356 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7357                                        struct intel_crtc_state *pipe_config)
7358 {
7359         struct drm_device *dev = intel_crtc->base.dev;
7360         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7361         int lane, link_bw, fdi_dotclock, ret;
7362         bool needs_recompute = false;
7363
7364 retry:
7365         /* FDI is a binary signal running at ~2.7GHz, encoding
7366          * each output octet as 10 bits. The actual frequency
7367          * is stored as a divider into a 100MHz clock, and the
7368          * mode pixel clock is stored in units of 1KHz.
7369          * Hence the bw of each lane in terms of the mode signal
7370          * is:
7371          */
7372         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7373
7374         fdi_dotclock = adjusted_mode->crtc_clock;
7375
7376         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7377                                            pipe_config->pipe_bpp);
7378
7379         pipe_config->fdi_lanes = lane;
7380
7381         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7382                                link_bw, &pipe_config->fdi_m_n, false, false);
7383
7384         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7385         if (ret == -EDEADLK)
7386                 return ret;
7387
7388         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7389                 pipe_config->pipe_bpp -= 2*3;
7390                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7391                               pipe_config->pipe_bpp);
7392                 needs_recompute = true;
7393                 pipe_config->bw_constrained = true;
7394
7395                 goto retry;
7396         }
7397
7398         if (needs_recompute)
7399                 return RETRY;
7400
7401         return ret;
7402 }
7403
7404 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7405 {
7406         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7407         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7408
7409         /* IPS only exists on ULT machines and is tied to pipe A. */
7410         if (!hsw_crtc_supports_ips(crtc))
7411                 return false;
7412
7413         if (!i915_modparams.enable_ips)
7414                 return false;
7415
7416         if (crtc_state->pipe_bpp > 24)
7417                 return false;
7418
7419         /*
7420          * We compare against max which means we must take
7421          * the increased cdclk requirement into account when
7422          * calculating the new cdclk.
7423          *
7424          * Should measure whether using a lower cdclk w/o IPS
7425          */
7426         if (IS_BROADWELL(dev_priv) &&
7427             crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7428                 return false;
7429
7430         return true;
7431 }
7432
7433 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7434 {
7435         struct drm_i915_private *dev_priv =
7436                 to_i915(crtc_state->base.crtc->dev);
7437         struct intel_atomic_state *intel_state =
7438                 to_intel_atomic_state(crtc_state->base.state);
7439
7440         if (!hsw_crtc_state_ips_capable(crtc_state))
7441                 return false;
7442
7443         /*
7444          * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7445          * enabled and disabled dynamically based on package C states,
7446          * user space can't make reliable use of the CRCs, so let's just
7447          * completely disable it.
7448          */
7449         if (crtc_state->crc_enabled)
7450                 return false;
7451
7452         /* IPS should be fine as long as at least one plane is enabled. */
7453         if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7454                 return false;
7455
7456         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7457         if (IS_BROADWELL(dev_priv) &&
7458             crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7459                 return false;
7460
7461         return true;
7462 }
7463
7464 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7465 {
7466         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7467
7468         /* GDG double wide on either pipe, otherwise pipe A only */
7469         return INTEL_GEN(dev_priv) < 4 &&
7470                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7471 }
7472
7473 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7474 {
7475         u32 pixel_rate;
7476
7477         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
7478
7479         /*
7480          * We only use IF-ID interlacing. If we ever use
7481          * PF-ID we'll need to adjust the pixel_rate here.
7482          */
7483
7484         if (pipe_config->pch_pfit.enabled) {
7485                 u64 pipe_w, pipe_h, pfit_w, pfit_h;
7486                 u32 pfit_size = pipe_config->pch_pfit.size;
7487
7488                 pipe_w = pipe_config->pipe_src_w;
7489                 pipe_h = pipe_config->pipe_src_h;
7490
7491                 pfit_w = (pfit_size >> 16) & 0xFFFF;
7492                 pfit_h = pfit_size & 0xFFFF;
7493                 if (pipe_w < pfit_w)
7494                         pipe_w = pfit_w;
7495                 if (pipe_h < pfit_h)
7496                         pipe_h = pfit_h;
7497
7498                 if (WARN_ON(!pfit_w || !pfit_h))
7499                         return pixel_rate;
7500
7501                 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7502                                      pfit_w * pfit_h);
7503         }
7504
7505         return pixel_rate;
7506 }
7507
7508 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7509 {
7510         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
7511
7512         if (HAS_GMCH(dev_priv))
7513                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
7514                 crtc_state->pixel_rate =
7515                         crtc_state->base.adjusted_mode.crtc_clock;
7516         else
7517                 crtc_state->pixel_rate =
7518                         ilk_pipe_pixel_rate(crtc_state);
7519 }
7520
7521 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7522                                      struct intel_crtc_state *pipe_config)
7523 {
7524         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7525         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7526         int clock_limit = dev_priv->max_dotclk_freq;
7527
7528         if (INTEL_GEN(dev_priv) < 4) {
7529                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7530
7531                 /*
7532                  * Enable double wide mode when the dot clock
7533                  * is > 90% of the (display) core speed.
7534                  */
7535                 if (intel_crtc_supports_double_wide(crtc) &&
7536                     adjusted_mode->crtc_clock > clock_limit) {
7537                         clock_limit = dev_priv->max_dotclk_freq;
7538                         pipe_config->double_wide = true;
7539                 }
7540         }
7541
7542         if (adjusted_mode->crtc_clock > clock_limit) {
7543                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7544                               adjusted_mode->crtc_clock, clock_limit,
7545                               yesno(pipe_config->double_wide));
7546                 return -EINVAL;
7547         }
7548
7549         if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7550              pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7551              pipe_config->base.ctm) {
7552                 /*
7553                  * There is only one pipe CSC unit per pipe, and we need that
7554                  * for output conversion from RGB->YCBCR. So if CTM is already
7555                  * applied we can't support YCBCR420 output.
7556                  */
7557                 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7558                 return -EINVAL;
7559         }
7560
7561         /*
7562          * Pipe horizontal size must be even in:
7563          * - DVO ganged mode
7564          * - LVDS dual channel mode
7565          * - Double wide pipe
7566          */
7567         if (pipe_config->pipe_src_w & 1) {
7568                 if (pipe_config->double_wide) {
7569                         DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7570                         return -EINVAL;
7571                 }
7572
7573                 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7574                     intel_is_dual_link_lvds(dev_priv)) {
7575                         DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7576                         return -EINVAL;
7577                 }
7578         }
7579
7580         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7581          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7582          */
7583         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7584                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7585                 return -EINVAL;
7586
7587         intel_crtc_compute_pixel_rate(pipe_config);
7588
7589         if (pipe_config->has_pch_encoder)
7590                 return ironlake_fdi_compute_config(crtc, pipe_config);
7591
7592         return 0;
7593 }
7594
7595 static void
7596 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7597 {
7598         while (*num > DATA_LINK_M_N_MASK ||
7599                *den > DATA_LINK_M_N_MASK) {
7600                 *num >>= 1;
7601                 *den >>= 1;
7602         }
7603 }
7604
7605 static void compute_m_n(unsigned int m, unsigned int n,
7606                         u32 *ret_m, u32 *ret_n,
7607                         bool constant_n)
7608 {
7609         /*
7610          * Several DP dongles in particular seem to be fussy about
7611          * too large link M/N values. Give N value as 0x8000 that
7612          * should be acceptable by specific devices. 0x8000 is the
7613          * specified fixed N value for asynchronous clock mode,
7614          * which the devices expect also in synchronous clock mode.
7615          */
7616         if (constant_n)
7617                 *ret_n = 0x8000;
7618         else
7619                 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7620
7621         *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7622         intel_reduce_m_n_ratio(ret_m, ret_n);
7623 }
7624
7625 void
7626 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7627                        int pixel_clock, int link_clock,
7628                        struct intel_link_m_n *m_n,
7629                        bool constant_n, bool fec_enable)
7630 {
7631         u32 data_clock = bits_per_pixel * pixel_clock;
7632
7633         if (fec_enable)
7634                 data_clock = intel_dp_mode_to_fec_clock(data_clock);
7635
7636         m_n->tu = 64;
7637         compute_m_n(data_clock,
7638                     link_clock * nlanes * 8,
7639                     &m_n->gmch_m, &m_n->gmch_n,
7640                     constant_n);
7641
7642         compute_m_n(pixel_clock, link_clock,
7643                     &m_n->link_m, &m_n->link_n,
7644                     constant_n);
7645 }
7646
7647 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
7648 {
7649         /*
7650          * There may be no VBT; and if the BIOS enabled SSC we can
7651          * just keep using it to avoid unnecessary flicker.  Whereas if the
7652          * BIOS isn't using it, don't assume it will work even if the VBT
7653          * indicates as much.
7654          */
7655         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7656                 bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) &
7657                         DREF_SSC1_ENABLE;
7658
7659                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
7660                         DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n",
7661                                       enableddisabled(bios_lvds_use_ssc),
7662                                       enableddisabled(dev_priv->vbt.lvds_use_ssc));
7663                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
7664                 }
7665         }
7666 }
7667
7668 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7669 {
7670         if (i915_modparams.panel_use_ssc >= 0)
7671                 return i915_modparams.panel_use_ssc != 0;
7672         return dev_priv->vbt.lvds_use_ssc
7673                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7674 }
7675
7676 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
7677 {
7678         return (1 << dpll->n) << 16 | dpll->m2;
7679 }
7680
7681 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
7682 {
7683         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7684 }
7685
7686 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7687                                      struct intel_crtc_state *crtc_state,
7688                                      struct dpll *reduced_clock)
7689 {
7690         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7691         u32 fp, fp2 = 0;
7692
7693         if (IS_PINEVIEW(dev_priv)) {
7694                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7695                 if (reduced_clock)
7696                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7697         } else {
7698                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7699                 if (reduced_clock)
7700                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7701         }
7702
7703         crtc_state->dpll_hw_state.fp0 = fp;
7704
7705         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7706             reduced_clock) {
7707                 crtc_state->dpll_hw_state.fp1 = fp2;
7708         } else {
7709                 crtc_state->dpll_hw_state.fp1 = fp;
7710         }
7711 }
7712
7713 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7714                 pipe)
7715 {
7716         u32 reg_val;
7717
7718         /*
7719          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7720          * and set it to a reasonable value instead.
7721          */
7722         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7723         reg_val &= 0xffffff00;
7724         reg_val |= 0x00000030;
7725         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7726
7727         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7728         reg_val &= 0x00ffffff;
7729         reg_val |= 0x8c000000;
7730         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7731
7732         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7733         reg_val &= 0xffffff00;
7734         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7735
7736         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7737         reg_val &= 0x00ffffff;
7738         reg_val |= 0xb0000000;
7739         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7740 }
7741
7742 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7743                                          const struct intel_link_m_n *m_n)
7744 {
7745         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7746         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7747         enum pipe pipe = crtc->pipe;
7748
7749         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7750         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7751         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7752         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7753 }
7754
7755 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
7756                                  enum transcoder transcoder)
7757 {
7758         if (IS_HASWELL(dev_priv))
7759                 return transcoder == TRANSCODER_EDP;
7760
7761         /*
7762          * Strictly speaking some registers are available before
7763          * gen7, but we only support DRRS on gen7+
7764          */
7765         return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
7766 }
7767
7768 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7769                                          const struct intel_link_m_n *m_n,
7770                                          const struct intel_link_m_n *m2_n2)
7771 {
7772         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7773         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7774         enum pipe pipe = crtc->pipe;
7775         enum transcoder transcoder = crtc_state->cpu_transcoder;
7776
7777         if (INTEL_GEN(dev_priv) >= 5) {
7778                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7779                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7780                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7781                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7782                 /*
7783                  *  M2_N2 registers are set only if DRRS is supported
7784                  * (to make sure the registers are not unnecessarily accessed).
7785                  */
7786                 if (m2_n2 && crtc_state->has_drrs &&
7787                     transcoder_has_m2_n2(dev_priv, transcoder)) {
7788                         I915_WRITE(PIPE_DATA_M2(transcoder),
7789                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7790                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7791                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7792                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7793                 }
7794         } else {
7795                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7796                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7797                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7798                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7799         }
7800 }
7801
7802 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
7803 {
7804         const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7805
7806         if (m_n == M1_N1) {
7807                 dp_m_n = &crtc_state->dp_m_n;
7808                 dp_m2_n2 = &crtc_state->dp_m2_n2;
7809         } else if (m_n == M2_N2) {
7810
7811                 /*
7812                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7813                  * needs to be programmed into M1_N1.
7814                  */
7815                 dp_m_n = &crtc_state->dp_m2_n2;
7816         } else {
7817                 DRM_ERROR("Unsupported divider value\n");
7818                 return;
7819         }
7820
7821         if (crtc_state->has_pch_encoder)
7822                 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
7823         else
7824                 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
7825 }
7826
7827 static void vlv_compute_dpll(struct intel_crtc *crtc,
7828                              struct intel_crtc_state *pipe_config)
7829 {
7830         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7831                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7832         if (crtc->pipe != PIPE_A)
7833                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7834
7835         /* DPLL not used with DSI, but still need the rest set up */
7836         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7837                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7838                         DPLL_EXT_BUFFER_ENABLE_VLV;
7839
7840         pipe_config->dpll_hw_state.dpll_md =
7841                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7842 }
7843
7844 static void chv_compute_dpll(struct intel_crtc *crtc,
7845                              struct intel_crtc_state *pipe_config)
7846 {
7847         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7848                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7849         if (crtc->pipe != PIPE_A)
7850                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7851
7852         /* DPLL not used with DSI, but still need the rest set up */
7853         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7854                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7855
7856         pipe_config->dpll_hw_state.dpll_md =
7857                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7858 }
7859
7860 static void vlv_prepare_pll(struct intel_crtc *crtc,
7861                             const struct intel_crtc_state *pipe_config)
7862 {
7863         struct drm_device *dev = crtc->base.dev;
7864         struct drm_i915_private *dev_priv = to_i915(dev);
7865         enum pipe pipe = crtc->pipe;
7866         u32 mdiv;
7867         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7868         u32 coreclk, reg_val;
7869
7870         /* Enable Refclk */
7871         I915_WRITE(DPLL(pipe),
7872                    pipe_config->dpll_hw_state.dpll &
7873                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7874
7875         /* No need to actually set up the DPLL with DSI */
7876         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7877                 return;
7878
7879         vlv_dpio_get(dev_priv);
7880
7881         bestn = pipe_config->dpll.n;
7882         bestm1 = pipe_config->dpll.m1;
7883         bestm2 = pipe_config->dpll.m2;
7884         bestp1 = pipe_config->dpll.p1;
7885         bestp2 = pipe_config->dpll.p2;
7886
7887         /* See eDP HDMI DPIO driver vbios notes doc */
7888
7889         /* PLL B needs special handling */
7890         if (pipe == PIPE_B)
7891                 vlv_pllb_recal_opamp(dev_priv, pipe);
7892
7893         /* Set up Tx target for periodic Rcomp update */
7894         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7895
7896         /* Disable target IRef on PLL */
7897         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7898         reg_val &= 0x00ffffff;
7899         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7900
7901         /* Disable fast lock */
7902         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7903
7904         /* Set idtafcrecal before PLL is enabled */
7905         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7906         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7907         mdiv |= ((bestn << DPIO_N_SHIFT));
7908         mdiv |= (1 << DPIO_K_SHIFT);
7909
7910         /*
7911          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7912          * but we don't support that).
7913          * Note: don't use the DAC post divider as it seems unstable.
7914          */
7915         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7916         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7917
7918         mdiv |= DPIO_ENABLE_CALIBRATION;
7919         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7920
7921         /* Set HBR and RBR LPF coefficients */
7922         if (pipe_config->port_clock == 162000 ||
7923             intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
7924             intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
7925                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7926                                  0x009f0003);
7927         else
7928                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7929                                  0x00d0000f);
7930
7931         if (intel_crtc_has_dp_encoder(pipe_config)) {
7932                 /* Use SSC source */
7933                 if (pipe == PIPE_A)
7934                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7935                                          0x0df40000);
7936                 else
7937                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7938                                          0x0df70000);
7939         } else { /* HDMI or VGA */
7940                 /* Use bend source */
7941                 if (pipe == PIPE_A)
7942                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7943                                          0x0df70000);
7944                 else
7945                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7946                                          0x0df40000);
7947         }
7948
7949         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7950         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7951         if (intel_crtc_has_dp_encoder(pipe_config))
7952                 coreclk |= 0x01000000;
7953         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7954
7955         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7956
7957         vlv_dpio_put(dev_priv);
7958 }
7959
7960 static void chv_prepare_pll(struct intel_crtc *crtc,
7961                             const struct intel_crtc_state *pipe_config)
7962 {
7963         struct drm_device *dev = crtc->base.dev;
7964         struct drm_i915_private *dev_priv = to_i915(dev);
7965         enum pipe pipe = crtc->pipe;
7966         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7967         u32 loopfilter, tribuf_calcntr;
7968         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7969         u32 dpio_val;
7970         int vco;
7971
7972         /* Enable Refclk and SSC */
7973         I915_WRITE(DPLL(pipe),
7974                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7975
7976         /* No need to actually set up the DPLL with DSI */
7977         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7978                 return;
7979
7980         bestn = pipe_config->dpll.n;
7981         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7982         bestm1 = pipe_config->dpll.m1;
7983         bestm2 = pipe_config->dpll.m2 >> 22;
7984         bestp1 = pipe_config->dpll.p1;
7985         bestp2 = pipe_config->dpll.p2;
7986         vco = pipe_config->dpll.vco;
7987         dpio_val = 0;
7988         loopfilter = 0;
7989
7990         vlv_dpio_get(dev_priv);
7991
7992         /* p1 and p2 divider */
7993         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7994                         5 << DPIO_CHV_S1_DIV_SHIFT |
7995                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7996                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7997                         1 << DPIO_CHV_K_DIV_SHIFT);
7998
7999         /* Feedback post-divider - m2 */
8000         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8001
8002         /* Feedback refclk divider - n and m1 */
8003         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8004                         DPIO_CHV_M1_DIV_BY_2 |
8005                         1 << DPIO_CHV_N_DIV_SHIFT);
8006
8007         /* M2 fraction division */
8008         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8009
8010         /* M2 fraction division enable */
8011         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8012         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8013         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8014         if (bestm2_frac)
8015                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8016         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8017
8018         /* Program digital lock detect threshold */
8019         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8020         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8021                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8022         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8023         if (!bestm2_frac)
8024                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8025         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8026
8027         /* Loop filter */
8028         if (vco == 5400000) {
8029                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8030                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8031                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8032                 tribuf_calcntr = 0x9;
8033         } else if (vco <= 6200000) {
8034                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8035                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8036                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8037                 tribuf_calcntr = 0x9;
8038         } else if (vco <= 6480000) {
8039                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8040                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8041                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8042                 tribuf_calcntr = 0x8;
8043         } else {
8044                 /* Not supported. Apply the same limits as in the max case */
8045                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8046                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8047                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8048                 tribuf_calcntr = 0;
8049         }
8050         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8051
8052         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8053         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8054         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8055         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8056
8057         /* AFC Recal */
8058         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8059                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8060                         DPIO_AFC_RECAL);
8061
8062         vlv_dpio_put(dev_priv);
8063 }
8064
8065 /**
8066  * vlv_force_pll_on - forcibly enable just the PLL
8067  * @dev_priv: i915 private structure
8068  * @pipe: pipe PLL to enable
8069  * @dpll: PLL configuration
8070  *
8071  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8072  * in cases where we need the PLL enabled even when @pipe is not going to
8073  * be enabled.
8074  */
8075 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8076                      const struct dpll *dpll)
8077 {
8078         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8079         struct intel_crtc_state *pipe_config;
8080
8081         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8082         if (!pipe_config)
8083                 return -ENOMEM;
8084
8085         pipe_config->base.crtc = &crtc->base;
8086         pipe_config->pixel_multiplier = 1;
8087         pipe_config->dpll = *dpll;
8088
8089         if (IS_CHERRYVIEW(dev_priv)) {
8090                 chv_compute_dpll(crtc, pipe_config);
8091                 chv_prepare_pll(crtc, pipe_config);
8092                 chv_enable_pll(crtc, pipe_config);
8093         } else {
8094                 vlv_compute_dpll(crtc, pipe_config);
8095                 vlv_prepare_pll(crtc, pipe_config);
8096                 vlv_enable_pll(crtc, pipe_config);
8097         }
8098
8099         kfree(pipe_config);
8100
8101         return 0;
8102 }
8103
8104 /**
8105  * vlv_force_pll_off - forcibly disable just the PLL
8106  * @dev_priv: i915 private structure
8107  * @pipe: pipe PLL to disable
8108  *
8109  * Disable the PLL for @pipe. To be used in cases where we need
8110  * the PLL enabled even when @pipe is not going to be enabled.
8111  */
8112 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8113 {
8114         if (IS_CHERRYVIEW(dev_priv))
8115                 chv_disable_pll(dev_priv, pipe);
8116         else
8117                 vlv_disable_pll(dev_priv, pipe);
8118 }
8119
8120 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8121                               struct intel_crtc_state *crtc_state,
8122                               struct dpll *reduced_clock)
8123 {
8124         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8125         u32 dpll;
8126         struct dpll *clock = &crtc_state->dpll;
8127
8128         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8129
8130         dpll = DPLL_VGA_MODE_DIS;
8131
8132         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8133                 dpll |= DPLLB_MODE_LVDS;
8134         else
8135                 dpll |= DPLLB_MODE_DAC_SERIAL;
8136
8137         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8138             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8139                 dpll |= (crtc_state->pixel_multiplier - 1)
8140                         << SDVO_MULTIPLIER_SHIFT_HIRES;
8141         }
8142
8143         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8144             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8145                 dpll |= DPLL_SDVO_HIGH_SPEED;
8146
8147         if (intel_crtc_has_dp_encoder(crtc_state))
8148                 dpll |= DPLL_SDVO_HIGH_SPEED;
8149
8150         /* compute bitmask from p1 value */
8151         if (IS_PINEVIEW(dev_priv))
8152                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8153         else {
8154                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8155                 if (IS_G4X(dev_priv) && reduced_clock)
8156                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8157         }
8158         switch (clock->p2) {
8159         case 5:
8160                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8161                 break;
8162         case 7:
8163                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8164                 break;
8165         case 10:
8166                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8167                 break;
8168         case 14:
8169                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8170                 break;
8171         }
8172         if (INTEL_GEN(dev_priv) >= 4)
8173                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8174
8175         if (crtc_state->sdvo_tv_clock)
8176                 dpll |= PLL_REF_INPUT_TVCLKINBC;
8177         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8178                  intel_panel_use_ssc(dev_priv))
8179                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8180         else
8181                 dpll |= PLL_REF_INPUT_DREFCLK;
8182
8183         dpll |= DPLL_VCO_ENABLE;
8184         crtc_state->dpll_hw_state.dpll = dpll;
8185
8186         if (INTEL_GEN(dev_priv) >= 4) {
8187                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8188                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8189                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8190         }
8191 }
8192
8193 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8194                               struct intel_crtc_state *crtc_state,
8195                               struct dpll *reduced_clock)
8196 {
8197         struct drm_device *dev = crtc->base.dev;
8198         struct drm_i915_private *dev_priv = to_i915(dev);
8199         u32 dpll;
8200         struct dpll *clock = &crtc_state->dpll;
8201
8202         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8203
8204         dpll = DPLL_VGA_MODE_DIS;
8205
8206         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8207                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8208         } else {
8209                 if (clock->p1 == 2)
8210                         dpll |= PLL_P1_DIVIDE_BY_TWO;
8211                 else
8212                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8213                 if (clock->p2 == 4)
8214                         dpll |= PLL_P2_DIVIDE_BY_4;
8215         }
8216
8217         /*
8218          * Bspec:
8219          * "[Almador Errata}: For the correct operation of the muxed DVO pins
8220          *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8221          *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8222          *  Enable) must be set to “1” in both the DPLL A Control Register
8223          *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8224          *
8225          * For simplicity We simply keep both bits always enabled in
8226          * both DPLLS. The spec says we should disable the DVO 2X clock
8227          * when not needed, but this seems to work fine in practice.
8228          */
8229         if (IS_I830(dev_priv) ||
8230             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8231                 dpll |= DPLL_DVO_2X_MODE;
8232
8233         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8234             intel_panel_use_ssc(dev_priv))
8235                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8236         else
8237                 dpll |= PLL_REF_INPUT_DREFCLK;
8238
8239         dpll |= DPLL_VCO_ENABLE;
8240         crtc_state->dpll_hw_state.dpll = dpll;
8241 }
8242
8243 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8244 {
8245         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8246         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8247         enum pipe pipe = crtc->pipe;
8248         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8249         const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
8250         u32 crtc_vtotal, crtc_vblank_end;
8251         int vsyncshift = 0;
8252
8253         /* We need to be careful not to changed the adjusted mode, for otherwise
8254          * the hw state checker will get angry at the mismatch. */
8255         crtc_vtotal = adjusted_mode->crtc_vtotal;
8256         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8257
8258         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8259                 /* the chip adds 2 halflines automatically */
8260                 crtc_vtotal -= 1;
8261                 crtc_vblank_end -= 1;
8262
8263                 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8264                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8265                 else
8266                         vsyncshift = adjusted_mode->crtc_hsync_start -
8267                                 adjusted_mode->crtc_htotal / 2;
8268                 if (vsyncshift < 0)
8269                         vsyncshift += adjusted_mode->crtc_htotal;
8270         }
8271
8272         if (INTEL_GEN(dev_priv) > 3)
8273                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8274
8275         I915_WRITE(HTOTAL(cpu_transcoder),
8276                    (adjusted_mode->crtc_hdisplay - 1) |
8277                    ((adjusted_mode->crtc_htotal - 1) << 16));
8278         I915_WRITE(HBLANK(cpu_transcoder),
8279                    (adjusted_mode->crtc_hblank_start - 1) |
8280                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
8281         I915_WRITE(HSYNC(cpu_transcoder),
8282                    (adjusted_mode->crtc_hsync_start - 1) |
8283                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
8284
8285         I915_WRITE(VTOTAL(cpu_transcoder),
8286                    (adjusted_mode->crtc_vdisplay - 1) |
8287                    ((crtc_vtotal - 1) << 16));
8288         I915_WRITE(VBLANK(cpu_transcoder),
8289                    (adjusted_mode->crtc_vblank_start - 1) |
8290                    ((crtc_vblank_end - 1) << 16));
8291         I915_WRITE(VSYNC(cpu_transcoder),
8292                    (adjusted_mode->crtc_vsync_start - 1) |
8293                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
8294
8295         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8296          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8297          * documented on the DDI_FUNC_CTL register description, EDP Input Select
8298          * bits. */
8299         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8300             (pipe == PIPE_B || pipe == PIPE_C))
8301                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8302
8303 }
8304
8305 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8306 {
8307         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8308         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8309         enum pipe pipe = crtc->pipe;
8310
8311         /* pipesrc controls the size that is scaled from, which should
8312          * always be the user's requested size.
8313          */
8314         I915_WRITE(PIPESRC(pipe),
8315                    ((crtc_state->pipe_src_w - 1) << 16) |
8316                    (crtc_state->pipe_src_h - 1));
8317 }
8318
8319 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8320 {
8321         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
8322         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8323
8324         if (IS_GEN(dev_priv, 2))
8325                 return false;
8326
8327         if (INTEL_GEN(dev_priv) >= 9 ||
8328             IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8329                 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8330         else
8331                 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8332 }
8333
8334 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8335                                    struct intel_crtc_state *pipe_config)
8336 {
8337         struct drm_device *dev = crtc->base.dev;
8338         struct drm_i915_private *dev_priv = to_i915(dev);
8339         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8340         u32 tmp;
8341
8342         tmp = I915_READ(HTOTAL(cpu_transcoder));
8343         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8344         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8345
8346         if (!transcoder_is_dsi(cpu_transcoder)) {
8347                 tmp = I915_READ(HBLANK(cpu_transcoder));
8348                 pipe_config->base.adjusted_mode.crtc_hblank_start =
8349                                                         (tmp & 0xffff) + 1;
8350                 pipe_config->base.adjusted_mode.crtc_hblank_end =
8351                                                 ((tmp >> 16) & 0xffff) + 1;
8352         }
8353         tmp = I915_READ(HSYNC(cpu_transcoder));
8354         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8355         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8356
8357         tmp = I915_READ(VTOTAL(cpu_transcoder));
8358         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8359         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8360
8361         if (!transcoder_is_dsi(cpu_transcoder)) {
8362                 tmp = I915_READ(VBLANK(cpu_transcoder));
8363                 pipe_config->base.adjusted_mode.crtc_vblank_start =
8364                                                         (tmp & 0xffff) + 1;
8365                 pipe_config->base.adjusted_mode.crtc_vblank_end =
8366                                                 ((tmp >> 16) & 0xffff) + 1;
8367         }
8368         tmp = I915_READ(VSYNC(cpu_transcoder));
8369         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8370         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8371
8372         if (intel_pipe_is_interlaced(pipe_config)) {
8373                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8374                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8375                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8376         }
8377 }
8378
8379 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8380                                     struct intel_crtc_state *pipe_config)
8381 {
8382         struct drm_device *dev = crtc->base.dev;
8383         struct drm_i915_private *dev_priv = to_i915(dev);
8384         u32 tmp;
8385
8386         tmp = I915_READ(PIPESRC(crtc->pipe));
8387         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8388         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8389
8390         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8391         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8392 }
8393
8394 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8395                                  struct intel_crtc_state *pipe_config)
8396 {
8397         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8398         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8399         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8400         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8401
8402         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8403         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8404         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8405         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8406
8407         mode->flags = pipe_config->base.adjusted_mode.flags;
8408         mode->type = DRM_MODE_TYPE_DRIVER;
8409
8410         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8411
8412         mode->hsync = drm_mode_hsync(mode);
8413         mode->vrefresh = drm_mode_vrefresh(mode);
8414         drm_mode_set_name(mode);
8415 }
8416
8417 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8418 {
8419         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8420         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8421         u32 pipeconf;
8422
8423         pipeconf = 0;
8424
8425         /* we keep both pipes enabled on 830 */
8426         if (IS_I830(dev_priv))
8427                 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8428
8429         if (crtc_state->double_wide)
8430                 pipeconf |= PIPECONF_DOUBLE_WIDE;
8431
8432         /* only g4x and later have fancy bpc/dither controls */
8433         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8434             IS_CHERRYVIEW(dev_priv)) {
8435                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8436                 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8437                         pipeconf |= PIPECONF_DITHER_EN |
8438                                     PIPECONF_DITHER_TYPE_SP;
8439
8440                 switch (crtc_state->pipe_bpp) {
8441                 case 18:
8442                         pipeconf |= PIPECONF_6BPC;
8443                         break;
8444                 case 24:
8445                         pipeconf |= PIPECONF_8BPC;
8446                         break;
8447                 case 30:
8448                         pipeconf |= PIPECONF_10BPC;
8449                         break;
8450                 default:
8451                         /* Case prevented by intel_choose_pipe_bpp_dither. */
8452                         BUG();
8453                 }
8454         }
8455
8456         if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8457                 if (INTEL_GEN(dev_priv) < 4 ||
8458                     intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8459                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8460                 else
8461                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8462         } else {
8463                 pipeconf |= PIPECONF_PROGRESSIVE;
8464         }
8465
8466         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8467              crtc_state->limited_color_range)
8468                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8469
8470         pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8471
8472         I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8473         POSTING_READ(PIPECONF(crtc->pipe));
8474 }
8475
8476 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8477                                    struct intel_crtc_state *crtc_state)
8478 {
8479         struct drm_device *dev = crtc->base.dev;
8480         struct drm_i915_private *dev_priv = to_i915(dev);
8481         const struct intel_limit *limit;
8482         int refclk = 48000;
8483
8484         memset(&crtc_state->dpll_hw_state, 0,
8485                sizeof(crtc_state->dpll_hw_state));
8486
8487         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8488                 if (intel_panel_use_ssc(dev_priv)) {
8489                         refclk = dev_priv->vbt.lvds_ssc_freq;
8490                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8491                 }
8492
8493                 limit = &intel_limits_i8xx_lvds;
8494         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8495                 limit = &intel_limits_i8xx_dvo;
8496         } else {
8497                 limit = &intel_limits_i8xx_dac;
8498         }
8499
8500         if (!crtc_state->clock_set &&
8501             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8502                                  refclk, NULL, &crtc_state->dpll)) {
8503                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8504                 return -EINVAL;
8505         }
8506
8507         i8xx_compute_dpll(crtc, crtc_state, NULL);
8508
8509         return 0;
8510 }
8511
8512 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8513                                   struct intel_crtc_state *crtc_state)
8514 {
8515         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8516         const struct intel_limit *limit;
8517         int refclk = 96000;
8518
8519         memset(&crtc_state->dpll_hw_state, 0,
8520                sizeof(crtc_state->dpll_hw_state));
8521
8522         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8523                 if (intel_panel_use_ssc(dev_priv)) {
8524                         refclk = dev_priv->vbt.lvds_ssc_freq;
8525                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8526                 }
8527
8528                 if (intel_is_dual_link_lvds(dev_priv))
8529                         limit = &intel_limits_g4x_dual_channel_lvds;
8530                 else
8531                         limit = &intel_limits_g4x_single_channel_lvds;
8532         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8533                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8534                 limit = &intel_limits_g4x_hdmi;
8535         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8536                 limit = &intel_limits_g4x_sdvo;
8537         } else {
8538                 /* The option is for other outputs */
8539                 limit = &intel_limits_i9xx_sdvo;
8540         }
8541
8542         if (!crtc_state->clock_set &&
8543             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8544                                 refclk, NULL, &crtc_state->dpll)) {
8545                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8546                 return -EINVAL;
8547         }
8548
8549         i9xx_compute_dpll(crtc, crtc_state, NULL);
8550
8551         return 0;
8552 }
8553
8554 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8555                                   struct intel_crtc_state *crtc_state)
8556 {
8557         struct drm_device *dev = crtc->base.dev;
8558         struct drm_i915_private *dev_priv = to_i915(dev);
8559         const struct intel_limit *limit;
8560         int refclk = 96000;
8561
8562         memset(&crtc_state->dpll_hw_state, 0,
8563                sizeof(crtc_state->dpll_hw_state));
8564
8565         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8566                 if (intel_panel_use_ssc(dev_priv)) {
8567                         refclk = dev_priv->vbt.lvds_ssc_freq;
8568                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8569                 }
8570
8571                 limit = &intel_limits_pineview_lvds;
8572         } else {
8573                 limit = &intel_limits_pineview_sdvo;
8574         }
8575
8576         if (!crtc_state->clock_set &&
8577             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8578                                 refclk, NULL, &crtc_state->dpll)) {
8579                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8580                 return -EINVAL;
8581         }
8582
8583         i9xx_compute_dpll(crtc, crtc_state, NULL);
8584
8585         return 0;
8586 }
8587
8588 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8589                                    struct intel_crtc_state *crtc_state)
8590 {
8591         struct drm_device *dev = crtc->base.dev;
8592         struct drm_i915_private *dev_priv = to_i915(dev);
8593         const struct intel_limit *limit;
8594         int refclk = 96000;
8595
8596         memset(&crtc_state->dpll_hw_state, 0,
8597                sizeof(crtc_state->dpll_hw_state));
8598
8599         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8600                 if (intel_panel_use_ssc(dev_priv)) {
8601                         refclk = dev_priv->vbt.lvds_ssc_freq;
8602                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8603                 }
8604
8605                 limit = &intel_limits_i9xx_lvds;
8606         } else {
8607                 limit = &intel_limits_i9xx_sdvo;
8608         }
8609
8610         if (!crtc_state->clock_set &&
8611             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8612                                  refclk, NULL, &crtc_state->dpll)) {
8613                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8614                 return -EINVAL;
8615         }
8616
8617         i9xx_compute_dpll(crtc, crtc_state, NULL);
8618
8619         return 0;
8620 }
8621
8622 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8623                                   struct intel_crtc_state *crtc_state)
8624 {
8625         int refclk = 100000;
8626         const struct intel_limit *limit = &intel_limits_chv;
8627
8628         memset(&crtc_state->dpll_hw_state, 0,
8629                sizeof(crtc_state->dpll_hw_state));
8630
8631         if (!crtc_state->clock_set &&
8632             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8633                                 refclk, NULL, &crtc_state->dpll)) {
8634                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8635                 return -EINVAL;
8636         }
8637
8638         chv_compute_dpll(crtc, crtc_state);
8639
8640         return 0;
8641 }
8642
8643 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8644                                   struct intel_crtc_state *crtc_state)
8645 {
8646         int refclk = 100000;
8647         const struct intel_limit *limit = &intel_limits_vlv;
8648
8649         memset(&crtc_state->dpll_hw_state, 0,
8650                sizeof(crtc_state->dpll_hw_state));
8651
8652         if (!crtc_state->clock_set &&
8653             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8654                                 refclk, NULL, &crtc_state->dpll)) {
8655                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8656                 return -EINVAL;
8657         }
8658
8659         vlv_compute_dpll(crtc, crtc_state);
8660
8661         return 0;
8662 }
8663
8664 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
8665 {
8666         if (IS_I830(dev_priv))
8667                 return false;
8668
8669         return INTEL_GEN(dev_priv) >= 4 ||
8670                 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
8671 }
8672
8673 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8674                                  struct intel_crtc_state *pipe_config)
8675 {
8676         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8677         u32 tmp;
8678
8679         if (!i9xx_has_pfit(dev_priv))
8680                 return;
8681
8682         tmp = I915_READ(PFIT_CONTROL);
8683         if (!(tmp & PFIT_ENABLE))
8684                 return;
8685
8686         /* Check whether the pfit is attached to our pipe. */
8687         if (INTEL_GEN(dev_priv) < 4) {
8688                 if (crtc->pipe != PIPE_B)
8689                         return;
8690         } else {
8691                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8692                         return;
8693         }
8694
8695         pipe_config->gmch_pfit.control = tmp;
8696         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8697 }
8698
8699 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8700                                struct intel_crtc_state *pipe_config)
8701 {
8702         struct drm_device *dev = crtc->base.dev;
8703         struct drm_i915_private *dev_priv = to_i915(dev);
8704         enum pipe pipe = crtc->pipe;
8705         struct dpll clock;
8706         u32 mdiv;
8707         int refclk = 100000;
8708
8709         /* In case of DSI, DPLL will not be used */
8710         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8711                 return;
8712
8713         vlv_dpio_get(dev_priv);
8714         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8715         vlv_dpio_put(dev_priv);
8716
8717         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8718         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8719         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8720         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8721         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8722
8723         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8724 }
8725
8726 static void
8727 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8728                               struct intel_initial_plane_config *plane_config)
8729 {
8730         struct drm_device *dev = crtc->base.dev;
8731         struct drm_i915_private *dev_priv = to_i915(dev);
8732         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8733         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8734         enum pipe pipe;
8735         u32 val, base, offset;
8736         int fourcc, pixel_format;
8737         unsigned int aligned_height;
8738         struct drm_framebuffer *fb;
8739         struct intel_framebuffer *intel_fb;
8740
8741         if (!plane->get_hw_state(plane, &pipe))
8742                 return;
8743
8744         WARN_ON(pipe != crtc->pipe);
8745
8746         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8747         if (!intel_fb) {
8748                 DRM_DEBUG_KMS("failed to alloc fb\n");
8749                 return;
8750         }
8751
8752         fb = &intel_fb->base;
8753
8754         fb->dev = dev;
8755
8756         val = I915_READ(DSPCNTR(i9xx_plane));
8757
8758         if (INTEL_GEN(dev_priv) >= 4) {
8759                 if (val & DISPPLANE_TILED) {
8760                         plane_config->tiling = I915_TILING_X;
8761                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8762                 }
8763
8764                 if (val & DISPPLANE_ROTATE_180)
8765                         plane_config->rotation = DRM_MODE_ROTATE_180;
8766         }
8767
8768         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
8769             val & DISPPLANE_MIRROR)
8770                 plane_config->rotation |= DRM_MODE_REFLECT_X;
8771
8772         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8773         fourcc = i9xx_format_to_fourcc(pixel_format);
8774         fb->format = drm_format_info(fourcc);
8775
8776         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8777                 offset = I915_READ(DSPOFFSET(i9xx_plane));
8778                 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8779         } else if (INTEL_GEN(dev_priv) >= 4) {
8780                 if (plane_config->tiling)
8781                         offset = I915_READ(DSPTILEOFF(i9xx_plane));
8782                 else
8783                         offset = I915_READ(DSPLINOFF(i9xx_plane));
8784                 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8785         } else {
8786                 base = I915_READ(DSPADDR(i9xx_plane));
8787         }
8788         plane_config->base = base;
8789
8790         val = I915_READ(PIPESRC(pipe));
8791         fb->width = ((val >> 16) & 0xfff) + 1;
8792         fb->height = ((val >> 0) & 0xfff) + 1;
8793
8794         val = I915_READ(DSPSTRIDE(i9xx_plane));
8795         fb->pitches[0] = val & 0xffffffc0;
8796
8797         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8798
8799         plane_config->size = fb->pitches[0] * aligned_height;
8800
8801         DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8802                       crtc->base.name, plane->base.name, fb->width, fb->height,
8803                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8804                       plane_config->size);
8805
8806         plane_config->fb = intel_fb;
8807 }
8808
8809 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8810                                struct intel_crtc_state *pipe_config)
8811 {
8812         struct drm_device *dev = crtc->base.dev;
8813         struct drm_i915_private *dev_priv = to_i915(dev);
8814         enum pipe pipe = crtc->pipe;
8815         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8816         struct dpll clock;
8817         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8818         int refclk = 100000;
8819
8820         /* In case of DSI, DPLL will not be used */
8821         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8822                 return;
8823
8824         vlv_dpio_get(dev_priv);
8825         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8826         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8827         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8828         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8829         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8830         vlv_dpio_put(dev_priv);
8831
8832         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8833         clock.m2 = (pll_dw0 & 0xff) << 22;
8834         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8835                 clock.m2 |= pll_dw2 & 0x3fffff;
8836         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8837         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8838         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8839
8840         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8841 }
8842
8843 static enum intel_output_format
8844 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
8845 {
8846         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8847         u32 tmp;
8848
8849         tmp = I915_READ(PIPEMISC(crtc->pipe));
8850
8851         if (tmp & PIPEMISC_YUV420_ENABLE) {
8852                 /* We support 4:2:0 in full blend mode only */
8853                 WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
8854
8855                 return INTEL_OUTPUT_FORMAT_YCBCR420;
8856         } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
8857                 return INTEL_OUTPUT_FORMAT_YCBCR444;
8858         } else {
8859                 return INTEL_OUTPUT_FORMAT_RGB;
8860         }
8861 }
8862
8863 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
8864 {
8865         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8866         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8867         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8868         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8869         u32 tmp;
8870
8871         tmp = I915_READ(DSPCNTR(i9xx_plane));
8872
8873         if (tmp & DISPPLANE_GAMMA_ENABLE)
8874                 crtc_state->gamma_enable = true;
8875
8876         if (!HAS_GMCH(dev_priv) &&
8877             tmp & DISPPLANE_PIPE_CSC_ENABLE)
8878                 crtc_state->csc_enable = true;
8879 }
8880
8881 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8882                                  struct intel_crtc_state *pipe_config)
8883 {
8884         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8885         enum intel_display_power_domain power_domain;
8886         intel_wakeref_t wakeref;
8887         u32 tmp;
8888         bool ret;
8889
8890         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8891         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
8892         if (!wakeref)
8893                 return false;
8894
8895         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
8896         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8897         pipe_config->shared_dpll = NULL;
8898         pipe_config->master_transcoder = INVALID_TRANSCODER;
8899
8900         ret = false;
8901
8902         tmp = I915_READ(PIPECONF(crtc->pipe));
8903         if (!(tmp & PIPECONF_ENABLE))
8904                 goto out;
8905
8906         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8907             IS_CHERRYVIEW(dev_priv)) {
8908                 switch (tmp & PIPECONF_BPC_MASK) {
8909                 case PIPECONF_6BPC:
8910                         pipe_config->pipe_bpp = 18;
8911                         break;
8912                 case PIPECONF_8BPC:
8913                         pipe_config->pipe_bpp = 24;
8914                         break;
8915                 case PIPECONF_10BPC:
8916                         pipe_config->pipe_bpp = 30;
8917                         break;
8918                 default:
8919                         break;
8920                 }
8921         }
8922
8923         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8924             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8925                 pipe_config->limited_color_range = true;
8926
8927         pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
8928                 PIPECONF_GAMMA_MODE_SHIFT;
8929
8930         if (IS_CHERRYVIEW(dev_priv))
8931                 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
8932
8933         i9xx_get_pipe_color_config(pipe_config);
8934         intel_color_get_config(pipe_config);
8935
8936         if (INTEL_GEN(dev_priv) < 4)
8937                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8938
8939         intel_get_pipe_timings(crtc, pipe_config);
8940         intel_get_pipe_src_size(crtc, pipe_config);
8941
8942         i9xx_get_pfit_config(crtc, pipe_config);
8943
8944         if (INTEL_GEN(dev_priv) >= 4) {
8945                 /* No way to read it out on pipes B and C */
8946                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8947                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8948                 else
8949                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8950                 pipe_config->pixel_multiplier =
8951                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8952                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8953                 pipe_config->dpll_hw_state.dpll_md = tmp;
8954         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8955                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8956                 tmp = I915_READ(DPLL(crtc->pipe));
8957                 pipe_config->pixel_multiplier =
8958                         ((tmp & SDVO_MULTIPLIER_MASK)
8959                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8960         } else {
8961                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8962                  * port and will be fixed up in the encoder->get_config
8963                  * function. */
8964                 pipe_config->pixel_multiplier = 1;
8965         }
8966         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8967         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8968                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8969                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8970         } else {
8971                 /* Mask out read-only status bits. */
8972                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8973                                                      DPLL_PORTC_READY_MASK |
8974                                                      DPLL_PORTB_READY_MASK);
8975         }
8976
8977         if (IS_CHERRYVIEW(dev_priv))
8978                 chv_crtc_clock_get(crtc, pipe_config);
8979         else if (IS_VALLEYVIEW(dev_priv))
8980                 vlv_crtc_clock_get(crtc, pipe_config);
8981         else
8982                 i9xx_crtc_clock_get(crtc, pipe_config);
8983
8984         /*
8985          * Normally the dotclock is filled in by the encoder .get_config()
8986          * but in case the pipe is enabled w/o any ports we need a sane
8987          * default.
