]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/display/intel_dp.c
drm/i915/hdcp: Nuke intel_hdcp_transcoder_config()
[linux.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
150 {
151         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 }
153
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155                                const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159                                            const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161                                       enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167         static const int dp_rates[] = {
168                 162000, 270000, 540000, 810000
169         };
170         int i, max_rate;
171
172         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173
174         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175                 if (dp_rates[i] > max_rate)
176                         break;
177                 intel_dp->sink_rates[i] = dp_rates[i];
178         }
179
180         intel_dp->num_sink_rates = i;
181 }
182
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186         int i;
187
188         /* Limit results by potentially reduced max rate */
189         for (i = 0; i < len; i++) {
190                 if (rates[len - i - 1] <= max_rate)
191                         return len - i;
192         }
193
194         return 0;
195 }
196
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199                                           int max_rate)
200 {
201         return intel_dp_rate_limit_len(intel_dp->common_rates,
202                                        intel_dp->num_common_rates, max_rate);
203 }
204
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215         int source_max = intel_dig_port->max_lanes;
216         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218
219         return min3(source_max, sink_max, fia_max);
220 }
221
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224         return intel_dp->max_link_lane_count;
225 }
226
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231         return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238          * link rate that is generally expressed in Gbps. Since, 8 bits of data
239          * is transmitted every LS_Clk per lane, there is no need to account for
240          * the channel encoding that is done in the PHY layer here.
241          */
242
243         return max_link_clock * max_lanes;
244 }
245
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250         struct intel_encoder *encoder = &intel_dig_port->base;
251         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252         int max_dotclk = dev_priv->max_dotclk_freq;
253         int ds_max_dotclk;
254
255         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256
257         if (type != DP_DS_PORT_TYPE_VGA)
258                 return max_dotclk;
259
260         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261                                                     intel_dp->downstream_ports);
262
263         if (ds_max_dotclk != 0)
264                 max_dotclk = min(max_dotclk, ds_max_dotclk);
265
266         return max_dotclk;
267 }
268
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273         enum port port = dig_port->base.port;
274
275         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276
277         /* Low voltage SKUs are limited to max of 5.4G */
278         if (voltage == VOLTAGE_INFO_0_85V)
279                 return 540000;
280
281         /* For this SKU 8.1G is supported in all ports */
282         if (IS_CNL_WITH_PORT_F(dev_priv))
283                 return 810000;
284
285         /* For other SKUs, max rate on ports A and D is 5.4G */
286         if (port == PORT_A || port == PORT_D)
287                 return 540000;
288
289         return 810000;
290 }
291
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297
298         if (intel_phy_is_combo(dev_priv, phy) &&
299             !IS_ELKHARTLAKE(dev_priv) &&
300             !intel_dp_is_edp(intel_dp))
301                 return 540000;
302
303         return 810000;
304 }
305
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309         /* The values must be in increasing order */
310         static const int cnl_rates[] = {
311                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312         };
313         static const int bxt_rates[] = {
314                 162000, 216000, 243000, 270000, 324000, 432000, 540000
315         };
316         static const int skl_rates[] = {
317                 162000, 216000, 270000, 324000, 432000, 540000
318         };
319         static const int hsw_rates[] = {
320                 162000, 270000, 540000
321         };
322         static const int g4x_rates[] = {
323                 162000, 270000
324         };
325         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327         const struct ddi_vbt_port_info *info =
328                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
329         const int *source_rates;
330         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331
332         /* This should only be done once */
333         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334
335         if (INTEL_GEN(dev_priv) >= 10) {
336                 source_rates = cnl_rates;
337                 size = ARRAY_SIZE(cnl_rates);
338                 if (IS_GEN(dev_priv, 10))
339                         max_rate = cnl_max_source_rate(intel_dp);
340                 else
341                         max_rate = icl_max_source_rate(intel_dp);
342         } else if (IS_GEN9_LP(dev_priv)) {
343                 source_rates = bxt_rates;
344                 size = ARRAY_SIZE(bxt_rates);
345         } else if (IS_GEN9_BC(dev_priv)) {
346                 source_rates = skl_rates;
347                 size = ARRAY_SIZE(skl_rates);
348         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349                    IS_BROADWELL(dev_priv)) {
350                 source_rates = hsw_rates;
351                 size = ARRAY_SIZE(hsw_rates);
352         } else {
353                 source_rates = g4x_rates;
354                 size = ARRAY_SIZE(g4x_rates);
355         }
356
357         if (max_rate && vbt_max_rate)
358                 max_rate = min(max_rate, vbt_max_rate);
359         else if (vbt_max_rate)
360                 max_rate = vbt_max_rate;
361
362         if (max_rate)
363                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364
365         intel_dp->source_rates = source_rates;
366         intel_dp->num_source_rates = size;
367 }
368
369 static int intersect_rates(const int *source_rates, int source_len,
370                            const int *sink_rates, int sink_len,
371                            int *common_rates)
372 {
373         int i = 0, j = 0, k = 0;
374
375         while (i < source_len && j < sink_len) {
376                 if (source_rates[i] == sink_rates[j]) {
377                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378                                 return k;
379                         common_rates[k] = source_rates[i];
380                         ++k;
381                         ++i;
382                         ++j;
383                 } else if (source_rates[i] < sink_rates[j]) {
384                         ++i;
385                 } else {
386                         ++j;
387                 }
388         }
389         return k;
390 }
391
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395         int i;
396
397         for (i = 0; i < len; i++)
398                 if (rate == rates[i])
399                         return i;
400
401         return -1;
402 }
403
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407
408         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409                                                      intel_dp->num_source_rates,
410                                                      intel_dp->sink_rates,
411                                                      intel_dp->num_sink_rates,
412                                                      intel_dp->common_rates);
413
414         /* Paranoia, there should always be something in common. */
415         if (WARN_ON(intel_dp->num_common_rates == 0)) {
416                 intel_dp->common_rates[0] = 162000;
417                 intel_dp->num_common_rates = 1;
418         }
419 }
420
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422                                        u8 lane_count)
423 {
424         /*
425          * FIXME: we need to synchronize the current link parameters with
426          * hardware readout. Currently fast link training doesn't work on
427          * boot-up.
428          */
429         if (link_rate == 0 ||
430             link_rate > intel_dp->max_link_rate)
431                 return false;
432
433         if (lane_count == 0 ||
434             lane_count > intel_dp_max_lane_count(intel_dp))
435                 return false;
436
437         return true;
438 }
439
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441                                                      int link_rate,
442                                                      u8 lane_count)
443 {
444         const struct drm_display_mode *fixed_mode =
445                 intel_dp->attached_connector->panel.fixed_mode;
446         int mode_rate, max_rate;
447
448         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450         if (mode_rate > max_rate)
451                 return false;
452
453         return true;
454 }
455
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457                                             int link_rate, u8 lane_count)
458 {
459         int index;
460
461         index = intel_dp_rate_index(intel_dp->common_rates,
462                                     intel_dp->num_common_rates,
463                                     link_rate);
464         if (index > 0) {
465                 if (intel_dp_is_edp(intel_dp) &&
466                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467                                                               intel_dp->common_rates[index - 1],
468                                                               lane_count)) {
469                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470                         return 0;
471                 }
472                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473                 intel_dp->max_link_lane_count = lane_count;
474         } else if (lane_count > 1) {
475                 if (intel_dp_is_edp(intel_dp) &&
476                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477                                                               intel_dp_max_common_rate(intel_dp),
478                                                               lane_count >> 1)) {
479                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480                         return 0;
481                 }
482                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483                 intel_dp->max_link_lane_count = lane_count >> 1;
484         } else {
485                 DRM_ERROR("Link Training Unsuccessful\n");
486                 return -1;
487         }
488
489         return 0;
490 }
491
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494         return div_u64(mul_u32_u32(mode_clock, 1000000U),
495                        DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501         if (INTEL_GEN(i915) >= 11)
502                 return 7680 * 8;
503         else
504                 return 6144 * 8;
505 }
506
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508                                        u32 link_clock, u32 lane_count,
509                                        u32 mode_clock, u32 mode_hdisplay)
510 {
511         u32 bits_per_pixel, max_bpp_small_joiner_ram;
512         int i;
513
514         /*
515          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517          * for SST -> TimeSlotsPerMTP is 1,
518          * for MST -> TimeSlotsPerMTP has to be calculated
519          */
520         bits_per_pixel = (link_clock * lane_count * 8) /
521                          intel_dp_mode_to_fec_clock(mode_clock);
522         DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523
524         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526                 mode_hdisplay;
527         DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528
529         /*
530          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531          * check, output bpp from small joiner RAM check)
532          */
533         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534
535         /* Error out if the max bpp is less than smallest allowed valid bpp */
536         if (bits_per_pixel < valid_dsc_bpp[0]) {
537                 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538                               bits_per_pixel, valid_dsc_bpp[0]);
539                 return 0;
540         }
541
542         /* Find the nearest match in the array of known BPPs from VESA */
543         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
545                         break;
546         }
547         bits_per_pixel = valid_dsc_bpp[i];
548
549         /*
550          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551          * fractional part is 0
552          */
553         return bits_per_pixel << 4;
554 }
555
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557                                        int mode_clock, int mode_hdisplay)
558 {
559         u8 min_slice_count, i;
560         int max_slice_width;
561
562         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563                 min_slice_count = DIV_ROUND_UP(mode_clock,
564                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
565         else
566                 min_slice_count = DIV_ROUND_UP(mode_clock,
567                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
568
569         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572                               max_slice_width);
573                 return 0;
574         }
575         /* Also take into account max slice width */
576         min_slice_count = min_t(u8, min_slice_count,
577                                 DIV_ROUND_UP(mode_hdisplay,
578                                              max_slice_width));
579
580         /* Find the closest match to the valid slice count values */
581         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582                 if (valid_dsc_slicecount[i] >
583                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584                                                     false))
585                         break;
586                 if (min_slice_count  <= valid_dsc_slicecount[i])
587                         return valid_dsc_slicecount[i];
588         }
589
590         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591         return 0;
592 }
593
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595                                   int hdisplay)
596 {
597         /*
598          * Older platforms don't like hdisplay==4096 with DP.
599          *
600          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601          * and frame counter increment), but we don't get vblank interrupts,
602          * and the pipe underruns immediately. The link also doesn't seem
603          * to get trained properly.
604          *
605          * On CHV the vblank interrupts don't seem to disappear but
606          * otherwise the symptoms are similar.
607          *
608          * TODO: confirm the behaviour on HSW+
609          */
610         return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615                     struct drm_display_mode *mode)
616 {
617         struct intel_dp *intel_dp = intel_attached_dp(connector);
618         struct intel_connector *intel_connector = to_intel_connector(connector);
619         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620         struct drm_i915_private *dev_priv = to_i915(connector->dev);
621         int target_clock = mode->clock;
622         int max_rate, mode_rate, max_lanes, max_link_clock;
623         int max_dotclk;
624         u16 dsc_max_output_bpp = 0;
625         u8 dsc_slice_count = 0;
626
627         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628                 return MODE_NO_DBLESCAN;
629
630         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631
632         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633                 if (mode->hdisplay > fixed_mode->hdisplay)
634                         return MODE_PANEL;
635
636                 if (mode->vdisplay > fixed_mode->vdisplay)
637                         return MODE_PANEL;
638
639                 target_clock = fixed_mode->clock;
640         }
641
642         max_link_clock = intel_dp_max_link_rate(intel_dp);
643         max_lanes = intel_dp_max_lane_count(intel_dp);
644
645         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646         mode_rate = intel_dp_link_required(target_clock, 18);
647
648         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649                 return MODE_H_ILLEGAL;
650
651         /*
652          * Output bpp is stored in 6.4 format so right shift by 4 to get the
653          * integer value since we support only integer values of bpp.