8988          */
8989         pipe_config->base.adjusted_mode.crtc_clock =
8990                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8991
8992         ret = true;
8993
8994 out:
8995         intel_display_power_put(dev_priv, power_domain, wakeref);
8996
8997         return ret;
8998 }
8999
9000 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
9001 {
9002         struct intel_encoder *encoder;
9003         int i;
9004         u32 val, final;
9005         bool has_lvds = false;
9006         bool has_cpu_edp = false;
9007         bool has_panel = false;
9008         bool has_ck505 = false;
9009         bool can_ssc = false;
9010         bool using_ssc_source = false;
9011
9012         /* We need to take the global config into account */
9013         for_each_intel_encoder(&dev_priv->drm, encoder) {
9014                 switch (encoder->type) {
9015                 case INTEL_OUTPUT_LVDS:
9016                         has_panel = true;
9017                         has_lvds = true;
9018                         break;
9019                 case INTEL_OUTPUT_EDP:
9020                         has_panel = true;
9021                         if (encoder->port == PORT_A)
9022                                 has_cpu_edp = true;
9023                         break;
9024                 default:
9025                         break;
9026                 }
9027         }
9028
9029         if (HAS_PCH_IBX(dev_priv)) {
9030                 has_ck505 = dev_priv->vbt.display_clock_mode;
9031                 can_ssc = has_ck505;
9032         } else {
9033                 has_ck505 = false;
9034                 can_ssc = true;
9035         }
9036
9037         /* Check if any DPLLs are using the SSC source */
9038         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9039                 u32 temp = I915_READ(PCH_DPLL(i));
9040
9041                 if (!(temp & DPLL_VCO_ENABLE))
9042                         continue;
9043
9044                 if ((temp & PLL_REF_INPUT_MASK) ==
9045                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9046                         using_ssc_source = true;
9047                         break;
9048                 }
9049         }
9050
9051         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9052                       has_panel, has_lvds, has_ck505, using_ssc_source);
9053
9054         /* Ironlake: try to setup display ref clock before DPLL
9055          * enabling. This is only under driver's control after
9056          * PCH B stepping, previous chipset stepping should be
9057          * ignoring this setting.
9058          */
9059         val = I915_READ(PCH_DREF_CONTROL);
9060
9061         /* As we must carefully and slowly disable/enable each source in turn,
9062          * compute the final state we want first and check if we need to
9063          * make any changes at all.
9064          */
9065         final = val;
9066         final &= ~DREF_NONSPREAD_SOURCE_MASK;
9067         if (has_ck505)
9068                 final |= DREF_NONSPREAD_CK505_ENABLE;
9069         else
9070                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9071
9072         final &= ~DREF_SSC_SOURCE_MASK;
9073         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9074         final &= ~DREF_SSC1_ENABLE;
9075
9076         if (has_panel) {
9077                 final |= DREF_SSC_SOURCE_ENABLE;
9078
9079                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9080                         final |= DREF_SSC1_ENABLE;
9081
9082                 if (has_cpu_edp) {
9083                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
9084                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9085                         else
9086                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9087                 } else
9088                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9089         } else if (using_ssc_source) {
9090                 final |= DREF_SSC_SOURCE_ENABLE;
9091                 final |= DREF_SSC1_ENABLE;
9092         }
9093
9094         if (final == val)
9095                 return;
9096
9097         /* Always enable nonspread source */
9098         val &= ~DREF_NONSPREAD_SOURCE_MASK;
9099
9100         if (has_ck505)
9101                 val |= DREF_NONSPREAD_CK505_ENABLE;
9102         else
9103                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9104
9105         if (has_panel) {
9106                 val &= ~DREF_SSC_SOURCE_MASK;
9107                 val |= DREF_SSC_SOURCE_ENABLE;
9108
9109                 /* SSC must be turned on before enabling the CPU output  */
9110                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9111                         DRM_DEBUG_KMS("Using SSC on panel\n");
9112                         val |= DREF_SSC1_ENABLE;
9113                 } else
9114                         val &= ~DREF_SSC1_ENABLE;
9115
9116                 /* Get SSC going before enabling the outputs */
9117                 I915_WRITE(PCH_DREF_CONTROL, val);
9118                 POSTING_READ(PCH_DREF_CONTROL);
9119                 udelay(200);
9120
9121                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9122
9123                 /* Enable CPU source on CPU attached eDP */
9124                 if (has_cpu_edp) {
9125                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9126                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
9127                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9128                         } else
9129                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9130                 } else
9131                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9132
9133                 I915_WRITE(PCH_DREF_CONTROL, val);
9134                 POSTING_READ(PCH_DREF_CONTROL);
9135                 udelay(200);
9136         } else {
9137                 DRM_DEBUG_KMS("Disabling CPU source output\n");
9138
9139                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9140
9141                 /* Turn off CPU output */
9142                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9143
9144                 I915_WRITE(PCH_DREF_CONTROL, val);
9145                 POSTING_READ(PCH_DREF_CONTROL);
9146                 udelay(200);
9147
9148                 if (!using_ssc_source) {
9149                         DRM_DEBUG_KMS("Disabling SSC source\n");
9150
9151                         /* Turn off the SSC source */
9152                         val &= ~DREF_SSC_SOURCE_MASK;
9153                         val |= DREF_SSC_SOURCE_DISABLE;
9154
9155                         /* Turn off SSC1 */
9156                         val &= ~DREF_SSC1_ENABLE;
9157
9158                         I915_WRITE(PCH_DREF_CONTROL, val);
9159                         POSTING_READ(PCH_DREF_CONTROL);
9160                         udelay(200);
9161                 }
9162         }
9163
9164         BUG_ON(val != final);
9165 }
9166
9167 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9168 {
9169         u32 tmp;
9170
9171         tmp = I915_READ(SOUTH_CHICKEN2);
9172         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9173         I915_WRITE(SOUTH_CHICKEN2, tmp);
9174
9175         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9176                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9177                 DRM_ERROR("FDI mPHY reset assert timeout\n");
9178
9179         tmp = I915_READ(SOUTH_CHICKEN2);
9180         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9181         I915_WRITE(SOUTH_CHICKEN2, tmp);
9182
9183         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9184                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9185                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9186 }
9187
9188 /* WaMPhyProgramming:hsw */
9189 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9190 {
9191         u32 tmp;
9192
9193         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9194         tmp &= ~(0xFF << 24);
9195         tmp |= (0x12 << 24);
9196         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9197
9198         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9199         tmp |= (1 << 11);
9200         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9201
9202         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9203         tmp |= (1 << 11);
9204         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9205
9206         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9207         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9208         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9209
9210         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9211         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9212         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9213
9214         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9215         tmp &= ~(7 << 13);
9216         tmp |= (5 << 13);
9217         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9218
9219         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9220         tmp &= ~(7 << 13);
9221         tmp |= (5 << 13);
9222         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9223
9224         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9225         tmp &= ~0xFF;
9226         tmp |= 0x1C;
9227         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9228
9229         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9230         tmp &= ~0xFF;
9231         tmp |= 0x1C;
9232         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9233
9234         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9235         tmp &= ~(0xFF << 16);
9236         tmp |= (0x1C << 16);
9237         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9238
9239         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9240         tmp &= ~(0xFF << 16);
9241         tmp |= (0x1C << 16);
9242         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9243
9244         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9245         tmp |= (1 << 27);
9246         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9247
9248         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9249         tmp |= (1 << 27);
9250         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9251
9252         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9253         tmp &= ~(0xF << 28);
9254         tmp |= (4 << 28);
9255         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9256
9257         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9258         tmp &= ~(0xF << 28);
9259         tmp |= (4 << 28);
9260         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9261 }
9262
9263 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9264  * Programming" based on the parameters passed:
9265  * - Sequence to enable CLKOUT_DP
9266  * - Sequence to enable CLKOUT_DP without spread
9267  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9268  */
9269 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9270                                  bool with_spread, bool with_fdi)
9271 {
9272         u32 reg, tmp;
9273
9274         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9275                 with_spread = true;
9276         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9277             with_fdi, "LP PCH doesn't have FDI\n"))
9278                 with_fdi = false;
9279
9280         mutex_lock(&dev_priv->sb_lock);
9281
9282         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9283         tmp &= ~SBI_SSCCTL_DISABLE;
9284         tmp |= SBI_SSCCTL_PATHALT;
9285         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9286
9287         udelay(24);
9288
9289         if (with_spread) {
9290                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9291                 tmp &= ~SBI_SSCCTL_PATHALT;
9292                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9293
9294                 if (with_fdi) {
9295                         lpt_reset_fdi_mphy(dev_priv);
9296                         lpt_program_fdi_mphy(dev_priv);
9297                 }
9298         }
9299
9300         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9301         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9302         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9303         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9304
9305         mutex_unlock(&dev_priv->sb_lock);
9306 }
9307
9308 /* Sequence to disable CLKOUT_DP */
9309 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9310 {
9311         u32 reg, tmp;
9312
9313         mutex_lock(&dev_priv->sb_lock);
9314
9315         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9316         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9317         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9318         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9319
9320         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9321         if (!(tmp & SBI_SSCCTL_DISABLE)) {
9322                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9323                         tmp |= SBI_SSCCTL_PATHALT;
9324                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9325                         udelay(32);
9326                 }
9327                 tmp |= SBI_SSCCTL_DISABLE;
9328                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9329         }
9330
9331         mutex_unlock(&dev_priv->sb_lock);
9332 }
9333
9334 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9335
9336 static const u16 sscdivintphase[] = {
9337         [BEND_IDX( 50)] = 0x3B23,
9338         [BEND_IDX( 45)] = 0x3B23,
9339         [BEND_IDX( 40)] = 0x3C23,
9340         [BEND_IDX( 35)] = 0x3C23,
9341         [BEND_IDX( 30)] = 0x3D23,
9342         [BEND_IDX( 25)] = 0x3D23,
9343         [BEND_IDX( 20)] = 0x3E23,
9344         [BEND_IDX( 15)] = 0x3E23,
9345         [BEND_IDX( 10)] = 0x3F23,
9346         [BEND_IDX(  5)] = 0x3F23,
9347         [BEND_IDX(  0)] = 0x0025,
9348         [BEND_IDX( -5)] = 0x0025,
9349         [BEND_IDX(-10)] = 0x0125,
9350         [BEND_IDX(-15)] = 0x0125,
9351         [BEND_IDX(-20)] = 0x0225,
9352         [BEND_IDX(-25)] = 0x0225,
9353         [BEND_IDX(-30)] = 0x0325,
9354         [BEND_IDX(-35)] = 0x0325,
9355         [BEND_IDX(-40)] = 0x0425,
9356         [BEND_IDX(-45)] = 0x0425,
9357         [BEND_IDX(-50)] = 0x0525,
9358 };
9359
9360 /*
9361  * Bend CLKOUT_DP
9362  * steps -50 to 50 inclusive, in steps of 5
9363  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9364  * change in clock period = -(steps / 10) * 5.787 ps
9365  */
9366 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9367 {
9368         u32 tmp;
9369         int idx = BEND_IDX(steps);
9370
9371         if (WARN_ON(steps % 5 != 0))
9372                 return;
9373
9374         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9375                 return;
9376
9377         mutex_lock(&dev_priv->sb_lock);
9378
9379         if (steps % 10 != 0)
9380                 tmp = 0xAAAAAAAB;
9381         else
9382                 tmp = 0x00000000;
9383         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9384
9385         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9386         tmp &= 0xffff0000;
9387         tmp |= sscdivintphase[idx];
9388         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9389
9390         mutex_unlock(&dev_priv->sb_lock);
9391 }
9392
9393 #undef BEND_IDX
9394
9395 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9396 {
9397         u32 fuse_strap = I915_READ(FUSE_STRAP);
9398         u32 ctl = I915_READ(SPLL_CTL);
9399
9400         if ((ctl & SPLL_PLL_ENABLE) == 0)
9401                 return false;
9402
9403         if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9404             (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9405                 return true;
9406
9407         if (IS_BROADWELL(dev_priv) &&
9408             (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9409                 return true;
9410
9411         return false;
9412 }
9413
9414 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9415                                enum intel_dpll_id id)
9416 {
9417         u32 fuse_strap = I915_READ(FUSE_STRAP);
9418         u32 ctl = I915_READ(WRPLL_CTL(id));
9419
9420         if ((ctl & WRPLL_PLL_ENABLE) == 0)
9421                 return false;
9422
9423         if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9424                 return true;
9425
9426         if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9427             (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9428             (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9429                 return true;
9430
9431         return false;
9432 }
9433
9434 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9435 {
9436         struct intel_encoder *encoder;
9437         bool has_fdi = false;
9438
9439         for_each_intel_encoder(&dev_priv->drm, encoder) {
9440                 switch (encoder->type) {
9441                 case INTEL_OUTPUT_ANALOG:
9442                         has_fdi = true;
9443                         break;
9444                 default:
9445                         break;
9446                 }
9447         }
9448
9449         /*
9450          * The BIOS may have decided to use the PCH SSC
9451          * reference so we must not disable it until the
9452          * relevant PLLs have stopped relying on it. We'll
9453          * just leave the PCH SSC reference enabled in case
9454          * any active PLL is using it. It will get disabled
9455          * after runtime suspend if we don't have FDI.
9456          *
9457          * TODO: Move the whole reference clock handling
9458          * to the modeset sequence proper so that we can
9459          * actually enable/disable/reconfigure these things
9460          * safely. To do that we need to introduce a real
9461          * clock hierarchy. That would also allow us to do
9462          * clock bending finally.
9463          */
9464         dev_priv->pch_ssc_use = 0;
9465
9466         if (spll_uses_pch_ssc(dev_priv)) {
9467                 DRM_DEBUG_KMS("SPLL using PCH SSC\n");
9468                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
9469         }
9470
9471         if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
9472                 DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n");
9473                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
9474         }
9475
9476         if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
9477                 DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n");
9478                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
9479         }
9480
9481         if (dev_priv->pch_ssc_use)
9482                 return;
9483
9484         if (has_fdi) {
9485                 lpt_bend_clkout_dp(dev_priv, 0);
9486                 lpt_enable_clkout_dp(dev_priv, true, true);
9487         } else {
9488                 lpt_disable_clkout_dp(dev_priv);
9489         }
9490 }
9491
9492 /*
9493  * Initialize reference clocks when the driver loads
9494  */
9495 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9496 {
9497         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9498                 ironlake_init_pch_refclk(dev_priv);
9499         else if (HAS_PCH_LPT(dev_priv))
9500                 lpt_init_pch_refclk(dev_priv);
9501 }
9502
9503 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state)
9504 {
9505         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9506         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9507         enum pipe pipe = crtc->pipe;
9508         u32 val;
9509
9510         val = 0;
9511
9512         switch (crtc_state->pipe_bpp) {
9513         case 18:
9514                 val |= PIPECONF_6BPC;
9515                 break;
9516         case 24:
9517                 val |= PIPECONF_8BPC;
9518                 break;
9519         case 30:
9520                 val |= PIPECONF_10BPC;
9521                 break;
9522         case 36:
9523                 val |= PIPECONF_12BPC;
9524                 break;
9525         default:
9526                 /* Case prevented by intel_choose_pipe_bpp_dither. */
9527                 BUG();
9528         }
9529
9530         if (crtc_state->dither)
9531                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9532
9533         if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9534                 val |= PIPECONF_INTERLACED_ILK;
9535         else
9536                 val |= PIPECONF_PROGRESSIVE;
9537
9538         /*
9539          * This would end up with an odd purple hue over
9540          * the entire display. Make sure we don't do it.
9541          */
9542         WARN_ON(crtc_state->limited_color_range &&
9543                 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
9544
9545         if (crtc_state->limited_color_range)
9546                 val |= PIPECONF_COLOR_RANGE_SELECT;
9547
9548         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9549                 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
9550
9551         val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9552
9553         I915_WRITE(PIPECONF(pipe), val);
9554         POSTING_READ(PIPECONF(pipe));
9555 }
9556
9557 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state)
9558 {
9559         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9560         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9561         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9562         u32 val = 0;
9563
9564         if (IS_HASWELL(dev_priv) && crtc_state->dither)
9565                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9566
9567         if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9568                 val |= PIPECONF_INTERLACED_ILK;
9569         else
9570                 val |= PIPECONF_PROGRESSIVE;
9571
9572         if (IS_HASWELL(dev_priv) &&
9573             crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9574                 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
9575
9576         I915_WRITE(PIPECONF(cpu_transcoder), val);
9577         POSTING_READ(PIPECONF(cpu_transcoder));
9578 }
9579
9580 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9581 {
9582         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9583         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9584         u32 val = 0;
9585
9586         switch (crtc_state->pipe_bpp) {
9587         case 18:
9588                 val |= PIPEMISC_DITHER_6_BPC;
9589                 break;
9590         case 24:
9591                 val |= PIPEMISC_DITHER_8_BPC;
9592                 break;
9593         case 30:
9594                 val |= PIPEMISC_DITHER_10_BPC;
9595                 break;
9596         case 36:
9597                 val |= PIPEMISC_DITHER_12_BPC;
9598                 break;
9599         default:
9600                 MISSING_CASE(crtc_state->pipe_bpp);
9601                 break;
9602         }
9603
9604         if (crtc_state->dither)
9605                 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9606
9607         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9608             crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9609                 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9610
9611         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9612                 val |= PIPEMISC_YUV420_ENABLE |
9613                         PIPEMISC_YUV420_MODE_FULL_BLEND;
9614
9615         if (INTEL_GEN(dev_priv) >= 11 &&
9616             (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9617                                            BIT(PLANE_CURSOR))) == 0)
9618                 val |= PIPEMISC_HDR_MODE_PRECISION;
9619
9620         I915_WRITE(PIPEMISC(crtc->pipe), val);
9621 }
9622
9623 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9624 {
9625         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9626         u32 tmp;
9627
9628         tmp = I915_READ(PIPEMISC(crtc->pipe));
9629
9630         switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9631         case PIPEMISC_DITHER_6_BPC:
9632                 return 18;
9633         case PIPEMISC_DITHER_8_BPC:
9634                 return 24;
9635         case PIPEMISC_DITHER_10_BPC:
9636                 return 30;
9637         case PIPEMISC_DITHER_12_BPC:
9638                 return 36;
9639         default:
9640                 MISSING_CASE(tmp);
9641                 return 0;
9642         }
9643 }
9644
9645 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9646 {
9647         /*
9648          * Account for spread spectrum to avoid
9649          * oversubscribing the link. Max center spread
9650          * is 2.5%; use 5% for safety's sake.
9651          */
9652         u32 bps = target_clock * bpp * 21 / 20;
9653         return DIV_ROUND_UP(bps, link_bw * 8);
9654 }
9655
9656 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9657 {
9658         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9659 }
9660
9661 static void ironlake_compute_dpll(struct intel_crtc *crtc,
9662                                   struct intel_crtc_state *crtc_state,
9663                                   struct dpll *reduced_clock)
9664 {
9665         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9666         u32 dpll, fp, fp2;
9667         int factor;
9668
9669         /* Enable autotuning of the PLL clock (if permissible) */
9670         factor = 21;
9671         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9672                 if ((intel_panel_use_ssc(dev_priv) &&
9673                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
9674                     (HAS_PCH_IBX(dev_priv) &&
9675                      intel_is_dual_link_lvds(dev_priv)))
9676                         factor = 25;
9677         } else if (crtc_state->sdvo_tv_clock) {
9678                 factor = 20;
9679         }
9680
9681         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9682
9683         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9684                 fp |= FP_CB_TUNE;
9685
9686         if (reduced_clock) {
9687                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9688
9689                 if (reduced_clock->m < factor * reduced_clock->n)
9690                         fp2 |= FP_CB_TUNE;
9691         } else {
9692                 fp2 = fp;
9693         }
9694
9695         dpll = 0;
9696
9697         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9698                 dpll |= DPLLB_MODE_LVDS;
9699         else
9700                 dpll |= DPLLB_MODE_DAC_SERIAL;
9701
9702         dpll |= (crtc_state->pixel_multiplier - 1)
9703                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9704
9705         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9706             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9707                 dpll |= DPLL_SDVO_HIGH_SPEED;
9708
9709         if (intel_crtc_has_dp_encoder(crtc_state))
9710                 dpll |= DPLL_SDVO_HIGH_SPEED;
9711
9712         /*
9713          * The high speed IO clock is only really required for
9714          * SDVO/HDMI/DP, but we also enable it for CRT to make it
9715          * possible to share the DPLL between CRT and HDMI. Enabling
9716          * the clock needlessly does no real harm, except use up a
9717          * bit of power potentially.
9718          *
9719          * We'll limit this to IVB with 3 pipes, since it has only two
9720          * DPLLs and so DPLL sharing is the only way to get three pipes
9721          * driving PCH ports at the same time. On SNB we could do this,
9722          * and potentially avoid enabling the second DPLL, but it's not
9723          * clear if it''s a win or loss power wise. No point in doing
9724          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9725          */
9726         if (INTEL_NUM_PIPES(dev_priv) == 3 &&
9727             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9728                 dpll |= DPLL_SDVO_HIGH_SPEED;
9729
9730         /* compute bitmask from p1 value */
9731         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9732         /* also FPA1 */
9733         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9734
9735         switch (crtc_state->dpll.p2) {
9736         case 5:
9737                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9738                 break;
9739         case 7:
9740                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9741                 break;
9742         case 10:
9743                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9744                 break;
9745         case 14:
9746                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9747                 break;
9748         }
9749
9750         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9751             intel_panel_use_ssc(dev_priv))
9752                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9753         else
9754                 dpll |= PLL_REF_INPUT_DREFCLK;
9755
9756         dpll |= DPLL_VCO_ENABLE;
9757
9758         crtc_state->dpll_hw_state.dpll = dpll;
9759         crtc_state->dpll_hw_state.fp0 = fp;
9760         crtc_state->dpll_hw_state.fp1 = fp2;
9761 }
9762
9763 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9764                                        struct intel_crtc_state *crtc_state)
9765 {
9766         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9767         struct intel_atomic_state *state =
9768                 to_intel_atomic_state(crtc_state->base.state);
9769         const struct intel_limit *limit;
9770         int refclk = 120000;
9771
9772         memset(&crtc_state->dpll_hw_state, 0,
9773                sizeof(crtc_state->dpll_hw_state));
9774
9775         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9776         if (!crtc_state->has_pch_encoder)
9777                 return 0;
9778
9779         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9780                 if (intel_panel_use_ssc(dev_priv)) {
9781                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9782                                       dev_priv->vbt.lvds_ssc_freq);
9783                         refclk = dev_priv->vbt.lvds_ssc_freq;
9784                 }
9785
9786                 if (intel_is_dual_link_lvds(dev_priv)) {
9787                         if (refclk == 100000)
9788                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9789                         else
9790                                 limit = &intel_limits_ironlake_dual_lvds;
9791                 } else {
9792                         if (refclk == 100000)
9793                                 limit = &intel_limits_ironlake_single_lvds_100m;
9794                         else
9795                                 limit = &intel_limits_ironlake_single_lvds;
9796                 }
9797         } else {
9798                 limit = &intel_limits_ironlake_dac;
9799         }
9800
9801         if (!crtc_state->clock_set &&
9802             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9803                                 refclk, NULL, &crtc_state->dpll)) {
9804                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9805                 return -EINVAL;
9806         }
9807
9808         ironlake_compute_dpll(crtc, crtc_state, NULL);
9809
9810         if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
9811                 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
9812                               pipe_name(crtc->pipe));
9813                 return -EINVAL;
9814         }
9815
9816         return 0;
9817 }
9818
9819 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9820                                          struct intel_link_m_n *m_n)
9821 {
9822         struct drm_device *dev = crtc->base.dev;
9823         struct drm_i915_private *dev_priv = to_i915(dev);
9824         enum pipe pipe = crtc->pipe;
9825
9826         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9827         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9828         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9829                 & ~TU_SIZE_MASK;
9830         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9831         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9832                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9833 }
9834
9835 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9836                                          enum transcoder transcoder,
9837                                          struct intel_link_m_n *m_n,
9838                                          struct intel_link_m_n *m2_n2)
9839 {
9840         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9841         enum pipe pipe = crtc->pipe;
9842
9843         if (INTEL_GEN(dev_priv) >= 5) {
9844                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9845                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9846                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9847                         & ~TU_SIZE_MASK;
9848                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9849                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9850                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9851
9852                 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
9853                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9854                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9855                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9856                                         & ~TU_SIZE_MASK;
9857                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9858                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9859                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9860                 }
9861         } else {
9862                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9863                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9864                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9865                         & ~TU_SIZE_MASK;
9866                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9867                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9868                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9869         }
9870 }
9871
9872 void intel_dp_get_m_n(struct intel_crtc *crtc,
9873                       struct intel_crtc_state *pipe_config)
9874 {
9875         if (pipe_config->has_pch_encoder)
9876                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9877         else
9878                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9879                                              &pipe_config->dp_m_n,
9880                                              &pipe_config->dp_m2_n2);
9881 }
9882
9883 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9884                                         struct intel_crtc_state *pipe_config)
9885 {
9886         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9887                                      &pipe_config->fdi_m_n, NULL);
9888 }
9889
9890 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9891                                     struct intel_crtc_state *pipe_config)
9892 {
9893         struct drm_device *dev = crtc->base.dev;
9894         struct drm_i915_private *dev_priv = to_i915(dev);
9895         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9896         u32 ps_ctrl = 0;
9897         int id = -1;
9898         int i;
9899
9900         /* find scaler attached to this pipe */
9901         for (i = 0; i < crtc->num_scalers; i++) {
9902                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9903                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9904                         id = i;
9905                         pipe_config->pch_pfit.enabled = true;
9906                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9907                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9908                         scaler_state->scalers[i].in_use = true;
9909                         break;
9910                 }
9911         }
9912
9913         scaler_state->scaler_id = id;
9914         if (id >= 0) {
9915                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9916         } else {
9917                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9918         }
9919 }
9920
9921 static void
9922 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9923                                  struct intel_initial_plane_config *plane_config)
9924 {
9925         struct drm_device *dev = crtc->base.dev;
9926         struct drm_i915_private *dev_priv = to_i915(dev);
9927         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9928         enum plane_id plane_id = plane->id;
9929         enum pipe pipe;
9930         u32 val, base, offset, stride_mult, tiling, alpha;
9931         int fourcc, pixel_format;
9932         unsigned int aligned_height;
9933         struct drm_framebuffer *fb;
9934         struct intel_framebuffer *intel_fb;
9935
9936         if (!plane->get_hw_state(plane, &pipe))
9937                 return;
9938
9939         WARN_ON(pipe != crtc->pipe);
9940
9941         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9942         if (!intel_fb) {
9943                 DRM_DEBUG_KMS("failed to alloc fb\n");
9944                 return;
9945         }
9946
9947         fb = &intel_fb->base;
9948
9949         fb->dev = dev;
9950
9951         val = I915_READ(PLANE_CTL(pipe, plane_id));
9952
9953         if (INTEL_GEN(dev_priv) >= 11)
9954                 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
9955         else
9956                 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9957
9958         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
9959                 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
9960                 alpha &= PLANE_COLOR_ALPHA_MASK;
9961         } else {
9962                 alpha = val & PLANE_CTL_ALPHA_MASK;
9963         }
9964
9965         fourcc = skl_format_to_fourcc(pixel_format,
9966                                       val & PLANE_CTL_ORDER_RGBX, alpha);
9967         fb->format = drm_format_info(fourcc);
9968
9969         tiling = val & PLANE_CTL_TILED_MASK;
9970         switch (tiling) {
9971         case PLANE_CTL_TILED_LINEAR:
9972                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
9973                 break;
9974         case PLANE_CTL_TILED_X:
9975                 plane_config->tiling = I915_TILING_X;
9976                 fb->modifier = I915_FORMAT_MOD_X_TILED;
9977                 break;
9978         case PLANE_CTL_TILED_Y:
9979                 plane_config->tiling = I915_TILING_Y;
9980                 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9981                         fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
9982                 else
9983                         fb->modifier = I915_FORMAT_MOD_Y_TILED;
9984                 break;
9985         case PLANE_CTL_TILED_YF:
9986                 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9987                         fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
9988                 else
9989                         fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9990                 break;
9991         default:
9992                 MISSING_CASE(tiling);
9993                 goto error;
9994         }
9995
9996         /*
9997          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
9998          * while i915 HW rotation is clockwise, thats why this swapping.
9999          */
10000         switch (val & PLANE_CTL_ROTATE_MASK) {
10001         case PLANE_CTL_ROTATE_0:
10002                 plane_config->rotation = DRM_MODE_ROTATE_0;
10003                 break;
10004         case PLANE_CTL_ROTATE_90:
10005                 plane_config->rotation = DRM_MODE_ROTATE_270;
10006                 break;
10007         case PLANE_CTL_ROTATE_180:
10008                 plane_config->rotation = DRM_MODE_ROTATE_180;
10009                 break;
10010         case PLANE_CTL_ROTATE_270:
10011                 plane_config->rotation = DRM_MODE_ROTATE_90;
10012                 break;
10013         }
10014
10015         if (INTEL_GEN(dev_priv) >= 10 &&
10016             val & PLANE_CTL_FLIP_HORIZONTAL)
10017                 plane_config->rotation |= DRM_MODE_REFLECT_X;
10018
10019         base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10020         plane_config->base = base;
10021
10022         offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
10023
10024         val = I915_READ(PLANE_SIZE(pipe, plane_id));
10025         fb->height = ((val >> 16) & 0xffff) + 1;
10026         fb->width = ((val >> 0) & 0xffff) + 1;
10027
10028         val = I915_READ(PLANE_STRIDE(pipe, plane_id));
10029         stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10030         fb->pitches[0] = (val & 0x3ff) * stride_mult;
10031
10032         aligned_height = intel_fb_align_height(fb, 0, fb->height);
10033
10034         plane_config->size = fb->pitches[0] * aligned_height;
10035
10036         DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10037                       crtc->base.name, plane->base.name, fb->width, fb->height,
10038                       fb->format->cpp[0] * 8, base, fb->pitches[0],
10039                       plane_config->size);
10040
10041         plane_config->fb = intel_fb;
10042         return;
10043
10044 error:
10045         kfree(intel_fb);
10046 }
10047
10048 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
10049                                      struct intel_crtc_state *pipe_config)
10050 {
10051         struct drm_device *dev = crtc->base.dev;
10052         struct drm_i915_private *dev_priv = to_i915(dev);
10053         u32 tmp;
10054
10055         tmp = I915_READ(PF_CTL(crtc->pipe));
10056
10057         if (tmp & PF_ENABLE) {
10058                 pipe_config->pch_pfit.enabled = true;
10059                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
10060                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
10061
10062                 /* We currently do not free assignements of panel fitters on
10063                  * ivb/hsw (since we don't use the higher upscaling modes which
10064                  * differentiates them) so just WARN about this case for now. */
10065                 if (IS_GEN(dev_priv, 7)) {
10066                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
10067                                 PF_PIPE_SEL_IVB(crtc->pipe));
10068                 }
10069         }
10070 }
10071
10072 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
10073                                      struct intel_crtc_state *pipe_config)
10074 {
10075         struct drm_device *dev = crtc->base.dev;
10076         struct drm_i915_private *dev_priv = to_i915(dev);
10077         enum intel_display_power_domain power_domain;
10078         intel_wakeref_t wakeref;
10079         u32 tmp;
10080         bool ret;
10081
10082         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10083         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10084         if (!wakeref)
10085                 return false;
10086
10087         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10088         pipe_config->shared_dpll = NULL;
10089         pipe_config->master_transcoder = INVALID_TRANSCODER;
10090
10091         ret = false;
10092         tmp = I915_READ(PIPECONF(crtc->pipe));
10093         if (!(tmp & PIPECONF_ENABLE))
10094                 goto out;
10095
10096         switch (tmp & PIPECONF_BPC_MASK) {
10097         case PIPECONF_6BPC:
10098                 pipe_config->pipe_bpp = 18;
10099                 break;
10100         case PIPECONF_8BPC:
10101                 pipe_config->pipe_bpp = 24;
10102                 break;
10103         case PIPECONF_10BPC:
10104                 pipe_config->pipe_bpp = 30;
10105                 break;
10106         case PIPECONF_12BPC:
10107                 pipe_config->pipe_bpp = 36;
10108                 break;
10109         default:
10110                 break;
10111         }
10112
10113         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10114                 pipe_config->limited_color_range = true;
10115
10116         switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10117         case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10118         case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10119                 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10120                 break;
10121         default:
10122                 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10123                 break;
10124         }
10125
10126         pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10127                 PIPECONF_GAMMA_MODE_SHIFT;
10128
10129         pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10130
10131         i9xx_get_pipe_color_config(pipe_config);
10132         intel_color_get_config(pipe_config);
10133
10134         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10135                 struct intel_shared_dpll *pll;
10136                 enum intel_dpll_id pll_id;
10137
10138                 pipe_config->has_pch_encoder = true;
10139
10140                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
10141                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10142                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10143
10144                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10145
10146                 if (HAS_PCH_IBX(dev_priv)) {
10147                         /*
10148                          * The pipe->pch transcoder and pch transcoder->pll
10149                          * mapping is fixed.
10150                          */
10151                         pll_id = (enum intel_dpll_id) crtc->pipe;
10152                 } else {
10153                         tmp = I915_READ(PCH_DPLL_SEL);
10154                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10155                                 pll_id = DPLL_ID_PCH_PLL_B;
10156                         else
10157                                 pll_id= DPLL_ID_PCH_PLL_A;
10158                 }
10159
10160                 pipe_config->shared_dpll =
10161                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
10162                 pll = pipe_config->shared_dpll;
10163
10164                 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10165                                                 &pipe_config->dpll_hw_state));
10166
10167                 tmp = pipe_config->dpll_hw_state.dpll;
10168                 pipe_config->pixel_multiplier =
10169                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10170                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10171
10172                 ironlake_pch_clock_get(crtc, pipe_config);
10173         } else {
10174                 pipe_config->pixel_multiplier = 1;
10175         }
10176
10177         intel_get_pipe_timings(crtc, pipe_config);
10178         intel_get_pipe_src_size(crtc, pipe_config);
10179
10180         ironlake_get_pfit_config(crtc, pipe_config);
10181
10182         ret = true;
10183
10184 out:
10185         intel_display_power_put(dev_priv, power_domain, wakeref);
10186
10187         return ret;
10188 }
10189 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10190                                       struct intel_crtc_state *crtc_state)
10191 {
10192         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10193         struct intel_atomic_state *state =
10194                 to_intel_atomic_state(crtc_state->base.state);
10195
10196         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10197             INTEL_GEN(dev_priv) >= 11) {
10198                 struct intel_encoder *encoder =
10199                         intel_get_crtc_new_encoder(state, crtc_state);
10200
10201                 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10202                         DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10203                                       pipe_name(crtc->pipe));
10204                         return -EINVAL;
10205                 }
10206         }
10207
10208         return 0;
10209 }
10210
10211 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
10212                                    enum port port,
10213                                    struct intel_crtc_state *pipe_config)
10214 {
10215         enum intel_dpll_id id;
10216         u32 temp;
10217
10218         temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10219         id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10220
10221         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
10222                 return;
10223
10224         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10225 }
10226
10227 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv,
10228                                 enum port port,
10229                                 struct intel_crtc_state *pipe_config)
10230 {
10231         enum phy phy = intel_port_to_phy(dev_priv, port);
10232         enum icl_port_dpll_id port_dpll_id;
10233         enum intel_dpll_id id;
10234         u32 temp;
10235
10236         if (intel_phy_is_combo(dev_priv, phy)) {
10237                 temp = I915_READ(ICL_DPCLKA_CFGCR0) &
10238                         ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10239                 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10240                 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10241         } else if (intel_phy_is_tc(dev_priv, phy)) {
10242                 u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10243
10244                 if (clk_sel == DDI_CLK_SEL_MG) {
10245                         id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10246                                                                     port));
10247                         port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10248                 } else {
10249                         WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162);
10250                         id = DPLL_ID_ICL_TBTPLL;
10251                         port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10252                 }
10253         } else {
10254                 WARN(1, "Invalid port %x\n", port);
10255                 return;
10256         }
10257
10258         pipe_config->icl_port_dplls[port_dpll_id].pll =
10259                 intel_get_shared_dpll_by_id(dev_priv, id);
10260
10261         icl_set_active_port_dpll(pipe_config, port_dpll_id);
10262 }
10263
10264 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10265                                 enum port port,
10266                                 struct intel_crtc_state *pipe_config)
10267 {
10268         enum intel_dpll_id id;
10269
10270         switch (port) {
10271         case PORT_A:
10272                 id = DPLL_ID_SKL_DPLL0;
10273                 break;
10274         case PORT_B:
10275                 id = DPLL_ID_SKL_DPLL1;
10276                 break;
10277         case PORT_C:
10278                 id = DPLL_ID_SKL_DPLL2;
10279                 break;
10280         default:
10281                 DRM_ERROR("Incorrect port type\n");
10282                 return;
10283         }
10284
10285         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10286 }
10287
10288 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10289                                 enum port port,
10290                                 struct intel_crtc_state *pipe_config)
10291 {
10292         enum intel_dpll_id id;
10293         u32 temp;
10294
10295         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10296         id = temp >> (port * 3 + 1);
10297
10298         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10299                 return;
10300
10301         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10302 }
10303
10304 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10305                                 enum port port,
10306                                 struct intel_crtc_state *pipe_config)
10307 {
10308         enum intel_dpll_id id;
10309         u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10310
10311         switch (ddi_pll_sel) {
10312         case PORT_CLK_SEL_WRPLL1:
10313                 id = DPLL_ID_WRPLL1;
10314                 break;
10315         case PORT_CLK_SEL_WRPLL2:
10316                 id = DPLL_ID_WRPLL2;
10317                 break;
10318         case PORT_CLK_SEL_SPLL:
10319                 id = DPLL_ID_SPLL;
10320                 break;
10321         case PORT_CLK_SEL_LCPLL_810:
10322                 id = DPLL_ID_LCPLL_810;
10323                 break;
10324         case PORT_CLK_SEL_LCPLL_1350:
10325                 id = DPLL_ID_LCPLL_1350;
10326                 break;
10327         case PORT_CLK_SEL_LCPLL_2700:
10328                 id = DPLL_ID_LCPLL_2700;
10329                 break;
10330         default:
10331                 MISSING_CASE(ddi_pll_sel);
10332                 /* fall through */
10333         case PORT_CLK_SEL_NONE:
10334                 return;
10335         }
10336
10337         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10338 }
10339
10340 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10341                                      struct intel_crtc_state *pipe_config,
10342                                      u64 *power_domain_mask,
10343                                      intel_wakeref_t *wakerefs)
10344 {
10345         struct drm_device *dev = crtc->base.dev;
10346         struct drm_i915_private *dev_priv = to_i915(dev);
10347         enum intel_display_power_domain power_domain;
10348         unsigned long panel_transcoder_mask = 0;
10349         unsigned long enabled_panel_transcoders = 0;
10350         enum transcoder panel_transcoder;
10351         intel_wakeref_t wf;
10352         u32 tmp;
10353
10354         if (INTEL_GEN(dev_priv) >= 11)
10355                 panel_transcoder_mask |=
10356                         BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10357
10358         if (HAS_TRANSCODER_EDP(dev_priv))
10359                 panel_transcoder_mask |= BIT(TRANSCODER_EDP);
10360
10361         /*
10362          * The pipe->transcoder mapping is fixed with the exception of the eDP
10363          * and DSI transcoders handled below.
10364          */
10365         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10366
10367         /*
10368          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10369          * consistency and less surprising code; it's in always on power).
10370          */
10371         for_each_set_bit(panel_transcoder,
10372                          &panel_transcoder_mask,
10373                          ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
10374                 bool force_thru = false;
10375                 enum pipe trans_pipe;
10376
10377                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
10378                 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10379                         continue;
10380
10381                 /*
10382                  * Log all enabled ones, only use the first one.
10383                  *
10384                  * FIXME: This won't work for two separate DSI displays.
10385                  */
10386                 enabled_panel_transcoders |= BIT(panel_transcoder);
10387                 if (enabled_panel_transcoders != BIT(panel_transcoder))
10388                         continue;
10389
10390                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10391                 default:
10392                         WARN(1, "unknown pipe linked to transcoder %s\n",
10393                              transcoder_name(panel_transcoder));
10394                         /* fall through */
10395                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10396                         force_thru = true;
10397                         /* fall through */
10398                 case TRANS_DDI_EDP_INPUT_A_ON:
10399                         trans_pipe = PIPE_A;
10400                         break;
10401                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10402                         trans_pipe = PIPE_B;
10403                         break;
10404                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10405                         trans_pipe = PIPE_C;
10406                         break;
10407                 }
10408
10409                 if (trans_pipe == crtc->pipe) {
10410                         pipe_config->cpu_transcoder = panel_transcoder;
10411                         pipe_config->pch_pfit.force_thru = force_thru;
10412                 }
10413         }
10414
10415         /*
10416          * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10417          */
10418         WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10419                 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10420
10421         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10422         WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10423
10424         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10425         if (!wf)
10426                 return false;
10427
10428         wakerefs[power_domain] = wf;
10429         *power_domain_mask |= BIT_ULL(power_domain);
10430
10431         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10432
10433         return tmp & PIPECONF_ENABLE;
10434 }
10435
10436 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10437                                          struct intel_crtc_state *pipe_config,
10438                                          u64 *power_domain_mask,
10439                                          intel_wakeref_t *wakerefs)
10440 {
10441         struct drm_device *dev = crtc->base.dev;
10442         struct drm_i915_private *dev_priv = to_i915(dev);
10443         enum intel_display_power_domain power_domain;
10444         enum transcoder cpu_transcoder;
10445         intel_wakeref_t wf;
10446         enum port port;
10447         u32 tmp;
10448
10449         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10450                 if (port == PORT_A)
10451                         cpu_transcoder = TRANSCODER_DSI_A;
10452                 else
10453                         cpu_transcoder = TRANSCODER_DSI_C;
10454
10455                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10456                 WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10457
10458                 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10459                 if (!wf)
10460                         continue;
10461
10462                 wakerefs[power_domain] = wf;
10463                 *power_domain_mask |= BIT_ULL(power_domain);
10464
10465                 /*
10466                  * The PLL needs to be enabled with a valid divider
10467                  * configuration, otherwise accessing DSI registers will hang
10468                  * the machine. See BSpec North Display Engine
10469                  * registers/MIPI[BXT]. We can break out here early, since we
10470                  * need the same DSI PLL to be enabled for both DSI ports.
10471                  */
10472                 if (!bxt_dsi_pll_is_enabled(dev_priv))
10473                         break;
10474
10475                 /* XXX: this works for video mode only */
10476                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10477                 if (!(tmp & DPI_ENABLE))
10478                         continue;
10479
10480                 tmp = I915_READ(MIPI_CTRL(port));
10481                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10482                         continue;
10483
10484                 pipe_config->cpu_transcoder = cpu_transcoder;
10485                 break;
10486         }
10487
10488         return transcoder_is_dsi(pipe_config->cpu_transcoder);
10489 }
10490
10491 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10492                                        struct intel_crtc_state *pipe_config)
10493 {
10494         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10495         struct intel_shared_dpll *pll;
10496         enum port port;
10497         u32 tmp;
10498
10499         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10500
10501         if (INTEL_GEN(dev_priv) >= 12)
10502                 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10503         else
10504                 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10505
10506         if (INTEL_GEN(dev_priv) >= 11)
10507                 icelake_get_ddi_pll(dev_priv, port, pipe_config);
10508         else if (IS_CANNONLAKE(dev_priv))
10509                 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
10510         else if (IS_GEN9_BC(dev_priv))
10511                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10512         else if (IS_GEN9_LP(dev_priv))
10513                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10514         else
10515                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10516
10517         pll = pipe_config->shared_dpll;
10518         if (pll) {
10519                 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10520                                                 &pipe_config->dpll_hw_state));
10521         }
10522
10523         /*
10524          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10525          * DDI E. So just check whether this pipe is wired to DDI E and whether
10526          * the PCH transcoder is on.
10527          */
10528         if (INTEL_GEN(dev_priv) < 9 &&
10529             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10530                 pipe_config->has_pch_encoder = true;
10531
10532                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10533                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10534                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10535
10536                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10537         }
10538 }
10539
10540 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv,
10541                                                  enum transcoder cpu_transcoder)
10542 {
10543         u32 trans_port_sync, master_select;
10544
10545         trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder));
10546
10547         if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0)
10548                 return INVALID_TRANSCODER;
10549
10550         master_select = trans_port_sync &
10551                         PORT_SYNC_MODE_MASTER_SELECT_MASK;
10552         if (master_select == 0)
10553                 return TRANSCODER_EDP;
10554         else
10555                 return master_select - 1;
10556 }
10557
10558 static void icelake_get_trans_port_sync_config(struct intel_crtc_state *crtc_state)
10559 {
10560         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10561         u32 transcoders;
10562         enum transcoder cpu_transcoder;
10563
10564         crtc_state->master_transcoder = transcoder_master_readout(dev_priv,
10565                                                                   crtc_state->cpu_transcoder);
10566
10567         transcoders = BIT(TRANSCODER_A) |
10568                 BIT(TRANSCODER_B) |
10569                 BIT(TRANSCODER_C) |
10570                 BIT(TRANSCODER_D);
10571         for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
10572                 enum intel_display_power_domain power_domain;
10573                 intel_wakeref_t trans_wakeref;
10574
10575                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10576                 trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
10577                                                                    power_domain);
10578
10579                 if (!trans_wakeref)
10580                         continue;
10581
10582                 if (transcoder_master_readout(dev_priv, cpu_transcoder) ==
10583                     crtc_state->cpu_transcoder)
10584                         crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder);
10585
10586                 intel_display_power_put(dev_priv, power_domain, trans_wakeref);
10587         }
10588
10589         WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER &&
10590                 crtc_state->sync_mode_slaves_mask);
10591 }
10592
10593 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10594                                     struct intel_crtc_state *pipe_config)
10595 {
10596         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10597         intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10598         enum intel_display_power_domain power_domain;
10599         u64 power_domain_mask;
10600         bool active;
10601
10602         intel_crtc_init_scalers(crtc, pipe_config);
10603
10604         pipe_config->master_transcoder = INVALID_TRANSCODER;
10605
10606         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10607         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10608         if (!wf)
10609                 return false;
10610
10611         wakerefs[power_domain] = wf;
10612         power_domain_mask = BIT_ULL(power_domain);
10613
10614         pipe_config->shared_dpll = NULL;
10615
10616         active = hsw_get_transcoder_state(crtc, pipe_config,
10617                                           &power_domain_mask, wakerefs);
10618
10619         if (IS_GEN9_LP(dev_priv) &&
10620             bxt_get_dsi_transcoder_state(crtc, pipe_config,
10621                                          &power_domain_mask, wakerefs)) {
10622                 WARN_ON(active);
10623                 active = true;
10624         }
10625
10626         if (!active)
10627                 goto out;
10628
10629         if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10630             INTEL_GEN(dev_priv) >= 11) {
10631                 haswell_get_ddi_port_state(crtc, pipe_config);
10632                 intel_get_pipe_timings(crtc, pipe_config);
10633         }
10634
10635         intel_get_pipe_src_size(crtc, pipe_config);
10636
10637         if (IS_HASWELL(dev_priv)) {
10638                 u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10639
10640                 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
10641                         pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10642                 else
10643                         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10644         } else {
10645                 pipe_config->output_format =
10646                         bdw_get_pipemisc_output_format(crtc);
10647
10648                 /*
10649                  * Currently there is no interface defined to
10650                  * check user preference between RGB/YCBCR444
10651                  * or YCBCR420. So the only possible case for
10652                  * YCBCR444 usage is driving YCBCR420 output
10653                  * with LSPCON, when pipe is configured for
10654                  * YCBCR444 output and LSPCON takes care of
10655                  * downsampling it.
10656                  */
10657                 pipe_config->lspcon_downsampling =
10658                         pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
10659         }
10660
10661         pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
10662
10663         pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10664
10665         if (INTEL_GEN(dev_priv) >= 9) {
10666                 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
10667
10668                 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
10669                         pipe_config->gamma_enable = true;
10670
10671                 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
10672                         pipe_config->csc_enable = true;
10673         } else {
10674                 i9xx_get_pipe_color_config(pipe_config);
10675         }
10676
10677         intel_color_get_config(pipe_config);
10678
10679         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10680         WARN_ON(power_domain_mask & BIT_ULL(power_domain));
10681
10682         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10683         if (wf) {
10684                 wakerefs[power_domain] = wf;
10685                 power_domain_mask |= BIT_ULL(power_domain);
10686
10687                 if (INTEL_GEN(dev_priv) >= 9)
10688                         skylake_get_pfit_config(crtc, pipe_config);
10689                 else
10690                         ironlake_get_pfit_config(crtc, pipe_config);
10691         }
10692
10693         if (hsw_crtc_supports_ips(crtc)) {
10694                 if (IS_HASWELL(dev_priv))
10695                         pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
10696                 else {
10697                         /*
10698                          * We cannot readout IPS state on broadwell, set to
10699                          * true so we can set it to a defined state on first
10700                          * commit.
10701                          */
10702                         pipe_config->ips_enabled = true;
10703                 }
10704         }
10705
10706         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10707             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10708                 pipe_config->pixel_multiplier =
10709                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10710         } else {
10711                 pipe_config->pixel_multiplier = 1;
10712         }
10713
10714         if (INTEL_GEN(dev_priv) >= 11 &&
10715             !transcoder_is_dsi(pipe_config->cpu_transcoder))
10716                 icelake_get_trans_port_sync_config(pipe_config);
10717
10718 out:
10719         for_each_power_domain(power_domain, power_domain_mask)
10720                 intel_display_power_put(dev_priv,
10721                                         power_domain, wakerefs[power_domain]);
10722
10723         return active;
10724 }
10725
10726 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
10727 {
10728         struct drm_i915_private *dev_priv =
10729                 to_i915(plane_state->base.plane->dev);
10730         const struct drm_framebuffer *fb = plane_state->base.fb;
10731         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10732         u32 base;
10733
10734         if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
10735                 base = obj->phys_handle->busaddr;
10736         else
10737                 base = intel_plane_ggtt_offset(plane_state);
10738
10739         return base + plane_state->color_plane[0].offset;
10740 }
10741
10742 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
10743 {
10744         int x = plane_state->base.dst.x1;
10745         int y = plane_state->base.dst.y1;
10746         u32 pos = 0;
10747
10748         if (x < 0) {
10749                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10750                 x = -x;
10751         }
10752         pos |= x << CURSOR_X_SHIFT;
10753
10754         if (y < 0) {
10755                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10756                 y = -y;
10757         }
10758         pos |= y << CURSOR_Y_SHIFT;
10759
10760         return pos;
10761 }
10762
10763 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
10764 {
10765         const struct drm_mode_config *config =
10766                 &plane_state->base.plane->dev->mode_config;
10767         int width = drm_rect_width(&plane_state->base.dst);
10768         int height = drm_rect_height(&plane_state->base.dst);
10769
10770         return width > 0 && width <= config->cursor_width &&
10771                 height > 0 && height <= config->cursor_height;
10772 }
10773
10774 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
10775 {
10776         struct drm_i915_private *dev_priv =
10777                 to_i915(plane_state->base.plane->dev);
10778         unsigned int rotation = plane_state->base.rotation;
10779         int src_x, src_y;
10780         u32 offset;
10781         int ret;
10782
10783         ret = intel_plane_compute_gtt(plane_state);
10784         if (ret)
10785                 return ret;
10786
10787         if (!plane_state->base.visible)
10788                 return 0;
10789
10790         src_x = plane_state->base.src.x1 >> 16;
10791         src_y = plane_state->base.src.y1 >> 16;
10792
10793         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
10794         offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
10795                                                     plane_state, 0);
10796
10797         if (src_x != 0 || src_y != 0) {
10798                 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
10799                 return -EINVAL;
10800         }
10801
10802         /*
10803          * Put the final coordinates back so that the src
10804          * coordinate checks will see the right values.
10805          */
10806         drm_rect_translate_to(&plane_state->base.src,
10807                               src_x << 16, src_y << 16);
10808
10809         /* ILK+ do this automagically in hardware */
10810         if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
10811                 const struct drm_framebuffer *fb = plane_state->base.fb;
10812                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
10813                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
10814
10815                 offset += (src_h * src_w - 1) * fb->format->cpp[0];
10816         }
10817
10818         plane_state->color_plane[0].offset = offset;
10819         plane_state->color_plane[0].x = src_x;
10820         plane_state->color_plane[0].y = src_y;
10821
10822         return 0;
10823 }
10824
10825 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
10826                               struct intel_plane_state *plane_state)
10827 {
10828         const struct drm_framebuffer *fb = plane_state->base.fb;
10829         int ret;
10830
10831         if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
10832                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
10833                 return -EINVAL;
10834         }
10835
10836         ret = drm_atomic_helper_check_plane_state(&plane_state->base,
10837                                                   &crtc_state->base,
10838                                                   DRM_PLANE_HELPER_NO_SCALING,
10839                                                   DRM_PLANE_HELPER_NO_SCALING,
10840                                                   true, true);
10841         if (ret)
10842                 return ret;
10843
10844         /* Use the unclipped src/dst rectangles, which we program to hw */
10845         plane_state->base.src = drm_plane_state_src(&plane_state->base);
10846         plane_state->base.dst = drm_plane_state_dest(&plane_state->base);
10847
10848         ret = intel_cursor_check_surface(plane_state);
10849         if (ret)
10850                 return ret;
10851
10852         if (!plane_state->base.visible)
10853                 return 0;
10854
10855         ret = intel_plane_check_src_coordinates(plane_state);
10856         if (ret)
10857                 return ret;
10858
10859         return 0;
10860 }
10861
10862 static unsigned int
10863 i845_cursor_max_stride(struct intel_plane *plane,
10864                        u32 pixel_format, u64 modifier,
10865                        unsigned int rotation)
10866 {
10867         return 2048;
10868 }
10869
10870 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
10871 {
10872         u32 cntl = 0;
10873
10874         if (crtc_state->gamma_enable)
10875                 cntl |= CURSOR_GAMMA_ENABLE;
10876
10877         return cntl;
10878 }
10879
10880 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
10881                            const struct intel_plane_state *plane_state)
10882 {
10883         return CURSOR_ENABLE |
10884                 CURSOR_FORMAT_ARGB |
10885                 CURSOR_STRIDE(plane_state->color_plane[0].stride);
10886 }
10887
10888 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
10889 {
10890         int width = drm_rect_width(&plane_state->base.dst);
10891
10892         /*
10893          * 845g/865g are only limited by the width of their cursors,
10894          * the height is arbitrary up to the precision of the register.
10895          */
10896         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
10897 }
10898
10899 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
10900                              struct intel_plane_state *plane_state)
10901 {
10902         const struct drm_framebuffer *fb = plane_state->base.fb;
10903         int ret;
10904
10905         ret = intel_check_cursor(crtc_state, plane_state);
10906         if (ret)
10907                 return ret;
10908
10909         /* if we want to turn off the cursor ignore width and height */
10910         if (!fb)
10911                 return 0;
10912
10913         /* Check for which cursor types we support */
10914         if (!i845_cursor_size_ok(plane_state)) {
10915                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
10916                           drm_rect_width(&plane_state->base.dst),
10917                           drm_rect_height(&plane_state->base.dst));
10918                 return -EINVAL;
10919         }
10920
10921         WARN_ON(plane_state->base.visible &&
10922                 plane_state->color_plane[0].stride != fb->pitches[0]);
10923
10924         switch (fb->pitches[0]) {
10925         case 256:
10926         case 512:
10927         case 1024:
10928         case 2048:
10929                 break;
10930         default:
10931                 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
10932                               fb->pitches[0]);
10933                 return -EINVAL;
10934         }
10935
10936         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
10937
10938         return 0;
10939 }
10940
10941 static void i845_update_cursor(struct intel_plane *plane,
10942                                const struct intel_crtc_state *crtc_state,
10943                                const struct intel_plane_state *plane_state)
10944 {
10945         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10946         u32 cntl = 0, base = 0, pos = 0, size = 0;
10947         unsigned long irqflags;
10948
10949         if (plane_state && plane_state->base.visible) {
10950                 unsigned int width = drm_rect_width(&plane_state->base.dst);
10951                 unsigned int height = drm_rect_height(&plane_state->base.dst);
10952
10953                 cntl = plane_state->ctl |
10954                         i845_cursor_ctl_crtc(crtc_state);
10955
10956                 size = (height << 12) | width;
10957
10958                 base = intel_cursor_base(plane_state);
10959                 pos = intel_cursor_position(plane_state);
10960         }
10961
10962         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
10963
10964         /* On these chipsets we can only modify the base/size/stride
10965          * whilst the cursor is disabled.
10966          */
10967         if (plane->cursor.base != base ||
10968             plane->cursor.size != size ||
10969             plane->cursor.cntl != cntl) {
10970                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
10971                 I915_WRITE_FW(CURBASE(PIPE_A), base);
10972                 I915_WRITE_FW(CURSIZE, size);
10973                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
10974                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
10975
10976                 plane->cursor.base = base;
10977                 plane->cursor.size = size;
10978                 plane->cursor.cntl = cntl;
10979         } else {
10980                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
10981         }
10982
10983         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
10984 }
10985
10986 static void i845_disable_cursor(struct intel_plane *plane,
10987                                 const struct intel_crtc_state *crtc_state)
10988 {
10989         i845_update_cursor(plane, crtc_state, NULL);
10990 }
10991
10992 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
10993                                      enum pipe *pipe)
10994 {
10995         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10996         enum intel_display_power_domain power_domain;
10997         intel_wakeref_t wakeref;
10998         bool ret;
10999
11000         power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11001         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11002         if (!wakeref)
11003                 return false;
11004
11005         ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11006
11007         *pipe = PIPE_A;
11008
11009         intel_display_power_put(dev_priv, power_domain, wakeref);
11010
11011         return ret;
11012 }
11013
11014 static unsigned int
11015 i9xx_cursor_max_stride(struct intel_plane *plane,
11016                        u32 pixel_format, u64 modifier,
11017                        unsigned int rotation)
11018 {
11019         return plane->base.dev->mode_config.cursor_width * 4;
11020 }
11021
11022 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11023 {
11024         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11025         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11026         u32 cntl = 0;
11027
11028         if (INTEL_GEN(dev_priv) >= 11)
11029                 return cntl;
11030
11031         if (crtc_state->gamma_enable)
11032                 cntl = MCURSOR_GAMMA_ENABLE;
11033
11034         if (crtc_state->csc_enable)
11035                 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11036
11037         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11038                 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11039
11040         return cntl;
11041 }
11042
11043 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11044                            const struct intel_plane_state *plane_state)
11045 {
11046         struct drm_i915_private *dev_priv =
11047                 to_i915(plane_state->base.plane->dev);
11048         u32 cntl = 0;
11049
11050         if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11051                 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11052
11053         switch (drm_rect_width(&plane_state->base.dst)) {
11054         case 64:
11055                 cntl |= MCURSOR_MODE_64_ARGB_AX;
11056                 break;
11057         case 128:
11058                 cntl |= MCURSOR_MODE_128_ARGB_AX;
11059                 break;
11060         case 256:
11061                 cntl |= MCURSOR_MODE_256_ARGB_AX;
11062                 break;
11063         default:
11064                 MISSING_CASE(drm_rect_width(&plane_state->base.dst));
11065                 return 0;
11066         }
11067
11068         if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
11069                 cntl |= MCURSOR_ROTATE_180;
11070
11071         return cntl;
11072 }
11073
11074 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11075 {
11076         struct drm_i915_private *dev_priv =
11077                 to_i915(plane_state->base.plane->dev);
11078         int width = drm_rect_width(&plane_state->base.dst);
11079         int height = drm_rect_height(&plane_state->base.dst);
11080
11081         if (!intel_cursor_size_ok(plane_state))
11082                 return false;
11083
11084         /* Cursor width is limited to a few power-of-two sizes */
11085         switch (width) {
11086         case 256:
11087         case 128:
11088         case 64:
11089                 break;
11090         default:
11091                 return false;
11092         }
11093
11094         /*
11095          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11096          * height from 8 lines up to the cursor width, when the
11097          * cursor is not rotated. Everything else requires square
11098          * cursors.
11099          */
11100         if (HAS_CUR_FBC(dev_priv) &&
11101             plane_state->base.rotation & DRM_MODE_ROTATE_0) {
11102                 if (height < 8 || height > width)
11103                         return false;
11104         } else {
11105                 if (height != width)
11106                         return false;
11107         }
11108
11109         return true;
11110 }
11111
11112 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11113                              struct intel_plane_state *plane_state)
11114 {
11115         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
11116         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11117         const struct drm_framebuffer *fb = plane_state->base.fb;
11118         enum pipe pipe = plane->pipe;
11119         int ret;
11120
11121         ret = intel_check_cursor(crtc_state, plane_state);
11122         if (ret)
11123                 return ret;
11124
11125         /* if we want to turn off the cursor ignore width and height */
11126         if (!fb)
11127                 return 0;
11128
11129         /* Check for which cursor types we support */
11130         if (!i9xx_cursor_size_ok(plane_state)) {
11131                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11132                           drm_rect_width(&plane_state->base.dst),
11133                           drm_rect_height(&plane_state->base.dst));
11134                 return -EINVAL;
11135         }
11136
11137         WARN_ON(plane_state->base.visible &&
11138                 plane_state->color_plane[0].stride != fb->pitches[0]);
11139
11140         if (fb->pitches[0] !=
11141             drm_rect_width(&plane_state->base.dst) * fb->format->cpp[0]) {
11142                 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
11143                               fb->pitches[0],
11144                               drm_rect_width(&plane_state->base.dst));
11145                 return -EINVAL;
11146         }
11147
11148         /*
11149          * There's something wrong with the cursor on CHV pipe C.
11150          * If it straddles the left edge of the screen then
11151          * moving it away from the edge or disabling it often
11152          * results in a pipe underrun, and often that can lead to
11153          * dead pipe (constant underrun reported, and it scans
11154          * out just a solid color). To recover from that, the
11155          * display power well must be turned off and on again.
11156          * Refuse the put the cursor into that compromised position.
11157          */
11158         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11159             plane_state->base.visible && plane_state->base.dst.x1 < 0) {
11160                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
11161                 return -EINVAL;
11162         }
11163
11164         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11165
11166         return 0;
11167 }
11168
11169 static void i9xx_update_cursor(struct intel_plane *plane,
11170                                const struct intel_crtc_state *crtc_state,
11171                                const struct intel_plane_state *plane_state)
11172 {
11173         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11174         enum pipe pipe = plane->pipe;
11175         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11176         unsigned long irqflags;
11177
11178         if (plane_state && plane_state->base.visible) {
11179                 unsigned width = drm_rect_width(&plane_state->base.dst);
11180                 unsigned height = drm_rect_height(&plane_state->base.dst);
11181
11182                 cntl = plane_state->ctl |
11183                         i9xx_cursor_ctl_crtc(crtc_state);
11184
11185                 if (width != height)
11186                         fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11187
11188                 base = intel_cursor_base(plane_state);
11189                 pos = intel_cursor_position(plane_state);
11190         }
11191
11192         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11193
11194         /*
11195          * On some platforms writing CURCNTR first will also
11196          * cause CURPOS to be armed by the CURBASE write.
11197          * Without the CURCNTR write the CURPOS write would
11198          * arm itself. Thus we always update CURCNTR before
11199          * CURPOS.
11200          *
11201          * On other platforms CURPOS always requires the
11202          * CURBASE write to arm the update. Additonally
11203          * a write to any of the cursor register will cancel
11204          * an already armed cursor update. Thus leaving out
11205          * the CURBASE write after CURPOS could lead to a
11206          * cursor that doesn't appear to move, or even change
11207          * shape. Thus we always write CURBASE.
11208          *
11209          * The other registers are armed by by the CURBASE write
11210          * except when the plane is getting enabled at which time
11211          * the CURCNTR write arms the update.
11212          */
11213
11214         if (INTEL_GEN(dev_priv) >= 9)
11215                 skl_write_cursor_wm(plane, crtc_state);
11216
11217         if (plane->cursor.base != base ||
11218             plane->cursor.size != fbc_ctl ||
11219             plane->cursor.cntl != cntl) {
11220                 if (HAS_CUR_FBC(dev_priv))
11221                         I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
11222                 I915_WRITE_FW(CURCNTR(pipe), cntl);
11223                 I915_WRITE_FW(CURPOS(pipe), pos);
11224                 I915_WRITE_FW(CURBASE(pipe), base);
11225
11226                 plane->cursor.base = base;
11227                 plane->cursor.size = fbc_ctl;
11228                 plane->cursor.cntl = cntl;
11229         } else {
11230                 I915_WRITE_FW(CURPOS(pipe), pos);
11231                 I915_WRITE_FW(CURBASE(pipe), base);
11232         }
11233
11234         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11235 }
11236
11237 static void i9xx_disable_cursor(struct intel_plane *plane,
11238                                 const struct intel_crtc_state *crtc_state)
11239 {
11240         i9xx_update_cursor(plane, crtc_state, NULL);
11241 }
11242
11243 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11244                                      enum pipe *pipe)
11245 {
11246         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11247         enum intel_display_power_domain power_domain;
11248         intel_wakeref_t wakeref;
11249         bool ret;
11250         u32 val;
11251
11252         /*
11253          * Not 100% correct for planes that can move between pipes,
11254          * but that's only the case for gen2-3 which don't have any
11255          * display power wells.
11256          */
11257         power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11258         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11259         if (!wakeref)
11260                 return false;
11261
11262         val = I915_READ(CURCNTR(plane->pipe));
11263
11264         ret = val & MCURSOR_MODE;
11265
11266         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11267                 *pipe = plane->pipe;
11268         else
11269                 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11270                         MCURSOR_PIPE_SELECT_SHIFT;
11271
11272         intel_display_power_put(dev_priv, power_domain, wakeref);
11273
11274         return ret;
11275 }
11276
11277 /* VESA 640x480x72Hz mode to set on the pipe */
11278 static const struct drm_display_mode load_detect_mode = {
11279         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11280                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11281 };
11282
11283 struct drm_framebuffer *
11284 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11285                          struct drm_mode_fb_cmd2 *mode_cmd)
11286 {
11287         struct intel_framebuffer *intel_fb;
11288         int ret;
11289
11290         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11291         if (!intel_fb)
11292                 return ERR_PTR(-ENOMEM);
11293
11294         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11295         if (ret)
11296                 goto err;
11297
11298         return &intel_fb->base;
11299
11300 err:
11301         kfree(intel_fb);
11302         return ERR_PTR(ret);
11303 }
11304
11305 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11306                                         struct drm_crtc *crtc)
11307 {
11308         struct drm_plane *plane;
11309         struct drm_plane_state *plane_state;
11310         int ret, i;
11311
11312         ret = drm_atomic_add_affected_planes(state, crtc);
11313         if (ret)
11314                 return ret;
11315
11316         for_each_new_plane_in_state(state, plane, plane_state, i) {
11317                 if (plane_state->crtc != crtc)
11318                         continue;
11319
11320                 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11321                 if (ret)
11322                         return ret;
11323
11324                 drm_atomic_set_fb_for_plane(plane_state, NULL);
11325         }
11326
11327         return 0;
11328 }
11329
11330 int intel_get_load_detect_pipe(struct drm_connector *connector,
11331                                const struct drm_display_mode *mode,
11332                                struct intel_load_detect_pipe *old,
11333                                struct drm_modeset_acquire_ctx *ctx)
11334 {
11335         struct intel_crtc *intel_crtc;
11336         struct intel_encoder *intel_encoder =
11337                 intel_attached_encoder(connector);
11338         struct drm_crtc *possible_crtc;
11339         struct drm_encoder *encoder = &intel_encoder->base;
11340         struct drm_crtc *crtc = NULL;
11341         struct drm_device *dev = encoder->dev;
11342         struct drm_i915_private *dev_priv = to_i915(dev);
11343         struct drm_mode_config *config = &dev->mode_config;
11344         struct drm_atomic_state *state = NULL, *restore_state = NULL;
11345         struct drm_connector_state *connector_state;
11346         struct intel_crtc_state *crtc_state;
11347         int ret, i = -1;
11348
11349         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11350                       connector->base.id, connector->name,
11351                       encoder->base.id, encoder->name);
11352
11353         old->restore_state = NULL;
11354
11355         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
11356
11357         /*
11358          * Algorithm gets a little messy:
11359          *
11360          *   - if the connector already has an assigned crtc, use it (but make
11361          *     sure it's on first)
11362          *
11363          *   - try to find the first unused crtc that can drive this connector,
11364          *     and use that if we find one
11365          */
11366
11367         /* See if we already have a CRTC for this connector */
11368         if (connector->state->crtc) {
11369                 crtc = connector->state->crtc;
11370
11371                 ret = drm_modeset_lock(&crtc->mutex, ctx);
11372                 if (ret)
11373                         goto fail;
11374
11375                 /* Make sure the crtc and connector are running */
11376                 goto found;
11377         }
11378
11379         /* Find an unused one (if possible) */
11380         for_each_crtc(dev, possible_crtc) {
11381                 i++;
11382                 if (!(encoder->possible_crtcs & (1 << i)))
11383                         continue;
11384
11385                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11386                 if (ret)
11387                         goto fail;
11388
11389                 if (possible_crtc->state->enable) {
11390                         drm_modeset_unlock(&possible_crtc->mutex);
11391                         continue;
11392                 }
11393
11394                 crtc = possible_crtc;
11395                 break;
11396         }
11397
11398         /*
11399          * If we didn't find an unused CRTC, don't use any.
11400          */
11401         if (!crtc) {
11402                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11403                 ret = -ENODEV;
11404                 goto fail;
11405         }
11406
11407 found:
11408         intel_crtc = to_intel_crtc(crtc);
11409
11410         state = drm_atomic_state_alloc(dev);
11411         restore_state = drm_atomic_state_alloc(dev);
11412         if (!state || !restore_state) {
11413                 ret = -ENOMEM;
11414                 goto fail;
11415         }
11416
11417         state->acquire_ctx = ctx;
11418         restore_state->acquire_ctx = ctx;
11419
11420         connector_state = drm_atomic_get_connector_state(state, connector);
11421         if (IS_ERR(connector_state)) {
11422                 ret = PTR_ERR(connector_state);
11423                 goto fail;
11424         }
11425
11426         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11427         if (ret)
11428                 goto fail;
11429
11430         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11431         if (IS_ERR(crtc_state)) {
11432                 ret = PTR_ERR(crtc_state);
11433                 goto fail;
11434         }
11435
11436         crtc_state->base.active = crtc_state->base.enable = true;
11437
11438         if (!mode)
11439                 mode = &load_detect_mode;
11440
11441         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11442         if (ret)
11443                 goto fail;
11444
11445         ret = intel_modeset_disable_planes(state, crtc);
11446         if (ret)
11447                 goto fail;
11448
11449         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11450         if (!ret)
11451                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11452         if (!ret)
11453                 ret = drm_atomic_add_affected_planes(restore_state, crtc);
11454         if (ret) {
11455                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11456                 goto fail;
11457         }
11458
11459         ret = drm_atomic_commit(state);
11460         if (ret) {
11461                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11462                 goto fail;
11463         }
11464
11465         old->restore_state = restore_state;
11466         drm_atomic_state_put(state);
11467
11468         /* let the connector get through one full cycle before testing */
11469         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11470         return true;
11471
11472 fail:
11473         if (state) {
11474                 drm_atomic_state_put(state);
11475                 state = NULL;
11476         }
11477         if (restore_state) {
11478                 drm_atomic_state_put(restore_state);
11479                 restore_state = NULL;
11480         }
11481
11482         if (ret == -EDEADLK)
11483                 return ret;
11484
11485         return false;
11486 }
11487
11488 void intel_release_load_detect_pipe(struct drm_connector *connector,
11489                                     struct intel_load_detect_pipe *old,
11490                                     struct drm_modeset_acquire_ctx *ctx)
11491 {
11492         struct intel_encoder *intel_encoder =
11493                 intel_attached_encoder(connector);
11494         struct drm_encoder *encoder = &intel_encoder->base;
11495         struct drm_atomic_state *state = old->restore_state;
11496         int ret;
11497
11498         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11499                       connector->base.id, connector->name,
11500                       encoder->base.id, encoder->name);
11501
11502         if (!state)
11503                 return;
11504
11505         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11506         if (ret)
11507                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11508         drm_atomic_state_put(state);
11509 }
11510
11511 static int i9xx_pll_refclk(struct drm_device *dev,
11512                            const struct intel_crtc_state *pipe_config)
11513 {
11514         struct drm_i915_private *dev_priv = to_i915(dev);
11515         u32 dpll = pipe_config->dpll_hw_state.dpll;
11516
11517         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11518                 return dev_priv->vbt.lvds_ssc_freq;
11519         else if (HAS_PCH_SPLIT(dev_priv))
11520                 return 120000;
11521         else if (!IS_GEN(dev_priv, 2))
11522                 return 96000;
11523         else
11524                 return 48000;
11525 }
11526
11527 /* Returns the clock of the currently programmed mode of the given pipe. */
11528 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11529                                 struct intel_crtc_state *pipe_config)
11530 {
11531         struct drm_device *dev = crtc->base.dev;
11532         struct drm_i915_private *dev_priv = to_i915(dev);
11533         enum pipe pipe = crtc->pipe;
11534         u32 dpll = pipe_config->dpll_hw_state.dpll;
11535         u32 fp;
11536         struct dpll clock;
11537         int port_clock;
11538         int refclk = i9xx_pll_refclk(dev, pipe_config);
11539
11540         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11541                 fp = pipe_config->dpll_hw_state.fp0;
11542         else
11543                 fp = pipe_config->dpll_hw_state.fp1;
11544
11545         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11546         if (IS_PINEVIEW(dev_priv)) {
11547                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11548                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11549         } else {
11550                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11551                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11552         }
11553
11554         if (!IS_GEN(dev_priv, 2)) {
11555                 if (IS_PINEVIEW(dev_priv))
11556                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11557                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11558                 else
11559                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11560                                DPLL_FPA01_P1_POST_DIV_SHIFT);
11561
11562                 switch (dpll & DPLL_MODE_MASK) {
11563                 case DPLLB_MODE_DAC_SERIAL:
11564                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11565                                 5 : 10;
11566                         break;
11567                 case DPLLB_MODE_LVDS:
11568                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11569                                 7 : 14;
11570                         break;
11571                 default:
11572                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11573                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
11574                         return;
11575                 }
11576
11577                 if (IS_PINEVIEW(dev_priv))
11578                         port_clock = pnv_calc_dpll_params(refclk, &clock);
11579                 else
11580                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
11581         } else {
11582                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11583                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11584
11585                 if (is_lvds) {
11586                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11587                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
11588
11589                         if (lvds & LVDS_CLKB_POWER_UP)
11590                                 clock.p2 = 7;
11591                         else
11592                                 clock.p2 = 14;
11593                 } else {
11594                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
11595                                 clock.p1 = 2;
11596                         else {
11597                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11598                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11599                         }
11600                         if (dpll & PLL_P2_DIVIDE_BY_4)
11601                                 clock.p2 = 4;
11602                         else
11603                                 clock.p2 = 2;
11604                 }
11605
11606                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11607         }
11608
11609         /*
11610          * This value includes pixel_multiplier. We will use
11611          * port_clock to compute adjusted_mode.crtc_clock in the
11612          * encoder's get_config() function.
11613          */
11614         pipe_config->port_clock = port_clock;
11615 }
11616
11617 int intel_dotclock_calculate(int link_freq,
11618                              const struct intel_link_m_n *m_n)
11619 {
11620         /*
11621          * The calculation for the data clock is:
11622          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11623          * But we want to avoid losing precison if possible, so:
11624          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11625          *
11626          * and the link clock is simpler:
11627          * link_clock = (m * link_clock) / n
11628          */
11629
11630         if (!m_n->link_n)
11631                 return 0;
11632
11633         return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11634 }
11635
11636 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11637                                    struct intel_crtc_state *pipe_config)
11638 {
11639         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11640
11641         /* read out port_clock from the DPLL */
11642         i9xx_crtc_clock_get(crtc, pipe_config);
11643
11644         /*
11645          * In case there is an active pipe without active ports,
11646          * we may need some idea for the dotclock anyway.