654          */
655         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657                 if (intel_dp_is_edp(intel_dp)) {
658                         dsc_max_output_bpp =
659                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660                         dsc_slice_count =
661                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662                                                                 true);
663                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664                         dsc_max_output_bpp =
665                                 intel_dp_dsc_get_output_bpp(dev_priv,
666                                                             max_link_clock,
667                                                             max_lanes,
668                                                             target_clock,
669                                                             mode->hdisplay) >> 4;
670                         dsc_slice_count =
671                                 intel_dp_dsc_get_slice_count(intel_dp,
672                                                              target_clock,
673                                                              mode->hdisplay);
674                 }
675         }
676
677         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678             target_clock > max_dotclk)
679                 return MODE_CLOCK_HIGH;
680
681         if (mode->clock < 10000)
682                 return MODE_CLOCK_LOW;
683
684         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685                 return MODE_H_ILLEGAL;
686
687         return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692         int i;
693         u32 v = 0;
694
695         if (src_bytes > 4)
696                 src_bytes = 4;
697         for (i = 0; i < src_bytes; i++)
698                 v |= ((u32)src[i]) << ((3 - i) * 8);
699         return v;
700 }
701
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704         int i;
705         if (dst_bytes > 4)
706                 dst_bytes = 4;
707         for (i = 0; i < dst_bytes; i++)
708                 dst[i] = src >> ((3-i) * 8);
709 }
710
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715                                               bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723         intel_wakeref_t wakeref;
724
725         /*
726          * See intel_power_sequencer_reset() why we need
727          * a power domain reference here.
728          */
729         wakeref = intel_display_power_get(dev_priv,
730                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731
732         mutex_lock(&dev_priv->pps_mutex);
733
734         return wakeref;
735 }
736
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741
742         mutex_unlock(&dev_priv->pps_mutex);
743         intel_display_power_put(dev_priv,
744                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745                                 wakeref);
746         return 0;
747 }
748
749 #define with_pps_lock(dp, wf) \
750         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         enum pipe pipe = intel_dp->pps_pipe;
758         bool pll_enabled, release_cl_override = false;
759         enum dpio_phy phy = DPIO_PHY(pipe);
760         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761         u32 DP;
762
763         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764                  "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765                  pipe_name(pipe), intel_dig_port->base.base.base.id,
766                  intel_dig_port->base.base.name))
767                 return;
768
769         DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770                       pipe_name(pipe), intel_dig_port->base.base.base.id,
771                       intel_dig_port->base.base.name);
772
773         /* Preserve the BIOS-computed detected bit. This is
774          * supposed to be read-only.
775          */
776         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778         DP |= DP_PORT_WIDTH(1);
779         DP |= DP_LINK_TRAIN_PAT_1;
780
781         if (IS_CHERRYVIEW(dev_priv))
782                 DP |= DP_PIPE_SEL_CHV(pipe);
783         else
784                 DP |= DP_PIPE_SEL(pipe);
785
786         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787
788         /*
789          * The DPLL for the pipe must be enabled for this to work.
790          * So enable temporarily it if it's not already enabled.
791          */
792         if (!pll_enabled) {
793                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
795
796                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
799                                   pipe_name(pipe));
800                         return;
801                 }
802         }
803
804         /*
805          * Similar magic as in intel_dp_enable_port().
806          * We _must_ do this port enable + disable trick
807          * to make this power sequencer lock onto the port.
808          * Otherwise even VDD force bit won't work.
809          */
810         I915_WRITE(intel_dp->output_reg, DP);
811         POSTING_READ(intel_dp->output_reg);
812
813         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814         POSTING_READ(intel_dp->output_reg);
815
816         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817         POSTING_READ(intel_dp->output_reg);
818
819         if (!pll_enabled) {
820                 vlv_force_pll_off(dev_priv, pipe);
821
822                 if (release_cl_override)
823                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
824         }
825 }
826
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829         struct intel_encoder *encoder;
830         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831
832         /*
833          * We don't have power sequencer currently.
834          * Pick one that's not used by other ports.
835          */
836         for_each_intel_dp(&dev_priv->drm, encoder) {
837                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838
839                 if (encoder->type == INTEL_OUTPUT_EDP) {
840                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841                                 intel_dp->active_pipe != intel_dp->pps_pipe);
842
843                         if (intel_dp->pps_pipe != INVALID_PIPE)
844                                 pipes &= ~(1 << intel_dp->pps_pipe);
845                 } else {
846                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847
848                         if (intel_dp->active_pipe != INVALID_PIPE)
849                                 pipes &= ~(1 << intel_dp->active_pipe);
850                 }
851         }
852
853         if (pipes == 0)
854                 return INVALID_PIPE;
855
856         return ffs(pipes) - 1;
857 }
858
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864         enum pipe pipe;
865
866         lockdep_assert_held(&dev_priv->pps_mutex);
867
868         /* We should never land here with regular DP ports */
869         WARN_ON(!intel_dp_is_edp(intel_dp));
870
871         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872                 intel_dp->active_pipe != intel_dp->pps_pipe);
873
874         if (intel_dp->pps_pipe != INVALID_PIPE)
875                 return intel_dp->pps_pipe;
876
877         pipe = vlv_find_free_pps(dev_priv);
878
879         /*
880          * Didn't find one. This should not happen since there
881          * are two power sequencers and up to two eDP ports.
882          */
883         if (WARN_ON(pipe == INVALID_PIPE))
884                 pipe = PIPE_A;
885
886         vlv_steal_power_sequencer(dev_priv, pipe);
887         intel_dp->pps_pipe = pipe;
888
889         DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890                       pipe_name(intel_dp->pps_pipe),
891                       intel_dig_port->base.base.base.id,
892                       intel_dig_port->base.base.name);
893
894         /* init power sequencer on this pipe and port */
895         intel_dp_init_panel_power_sequencer(intel_dp);
896         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897
898         /*
899          * Even vdd force doesn't work until we've made
900          * the power sequencer lock in on the port.
901          */
902         vlv_power_sequencer_kick(intel_dp);
903
904         return intel_dp->pps_pipe;
905 }
906
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911         int backlight_controller = dev_priv->vbt.backlight.controller;
912
913         lockdep_assert_held(&dev_priv->pps_mutex);
914
915         /* We should never land here with regular DP ports */
916         WARN_ON(!intel_dp_is_edp(intel_dp));
917
918         if (!intel_dp->pps_reset)
919                 return backlight_controller;
920
921         intel_dp->pps_reset = false;
922
923         /*
924          * Only the HW needs to be reprogrammed, the SW state is fixed and
925          * has been setup during connector init.
926          */
927         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928
929         return backlight_controller;
930 }
931
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933                                enum pipe pipe);
934
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936                                enum pipe pipe)
937 {
938         return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942                                 enum pipe pipe)
943 {
944         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948                          enum pipe pipe)
949 {
950         return true;
951 }
952
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955                      enum port port,
956                      vlv_pipe_check pipe_check)
957 {
958         enum pipe pipe;
959
960         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962                         PANEL_PORT_SELECT_MASK;
963
964                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
965                         continue;
966
967                 if (!pipe_check(dev_priv, pipe))
968                         continue;
969
970                 return pipe;
971         }
972
973         return INVALID_PIPE;
974 }
975
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981         enum port port = intel_dig_port->base.port;
982
983         lockdep_assert_held(&dev_priv->pps_mutex);
984
985         /* try to find a pipe with this port selected */
986         /* first pick one where the panel is on */
987         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988                                                   vlv_pipe_has_pp_on);
989         /* didn't find one? pick one where vdd is on */
990         if (intel_dp->pps_pipe == INVALID_PIPE)
991                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992                                                           vlv_pipe_has_vdd_on);
993         /* didn't find one? pick one with just the correct port */
994         if (intel_dp->pps_pipe == INVALID_PIPE)
995                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996                                                           vlv_pipe_any);
997
998         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999         if (intel_dp->pps_pipe == INVALID_PIPE) {
1000                 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001                               intel_dig_port->base.base.base.id,
1002                               intel_dig_port->base.base.name);
1003                 return;
1004         }
1005
1006         DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007                       intel_dig_port->base.base.base.id,
1008                       intel_dig_port->base.base.name,
1009                       pipe_name(intel_dp->pps_pipe));
1010
1011         intel_dp_init_panel_power_sequencer(intel_dp);
1012         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017         struct intel_encoder *encoder;
1018
1019         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020                     !IS_GEN9_LP(dev_priv)))
1021                 return;
1022
1023         /*
1024          * We can't grab pps_mutex here due to deadlock with power_domain
1025          * mutex when power_domain functions are called while holding pps_mutex.
1026          * That also means that in order to use pps_pipe the code needs to
1027          * hold both a power domain reference and pps_mutex, and the power domain
1028          * reference get/put must be done while _not_ holding pps_mutex.
1029          * pps_{lock,unlock}() do these steps in the correct order, so one
1030          * should use them always.
1031          */
1032
1033         for_each_intel_dp(&dev_priv->drm, encoder) {
1034                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1035
1036                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037
1038                 if (encoder->type != INTEL_OUTPUT_EDP)
1039                         continue;
1040
1041                 if (IS_GEN9_LP(dev_priv))
1042                         intel_dp->pps_reset = true;
1043                 else
1044                         intel_dp->pps_pipe = INVALID_PIPE;
1045         }
1046 }
1047
1048 struct pps_registers {
1049         i915_reg_t pp_ctrl;
1050         i915_reg_t pp_stat;
1051         i915_reg_t pp_on;
1052         i915_reg_t pp_off;
1053         i915_reg_t pp_div;
1054 };
1055
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057                                     struct pps_registers *regs)
1058 {
1059         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060         int pps_idx = 0;
1061
1062         memset(regs, 0, sizeof(*regs));
1063
1064         if (IS_GEN9_LP(dev_priv))
1065                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1066         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068
1069         regs->pp_ctrl = PP_CONTROL(pps_idx);
1070         regs->pp_stat = PP_STATUS(pps_idx);
1071         regs->pp_on = PP_ON_DELAYS(pps_idx);
1072         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073
1074         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076                 regs->pp_div = INVALID_MMIO_REG;
1077         else
1078                 regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084         struct pps_registers regs;
1085
1086         intel_pps_get_registers(intel_dp, &regs);
1087
1088         return regs.pp_ctrl;
1089 }
1090
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094         struct pps_registers regs;
1095
1096         intel_pps_get_registers(intel_dp, &regs);
1097
1098         return regs.pp_stat;
1099 }
1100
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104                               void *unused)
1105 {
1106         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107                                                  edp_notifier);
1108         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109         intel_wakeref_t wakeref;
1110
1111         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112                 return 0;
1113
1114         with_pps_lock(intel_dp, wakeref) {
1115                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1118                         u32 pp_div;
1119
1120                         pp_ctrl_reg = PP_CONTROL(pipe);
1121                         pp_div_reg  = PP_DIVISOR(pipe);
1122                         pp_div = I915_READ(pp_div_reg);
1123                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124
1125                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1126                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128                         msleep(intel_dp->panel_power_cycle_delay);
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138
1139         lockdep_assert_held(&dev_priv->pps_mutex);
1140
1141         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142             intel_dp->pps_pipe == INVALID_PIPE)
1143                 return false;
1144
1145         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151
1152         lockdep_assert_held(&dev_priv->pps_mutex);
1153
1154         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155             intel_dp->pps_pipe == INVALID_PIPE)
1156                 return false;
1157
1158         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165
1166         if (!intel_dp_is_edp(intel_dp))
1167                 return;
1168
1169         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172                               I915_READ(_pp_stat_reg(intel_dp)),
1173                               I915_READ(_pp_ctrl_reg(intel_dp)));
1174         }
1175 }
1176
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182         const unsigned int timeout_ms = 10;
1183         u32 status;
1184         bool done;
1185
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188                                   msecs_to_jiffies_timeout(timeout_ms));
1189
1190         /* just trace the final value */
1191         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192
1193         if (!done)
1194                 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195                           intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197
1198         return status;
1199 }
1200
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204
1205         if (index)
1206                 return 0;
1207
1208         /*
1209          * The clock divider is based off the hrawclk, and would like to run at
1210          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211          */
1212         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219
1220         if (index)
1221                 return 0;
1222
1223         /*
1224          * The clock divider is based off the cdclk or PCH rawclk, and would
1225          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226          * divide by 2000 and use that
1227          */
1228         if (dig_port->aux_ch == AUX_CH_A)
1229                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230         else
1231                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238
1239         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240                 /* Workaround for non-ULT HSW */
1241                 switch (index) {
1242                 case 0: return 63;
1243                 case 1: return 72;
1244                 default: return 0;
1245                 }
1246         }
1247
1248         return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253         /*
1254          * SKL doesn't need us to program the AUX clock divider (Hardware will
1255          * derive the clock from CDCLK automatically). We still implement the
1256          * get_aux_clock_divider vfunc to plug-in into the existing code.