11647          * Calculate one based on the FDI configuration.
11648          */
11649         pipe_config->base.adjusted_mode.crtc_clock =
11650                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11651                                          &pipe_config->fdi_m_n);
11652 }
11653
11654 /* Returns the currently programmed mode of the given encoder. */
11655 struct drm_display_mode *
11656 intel_encoder_current_mode(struct intel_encoder *encoder)
11657 {
11658         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
11659         struct intel_crtc_state *crtc_state;
11660         struct drm_display_mode *mode;
11661         struct intel_crtc *crtc;
11662         enum pipe pipe;
11663
11664         if (!encoder->get_hw_state(encoder, &pipe))
11665                 return NULL;
11666
11667         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11668
11669         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11670         if (!mode)
11671                 return NULL;
11672
11673         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
11674         if (!crtc_state) {
11675                 kfree(mode);
11676                 return NULL;
11677         }
11678
11679         crtc_state->base.crtc = &crtc->base;
11680
11681         if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
11682                 kfree(crtc_state);
11683                 kfree(mode);
11684                 return NULL;
11685         }
11686
11687         encoder->get_config(encoder, crtc_state);
11688
11689         intel_mode_from_pipe_config(mode, crtc_state);
11690
11691         kfree(crtc_state);
11692
11693         return mode;
11694 }
11695
11696 static void intel_crtc_destroy(struct drm_crtc *crtc)
11697 {
11698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11699
11700         drm_crtc_cleanup(crtc);
11701         kfree(intel_crtc);
11702 }
11703
11704 /**
11705  * intel_wm_need_update - Check whether watermarks need updating
11706  * @cur: current plane state
11707  * @new: new plane state
11708  *
11709  * Check current plane state versus the new one to determine whether
11710  * watermarks need to be recalculated.
11711  *
11712  * Returns true or false.
11713  */
11714 static bool intel_wm_need_update(const struct intel_plane_state *cur,
11715                                  struct intel_plane_state *new)
11716 {
11717         /* Update watermarks on tiling or size changes. */
11718         if (new->base.visible != cur->base.visible)
11719                 return true;
11720
11721         if (!cur->base.fb || !new->base.fb)
11722                 return false;
11723
11724         if (cur->base.fb->modifier != new->base.fb->modifier ||
11725             cur->base.rotation != new->base.rotation ||
11726             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
11727             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
11728             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
11729             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
11730                 return true;
11731
11732         return false;
11733 }
11734
11735 static bool needs_scaling(const struct intel_plane_state *state)
11736 {
11737         int src_w = drm_rect_width(&state->base.src) >> 16;
11738         int src_h = drm_rect_height(&state->base.src) >> 16;
11739         int dst_w = drm_rect_width(&state->base.dst);
11740         int dst_h = drm_rect_height(&state->base.dst);
11741
11742         return (src_w != dst_w || src_h != dst_h);
11743 }
11744
11745 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
11746                                     struct intel_crtc_state *crtc_state,
11747                                     const struct intel_plane_state *old_plane_state,
11748                                     struct intel_plane_state *plane_state)
11749 {
11750         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11751         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
11752         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11753         bool mode_changed = needs_modeset(crtc_state);
11754         bool was_crtc_enabled = old_crtc_state->base.active;
11755         bool is_crtc_enabled = crtc_state->base.active;
11756         bool turn_off, turn_on, visible, was_visible;
11757         int ret;
11758
11759         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11760                 ret = skl_update_scaler_plane(crtc_state, plane_state);
11761                 if (ret)
11762                         return ret;
11763         }
11764
11765         was_visible = old_plane_state->base.visible;
11766         visible = plane_state->base.visible;
11767
11768         if (!was_crtc_enabled && WARN_ON(was_visible))
11769                 was_visible = false;
11770
11771         /*
11772          * Visibility is calculated as if the crtc was on, but
11773          * after scaler setup everything depends on it being off
11774          * when the crtc isn't active.
11775          *
11776          * FIXME this is wrong for watermarks. Watermarks should also
11777          * be computed as if the pipe would be active. Perhaps move
11778          * per-plane wm computation to the .check_plane() hook, and
11779          * only combine the results from all planes in the current place?
11780          */
11781         if (!is_crtc_enabled) {
11782                 plane_state->base.visible = visible = false;
11783                 crtc_state->active_planes &= ~BIT(plane->id);
11784                 crtc_state->data_rate[plane->id] = 0;
11785                 crtc_state->min_cdclk[plane->id] = 0;
11786         }
11787
11788         if (!was_visible && !visible)
11789                 return 0;
11790
11791         turn_off = was_visible && (!visible || mode_changed);
11792         turn_on = visible && (!was_visible || mode_changed);
11793
11794         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11795                          crtc->base.base.id, crtc->base.name,
11796                          plane->base.base.id, plane->base.name,
11797                          was_visible, visible,
11798                          turn_off, turn_on, mode_changed);
11799
11800         if (turn_on) {
11801                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11802                         crtc_state->update_wm_pre = true;
11803
11804                 /* must disable cxsr around plane enable/disable */
11805                 if (plane->id != PLANE_CURSOR)
11806                         crtc_state->disable_cxsr = true;
11807         } else if (turn_off) {
11808                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11809                         crtc_state->update_wm_post = true;
11810
11811                 /* must disable cxsr around plane enable/disable */
11812                 if (plane->id != PLANE_CURSOR)
11813                         crtc_state->disable_cxsr = true;
11814         } else if (intel_wm_need_update(old_plane_state, plane_state)) {
11815                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11816                         /* FIXME bollocks */
11817                         crtc_state->update_wm_pre = true;
11818                         crtc_state->update_wm_post = true;
11819                 }
11820         }
11821
11822         if (visible || was_visible)
11823                 crtc_state->fb_bits |= plane->frontbuffer_bit;
11824
11825         /*
11826          * ILK/SNB DVSACNTR/Sprite Enable
11827          * IVB SPR_CTL/Sprite Enable
11828          * "When in Self Refresh Big FIFO mode, a write to enable the
11829          *  plane will be internally buffered and delayed while Big FIFO
11830          *  mode is exiting."
11831          *
11832          * Which means that enabling the sprite can take an extra frame
11833          * when we start in big FIFO mode (LP1+). Thus we need to drop
11834          * down to LP0 and wait for vblank in order to make sure the
11835          * sprite gets enabled on the next vblank after the register write.
11836          * Doing otherwise would risk enabling the sprite one frame after
11837          * we've already signalled flip completion. We can resume LP1+
11838          * once the sprite has been enabled.
11839          *
11840          *
11841          * WaCxSRDisabledForSpriteScaling:ivb
11842          * IVB SPR_SCALE/Scaling Enable
11843          * "Low Power watermarks must be disabled for at least one
11844          *  frame before enabling sprite scaling, and kept disabled
11845          *  until sprite scaling is disabled."
11846          *
11847          * ILK/SNB DVSASCALE/Scaling Enable
11848          * "When in Self Refresh Big FIFO mode, scaling enable will be
11849          *  masked off while Big FIFO mode is exiting."
11850          *
11851          * Despite the w/a only being listed for IVB we assume that
11852          * the ILK/SNB note has similar ramifications, hence we apply
11853          * the w/a on all three platforms.
11854          *
11855          * With experimental results seems this is needed also for primary
11856          * plane, not only sprite plane.
11857          */
11858         if (plane->id != PLANE_CURSOR &&
11859             (IS_GEN_RANGE(dev_priv, 5, 6) ||
11860              IS_IVYBRIDGE(dev_priv)) &&
11861             (turn_on || (!needs_scaling(old_plane_state) &&
11862                          needs_scaling(plane_state))))
11863                 crtc_state->disable_lp_wm = true;
11864
11865         return 0;
11866 }
11867
11868 static bool encoders_cloneable(const struct intel_encoder *a,
11869                                const struct intel_encoder *b)
11870 {
11871         /* masks could be asymmetric, so check both ways */
11872         return a == b || (a->cloneable & (1 << b->type) &&
11873                           b->cloneable & (1 << a->type));
11874 }
11875
11876 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11877                                          struct intel_crtc *crtc,
11878                                          struct intel_encoder *encoder)
11879 {
11880         struct intel_encoder *source_encoder;
11881         struct drm_connector *connector;
11882         struct drm_connector_state *connector_state;
11883         int i;
11884
11885         for_each_new_connector_in_state(state, connector, connector_state, i) {
11886                 if (connector_state->crtc != &crtc->base)
11887                         continue;
11888
11889                 source_encoder =
11890                         to_intel_encoder(connector_state->best_encoder);
11891                 if (!encoders_cloneable(encoder, source_encoder))
11892                         return false;
11893         }
11894
11895         return true;
11896 }
11897
11898 static int icl_add_linked_planes(struct intel_atomic_state *state)
11899 {
11900         struct intel_plane *plane, *linked;
11901         struct intel_plane_state *plane_state, *linked_plane_state;
11902         int i;
11903
11904         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11905                 linked = plane_state->planar_linked_plane;
11906
11907                 if (!linked)
11908                         continue;
11909
11910                 linked_plane_state = intel_atomic_get_plane_state(state, linked);
11911                 if (IS_ERR(linked_plane_state))
11912                         return PTR_ERR(linked_plane_state);
11913
11914                 WARN_ON(linked_plane_state->planar_linked_plane != plane);
11915                 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave);
11916         }
11917
11918         return 0;
11919 }
11920
11921 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
11922 {
11923         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11924         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11925         struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
11926         struct intel_plane *plane, *linked;
11927         struct intel_plane_state *plane_state;
11928         int i;
11929
11930         if (INTEL_GEN(dev_priv) < 11)
11931                 return 0;
11932
11933         /*
11934          * Destroy all old plane links and make the slave plane invisible
11935          * in the crtc_state->active_planes mask.
11936          */
11937         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11938                 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
11939                         continue;
11940
11941                 plane_state->planar_linked_plane = NULL;
11942                 if (plane_state->planar_slave && !plane_state->base.visible) {
11943                         crtc_state->active_planes &= ~BIT(plane->id);
11944                         crtc_state->update_planes |= BIT(plane->id);
11945                 }
11946
11947                 plane_state->planar_slave = false;
11948         }
11949
11950         if (!crtc_state->nv12_planes)
11951                 return 0;
11952
11953         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11954                 struct intel_plane_state *linked_state = NULL;
11955
11956                 if (plane->pipe != crtc->pipe ||
11957                     !(crtc_state->nv12_planes & BIT(plane->id)))
11958                         continue;
11959
11960                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
11961                         if (!icl_is_nv12_y_plane(linked->id))
11962                                 continue;
11963
11964                         if (crtc_state->active_planes & BIT(linked->id))
11965                                 continue;
11966
11967                         linked_state = intel_atomic_get_plane_state(state, linked);
11968                         if (IS_ERR(linked_state))
11969                                 return PTR_ERR(linked_state);
11970
11971                         break;
11972                 }
11973
11974                 if (!linked_state) {
11975                         DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
11976                                       hweight8(crtc_state->nv12_planes));
11977
11978                         return -EINVAL;
11979                 }
11980
11981                 plane_state->planar_linked_plane = linked;
11982
11983                 linked_state->planar_slave = true;
11984                 linked_state->planar_linked_plane = plane;
11985                 crtc_state->active_planes |= BIT(linked->id);
11986                 crtc_state->update_planes |= BIT(linked->id);
11987                 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
11988         }
11989
11990         return 0;
11991 }
11992
11993 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
11994 {
11995         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
11996         struct intel_atomic_state *state =
11997                 to_intel_atomic_state(new_crtc_state->base.state);
11998         const struct intel_crtc_state *old_crtc_state =
11999                 intel_atomic_get_old_crtc_state(state, crtc);
12000
12001         return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12002 }
12003
12004 static int icl_add_sync_mode_crtcs(struct intel_crtc_state *crtc_state)
12005 {
12006         struct drm_crtc *crtc = crtc_state->base.crtc;
12007         struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
12008         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
12009         struct drm_connector *master_connector, *connector;
12010         struct drm_connector_state *connector_state;
12011         struct drm_connector_list_iter conn_iter;
12012         struct drm_crtc *master_crtc = NULL;
12013         struct drm_crtc_state *master_crtc_state;
12014         struct intel_crtc_state *master_pipe_config;
12015         int i, tile_group_id;
12016
12017         if (INTEL_GEN(dev_priv) < 11)
12018                 return 0;
12019
12020         /*
12021          * In case of tiled displays there could be one or more slaves but there is
12022          * only one master. Lets make the CRTC used by the connector corresponding
12023          * to the last horizonal and last vertical tile a master/genlock CRTC.
12024          * All the other CRTCs corresponding to other tiles of the same Tile group
12025          * are the slave CRTCs and hold a pointer to their genlock CRTC.
12026          */
12027         for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
12028                 if (connector_state->crtc != crtc)
12029                         continue;
12030                 if (!connector->has_tile)
12031                         continue;
12032                 if (crtc_state->base.mode.hdisplay != connector->tile_h_size ||
12033                     crtc_state->base.mode.vdisplay != connector->tile_v_size)
12034                         return 0;
12035                 if (connector->tile_h_loc == connector->num_h_tile - 1 &&
12036                     connector->tile_v_loc == connector->num_v_tile - 1)
12037                         continue;
12038                 crtc_state->sync_mode_slaves_mask = 0;
12039                 tile_group_id = connector->tile_group->id;
12040                 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
12041                 drm_for_each_connector_iter(master_connector, &conn_iter) {
12042                         struct drm_connector_state *master_conn_state = NULL;
12043
12044                         if (!master_connector->has_tile)
12045                                 continue;
12046                         if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 ||
12047                             master_connector->tile_v_loc != master_connector->num_v_tile - 1)
12048                                 continue;
12049                         if (master_connector->tile_group->id != tile_group_id)
12050                                 continue;
12051
12052                         master_conn_state = drm_atomic_get_connector_state(&state->base,
12053                                                                            master_connector);
12054                         if (IS_ERR(master_conn_state)) {
12055                                 drm_connector_list_iter_end(&conn_iter);
12056                                 return PTR_ERR(master_conn_state);
12057                         }
12058                         if (master_conn_state->crtc) {
12059                                 master_crtc = master_conn_state->crtc;
12060                                 break;
12061                         }
12062                 }
12063                 drm_connector_list_iter_end(&conn_iter);
12064
12065                 if (!master_crtc) {
12066                         DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n",
12067                                       connector_state->crtc->base.id);
12068                         return -EINVAL;
12069                 }
12070
12071                 master_crtc_state = drm_atomic_get_crtc_state(&state->base,
12072                                                               master_crtc);
12073                 if (IS_ERR(master_crtc_state))
12074                         return PTR_ERR(master_crtc_state);
12075
12076                 master_pipe_config = to_intel_crtc_state(master_crtc_state);
12077                 crtc_state->master_transcoder = master_pipe_config->cpu_transcoder;
12078                 master_pipe_config->sync_mode_slaves_mask |=
12079                         BIT(crtc_state->cpu_transcoder);
12080                 DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n",
12081                               transcoder_name(crtc_state->master_transcoder),
12082                               crtc_state->base.crtc->base.id,
12083                               master_pipe_config->sync_mode_slaves_mask);
12084         }
12085
12086         return 0;
12087 }
12088
12089 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12090                                    struct intel_crtc *crtc)
12091 {
12092         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12093         struct intel_crtc_state *crtc_state =
12094                 intel_atomic_get_new_crtc_state(state, crtc);
12095         bool mode_changed = needs_modeset(crtc_state);
12096         int ret;
12097
12098         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12099             mode_changed && !crtc_state->base.active)
12100                 crtc_state->update_wm_post = true;
12101
12102         if (mode_changed && crtc_state->base.enable &&
12103             dev_priv->display.crtc_compute_clock &&
12104             !WARN_ON(crtc_state->shared_dpll)) {
12105                 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12106                 if (ret)
12107                         return ret;
12108         }
12109
12110         /*
12111          * May need to update pipe gamma enable bits
12112          * when C8 planes are getting enabled/disabled.
12113          */
12114         if (c8_planes_changed(crtc_state))
12115                 crtc_state->base.color_mgmt_changed = true;
12116
12117         if (mode_changed || crtc_state->update_pipe ||
12118             crtc_state->base.color_mgmt_changed) {
12119                 ret = intel_color_check(crtc_state);
12120                 if (ret)
12121                         return ret;
12122         }
12123
12124         ret = 0;
12125         if (dev_priv->display.compute_pipe_wm) {
12126                 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12127                 if (ret) {
12128                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12129                         return ret;
12130                 }
12131         }
12132
12133         if (dev_priv->display.compute_intermediate_wm) {
12134                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12135                         return 0;
12136
12137                 /*
12138                  * Calculate 'intermediate' watermarks that satisfy both the
12139                  * old state and the new state.  We can program these
12140                  * immediately.
12141                  */
12142                 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12143                 if (ret) {
12144                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12145                         return ret;
12146                 }
12147         }
12148
12149         if (INTEL_GEN(dev_priv) >= 9) {
12150                 if (mode_changed || crtc_state->update_pipe)
12151                         ret = skl_update_scaler_crtc(crtc_state);
12152                 if (!ret)
12153                         ret = intel_atomic_setup_scalers(dev_priv, crtc,
12154                                                          crtc_state);
12155         }
12156
12157         if (HAS_IPS(dev_priv))
12158                 crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state);
12159
12160         return ret;
12161 }
12162
12163 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12164 {
12165         struct intel_connector *connector;
12166         struct drm_connector_list_iter conn_iter;
12167
12168         drm_connector_list_iter_begin(dev, &conn_iter);
12169         for_each_intel_connector_iter(connector, &conn_iter) {
12170                 if (connector->base.state->crtc)
12171                         drm_connector_put(&connector->base);
12172
12173                 if (connector->base.encoder) {
12174                         connector->base.state->best_encoder =
12175                                 connector->base.encoder;
12176                         connector->base.state->crtc =
12177                                 connector->base.encoder->crtc;
12178
12179                         drm_connector_get(&connector->base);
12180                 } else {
12181                         connector->base.state->best_encoder = NULL;
12182                         connector->base.state->crtc = NULL;
12183                 }
12184         }
12185         drm_connector_list_iter_end(&conn_iter);
12186 }
12187
12188 static int
12189 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12190                       struct intel_crtc_state *pipe_config)
12191 {
12192         struct drm_connector *connector = conn_state->connector;
12193         const struct drm_display_info *info = &connector->display_info;
12194         int bpp;
12195
12196         switch (conn_state->max_bpc) {
12197         case 6 ... 7:
12198                 bpp = 6 * 3;
12199                 break;
12200         case 8 ... 9:
12201                 bpp = 8 * 3;
12202                 break;
12203         case 10 ... 11:
12204                 bpp = 10 * 3;
12205                 break;
12206         case 12:
12207                 bpp = 12 * 3;
12208                 break;
12209         default:
12210                 return -EINVAL;
12211         }
12212
12213         if (bpp < pipe_config->pipe_bpp) {
12214                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12215                               "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12216                               connector->base.id, connector->name,
12217                               bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
12218                               pipe_config->pipe_bpp);
12219
12220                 pipe_config->pipe_bpp = bpp;
12221         }
12222
12223         return 0;
12224 }
12225
12226 static int
12227 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12228                           struct intel_crtc_state *pipe_config)
12229 {
12230         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12231         struct drm_atomic_state *state = pipe_config->base.state;
12232         struct drm_connector *connector;
12233         struct drm_connector_state *connector_state;
12234         int bpp, i;
12235
12236         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12237             IS_CHERRYVIEW(dev_priv)))
12238                 bpp = 10*3;
12239         else if (INTEL_GEN(dev_priv) >= 5)
12240                 bpp = 12*3;
12241         else
12242                 bpp = 8*3;
12243
12244         pipe_config->pipe_bpp = bpp;
12245
12246         /* Clamp display bpp to connector max bpp */
12247         for_each_new_connector_in_state(state, connector, connector_state, i) {
12248                 int ret;
12249
12250                 if (connector_state->crtc != &crtc->base)
12251                         continue;
12252
12253                 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12254                 if (ret)
12255                         return ret;
12256         }
12257
12258         return 0;
12259 }
12260
12261 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12262 {
12263         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12264                       "type: 0x%x flags: 0x%x\n",
12265                       mode->crtc_clock,
12266                       mode->crtc_hdisplay, mode->crtc_hsync_start,
12267                       mode->crtc_hsync_end, mode->crtc_htotal,
12268                       mode->crtc_vdisplay, mode->crtc_vsync_start,
12269                       mode->crtc_vsync_end, mode->crtc_vtotal,
12270                       mode->type, mode->flags);
12271 }
12272
12273 static inline void
12274 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12275                       const char *id, unsigned int lane_count,
12276                       const struct intel_link_m_n *m_n)
12277 {
12278         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12279                       id, lane_count,
12280                       m_n->gmch_m, m_n->gmch_n,
12281                       m_n->link_m, m_n->link_n, m_n->tu);
12282 }
12283
12284 static void
12285 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12286                      const union hdmi_infoframe *frame)
12287 {
12288         if ((drm_debug & DRM_UT_KMS) == 0)
12289                 return;
12290
12291         hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12292 }
12293
12294 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12295
12296 static const char * const output_type_str[] = {
12297         OUTPUT_TYPE(UNUSED),
12298         OUTPUT_TYPE(ANALOG),
12299         OUTPUT_TYPE(DVO),
12300         OUTPUT_TYPE(SDVO),
12301         OUTPUT_TYPE(LVDS),
12302         OUTPUT_TYPE(TVOUT),
12303         OUTPUT_TYPE(HDMI),
12304         OUTPUT_TYPE(DP),
12305         OUTPUT_TYPE(EDP),
12306         OUTPUT_TYPE(DSI),
12307         OUTPUT_TYPE(DDI),
12308         OUTPUT_TYPE(DP_MST),
12309 };
12310
12311 #undef OUTPUT_TYPE
12312
12313 static void snprintf_output_types(char *buf, size_t len,
12314                                   unsigned int output_types)
12315 {
12316         char *str = buf;
12317         int i;
12318
12319         str[0] = '\0';
12320
12321         for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12322                 int r;
12323
12324                 if ((output_types & BIT(i)) == 0)
12325                         continue;
12326
12327                 r = snprintf(str, len, "%s%s",
12328                              str != buf ? "," : "", output_type_str[i]);
12329                 if (r >= len)
12330                         break;
12331                 str += r;
12332                 len -= r;
12333
12334                 output_types &= ~BIT(i);
12335         }
12336
12337         WARN_ON_ONCE(output_types != 0);
12338 }
12339
12340 static const char * const output_format_str[] = {
12341         [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12342         [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12343         [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12344         [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12345 };
12346
12347 static const char *output_formats(enum intel_output_format format)
12348 {
12349         if (format >= ARRAY_SIZE(output_format_str))
12350                 format = INTEL_OUTPUT_FORMAT_INVALID;
12351         return output_format_str[format];
12352 }
12353
12354 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12355 {
12356         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
12357         const struct drm_framebuffer *fb = plane_state->base.fb;
12358         struct drm_format_name_buf format_name;
12359
12360         if (!fb) {
12361                 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12362                               plane->base.base.id, plane->base.name,
12363                               yesno(plane_state->base.visible));
12364                 return;
12365         }
12366
12367         DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12368                       plane->base.base.id, plane->base.name,
12369                       fb->base.id, fb->width, fb->height,
12370                       drm_get_format_name(fb->format->format, &format_name),
12371                       yesno(plane_state->base.visible));
12372         DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n",
12373                       plane_state->base.rotation, plane_state->scaler_id);
12374         if (plane_state->base.visible)
12375                 DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
12376                               DRM_RECT_FP_ARG(&plane_state->base.src),
12377                               DRM_RECT_ARG(&plane_state->base.dst));
12378 }
12379
12380 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
12381                                    struct intel_atomic_state *state,
12382                                    const char *context)
12383 {
12384         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
12385         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12386         const struct intel_plane_state *plane_state;
12387         struct intel_plane *plane;
12388         char buf[64];
12389         int i;
12390
12391         DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n",
12392                       crtc->base.base.id, crtc->base.name,
12393                       yesno(pipe_config->base.enable), context);
12394
12395         if (!pipe_config->base.enable)
12396                 goto dump_planes;
12397
12398         snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
12399         DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n",
12400                       yesno(pipe_config->base.active),
12401                       buf, pipe_config->output_types,
12402                       output_formats(pipe_config->output_format));
12403
12404         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12405                       transcoder_name(pipe_config->cpu_transcoder),
12406                       pipe_config->pipe_bpp, pipe_config->dither);
12407
12408         if (pipe_config->has_pch_encoder)
12409                 intel_dump_m_n_config(pipe_config, "fdi",
12410                                       pipe_config->fdi_lanes,
12411                                       &pipe_config->fdi_m_n);
12412
12413         if (intel_crtc_has_dp_encoder(pipe_config)) {
12414                 intel_dump_m_n_config(pipe_config, "dp m_n",
12415                                 pipe_config->lane_count, &pipe_config->dp_m_n);
12416                 if (pipe_config->has_drrs)
12417                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
12418                                               pipe_config->lane_count,
12419                                               &pipe_config->dp_m2_n2);
12420         }
12421
12422         DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
12423                       pipe_config->has_audio, pipe_config->has_infoframe,
12424                       pipe_config->infoframes.enable);
12425
12426         if (pipe_config->infoframes.enable &
12427             intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
12428                 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
12429         if (pipe_config->infoframes.enable &
12430             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
12431                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
12432         if (pipe_config->infoframes.enable &
12433             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
12434                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
12435         if (pipe_config->infoframes.enable &
12436             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
12437                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
12438
12439         DRM_DEBUG_KMS("requested mode:\n");
12440         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12441         DRM_DEBUG_KMS("adjusted mode:\n");
12442         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12443         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12444         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
12445                       pipe_config->port_clock,
12446                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
12447                       pipe_config->pixel_rate);
12448
12449         if (INTEL_GEN(dev_priv) >= 9)
12450                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12451                               crtc->num_scalers,
12452                               pipe_config->scaler_state.scaler_users,
12453                               pipe_config->scaler_state.scaler_id);
12454
12455         if (HAS_GMCH(dev_priv))
12456                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12457                               pipe_config->gmch_pfit.control,
12458                               pipe_config->gmch_pfit.pgm_ratios,
12459                               pipe_config->gmch_pfit.lvds_border_bits);
12460         else
12461                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
12462                               pipe_config->pch_pfit.pos,
12463                               pipe_config->pch_pfit.size,
12464                               enableddisabled(pipe_config->pch_pfit.enabled),
12465                               yesno(pipe_config->pch_pfit.force_thru));
12466
12467         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12468                       pipe_config->ips_enabled, pipe_config->double_wide);
12469
12470         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12471
12472         if (IS_CHERRYVIEW(dev_priv))
12473                 DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12474                               pipe_config->cgm_mode, pipe_config->gamma_mode,
12475                               pipe_config->gamma_enable, pipe_config->csc_enable);
12476         else
12477                 DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12478                               pipe_config->csc_mode, pipe_config->gamma_mode,
12479                               pipe_config->gamma_enable, pipe_config->csc_enable);
12480
12481 dump_planes:
12482         if (!state)
12483                 return;
12484
12485         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12486                 if (plane->pipe == crtc->pipe)
12487                         intel_dump_plane_state(plane_state);
12488         }
12489 }
12490
12491 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
12492 {
12493         struct drm_device *dev = state->base.dev;
12494         struct drm_connector *connector;
12495         struct drm_connector_list_iter conn_iter;
12496         unsigned int used_ports = 0;
12497         unsigned int used_mst_ports = 0;
12498         bool ret = true;
12499
12500         /*
12501          * We're going to peek into connector->state,
12502          * hence connection_mutex must be held.
12503          */
12504         drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
12505
12506         /*
12507          * Walk the connector list instead of the encoder
12508          * list to detect the problem on ddi platforms
12509          * where there's just one encoder per digital port.
12510          */
12511         drm_connector_list_iter_begin(dev, &conn_iter);
12512         drm_for_each_connector_iter(connector, &conn_iter) {
12513                 struct drm_connector_state *connector_state;
12514                 struct intel_encoder *encoder;
12515
12516                 connector_state =
12517                         drm_atomic_get_new_connector_state(&state->base,
12518                                                            connector);
12519                 if (!connector_state)
12520                         connector_state = connector->state;
12521
12522                 if (!connector_state->best_encoder)
12523                         continue;
12524
12525                 encoder = to_intel_encoder(connector_state->best_encoder);
12526
12527                 WARN_ON(!connector_state->crtc);
12528
12529                 switch (encoder->type) {
12530                         unsigned int port_mask;
12531                 case INTEL_OUTPUT_DDI:
12532                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
12533                                 break;
12534                         /* else, fall through */
12535                 case INTEL_OUTPUT_DP:
12536                 case INTEL_OUTPUT_HDMI:
12537                 case INTEL_OUTPUT_EDP:
12538                         port_mask = 1 << encoder->port;
12539
12540                         /* the same port mustn't appear more than once */
12541                         if (used_ports & port_mask)
12542                                 ret = false;
12543
12544                         used_ports |= port_mask;
12545                         break;
12546                 case INTEL_OUTPUT_DP_MST:
12547                         used_mst_ports |=
12548                                 1 << encoder->port;
12549                         break;
12550                 default:
12551                         break;
12552                 }
12553         }
12554         drm_connector_list_iter_end(&conn_iter);
12555
12556         /* can't mix MST and SST/HDMI on the same port */
12557         if (used_ports & used_mst_ports)
12558                 return false;
12559
12560         return ret;
12561 }
12562
12563 static int
12564 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12565 {
12566         struct drm_i915_private *dev_priv =
12567                 to_i915(crtc_state->base.crtc->dev);
12568         struct intel_crtc_state *saved_state;
12569
12570         saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL);
12571         if (!saved_state)
12572                 return -ENOMEM;
12573
12574         /* FIXME: before the switch to atomic started, a new pipe_config was
12575          * kzalloc'd. Code that depends on any field being zero should be
12576          * fixed, so that the crtc_state can be safely duplicated. For now,
12577          * only fields that are know to not cause problems are preserved. */
12578
12579         saved_state->scaler_state = crtc_state->scaler_state;
12580         saved_state->shared_dpll = crtc_state->shared_dpll;
12581         saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
12582         memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
12583                sizeof(saved_state->icl_port_dplls));
12584         saved_state->crc_enabled = crtc_state->crc_enabled;
12585         if (IS_G4X(dev_priv) ||
12586             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12587                 saved_state->wm = crtc_state->wm;
12588         /*
12589          * Save the slave bitmask which gets filled for master crtc state during
12590          * slave atomic check call.
12591          */
12592         if (is_trans_port_sync_master(crtc_state))
12593                 saved_state->sync_mode_slaves_mask =
12594                         crtc_state->sync_mode_slaves_mask;
12595
12596         /* Keep base drm_crtc_state intact, only clear our extended struct */
12597         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
12598         memcpy(&crtc_state->base + 1, &saved_state->base + 1,
12599                sizeof(*crtc_state) - sizeof(crtc_state->base));
12600
12601         kfree(saved_state);
12602         return 0;
12603 }
12604
12605 static int
12606 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
12607 {
12608         struct drm_crtc *crtc = pipe_config->base.crtc;
12609         struct drm_atomic_state *state = pipe_config->base.state;
12610         struct intel_encoder *encoder;
12611         struct drm_connector *connector;
12612         struct drm_connector_state *connector_state;
12613         int base_bpp, ret;
12614         int i;
12615         bool retry = true;
12616
12617         ret = clear_intel_crtc_state(pipe_config);
12618         if (ret)
12619                 return ret;
12620
12621         pipe_config->cpu_transcoder =
12622                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12623
12624         /*
12625          * Sanitize sync polarity flags based on requested ones. If neither
12626          * positive or negative polarity is requested, treat this as meaning
12627          * negative polarity.
12628          */
12629         if (!(pipe_config->base.adjusted_mode.flags &
12630               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12631                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12632
12633         if (!(pipe_config->base.adjusted_mode.flags &
12634               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12635                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12636
12637         ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12638                                         pipe_config);
12639         if (ret)
12640                 return ret;
12641
12642         base_bpp = pipe_config->pipe_bpp;
12643
12644         /*
12645          * Determine the real pipe dimensions. Note that stereo modes can
12646          * increase the actual pipe size due to the frame doubling and
12647          * insertion of additional space for blanks between the frame. This
12648          * is stored in the crtc timings. We use the requested mode to do this
12649          * computation to clearly distinguish it from the adjusted mode, which
12650          * can be changed by the connectors in the below retry loop.
12651          */
12652         drm_mode_get_hv_timing(&pipe_config->base.mode,
12653                                &pipe_config->pipe_src_w,
12654                                &pipe_config->pipe_src_h);
12655
12656         for_each_new_connector_in_state(state, connector, connector_state, i) {
12657                 if (connector_state->crtc != crtc)
12658                         continue;
12659
12660                 encoder = to_intel_encoder(connector_state->best_encoder);
12661
12662                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12663                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12664                         return -EINVAL;
12665                 }
12666
12667                 /*
12668                  * Determine output_types before calling the .compute_config()
12669                  * hooks so that the hooks can use this information safely.
12670                  */
12671                 if (encoder->compute_output_type)
12672                         pipe_config->output_types |=
12673                                 BIT(encoder->compute_output_type(encoder, pipe_config,
12674                                                                  connector_state));
12675                 else
12676                         pipe_config->output_types |= BIT(encoder->type);
12677         }
12678
12679 encoder_retry:
12680         /* Ensure the port clock defaults are reset when retrying. */
12681         pipe_config->port_clock = 0;
12682         pipe_config->pixel_multiplier = 1;
12683
12684         /* Fill in default crtc timings, allow encoders to overwrite them. */
12685         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12686                               CRTC_STEREO_DOUBLE);
12687
12688         /* Set the crtc_state defaults for trans_port_sync */
12689         pipe_config->master_transcoder = INVALID_TRANSCODER;
12690         ret = icl_add_sync_mode_crtcs(pipe_config);
12691         if (ret) {
12692                 DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n",
12693                               ret);
12694                 return ret;
12695         }
12696
12697         /* Pass our mode to the connectors and the CRTC to give them a chance to
12698          * adjust it according to limitations or connector properties, and also
12699          * a chance to reject the mode entirely.
12700          */
12701         for_each_new_connector_in_state(state, connector, connector_state, i) {
12702                 if (connector_state->crtc != crtc)
12703                         continue;
12704
12705                 encoder = to_intel_encoder(connector_state->best_encoder);
12706                 ret = encoder->compute_config(encoder, pipe_config,
12707                                               connector_state);
12708                 if (ret < 0) {
12709                         if (ret != -EDEADLK)
12710                                 DRM_DEBUG_KMS("Encoder config failure: %d\n",
12711                                               ret);
12712                         return ret;
12713                 }
12714         }
12715
12716         /* Set default port clock if not overwritten by the encoder. Needs to be
12717          * done afterwards in case the encoder adjusts the mode. */
12718         if (!pipe_config->port_clock)
12719                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12720                         * pipe_config->pixel_multiplier;
12721
12722         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12723         if (ret == -EDEADLK)
12724                 return ret;
12725         if (ret < 0) {
12726                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12727                 return ret;
12728         }
12729
12730         if (ret == RETRY) {
12731                 if (WARN(!retry, "loop in pipe configuration computation\n"))
12732                         return -EINVAL;
12733
12734                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12735                 retry = false;
12736                 goto encoder_retry;
12737         }
12738
12739         /* Dithering seems to not pass-through bits correctly when it should, so
12740          * only enable it on 6bpc panels and when its not a compliance
12741          * test requesting 6bpc video pattern.
12742          */
12743         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
12744                 !pipe_config->dither_force_disable;
12745         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12746                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12747
12748         return 0;
12749 }
12750
12751 bool intel_fuzzy_clock_check(int clock1, int clock2)
12752 {
12753         int diff;
12754
12755         if (clock1 == clock2)
12756                 return true;
12757
12758         if (!clock1 || !clock2)
12759                 return false;
12760
12761         diff = abs(clock1 - clock2);
12762
12763         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12764                 return true;
12765
12766         return false;
12767 }
12768
12769 static bool
12770 intel_compare_m_n(unsigned int m, unsigned int n,
12771                   unsigned int m2, unsigned int n2,
12772                   bool exact)
12773 {
12774         if (m == m2 && n == n2)
12775                 return true;
12776
12777         if (exact || !m || !n || !m2 || !n2)
12778                 return false;
12779
12780         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12781
12782         if (n > n2) {
12783                 while (n > n2) {
12784                         m2 <<= 1;
12785                         n2 <<= 1;
12786                 }
12787         } else if (n < n2) {
12788                 while (n < n2) {
12789                         m <<= 1;
12790                         n <<= 1;
12791                 }
12792         }
12793
12794         if (n != n2)
12795                 return false;
12796
12797         return intel_fuzzy_clock_check(m, m2);
12798 }
12799
12800 static bool
12801 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12802                        const struct intel_link_m_n *m2_n2,
12803                        bool exact)
12804 {
12805         return m_n->tu == m2_n2->tu &&
12806                 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12807                                   m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
12808                 intel_compare_m_n(m_n->link_m, m_n->link_n,
12809                                   m2_n2->link_m, m2_n2->link_n, exact);
12810 }
12811
12812 static bool
12813 intel_compare_infoframe(const union hdmi_infoframe *a,
12814                         const union hdmi_infoframe *b)
12815 {
12816         return memcmp(a, b, sizeof(*a)) == 0;
12817 }
12818
12819 static void
12820 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
12821                                bool fastset, const char *name,
12822                                const union hdmi_infoframe *a,
12823                                const union hdmi_infoframe *b)
12824 {
12825         if (fastset) {
12826                 if ((drm_debug & DRM_UT_KMS) == 0)
12827                         return;
12828
12829                 DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name);
12830                 DRM_DEBUG_KMS("expected:\n");
12831                 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
12832                 DRM_DEBUG_KMS("found:\n");
12833                 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
12834         } else {
12835                 DRM_ERROR("mismatch in %s infoframe\n", name);
12836                 DRM_ERROR("expected:\n");
12837                 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
12838                 DRM_ERROR("found:\n");
12839                 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
12840         }
12841 }
12842
12843 static void __printf(4, 5)
12844 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
12845                      const char *name, const char *format, ...)
12846 {
12847         struct va_format vaf;
12848         va_list args;
12849
12850         va_start(args, format);
12851         vaf.fmt = format;
12852         vaf.va = &args;
12853
12854         if (fastset)
12855                 DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n",
12856                               crtc->base.base.id, crtc->base.name, name, &vaf);
12857         else
12858                 DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n",
12859                           crtc->base.base.id, crtc->base.name, name, &vaf);
12860
12861         va_end(args);
12862 }
12863
12864 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
12865 {
12866         if (i915_modparams.fastboot != -1)
12867                 return i915_modparams.fastboot;
12868
12869         /* Enable fastboot by default on Skylake and newer */
12870         if (INTEL_GEN(dev_priv) >= 9)
12871                 return true;
12872
12873         /* Enable fastboot by default on VLV and CHV */
12874         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12875                 return true;
12876
12877         /* Disabled by default on all others */
12878         return false;
12879 }
12880
12881 static bool
12882 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
12883                           const struct intel_crtc_state *pipe_config,
12884                           bool fastset)
12885 {
12886         struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev);
12887         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
12888         bool ret = true;
12889         u32 bp_gamma = 0;
12890         bool fixup_inherited = fastset &&
12891                 (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
12892                 !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED);
12893
12894         if (fixup_inherited && !fastboot_enabled(dev_priv)) {
12895                 DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
12896                 ret = false;
12897         }
12898
12899 #define PIPE_CONF_CHECK_X(name) do { \
12900         if (current_config->name != pipe_config->name) { \
12901                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12902                                      "(expected 0x%08x, found 0x%08x)", \
12903                                      current_config->name, \
12904                                      pipe_config->name); \
12905                 ret = false; \
12906         } \
12907 } while (0)
12908
12909 #define PIPE_CONF_CHECK_I(name) do { \
12910         if (current_config->name != pipe_config->name) { \
12911                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12912                                      "(expected %i, found %i)", \
12913                                      current_config->name, \
12914                                      pipe_config->name); \
12915                 ret = false; \
12916         } \
12917 } while (0)
12918
12919 #define PIPE_CONF_CHECK_BOOL(name) do { \
12920         if (current_config->name != pipe_config->name) { \
12921                 pipe_config_mismatch(fastset, crtc,  __stringify(name), \
12922                                      "(expected %s, found %s)", \
12923                                      yesno(current_config->name), \
12924                                      yesno(pipe_config->name)); \
12925                 ret = false; \
12926         } \
12927 } while (0)
12928
12929 /*
12930  * Checks state where we only read out the enabling, but not the entire
12931  * state itself (like full infoframes or ELD for audio). These states
12932  * require a full modeset on bootup to fix up.