1257          */
1258         return index ? 0 : 1;
1259 }
1260
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262                                 int send_bytes,
1263                                 u32 aux_clock_divider)
1264 {
1265         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266         struct drm_i915_private *dev_priv =
1267                         to_i915(intel_dig_port->base.base.dev);
1268         u32 precharge, timeout;
1269
1270         if (IS_GEN(dev_priv, 6))
1271                 precharge = 3;
1272         else
1273                 precharge = 5;
1274
1275         if (IS_BROADWELL(dev_priv))
1276                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277         else
1278                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279
1280         return DP_AUX_CH_CTL_SEND_BUSY |
1281                DP_AUX_CH_CTL_DONE |
1282                DP_AUX_CH_CTL_INTERRUPT |
1283                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284                timeout |
1285                DP_AUX_CH_CTL_RECEIVE_ERROR |
1286                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 unused)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *i915 =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299         u32 ret;
1300
1301         ret = DP_AUX_CH_CTL_SEND_BUSY |
1302               DP_AUX_CH_CTL_DONE |
1303               DP_AUX_CH_CTL_INTERRUPT |
1304               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305               DP_AUX_CH_CTL_TIME_OUT_MAX |
1306               DP_AUX_CH_CTL_RECEIVE_ERROR |
1307               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310
1311         if (intel_phy_is_tc(i915, phy) &&
1312             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313                 ret |= DP_AUX_CH_CTL_TBT_IO;
1314
1315         return ret;
1316 }
1317
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320                   const u8 *send, int send_bytes,
1321                   u8 *recv, int recv_size,
1322                   u32 aux_send_ctl_flags)
1323 {
1324         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325         struct drm_i915_private *i915 =
1326                         to_i915(intel_dig_port->base.base.dev);
1327         struct intel_uncore *uncore = &i915->uncore;
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         bool is_tc_port = intel_phy_is_tc(i915, phy);
1330         i915_reg_t ch_ctl, ch_data[5];
1331         u32 aux_clock_divider;
1332         enum intel_display_power_domain aux_domain =
1333                 intel_aux_power_domain(intel_dig_port);
1334         intel_wakeref_t aux_wakeref;
1335         intel_wakeref_t pps_wakeref;
1336         int i, ret, recv_bytes;
1337         int try, clock = 0;
1338         u32 status;
1339         bool vdd;
1340
1341         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344
1345         if (is_tc_port)
1346                 intel_tc_port_lock(intel_dig_port);
1347
1348         aux_wakeref = intel_display_power_get(i915, aux_domain);
1349         pps_wakeref = pps_lock(intel_dp);
1350
1351         /*
1352          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353          * In such cases we want to leave VDD enabled and it's up to upper layers
1354          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355          * ourselves.
1356          */
1357         vdd = edp_panel_vdd_on(intel_dp);
1358
1359         /* dp aux is extremely sensitive to irq latency, hence request the
1360          * lowest possible wakeup latency and so prevent the cpu from going into
1361          * deep sleep states.
1362          */
1363         pm_qos_update_request(&i915->pm_qos, 0);
1364
1365         intel_dp_check_edp(intel_dp);
1366
1367         /* Try to wait for any previous AUX channel activity */
1368         for (try = 0; try < 3; try++) {
1369                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1370                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371                         break;
1372                 msleep(1);
1373         }
1374         /* just trace the final value */
1375         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376
1377         if (try == 3) {
1378                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1379
1380                 if (status != intel_dp->aux_busy_last_status) {
1381                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382                              status);
1383                         intel_dp->aux_busy_last_status = status;
1384                 }
1385
1386                 ret = -EBUSY;
1387                 goto out;
1388         }
1389
1390         /* Only 5 data registers! */
1391         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392                 ret = -E2BIG;
1393                 goto out;
1394         }
1395
1396         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398                                                           send_bytes,
1399                                                           aux_clock_divider);
1400
1401                 send_ctl |= aux_send_ctl_flags;
1402
1403                 /* Must try at least 3 times according to DP spec */
1404                 for (try = 0; try < 5; try++) {
1405                         /* Load the send data into the aux channel data registers */
1406                         for (i = 0; i < send_bytes; i += 4)
1407                                 intel_uncore_write(uncore,
1408                                                    ch_data[i >> 2],
1409                                                    intel_dp_pack_aux(send + i,
1410                                                                      send_bytes - i));
1411
1412                         /* Send the command and wait for it to complete */
1413                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1414
1415                         status = intel_dp_aux_wait_done(intel_dp);
1416
1417                         /* Clear done status and any errors */
1418                         intel_uncore_write(uncore,
1419                                            ch_ctl,
1420                                            status |
1421                                            DP_AUX_CH_CTL_DONE |
1422                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1424
1425                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426                          *   400us delay required for errors and timeouts
1427                          *   Timeout errors from the HW already meet this
1428                          *   requirement so skip to next iteration
1429                          */
1430                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431                                 continue;
1432
1433                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434                                 usleep_range(400, 500);
1435                                 continue;
1436                         }
1437                         if (status & DP_AUX_CH_CTL_DONE)
1438                                 goto done;
1439                 }
1440         }
1441
1442         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444                 ret = -EBUSY;
1445                 goto out;
1446         }
1447
1448 done:
1449         /* Check for timeout or receive error.
1450          * Timeouts occur when the sink is not connected
1451          */
1452         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454                 ret = -EIO;
1455                 goto out;
1456         }
1457
1458         /* Timeouts occur when the device isn't connected, so they're
1459          * "normal" -- don't fill the kernel log with these */
1460         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462                 ret = -ETIMEDOUT;
1463                 goto out;
1464         }
1465
1466         /* Unload any bytes sent back from the other side */
1467         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469
1470         /*
1471          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472          * We have no idea of what happened so we return -EBUSY so
1473          * drm layer takes care for the necessary retries.
1474          */
1475         if (recv_bytes == 0 || recv_bytes > 20) {
1476                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477                               recv_bytes);
1478                 ret = -EBUSY;
1479                 goto out;
1480         }
1481
1482         if (recv_bytes > recv_size)
1483                 recv_bytes = recv_size;
1484
1485         for (i = 0; i < recv_bytes; i += 4)
1486                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487                                     recv + i, recv_bytes - i);
1488
1489         ret = recv_bytes;
1490 out:
1491         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492
1493         if (vdd)
1494                 edp_panel_vdd_off(intel_dp, false);
1495
1496         pps_unlock(intel_dp, pps_wakeref);
1497         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498
1499         if (is_tc_port)
1500                 intel_tc_port_unlock(intel_dig_port);
1501
1502         return ret;
1503 }
1504
1505 #define BARE_ADDRESS_SIZE       3
1506 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1507
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510                     const struct drm_dp_aux_msg *msg)
1511 {
1512         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513         txbuf[1] = (msg->address >> 8) & 0xff;
1514         txbuf[2] = msg->address & 0xff;
1515         txbuf[3] = msg->size - 1;
1516 }
1517
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522         u8 txbuf[20], rxbuf[20];
1523         size_t txsize, rxsize;
1524         int ret;
1525
1526         intel_dp_aux_header(txbuf, msg);
1527
1528         switch (msg->request & ~DP_AUX_I2C_MOT) {
1529         case DP_AUX_NATIVE_WRITE:
1530         case DP_AUX_I2C_WRITE:
1531         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533                 rxsize = 2; /* 0 or 1 data bytes */
1534
1535                 if (WARN_ON(txsize > 20))
1536                         return -E2BIG;
1537
1538                 WARN_ON(!msg->buffer != !msg->size);
1539
1540                 if (msg->buffer)
1541                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542
1543                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544                                         rxbuf, rxsize, 0);
1545                 if (ret > 0) {
1546                         msg->reply = rxbuf[0] >> 4;
1547
1548                         if (ret > 1) {
1549                                 /* Number of bytes written in a short write. */
1550                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551                         } else {
1552                                 /* Return payload size. */
1553                                 ret = msg->size;
1554                         }
1555                 }
1556                 break;
1557
1558         case DP_AUX_NATIVE_READ:
1559         case DP_AUX_I2C_READ:
1560                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561                 rxsize = msg->size + 1;
1562
1563                 if (WARN_ON(rxsize > 20))
1564                         return -E2BIG;
1565
1566                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567                                         rxbuf, rxsize, 0);
1568                 if (ret > 0) {
1569                         msg->reply = rxbuf[0] >> 4;
1570                         /*
1571                          * Assume happy day, and copy the data. The caller is
1572                          * expected to check msg->reply before touching it.
1573                          *
1574                          * Return payload size.