12933  */
12934 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
12935         if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
12936                 PIPE_CONF_CHECK_BOOL(name); \
12937         } else { \
12938                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12939                                      "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
12940                                      yesno(current_config->name), \
12941                                      yesno(pipe_config->name)); \
12942                 ret = false; \
12943         } \
12944 } while (0)
12945
12946 #define PIPE_CONF_CHECK_P(name) do { \
12947         if (current_config->name != pipe_config->name) { \
12948                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12949                                      "(expected %p, found %p)", \
12950                                      current_config->name, \
12951                                      pipe_config->name); \
12952                 ret = false; \
12953         } \
12954 } while (0)
12955
12956 #define PIPE_CONF_CHECK_M_N(name) do { \
12957         if (!intel_compare_link_m_n(&current_config->name, \
12958                                     &pipe_config->name,\
12959                                     !fastset)) { \
12960                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12961                                      "(expected tu %i gmch %i/%i link %i/%i, " \
12962                                      "found tu %i, gmch %i/%i link %i/%i)", \
12963                                      current_config->name.tu, \
12964                                      current_config->name.gmch_m, \
12965                                      current_config->name.gmch_n, \
12966                                      current_config->name.link_m, \
12967                                      current_config->name.link_n, \
12968                                      pipe_config->name.tu, \
12969                                      pipe_config->name.gmch_m, \
12970                                      pipe_config->name.gmch_n, \
12971                                      pipe_config->name.link_m, \
12972                                      pipe_config->name.link_n); \
12973                 ret = false; \
12974         } \
12975 } while (0)
12976
12977 /* This is required for BDW+ where there is only one set of registers for
12978  * switching between high and low RR.
12979  * This macro can be used whenever a comparison has to be made between one
12980  * hw state and multiple sw state variables.
12981  */
12982 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
12983         if (!intel_compare_link_m_n(&current_config->name, \
12984                                     &pipe_config->name, !fastset) && \
12985             !intel_compare_link_m_n(&current_config->alt_name, \
12986                                     &pipe_config->name, !fastset)) { \
12987                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12988                                      "(expected tu %i gmch %i/%i link %i/%i, " \
12989                                      "or tu %i gmch %i/%i link %i/%i, " \
12990                                      "found tu %i, gmch %i/%i link %i/%i)", \
12991                                      current_config->name.tu, \
12992                                      current_config->name.gmch_m, \
12993                                      current_config->name.gmch_n, \
12994                                      current_config->name.link_m, \
12995                                      current_config->name.link_n, \
12996                                      current_config->alt_name.tu, \
12997                                      current_config->alt_name.gmch_m, \
12998                                      current_config->alt_name.gmch_n, \
12999                                      current_config->alt_name.link_m, \
13000                                      current_config->alt_name.link_n, \
13001                                      pipe_config->name.tu, \
13002                                      pipe_config->name.gmch_m, \
13003                                      pipe_config->name.gmch_n, \
13004                                      pipe_config->name.link_m, \
13005                                      pipe_config->name.link_n); \
13006                 ret = false; \
13007         } \
13008 } while (0)
13009
13010 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13011         if ((current_config->name ^ pipe_config->name) & (mask)) { \
13012                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13013                                      "(%x) (expected %i, found %i)", \
13014                                      (mask), \
13015                                      current_config->name & (mask), \
13016                                      pipe_config->name & (mask)); \
13017                 ret = false; \
13018         } \
13019 } while (0)
13020
13021 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13022         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13023                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13024                                      "(expected %i, found %i)", \
13025                                      current_config->name, \
13026                                      pipe_config->name); \
13027                 ret = false; \
13028         } \
13029 } while (0)
13030
13031 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13032         if (!intel_compare_infoframe(&current_config->infoframes.name, \
13033                                      &pipe_config->infoframes.name)) { \
13034                 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13035                                                &current_config->infoframes.name, \
13036                                                &pipe_config->infoframes.name); \
13037                 ret = false; \
13038         } \
13039 } while (0)
13040
13041 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13042         if (current_config->name1 != pipe_config->name1) { \
13043                 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13044                                 "(expected %i, found %i, won't compare lut values)", \
13045                                 current_config->name1, \
13046                                 pipe_config->name1); \
13047                 ret = false;\
13048         } else { \
13049                 if (!intel_color_lut_equal(current_config->name2, \
13050                                         pipe_config->name2, pipe_config->name1, \
13051                                         bit_precision)) { \
13052                         pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13053                                         "hw_state doesn't match sw_state"); \
13054                         ret = false; \
13055                 } \
13056         } \
13057 } while (0)
13058
13059 #define PIPE_CONF_QUIRK(quirk) \
13060         ((current_config->quirks | pipe_config->quirks) & (quirk))
13061
13062         PIPE_CONF_CHECK_I(cpu_transcoder);
13063
13064         PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13065         PIPE_CONF_CHECK_I(fdi_lanes);
13066         PIPE_CONF_CHECK_M_N(fdi_m_n);
13067
13068         PIPE_CONF_CHECK_I(lane_count);
13069         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13070
13071         if (INTEL_GEN(dev_priv) < 8) {
13072                 PIPE_CONF_CHECK_M_N(dp_m_n);
13073
13074                 if (current_config->has_drrs)
13075                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
13076         } else
13077                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13078
13079         PIPE_CONF_CHECK_X(output_types);
13080
13081         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13082         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13083         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13084         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13085         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13086         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13087
13088         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13089         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13090         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13091         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13092         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13093         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13094
13095         PIPE_CONF_CHECK_I(pixel_multiplier);
13096         PIPE_CONF_CHECK_I(output_format);
13097         PIPE_CONF_CHECK_I(dc3co_exitline);
13098         PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13099         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13100             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13101                 PIPE_CONF_CHECK_BOOL(limited_color_range);
13102
13103         PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13104         PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13105         PIPE_CONF_CHECK_BOOL(has_infoframe);
13106         PIPE_CONF_CHECK_BOOL(fec_enable);
13107
13108         PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13109
13110         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13111                               DRM_MODE_FLAG_INTERLACE);
13112
13113         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13114                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13115                                       DRM_MODE_FLAG_PHSYNC);
13116                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13117                                       DRM_MODE_FLAG_NHSYNC);
13118                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13119                                       DRM_MODE_FLAG_PVSYNC);
13120                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13121                                       DRM_MODE_FLAG_NVSYNC);
13122         }
13123
13124         PIPE_CONF_CHECK_X(gmch_pfit.control);
13125         /* pfit ratios are autocomputed by the hw on gen4+ */
13126         if (INTEL_GEN(dev_priv) < 4)
13127                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13128         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13129
13130         /*
13131          * Changing the EDP transcoder input mux
13132          * (A_ONOFF vs. A_ON) requires a full modeset.
13133          */
13134         PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13135
13136         if (!fastset) {
13137                 PIPE_CONF_CHECK_I(pipe_src_w);
13138                 PIPE_CONF_CHECK_I(pipe_src_h);
13139
13140                 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13141                 if (current_config->pch_pfit.enabled) {
13142                         PIPE_CONF_CHECK_X(pch_pfit.pos);
13143                         PIPE_CONF_CHECK_X(pch_pfit.size);
13144                 }
13145
13146                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13147                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13148
13149                 PIPE_CONF_CHECK_X(gamma_mode);
13150                 if (IS_CHERRYVIEW(dev_priv))
13151                         PIPE_CONF_CHECK_X(cgm_mode);
13152                 else
13153                         PIPE_CONF_CHECK_X(csc_mode);
13154                 PIPE_CONF_CHECK_BOOL(gamma_enable);
13155                 PIPE_CONF_CHECK_BOOL(csc_enable);
13156
13157                 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13158                 if (bp_gamma)
13159                         PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, base.gamma_lut, bp_gamma);
13160
13161         }
13162
13163         PIPE_CONF_CHECK_BOOL(double_wide);
13164
13165         PIPE_CONF_CHECK_P(shared_dpll);
13166         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13167         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13168         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13169         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13170         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13171         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13172         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13173         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13174         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13175         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13176         PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13177         PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13178         PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13179         PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13180         PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13181         PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13182         PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13183         PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13184         PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13185         PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13186         PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13187         PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13188         PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13189         PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
13190         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
13191         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
13192         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
13193         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
13194         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
13195         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
13196         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
13197
13198         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13199         PIPE_CONF_CHECK_X(dsi_pll.div);
13200
13201         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13202                 PIPE_CONF_CHECK_I(pipe_bpp);
13203
13204         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13205         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13206
13207         PIPE_CONF_CHECK_I(min_voltage_level);
13208
13209         PIPE_CONF_CHECK_X(infoframes.enable);
13210         PIPE_CONF_CHECK_X(infoframes.gcp);
13211         PIPE_CONF_CHECK_INFOFRAME(avi);
13212         PIPE_CONF_CHECK_INFOFRAME(spd);
13213         PIPE_CONF_CHECK_INFOFRAME(hdmi);
13214         PIPE_CONF_CHECK_INFOFRAME(drm);
13215
13216         PIPE_CONF_CHECK_I(sync_mode_slaves_mask);
13217         PIPE_CONF_CHECK_I(master_transcoder);
13218
13219 #undef PIPE_CONF_CHECK_X
13220 #undef PIPE_CONF_CHECK_I
13221 #undef PIPE_CONF_CHECK_BOOL
13222 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
13223 #undef PIPE_CONF_CHECK_P
13224 #undef PIPE_CONF_CHECK_FLAGS
13225 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13226 #undef PIPE_CONF_CHECK_COLOR_LUT
13227 #undef PIPE_CONF_QUIRK
13228
13229         return ret;
13230 }
13231
13232 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13233                                            const struct intel_crtc_state *pipe_config)
13234 {
13235         if (pipe_config->has_pch_encoder) {
13236                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13237                                                             &pipe_config->fdi_m_n);
13238                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13239
13240                 /*
13241                  * FDI already provided one idea for the dotclock.
13242                  * Yell if the encoder disagrees.
13243                  */
13244                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13245                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13246                      fdi_dotclock, dotclock);
13247         }
13248 }
13249
13250 static void verify_wm_state(struct intel_crtc *crtc,
13251                             struct intel_crtc_state *new_crtc_state)
13252 {
13253         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13254         struct skl_hw_state {
13255                 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
13256                 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
13257                 struct skl_ddb_allocation ddb;
13258                 struct skl_pipe_wm wm;
13259         } *hw;
13260         struct skl_ddb_allocation *sw_ddb;
13261         struct skl_pipe_wm *sw_wm;
13262         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13263         const enum pipe pipe = crtc->pipe;
13264         int plane, level, max_level = ilk_wm_max_level(dev_priv);
13265
13266         if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active)
13267                 return;
13268
13269         hw = kzalloc(sizeof(*hw), GFP_KERNEL);
13270         if (!hw)
13271                 return;
13272
13273         skl_pipe_wm_get_hw_state(crtc, &hw->wm);
13274         sw_wm = &new_crtc_state->wm.skl.optimal;
13275
13276         skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
13277
13278         skl_ddb_get_hw_state(dev_priv, &hw->ddb);
13279         sw_ddb = &dev_priv->wm.skl_hw.ddb;
13280
13281         if (INTEL_GEN(dev_priv) >= 11 &&
13282             hw->ddb.enabled_slices != sw_ddb->enabled_slices)
13283                 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
13284                           sw_ddb->enabled_slices,
13285                           hw->ddb.enabled_slices);
13286
13287         /* planes */
13288         for_each_universal_plane(dev_priv, pipe, plane) {
13289                 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13290
13291                 hw_plane_wm = &hw->wm.planes[plane];
13292                 sw_plane_wm = &sw_wm->planes[plane];
13293
13294                 /* Watermarks */
13295                 for (level = 0; level <= max_level; level++) {
13296                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13297                                                 &sw_plane_wm->wm[level]))
13298                                 continue;
13299
13300                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13301                                   pipe_name(pipe), plane + 1, level,
13302                                   sw_plane_wm->wm[level].plane_en,
13303                                   sw_plane_wm->wm[level].plane_res_b,
13304                                   sw_plane_wm->wm[level].plane_res_l,
13305                                   hw_plane_wm->wm[level].plane_en,
13306                                   hw_plane_wm->wm[level].plane_res_b,
13307                                   hw_plane_wm->wm[level].plane_res_l);
13308                 }
13309
13310                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13311                                          &sw_plane_wm->trans_wm)) {
13312                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13313                                   pipe_name(pipe), plane + 1,
13314                                   sw_plane_wm->trans_wm.plane_en,
13315                                   sw_plane_wm->trans_wm.plane_res_b,
13316                                   sw_plane_wm->trans_wm.plane_res_l,
13317                                   hw_plane_wm->trans_wm.plane_en,
13318                                   hw_plane_wm->trans_wm.plane_res_b,
13319                                   hw_plane_wm->trans_wm.plane_res_l);
13320                 }
13321
13322                 /* DDB */
13323                 hw_ddb_entry = &hw->ddb_y[plane];
13324                 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
13325
13326                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13327                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13328                                   pipe_name(pipe), plane + 1,
13329                                   sw_ddb_entry->start, sw_ddb_entry->end,
13330                                   hw_ddb_entry->start, hw_ddb_entry->end);
13331                 }
13332         }
13333
13334         /*
13335          * cursor
13336          * If the cursor plane isn't active, we may not have updated it's ddb
13337          * allocation. In that case since the ddb allocation will be updated
13338          * once the plane becomes visible, we can skip this check
13339          */
13340         if (1) {
13341                 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13342
13343                 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
13344                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13345
13346                 /* Watermarks */
13347                 for (level = 0; level <= max_level; level++) {
13348                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13349                                                 &sw_plane_wm->wm[level]))
13350                                 continue;
13351
13352                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13353                                   pipe_name(pipe), level,
13354                                   sw_plane_wm->wm[level].plane_en,
13355                                   sw_plane_wm->wm[level].plane_res_b,
13356                                   sw_plane_wm->wm[level].plane_res_l,
13357                                   hw_plane_wm->wm[level].plane_en,
13358                                   hw_plane_wm->wm[level].plane_res_b,
13359                                   hw_plane_wm->wm[level].plane_res_l);
13360                 }
13361
13362                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13363                                          &sw_plane_wm->trans_wm)) {
13364                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13365                                   pipe_name(pipe),
13366                                   sw_plane_wm->trans_wm.plane_en,
13367                                   sw_plane_wm->trans_wm.plane_res_b,
13368                                   sw_plane_wm->trans_wm.plane_res_l,
13369                                   hw_plane_wm->trans_wm.plane_en,
13370                                   hw_plane_wm->trans_wm.plane_res_b,
13371                                   hw_plane_wm->trans_wm.plane_res_l);
13372                 }
13373
13374                 /* DDB */
13375                 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
13376                 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
13377
13378                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13379                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13380                                   pipe_name(pipe),
13381                                   sw_ddb_entry->start, sw_ddb_entry->end,
13382                                   hw_ddb_entry->start, hw_ddb_entry->end);
13383                 }
13384         }
13385
13386         kfree(hw);
13387 }
13388
13389 static void
13390 verify_connector_state(struct intel_atomic_state *state,
13391                        struct intel_crtc *crtc)
13392 {
13393         struct drm_connector *connector;
13394         struct drm_connector_state *new_conn_state;
13395         int i;
13396
13397         for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
13398                 struct drm_encoder *encoder = connector->encoder;
13399                 struct intel_crtc_state *crtc_state = NULL;
13400
13401                 if (new_conn_state->crtc != &crtc->base)
13402                         continue;
13403
13404                 if (crtc)
13405                         crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13406
13407                 intel_connector_verify_state(crtc_state, new_conn_state);
13408
13409                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
13410                      "connector's atomic encoder doesn't match legacy encoder\n");
13411         }
13412 }
13413
13414 static void
13415 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
13416 {
13417         struct intel_encoder *encoder;
13418         struct drm_connector *connector;
13419         struct drm_connector_state *old_conn_state, *new_conn_state;
13420         int i;
13421
13422         for_each_intel_encoder(&dev_priv->drm, encoder) {
13423                 bool enabled = false, found = false;
13424                 enum pipe pipe;
13425
13426                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13427                               encoder->base.base.id,
13428                               encoder->base.name);
13429
13430                 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
13431                                                    new_conn_state, i) {
13432                         if (old_conn_state->best_encoder == &encoder->base)
13433                                 found = true;
13434
13435                         if (new_conn_state->best_encoder != &encoder->base)
13436                                 continue;
13437                         found = enabled = true;
13438
13439                         I915_STATE_WARN(new_conn_state->crtc !=
13440                                         encoder->base.crtc,
13441                              "connector's crtc doesn't match encoder crtc\n");
13442                 }
13443
13444                 if (!found)
13445                         continue;
13446
13447                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13448                      "encoder's enabled state mismatch "
13449                      "(expected %i, found %i)\n",
13450                      !!encoder->base.crtc, enabled);
13451
13452                 if (!encoder->base.crtc) {
13453                         bool active;
13454
13455                         active = encoder->get_hw_state(encoder, &pipe);
13456                         I915_STATE_WARN(active,
13457                              "encoder detached but still enabled on pipe %c.\n",
13458                              pipe_name(pipe));
13459                 }
13460         }
13461 }
13462
13463 static void
13464 verify_crtc_state(struct intel_crtc *crtc,
13465                   struct intel_crtc_state *old_crtc_state,
13466                   struct intel_crtc_state *new_crtc_state)
13467 {
13468         struct drm_device *dev = crtc->base.dev;
13469         struct drm_i915_private *dev_priv = to_i915(dev);
13470         struct intel_encoder *encoder;
13471         struct intel_crtc_state *pipe_config;
13472         struct drm_atomic_state *state;
13473         bool active;
13474
13475         state = old_crtc_state->base.state;
13476         __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base);
13477         pipe_config = old_crtc_state;
13478         memset(pipe_config, 0, sizeof(*pipe_config));
13479         pipe_config->base.crtc = &crtc->base;
13480         pipe_config->base.state = state;
13481
13482         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name);
13483
13484         active = dev_priv->display.get_pipe_config(crtc, pipe_config);
13485
13486         /* we keep both pipes enabled on 830 */
13487         if (IS_I830(dev_priv))
13488                 active = new_crtc_state->base.active;
13489
13490         I915_STATE_WARN(new_crtc_state->base.active != active,
13491              "crtc active state doesn't match with hw state "
13492              "(expected %i, found %i)\n", new_crtc_state->base.active, active);
13493
13494         I915_STATE_WARN(crtc->active != new_crtc_state->base.active,
13495              "transitional active state does not match atomic hw state "
13496              "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active);
13497
13498         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13499                 enum pipe pipe;
13500
13501                 active = encoder->get_hw_state(encoder, &pipe);
13502                 I915_STATE_WARN(active != new_crtc_state->base.active,
13503                         "[ENCODER:%i] active %i with crtc active %i\n",
13504                         encoder->base.base.id, active, new_crtc_state->base.active);
13505
13506                 I915_STATE_WARN(active && crtc->pipe != pipe,
13507                                 "Encoder connected to wrong pipe %c\n",
13508                                 pipe_name(pipe));
13509
13510                 if (active)
13511                         encoder->get_config(encoder, pipe_config);
13512         }
13513
13514         intel_crtc_compute_pixel_rate(pipe_config);
13515
13516         if (!new_crtc_state->base.active)
13517                 return;
13518
13519         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13520
13521         if (!intel_pipe_config_compare(new_crtc_state,
13522                                        pipe_config, false)) {
13523                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13524                 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
13525                 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
13526         }
13527 }
13528
13529 static void
13530 intel_verify_planes(struct intel_atomic_state *state)
13531 {
13532         struct intel_plane *plane;
13533         const struct intel_plane_state *plane_state;
13534         int i;
13535
13536         for_each_new_intel_plane_in_state(state, plane,
13537                                           plane_state, i)
13538                 assert_plane(plane, plane_state->planar_slave ||
13539                              plane_state->base.visible);
13540 }
13541
13542 static void
13543 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13544                          struct intel_shared_dpll *pll,
13545                          struct intel_crtc *crtc,
13546                          struct intel_crtc_state *new_crtc_state)
13547 {
13548         struct intel_dpll_hw_state dpll_hw_state;
13549         unsigned int crtc_mask;
13550         bool active;
13551
13552         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13553
13554         DRM_DEBUG_KMS("%s\n", pll->info->name);
13555
13556         active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
13557
13558         if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
13559                 I915_STATE_WARN(!pll->on && pll->active_mask,
13560                      "pll in active use but not on in sw tracking\n");
13561                 I915_STATE_WARN(pll->on && !pll->active_mask,
13562                      "pll is on but not used by any active crtc\n");
13563                 I915_STATE_WARN(pll->on != active,
13564                      "pll on state mismatch (expected %i, found %i)\n",
13565                      pll->on, active);
13566         }
13567
13568         if (!crtc) {
13569                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13570                                 "more active pll users than references: %x vs %x\n",
13571                                 pll->active_mask, pll->state.crtc_mask);
13572
13573                 return;
13574         }
13575
13576         crtc_mask = drm_crtc_mask(&crtc->base);
13577
13578         if (new_crtc_state->base.active)
13579                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13580                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13581                                 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13582         else
13583                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13584                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13585                                 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13586
13587         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13588                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13589                         crtc_mask, pll->state.crtc_mask);
13590
13591         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13592                                           &dpll_hw_state,
13593                                           sizeof(dpll_hw_state)),
13594                         "pll hw state mismatch\n");
13595 }
13596
13597 static void
13598 verify_shared_dpll_state(struct intel_crtc *crtc,
13599                          struct intel_crtc_state *old_crtc_state,
13600                          struct intel_crtc_state *new_crtc_state)
13601 {
13602         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13603
13604         if (new_crtc_state->shared_dpll)
13605                 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
13606
13607         if (old_crtc_state->shared_dpll &&
13608             old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
13609                 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
13610                 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
13611
13612                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13613                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13614                                 pipe_name(drm_crtc_index(&crtc->base)));
13615                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13616                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13617                                 pipe_name(drm_crtc_index(&crtc->base)));
13618         }
13619 }
13620
13621 static void
13622 intel_modeset_verify_crtc(struct intel_crtc *crtc,
13623                           struct intel_atomic_state *state,
13624                           struct intel_crtc_state *old_crtc_state,
13625                           struct intel_crtc_state *new_crtc_state)
13626 {
13627         if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
13628                 return;
13629
13630         verify_wm_state(crtc, new_crtc_state);
13631         verify_connector_state(state, crtc);
13632         verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
13633         verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
13634 }
13635
13636 static void
13637 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
13638 {
13639         int i;
13640
13641         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13642                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13643 }
13644
13645 static void
13646 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
13647                               struct intel_atomic_state *state)
13648 {
13649         verify_encoder_state(dev_priv, state);
13650         verify_connector_state(state, NULL);
13651         verify_disabled_dpll_state(dev_priv);
13652 }
13653
13654 static void
13655 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
13656 {
13657         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
13658         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13659         const struct drm_display_mode *adjusted_mode =
13660                 &crtc_state->base.adjusted_mode;
13661
13662         drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
13663
13664         /*
13665          * The scanline counter increments at the leading edge of hsync.
13666          *
13667          * On most platforms it starts counting from vtotal-1 on the
13668          * first active line. That means the scanline counter value is
13669          * always one less than what we would expect. Ie. just after
13670          * start of vblank, which also occurs at start of hsync (on the
13671          * last active line), the scanline counter will read vblank_start-1.
13672          *
13673          * On gen2 the scanline counter starts counting from 1 instead
13674          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13675          * to keep the value positive), instead of adding one.
13676          *
13677          * On HSW+ the behaviour of the scanline counter depends on the output
13678          * type. For DP ports it behaves like most other platforms, but on HDMI
13679          * there's an extra 1 line difference. So we need to add two instead of
13680          * one to the value.
13681          *
13682          * On VLV/CHV DSI the scanline counter would appear to increment
13683          * approx. 1/3 of a scanline before start of vblank. Unfortunately
13684          * that means we can't tell whether we're in vblank or not while
13685          * we're on that particular line. We must still set scanline_offset
13686          * to 1 so that the vblank timestamps come out correct when we query
13687          * the scanline counter from within the vblank interrupt handler.
13688          * However if queried just before the start of vblank we'll get an
13689          * answer that's slightly in the future.
13690          */
13691         if (IS_GEN(dev_priv, 2)) {
13692                 int vtotal;
13693
13694                 vtotal = adjusted_mode->crtc_vtotal;
13695                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13696                         vtotal /= 2;
13697
13698                 crtc->scanline_offset = vtotal - 1;
13699         } else if (HAS_DDI(dev_priv) &&
13700                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
13701                 crtc->scanline_offset = 2;
13702         } else {
13703                 crtc->scanline_offset = 1;
13704         }
13705 }
13706
13707 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
13708 {
13709         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13710         struct intel_crtc_state *new_crtc_state;
13711         struct intel_crtc *crtc;
13712         int i;
13713
13714         if (!dev_priv->display.crtc_compute_clock)
13715                 return;
13716
13717         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
13718                 if (!needs_modeset(new_crtc_state))
13719                         continue;
13720
13721                 intel_release_shared_dplls(state, crtc);
13722         }
13723 }
13724
13725 /*
13726  * This implements the workaround described in the "notes" section of the mode
13727  * set sequence documentation. When going from no pipes or single pipe to
13728  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13729  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13730  */
13731 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state)
13732 {
13733         struct intel_crtc_state *crtc_state;
13734         struct intel_crtc *crtc;
13735         struct intel_crtc_state *first_crtc_state = NULL;
13736         struct intel_crtc_state *other_crtc_state = NULL;
13737         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13738         int i;
13739
13740         /* look at all crtc's that are going to be enabled in during modeset */
13741         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
13742                 if (!crtc_state->base.active ||
13743                     !needs_modeset(crtc_state))
13744                         continue;
13745
13746                 if (first_crtc_state) {
13747                         other_crtc_state = crtc_state;
13748                         break;
13749                 } else {
13750                         first_crtc_state = crtc_state;
13751                         first_pipe = crtc->pipe;
13752                 }
13753         }
13754
13755         /* No workaround needed? */
13756         if (!first_crtc_state)
13757                 return 0;
13758
13759         /* w/a possibly needed, check how many crtc's are already enabled. */
13760         for_each_intel_crtc(state->base.dev, crtc) {
13761                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
13762                 if (IS_ERR(crtc_state))
13763                         return PTR_ERR(crtc_state);
13764
13765                 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
13766
13767                 if (!crtc_state->base.active ||
13768                     needs_modeset(crtc_state))
13769                         continue;
13770
13771                 /* 2 or more enabled crtcs means no need for w/a */
13772                 if (enabled_pipe != INVALID_PIPE)
13773                         return 0;
13774
13775                 enabled_pipe = crtc->pipe;
13776         }
13777
13778         if (enabled_pipe != INVALID_PIPE)
13779                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13780         else if (other_crtc_state)
13781                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13782
13783         return 0;
13784 }
13785
13786 static int intel_modeset_checks(struct intel_atomic_state *state)
13787 {
13788         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13789         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13790         struct intel_crtc *crtc;
13791         int ret, i;
13792
13793         /* keep the current setting */
13794         if (!state->cdclk.force_min_cdclk_changed)
13795                 state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk;
13796
13797         state->modeset = true;
13798         state->active_pipes = dev_priv->active_pipes;
13799         state->cdclk.logical = dev_priv->cdclk.logical;
13800         state->cdclk.actual = dev_priv->cdclk.actual;
13801
13802         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13803                                             new_crtc_state, i) {
13804                 if (new_crtc_state->base.active)
13805                         state->active_pipes |= BIT(crtc->pipe);
13806                 else
13807                         state->active_pipes &= ~BIT(crtc->pipe);
13808
13809                 if (old_crtc_state->base.active != new_crtc_state->base.active)
13810                         state->active_pipe_changes |= BIT(crtc->pipe);
13811         }
13812
13813         if (state->active_pipe_changes) {
13814                 ret = intel_atomic_lock_global_state(state);
13815                 if (ret)
13816                         return ret;
13817         }
13818
13819         ret = intel_modeset_calc_cdclk(state);
13820         if (ret)
13821                 return ret;
13822
13823         intel_modeset_clear_plls(state);
13824
13825         if (IS_HASWELL(dev_priv))
13826                 return haswell_mode_set_planes_workaround(state);
13827
13828         return 0;
13829 }
13830
13831 /*
13832  * Handle calculation of various watermark data at the end of the atomic check
13833  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13834  * handlers to ensure that all derived state has been updated.
13835  */
13836 static int calc_watermark_data(struct intel_atomic_state *state)
13837 {
13838         struct drm_device *dev = state->base.dev;
13839         struct drm_i915_private *dev_priv = to_i915(dev);
13840
13841         /* Is there platform-specific watermark information to calculate? */
13842         if (dev_priv->display.compute_global_watermarks)
13843                 return dev_priv->display.compute_global_watermarks(state);
13844
13845         return 0;
13846 }
13847
13848 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
13849                                      struct intel_crtc_state *new_crtc_state)
13850 {
13851         if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
13852                 return;
13853
13854         new_crtc_state->base.mode_changed = false;
13855         new_crtc_state->update_pipe = true;
13856
13857         /*
13858          * If we're not doing the full modeset we want to
13859          * keep the current M/N values as they may be
13860          * sufficiently different to the computed values
13861          * to cause problems.
13862          *
13863          * FIXME: should really copy more fuzzy state here
13864          */
13865         new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
13866         new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
13867         new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
13868         new_crtc_state->has_drrs = old_crtc_state->has_drrs;
13869 }
13870
13871 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
13872                                           struct intel_crtc *crtc,
13873                                           u8 plane_ids_mask)
13874 {
13875         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13876         struct intel_plane *plane;
13877
13878         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
13879                 struct intel_plane_state *plane_state;
13880
13881                 if ((plane_ids_mask & BIT(plane->id)) == 0)
13882                         continue;
13883
13884                 plane_state = intel_atomic_get_plane_state(state, plane);
13885                 if (IS_ERR(plane_state))
13886                         return PTR_ERR(plane_state);
13887         }
13888
13889         return 0;
13890 }
13891
13892 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
13893 {
13894         /* See {hsw,vlv,ivb}_plane_ratio() */
13895         return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
13896                 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
13897                 IS_IVYBRIDGE(dev_priv);
13898 }
13899
13900 static int intel_atomic_check_planes(struct intel_atomic_state *state,
13901                                      bool *need_modeset)
13902 {
13903         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13904         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13905         struct intel_plane_state *plane_state;
13906         struct intel_plane *plane;
13907         struct intel_crtc *crtc;
13908         int i, ret;
13909
13910         ret = icl_add_linked_planes(state);
13911         if (ret)
13912                 return ret;
13913
13914         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13915                 ret = intel_plane_atomic_check(state, plane);
13916                 if (ret) {
13917                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n",
13918                                          plane->base.base.id, plane->base.name);
13919                         return ret;
13920                 }
13921         }
13922
13923         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13924                                             new_crtc_state, i) {
13925                 u8 old_active_planes, new_active_planes;
13926
13927                 ret = icl_check_nv12_planes(new_crtc_state);
13928                 if (ret)
13929                         return ret;
13930
13931                 /*
13932                  * On some platforms the number of active planes affects
13933                  * the planes' minimum cdclk calculation. Add such planes
13934                  * to the state before we compute the minimum cdclk.
13935                  */
13936                 if (!active_planes_affects_min_cdclk(dev_priv))
13937                         continue;
13938
13939                 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
13940                 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
13941
13942                 if (hweight8(old_active_planes) == hweight8(new_active_planes))
13943                         continue;
13944
13945                 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
13946                 if (ret)
13947                         return ret;
13948         }
13949
13950         /*
13951          * active_planes bitmask has been updated, and potentially
13952          * affected planes are part of the state. We can now
13953          * compute the minimum cdclk for each plane.
13954          */
13955         for_each_new_intel_plane_in_state(state, plane, plane_state, i)
13956                 *need_modeset |= intel_plane_calc_min_cdclk(state, plane);
13957
13958         return 0;
13959 }
13960
13961 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
13962 {
13963         struct intel_crtc_state *crtc_state;
13964         struct intel_crtc *crtc;
13965         int i;
13966
13967         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
13968                 int ret = intel_crtc_atomic_check(state, crtc);
13969                 if (ret) {
13970                         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n",
13971                                          crtc->base.base.id, crtc->base.name);
13972                         return ret;
13973                 }
13974         }
13975
13976         return 0;
13977 }
13978
13979 /**
13980  * intel_atomic_check - validate state object
13981  * @dev: drm device
13982  * @_state: state to validate
13983  */
13984 static int intel_atomic_check(struct drm_device *dev,
13985                               struct drm_atomic_state *_state)
13986 {
13987         struct drm_i915_private *dev_priv = to_i915(dev);
13988         struct intel_atomic_state *state = to_intel_atomic_state(_state);
13989         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13990         struct intel_crtc *crtc;
13991         int ret, i;
13992         bool any_ms = false;
13993
13994         /* Catch I915_MODE_FLAG_INHERITED */
13995         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13996                                             new_crtc_state, i) {
13997                 if (new_crtc_state->base.mode.private_flags !=
13998                     old_crtc_state->base.mode.private_flags)
13999                         new_crtc_state->base.mode_changed = true;
14000         }
14001
14002         ret = drm_atomic_helper_check_modeset(dev, &state->base);
14003         if (ret)
14004                 goto fail;
14005
14006         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14007                                             new_crtc_state, i) {
14008                 if (!needs_modeset(new_crtc_state))
14009                         continue;
14010
14011                 if (!new_crtc_state->base.enable) {
14012                         any_ms = true;
14013                         continue;
14014                 }
14015
14016                 ret = intel_modeset_pipe_config(new_crtc_state);
14017                 if (ret)
14018                         goto fail;
14019
14020                 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14021
14022                 if (needs_modeset(new_crtc_state))
14023                         any_ms = true;
14024         }
14025
14026         if (any_ms && !check_digital_port_conflicts(state)) {
14027                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
14028                 ret = EINVAL;
14029                 goto fail;
14030         }
14031
14032         ret = drm_dp_mst_atomic_check(&state->base);
14033         if (ret)
14034                 goto fail;
14035
14036         any_ms |= state->cdclk.force_min_cdclk_changed;
14037
14038         ret = intel_atomic_check_planes(state, &any_ms);
14039         if (ret)
14040                 goto fail;
14041
14042         if (any_ms) {
14043                 ret = intel_modeset_checks(state);
14044                 if (ret)
14045                         goto fail;
14046         } else {
14047                 state->cdclk.logical = dev_priv->cdclk.logical;
14048         }
14049
14050         ret = intel_atomic_check_crtcs(state);
14051         if (ret)
14052                 goto fail;
14053
14054         intel_fbc_choose_crtc(dev_priv, state);
14055         ret = calc_watermark_data(state);
14056         if (ret)
14057                 goto fail;
14058
14059         ret = intel_bw_atomic_check(state);
14060         if (ret)
14061                 goto fail;
14062
14063         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14064                                             new_crtc_state, i) {
14065                 if (!needs_modeset(new_crtc_state) &&
14066                     !new_crtc_state->update_pipe)
14067                         continue;
14068
14069                 intel_dump_pipe_config(new_crtc_state, state,
14070                                        needs_modeset(new_crtc_state) ?
14071                                        "[modeset]" : "[fastset]");
14072         }
14073
14074         return 0;
14075
14076  fail:
14077         if (ret == -EDEADLK)
14078                 return ret;
14079
14080         /*
14081          * FIXME would probably be nice to know which crtc specifically
14082          * caused the failure, in cases where we can pinpoint it.
14083          */
14084         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14085                                             new_crtc_state, i)
14086                 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
14087
14088         return ret;
14089 }
14090
14091 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
14092 {
14093         return drm_atomic_helper_prepare_planes(state->base.dev,
14094                                                 &state->base);
14095 }
14096
14097 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14098 {
14099         struct drm_device *dev = crtc->base.dev;
14100         struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
14101
14102         if (!vblank->max_vblank_count)
14103                 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
14104
14105         return crtc->base.funcs->get_vblank_counter(&crtc->base);
14106 }
14107
14108 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14109                                   struct intel_crtc_state *crtc_state)
14110 {
14111         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14112
14113         if (!IS_GEN(dev_priv, 2))
14114                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14115
14116         if (crtc_state->has_pch_encoder) {
14117                 enum pipe pch_transcoder =
14118                         intel_crtc_pch_transcoder(crtc);
14119
14120                 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14121         }
14122 }
14123
14124 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
14125                                const struct intel_crtc_state *new_crtc_state)
14126 {
14127         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
14128         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14129
14130         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
14131         crtc->base.mode = new_crtc_state->base.mode;
14132
14133         /*
14134          * Update pipe size and adjust fitter if needed: the reason for this is
14135          * that in compute_mode_changes we check the native mode (not the pfit
14136          * mode) to see if we can flip rather than do a full mode set. In the
14137          * fastboot case, we'll flip, but if we don't update the pipesrc and
14138          * pfit state, we'll end up with a big fb scanned out into the wrong
14139          * sized surface.
14140          */
14141         intel_set_pipe_src_size(new_crtc_state);
14142
14143         /* on skylake this is done by detaching scalers */
14144         if (INTEL_GEN(dev_priv) >= 9) {
14145                 skl_detach_scalers(new_crtc_state);
14146
14147                 if (new_crtc_state->pch_pfit.enabled)
14148                         skylake_pfit_enable(new_crtc_state);
14149         } else if (HAS_PCH_SPLIT(dev_priv)) {
14150                 if (new_crtc_state->pch_pfit.enabled)
14151                         ironlake_pfit_enable(new_crtc_state);
14152                 else if (old_crtc_state->pch_pfit.enabled)
14153                         ironlake_pfit_disable(old_crtc_state);
14154         }
14155
14156         if (INTEL_GEN(dev_priv) >= 11)
14157                 icl_set_pipe_chicken(crtc);
14158 }
14159
14160 static void commit_pipe_config(struct intel_atomic_state *state,
14161                                struct intel_crtc_state *old_crtc_state,
14162                                struct intel_crtc_state *new_crtc_state)
14163 {
14164         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14165         bool modeset = needs_modeset(new_crtc_state);
14166
14167         /*
14168          * During modesets pipe configuration was programmed as the
14169          * CRTC was enabled.
14170          */
14171         if (!modeset) {
14172                 if (new_crtc_state->base.color_mgmt_changed ||
14173                     new_crtc_state->update_pipe)
14174                         intel_color_commit(new_crtc_state);
14175
14176                 if (INTEL_GEN(dev_priv) >= 9)
14177                         skl_detach_scalers(new_crtc_state);
14178
14179                 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14180                         bdw_set_pipemisc(new_crtc_state);
14181
14182                 if (new_crtc_state->update_pipe)
14183                         intel_pipe_fastset(old_crtc_state, new_crtc_state);
14184         }
14185
14186         if (dev_priv->display.atomic_update_watermarks)
14187                 dev_priv->display.atomic_update_watermarks(state,
14188                                                            new_crtc_state);
14189 }
14190
14191 static void intel_update_crtc(struct intel_crtc *crtc,
14192                               struct intel_atomic_state *state,
14193                               struct intel_crtc_state *old_crtc_state,
14194                               struct intel_crtc_state *new_crtc_state)
14195 {
14196         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14197         bool modeset = needs_modeset(new_crtc_state);
14198         struct intel_plane_state *new_plane_state =
14199                 intel_atomic_get_new_plane_state(state,
14200                                                  to_intel_plane(crtc->base.primary));
14201
14202         if (modeset) {
14203                 intel_crtc_update_active_timings(new_crtc_state);
14204
14205                 dev_priv->display.crtc_enable(new_crtc_state, state);
14206
14207                 /* vblanks work again, re-enable pipe CRC. */
14208                 intel_crtc_enable_pipe_crc(crtc);
14209         } else {
14210                 intel_pre_plane_update(old_crtc_state, new_crtc_state);
14211
14212                 if (new_crtc_state->update_pipe)
14213                         intel_encoders_update_pipe(crtc, new_crtc_state, state);
14214         }
14215
14216         if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14217                 intel_fbc_disable(crtc);
14218         else if (new_plane_state)
14219                 intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14220
14221         /* Perform vblank evasion around commit operation */
14222         intel_pipe_update_start(new_crtc_state);
14223
14224         commit_pipe_config(state, old_crtc_state, new_crtc_state);
14225
14226         if (INTEL_GEN(dev_priv) >= 9)
14227                 skl_update_planes_on_crtc(state, crtc);
14228         else
14229                 i9xx_update_planes_on_crtc(state, crtc);
14230
14231         intel_pipe_update_end(new_crtc_state);
14232
14233         /*
14234          * We usually enable FIFO underrun interrupts as part of the
14235          * CRTC enable sequence during modesets.  But when we inherit a
14236          * valid pipe configuration from the BIOS we need to take care
14237          * of enabling them on the CRTC's first fastset.
14238          */
14239         if (new_crtc_state->update_pipe && !modeset &&
14240             old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
14241                 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14242 }
14243
14244 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state)
14245 {
14246         struct drm_i915_private *dev_priv = to_i915(new_crtc_state->base.crtc->dev);
14247         enum transcoder slave_transcoder;
14248
14249         WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask));
14250
14251         slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1;
14252         return intel_get_crtc_for_pipe(dev_priv,
14253                                        (enum pipe)slave_transcoder);
14254 }
14255
14256 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
14257                                           struct intel_crtc_state *old_crtc_state,
14258                                           struct intel_crtc_state *new_crtc_state,
14259                                           struct intel_crtc *crtc)
14260 {
14261         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14262
14263         intel_crtc_disable_planes(state, crtc);
14264
14265         /*
14266          * We need to disable pipe CRC before disabling the pipe,
14267          * or we race against vblank off.
14268          */
14269         intel_crtc_disable_pipe_crc(crtc);
14270
14271         dev_priv->display.crtc_disable(old_crtc_state, state);
14272         crtc->active = false;
14273         intel_fbc_disable(crtc);
14274         intel_disable_shared_dpll(old_crtc_state);
14275
14276         /*
14277          * Underruns don't always raise interrupts,
14278          * so check manually.
14279          */
14280         intel_check_cpu_fifo_underruns(dev_priv);
14281         intel_check_pch_fifo_underruns(dev_priv);
14282
14283         /* FIXME unify this for all platforms */
14284         if (!new_crtc_state->base.active &&
14285             !HAS_GMCH(dev_priv) &&
14286             dev_priv->display.initial_watermarks)
14287                 dev_priv->display.initial_watermarks(state,
14288                                                      new_crtc_state);
14289 }
14290
14291 static void intel_trans_port_sync_modeset_disables(struct intel_atomic_state *state,
14292                                                    struct intel_crtc *crtc,
14293                                                    struct intel_crtc_state *old_crtc_state,
14294                                                    struct intel_crtc_state *new_crtc_state)
14295 {
14296         struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
14297         struct intel_crtc_state *new_slave_crtc_state =
14298                 intel_atomic_get_new_crtc_state(state, slave_crtc);
14299         struct intel_crtc_state *old_slave_crtc_state =
14300                 intel_atomic_get_old_crtc_state(state, slave_crtc);
14301
14302         WARN_ON(!slave_crtc || !new_slave_crtc_state ||
14303                 !old_slave_crtc_state);
14304
14305         /* Disable Slave first */
14306         intel_pre_plane_update(old_slave_crtc_state, new_slave_crtc_state);
14307         if (old_slave_crtc_state->base.active)
14308                 intel_old_crtc_state_disables(state,
14309                                               old_slave_crtc_state,
14310                                               new_slave_crtc_state,
14311                                               slave_crtc);
14312
14313         /* Disable Master */
14314         intel_pre_plane_update(old_crtc_state, new_crtc_state);
14315         if (old_crtc_state->base.active)
14316                 intel_old_crtc_state_disables(state,
14317                                               old_crtc_state,
14318                                               new_crtc_state,
14319                                               crtc);
14320 }
14321
14322 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
14323 {
14324         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14325         struct intel_crtc *crtc;
14326         int i;
14327
14328         /*
14329          * Disable CRTC/pipes in reverse order because some features(MST in
14330          * TGL+) requires master and slave relationship between pipes, so it
14331          * should always pick the lowest pipe as master as it will be enabled
14332          * first and disable in the reverse order so the master will be the
14333          * last one to be disabled.
14334          */
14335         for_each_oldnew_intel_crtc_in_state_reverse(state, crtc, old_crtc_state,
14336                                                     new_crtc_state, i) {
14337                 if (!needs_modeset(new_crtc_state))
14338                         continue;
14339
14340                 /* In case of Transcoder port Sync master slave CRTCs can be
14341                  * assigned in any order and we need to make sure that
14342                  * slave CRTCs are disabled first and then master CRTC since
14343                  * Slave vblanks are masked till Master Vblanks.
14344                  */
14345                 if (is_trans_port_sync_mode(new_crtc_state)) {
14346                         if (is_trans_port_sync_master(new_crtc_state))
14347                                 intel_trans_port_sync_modeset_disables(state,
14348                                                                        crtc,
14349                                                                        old_crtc_state,
14350                                                                        new_crtc_state);
14351                         else
14352                                 continue;
14353                 } else {
14354                         intel_pre_plane_update(old_crtc_state, new_crtc_state);
14355
14356                         if (old_crtc_state->base.active)
14357                                 intel_old_crtc_state_disables(state,
14358                                                               old_crtc_state,
14359                                                               new_crtc_state,
14360                                                               crtc);
14361                 }
14362         }
14363 }
14364
14365 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
14366 {
14367         struct intel_crtc *crtc;
14368         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14369         int i;
14370
14371         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14372                 if (!new_crtc_state->base.active)
14373                         continue;
14374
14375                 intel_update_crtc(crtc, state, old_crtc_state,
14376                                   new_crtc_state);
14377         }
14378 }
14379
14380 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc,
14381                                               struct intel_atomic_state *state,
14382                                               struct intel_crtc_state *new_crtc_state)
14383 {
14384         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14385
14386         intel_crtc_update_active_timings(new_crtc_state);
14387         dev_priv->display.crtc_enable(new_crtc_state, state);
14388         intel_crtc_enable_pipe_crc(crtc);
14389 }
14390
14391 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc,
14392                                        struct intel_atomic_state *state)
14393 {
14394         struct drm_connector *uninitialized_var(conn);
14395         struct drm_connector_state *conn_state;
14396         struct intel_dp *intel_dp;
14397         int i;
14398
14399         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
14400                 if (conn_state->crtc == &crtc->base)
14401                         break;
14402         }
14403         intel_dp = enc_to_intel_dp(&intel_attached_encoder(conn)->base);
14404         intel_dp_stop_link_train(intel_dp);
14405 }
14406
14407 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc,
14408                                            struct intel_atomic_state *state)
14409 {
14410         struct intel_crtc_state *new_crtc_state =
14411                 intel_atomic_get_new_crtc_state(state, crtc);
14412         struct intel_crtc_state *old_crtc_state =
14413                 intel_atomic_get_old_crtc_state(state, crtc);
14414         struct intel_plane_state *new_plane_state =
14415                 intel_atomic_get_new_plane_state(state,
14416                                                  to_intel_plane(crtc->base.primary));
14417         bool modeset = needs_modeset(new_crtc_state);
14418
14419         if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14420                 intel_fbc_disable(crtc);
14421         else if (new_plane_state)
14422                 intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14423
14424         /* Perform vblank evasion around commit operation */
14425         intel_pipe_update_start(new_crtc_state);
14426         commit_pipe_config(state, old_crtc_state, new_crtc_state);
14427         skl_update_planes_on_crtc(state, crtc);
14428         intel_pipe_update_end(new_crtc_state);
14429
14430         /*
14431          * We usually enable FIFO underrun interrupts as part of the
14432          * CRTC enable sequence during modesets.  But when we inherit a
14433          * valid pipe configuration from the BIOS we need to take care
14434          * of enabling them on the CRTC's first fastset.
14435          */
14436         if (new_crtc_state->update_pipe && !modeset &&
14437             old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
14438                 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14439 }
14440
14441 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc,
14442                                                struct intel_atomic_state *state,
14443                                                struct intel_crtc_state *old_crtc_state,
14444                                                struct intel_crtc_state *new_crtc_state)
14445 {
14446         struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
14447         struct intel_crtc_state *new_slave_crtc_state =
14448                 intel_atomic_get_new_crtc_state(state, slave_crtc);
14449         struct intel_crtc_state *old_slave_crtc_state =
14450                 intel_atomic_get_old_crtc_state(state, slave_crtc);
14451
14452         WARN_ON(!slave_crtc || !new_slave_crtc_state ||
14453                 !old_slave_crtc_state);
14454
14455         DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n",
14456                       crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id,
14457                       slave_crtc->base.name);
14458
14459         /* Enable seq for slave with with DP_TP_CTL left Idle until the
14460          * master is ready
14461          */
14462         intel_crtc_enable_trans_port_sync(slave_crtc,
14463                                           state,
14464                                           new_slave_crtc_state);
14465
14466         /* Enable seq for master with with DP_TP_CTL left Idle */
14467         intel_crtc_enable_trans_port_sync(crtc,
14468                                           state,
14469                                           new_crtc_state);
14470
14471         /* Set Slave's DP_TP_CTL to Normal */
14472         intel_set_dp_tp_ctl_normal(slave_crtc,
14473                                    state);
14474
14475         /* Set Master's DP_TP_CTL To Normal */
14476         usleep_range(200, 400);
14477         intel_set_dp_tp_ctl_normal(crtc,
14478                                    state);
14479
14480         /* Now do the post crtc enable for all master and slaves */
14481         intel_post_crtc_enable_updates(slave_crtc,
14482                                        state);
14483         intel_post_crtc_enable_updates(crtc,
14484                                        state);
14485 }
14486
14487 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
14488 {
14489         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14490         struct intel_crtc *crtc;
14491         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14492         unsigned int updated = 0;
14493         bool progress;
14494         int i;
14495         u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
14496         u8 required_slices = state->wm_results.ddb.enabled_slices;
14497         struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
14498
14499         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
14500                 /* ignore allocations for crtc's that have been turned off. */
14501                 if (new_crtc_state->base.active)
14502                         entries[i] = old_crtc_state->wm.skl.ddb;
14503
14504         /* If 2nd DBuf slice required, enable it here */
14505         if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
14506                 icl_dbuf_slices_update(dev_priv, required_slices);
14507
14508         /*
14509          * Whenever the number of active pipes changes, we need to make sure we
14510          * update the pipes in the right order so that their ddb allocations
14511          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14512          * cause pipe underruns and other bad stuff.
14513          */
14514         do {
14515                 progress = false;
14516
14517                 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14518                         enum pipe pipe = crtc->pipe;
14519                         bool vbl_wait = false;
14520                         bool modeset = needs_modeset(new_crtc_state);
14521
14522                         if (updated & BIT(crtc->pipe) || !new_crtc_state->base.active)
14523                                 continue;
14524
14525                         if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
14526                                                         entries,
14527                                                         INTEL_NUM_PIPES(dev_priv), i))
14528                                 continue;
14529
14530                         updated |= BIT(pipe);
14531                         entries[i] = new_crtc_state->wm.skl.ddb;
14532
14533                         /*
14534                          * If this is an already active pipe, it's DDB changed,
14535                          * and this isn't the last pipe that needs updating
14536                          * then we need to wait for a vblank to pass for the
14537                          * new ddb allocation to take effect.
14538                          */
14539                         if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
14540                                                  &old_crtc_state->wm.skl.ddb) &&
14541                             !modeset &&
14542                             state->wm_results.dirty_pipes != updated)
14543                                 vbl_wait = true;
14544
14545                         if (modeset && is_trans_port_sync_mode(new_crtc_state)) {
14546                                 if (is_trans_port_sync_master(new_crtc_state))
14547                                         intel_update_trans_port_sync_crtcs(crtc,
14548                                                                            state,
14549                                                                            old_crtc_state,
14550                                                                            new_crtc_state);
14551                                 else
14552                                         continue;
14553                         } else {
14554                                 intel_update_crtc(crtc, state, old_crtc_state,
14555                                                   new_crtc_state);
14556                         }
14557
14558                         if (vbl_wait)
14559                                 intel_wait_for_vblank(dev_priv, pipe);
14560
14561                         progress = true;
14562                 }
14563         } while (progress);
14564
14565         /* If 2nd DBuf slice is no more required disable it */
14566         if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
14567                 icl_dbuf_slices_update(dev_priv, required_slices);
14568 }
14569
14570 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
14571 {
14572         struct intel_atomic_state *state, *next;
14573         struct llist_node *freed;
14574
14575         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
14576         llist_for_each_entry_safe(state, next, freed, freed)
14577                 drm_atomic_state_put(&state->base);
14578 }
14579
14580 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
14581 {
14582         struct drm_i915_private *dev_priv =
14583                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
14584
14585         intel_atomic_helper_free_state(dev_priv);
14586 }
14587
14588 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
14589 {
14590         struct wait_queue_entry wait_fence, wait_reset;
14591         struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
14592
14593         init_wait_entry(&wait_fence, 0);
14594         init_wait_entry(&wait_reset, 0);
14595         for (;;) {
14596                 prepare_to_wait(&intel_state->commit_ready.wait,
14597                                 &wait_fence, TASK_UNINTERRUPTIBLE);
14598                 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
14599                                               I915_RESET_MODESET),
14600                                 &wait_reset, TASK_UNINTERRUPTIBLE);
14601
14602
14603                 if (i915_sw_fence_done(&intel_state->commit_ready) ||
14604                     test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
14605                         break;
14606
14607                 schedule();
14608         }
14609         finish_wait(&intel_state->commit_ready.wait, &wait_fence);
14610         finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
14611                                   I915_RESET_MODESET),
14612                     &wait_reset);
14613 }
14614
14615 static void intel_atomic_cleanup_work(struct work_struct *work)
14616 {
14617         struct drm_atomic_state *state =
14618                 container_of(work, struct drm_atomic_state, commit_work);
14619         struct drm_i915_private *i915 = to_i915(state->dev);
14620
14621         drm_atomic_helper_cleanup_planes(&i915->drm, state);
14622         drm_atomic_helper_commit_cleanup_done(state);
14623         drm_atomic_state_put(state);
14624
14625         intel_atomic_helper_free_state(i915);
14626 }
14627
14628 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
14629 {
14630         struct drm_device *dev = state->base.dev;
14631         struct drm_i915_private *dev_priv = to_i915(dev);
14632         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14633         struct intel_crtc *crtc;
14634         u64 put_domains[I915_MAX_PIPES] = {};
14635         intel_wakeref_t wakeref = 0;
14636         int i;
14637
14638         intel_atomic_commit_fence_wait(state);
14639
14640         drm_atomic_helper_wait_for_dependencies(&state->base);
14641
14642         if (state->modeset)
14643                 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14644
14645         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14646                                             new_crtc_state, i) {
14647                 if (needs_modeset(new_crtc_state) ||
14648                     new_crtc_state->update_pipe) {
14649
14650                         put_domains[crtc->pipe] =
14651                                 modeset_get_crtc_power_domains(new_crtc_state);
14652                 }
14653         }
14654
14655         intel_commit_modeset_disables(state);
14656
14657         /* FIXME: Eventually get rid of our crtc->config pointer */
14658         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14659                 crtc->config = new_crtc_state;
14660
14661         if (state->modeset) {
14662                 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
14663
14664                 intel_set_cdclk_pre_plane_update(dev_priv,
14665                                                  &state->cdclk.actual,
14666                                                  &dev_priv->cdclk.actual,
14667                                                  state->cdclk.pipe);
14668
14669                 /*
14670                  * SKL workaround: bspec recommends we disable the SAGV when we
14671                  * have more then one pipe enabled
14672                  */
14673                 if (!intel_can_enable_sagv(state))
14674                         intel_disable_sagv(dev_priv);
14675
14676                 intel_modeset_verify_disabled(dev_priv, state);
14677         }
14678
14679         /* Complete the events for pipes that have now been disabled */
14680         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14681                 bool modeset = needs_modeset(new_crtc_state);
14682
14683                 /* Complete events for now disable pipes here. */
14684                 if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) {
14685                         spin_lock_irq(&dev->event_lock);
14686                         drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event);
14687                         spin_unlock_irq(&dev->event_lock);
14688
14689                         new_crtc_state->base.event = NULL;
14690                 }
14691         }
14692
14693         if (state->modeset)
14694                 intel_encoders_update_prepare(state);
14695
14696         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14697         dev_priv->display.commit_modeset_enables(state);
14698
14699         if (state->modeset) {
14700                 intel_encoders_update_complete(state);
14701
14702                 intel_set_cdclk_post_plane_update(dev_priv,
14703                                                   &state->cdclk.actual,
14704                                                   &dev_priv->cdclk.actual,
14705                                                   state->cdclk.pipe);
14706         }
14707
14708         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14709          * already, but still need the state for the delayed optimization. To
14710          * fix this:
14711          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14712          * - schedule that vblank worker _before_ calling hw_done
14713          * - at the start of commit_tail, cancel it _synchrously
14714          * - switch over to the vblank wait helper in the core after that since
14715          *   we don't need out special handling any more.
14716          */
14717         drm_atomic_helper_wait_for_flip_done(dev, &state->base);
14718
14719         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14720                 if (new_crtc_state->base.active &&
14721                     !needs_modeset(new_crtc_state) &&
14722                     (new_crtc_state->base.color_mgmt_changed ||
14723                      new_crtc_state->update_pipe))
14724                         intel_color_load_luts(new_crtc_state);
14725         }
14726
14727         /*
14728          * Now that the vblank has passed, we can go ahead and program the
14729          * optimal watermarks on platforms that need two-step watermark
14730          * programming.
14731          *
14732          * TODO: Move this (and other cleanup) to an async worker eventually.
14733          */
14734         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14735                 if (dev_priv->display.optimize_watermarks)
14736                         dev_priv->display.optimize_watermarks(state,
14737                                                               new_crtc_state);
14738         }
14739
14740         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14741                 intel_post_plane_update(old_crtc_state);
14742
14743                 if (put_domains[i])
14744                         modeset_put_power_domains(dev_priv, put_domains[i]);
14745
14746                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
14747         }
14748
14749         if (state->modeset)
14750                 intel_verify_planes(state);
14751
14752         if (state->modeset && intel_can_enable_sagv(state))
14753                 intel_enable_sagv(dev_priv);
14754
14755         drm_atomic_helper_commit_hw_done(&state->base);
14756
14757         if (state->modeset) {
14758                 /* As one of the primary mmio accessors, KMS has a high
14759                  * likelihood of triggering bugs in unclaimed access. After we
14760                  * finish modesetting, see if an error has been flagged, and if
14761                  * so enable debugging for the next modeset - and hope we catch
14762                  * the culprit.
14763                  */
14764                 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
14765                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
14766         }
14767         intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14768
14769         /*
14770          * Defer the cleanup of the old state to a separate worker to not
14771          * impede the current task (userspace for blocking modesets) that
14772          * are executed inline. For out-of-line asynchronous modesets/flips,
14773          * deferring to a new worker seems overkill, but we would place a
14774          * schedule point (cond_resched()) here anyway to keep latencies
14775          * down.
14776          */
14777         INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
14778         queue_work(system_highpri_wq, &state->base.commit_work);
14779 }
14780
14781 static void intel_atomic_commit_work(struct work_struct *work)
14782 {
14783         struct intel_atomic_state *state =
14784                 container_of(work, struct intel_atomic_state, base.commit_work);
14785
14786         intel_atomic_commit_tail(state);
14787 }
14788
14789 static int __i915_sw_fence_call
14790 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14791                           enum i915_sw_fence_notify notify)
14792 {
14793         struct intel_atomic_state *state =
14794                 container_of(fence, struct intel_atomic_state, commit_ready);
14795
14796         switch (notify) {
14797         case FENCE_COMPLETE:
14798                 /* we do blocking waits in the worker, nothing to do here */
14799                 break;
14800         case FENCE_FREE:
14801                 {
14802                         struct intel_atomic_helper *helper =
14803                                 &to_i915(state->base.dev)->atomic_helper;
14804
14805                         if (llist_add(&state->freed, &helper->free_list))
14806                                 schedule_work(&helper->free_work);
14807                         break;
14808                 }
14809         }
14810
14811         return NOTIFY_DONE;
14812 }
14813
14814 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
14815 {
14816         struct intel_plane_state *old_plane_state, *new_plane_state;
14817         struct intel_plane *plane;
14818         int i;
14819
14820         for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
14821                                              new_plane_state, i)
14822                 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb),
14823                                         to_intel_frontbuffer(new_plane_state->base.fb),
14824                                         plane->frontbuffer_bit);
14825 }
14826
14827 static void assert_global_state_locked(struct drm_i915_private *dev_priv)
14828 {
14829         struct intel_crtc *crtc;
14830
14831         for_each_intel_crtc(&dev_priv->drm, crtc)
14832                 drm_modeset_lock_assert_held(&crtc->base.mutex);
14833 }
14834
14835 static int intel_atomic_commit(struct drm_device *dev,
14836                                struct drm_atomic_state *_state,
14837                                bool nonblock)
14838 {
14839         struct intel_atomic_state *state = to_intel_atomic_state(_state);
14840         struct drm_i915_private *dev_priv = to_i915(dev);
14841         int ret = 0;
14842
14843         state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
14844
14845         drm_atomic_state_get(&state->base);
14846         i915_sw_fence_init(&state->commit_ready,
14847                            intel_atomic_commit_ready);
14848
14849         /*
14850          * The intel_legacy_cursor_update() fast path takes care
14851          * of avoiding the vblank waits for simple cursor
14852          * movement and flips. For cursor on/off and size changes,
14853          * we want to perform the vblank waits so that watermark
14854          * updates happen during the correct frames. Gen9+ have
14855          * double buffered watermarks and so shouldn't need this.
14856          *
14857          * Unset state->legacy_cursor_update before the call to
14858          * drm_atomic_helper_setup_commit() because otherwise
14859          * drm_atomic_helper_wait_for_flip_done() is a noop and
14860          * we get FIFO underruns because we didn't wait
14861          * for vblank.
14862          *
14863          * FIXME doing watermarks and fb cleanup from a vblank worker
14864          * (assuming we had any) would solve these problems.
14865          */
14866         if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
14867                 struct intel_crtc_state *new_crtc_state;
14868                 struct intel_crtc *crtc;
14869                 int i;
14870
14871                 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14872                         if (new_crtc_state->wm.need_postvbl_update ||
14873                             new_crtc_state->update_wm_post)
14874                                 state->base.legacy_cursor_update = false;
14875         }
14876
14877         ret = intel_atomic_prepare_commit(state);
14878         if (ret) {
14879                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14880                 i915_sw_fence_commit(&state->commit_ready);
14881                 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14882                 return ret;
14883         }
14884
14885         ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
14886         if (!ret)
14887                 ret = drm_atomic_helper_swap_state(&state->base, true);
14888
14889         if (ret) {
14890                 i915_sw_fence_commit(&state->commit_ready);
14891
14892                 drm_atomic_helper_cleanup_planes(dev, &state->base);
14893                 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14894                 return ret;
14895         }
14896         dev_priv->wm.distrust_bios_wm = false;
14897         intel_shared_dpll_swap_state(state);
14898         intel_atomic_track_fbs(state);
14899
14900         if (state->global_state_changed) {
14901                 assert_global_state_locked(dev_priv);
14902
14903                 memcpy(dev_priv->min_cdclk, state->min_cdclk,
14904                        sizeof(state->min_cdclk));
14905                 memcpy(dev_priv->min_voltage_level, state->min_voltage_level,
14906                        sizeof(state->min_voltage_level));
14907                 dev_priv->active_pipes = state->active_pipes;
14908                 dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk;
14909
14910                 intel_cdclk_swap_state(state);
14911         }
14912
14913         drm_atomic_state_get(&state->base);
14914         INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
14915
14916         i915_sw_fence_commit(&state->commit_ready);
14917         if (nonblock && state->modeset) {
14918                 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
14919         } else if (nonblock) {
14920                 queue_work(dev_priv->flip_wq, &state->base.commit_work);
14921         } else {
14922                 if (state->modeset)
14923                         flush_workqueue(dev_priv->modeset_wq);
14924                 intel_atomic_commit_tail(state);
14925         }
14926
14927         return 0;
14928 }
14929
14930 struct wait_rps_boost {
14931         struct wait_queue_entry wait;
14932
14933         struct drm_crtc *crtc;
14934         struct i915_request *request;
14935 };
14936
14937 static int do_rps_boost(struct wait_queue_entry *_wait,
14938                         unsigned mode, int sync, void *key)
14939 {
14940         struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
14941         struct i915_request *rq = wait->request;
14942
14943         /*
14944          * If we missed the vblank, but the request is already running it
14945          * is reasonable to assume that it will complete before the next
14946          * vblank without our intervention, so leave RPS alone.
14947          */
14948         if (!i915_request_started(rq))
14949                 intel_rps_boost(rq);
14950         i915_request_put(rq);
14951
14952         drm_crtc_vblank_put(wait->crtc);
14953
14954         list_del(&wait->wait.entry);
14955         kfree(wait);
14956         return 1;
14957 }
14958
14959 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
14960                                        struct dma_fence *fence)
14961 {
14962         struct wait_rps_boost *wait;
14963
14964         if (!dma_fence_is_i915(fence))
14965                 return;
14966
14967         if (INTEL_GEN(to_i915(crtc->dev)) < 6)
14968                 return;
14969
14970         if (drm_crtc_vblank_get(crtc))
14971                 return;
14972
14973         wait = kmalloc(sizeof(*wait), GFP_KERNEL);
14974         if (!wait) {
14975                 drm_crtc_vblank_put(crtc);
14976                 return;
14977         }
14978
14979         wait->request = to_request(dma_fence_get(fence));
14980         wait->crtc = crtc;
14981
14982         wait->wait.func = do_rps_boost;
14983         wait->wait.flags = 0;
14984
14985         add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
14986 }
14987
14988 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
14989 {
14990         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
14991         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
14992         struct drm_framebuffer *fb = plane_state->base.fb;
14993         struct i915_vma *vma;
14994
14995         if (plane->id == PLANE_CURSOR &&
14996             INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
14997                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14998                 const int align = intel_cursor_alignment(dev_priv);
14999                 int err;
15000
15001                 err = i915_gem_object_attach_phys(obj, align);
15002                 if (err)
15003                         return err;
15004         }
15005
15006         vma = intel_pin_and_fence_fb_obj(fb,
15007                                          &plane_state->view,
15008                                          intel_plane_uses_fence(plane_state),
15009                                          &plane_state->flags);
15010         if (IS_ERR(vma))
15011                 return PTR_ERR(vma);
15012
15013         plane_state->vma = vma;
15014
15015         return 0;
15016 }
15017
15018 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15019 {
15020         struct i915_vma *vma;
15021
15022         vma = fetch_and_zero(&old_plane_state->vma);
15023         if (vma)
15024                 intel_unpin_fb_vma(vma, old_plane_state->flags);
15025 }
15026
15027 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15028 {
15029         struct i915_sched_attr attr = {
15030                 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15031         };
15032
15033         i915_gem_object_wait_priority(obj, 0, &attr);
15034 }
15035
15036 /**
15037  * intel_prepare_plane_fb - Prepare fb for usage on plane
15038  * @plane: drm plane to prepare for
15039  * @_new_plane_state: the plane state being prepared
15040  *
15041  * Prepares a framebuffer for usage on a display plane.  Generally this
15042  * involves pinning the underlying object and updating the frontbuffer tracking
15043  * bits.  Some older platforms need special physical address handling for
15044  * cursor planes.
15045  *
15046  * Returns 0 on success, negative error code on failure.
15047  */
15048 int
15049 intel_prepare_plane_fb(struct drm_plane *plane,
15050                        struct drm_plane_state *_new_plane_state)
15051 {
15052         struct intel_plane_state *new_plane_state =
15053                 to_intel_plane_state(_new_plane_state);
15054         struct intel_atomic_state *intel_state =
15055                 to_intel_atomic_state(new_plane_state->base.state);
15056         struct drm_i915_private *dev_priv = to_i915(plane->dev);
15057         struct drm_framebuffer *fb = new_plane_state->base.fb;
15058         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15059         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
15060         int ret;
15061
15062         if (old_obj) {
15063                 struct intel_crtc_state *crtc_state =
15064                         intel_atomic_get_new_crtc_state(intel_state,
15065                                                         to_intel_crtc(plane->state->crtc));
15066
15067                 /* Big Hammer, we also need to ensure that any pending
15068                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15069                  * current scanout is retired before unpinning the old
15070                  * framebuffer. Note that we rely on userspace rendering
15071                  * into the buffer attached to the pipe they are waiting
15072                  * on. If not, userspace generates a GPU hang with IPEHR
15073                  * point to the MI_WAIT_FOR_EVENT.
15074                  *
15075                  * This should only fail upon a hung GPU, in which case we
15076                  * can safely continue.
15077                  */
15078                 if (needs_modeset(crtc_state)) {
15079                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15080                                                               old_obj->base.resv, NULL,
15081                                                               false, 0,
15082                                                               GFP_KERNEL);
15083                         if (ret < 0)
15084                                 return ret;
15085                 }
15086         }
15087
15088         if (new_plane_state->base.fence) { /* explicit fencing */
15089                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
15090                                                     new_plane_state->base.fence,
15091                                                     I915_FENCE_TIMEOUT,
15092                                                     GFP_KERNEL);
15093                 if (ret < 0)
15094                         return ret;
15095         }
15096
15097         if (!obj)
15098                 return 0;
15099
15100         ret = i915_gem_object_pin_pages(obj);
15101         if (ret)
15102                 return ret;
15103
15104         ret = intel_plane_pin_fb(new_plane_state);
15105
15106         i915_gem_object_unpin_pages(obj);
15107         if (ret)
15108                 return ret;
15109
15110         fb_obj_bump_render_priority(obj);
15111         intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_DIRTYFB);
15112
15113         if (!new_plane_state->base.fence) { /* implicit fencing */
15114                 struct dma_fence *fence;
15115
15116                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15117                                                       obj->base.resv, NULL,
15118                                                       false, I915_FENCE_TIMEOUT,
15119                                                       GFP_KERNEL);
15120                 if (ret < 0)
15121                         return ret;
15122
15123                 fence = dma_resv_get_excl_rcu(obj->base.resv);
15124                 if (fence) {
15125                         add_rps_boost_after_vblank(new_plane_state->base.crtc,
15126                                                    fence);
15127                         dma_fence_put(fence);
15128                 }
15129         } else {
15130                 add_rps_boost_after_vblank(new_plane_state->base.crtc,
15131                                            new_plane_state->base.fence);
15132         }
15133
15134         /*
15135          * We declare pageflips to be interactive and so merit a small bias
15136          * towards upclocking to deliver the frame on time. By only changing
15137          * the RPS thresholds to sample more regularly and aim for higher
15138          * clocks we can hopefully deliver low power workloads (like kodi)
15139          * that are not quite steady state without resorting to forcing
15140          * maximum clocks following a vblank miss (see do_rps_boost()).
15141          */
15142         if (!intel_state->rps_interactive) {
15143                 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
15144                 intel_state->rps_interactive = true;
15145         }
15146
15147         return 0;
15148 }
15149
15150 /**
15151  * intel_cleanup_plane_fb - Cleans up an fb after plane use
15152  * @plane: drm plane to clean up for
15153  * @_old_plane_state: the state from the previous modeset
15154  *
15155  * Cleans up a framebuffer that has just been removed from a plane.
15156  */
15157 void
15158 intel_cleanup_plane_fb(struct drm_plane *plane,
15159                        struct drm_plane_state *_old_plane_state)
15160 {
15161         struct intel_plane_state *old_plane_state =
15162                 to_intel_plane_state(_old_plane_state);
15163         struct intel_atomic_state *intel_state =
15164                 to_intel_atomic_state(old_plane_state->base.state);
15165         struct drm_i915_private *dev_priv = to_i915(plane->dev);
15166
15167         if (intel_state->rps_interactive) {
15168                 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
15169                 intel_state->rps_interactive = false;
15170         }
15171
15172         /* Should only be called after a successful intel_prepare_plane_fb()! */
15173         intel_plane_unpin_fb(old_plane_state);
15174 }
15175
15176 /**
15177  * intel_plane_destroy - destroy a plane
15178  * @plane: plane to destroy
15179  *
15180  * Common destruction function for all types of planes (primary, cursor,
15181  * sprite).
15182  */
15183 void intel_plane_destroy(struct drm_plane *plane)
15184 {
15185         drm_plane_cleanup(plane);
15186         kfree(to_intel_plane(plane));
15187 }
15188
15189 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
15190                                             u32 format, u64 modifier)
15191 {
15192         switch (modifier) {
15193         case DRM_FORMAT_MOD_LINEAR:
15194         case I915_FORMAT_MOD_X_TILED:
15195                 break;
15196         default:
15197                 return false;
15198         }
15199
15200         switch (format) {
15201         case DRM_FORMAT_C8:
15202         case DRM_FORMAT_RGB565:
15203         case DRM_FORMAT_XRGB1555:
15204         case DRM_FORMAT_XRGB8888:
15205                 return modifier == DRM_FORMAT_MOD_LINEAR ||
15206                         modifier == I915_FORMAT_MOD_X_TILED;
15207         default:
15208                 return false;
15209         }
15210 }
15211
15212 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
15213                                             u32 format, u64 modifier)
15214 {
15215         switch (modifier) {
15216         case DRM_FORMAT_MOD_LINEAR:
15217         case I915_FORMAT_MOD_X_TILED:
15218                 break;
15219         default:
15220                 return false;
15221         }
15222
15223         switch (format) {
15224         case DRM_FORMAT_C8:
15225         case DRM_FORMAT_RGB565:
15226         case DRM_FORMAT_XRGB8888:
15227         case DRM_FORMAT_XBGR8888:
15228         case DRM_FORMAT_XRGB2101010:
15229         case DRM_FORMAT_XBGR2101010:
15230         case DRM_FORMAT_XBGR16161616F:
15231                 return modifier == DRM_FORMAT_MOD_LINEAR ||
15232                         modifier == I915_FORMAT_MOD_X_TILED;
15233         default:
15234                 return false;
15235         }
15236 }
15237
15238 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
15239                                               u32 format, u64 modifier)
15240 {
15241         return modifier == DRM_FORMAT_MOD_LINEAR &&
15242                 format == DRM_FORMAT_ARGB8888;
15243 }
15244
15245 static const struct drm_plane_funcs i965_plane_funcs = {
15246         .update_plane = drm_atomic_helper_update_plane,
15247         .disable_plane = drm_atomic_helper_disable_plane,
15248         .destroy = intel_plane_destroy,
15249         .atomic_duplicate_state = intel_plane_duplicate_state,
15250         .atomic_destroy_state = intel_plane_destroy_state,
15251         .format_mod_supported = i965_plane_format_mod_supported,
15252 };
15253
15254 static const struct drm_plane_funcs i8xx_plane_funcs = {
15255         .update_plane = drm_atomic_helper_update_plane,
15256         .disable_plane = drm_atomic_helper_disable_plane,
15257         .destroy = intel_plane_destroy,
15258         .atomic_duplicate_state = intel_plane_duplicate_state,
15259         .atomic_destroy_state = intel_plane_destroy_state,
15260         .format_mod_supported = i8xx_plane_format_mod_supported,
15261 };
15262
15263 static int
15264 intel_legacy_cursor_update(struct drm_plane *_plane,
15265                            struct drm_crtc *_crtc,
15266                            struct drm_framebuffer *fb,
15267                            int crtc_x, int crtc_y,
15268                            unsigned int crtc_w, unsigned int crtc_h,
15269                            u32 src_x, u32 src_y,
15270                            u32 src_w, u32 src_h,
15271                            struct drm_modeset_acquire_ctx *ctx)
15272 {
15273         struct intel_plane *plane = to_intel_plane(_plane);
15274         struct intel_crtc *crtc = to_intel_crtc(_crtc);
15275         struct intel_plane_state *old_plane_state =
15276                 to_intel_plane_state(plane->base.state);
15277         struct intel_plane_state *new_plane_state;
15278         struct intel_crtc_state *crtc_state =
15279                 to_intel_crtc_state(crtc->base.state);
15280         struct intel_crtc_state *new_crtc_state;
15281         int ret;
15282
15283         /*
15284          * When crtc is inactive or there is a modeset pending,
15285          * wait for it to complete in the slowpath
15286          */
15287         if (!crtc_state->base.active || needs_modeset(crtc_state) ||
15288             crtc_state->update_pipe)
15289                 goto slow;
15290
15291         /*
15292          * Don't do an async update if there is an outstanding commit modifying
15293          * the plane.  This prevents our async update's changes from getting
15294          * overridden by a previous synchronous update's state.
15295          */
15296         if (old_plane_state->base.commit &&
15297             !try_wait_for_completion(&old_plane_state->base.commit->hw_done))
15298                 goto slow;
15299
15300         /*
15301          * If any parameters change that may affect watermarks,
15302          * take the slowpath. Only changing fb or position should be
15303          * in the fastpath.
15304          */
15305         if (old_plane_state->base.crtc != &crtc->base ||
15306             old_plane_state->base.src_w != src_w ||
15307             old_plane_state->base.src_h != src_h ||
15308             old_plane_state->base.crtc_w != crtc_w ||
15309             old_plane_state->base.crtc_h != crtc_h ||
15310             !old_plane_state->base.fb != !fb)
15311                 goto slow;
15312
15313         new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
15314         if (!new_plane_state)
15315                 return -ENOMEM;
15316
15317         new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
15318         if (!new_crtc_state) {
15319                 ret = -ENOMEM;
15320                 goto out_free;
15321         }
15322
15323         drm_atomic_set_fb_for_plane(&new_plane_state->base, fb);
15324
15325         new_plane_state->base.src_x = src_x;
15326         new_plane_state->base.src_y = src_y;
15327         new_plane_state->base.src_w = src_w;
15328         new_plane_state->base.src_h = src_h;
15329         new_plane_state->base.crtc_x = crtc_x;
15330         new_plane_state->base.crtc_y = crtc_y;
15331         new_plane_state->base.crtc_w = crtc_w;
15332         new_plane_state->base.crtc_h = crtc_h;
15333
15334         ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
15335                                                   old_plane_state, new_plane_state);
15336         if (ret)
15337                 goto out_free;
15338
15339         ret = intel_plane_pin_fb(new_plane_state);
15340         if (ret)
15341                 goto out_free;
15342
15343         intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->base.fb), ORIGIN_FLIP);
15344         intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb),
15345                                 to_intel_frontbuffer(new_plane_state->base.fb),
15346                                 plane->frontbuffer_bit);
15347
15348         /* Swap plane state */
15349         plane->base.state = &new_plane_state->base;
15350
15351         /*
15352          * We cannot swap crtc_state as it may be in use by an atomic commit or
15353          * page flip that's running simultaneously. If we swap crtc_state and
15354          * destroy the old state, we will cause a use-after-free there.
15355          *
15356          * Only update active_planes, which is needed for our internal
15357          * bookkeeping. Either value will do the right thing when updating
15358          * planes atomically. If the cursor was part of the atomic update then
15359          * we would have taken the slowpath.
15360          */
15361         crtc_state->active_planes = new_crtc_state->active_planes;
15362
15363         if (new_plane_state->base.visible)
15364                 intel_update_plane(plane, crtc_state, new_plane_state);
15365         else
15366                 intel_disable_plane(plane, crtc_state);
15367
15368         intel_plane_unpin_fb(old_plane_state);
15369
15370 out_free:
15371         if (new_crtc_state)
15372                 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->base);
15373         if (ret)
15374                 intel_plane_destroy_state(&plane->base, &new_plane_state->base);
15375         else
15376                 intel_plane_destroy_state(&plane->base, &old_plane_state->base);
15377         return ret;
15378
15379 slow:
15380         return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
15381                                               crtc_x, crtc_y, crtc_w, crtc_h,
15382                                               src_x, src_y, src_w, src_h, ctx);
15383 }
15384
15385 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
15386         .update_plane = intel_legacy_cursor_update,
15387         .disable_plane = drm_atomic_helper_disable_plane,
15388         .destroy = intel_plane_destroy,
15389         .atomic_duplicate_state = intel_plane_duplicate_state,
15390         .atomic_destroy_state = intel_plane_destroy_state,
15391         .format_mod_supported = intel_cursor_format_mod_supported,
15392 };
15393
15394 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
15395                                enum i9xx_plane_id i9xx_plane)
15396 {
15397         if (!HAS_FBC(dev_priv))
15398                 return false;
15399
15400         if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15401                 return i9xx_plane == PLANE_A; /* tied to pipe A */
15402         else if (IS_IVYBRIDGE(dev_priv))
15403                 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
15404                         i9xx_plane == PLANE_C;
15405         else if (INTEL_GEN(dev_priv) >= 4)
15406                 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
15407         else
15408                 return i9xx_plane == PLANE_A;
15409 }
15410
15411 static struct intel_plane *
15412 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15413 {
15414         struct intel_plane *plane;
15415         const struct drm_plane_funcs *plane_funcs;
15416         unsigned int supported_rotations;
15417         unsigned int possible_crtcs;
15418         const u64 *modifiers;
15419         const u32 *formats;
15420         int num_formats;
15421         int ret, zpos;
15422
15423         if (INTEL_GEN(dev_priv) >= 9)
15424                 return skl_universal_plane_create(dev_priv, pipe,
15425                                                   PLANE_PRIMARY);
15426
15427         plane = intel_plane_alloc();
15428         if (IS_ERR(plane))
15429                 return plane;
15430
15431         plane->pipe = pipe;
15432         /*
15433          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15434          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15435          */
15436         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15437                 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
15438         else
15439                 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
15440         plane->id = PLANE_PRIMARY;
15441         plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
15442
15443         plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
15444         if (plane->has_fbc) {
15445                 struct intel_fbc *fbc = &dev_priv->fbc;
15446
15447                 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
15448         }
15449
15450         if (INTEL_GEN(dev_priv) >= 4) {
15451                 /*
15452                  * WaFP16GammaEnabling:ivb
15453                  * "Workaround : When using the 64-bit format, the plane
15454                  *  output on each color channel has one quarter amplitude.