1575                          */
1576                         ret--;
1577                         memcpy(msg->buffer, rxbuf + 1, ret);
1578                 }
1579                 break;
1580
1581         default:
1582                 ret = -EINVAL;
1583                 break;
1584         }
1585
1586         return ret;
1587 }
1588
1589
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594         enum aux_ch aux_ch = dig_port->aux_ch;
1595
1596         switch (aux_ch) {
1597         case AUX_CH_B:
1598         case AUX_CH_C:
1599         case AUX_CH_D:
1600                 return DP_AUX_CH_CTL(aux_ch);
1601         default:
1602                 MISSING_CASE(aux_ch);
1603                 return DP_AUX_CH_CTL(AUX_CH_B);
1604         }
1605 }
1606
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611         enum aux_ch aux_ch = dig_port->aux_ch;
1612
1613         switch (aux_ch) {
1614         case AUX_CH_B:
1615         case AUX_CH_C:
1616         case AUX_CH_D:
1617                 return DP_AUX_CH_DATA(aux_ch, index);
1618         default:
1619                 MISSING_CASE(aux_ch);
1620                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1621         }
1622 }
1623
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628         enum aux_ch aux_ch = dig_port->aux_ch;
1629
1630         switch (aux_ch) {
1631         case AUX_CH_A:
1632                 return DP_AUX_CH_CTL(aux_ch);
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return PCH_DP_AUX_CH_CTL(aux_ch);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_CTL(AUX_CH_A);
1640         }
1641 }
1642
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_A:
1651                 return DP_AUX_CH_DATA(aux_ch, index);
1652         case AUX_CH_B:
1653         case AUX_CH_C:
1654         case AUX_CH_D:
1655                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656         default:
1657                 MISSING_CASE(aux_ch);
1658                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1659         }
1660 }
1661
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666         enum aux_ch aux_ch = dig_port->aux_ch;
1667
1668         switch (aux_ch) {
1669         case AUX_CH_A:
1670         case AUX_CH_B:
1671         case AUX_CH_C:
1672         case AUX_CH_D:
1673         case AUX_CH_E:
1674         case AUX_CH_F:
1675         case AUX_CH_G:
1676                 return DP_AUX_CH_CTL(aux_ch);
1677         default:
1678                 MISSING_CASE(aux_ch);
1679                 return DP_AUX_CH_CTL(AUX_CH_A);
1680         }
1681 }
1682
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687         enum aux_ch aux_ch = dig_port->aux_ch;
1688
1689         switch (aux_ch) {
1690         case AUX_CH_A:
1691         case AUX_CH_B:
1692         case AUX_CH_C:
1693         case AUX_CH_D:
1694         case AUX_CH_E:
1695         case AUX_CH_F:
1696         case AUX_CH_G:
1697                 return DP_AUX_CH_DATA(aux_ch, index);
1698         default:
1699                 MISSING_CASE(aux_ch);
1700                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1701         }
1702 }
1703
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707         kfree(intel_dp->aux.name);
1708 }
1709
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715         struct intel_encoder *encoder = &dig_port->base;
1716
1717         if (INTEL_GEN(dev_priv) >= 9) {
1718                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720         } else if (HAS_PCH_SPLIT(dev_priv)) {
1721                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723         } else {
1724                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726         }
1727
1728         if (INTEL_GEN(dev_priv) >= 9)
1729                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732         else if (HAS_PCH_SPLIT(dev_priv))
1733                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734         else
1735                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736
1737         if (INTEL_GEN(dev_priv) >= 9)
1738                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739         else
1740                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741
1742         drm_dp_aux_init(&intel_dp->aux);
1743
1744         /* Failure to allocate our preferred name is not critical */
1745         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746                                        port_name(encoder->port));
1747         intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753
1754         return max_rate >= 540000;
1755 }
1756
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760
1761         return max_rate >= 810000;
1762 }
1763
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766                    struct intel_crtc_state *pipe_config)
1767 {
1768         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769         const struct dp_link_dpll *divisor = NULL;
1770         int i, count = 0;
1771
1772         if (IS_G4X(dev_priv)) {
1773                 divisor = g4x_dpll;
1774                 count = ARRAY_SIZE(g4x_dpll);
1775         } else if (HAS_PCH_SPLIT(dev_priv)) {
1776                 divisor = pch_dpll;
1777                 count = ARRAY_SIZE(pch_dpll);
1778         } else if (IS_CHERRYVIEW(dev_priv)) {
1779                 divisor = chv_dpll;
1780                 count = ARRAY_SIZE(chv_dpll);
1781         } else if (IS_VALLEYVIEW(dev_priv)) {
1782                 divisor = vlv_dpll;
1783                 count = ARRAY_SIZE(vlv_dpll);
1784         }
1785
1786         if (divisor && count) {
1787                 for (i = 0; i < count; i++) {
1788                         if (pipe_config->port_clock == divisor[i].clock) {
1789                                 pipe_config->dpll = divisor[i].dpll;
1790                                 pipe_config->clock_set = true;
1791                                 break;
1792                         }
1793                 }
1794         }
1795 }
1796
1797 static void snprintf_int_array(char *str, size_t len,
1798                                const int *array, int nelem)
1799 {
1800         int i;
1801
1802         str[0] = '\0';
1803
1804         for (i = 0; i < nelem; i++) {
1805                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806                 if (r >= len)
1807                         return;
1808                 str += r;
1809                 len -= r;
1810         }
1811 }
1812
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815         char str[128]; /* FIXME: too big for stack? */
1816
1817         if ((drm_debug & DRM_UT_KMS) == 0)
1818                 return;
1819
1820         snprintf_int_array(str, sizeof(str),
1821                            intel_dp->source_rates, intel_dp->num_source_rates);
1822         DRM_DEBUG_KMS("source rates: %s\n", str);
1823
1824         snprintf_int_array(str, sizeof(str),
1825                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1826         DRM_DEBUG_KMS("sink rates: %s\n", str);
1827
1828         snprintf_int_array(str, sizeof(str),
1829                            intel_dp->common_rates, intel_dp->num_common_rates);
1830         DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836         int len;
1837
1838         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839         if (WARN_ON(len <= 0))
1840                 return 162000;
1841
1842         return intel_dp->common_rates[len - 1];
1843 }
1844
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847         int i = intel_dp_rate_index(intel_dp->sink_rates,
1848                                     intel_dp->num_sink_rates, rate);
1849
1850         if (WARN_ON(i < 0))
1851                 i = 0;
1852
1853         return i;
1854 }
1855
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857                            u8 *link_bw, u8 *rate_select)
1858 {
1859         /* eDP 1.4 rate select method. */
1860         if (intel_dp->use_rate_select) {
1861                 *link_bw = 0;
1862                 *rate_select =
1863                         intel_dp_rate_select(intel_dp, port_clock);
1864         } else {
1865                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866                 *rate_select = 0;
1867         }
1868 }
1869
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871                                          const struct intel_crtc_state *pipe_config)
1872 {
1873         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874
1875         /* On TGL, FEC is supported on all Pipes */
1876         if (INTEL_GEN(dev_priv) >= 12)
1877                 return true;
1878
1879         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880                 return true;
1881
1882         return false;
1883 }
1884
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886                                   const struct intel_crtc_state *pipe_config)
1887 {
1888         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891
1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1893                                          const struct intel_crtc_state *pipe_config)
1894 {
1895         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1896
1897         if (!INTEL_INFO(dev_priv)->display.has_dsc)
1898                 return false;
1899
1900         /* On TGL, DSC is supported on all Pipes */
1901         if (INTEL_GEN(dev_priv) >= 12)
1902                 return true;
1903
1904         if (INTEL_GEN(dev_priv) >= 10 &&
1905             pipe_config->cpu_transcoder != TRANSCODER_A)
1906                 return true;
1907
1908         return false;
1909 }
1910
1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1912                                   const struct intel_crtc_state *pipe_config)
1913 {
1914         if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1915                 return false;
1916
1917         return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1918                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1919 }
1920
1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1922                                 struct intel_crtc_state *pipe_config)
1923 {
1924         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1925         struct intel_connector *intel_connector = intel_dp->attached_connector;
1926         int bpp, bpc;
1927
1928         bpp = pipe_config->pipe_bpp;
1929         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1930
1931         if (bpc > 0)
1932                 bpp = min(bpp, 3*bpc);
1933
1934         if (intel_dp_is_edp(intel_dp)) {
1935                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1936                 if (intel_connector->base.display_info.bpc == 0 &&
1937                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1938                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1939                                       dev_priv->vbt.edp.bpp);
1940                         bpp = dev_priv->vbt.edp.bpp;
1941                 }
1942         }
1943
1944         return bpp;
1945 }
1946
1947 /* Adjust link config limits based on compliance test requests. */
1948 void
1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1950                                   struct intel_crtc_state *pipe_config,
1951                                   struct link_config_limits *limits)
1952 {
1953         /* For DP Compliance we override the computed bpp for the pipe */
1954         if (intel_dp->compliance.test_data.bpc != 0) {
1955                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1956
1957                 limits->min_bpp = limits->max_bpp = bpp;
1958                 pipe_config->dither_force_disable = bpp == 6 * 3;
1959
1960                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1961         }
1962
1963         /* Use values requested by Compliance Test Request */
1964         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1965                 int index;
1966
1967                 /* Validate the compliance test data since max values
1968                  * might have changed due to link train fallback.
1969                  */
1970                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1971                                                intel_dp->compliance.test_lane_count)) {
1972                         index = intel_dp_rate_index(intel_dp->common_rates,
1973                                                     intel_dp->num_common_rates,
1974                                                     intel_dp->compliance.test_link_rate);
1975                         if (index >= 0)
1976                                 limits->min_clock = limits->max_clock = index;
1977                         limits->min_lane_count = limits->max_lane_count =
1978                                 intel_dp->compliance.test_lane_count;
1979                 }
1980         }
1981 }
1982
1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1984 {
1985         /*
1986          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1987          * format of the number of bytes per pixel will be half the number
1988          * of bytes of RGB pixel.
1989          */
1990         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1991                 bpp /= 2;
1992
1993         return bpp;
1994 }
1995
1996 /* Optimize link config in order: max bpp, min clock, min lanes */
1997 static int
1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1999                                   struct intel_crtc_state *pipe_config,
2000                                   const struct link_config_limits *limits)
2001 {
2002         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2003         int bpp, clock, lane_count;
2004         int mode_rate, link_clock, link_avail;
2005
2006         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2007                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2008
2009                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2010                                                    output_bpp);
2011
2012                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2013                         for (lane_count = limits->min_lane_count;
2014                              lane_count <= limits->max_lane_count;
2015                              lane_count <<= 1) {
2016                                 link_clock = intel_dp->common_rates[clock];
2017                                 link_avail = intel_dp_max_data_rate(link_clock,
2018                                                                     lane_count);
2019
2020                                 if (mode_rate <= link_avail) {
2021                                         pipe_config->lane_count = lane_count;
2022                                         pipe_config->pipe_bpp = bpp;
2023                                         pipe_config->port_clock = link_clock;
2024
2025                                         return 0;
2026                                 }
2027                         }
2028                 }
2029         }
2030
2031         return -EINVAL;
2032 }
2033
2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2035 {
2036         int i, num_bpc;
2037         u8 dsc_bpc[3] = {0};
2038
2039         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2040                                                        dsc_bpc);
2041         for (i = 0; i < num_bpc; i++) {
2042                 if (dsc_max_bpc >= dsc_bpc[i])
2043                         return dsc_bpc[i] * 3;
2044         }
2045
2046         return 0;
2047 }
2048
2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2050                                        struct intel_crtc_state *pipe_config,
2051                                        struct drm_connector_state *conn_state,
2052                                        struct link_config_limits *limits)
2053 {
2054         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2055         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2056         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2057         u8 dsc_max_bpc;
2058         int pipe_bpp;
2059         int ret;
2060
2061         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2062                 intel_dp_supports_fec(intel_dp, pipe_config);
2063
2064         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2065                 return -EINVAL;
2066
2067         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2068         if (INTEL_GEN(dev_priv) >= 12)
2069                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2070         else
2071                 dsc_max_bpc = min_t(u8, 10,
2072                                     conn_state->max_requested_bpc);
2073
2074         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2075
2076         /* Min Input BPC for ICL+ is 8 */
2077         if (pipe_bpp < 8 * 3) {
2078                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2079                 return -EINVAL;
2080         }
2081
2082         /*
2083          * For now enable DSC for max bpp, max link rate, max lane count.
2084          * Optimize this later for the minimum possible link rate/lane count
2085          * with DSC enabled for the requested mode.
2086          */
2087         pipe_config->pipe_bpp = pipe_bpp;
2088         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2089         pipe_config->lane_count = limits->max_lane_count;
2090
2091         if (intel_dp_is_edp(intel_dp)) {
2092                 pipe_config->dsc.compressed_bpp =
2093                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2094                               pipe_config->pipe_bpp);
2095                 pipe_config->dsc.slice_count =
2096                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2097                                                         true);
2098         } else {
2099                 u16 dsc_max_output_bpp;
2100                 u8 dsc_dp_slice_count;
2101
2102                 dsc_max_output_bpp =
2103                         intel_dp_dsc_get_output_bpp(dev_priv,
2104                                                     pipe_config->port_clock,
2105                                                     pipe_config->lane_count,
2106                                                     adjusted_mode->crtc_clock,
2107                                                     adjusted_mode->crtc_hdisplay);
2108                 dsc_dp_slice_count =
2109                         intel_dp_dsc_get_slice_count(intel_dp,
2110                                                      adjusted_mode->crtc_clock,
2111                                                      adjusted_mode->crtc_hdisplay);
2112                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2113                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2114                         return -EINVAL;
2115                 }
2116                 pipe_config->dsc.compressed_bpp = min_t(u16,
2117                                                                dsc_max_output_bpp >> 4,
2118                                                                pipe_config->pipe_bpp);
2119                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2120         }
2121         /*
2122          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2123          * is greater than the maximum Cdclock and if slice count is even
2124          * then we need to use 2 VDSC instances.
2125          */
2126         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2127                 if (pipe_config->dsc.slice_count > 1) {
2128                         pipe_config->dsc.dsc_split = true;
2129                 } else {
2130                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2131                         return -EINVAL;
2132                 }
2133         }
2134
2135         ret = intel_dsc_compute_params(&dig_port->base, pipe_config);
2136         if (ret < 0) {
2137                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2138                               "Compressed BPP = %d\n",
2139                               pipe_config->pipe_bpp,
2140                               pipe_config->dsc.compressed_bpp);
2141                 return ret;
2142         }
2143
2144         pipe_config->dsc.compression_enable = true;
2145         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2146                       "Compressed Bpp = %d Slice Count = %d\n",
2147                       pipe_config->pipe_bpp,
2148                       pipe_config->dsc.compressed_bpp,
2149                       pipe_config->dsc.slice_count);
2150
2151         return 0;
2152 }
2153
2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2155 {
2156         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2157                 return 6 * 3;
2158         else
2159                 return 8 * 3;
2160 }
2161
2162 static int
2163 intel_dp_compute_link_config(struct intel_encoder *encoder,
2164                              struct intel_crtc_state *pipe_config,
2165                              struct drm_connector_state *conn_state)
2166 {
2167         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2168         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2169         struct link_config_limits limits;
2170         int common_len;
2171         int ret;
2172
2173         common_len = intel_dp_common_len_rate_limit(intel_dp,
2174                                                     intel_dp->max_link_rate);
2175
2176         /* No common link rates between source and sink */
2177         WARN_ON(common_len <= 0);
2178
2179         limits.min_clock = 0;
2180         limits.max_clock = common_len - 1;
2181
2182         limits.min_lane_count = 1;
2183         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2184
2185         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2186         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2187
2188         if (intel_dp_is_edp(intel_dp)) {
2189                 /*
2190                  * Use the maximum clock and number of lanes the eDP panel
2191                  * advertizes being capable of. The panels are generally
2192                  * designed to support only a single clock and lane
2193                  * configuration, and typically these values correspond to the
2194                  * native resolution of the panel.
2195                  */
2196                 limits.min_lane_count = limits.max_lane_count;
2197                 limits.min_clock = limits.max_clock;
2198         }
2199
2200         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2201
2202         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2203                       "max rate %d max bpp %d pixel clock %iKHz\n",
2204                       limits.max_lane_count,
2205                       intel_dp->common_rates[limits.max_clock],
2206                       limits.max_bpp, adjusted_mode->crtc_clock);
2207
2208         /*
2209          * Optimize for slow and wide. This is the place to add alternative
2210          * optimization policy.
2211          */
2212         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2213
2214         /* enable compression if the mode doesn't fit available BW */
2215         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2216         if (ret || intel_dp->force_dsc_en) {
2217                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2218                                                   conn_state, &limits);
2219                 if (ret < 0)
2220                         return ret;
2221         }
2222
2223         if (pipe_config->dsc.compression_enable) {
2224                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2225                               pipe_config->lane_count, pipe_config->port_clock,
2226                               pipe_config->pipe_bpp,
2227                               pipe_config->dsc.compressed_bpp);
2228
2229                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2230                               intel_dp_link_required(adjusted_mode->crtc_clock,
2231                                                      pipe_config->dsc.compressed_bpp),
2232                               intel_dp_max_data_rate(pipe_config->port_clock,
2233                                                      pipe_config->lane_count));
2234         } else {
2235                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2236                               pipe_config->lane_count, pipe_config->port_clock,
2237                               pipe_config->pipe_bpp);
2238
2239                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2240                               intel_dp_link_required(adjusted_mode->crtc_clock,
2241                                                      pipe_config->pipe_bpp),
2242                               intel_dp_max_data_rate(pipe_config->port_clock,
2243                                                      pipe_config->lane_count));
2244         }
2245         return 0;
2246 }
2247
2248 static int
2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2250                          struct drm_connector *connector,
2251                          struct intel_crtc_state *crtc_state)
2252 {
2253         const struct drm_display_info *info = &connector->display_info;
2254         const struct drm_display_mode *adjusted_mode =
2255                 &crtc_state->hw.adjusted_mode;
2256         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2257         int ret;
2258
2259         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2260             !intel_dp_get_colorimetry_status(intel_dp) ||
2261             !connector->ycbcr_420_allowed)
2262                 return 0;
2263
2264         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2265
2266         /* YCBCR 420 output conversion needs a scaler */
2267         ret = skl_update_scaler_crtc(crtc_state);
2268         if (ret) {
2269                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2270                 return ret;
2271         }
2272
2273         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2274
2275         return 0;
2276 }
2277
2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2279                                   const struct drm_connector_state *conn_state)
2280 {
2281         const struct intel_digital_connector_state *intel_conn_state =
2282                 to_intel_digital_connector_state(conn_state);
2283         const struct drm_display_mode *adjusted_mode =
2284                 &crtc_state->hw.adjusted_mode;
2285
2286         /*
2287          * Our YCbCr output is always limited range.
2288          * crtc_state->limited_color_range only applies to RGB,
2289          * and it must never be set for YCbCr or we risk setting
2290          * some conflicting bits in PIPECONF which will mess up
2291          * the colors on the monitor.
2292          */
2293         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2294                 return false;
2295
2296         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2297                 /*
2298                  * See:
2299                  * CEA-861-E - 5.1 Default Encoding Parameters
2300                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2301                  */
2302                 return crtc_state->pipe_bpp != 18 &&
2303                         drm_default_rgb_quant_range(adjusted_mode) ==
2304                         HDMI_QUANTIZATION_RANGE_LIMITED;
2305         } else {
2306                 return intel_conn_state->broadcast_rgb ==
2307                         INTEL_BROADCAST_RGB_LIMITED;
2308         }
2309 }
2310
2311 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2312                                     enum port port)
2313 {
2314         if (IS_G4X(dev_priv))
2315                 return false;
2316         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2317                 return false;
2318
2319         return true;
2320 }
2321
2322 int
2323 intel_dp_compute_config(struct intel_encoder *encoder,
2324                         struct intel_crtc_state *pipe_config,
2325                         struct drm_connector_state *conn_state)
2326 {
2327         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2328         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2329         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2330         struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2331         enum port port = encoder->port;
2332         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2333         struct intel_connector *intel_connector = intel_dp->attached_connector;
2334         struct intel_digital_connector_state *intel_conn_state =
2335                 to_intel_digital_connector_state(conn_state);
2336         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2337                                            DP_DPCD_QUIRK_CONSTANT_N);
2338         int ret = 0, output_bpp;
2339
2340         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2341                 pipe_config->has_pch_encoder = true;
2342
2343         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2344
2345         if (lspcon->active)
2346                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2347         else
2348                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2349                                                pipe_config);
2350
2351         if (ret)
2352                 return ret;
2353
2354         pipe_config->has_drrs = false;
2355         if (!intel_dp_port_has_audio(dev_priv, port))
2356                 pipe_config->has_audio = false;
2357         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2358                 pipe_config->has_audio = intel_dp->has_audio;
2359         else
2360                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2361
2362         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2363                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2364                                        adjusted_mode);
2365
2366                 if (INTEL_GEN(dev_priv) >= 9) {
2367                         ret = skl_update_scaler_crtc(pipe_config);
2368                         if (ret)
2369                                 return ret;
2370                 }
2371
2372                 if (HAS_GMCH(dev_priv))
2373                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2374                                                  conn_state->scaling_mode);
2375                 else
2376                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2377                                                 conn_state->scaling_mode);
2378         }
2379
2380         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2381                 return -EINVAL;
2382
2383         if (HAS_GMCH(dev_priv) &&
2384             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2385                 return -EINVAL;
2386
2387         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2388                 return -EINVAL;
2389
2390         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2391                 return -EINVAL;
2392
2393         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2394         if (ret < 0)
2395                 return ret;
2396
2397         pipe_config->limited_color_range =
2398                 intel_dp_limited_color_range(pipe_config, conn_state);
2399
2400         if (pipe_config->dsc.compression_enable)
2401                 output_bpp = pipe_config->dsc.compressed_bpp;
2402         else
2403                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2404
2405         intel_link_compute_m_n(output_bpp,
2406                                pipe_config->lane_count,
2407                                adjusted_mode->crtc_clock,
2408                                pipe_config->port_clock,
2409                                &pipe_config->dp_m_n,
2410                                constant_n, pipe_config->fec_enable);
2411
2412         if (intel_connector->panel.downclock_mode != NULL &&
2413                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2414                         pipe_config->has_drrs = true;
2415                         intel_link_compute_m_n(output_bpp,
2416                                                pipe_config->lane_count,
2417                                                intel_connector->panel.downclock_mode->clock,
2418                                                pipe_config->port_clock,
2419                                                &pipe_config->dp_m2_n2,
2420                                                constant_n, pipe_config->fec_enable);
2421         }
2422
2423         if (!HAS_DDI(dev_priv))
2424                 intel_dp_set_clock(encoder, pipe_config);
2425
2426         intel_psr_compute_config(intel_dp, pipe_config);
2427
2428         return 0;
2429 }
2430
2431 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2432                               int link_rate, u8 lane_count,
2433                               bool link_mst)
2434 {
2435         intel_dp->link_trained = false;
2436         intel_dp->link_rate = link_rate;
2437         intel_dp->lane_count = lane_count;
2438         intel_dp->link_mst = link_mst;
2439 }
2440
2441 static void intel_dp_prepare(struct intel_encoder *encoder,
2442                              const struct intel_crtc_state *pipe_config)
2443 {
2444         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2445         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2446         enum port port = encoder->port;
2447         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2448         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2449
2450         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2451                                  pipe_config->lane_count,
2452                                  intel_crtc_has_type(pipe_config,
2453                                                      INTEL_OUTPUT_DP_MST));
2454
2455         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2456         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2457
2458         /*
2459          * There are four kinds of DP registers:
2460          *
2461          *      IBX PCH
2462          *      SNB CPU
2463          *      IVB CPU
2464          *      CPT PCH
2465          *
2466          * IBX PCH and CPU are the same for almost everything,
2467          * except that the CPU DP PLL is configured in this
2468          * register
2469          *
2470          * CPT PCH is quite different, having many bits moved
2471          * to the TRANS_DP_CTL register instead. That
2472          * configuration happens (oddly) in ironlake_pch_enable
2473          */
2474
2475         /* Preserve the BIOS-computed detected bit. This is
2476          * supposed to be read-only.
2477          */
2478         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2479
2480         /* Handle DP bits in common between all three register formats */
2481         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2482         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2483
2484         /* Split out the IBX/CPU vs CPT settings */
2485
2486         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2487                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2488                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2489                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2490                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2491                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2492
2493                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2494                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2495
2496                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2497         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2498                 u32 trans_dp;
2499
2500                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2501
2502                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2503                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2504                         trans_dp |= TRANS_DP_ENH_FRAMING;
2505                 else
2506                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2507                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2508         } else {
2509                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2510                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2511
2512                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2513                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2514                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2515                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2516                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2517
2518                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2519                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2520
2521                 if (IS_CHERRYVIEW(dev_priv))
2522                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2523                 else
2524                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2525         }
2526 }
2527
2528 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2529 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2530
2531 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2532 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2533
2534 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2535 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2536
2537 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2538
2539 static void wait_panel_status(struct intel_dp *intel_dp,
2540                                        u32 mask,
2541                                        u32 value)
2542 {
2543         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2544         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2545
2546         lockdep_assert_held(&dev_priv->pps_mutex);
2547
2548         intel_pps_verify_state(intel_dp);
2549
2550         pp_stat_reg = _pp_stat_reg(intel_dp);
2551         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2552
2553         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2554                         mask, value,
2555                         I915_READ(pp_stat_reg),
2556                         I915_READ(pp_ctrl_reg));
2557
2558         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2559                                        mask, value, 5000))
2560                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2561                                 I915_READ(pp_stat_reg),
2562                                 I915_READ(pp_ctrl_reg));
2563
2564         DRM_DEBUG_KMS("Wait complete\n");
2565 }
2566
2567 static void wait_panel_on(struct intel_dp *intel_dp)
2568 {
2569         DRM_DEBUG_KMS("Wait for panel power on\n");
2570         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2571 }
2572
2573 static void wait_panel_off(struct intel_dp *intel_dp)
2574 {
2575         DRM_DEBUG_KMS("Wait for panel power off time\n");
2576         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2577 }
2578
2579 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2580 {
2581         ktime_t panel_power_on_time;
2582         s64 panel_power_off_duration;
2583
2584         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2585
2586         /* take the difference of currrent time and panel power off time
2587          * and then make panel wait for t11_t12 if needed. */
2588         panel_power_on_time = ktime_get_boottime();
2589         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2590
2591         /* When we disable the VDD override bit last we have to do the manual
2592          * wait. */
2593         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2594                 wait_remaining_ms_from_jiffies(jiffies,
2595                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2596
2597         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2598 }
2599
2600 static void wait_backlight_on(struct intel_dp *intel_dp)
2601 {
2602         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2603                                        intel_dp->backlight_on_delay);
2604 }
2605
2606 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2607 {
2608         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2609                                        intel_dp->backlight_off_delay);
2610 }
2611
2612 /* Read the current pp_control value, unlocking the register if it
2613  * is locked
2614  */
2615
2616 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2617 {
2618         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2619         u32 control;
2620
2621         lockdep_assert_held(&dev_priv->pps_mutex);
2622
2623         control = I915_READ(_pp_ctrl_reg(intel_dp));
2624         if (WARN_ON(!HAS_DDI(dev_priv) &&
2625                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2626                 control &= ~PANEL_UNLOCK_MASK;
2627                 control |= PANEL_UNLOCK_REGS;
2628         }
2629         return control;
2630 }
2631
2632 /*
2633  * Must be paired with edp_panel_vdd_off().