15455                  *  It can be brought up to full amplitude by using pipe
15456                  *  gamma correction or pipe color space conversion to
15457                  *  multiply the plane output by four."
15458                  *
15459                  * There is no dedicated plane gamma for the primary plane,
15460                  * and using the pipe gamma/csc could conflict with other
15461                  * planes, so we choose not to expose fp16 on IVB primary
15462                  * planes. HSW primary planes no longer have this problem.
15463                  */
15464                 if (IS_IVYBRIDGE(dev_priv)) {
15465                         formats = ivb_primary_formats;
15466                         num_formats = ARRAY_SIZE(ivb_primary_formats);
15467                 } else {
15468                         formats = i965_primary_formats;
15469                         num_formats = ARRAY_SIZE(i965_primary_formats);
15470                 }
15471                 modifiers = i9xx_format_modifiers;
15472
15473                 plane->max_stride = i9xx_plane_max_stride;
15474                 plane->update_plane = i9xx_update_plane;
15475                 plane->disable_plane = i9xx_disable_plane;
15476                 plane->get_hw_state = i9xx_plane_get_hw_state;
15477                 plane->check_plane = i9xx_plane_check;
15478
15479                 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15480                         plane->min_cdclk = hsw_plane_min_cdclk;
15481                 else if (IS_IVYBRIDGE(dev_priv))
15482                         plane->min_cdclk = ivb_plane_min_cdclk;
15483                 else if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv))
15484                         plane->min_cdclk = vlv_plane_min_cdclk;
15485                 else
15486                         plane->min_cdclk = i9xx_plane_min_cdclk;
15487
15488                 plane_funcs = &i965_plane_funcs;
15489         } else {
15490                 formats = i8xx_primary_formats;
15491                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15492                 modifiers = i9xx_format_modifiers;
15493
15494                 plane->max_stride = i9xx_plane_max_stride;
15495                 plane->update_plane = i9xx_update_plane;
15496                 plane->disable_plane = i9xx_disable_plane;
15497                 plane->get_hw_state = i9xx_plane_get_hw_state;
15498                 plane->check_plane = i9xx_plane_check;
15499                 plane->min_cdclk = i9xx_plane_min_cdclk;
15500
15501                 plane_funcs = &i8xx_plane_funcs;
15502         }
15503
15504         possible_crtcs = BIT(pipe);
15505
15506         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15507                 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
15508                                                possible_crtcs, plane_funcs,
15509                                                formats, num_formats, modifiers,
15510                                                DRM_PLANE_TYPE_PRIMARY,
15511                                                "primary %c", pipe_name(pipe));
15512         else
15513                 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
15514                                                possible_crtcs, plane_funcs,
15515                                                formats, num_formats, modifiers,
15516                                                DRM_PLANE_TYPE_PRIMARY,
15517                                                "plane %c",
15518                                                plane_name(plane->i9xx_plane));
15519         if (ret)
15520                 goto fail;
15521
15522         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15523                 supported_rotations =
15524                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
15525                         DRM_MODE_REFLECT_X;
15526         } else if (INTEL_GEN(dev_priv) >= 4) {
15527                 supported_rotations =
15528                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
15529         } else {
15530                 supported_rotations = DRM_MODE_ROTATE_0;
15531         }
15532
15533         if (INTEL_GEN(dev_priv) >= 4)
15534                 drm_plane_create_rotation_property(&plane->base,
15535                                                    DRM_MODE_ROTATE_0,
15536                                                    supported_rotations);
15537
15538         zpos = 0;
15539         drm_plane_create_zpos_immutable_property(&plane->base, zpos);
15540
15541         drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
15542
15543         return plane;
15544
15545 fail:
15546         intel_plane_free(plane);
15547
15548         return ERR_PTR(ret);
15549 }
15550
15551 static struct intel_plane *
15552 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
15553                           enum pipe pipe)
15554 {
15555         unsigned int possible_crtcs;
15556         struct intel_plane *cursor;
15557         int ret, zpos;
15558
15559         cursor = intel_plane_alloc();
15560         if (IS_ERR(cursor))
15561                 return cursor;
15562
15563         cursor->pipe = pipe;
15564         cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
15565         cursor->id = PLANE_CURSOR;
15566         cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
15567
15568         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15569                 cursor->max_stride = i845_cursor_max_stride;
15570                 cursor->update_plane = i845_update_cursor;
15571                 cursor->disable_plane = i845_disable_cursor;
15572                 cursor->get_hw_state = i845_cursor_get_hw_state;
15573                 cursor->check_plane = i845_check_cursor;
15574         } else {
15575                 cursor->max_stride = i9xx_cursor_max_stride;
15576                 cursor->update_plane = i9xx_update_cursor;
15577                 cursor->disable_plane = i9xx_disable_cursor;
15578                 cursor->get_hw_state = i9xx_cursor_get_hw_state;
15579                 cursor->check_plane = i9xx_check_cursor;
15580         }
15581
15582         cursor->cursor.base = ~0;
15583         cursor->cursor.cntl = ~0;
15584
15585         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
15586                 cursor->cursor.size = ~0;
15587
15588         possible_crtcs = BIT(pipe);
15589
15590         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15591                                        possible_crtcs, &intel_cursor_plane_funcs,
15592                                        intel_cursor_formats,
15593                                        ARRAY_SIZE(intel_cursor_formats),
15594                                        cursor_format_modifiers,
15595                                        DRM_PLANE_TYPE_CURSOR,
15596                                        "cursor %c", pipe_name(pipe));
15597         if (ret)
15598                 goto fail;
15599
15600         if (INTEL_GEN(dev_priv) >= 4)
15601                 drm_plane_create_rotation_property(&cursor->base,
15602                                                    DRM_MODE_ROTATE_0,
15603                                                    DRM_MODE_ROTATE_0 |
15604                                                    DRM_MODE_ROTATE_180);
15605
15606         zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
15607         drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
15608
15609         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15610
15611         return cursor;
15612
15613 fail:
15614         intel_plane_free(cursor);
15615
15616         return ERR_PTR(ret);
15617 }
15618
15619 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
15620                                     struct intel_crtc_state *crtc_state)
15621 {
15622         struct intel_crtc_scaler_state *scaler_state =
15623                 &crtc_state->scaler_state;
15624         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15625         int i;
15626
15627         crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe];
15628         if (!crtc->num_scalers)
15629                 return;
15630
15631         for (i = 0; i < crtc->num_scalers; i++) {
15632                 struct intel_scaler *scaler = &scaler_state->scalers[i];
15633
15634                 scaler->in_use = 0;
15635                 scaler->mode = 0;
15636         }
15637
15638         scaler_state->scaler_id = -1;
15639 }
15640
15641 #define INTEL_CRTC_FUNCS \
15642         .gamma_set = drm_atomic_helper_legacy_gamma_set, \
15643         .set_config = drm_atomic_helper_set_config, \
15644         .destroy = intel_crtc_destroy, \
15645         .page_flip = drm_atomic_helper_page_flip, \
15646         .atomic_duplicate_state = intel_crtc_duplicate_state, \
15647         .atomic_destroy_state = intel_crtc_destroy_state, \
15648         .set_crc_source = intel_crtc_set_crc_source, \
15649         .verify_crc_source = intel_crtc_verify_crc_source, \
15650         .get_crc_sources = intel_crtc_get_crc_sources
15651
15652 static const struct drm_crtc_funcs bdw_crtc_funcs = {
15653         INTEL_CRTC_FUNCS,
15654
15655         .get_vblank_counter = g4x_get_vblank_counter,
15656         .enable_vblank = bdw_enable_vblank,
15657         .disable_vblank = bdw_disable_vblank,
15658 };
15659
15660 static const struct drm_crtc_funcs ilk_crtc_funcs = {
15661         INTEL_CRTC_FUNCS,
15662
15663         .get_vblank_counter = g4x_get_vblank_counter,
15664         .enable_vblank = ilk_enable_vblank,
15665         .disable_vblank = ilk_disable_vblank,
15666 };
15667
15668 static const struct drm_crtc_funcs g4x_crtc_funcs = {
15669         INTEL_CRTC_FUNCS,
15670
15671         .get_vblank_counter = g4x_get_vblank_counter,
15672         .enable_vblank = i965_enable_vblank,
15673         .disable_vblank = i965_disable_vblank,
15674 };
15675
15676 static const struct drm_crtc_funcs i965_crtc_funcs = {
15677         INTEL_CRTC_FUNCS,
15678
15679         .get_vblank_counter = i915_get_vblank_counter,
15680         .enable_vblank = i965_enable_vblank,
15681         .disable_vblank = i965_disable_vblank,
15682 };
15683
15684 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
15685         INTEL_CRTC_FUNCS,
15686
15687         .get_vblank_counter = i915_get_vblank_counter,
15688         .enable_vblank = i915gm_enable_vblank,
15689         .disable_vblank = i915gm_disable_vblank,
15690 };
15691
15692 static const struct drm_crtc_funcs i915_crtc_funcs = {
15693         INTEL_CRTC_FUNCS,
15694
15695         .get_vblank_counter = i915_get_vblank_counter,
15696         .enable_vblank = i8xx_enable_vblank,
15697         .disable_vblank = i8xx_disable_vblank,
15698 };
15699
15700 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
15701         INTEL_CRTC_FUNCS,
15702
15703         /* no hw vblank counter */
15704         .enable_vblank = i8xx_enable_vblank,
15705         .disable_vblank = i8xx_disable_vblank,
15706 };
15707
15708 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15709 {
15710         const struct drm_crtc_funcs *funcs;
15711         struct intel_crtc *intel_crtc;
15712         struct intel_crtc_state *crtc_state = NULL;
15713         struct intel_plane *primary = NULL;
15714         struct intel_plane *cursor = NULL;
15715         int sprite, ret;
15716
15717         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15718         if (!intel_crtc)
15719                 return -ENOMEM;
15720
15721         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15722         if (!crtc_state) {
15723                 ret = -ENOMEM;
15724                 goto fail;
15725         }
15726         __drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base);
15727         intel_crtc->config = crtc_state;
15728
15729         primary = intel_primary_plane_create(dev_priv, pipe);
15730         if (IS_ERR(primary)) {
15731                 ret = PTR_ERR(primary);
15732                 goto fail;
15733         }
15734         intel_crtc->plane_ids_mask |= BIT(primary->id);
15735
15736         for_each_sprite(dev_priv, pipe, sprite) {
15737                 struct intel_plane *plane;
15738
15739                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15740                 if (IS_ERR(plane)) {
15741                         ret = PTR_ERR(plane);
15742                         goto fail;
15743                 }
15744                 intel_crtc->plane_ids_mask |= BIT(plane->id);
15745         }
15746
15747         cursor = intel_cursor_plane_create(dev_priv, pipe);
15748         if (IS_ERR(cursor)) {
15749                 ret = PTR_ERR(cursor);
15750                 goto fail;
15751         }
15752         intel_crtc->plane_ids_mask |= BIT(cursor->id);
15753
15754         if (HAS_GMCH(dev_priv)) {
15755                 if (IS_CHERRYVIEW(dev_priv) ||
15756                     IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
15757                         funcs = &g4x_crtc_funcs;
15758                 else if (IS_GEN(dev_priv, 4))
15759                         funcs = &i965_crtc_funcs;
15760                 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
15761                         funcs = &i915gm_crtc_funcs;
15762                 else if (IS_GEN(dev_priv, 3))
15763                         funcs = &i915_crtc_funcs;
15764                 else
15765                         funcs = &i8xx_crtc_funcs;
15766         } else {
15767                 if (INTEL_GEN(dev_priv) >= 8)
15768                         funcs = &bdw_crtc_funcs;
15769                 else
15770                         funcs = &ilk_crtc_funcs;
15771         }
15772
15773         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15774                                         &primary->base, &cursor->base,
15775                                         funcs, "pipe %c", pipe_name(pipe));
15776         if (ret)
15777                 goto fail;
15778
15779         intel_crtc->pipe = pipe;
15780
15781         /* initialize shared scalers */
15782         intel_crtc_init_scalers(intel_crtc, crtc_state);
15783
15784         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
15785                dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
15786         dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc;
15787
15788         if (INTEL_GEN(dev_priv) < 9) {
15789                 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
15790
15791                 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15792                        dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
15793                 dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc;
15794         }
15795
15796         intel_color_init(intel_crtc);
15797
15798         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15799
15800         return 0;
15801
15802 fail:
15803         /*
15804          * drm_mode_config_cleanup() will free up any
15805          * crtcs/planes already initialized.
15806          */
15807         kfree(crtc_state);
15808         kfree(intel_crtc);
15809
15810         return ret;
15811 }
15812
15813 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
15814                                       struct drm_file *file)
15815 {
15816         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15817         struct drm_crtc *drmmode_crtc;
15818         struct intel_crtc *crtc;
15819
15820         drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
15821         if (!drmmode_crtc)
15822                 return -ENOENT;
15823
15824         crtc = to_intel_crtc(drmmode_crtc);
15825         pipe_from_crtc_id->pipe = crtc->pipe;
15826
15827         return 0;
15828 }
15829
15830 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
15831 {
15832         struct drm_device *dev = encoder->base.dev;
15833         struct intel_encoder *source_encoder;
15834         u32 possible_clones = 0;
15835
15836         for_each_intel_encoder(dev, source_encoder) {
15837                 if (encoders_cloneable(encoder, source_encoder))
15838                         possible_clones |= drm_encoder_mask(&source_encoder->base);
15839         }
15840
15841         return possible_clones;
15842 }
15843
15844 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
15845 {
15846         struct drm_device *dev = encoder->base.dev;
15847         struct intel_crtc *crtc;
15848         u32 possible_crtcs = 0;
15849
15850         for_each_intel_crtc(dev, crtc) {
15851                 if (encoder->crtc_mask & BIT(crtc->pipe))
15852                         possible_crtcs |= drm_crtc_mask(&crtc->base);
15853         }
15854
15855         return possible_crtcs;
15856 }
15857
15858 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
15859 {
15860         if (!IS_MOBILE(dev_priv))
15861                 return false;
15862
15863         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15864                 return false;
15865
15866         if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15867                 return false;
15868
15869         return true;
15870 }
15871
15872 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
15873 {
15874         if (INTEL_GEN(dev_priv) >= 9)
15875                 return false;
15876
15877         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15878                 return false;
15879
15880         if (HAS_PCH_LPT_H(dev_priv) &&
15881             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15882                 return false;
15883
15884         /* DDI E can't be used if DDI A requires 4 lanes */
15885         if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15886                 return false;
15887
15888         if (!dev_priv->vbt.int_crt_support)
15889                 return false;
15890
15891         return true;
15892 }
15893
15894 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15895 {
15896         int pps_num;
15897         int pps_idx;
15898
15899         if (HAS_DDI(dev_priv))
15900                 return;
15901         /*
15902          * This w/a is needed at least on CPT/PPT, but to be sure apply it
15903          * everywhere where registers can be write protected.
15904          */
15905         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15906                 pps_num = 2;
15907         else
15908                 pps_num = 1;
15909
15910         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15911                 u32 val = I915_READ(PP_CONTROL(pps_idx));
15912
15913                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15914                 I915_WRITE(PP_CONTROL(pps_idx), val);
15915         }
15916 }
15917
15918 static void intel_pps_init(struct drm_i915_private *dev_priv)
15919 {
15920         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
15921                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15922         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15923                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15924         else
15925                 dev_priv->pps_mmio_base = PPS_BASE;
15926
15927         intel_pps_unlock_regs_wa(dev_priv);
15928 }
15929
15930 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15931 {
15932         struct intel_encoder *encoder;
15933         bool dpd_is_edp = false;
15934
15935         intel_pps_init(dev_priv);
15936
15937         if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
15938                 return;
15939
15940         if (INTEL_GEN(dev_priv) >= 12) {
15941                 intel_ddi_init(dev_priv, PORT_A);
15942                 intel_ddi_init(dev_priv, PORT_B);
15943                 intel_ddi_init(dev_priv, PORT_D);
15944                 intel_ddi_init(dev_priv, PORT_E);
15945                 intel_ddi_init(dev_priv, PORT_F);
15946                 intel_ddi_init(dev_priv, PORT_G);
15947                 intel_ddi_init(dev_priv, PORT_H);
15948                 intel_ddi_init(dev_priv, PORT_I);
15949                 icl_dsi_init(dev_priv);
15950         } else if (IS_ELKHARTLAKE(dev_priv)) {
15951                 intel_ddi_init(dev_priv, PORT_A);
15952                 intel_ddi_init(dev_priv, PORT_B);
15953                 intel_ddi_init(dev_priv, PORT_C);
15954                 intel_ddi_init(dev_priv, PORT_D);
15955                 icl_dsi_init(dev_priv);
15956         } else if (IS_GEN(dev_priv, 11)) {
15957                 intel_ddi_init(dev_priv, PORT_A);
15958                 intel_ddi_init(dev_priv, PORT_B);
15959                 intel_ddi_init(dev_priv, PORT_C);
15960                 intel_ddi_init(dev_priv, PORT_D);
15961                 intel_ddi_init(dev_priv, PORT_E);
15962                 /*
15963                  * On some ICL SKUs port F is not present. No strap bits for
15964                  * this, so rely on VBT.
15965                  * Work around broken VBTs on SKUs known to have no port F.
15966                  */
15967                 if (IS_ICL_WITH_PORT_F(dev_priv) &&
15968                     intel_bios_is_port_present(dev_priv, PORT_F))
15969                         intel_ddi_init(dev_priv, PORT_F);
15970
15971                 icl_dsi_init(dev_priv);
15972         } else if (IS_GEN9_LP(dev_priv)) {
15973                 /*
15974                  * FIXME: Broxton doesn't support port detection via the
15975                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15976                  * detect the ports.
15977                  */
15978                 intel_ddi_init(dev_priv, PORT_A);
15979                 intel_ddi_init(dev_priv, PORT_B);
15980                 intel_ddi_init(dev_priv, PORT_C);
15981
15982                 vlv_dsi_init(dev_priv);
15983         } else if (HAS_DDI(dev_priv)) {
15984                 int found;
15985
15986                 if (intel_ddi_crt_present(dev_priv))
15987                         intel_crt_init(dev_priv);
15988
15989                 /*
15990                  * Haswell uses DDI functions to detect digital outputs.
15991                  * On SKL pre-D0 the strap isn't connected, so we assume
15992                  * it's there.
15993                  */
15994                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15995                 /* WaIgnoreDDIAStrap: skl */
15996                 if (found || IS_GEN9_BC(dev_priv))
15997                         intel_ddi_init(dev_priv, PORT_A);
15998
15999                 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16000                  * register */
16001                 found = I915_READ(SFUSE_STRAP);
16002
16003                 if (found & SFUSE_STRAP_DDIB_DETECTED)
16004                         intel_ddi_init(dev_priv, PORT_B);
16005                 if (found & SFUSE_STRAP_DDIC_DETECTED)
16006                         intel_ddi_init(dev_priv, PORT_C);
16007                 if (found & SFUSE_STRAP_DDID_DETECTED)
16008                         intel_ddi_init(dev_priv, PORT_D);
16009                 if (found & SFUSE_STRAP_DDIF_DETECTED)
16010                         intel_ddi_init(dev_priv, PORT_F);
16011                 /*
16012                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16013                  */
16014                 if (IS_GEN9_BC(dev_priv) &&
16015                     intel_bios_is_port_present(dev_priv, PORT_E))
16016                         intel_ddi_init(dev_priv, PORT_E);
16017
16018         } else if (HAS_PCH_SPLIT(dev_priv)) {
16019                 int found;
16020
16021                 /*
16022                  * intel_edp_init_connector() depends on this completing first,
16023                  * to prevent the registration of both eDP and LVDS and the
16024                  * incorrect sharing of the PPS.
16025                  */
16026                 intel_lvds_init(dev_priv);
16027                 intel_crt_init(dev_priv);
16028
16029                 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16030
16031                 if (ilk_has_edp_a(dev_priv))
16032                         intel_dp_init(dev_priv, DP_A, PORT_A);
16033
16034                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
16035                         /* PCH SDVOB multiplex with HDMIB */
16036                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16037                         if (!found)
16038                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16039                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
16040                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16041                 }
16042
16043                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
16044                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16045
16046                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
16047                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16048
16049                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
16050                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16051
16052                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
16053                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
16054         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16055                 bool has_edp, has_port;
16056
16057                 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
16058                         intel_crt_init(dev_priv);
16059
16060                 /*
16061                  * The DP_DETECTED bit is the latched state of the DDC
16062                  * SDA pin at boot. However since eDP doesn't require DDC
16063                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
16064                  * eDP ports may have been muxed to an alternate function.
16065                  * Thus we can't rely on the DP_DETECTED bit alone to detect
16066                  * eDP ports. Consult the VBT as well as DP_DETECTED to
16067                  * detect eDP ports.
16068                  *
16069                  * Sadly the straps seem to be missing sometimes even for HDMI
16070                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
16071                  * and VBT for the presence of the port. Additionally we can't
16072                  * trust the port type the VBT declares as we've seen at least
16073                  * HDMI ports that the VBT claim are DP or eDP.
16074                  */
16075                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
16076                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
16077                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
16078                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
16079                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
16080                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
16081
16082                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
16083                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
16084                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
16085                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
16086                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
16087                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
16088
16089                 if (IS_CHERRYVIEW(dev_priv)) {
16090                         /*
16091                          * eDP not supported on port D,
16092                          * so no need to worry about it
16093                          */
16094                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
16095                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
16096                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
16097                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
16098                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
16099                 }
16100
16101                 vlv_dsi_init(dev_priv);
16102         } else if (IS_PINEVIEW(dev_priv)) {
16103                 intel_lvds_init(dev_priv);
16104                 intel_crt_init(dev_priv);
16105         } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
16106                 bool found = false;
16107
16108                 if (IS_MOBILE(dev_priv))
16109                         intel_lvds_init(dev_priv);
16110
16111                 intel_crt_init(dev_priv);
16112
16113                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16114                         DRM_DEBUG_KMS("probing SDVOB\n");
16115                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
16116                         if (!found && IS_G4X(dev_priv)) {
16117                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
16118                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
16119                         }
16120
16121                         if (!found && IS_G4X(dev_priv))
16122                                 intel_dp_init(dev_priv, DP_B, PORT_B);
16123                 }
16124
16125                 /* Before G4X SDVOC doesn't have its own detect register */
16126
16127                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16128                         DRM_DEBUG_KMS("probing SDVOC\n");
16129                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
16130                 }
16131
16132                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
16133
16134                         if (IS_G4X(dev_priv)) {
16135                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
16136                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
16137                         }
16138                         if (IS_G4X(dev_priv))
16139                                 intel_dp_init(dev_priv, DP_C, PORT_C);
16140                 }
16141
16142                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
16143                         intel_dp_init(dev_priv, DP_D, PORT_D);
16144
16145                 if (SUPPORTS_TV(dev_priv))
16146                         intel_tv_init(dev_priv);
16147         } else if (IS_GEN(dev_priv, 2)) {
16148                 if (IS_I85X(dev_priv))
16149                         intel_lvds_init(dev_priv);
16150
16151                 intel_crt_init(dev_priv);
16152                 intel_dvo_init(dev_priv);
16153         }
16154
16155         intel_psr_init(dev_priv);
16156
16157         for_each_intel_encoder(&dev_priv->drm, encoder) {
16158                 encoder->base.possible_crtcs =
16159                         intel_encoder_possible_crtcs(encoder);
16160                 encoder->base.possible_clones =
16161                         intel_encoder_possible_clones(encoder);
16162         }
16163
16164         intel_init_pch_refclk(dev_priv);
16165
16166         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
16167 }
16168
16169 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
16170 {
16171         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
16172
16173         drm_framebuffer_cleanup(fb);
16174         intel_frontbuffer_put(intel_fb->frontbuffer);
16175
16176         kfree(intel_fb);
16177 }
16178
16179 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
16180                                                 struct drm_file *file,
16181                                                 unsigned int *handle)
16182 {
16183         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16184
16185         if (obj->userptr.mm) {
16186                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
16187                 return -EINVAL;
16188         }
16189
16190         return drm_gem_handle_create(file, &obj->base, handle);
16191 }
16192
16193 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
16194                                         struct drm_file *file,
16195                                         unsigned flags, unsigned color,
16196                                         struct drm_clip_rect *clips,
16197                                         unsigned num_clips)
16198 {
16199         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16200
16201         i915_gem_object_flush_if_display(obj);
16202         intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
16203
16204         return 0;
16205 }
16206
16207 static const struct drm_framebuffer_funcs intel_fb_funcs = {
16208         .destroy = intel_user_framebuffer_destroy,
16209         .create_handle = intel_user_framebuffer_create_handle,
16210         .dirty = intel_user_framebuffer_dirty,
16211 };
16212
16213 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
16214                                   struct drm_i915_gem_object *obj,
16215                                   struct drm_mode_fb_cmd2 *mode_cmd)
16216 {
16217         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
16218         struct drm_framebuffer *fb = &intel_fb->base;
16219         u32 max_stride;
16220         unsigned int tiling, stride;
16221         int ret = -EINVAL;
16222         int i;
16223
16224         intel_fb->frontbuffer = intel_frontbuffer_get(obj);
16225         if (!intel_fb->frontbuffer)
16226                 return -ENOMEM;
16227
16228         i915_gem_object_lock(obj);
16229         tiling = i915_gem_object_get_tiling(obj);
16230         stride = i915_gem_object_get_stride(obj);
16231         i915_gem_object_unlock(obj);
16232
16233         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
16234                 /*
16235                  * If there's a fence, enforce that
16236                  * the fb modifier and tiling mode match.
16237                  */
16238                 if (tiling != I915_TILING_NONE &&
16239                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16240                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
16241                         goto err;
16242                 }
16243         } else {
16244                 if (tiling == I915_TILING_X) {
16245                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
16246                 } else if (tiling == I915_TILING_Y) {
16247                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
16248                         goto err;
16249                 }
16250         }
16251
16252         if (!drm_any_plane_has_format(&dev_priv->drm,
16253                                       mode_cmd->pixel_format,
16254                                       mode_cmd->modifier[0])) {
16255                 struct drm_format_name_buf format_name;
16256
16257                 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
16258                               drm_get_format_name(mode_cmd->pixel_format,
16259                                                   &format_name),
16260                               mode_cmd->modifier[0]);
16261                 goto err;
16262         }
16263
16264         /*
16265          * gen2/3 display engine uses the fence if present,
16266          * so the tiling mode must match the fb modifier exactly.
16267          */
16268         if (INTEL_GEN(dev_priv) < 4 &&
16269             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16270                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
16271                 goto err;
16272         }
16273
16274         max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
16275                                          mode_cmd->modifier[0]);
16276         if (mode_cmd->pitches[0] > max_stride) {
16277                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
16278                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
16279                               "tiled" : "linear",
16280                               mode_cmd->pitches[0], max_stride);
16281                 goto err;
16282         }
16283
16284         /*
16285          * If there's a fence, enforce that
16286          * the fb pitch and fence stride match.
16287          */
16288         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
16289                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
16290                               mode_cmd->pitches[0], stride);
16291                 goto err;
16292         }
16293
16294         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16295         if (mode_cmd->offsets[0] != 0)
16296                 goto err;
16297
16298         drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
16299
16300         for (i = 0; i < fb->format->num_planes; i++) {
16301                 u32 stride_alignment;
16302
16303                 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
16304                         DRM_DEBUG_KMS("bad plane %d handle\n", i);
16305                         goto err;
16306                 }
16307
16308                 stride_alignment = intel_fb_stride_alignment(fb, i);
16309
16310                 /*
16311                  * Display WA #0531: skl,bxt,kbl,glk
16312                  *
16313                  * Render decompression and plane width > 3840
16314                  * combined with horizontal panning requires the
16315                  * plane stride to be a multiple of 4. We'll just
16316                  * require the entire fb to accommodate that to avoid
16317                  * potential runtime errors at plane configuration time.
16318                  */
16319                 if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 &&
16320                     is_ccs_modifier(fb->modifier))
16321                         stride_alignment *= 4;
16322
16323                 if (fb->pitches[i] & (stride_alignment - 1)) {
16324                         DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
16325                                       i, fb->pitches[i], stride_alignment);
16326                         goto err;
16327                 }
16328
16329                 fb->obj[i] = &obj->base;
16330         }
16331
16332         ret = intel_fill_fb_info(dev_priv, fb);
16333         if (ret)
16334                 goto err;
16335
16336         ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
16337         if (ret) {
16338                 DRM_ERROR("framebuffer init failed %d\n", ret);
16339                 goto err;
16340         }
16341
16342         return 0;
16343
16344 err:
16345         intel_frontbuffer_put(intel_fb->frontbuffer);
16346         return ret;
16347 }
16348
16349 static struct drm_framebuffer *
16350 intel_user_framebuffer_create(struct drm_device *dev,
16351                               struct drm_file *filp,
16352                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
16353 {
16354         struct drm_framebuffer *fb;
16355         struct drm_i915_gem_object *obj;
16356         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
16357
16358         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
16359         if (!obj)
16360                 return ERR_PTR(-ENOENT);
16361
16362         fb = intel_framebuffer_create(obj, &mode_cmd);
16363         i915_gem_object_put(obj);
16364
16365         return fb;
16366 }
16367
16368 static void intel_atomic_state_free(struct drm_atomic_state *state)
16369 {
16370         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
16371
16372         drm_atomic_state_default_release(state);
16373
16374         i915_sw_fence_fini(&intel_state->commit_ready);
16375
16376         kfree(state);
16377 }
16378
16379 static enum drm_mode_status
16380 intel_mode_valid(struct drm_device *dev,
16381                  const struct drm_display_mode *mode)
16382 {
16383         struct drm_i915_private *dev_priv = to_i915(dev);
16384         int hdisplay_max, htotal_max;
16385         int vdisplay_max, vtotal_max;
16386
16387         /*
16388          * Can't reject DBLSCAN here because Xorg ddxen can add piles
16389          * of DBLSCAN modes to the output's mode list when they detect
16390          * the scaling mode property on the connector. And they don't
16391          * ask the kernel to validate those modes in any way until
16392          * modeset time at which point the client gets a protocol error.
16393          * So in order to not upset those clients we silently ignore the
16394          * DBLSCAN flag on such connectors. For other connectors we will
16395          * reject modes with the DBLSCAN flag in encoder->compute_config().
16396          * And we always reject DBLSCAN modes in connector->mode_valid()
16397          * as we never want such modes on the connector's mode list.
16398          */
16399
16400         if (mode->vscan > 1)
16401                 return MODE_NO_VSCAN;
16402
16403         if (mode->flags & DRM_MODE_FLAG_HSKEW)
16404                 return MODE_H_ILLEGAL;
16405
16406         if (mode->flags & (DRM_MODE_FLAG_CSYNC |
16407                            DRM_MODE_FLAG_NCSYNC |
16408                            DRM_MODE_FLAG_PCSYNC))
16409                 return MODE_HSYNC;
16410
16411         if (mode->flags & (DRM_MODE_FLAG_BCAST |
16412                            DRM_MODE_FLAG_PIXMUX |
16413                            DRM_MODE_FLAG_CLKDIV2))
16414                 return MODE_BAD;
16415
16416         /* Transcoder timing limits */
16417         if (INTEL_GEN(dev_priv) >= 11) {
16418                 hdisplay_max = 16384;
16419                 vdisplay_max = 8192;
16420                 htotal_max = 16384;
16421                 vtotal_max = 8192;
16422         } else if (INTEL_GEN(dev_priv) >= 9 ||
16423                    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
16424                 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
16425                 vdisplay_max = 4096;
16426                 htotal_max = 8192;
16427                 vtotal_max = 8192;
16428         } else if (INTEL_GEN(dev_priv) >= 3) {
16429                 hdisplay_max = 4096;
16430                 vdisplay_max = 4096;
16431                 htotal_max = 8192;
16432                 vtotal_max = 8192;
16433         } else {
16434                 hdisplay_max = 2048;
16435                 vdisplay_max = 2048;
16436                 htotal_max = 4096;
16437                 vtotal_max = 4096;
16438         }
16439
16440         if (mode->hdisplay > hdisplay_max ||
16441             mode->hsync_start > htotal_max ||
16442             mode->hsync_end > htotal_max ||
16443             mode->htotal > htotal_max)
16444                 return MODE_H_ILLEGAL;
16445
16446         if (mode->vdisplay > vdisplay_max ||
16447             mode->vsync_start > vtotal_max ||
16448             mode->vsync_end > vtotal_max ||
16449             mode->vtotal > vtotal_max)
16450                 return MODE_V_ILLEGAL;
16451
16452         if (INTEL_GEN(dev_priv) >= 5) {
16453                 if (mode->hdisplay < 64 ||
16454                     mode->htotal - mode->hdisplay < 32)
16455                         return MODE_H_ILLEGAL;
16456
16457                 if (mode->vtotal - mode->vdisplay < 5)
16458                         return MODE_V_ILLEGAL;
16459         } else {
16460                 if (mode->htotal - mode->hdisplay < 32)
16461                         return MODE_H_ILLEGAL;
16462
16463                 if (mode->vtotal - mode->vdisplay < 3)
16464                         return MODE_V_ILLEGAL;
16465         }
16466
16467         return MODE_OK;
16468 }
16469
16470 enum drm_mode_status
16471 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
16472                                 const struct drm_display_mode *mode)
16473 {
16474         int plane_width_max, plane_height_max;
16475
16476         /*
16477          * intel_mode_valid() should be
16478          * sufficient on older platforms.
16479          */
16480         if (INTEL_GEN(dev_priv) < 9)
16481                 return MODE_OK;
16482
16483         /*
16484          * Most people will probably want a fullscreen
16485          * plane so let's not advertize modes that are
16486          * too big for that.
16487          */
16488         if (INTEL_GEN(dev_priv) >= 11) {
16489                 plane_width_max = 5120;
16490                 plane_height_max = 4320;
16491         } else {
16492                 plane_width_max = 5120;
16493                 plane_height_max = 4096;
16494         }
16495
16496         if (mode->hdisplay > plane_width_max)
16497                 return MODE_H_ILLEGAL;
16498
16499         if (mode->vdisplay > plane_height_max)
16500                 return MODE_V_ILLEGAL;
16501
16502         return MODE_OK;
16503 }
16504
16505 static const struct drm_mode_config_funcs intel_mode_funcs = {
16506         .fb_create = intel_user_framebuffer_create,
16507         .get_format_info = intel_get_format_info,
16508         .output_poll_changed = intel_fbdev_output_poll_changed,
16509         .mode_valid = intel_mode_valid,
16510         .atomic_check = intel_atomic_check,
16511         .atomic_commit = intel_atomic_commit,
16512         .atomic_state_alloc = intel_atomic_state_alloc,
16513         .atomic_state_clear = intel_atomic_state_clear,
16514         .atomic_state_free = intel_atomic_state_free,
16515 };
16516
16517 /**
16518  * intel_init_display_hooks - initialize the display modesetting hooks
16519  * @dev_priv: device private
16520  */
16521 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
16522 {
16523         intel_init_cdclk_hooks(dev_priv);
16524
16525         if (INTEL_GEN(dev_priv) >= 9) {
16526                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16527                 dev_priv->display.get_initial_plane_config =
16528                         skylake_get_initial_plane_config;
16529                 dev_priv->display.crtc_compute_clock =
16530                         haswell_crtc_compute_clock;
16531                 dev_priv->display.crtc_enable = haswell_crtc_enable;
16532                 dev_priv->display.crtc_disable = haswell_crtc_disable;
16533         } else if (HAS_DDI(dev_priv)) {
16534                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16535                 dev_priv->display.get_initial_plane_config =
16536                         i9xx_get_initial_plane_config;
16537                 dev_priv->display.crtc_compute_clock =
16538                         haswell_crtc_compute_clock;
16539                 dev_priv->display.crtc_enable = haswell_crtc_enable;
16540                 dev_priv->display.crtc_disable = haswell_crtc_disable;
16541         } else if (HAS_PCH_SPLIT(dev_priv)) {
16542                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
16543                 dev_priv->display.get_initial_plane_config =
16544                         i9xx_get_initial_plane_config;
16545                 dev_priv->display.crtc_compute_clock =
16546                         ironlake_crtc_compute_clock;
16547                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
16548                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
16549         } else if (IS_CHERRYVIEW(dev_priv)) {
16550                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16551                 dev_priv->display.get_initial_plane_config =
16552                         i9xx_get_initial_plane_config;
16553                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
16554                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16555                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16556         } else if (IS_VALLEYVIEW(dev_priv)) {
16557                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16558                 dev_priv->display.get_initial_plane_config =
16559                         i9xx_get_initial_plane_config;
16560                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
16561                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16562                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16563         } else if (IS_G4X(dev_priv)) {
16564                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16565                 dev_priv->display.get_initial_plane_config =
16566                         i9xx_get_initial_plane_config;
16567                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16568                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16569                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16570         } else if (IS_PINEVIEW(dev_priv)) {
16571                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16572                 dev_priv->display.get_initial_plane_config =
16573                         i9xx_get_initial_plane_config;
16574                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16575                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16576                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16577         } else if (!IS_GEN(dev_priv, 2)) {
16578                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16579                 dev_priv->display.get_initial_plane_config =
16580                         i9xx_get_initial_plane_config;
16581                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16582                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16583                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16584         } else {
16585                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16586                 dev_priv->display.get_initial_plane_config =
16587                         i9xx_get_initial_plane_config;
16588                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16589                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16590                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16591         }
16592
16593         if (IS_GEN(dev_priv, 5)) {
16594                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16595         } else if (IS_GEN(dev_priv, 6)) {
16596                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16597         } else if (IS_IVYBRIDGE(dev_priv)) {
16598                 /* FIXME: detect B0+ stepping and use auto training */
16599                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16600         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16601                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16602         }
16603
16604         if (INTEL_GEN(dev_priv) >= 9)
16605                 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
16606         else
16607                 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
16608
16609 }
16610
16611 void intel_modeset_init_hw(struct drm_i915_private *i915)
16612 {
16613         intel_update_cdclk(i915);
16614         intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK");
16615         i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw;
16616 }
16617
16618 /*
16619  * Calculate what we think the watermarks should be for the state we've read
16620  * out of the hardware and then immediately program those watermarks so that
16621  * we ensure the hardware settings match our internal state.
16622  *
16623  * We can calculate what we think WM's should be by creating a duplicate of the
16624  * current state (which was constructed during hardware readout) and running it
16625  * through the atomic check code to calculate new watermark values in the
16626  * state object.
16627  */
16628 static void sanitize_watermarks(struct drm_device *dev)
16629 {
16630         struct drm_i915_private *dev_priv = to_i915(dev);
16631         struct drm_atomic_state *state;
16632         struct intel_atomic_state *intel_state;
16633         struct intel_crtc *crtc;
16634         struct intel_crtc_state *crtc_state;
16635         struct drm_modeset_acquire_ctx ctx;
16636         int ret;
16637         int i;
16638
16639         /* Only supported on platforms that use atomic watermark design */
16640         if (!dev_priv->display.optimize_watermarks)
16641                 return;
16642
16643         /*
16644          * We need to hold connection_mutex before calling duplicate_state so
16645          * that the connector loop is protected.
16646          */
16647         drm_modeset_acquire_init(&ctx, 0);
16648 retry:
16649         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16650         if (ret == -EDEADLK) {
16651                 drm_modeset_backoff(&ctx);
16652                 goto retry;
16653         } else if (WARN_ON(ret)) {
16654                 goto fail;
16655         }
16656
16657         state = drm_atomic_helper_duplicate_state(dev, &ctx);
16658         if (WARN_ON(IS_ERR(state)))
16659                 goto fail;
16660
16661         intel_state = to_intel_atomic_state(state);
16662
16663         /*
16664          * Hardware readout is the only time we don't want to calculate
16665          * intermediate watermarks (since we don't trust the current
16666          * watermarks).