2634  * Must hold pps_mutex around the whole on/off sequence.
2635  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2636  */
2637 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2638 {
2639         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2640         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2641         u32 pp;
2642         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2643         bool need_to_disable = !intel_dp->want_panel_vdd;
2644
2645         lockdep_assert_held(&dev_priv->pps_mutex);
2646
2647         if (!intel_dp_is_edp(intel_dp))
2648                 return false;
2649
2650         cancel_delayed_work(&intel_dp->panel_vdd_work);
2651         intel_dp->want_panel_vdd = true;
2652
2653         if (edp_have_panel_vdd(intel_dp))
2654                 return need_to_disable;
2655
2656         intel_display_power_get(dev_priv,
2657                                 intel_aux_power_domain(intel_dig_port));
2658
2659         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2660                       intel_dig_port->base.base.base.id,
2661                       intel_dig_port->base.base.name);
2662
2663         if (!edp_have_panel_power(intel_dp))
2664                 wait_panel_power_cycle(intel_dp);
2665
2666         pp = ironlake_get_pp_control(intel_dp);
2667         pp |= EDP_FORCE_VDD;
2668
2669         pp_stat_reg = _pp_stat_reg(intel_dp);
2670         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2671
2672         I915_WRITE(pp_ctrl_reg, pp);
2673         POSTING_READ(pp_ctrl_reg);
2674         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2675                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2676         /*
2677          * If the panel wasn't on, delay before accessing aux channel
2678          */
2679         if (!edp_have_panel_power(intel_dp)) {
2680                 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2681                               intel_dig_port->base.base.base.id,
2682                               intel_dig_port->base.base.name);
2683                 msleep(intel_dp->panel_power_up_delay);
2684         }
2685
2686         return need_to_disable;
2687 }
2688
2689 /*
2690  * Must be paired with intel_edp_panel_vdd_off() or
2691  * intel_edp_panel_off().
2692  * Nested calls to these functions are not allowed since
2693  * we drop the lock. Caller must use some higher level
2694  * locking to prevent nested calls from other threads.
2695  */
2696 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2697 {
2698         intel_wakeref_t wakeref;
2699         bool vdd;
2700
2701         if (!intel_dp_is_edp(intel_dp))
2702                 return;
2703
2704         vdd = false;
2705         with_pps_lock(intel_dp, wakeref)
2706                 vdd = edp_panel_vdd_on(intel_dp);
2707         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2708                         dp_to_dig_port(intel_dp)->base.base.base.id,
2709                         dp_to_dig_port(intel_dp)->base.base.name);
2710 }
2711
2712 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2713 {
2714         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2715         struct intel_digital_port *intel_dig_port =
2716                 dp_to_dig_port(intel_dp);
2717         u32 pp;
2718         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2719
2720         lockdep_assert_held(&dev_priv->pps_mutex);
2721
2722         WARN_ON(intel_dp->want_panel_vdd);
2723
2724         if (!edp_have_panel_vdd(intel_dp))
2725                 return;
2726
2727         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2728                       intel_dig_port->base.base.base.id,
2729                       intel_dig_port->base.base.name);
2730
2731         pp = ironlake_get_pp_control(intel_dp);
2732         pp &= ~EDP_FORCE_VDD;
2733
2734         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2735         pp_stat_reg = _pp_stat_reg(intel_dp);
2736
2737         I915_WRITE(pp_ctrl_reg, pp);
2738         POSTING_READ(pp_ctrl_reg);
2739
2740         /* Make sure sequencer is idle before allowing subsequent activity */
2741         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2742         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2743
2744         if ((pp & PANEL_POWER_ON) == 0)
2745                 intel_dp->panel_power_off_time = ktime_get_boottime();
2746
2747         intel_display_power_put_unchecked(dev_priv,
2748                                           intel_aux_power_domain(intel_dig_port));
2749 }
2750
2751 static void edp_panel_vdd_work(struct work_struct *__work)
2752 {
2753         struct intel_dp *intel_dp =
2754                 container_of(to_delayed_work(__work),
2755                              struct intel_dp, panel_vdd_work);
2756         intel_wakeref_t wakeref;
2757
2758         with_pps_lock(intel_dp, wakeref) {
2759                 if (!intel_dp->want_panel_vdd)
2760                         edp_panel_vdd_off_sync(intel_dp);
2761         }
2762 }
2763
2764 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2765 {
2766         unsigned long delay;
2767
2768         /*
2769          * Queue the timer to fire a long time from now (relative to the power
2770          * down delay) to keep the panel power up across a sequence of
2771          * operations.
2772          */
2773         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2774         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2775 }
2776
2777 /*
2778  * Must be paired with edp_panel_vdd_on().
2779  * Must hold pps_mutex around the whole on/off sequence.
2780  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2781  */
2782 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2783 {
2784         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2785
2786         lockdep_assert_held(&dev_priv->pps_mutex);
2787
2788         if (!intel_dp_is_edp(intel_dp))
2789                 return;
2790
2791         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2792                         dp_to_dig_port(intel_dp)->base.base.base.id,
2793                         dp_to_dig_port(intel_dp)->base.base.name);
2794
2795         intel_dp->want_panel_vdd = false;
2796
2797         if (sync)
2798                 edp_panel_vdd_off_sync(intel_dp);
2799         else
2800                 edp_panel_vdd_schedule_off(intel_dp);
2801 }
2802
2803 static void edp_panel_on(struct intel_dp *intel_dp)
2804 {
2805         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2806         u32 pp;
2807         i915_reg_t pp_ctrl_reg;
2808
2809         lockdep_assert_held(&dev_priv->pps_mutex);
2810
2811         if (!intel_dp_is_edp(intel_dp))
2812                 return;
2813
2814         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2815                       dp_to_dig_port(intel_dp)->base.base.base.id,
2816                       dp_to_dig_port(intel_dp)->base.base.name);
2817
2818         if (WARN(edp_have_panel_power(intel_dp),
2819                  "[ENCODER:%d:%s] panel power already on\n",
2820                  dp_to_dig_port(intel_dp)->base.base.base.id,
2821                  dp_to_dig_port(intel_dp)->base.base.name))
2822                 return;
2823
2824         wait_panel_power_cycle(intel_dp);
2825
2826         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2827         pp = ironlake_get_pp_control(intel_dp);
2828         if (IS_GEN(dev_priv, 5)) {
2829                 /* ILK workaround: disable reset around power sequence */
2830                 pp &= ~PANEL_POWER_RESET;
2831                 I915_WRITE(pp_ctrl_reg, pp);
2832                 POSTING_READ(pp_ctrl_reg);
2833         }
2834
2835         pp |= PANEL_POWER_ON;
2836         if (!IS_GEN(dev_priv, 5))
2837                 pp |= PANEL_POWER_RESET;
2838
2839         I915_WRITE(pp_ctrl_reg, pp);
2840         POSTING_READ(pp_ctrl_reg);
2841
2842         wait_panel_on(intel_dp);
2843         intel_dp->last_power_on = jiffies;
2844
2845         if (IS_GEN(dev_priv, 5)) {
2846                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2847                 I915_WRITE(pp_ctrl_reg, pp);
2848                 POSTING_READ(pp_ctrl_reg);
2849         }
2850 }
2851
2852 void intel_edp_panel_on(struct intel_dp *intel_dp)
2853 {
2854         intel_wakeref_t wakeref;
2855
2856         if (!intel_dp_is_edp(intel_dp))
2857                 return;
2858
2859         with_pps_lock(intel_dp, wakeref)
2860                 edp_panel_on(intel_dp);
2861 }
2862
2863
2864 static void edp_panel_off(struct intel_dp *intel_dp)
2865 {
2866         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2867         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2868         u32 pp;
2869         i915_reg_t pp_ctrl_reg;
2870
2871         lockdep_assert_held(&dev_priv->pps_mutex);
2872
2873         if (!intel_dp_is_edp(intel_dp))
2874                 return;
2875
2876         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2877                       dig_port->base.base.base.id, dig_port->base.base.name);
2878
2879         WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2880              dig_port->base.base.base.id, dig_port->base.base.name);
2881
2882         pp = ironlake_get_pp_control(intel_dp);
2883         /* We need to switch off panel power _and_ force vdd, for otherwise some
2884          * panels get very unhappy and cease to work. */
2885         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2886                 EDP_BLC_ENABLE);
2887
2888         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2889
2890         intel_dp->want_panel_vdd = false;
2891
2892         I915_WRITE(pp_ctrl_reg, pp);
2893         POSTING_READ(pp_ctrl_reg);
2894
2895         wait_panel_off(intel_dp);
2896         intel_dp->panel_power_off_time = ktime_get_boottime();
2897
2898         /* We got a reference when we enabled the VDD. */
2899         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2900 }
2901
2902 void intel_edp_panel_off(struct intel_dp *intel_dp)
2903 {
2904         intel_wakeref_t wakeref;
2905
2906         if (!intel_dp_is_edp(intel_dp))
2907                 return;
2908
2909         with_pps_lock(intel_dp, wakeref)
2910                 edp_panel_off(intel_dp);
2911 }
2912
2913 /* Enable backlight in the panel power control. */
2914 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2915 {
2916         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2917         intel_wakeref_t wakeref;
2918
2919         /*
2920          * If we enable the backlight right away following a panel power
2921          * on, we may see slight flicker as the panel syncs with the eDP
2922          * link.  So delay a bit to make sure the image is solid before
2923          * allowing it to appear.
2924          */
2925         wait_backlight_on(intel_dp);
2926
2927         with_pps_lock(intel_dp, wakeref) {
2928                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2929                 u32 pp;
2930
2931                 pp = ironlake_get_pp_control(intel_dp);
2932                 pp |= EDP_BLC_ENABLE;
2933
2934                 I915_WRITE(pp_ctrl_reg, pp);
2935                 POSTING_READ(pp_ctrl_reg);
2936         }
2937 }
2938
2939 /* Enable backlight PWM and backlight PP control. */
2940 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2941                             const struct drm_connector_state *conn_state)
2942 {
2943         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2944
2945         if (!intel_dp_is_edp(intel_dp))
2946                 return;
2947
2948         DRM_DEBUG_KMS("\n");
2949
2950         intel_panel_enable_backlight(crtc_state, conn_state);
2951         _intel_edp_backlight_on(intel_dp);
2952 }
2953
2954 /* Disable backlight in the panel power control. */
2955 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2956 {
2957         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2958         intel_wakeref_t wakeref;
2959
2960         if (!intel_dp_is_edp(intel_dp))
2961                 return;
2962
2963         with_pps_lock(intel_dp, wakeref) {
2964                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2965                 u32 pp;
2966
2967                 pp = ironlake_get_pp_control(intel_dp);
2968                 pp &= ~EDP_BLC_ENABLE;
2969
2970                 I915_WRITE(pp_ctrl_reg, pp);
2971                 POSTING_READ(pp_ctrl_reg);
2972         }
2973
2974         intel_dp->last_backlight_off = jiffies;
2975         edp_wait_backlight_off(intel_dp);
2976 }
2977
2978 /* Disable backlight PP control and backlight PWM. */
2979 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2980 {
2981         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2982
2983         if (!intel_dp_is_edp(intel_dp))
2984                 return;
2985
2986         DRM_DEBUG_KMS("\n");
2987
2988         _intel_edp_backlight_off(intel_dp);
2989         intel_panel_disable_backlight(old_conn_state);
2990 }
2991
2992 /*
2993  * Hook for controlling the panel power control backlight through the bl_power
2994  * sysfs attribute. Take care to handle multiple calls.
2995  */
2996 static void intel_edp_backlight_power(struct intel_connector *connector,
2997                                       bool enable)
2998 {
2999         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
3000         intel_wakeref_t wakeref;
3001         bool is_enabled;
3002
3003         is_enabled = false;
3004         with_pps_lock(intel_dp, wakeref)
3005                 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3006         if (is_enabled == enable)
3007                 return;
3008
3009         DRM_DEBUG_KMS("panel power control backlight %s\n",
3010                       enable ? "enable" : "disable");
3011
3012         if (enable)
3013                 _intel_edp_backlight_on(intel_dp);
3014         else
3015                 _intel_edp_backlight_off(intel_dp);
3016 }
3017
3018 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3019 {
3020         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3021         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3022         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3023
3024         I915_STATE_WARN(cur_state != state,
3025                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3026                         dig_port->base.base.base.id, dig_port->base.base.name,
3027                         onoff(state), onoff(cur_state));
3028 }
3029 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3030
3031 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3032 {
3033         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3034
3035         I915_STATE_WARN(cur_state != state,
3036                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3037                         onoff(state), onoff(cur_state));
3038 }
3039 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3040 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3041
3042 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
3043                                 const struct intel_crtc_state *pipe_config)
3044 {
3045         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3046         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3047
3048         assert_pipe_disabled(dev_priv, crtc->pipe);
3049         assert_dp_port_disabled(intel_dp);
3050         assert_edp_pll_disabled(dev_priv);
3051
3052         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3053                       pipe_config->port_clock);
3054
3055         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3056
3057         if (pipe_config->port_clock == 162000)
3058                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3059         else
3060                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3061
3062         I915_WRITE(DP_A, intel_dp->DP);
3063         POSTING_READ(DP_A);
3064         udelay(500);
3065
3066         /*
3067          * [DevILK] Work around required when enabling DP PLL
3068          * while a pipe is enabled going to FDI:
3069          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3070          * 2. Program DP PLL enable
3071          */
3072         if (IS_GEN(dev_priv, 5))
3073                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3074
3075         intel_dp->DP |= DP_PLL_ENABLE;
3076
3077         I915_WRITE(DP_A, intel_dp->DP);
3078         POSTING_READ(DP_A);
3079         udelay(200);
3080 }
3081
3082 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
3083                                  const struct intel_crtc_state *old_crtc_state)
3084 {
3085         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3086         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3087
3088         assert_pipe_disabled(dev_priv, crtc->pipe);
3089         assert_dp_port_disabled(intel_dp);
3090         assert_edp_pll_enabled(dev_priv);
3091
3092         DRM_DEBUG_KMS("disabling eDP PLL\n");
3093
3094         intel_dp->DP &= ~DP_PLL_ENABLE;
3095
3096         I915_WRITE(DP_A, intel_dp->DP);
3097         POSTING_READ(DP_A);
3098         udelay(200);
3099 }
3100
3101 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3102 {
3103         /*
3104          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3105          * be capable of signalling downstream hpd with a long pulse.
3106          * Whether or not that means D3 is safe to use is not clear,
3107          * but let's assume so until proven otherwise.
3108          *
3109          * FIXME should really check all downstream ports...
3110          */
3111         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3112                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3113                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3114 }
3115
3116 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3117                                            const struct intel_crtc_state *crtc_state,
3118                                            bool enable)
3119 {
3120         int ret;
3121
3122         if (!crtc_state->dsc.compression_enable)
3123                 return;
3124
3125         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3126                                  enable ? DP_DECOMPRESSION_EN : 0);
3127         if (ret < 0)
3128                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3129                               enable ? "enable" : "disable");
3130 }
3131
3132 /* If the sink supports it, try to set the power state appropriately */
3133 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3134 {
3135         int ret, i;
3136
3137         /* Should have a valid DPCD by this point */
3138         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3139                 return;
3140
3141         if (mode != DRM_MODE_DPMS_ON) {
3142                 if (downstream_hpd_needs_d0(intel_dp))
3143                         return;
3144
3145                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3146                                          DP_SET_POWER_D3);
3147         } else {
3148                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3149
3150                 /*
3151                  * When turning on, we need to retry for 1ms to give the sink
3152                  * time to wake up.
3153                  */
3154                 for (i = 0; i < 3; i++) {
3155                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3156                                                  DP_SET_POWER_D0);
3157                         if (ret == 1)
3158                                 break;
3159                         msleep(1);
3160                 }
3161
3162                 if (ret == 1 && lspcon->active)
3163                         lspcon_wait_pcon_mode(lspcon);
3164         }
3165
3166         if (ret != 1)
3167                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3168                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3169 }
3170
3171 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3172                                  enum port port, enum pipe *pipe)
3173 {
3174         enum pipe p;
3175
3176         for_each_pipe(dev_priv, p) {
3177                 u32 val = I915_READ(TRANS_DP_CTL(p));
3178
3179                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3180                         *pipe = p;
3181                         return true;
3182                 }
3183         }
3184
3185         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3186
3187         /* must initialize pipe to something for the asserts */
3188         *pipe = PIPE_A;
3189
3190         return false;
3191 }
3192
3193 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3194                            i915_reg_t dp_reg, enum port port,
3195                            enum pipe *pipe)
3196 {
3197         bool ret;
3198         u32 val;
3199
3200         val = I915_READ(dp_reg);
3201
3202         ret = val & DP_PORT_EN;
3203
3204         /* asserts want to know the pipe even if the port is disabled */
3205         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3206                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3207         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3208                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3209         else if (IS_CHERRYVIEW(dev_priv))
3210                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3211         else
3212                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3213
3214         return ret;
3215 }
3216
3217 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3218                                   enum pipe *pipe)
3219 {
3220         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3221         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3222         intel_wakeref_t wakeref;
3223         bool ret;
3224
3225         wakeref = intel_display_power_get_if_enabled(dev_priv,
3226                                                      encoder->power_domain);
3227         if (!wakeref)
3228                 return false;
3229
3230         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3231                                     encoder->port, pipe);
3232
3233         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3234
3235         return ret;
3236 }
3237
3238 static void intel_dp_get_config(struct intel_encoder *encoder,
3239                                 struct intel_crtc_state *pipe_config)
3240 {
3241         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3242         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3243         u32 tmp, flags = 0;
3244         enum port port = encoder->port;
3245         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3246
3247         if (encoder->type == INTEL_OUTPUT_EDP)
3248                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3249         else
3250                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3251
3252         tmp = I915_READ(intel_dp->output_reg);
3253
3254         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3255
3256         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3257                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3258
3259                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3260                         flags |= DRM_MODE_FLAG_PHSYNC;
3261                 else
3262                         flags |= DRM_MODE_FLAG_NHSYNC;
3263
3264                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3265                         flags |= DRM_MODE_FLAG_PVSYNC;
3266                 else
3267                         flags |= DRM_MODE_FLAG_NVSYNC;
3268         } else {
3269                 if (tmp & DP_SYNC_HS_HIGH)
3270                         flags |= DRM_MODE_FLAG_PHSYNC;
3271                 else
3272                         flags |= DRM_MODE_FLAG_NHSYNC;
3273
3274                 if (tmp & DP_SYNC_VS_HIGH)
3275                         flags |= DRM_MODE_FLAG_PVSYNC;
3276                 else
3277                         flags |= DRM_MODE_FLAG_NVSYNC;
3278         }
3279
3280         pipe_config->hw.adjusted_mode.flags |= flags;
3281
3282         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3283                 pipe_config->limited_color_range = true;
3284
3285         pipe_config->lane_count =
3286                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3287
3288         intel_dp_get_m_n(crtc, pipe_config);
3289
3290         if (port == PORT_A) {
3291                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3292                         pipe_config->port_clock = 162000;
3293                 else
3294                         pipe_config->port_clock = 270000;
3295         }
3296
3297         pipe_config->hw.adjusted_mode.crtc_clock =
3298                 intel_dotclock_calculate(pipe_config->port_clock,
3299                                          &pipe_config->dp_m_n);
3300
3301         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3302             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3303                 /*
3304                  * This is a big fat ugly hack.
3305                  *
3306                  * Some machines in UEFI boot mode provide us a VBT that has 18
3307                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3308                  * unknown we fail to light up. Yet the same BIOS boots up with
3309                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3310                  * max, not what it tells us to use.
3311                  *
3312                  * Note: This will still be broken if the eDP panel is not lit
3313                  * up by the BIOS, and thus we can't get the mode at module
3314                  * load.
3315                  */
3316                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3317                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3318                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3319         }
3320 }
3321
3322 static void intel_disable_dp(struct intel_encoder *encoder,
3323                              const struct intel_crtc_state *old_crtc_state,
3324                              const struct drm_connector_state *old_conn_state)
3325 {
3326         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3327
3328         intel_dp->link_trained = false;
3329
3330         if (old_crtc_state->has_audio)
3331                 intel_audio_codec_disable(encoder,
3332                                           old_crtc_state, old_conn_state);
3333
3334         /* Make sure the panel is off before trying to change the mode. But also
3335          * ensure that we have vdd while we switch off the panel. */
3336         intel_edp_panel_vdd_on(intel_dp);
3337         intel_edp_backlight_off(old_conn_state);
3338         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3339         intel_edp_panel_off(intel_dp);
3340 }
3341
3342 static void g4x_disable_dp(struct intel_encoder *encoder,
3343                            const struct intel_crtc_state *old_crtc_state,
3344                            const struct drm_connector_state *old_conn_state)
3345 {
3346         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3347 }
3348
3349 static void vlv_disable_dp(struct intel_encoder *encoder,
3350                            const struct intel_crtc_state *old_crtc_state,
3351                            const struct drm_connector_state *old_conn_state)
3352 {
3353         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3354 }
3355
3356 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3357                                 const struct intel_crtc_state *old_crtc_state,
3358                                 const struct drm_connector_state *old_conn_state)
3359 {
3360         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3361         enum port port = encoder->port;
3362
3363         /*
3364          * Bspec does not list a specific disable sequence for g4x DP.
3365          * Follow the ilk+ sequence (disable pipe before the port) for
3366          * g4x DP as it does not suffer from underruns like the normal
3367          * g4x modeset sequence (disable pipe after the port).
3368          */
3369         intel_dp_link_down(encoder, old_crtc_state);
3370
3371         /* Only ilk+ has port A */
3372         if (port == PORT_A)
3373                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3374 }
3375
3376 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3377                                 const struct intel_crtc_state *old_crtc_state,
3378                                 const struct drm_connector_state *old_conn_state)
3379 {
3380         intel_dp_link_down(encoder, old_crtc_state);
3381 }
3382
3383 static void chv_post_disable_dp(struct intel_encoder *encoder,
3384                                 const struct intel_crtc_state *old_crtc_state,
3385                                 const struct drm_connector_state *old_conn_state)
3386 {
3387         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3388
3389         intel_dp_link_down(encoder, old_crtc_state);
3390
3391         vlv_dpio_get(dev_priv);
3392
3393         /* Assert data lane reset */
3394         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3395
3396         vlv_dpio_put(dev_priv);
3397 }
3398
3399 static void
3400 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3401                          u32 *DP,
3402                          u8 dp_train_pat)
3403 {
3404         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3405         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3406         enum port port = intel_dig_port->base.port;
3407         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3408
3409         if (dp_train_pat & train_pat_mask)
3410                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3411                               dp_train_pat & train_pat_mask);
3412
3413         if (HAS_DDI(dev_priv)) {
3414                 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3415
3416                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3417                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3418                 else
3419                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3420
3421                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3422                 switch (dp_train_pat & train_pat_mask) {
3423                 case DP_TRAINING_PATTERN_DISABLE:
3424                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3425
3426                         break;
3427                 case DP_TRAINING_PATTERN_1:
3428                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3429                         break;
3430                 case DP_TRAINING_PATTERN_2:
3431                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3432                         break;
3433                 case DP_TRAINING_PATTERN_3:
3434                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3435                         break;
3436                 case DP_TRAINING_PATTERN_4:
3437                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3438                         break;
3439                 }
3440                 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3441
3442         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3443                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3444                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3445
3446                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3447                 case DP_TRAINING_PATTERN_DISABLE:
3448                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3449                         break;
3450                 case DP_TRAINING_PATTERN_1:
3451                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3452                         break;
3453                 case DP_TRAINING_PATTERN_2:
3454                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3455                         break;
3456                 case DP_TRAINING_PATTERN_3:
3457                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3458                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3459                         break;
3460                 }
3461
3462         } else {
3463                 *DP &= ~DP_LINK_TRAIN_MASK;
3464
3465                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3466                 case DP_TRAINING_PATTERN_DISABLE:
3467                         *DP |= DP_LINK_TRAIN_OFF;
3468                         break;
3469                 case DP_TRAINING_PATTERN_1:
3470                         *DP |= DP_LINK_TRAIN_PAT_1;
3471                         break;
3472                 case DP_TRAINING_PATTERN_2:
3473                         *DP |= DP_LINK_TRAIN_PAT_2;
3474                         break;
3475                 case DP_TRAINING_PATTERN_3:
3476                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3477                         *DP |= DP_LINK_TRAIN_PAT_2;
3478                         break;
3479                 }
3480         }
3481 }
3482
3483 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3484                                  const struct intel_crtc_state *old_crtc_state)
3485 {
3486         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3487
3488         /* enable with pattern 1 (as per spec) */
3489
3490         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3491
3492         /*
3493          * Magic for VLV/CHV. We _must_ first set up the register
3494          * without actually enabling the port, and then do another
3495          * write to enable the port. Otherwise link training will
3496          * fail when the power sequencer is freshly used for this port.