16667          */
16668         if (!HAS_GMCH(dev_priv))
16669                 intel_state->skip_intermediate_wm = true;
16670
16671         ret = intel_atomic_check(dev, state);
16672         if (ret) {
16673                 /*
16674                  * If we fail here, it means that the hardware appears to be
16675                  * programmed in a way that shouldn't be possible, given our
16676                  * understanding of watermark requirements.  This might mean a
16677                  * mistake in the hardware readout code or a mistake in the
16678                  * watermark calculations for a given platform.  Raise a WARN
16679                  * so that this is noticeable.
16680                  *
16681                  * If this actually happens, we'll have to just leave the
16682                  * BIOS-programmed watermarks untouched and hope for the best.
16683                  */
16684                 WARN(true, "Could not determine valid watermarks for inherited state\n");
16685                 goto put_state;
16686         }
16687
16688         /* Write calculated watermark values back */
16689         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
16690                 crtc_state->wm.need_postvbl_update = true;
16691                 dev_priv->display.optimize_watermarks(intel_state, crtc_state);
16692
16693                 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
16694         }
16695
16696 put_state:
16697         drm_atomic_state_put(state);
16698 fail:
16699         drm_modeset_drop_locks(&ctx);
16700         drm_modeset_acquire_fini(&ctx);
16701 }
16702
16703 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
16704 {
16705         if (IS_GEN(dev_priv, 5)) {
16706                 u32 fdi_pll_clk =
16707                         I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
16708
16709                 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
16710         } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
16711                 dev_priv->fdi_pll_freq = 270000;
16712         } else {
16713                 return;
16714         }
16715
16716         DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
16717 }
16718
16719 static int intel_initial_commit(struct drm_device *dev)
16720 {
16721         struct drm_atomic_state *state = NULL;
16722         struct drm_modeset_acquire_ctx ctx;
16723         struct drm_crtc *crtc;
16724         struct drm_crtc_state *crtc_state;
16725         int ret = 0;
16726
16727         state = drm_atomic_state_alloc(dev);
16728         if (!state)
16729                 return -ENOMEM;
16730
16731         drm_modeset_acquire_init(&ctx, 0);
16732
16733 retry:
16734         state->acquire_ctx = &ctx;
16735
16736         drm_for_each_crtc(crtc, dev) {
16737                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
16738                 if (IS_ERR(crtc_state)) {
16739                         ret = PTR_ERR(crtc_state);
16740                         goto out;
16741                 }
16742
16743                 if (crtc_state->active) {
16744                         ret = drm_atomic_add_affected_planes(state, crtc);
16745                         if (ret)
16746                                 goto out;
16747
16748                         /*
16749                          * FIXME hack to force a LUT update to avoid the
16750                          * plane update forcing the pipe gamma on without
16751                          * having a proper LUT loaded. Remove once we
16752                          * have readout for pipe gamma enable.
16753                          */
16754                         crtc_state->color_mgmt_changed = true;
16755                 }
16756         }
16757
16758         ret = drm_atomic_commit(state);
16759
16760 out:
16761         if (ret == -EDEADLK) {
16762                 drm_atomic_state_clear(state);
16763                 drm_modeset_backoff(&ctx);
16764                 goto retry;
16765         }
16766
16767         drm_atomic_state_put(state);
16768
16769         drm_modeset_drop_locks(&ctx);
16770         drm_modeset_acquire_fini(&ctx);
16771
16772         return ret;
16773 }
16774
16775 static void intel_mode_config_init(struct drm_i915_private *i915)
16776 {
16777         struct drm_mode_config *mode_config = &i915->drm.mode_config;
16778
16779         drm_mode_config_init(&i915->drm);
16780
16781         mode_config->min_width = 0;
16782         mode_config->min_height = 0;
16783
16784         mode_config->preferred_depth = 24;
16785         mode_config->prefer_shadow = 1;
16786
16787         mode_config->allow_fb_modifiers = true;
16788
16789         mode_config->funcs = &intel_mode_funcs;
16790
16791         /*
16792          * Maximum framebuffer dimensions, chosen to match
16793          * the maximum render engine surface size on gen4+.
16794          */
16795         if (INTEL_GEN(i915) >= 7) {
16796                 mode_config->max_width = 16384;
16797                 mode_config->max_height = 16384;
16798         } else if (INTEL_GEN(i915) >= 4) {
16799                 mode_config->max_width = 8192;
16800                 mode_config->max_height = 8192;
16801         } else if (IS_GEN(i915, 3)) {
16802                 mode_config->max_width = 4096;
16803                 mode_config->max_height = 4096;
16804         } else {
16805                 mode_config->max_width = 2048;
16806                 mode_config->max_height = 2048;
16807         }
16808
16809         if (IS_I845G(i915) || IS_I865G(i915)) {
16810                 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
16811                 mode_config->cursor_height = 1023;
16812         } else if (IS_GEN(i915, 2)) {
16813                 mode_config->cursor_width = 64;
16814                 mode_config->cursor_height = 64;
16815         } else {
16816                 mode_config->cursor_width = 256;
16817                 mode_config->cursor_height = 256;
16818         }
16819 }
16820
16821 int intel_modeset_init(struct drm_i915_private *i915)
16822 {
16823         struct drm_device *dev = &i915->drm;
16824         enum pipe pipe;
16825         struct intel_crtc *crtc;
16826         int ret;
16827
16828         i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
16829         i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
16830                                         WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
16831
16832         intel_mode_config_init(i915);
16833
16834         ret = intel_bw_init(i915);
16835         if (ret)
16836                 return ret;
16837
16838         init_llist_head(&i915->atomic_helper.free_list);
16839         INIT_WORK(&i915->atomic_helper.free_work,
16840                   intel_atomic_helper_free_state_worker);
16841
16842         intel_init_quirks(i915);
16843
16844         intel_fbc_init(i915);
16845
16846         intel_init_pm(i915);
16847
16848         intel_panel_sanitize_ssc(i915);
16849
16850         intel_gmbus_setup(i915);
16851
16852         DRM_DEBUG_KMS("%d display pipe%s available.\n",
16853                       INTEL_NUM_PIPES(i915),
16854                       INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
16855
16856         if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
16857                 for_each_pipe(i915, pipe) {
16858                         ret = intel_crtc_init(i915, pipe);
16859                         if (ret) {
16860                                 drm_mode_config_cleanup(dev);
16861                                 return ret;
16862                         }
16863                 }
16864         }
16865
16866         intel_shared_dpll_init(dev);
16867         intel_update_fdi_pll_freq(i915);
16868
16869         intel_update_czclk(i915);
16870         intel_modeset_init_hw(i915);
16871
16872         intel_hdcp_component_init(i915);
16873
16874         if (i915->max_cdclk_freq == 0)
16875                 intel_update_max_cdclk(i915);
16876
16877         /* Just disable it once at startup */
16878         intel_vga_disable(i915);
16879         intel_setup_outputs(i915);
16880
16881         drm_modeset_lock_all(dev);
16882         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
16883         drm_modeset_unlock_all(dev);
16884
16885         for_each_intel_crtc(dev, crtc) {
16886                 struct intel_initial_plane_config plane_config = {};
16887
16888                 if (!crtc->active)
16889                         continue;
16890
16891                 /*
16892                  * Note that reserving the BIOS fb up front prevents us
16893                  * from stuffing other stolen allocations like the ring
16894                  * on top.  This prevents some ugliness at boot time, and
16895                  * can even allow for smooth boot transitions if the BIOS
16896                  * fb is large enough for the active pipe configuration.
16897                  */
16898                 i915->display.get_initial_plane_config(crtc, &plane_config);
16899
16900                 /*
16901                  * If the fb is shared between multiple heads, we'll
16902                  * just get the first one.
16903                  */
16904                 intel_find_initial_plane_obj(crtc, &plane_config);
16905         }
16906
16907         /*
16908          * Make sure hardware watermarks really match the state we read out.
16909          * Note that we need to do this after reconstructing the BIOS fb's
16910          * since the watermark calculation done here will use pstate->fb.
16911          */
16912         if (!HAS_GMCH(i915))
16913                 sanitize_watermarks(dev);
16914
16915         /*
16916          * Force all active planes to recompute their states. So that on
16917          * mode_setcrtc after probe, all the intel_plane_state variables
16918          * are already calculated and there is no assert_plane warnings
16919          * during bootup.
16920          */
16921         ret = intel_initial_commit(dev);
16922         if (ret)
16923                 DRM_DEBUG_KMS("Initial commit in probe failed.\n");
16924
16925         return 0;
16926 }
16927
16928 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
16929 {
16930         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16931         /* 640x480@60Hz, ~25175 kHz */
16932         struct dpll clock = {
16933                 .m1 = 18,
16934                 .m2 = 7,
16935                 .p1 = 13,
16936                 .p2 = 4,
16937                 .n = 2,
16938         };
16939         u32 dpll, fp;
16940         int i;
16941
16942         WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
16943
16944         DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
16945                       pipe_name(pipe), clock.vco, clock.dot);
16946
16947         fp = i9xx_dpll_compute_fp(&clock);
16948         dpll = DPLL_DVO_2X_MODE |
16949                 DPLL_VGA_MODE_DIS |
16950                 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
16951                 PLL_P2_DIVIDE_BY_4 |
16952                 PLL_REF_INPUT_DREFCLK |
16953                 DPLL_VCO_ENABLE;
16954
16955         I915_WRITE(FP0(pipe), fp);
16956         I915_WRITE(FP1(pipe), fp);
16957
16958         I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
16959         I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
16960         I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
16961         I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
16962         I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
16963         I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
16964         I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
16965
16966         /*
16967          * Apparently we need to have VGA mode enabled prior to changing
16968          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
16969          * dividers, even though the register value does change.
16970          */
16971         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
16972         I915_WRITE(DPLL(pipe), dpll);
16973
16974         /* Wait for the clocks to stabilize. */
16975         POSTING_READ(DPLL(pipe));
16976         udelay(150);
16977
16978         /* The pixel multiplier can only be updated once the
16979          * DPLL is enabled and the clocks are stable.
16980          *
16981          * So write it again.
16982          */
16983         I915_WRITE(DPLL(pipe), dpll);
16984
16985         /* We do this three times for luck */
16986         for (i = 0; i < 3 ; i++) {
16987                 I915_WRITE(DPLL(pipe), dpll);
16988                 POSTING_READ(DPLL(pipe));
16989                 udelay(150); /* wait for warmup */
16990         }
16991
16992         I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
16993         POSTING_READ(PIPECONF(pipe));
16994
16995         intel_wait_for_pipe_scanline_moving(crtc);
16996 }
16997
16998 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
16999 {
17000         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17001
17002         DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
17003                       pipe_name(pipe));
17004
17005         WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
17006         WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
17007         WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
17008         WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
17009         WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
17010
17011         I915_WRITE(PIPECONF(pipe), 0);
17012         POSTING_READ(PIPECONF(pipe));
17013
17014         intel_wait_for_pipe_scanline_stopped(crtc);
17015
17016         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
17017         POSTING_READ(DPLL(pipe));
17018 }
17019
17020 static void
17021 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
17022 {
17023         struct intel_crtc *crtc;
17024
17025         if (INTEL_GEN(dev_priv) >= 4)
17026                 return;
17027
17028         for_each_intel_crtc(&dev_priv->drm, crtc) {
17029                 struct intel_plane *plane =
17030                         to_intel_plane(crtc->base.primary);
17031                 struct intel_crtc *plane_crtc;
17032                 enum pipe pipe;
17033
17034                 if (!plane->get_hw_state(plane, &pipe))
17035                         continue;
17036
17037                 if (pipe == crtc->pipe)
17038                         continue;
17039
17040                 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
17041                               plane->base.base.id, plane->base.name);
17042
17043                 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17044                 intel_plane_disable_noatomic(plane_crtc, plane);
17045         }
17046 }
17047
17048 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
17049 {
17050         struct drm_device *dev = crtc->base.dev;
17051         struct intel_encoder *encoder;
17052
17053         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
17054                 return true;
17055
17056         return false;
17057 }
17058
17059 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
17060 {
17061         struct drm_device *dev = encoder->base.dev;
17062         struct intel_connector *connector;
17063
17064         for_each_connector_on_encoder(dev, &encoder->base, connector)
17065                 return connector;
17066
17067         return NULL;
17068 }
17069
17070 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
17071                               enum pipe pch_transcoder)
17072 {
17073         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
17074                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
17075 }
17076
17077 static void intel_sanitize_crtc(struct intel_crtc *crtc,
17078                                 struct drm_modeset_acquire_ctx *ctx)
17079 {
17080         struct drm_device *dev = crtc->base.dev;
17081         struct drm_i915_private *dev_priv = to_i915(dev);
17082         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
17083         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
17084
17085         /* Clear any frame start delays used for debugging left by the BIOS */
17086         if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) {
17087                 i915_reg_t reg = PIPECONF(cpu_transcoder);
17088
17089                 I915_WRITE(reg,
17090                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
17091         }
17092
17093         if (crtc_state->base.active) {
17094                 struct intel_plane *plane;
17095
17096                 /* Disable everything but the primary plane */
17097                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
17098                         const struct intel_plane_state *plane_state =
17099                                 to_intel_plane_state(plane->base.state);
17100
17101                         if (plane_state->base.visible &&
17102                             plane->base.type != DRM_PLANE_TYPE_PRIMARY)
17103                                 intel_plane_disable_noatomic(crtc, plane);
17104                 }
17105
17106                 /*
17107                  * Disable any background color set by the BIOS, but enable the
17108                  * gamma and CSC to match how we program our planes.
17109                  */
17110                 if (INTEL_GEN(dev_priv) >= 9)
17111                         I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
17112                                    SKL_BOTTOM_COLOR_GAMMA_ENABLE |
17113                                    SKL_BOTTOM_COLOR_CSC_ENABLE);
17114         }
17115
17116         /* Adjust the state of the output pipe according to whether we
17117          * have active connectors/encoders. */
17118         if (crtc_state->base.active && !intel_crtc_has_encoders(crtc))
17119                 intel_crtc_disable_noatomic(&crtc->base, ctx);
17120
17121         if (crtc_state->base.active || HAS_GMCH(dev_priv)) {
17122                 /*
17123                  * We start out with underrun reporting disabled to avoid races.
17124                  * For correct bookkeeping mark this on active crtcs.
17125                  *
17126                  * Also on gmch platforms we dont have any hardware bits to
17127                  * disable the underrun reporting. Which means we need to start
17128                  * out with underrun reporting disabled also on inactive pipes,
17129                  * since otherwise we'll complain about the garbage we read when
17130                  * e.g. coming up after runtime pm.
17131                  *
17132                  * No protection against concurrent access is required - at
17133                  * worst a fifo underrun happens which also sets this to false.
17134                  */
17135                 crtc->cpu_fifo_underrun_disabled = true;
17136                 /*
17137                  * We track the PCH trancoder underrun reporting state
17138                  * within the crtc. With crtc for pipe A housing the underrun
17139                  * reporting state for PCH transcoder A, crtc for pipe B housing
17140                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
17141                  * and marking underrun reporting as disabled for the non-existing
17142                  * PCH transcoders B and C would prevent enabling the south
17143                  * error interrupt (see cpt_can_enable_serr_int()).
17144                  */
17145                 if (has_pch_trancoder(dev_priv, crtc->pipe))
17146                         crtc->pch_fifo_underrun_disabled = true;
17147         }
17148 }
17149
17150 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
17151 {
17152         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
17153
17154         /*
17155          * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
17156          * the hardware when a high res displays plugged in. DPLL P
17157          * divider is zero, and the pipe timings are bonkers. We'll
17158          * try to disable everything in that case.
17159          *
17160          * FIXME would be nice to be able to sanitize this state
17161          * without several WARNs, but for now let's take the easy
17162          * road.
17163          */
17164         return IS_GEN(dev_priv, 6) &&
17165                 crtc_state->base.active &&
17166                 crtc_state->shared_dpll &&
17167                 crtc_state->port_clock == 0;
17168 }
17169
17170 static void intel_sanitize_encoder(struct intel_encoder *encoder)
17171 {
17172         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
17173         struct intel_connector *connector;
17174         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
17175         struct intel_crtc_state *crtc_state = crtc ?
17176                 to_intel_crtc_state(crtc->base.state) : NULL;
17177
17178         /* We need to check both for a crtc link (meaning that the
17179          * encoder is active and trying to read from a pipe) and the
17180          * pipe itself being active. */
17181         bool has_active_crtc = crtc_state &&
17182                 crtc_state->base.active;
17183
17184         if (crtc_state && has_bogus_dpll_config(crtc_state)) {
17185                 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
17186                               pipe_name(crtc->pipe));
17187                 has_active_crtc = false;
17188         }
17189
17190         connector = intel_encoder_find_connector(encoder);
17191         if (connector && !has_active_crtc) {
17192                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
17193                               encoder->base.base.id,
17194                               encoder->base.name);
17195
17196                 /* Connector is active, but has no active pipe. This is
17197                  * fallout from our resume register restoring. Disable
17198                  * the encoder manually again. */
17199                 if (crtc_state) {
17200                         struct drm_encoder *best_encoder;
17201
17202                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
17203                                       encoder->base.base.id,
17204                                       encoder->base.name);
17205
17206                         /* avoid oopsing in case the hooks consult best_encoder */
17207                         best_encoder = connector->base.state->best_encoder;
17208                         connector->base.state->best_encoder = &encoder->base;
17209
17210                         if (encoder->disable)
17211                                 encoder->disable(encoder, crtc_state,
17212                                                  connector->base.state);
17213                         if (encoder->post_disable)
17214                                 encoder->post_disable(encoder, crtc_state,
17215                                                       connector->base.state);
17216
17217                         connector->base.state->best_encoder = best_encoder;
17218                 }
17219                 encoder->base.crtc = NULL;
17220
17221                 /* Inconsistent output/port/pipe state happens presumably due to
17222                  * a bug in one of the get_hw_state functions. Or someplace else
17223                  * in our code, like the register restore mess on resume. Clamp
17224                  * things to off as a safer default. */
17225
17226                 connector->base.dpms = DRM_MODE_DPMS_OFF;
17227                 connector->base.encoder = NULL;
17228         }
17229
17230         /* notify opregion of the sanitized encoder state */
17231         intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
17232
17233         if (INTEL_GEN(dev_priv) >= 11)
17234                 icl_sanitize_encoder_pll_mapping(encoder);
17235 }
17236
17237 /* FIXME read out full plane state for all planes */
17238 static void readout_plane_state(struct drm_i915_private *dev_priv)
17239 {
17240         struct intel_plane *plane;
17241         struct intel_crtc *crtc;
17242
17243         for_each_intel_plane(&dev_priv->drm, plane) {
17244                 struct intel_plane_state *plane_state =
17245                         to_intel_plane_state(plane->base.state);
17246                 struct intel_crtc_state *crtc_state;
17247                 enum pipe pipe = PIPE_A;
17248                 bool visible;
17249
17250                 visible = plane->get_hw_state(plane, &pipe);
17251
17252                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17253                 crtc_state = to_intel_crtc_state(crtc->base.state);
17254
17255                 intel_set_plane_visible(crtc_state, plane_state, visible);
17256
17257                 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
17258                               plane->base.base.id, plane->base.name,
17259                               enableddisabled(visible), pipe_name(pipe));
17260         }
17261
17262         for_each_intel_crtc(&dev_priv->drm, crtc) {
17263                 struct intel_crtc_state *crtc_state =
17264                         to_intel_crtc_state(crtc->base.state);
17265
17266                 fixup_active_planes(crtc_state);
17267         }
17268 }
17269
17270 static void intel_modeset_readout_hw_state(struct drm_device *dev)
17271 {
17272         struct drm_i915_private *dev_priv = to_i915(dev);
17273         enum pipe pipe;
17274         struct intel_crtc *crtc;
17275         struct intel_encoder *encoder;
17276         struct intel_connector *connector;
17277         struct drm_connector_list_iter conn_iter;
17278         int i;
17279
17280         dev_priv->active_pipes = 0;
17281
17282         for_each_intel_crtc(dev, crtc) {
17283                 struct intel_crtc_state *crtc_state =
17284                         to_intel_crtc_state(crtc->base.state);
17285
17286                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
17287                 memset(crtc_state, 0, sizeof(*crtc_state));
17288                 __drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base);
17289
17290                 crtc_state->base.active = crtc_state->base.enable =
17291                         dev_priv->display.get_pipe_config(crtc, crtc_state);
17292
17293                 crtc->base.enabled = crtc_state->base.enable;
17294                 crtc->active = crtc_state->base.active;
17295
17296                 if (crtc_state->base.active)
17297                         dev_priv->active_pipes |= BIT(crtc->pipe);
17298
17299                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17300                               crtc->base.base.id, crtc->base.name,
17301                               enableddisabled(crtc_state->base.active));
17302         }
17303
17304         readout_plane_state(dev_priv);
17305
17306         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17307                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17308
17309                 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
17310                                                         &pll->state.hw_state);
17311
17312                 if (IS_ELKHARTLAKE(dev_priv) && pll->on &&
17313                     pll->info->id == DPLL_ID_EHL_DPLL4) {
17314                         pll->wakeref = intel_display_power_get(dev_priv,
17315                                                                POWER_DOMAIN_DPLL_DC_OFF);
17316                 }
17317
17318                 pll->state.crtc_mask = 0;
17319                 for_each_intel_crtc(dev, crtc) {
17320                         struct intel_crtc_state *crtc_state =
17321                                 to_intel_crtc_state(crtc->base.state);
17322
17323                         if (crtc_state->base.active &&
17324                             crtc_state->shared_dpll == pll)
17325                                 pll->state.crtc_mask |= 1 << crtc->pipe;
17326                 }
17327                 pll->active_mask = pll->state.crtc_mask;
17328
17329                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17330                               pll->info->name, pll->state.crtc_mask, pll->on);
17331         }
17332
17333         for_each_intel_encoder(dev, encoder) {
17334                 pipe = 0;
17335
17336                 if (encoder->get_hw_state(encoder, &pipe)) {
17337                         struct intel_crtc_state *crtc_state;
17338
17339                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17340                         crtc_state = to_intel_crtc_state(crtc->base.state);
17341
17342                         encoder->base.crtc = &crtc->base;
17343                         encoder->get_config(encoder, crtc_state);
17344                 } else {
17345                         encoder->base.crtc = NULL;
17346                 }
17347
17348                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17349                               encoder->base.base.id, encoder->base.name,
17350                               enableddisabled(encoder->base.crtc),
17351                               pipe_name(pipe));
17352         }
17353
17354         drm_connector_list_iter_begin(dev, &conn_iter);
17355         for_each_intel_connector_iter(connector, &conn_iter) {
17356                 if (connector->get_hw_state(connector)) {
17357                         struct intel_crtc_state *crtc_state;
17358                         struct intel_crtc *crtc;
17359
17360                         connector->base.dpms = DRM_MODE_DPMS_ON;
17361
17362                         encoder = connector->encoder;
17363                         connector->base.encoder = &encoder->base;
17364
17365                         crtc = to_intel_crtc(encoder->base.crtc);
17366                         crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
17367
17368                         if (crtc_state && crtc_state->base.active) {
17369                                 /*
17370                                  * This has to be done during hardware readout
17371                                  * because anything calling .crtc_disable may
17372                                  * rely on the connector_mask being accurate.
17373                                  */
17374                                 crtc_state->base.connector_mask |=
17375                                         drm_connector_mask(&connector->base);
17376                                 crtc_state->base.encoder_mask |=
17377                                         drm_encoder_mask(&encoder->base);
17378                         }
17379                 } else {
17380                         connector->base.dpms = DRM_MODE_DPMS_OFF;
17381                         connector->base.encoder = NULL;
17382                 }
17383                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17384                               connector->base.base.id, connector->base.name,
17385                               enableddisabled(connector->base.encoder));
17386         }
17387         drm_connector_list_iter_end(&conn_iter);
17388
17389         for_each_intel_crtc(dev, crtc) {
17390                 struct intel_bw_state *bw_state =
17391                         to_intel_bw_state(dev_priv->bw_obj.state);
17392                 struct intel_crtc_state *crtc_state =
17393                         to_intel_crtc_state(crtc->base.state);
17394                 struct intel_plane *plane;
17395                 int min_cdclk = 0;
17396
17397                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
17398                 if (crtc_state->base.active) {
17399                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
17400                         crtc->base.mode.hdisplay = crtc_state->pipe_src_w;
17401                         crtc->base.mode.vdisplay = crtc_state->pipe_src_h;
17402                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
17403                         WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->base, &crtc->base.mode));
17404
17405                         /*
17406                          * The initial mode needs to be set in order to keep
17407                          * the atomic core happy. It wants a valid mode if the
17408                          * crtc's enabled, so we do the above call.
17409                          *
17410                          * But we don't set all the derived state fully, hence
17411                          * set a flag to indicate that a full recalculation is
17412                          * needed on the next commit.
17413                          */
17414                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
17415
17416                         intel_crtc_compute_pixel_rate(crtc_state);
17417
17418                         intel_crtc_update_active_timings(crtc_state);
17419                 }
17420
17421                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
17422                         const struct intel_plane_state *plane_state =
17423                                 to_intel_plane_state(plane->base.state);
17424
17425                         /*
17426                          * FIXME don't have the fb yet, so can't
17427                          * use intel_plane_data_rate() :(
17428                          */
17429                         if (plane_state->base.visible)
17430                                 crtc_state->data_rate[plane->id] =
17431                                         4 * crtc_state->pixel_rate;
17432                         /*
17433                          * FIXME don't have the fb yet, so can't
17434                          * use plane->min_cdclk() :(
17435                          */
17436                         if (plane_state->base.visible && plane->min_cdclk) {
17437                                 if (crtc_state->double_wide ||
17438                                     INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
17439                                         crtc_state->min_cdclk[plane->id] =
17440                                                 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
17441                                 else
17442                                         crtc_state->min_cdclk[plane->id] =
17443                                                 crtc_state->pixel_rate;
17444                         }
17445                         DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n",
17446                                       plane->base.base.id, plane->base.name,
17447                                       crtc_state->min_cdclk[plane->id]);
17448                 }
17449
17450                 if (crtc_state->base.active) {
17451                         min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
17452                         if (WARN_ON(min_cdclk < 0))
17453                                 min_cdclk = 0;
17454                 }
17455
17456                 dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
17457                 dev_priv->min_voltage_level[crtc->pipe] =
17458                         crtc_state->min_voltage_level;
17459
17460                 intel_bw_crtc_update(bw_state, crtc_state);
17461
17462                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
17463         }
17464 }
17465
17466 static void
17467 get_encoder_power_domains(struct drm_i915_private *dev_priv)
17468 {
17469         struct intel_encoder *encoder;
17470
17471         for_each_intel_encoder(&dev_priv->drm, encoder) {
17472                 struct intel_crtc_state *crtc_state;
17473
17474                 if (!encoder->get_power_domains)
17475                         continue;
17476
17477                 /*
17478                  * MST-primary and inactive encoders don't have a crtc state
17479                  * and neither of these require any power domain references.
17480                  */
17481                 if (!encoder->base.crtc)
17482                         continue;
17483
17484                 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
17485                 encoder->get_power_domains(encoder, crtc_state);
17486         }
17487 }
17488
17489 static void intel_early_display_was(struct drm_i915_private *dev_priv)
17490 {
17491         /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */
17492         if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
17493                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
17494                            DARBF_GATING_DIS);
17495
17496         if (IS_HASWELL(dev_priv)) {
17497                 /*
17498                  * WaRsPkgCStateDisplayPMReq:hsw
17499                  * System hang if this isn't done before disabling all planes!
17500                  */
17501                 I915_WRITE(CHICKEN_PAR1_1,
17502                            I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
17503         }
17504 }
17505
17506 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
17507                                        enum port port, i915_reg_t hdmi_reg)
17508 {
17509         u32 val = I915_READ(hdmi_reg);
17510
17511         if (val & SDVO_ENABLE ||
17512             (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
17513                 return;
17514
17515         DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
17516                       port_name(port));
17517
17518         val &= ~SDVO_PIPE_SEL_MASK;
17519         val |= SDVO_PIPE_SEL(PIPE_A);
17520
17521         I915_WRITE(hdmi_reg, val);
17522 }
17523
17524 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
17525                                      enum port port, i915_reg_t dp_reg)
17526 {
17527         u32 val = I915_READ(dp_reg);
17528
17529         if (val & DP_PORT_EN ||
17530             (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
17531                 return;
17532
17533         DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
17534                       port_name(port));
17535
17536         val &= ~DP_PIPE_SEL_MASK;
17537         val |= DP_PIPE_SEL(PIPE_A);
17538
17539         I915_WRITE(dp_reg, val);
17540 }
17541
17542 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
17543 {
17544         /*
17545          * The BIOS may select transcoder B on some of the PCH
17546          * ports even it doesn't enable the port. This would trip
17547          * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
17548          * Sanitize the transcoder select bits to prevent that. We
17549          * assume that the BIOS never actually enabled the port,
17550          * because if it did we'd actually have to toggle the port
17551          * on and back off to make the transcoder A select stick
17552          * (see. intel_dp_link_down(), intel_disable_hdmi(),
17553          * intel_disable_sdvo()).
17554          */
17555         ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
17556         ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
17557         ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
17558
17559         /* PCH SDVOB multiplex with HDMIB */
17560         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
17561         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
17562         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
17563 }
17564
17565 /* Scan out the current hw modeset state,
17566  * and sanitizes it to the current state
17567  */
17568 static void
17569 intel_modeset_setup_hw_state(struct drm_device *dev,
17570                              struct drm_modeset_acquire_ctx *ctx)
17571 {
17572         struct drm_i915_private *dev_priv = to_i915(dev);
17573         struct intel_crtc_state *crtc_state;
17574         struct intel_encoder *encoder;
17575         struct intel_crtc *crtc;
17576         intel_wakeref_t wakeref;
17577         int i;
17578
17579         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
17580
17581         intel_early_display_was(dev_priv);
17582         intel_modeset_readout_hw_state(dev);
17583
17584         /* HW state is read out, now we need to sanitize this mess. */
17585
17586         /* Sanitize the TypeC port mode upfront, encoders depend on this */
17587         for_each_intel_encoder(dev, encoder) {
17588                 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
17589
17590                 /* We need to sanitize only the MST primary port. */
17591                 if (encoder->type != INTEL_OUTPUT_DP_MST &&
17592                     intel_phy_is_tc(dev_priv, phy))
17593                         intel_tc_port_sanitize(enc_to_dig_port(&encoder->base));
17594         }
17595
17596         get_encoder_power_domains(dev_priv);
17597
17598         if (HAS_PCH_IBX(dev_priv))
17599                 ibx_sanitize_pch_ports(dev_priv);
17600
17601         /*
17602          * intel_sanitize_plane_mapping() may need to do vblank
17603          * waits, so we need vblank interrupts restored beforehand.
17604          */
17605         for_each_intel_crtc(&dev_priv->drm, crtc) {
17606                 crtc_state = to_intel_crtc_state(crtc->base.state);
17607
17608                 drm_crtc_vblank_reset(&crtc->base);
17609
17610                 if (crtc_state->base.active)
17611                         intel_crtc_vblank_on(crtc_state);
17612         }
17613
17614         intel_sanitize_plane_mapping(dev_priv);
17615
17616         for_each_intel_encoder(dev, encoder)
17617                 intel_sanitize_encoder(encoder);
17618
17619         for_each_intel_crtc(&dev_priv->drm, crtc) {
17620                 crtc_state = to_intel_crtc_state(crtc->base.state);
17621                 intel_sanitize_crtc(crtc, ctx);
17622                 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
17623         }
17624
17625         intel_modeset_update_connector_atomic_state(dev);
17626
17627         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17628                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17629
17630                 if (!pll->on || pll->active_mask)
17631                         continue;
17632
17633                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
17634                               pll->info->name);
17635
17636                 pll->info->funcs->disable(dev_priv, pll);
17637                 pll->on = false;
17638         }
17639
17640         if (IS_G4X(dev_priv)) {
17641                 g4x_wm_get_hw_state(dev_priv);
17642                 g4x_wm_sanitize(dev_priv);
17643         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17644                 vlv_wm_get_hw_state(dev_priv);
17645                 vlv_wm_sanitize(dev_priv);
17646         } else if (INTEL_GEN(dev_priv) >= 9) {
17647                 skl_wm_get_hw_state(dev_priv);
17648         } else if (HAS_PCH_SPLIT(dev_priv)) {
17649                 ilk_wm_get_hw_state(dev_priv);
17650         }
17651
17652         for_each_intel_crtc(dev, crtc) {
17653                 u64 put_domains;
17654
17655                 crtc_state = to_intel_crtc_state(crtc->base.state);
17656                 put_domains = modeset_get_crtc_power_domains(crtc_state);
17657                 if (WARN_ON(put_domains))
17658                         modeset_put_power_domains(dev_priv, put_domains);
17659         }
17660
17661         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
17662
17663         intel_fbc_init_pipe_state(dev_priv);
17664 }
17665
17666 void intel_display_resume(struct drm_device *dev)
17667 {
17668         struct drm_i915_private *dev_priv = to_i915(dev);
17669         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17670         struct drm_modeset_acquire_ctx ctx;
17671         int ret;
17672
17673         dev_priv->modeset_restore_state = NULL;
17674         if (state)
17675                 state->acquire_ctx = &ctx;
17676
17677         drm_modeset_acquire_init(&ctx, 0);
17678
17679         while (1) {
17680                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17681                 if (ret != -EDEADLK)
17682                         break;
17683
17684                 drm_modeset_backoff(&ctx);
17685         }
17686
17687         if (!ret)
17688                 ret = __intel_display_resume(dev, state, &ctx);
17689
17690         intel_enable_ipc(dev_priv);
17691         drm_modeset_drop_locks(&ctx);
17692         drm_modeset_acquire_fini(&ctx);
17693
17694         if (ret)
17695                 DRM_ERROR("Restoring old state failed with %i\n", ret);
17696         if (state)
17697                 drm_atomic_state_put(state);
17698 }
17699
17700 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
17701 {
17702         struct intel_connector *connector;
17703         struct drm_connector_list_iter conn_iter;
17704
17705         /* Kill all the work that may have been queued by hpd. */
17706         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
17707         for_each_intel_connector_iter(connector, &conn_iter) {
17708                 if (connector->modeset_retry_work.func)
17709                         cancel_work_sync(&connector->modeset_retry_work);
17710                 if (connector->hdcp.shim) {
17711                         cancel_delayed_work_sync(&connector->hdcp.check_work);
17712                         cancel_work_sync(&connector->hdcp.prop_work);
17713                 }
17714         }
17715         drm_connector_list_iter_end(&conn_iter);
17716 }
17717
17718 void intel_modeset_driver_remove(struct drm_i915_private *i915)
17719 {
17720         flush_workqueue(i915->flip_wq);
17721         flush_workqueue(i915->modeset_wq);
17722
17723         flush_work(&i915->atomic_helper.free_work);
17724         WARN_ON(!llist_empty(&i915->atomic_helper.free_list));
17725
17726         /*
17727          * Interrupts and polling as the first thing to avoid creating havoc.
17728          * Too much stuff here (turning of connectors, ...) would
17729          * experience fancy races otherwise.
17730          */
17731         intel_irq_uninstall(i915);
17732
17733         /*
17734          * Due to the hpd irq storm handling the hotplug work can re-arm the
17735          * poll handlers. Hence disable polling after hpd handling is shut down.
17736          */
17737         intel_hpd_poll_fini(i915);
17738
17739         /* poll work can call into fbdev, hence clean that up afterwards */
17740         intel_fbdev_fini(i915);
17741
17742         intel_unregister_dsm_handler();
17743
17744         intel_fbc_global_disable(i915);
17745
17746         /* flush any delayed tasks or pending work */
17747         flush_scheduled_work();
17748
17749         intel_hdcp_component_fini(i915);
17750
17751         drm_mode_config_cleanup(&i915->drm);
17752
17753         intel_overlay_cleanup(i915);
17754
17755         intel_gmbus_teardown(i915);
17756
17757         destroy_workqueue(i915->flip_wq);
17758         destroy_workqueue(i915->modeset_wq);
17759
17760         intel_fbc_cleanup_cfb(i915);
17761 }
17762
17763 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17764
17765 struct intel_display_error_state {
17766
17767         u32 power_well_driver;
17768
17769         struct intel_cursor_error_state {
17770                 u32 control;
17771                 u32 position;
17772                 u32 base;
17773                 u32 size;
17774         } cursor[I915_MAX_PIPES];
17775
17776         struct intel_pipe_error_state {
17777                 bool power_domain_on;
17778                 u32 source;
17779                 u32 stat;
17780         } pipe[I915_MAX_PIPES];
17781
17782         struct intel_plane_error_state {
17783                 u32 control;
17784                 u32 stride;
17785                 u32 size;
17786                 u32 pos;
17787                 u32 addr;
17788                 u32 surface;
17789                 u32 tile_offset;
17790         } plane[I915_MAX_PIPES];
17791
17792         struct intel_transcoder_error_state {
17793                 bool available;
17794                 bool power_domain_on;
17795                 enum transcoder cpu_transcoder;
17796
17797                 u32 conf;
17798
17799                 u32 htotal;
17800                 u32 hblank;
17801                 u32 hsync;
17802                 u32 vtotal;
17803                 u32 vblank;
17804                 u32 vsync;
17805         } transcoder[5];
17806 };
17807
17808 struct intel_display_error_state *
17809 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17810 {
17811         struct intel_display_error_state *error;
17812         int transcoders[] = {
17813                 TRANSCODER_A,
17814                 TRANSCODER_B,
17815                 TRANSCODER_C,
17816                 TRANSCODER_D,
17817                 TRANSCODER_EDP,
17818         };
17819         int i;
17820
17821         BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
17822
17823         if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
17824                 return NULL;
17825
17826         error = kzalloc(sizeof(*error), GFP_ATOMIC);
17827         if (error == NULL)
17828                 return NULL;
17829
17830         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17831                 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
17832
17833         for_each_pipe(dev_priv, i) {
17834                 error->pipe[i].power_domain_on =
17835                         __intel_display_power_is_enabled(dev_priv,
17836                                                          POWER_DOMAIN_PIPE(i));
17837                 if (!error->pipe[i].power_domain_on)
17838                         continue;
17839
17840                 error->cursor[i].control = I915_READ(CURCNTR(i));
17841                 error->cursor[i].position = I915_READ(CURPOS(i));
17842                 error->cursor[i].base = I915_READ(CURBASE(i));
17843
17844                 error->plane[i].control = I915_READ(DSPCNTR(i));
17845                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17846                 if (INTEL_GEN(dev_priv) <= 3) {
17847                         error->plane[i].size = I915_READ(DSPSIZE(i));
17848                         error->plane[i].pos = I915_READ(DSPPOS(i));
17849                 }
17850                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17851                         error->plane[i].addr = I915_READ(DSPADDR(i));
17852                 if (INTEL_GEN(dev_priv) >= 4) {
17853                         error->plane[i].surface = I915_READ(DSPSURF(i));
17854                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17855                 }
17856
17857                 error->pipe[i].source = I915_READ(PIPESRC(i));
17858
17859                 if (HAS_GMCH(dev_priv))
17860                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
17861         }
17862
17863         for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
17864                 enum transcoder cpu_transcoder = transcoders[i];
17865
17866                 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
17867                         continue;
17868
17869                 error->transcoder[i].available = true;
17870                 error->transcoder[i].power_domain_on =
17871                         __intel_display_power_is_enabled(dev_priv,
17872                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17873                 if (!error->transcoder[i].power_domain_on)
17874                         continue;
17875
17876                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17877
17878                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17879                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17880                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17881                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17882                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17883                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17884                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17885         }
17886
17887         return error;
17888 }
17889
17890 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17891
17892 void
17893 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17894                                 struct intel_display_error_state *error)
17895 {
17896         struct drm_i915_private *dev_priv = m->i915;
17897         int i;
17898
17899         if (!error)
17900                 return;
17901
17902         err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
17903         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17904                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17905                            error->power_well_driver);
17906         for_each_pipe(dev_priv, i) {
17907                 err_printf(m, "Pipe [%d]:\n", i);
17908                 err_printf(m, "  Power: %s\n",
17909                            onoff(error->pipe[i].power_domain_on));
17910                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17911                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17912
17913                 err_printf(m, "Plane [%d]:\n", i);
17914                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17915                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17916                 if (INTEL_GEN(dev_priv) <= 3) {
17917                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17918                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17919                 }
17920                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17921                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17922                 if (INTEL_GEN(dev_priv) >= 4) {
17923                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17924                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17925                 }
17926
17927                 err_printf(m, "Cursor [%d]:\n", i);
17928                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17929                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17930                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17931         }
17932
17933         for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
17934                 if (!error->transcoder[i].available)
17935                         continue;
17936
17937                 err_printf(m, "CPU transcoder: %s\n",
17938                            transcoder_name(error->transcoder[i].cpu_transcoder));
17939                 err_printf(m, "  Power: %s\n",
17940                            onoff(error->transcoder[i].power_domain_on));
17941                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17942                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17943                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17944                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17945                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17946                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17947                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17948         }
17949 }
17950
17951 #endif