3497          */
3498         intel_dp->DP |= DP_PORT_EN;
3499         if (old_crtc_state->has_audio)
3500                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3501
3502         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3503         POSTING_READ(intel_dp->output_reg);
3504 }
3505
3506 static void intel_enable_dp(struct intel_encoder *encoder,
3507                             const struct intel_crtc_state *pipe_config,
3508                             const struct drm_connector_state *conn_state)
3509 {
3510         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3511         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3512         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3513         u32 dp_reg = I915_READ(intel_dp->output_reg);
3514         enum pipe pipe = crtc->pipe;
3515         intel_wakeref_t wakeref;
3516
3517         if (WARN_ON(dp_reg & DP_PORT_EN))
3518                 return;
3519
3520         with_pps_lock(intel_dp, wakeref) {
3521                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3522                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3523
3524                 intel_dp_enable_port(intel_dp, pipe_config);
3525
3526                 edp_panel_vdd_on(intel_dp);
3527                 edp_panel_on(intel_dp);
3528                 edp_panel_vdd_off(intel_dp, true);
3529         }
3530
3531         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3532                 unsigned int lane_mask = 0x0;
3533
3534                 if (IS_CHERRYVIEW(dev_priv))
3535                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3536
3537                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3538                                     lane_mask);
3539         }
3540
3541         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3542         intel_dp_start_link_train(intel_dp);
3543         intel_dp_stop_link_train(intel_dp);
3544
3545         if (pipe_config->has_audio) {
3546                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3547                                  pipe_name(pipe));
3548                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3549         }
3550 }
3551
3552 static void g4x_enable_dp(struct intel_encoder *encoder,
3553                           const struct intel_crtc_state *pipe_config,
3554                           const struct drm_connector_state *conn_state)
3555 {
3556         intel_enable_dp(encoder, pipe_config, conn_state);
3557         intel_edp_backlight_on(pipe_config, conn_state);
3558 }
3559
3560 static void vlv_enable_dp(struct intel_encoder *encoder,
3561                           const struct intel_crtc_state *pipe_config,
3562                           const struct drm_connector_state *conn_state)
3563 {
3564         intel_edp_backlight_on(pipe_config, conn_state);
3565 }
3566
3567 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3568                               const struct intel_crtc_state *pipe_config,
3569                               const struct drm_connector_state *conn_state)
3570 {
3571         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3572         enum port port = encoder->port;
3573
3574         intel_dp_prepare(encoder, pipe_config);
3575
3576         /* Only ilk+ has port A */
3577         if (port == PORT_A)
3578                 ironlake_edp_pll_on(intel_dp, pipe_config);
3579 }
3580
3581 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3582 {
3583         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3584         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3585         enum pipe pipe = intel_dp->pps_pipe;
3586         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3587
3588         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3589
3590         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3591                 return;
3592
3593         edp_panel_vdd_off_sync(intel_dp);
3594
3595         /*
3596          * VLV seems to get confused when multiple power sequencers
3597          * have the same port selected (even if only one has power/vdd
3598          * enabled). The failure manifests as vlv_wait_port_ready() failing
3599          * CHV on the other hand doesn't seem to mind having the same port
3600          * selected in multiple power sequencers, but let's clear the
3601          * port select always when logically disconnecting a power sequencer
3602          * from a port.
3603          */
3604         DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3605                       pipe_name(pipe), intel_dig_port->base.base.base.id,
3606                       intel_dig_port->base.base.name);
3607         I915_WRITE(pp_on_reg, 0);
3608         POSTING_READ(pp_on_reg);
3609
3610         intel_dp->pps_pipe = INVALID_PIPE;
3611 }
3612
3613 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3614                                       enum pipe pipe)
3615 {
3616         struct intel_encoder *encoder;
3617
3618         lockdep_assert_held(&dev_priv->pps_mutex);
3619
3620         for_each_intel_dp(&dev_priv->drm, encoder) {
3621                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3622
3623                 WARN(intel_dp->active_pipe == pipe,
3624                      "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3625                      pipe_name(pipe), encoder->base.base.id,
3626                      encoder->base.name);
3627
3628                 if (intel_dp->pps_pipe != pipe)
3629                         continue;
3630
3631                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3632                               pipe_name(pipe), encoder->base.base.id,
3633                               encoder->base.name);
3634
3635                 /* make sure vdd is off before we steal it */
3636                 vlv_detach_power_sequencer(intel_dp);
3637         }
3638 }
3639
3640 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3641                                            const struct intel_crtc_state *crtc_state)
3642 {
3643         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3644         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3645         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3646
3647         lockdep_assert_held(&dev_priv->pps_mutex);
3648
3649         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3650
3651         if (intel_dp->pps_pipe != INVALID_PIPE &&
3652             intel_dp->pps_pipe != crtc->pipe) {
3653                 /*
3654                  * If another power sequencer was being used on this
3655                  * port previously make sure to turn off vdd there while
3656                  * we still have control of it.
3657                  */
3658                 vlv_detach_power_sequencer(intel_dp);
3659         }
3660
3661         /*
3662          * We may be stealing the power
3663          * sequencer from another port.
3664          */
3665         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3666
3667         intel_dp->active_pipe = crtc->pipe;
3668
3669         if (!intel_dp_is_edp(intel_dp))
3670                 return;
3671
3672         /* now it's all ours */
3673         intel_dp->pps_pipe = crtc->pipe;
3674
3675         DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3676                       pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3677                       encoder->base.name);
3678
3679         /* init power sequencer on this pipe and port */
3680         intel_dp_init_panel_power_sequencer(intel_dp);
3681         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3682 }
3683
3684 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3685                               const struct intel_crtc_state *pipe_config,
3686                               const struct drm_connector_state *conn_state)
3687 {
3688         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3689
3690         intel_enable_dp(encoder, pipe_config, conn_state);
3691 }
3692
3693 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3694                                   const struct intel_crtc_state *pipe_config,
3695                                   const struct drm_connector_state *conn_state)
3696 {
3697         intel_dp_prepare(encoder, pipe_config);
3698
3699         vlv_phy_pre_pll_enable(encoder, pipe_config);
3700 }
3701
3702 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3703                               const struct intel_crtc_state *pipe_config,
3704                               const struct drm_connector_state *conn_state)
3705 {
3706         chv_phy_pre_encoder_enable(encoder, pipe_config);
3707
3708         intel_enable_dp(encoder, pipe_config, conn_state);
3709
3710         /* Second common lane will stay alive on its own now */
3711         chv_phy_release_cl2_override(encoder);
3712 }
3713
3714 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3715                                   const struct intel_crtc_state *pipe_config,
3716                                   const struct drm_connector_state *conn_state)
3717 {
3718         intel_dp_prepare(encoder, pipe_config);
3719
3720         chv_phy_pre_pll_enable(encoder, pipe_config);
3721 }
3722
3723 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3724                                     const struct intel_crtc_state *old_crtc_state,
3725                                     const struct drm_connector_state *old_conn_state)
3726 {
3727         chv_phy_post_pll_disable(encoder, old_crtc_state);
3728 }
3729
3730 /*
3731  * Fetch AUX CH registers 0x202 - 0x207 which contain
3732  * link status information
3733  */
3734 bool
3735 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3736 {
3737         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3738                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3739 }
3740
3741 /* These are source-specific values. */
3742 u8
3743 intel_dp_voltage_max(struct intel_dp *intel_dp)
3744 {
3745         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3746         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3747         enum port port = encoder->port;
3748
3749         if (HAS_DDI(dev_priv))
3750                 return intel_ddi_dp_voltage_max(encoder);
3751         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3752                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3753         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3754                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3755         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3756                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3757         else
3758                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3759 }
3760
3761 u8
3762 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3763 {
3764         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3765         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3766         enum port port = encoder->port;
3767
3768         if (HAS_DDI(dev_priv)) {
3769                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3770         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3771                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3772                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3773                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3774                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3775                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3776                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3777                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3778                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3779                 default:
3780                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3781                 }
3782         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3783                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3784                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3785                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3786                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3787                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3788                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3789                 default:
3790                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3791                 }
3792         } else {
3793                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3794                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3795                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3796                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3797                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3798                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3799                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3800                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3801                 default:
3802                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3803                 }
3804         }
3805 }
3806
3807 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3808 {
3809         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3810         unsigned long demph_reg_value, preemph_reg_value,
3811                 uniqtranscale_reg_value;
3812         u8 train_set = intel_dp->train_set[0];
3813
3814         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3815         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3816                 preemph_reg_value = 0x0004000;
3817                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3818                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3819                         demph_reg_value = 0x2B405555;
3820                         uniqtranscale_reg_value = 0x552AB83A;
3821                         break;
3822                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3823                         demph_reg_value = 0x2B404040;
3824                         uniqtranscale_reg_value = 0x5548B83A;
3825                         break;
3826                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3827                         demph_reg_value = 0x2B245555;
3828                         uniqtranscale_reg_value = 0x5560B83A;
3829                         break;
3830                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3831                         demph_reg_value = 0x2B405555;
3832                         uniqtranscale_reg_value = 0x5598DA3A;
3833                         break;
3834                 default:
3835                         return 0;
3836                 }
3837                 break;
3838         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3839                 preemph_reg_value = 0x0002000;
3840                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3841                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3842                         demph_reg_value = 0x2B404040;
3843                         uniqtranscale_reg_value = 0x5552B83A;
3844                         break;
3845                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3846                         demph_reg_value = 0x2B404848;
3847                         uniqtranscale_reg_value = 0x5580B83A;
3848                         break;
3849                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3850                         demph_reg_value = 0x2B404040;
3851                         uniqtranscale_reg_value = 0x55ADDA3A;
3852                         break;
3853                 default:
3854                         return 0;
3855                 }
3856                 break;
3857         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3858                 preemph_reg_value = 0x0000000;
3859                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3860                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3861                         demph_reg_value = 0x2B305555;
3862                         uniqtranscale_reg_value = 0x5570B83A;
3863                         break;
3864                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3865                         demph_reg_value = 0x2B2B4040;
3866                         uniqtranscale_reg_value = 0x55ADDA3A;
3867                         break;
3868                 default:
3869                         return 0;
3870                 }
3871                 break;
3872         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3873                 preemph_reg_value = 0x0006000;
3874                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3875                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3876                         demph_reg_value = 0x1B405555;
3877                         uniqtranscale_reg_value = 0x55ADDA3A;
3878                         break;
3879                 default:
3880                         return 0;
3881                 }
3882                 break;
3883         default:
3884                 return 0;
3885         }
3886
3887         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3888                                  uniqtranscale_reg_value, 0);
3889
3890         return 0;
3891 }
3892
3893 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3894 {
3895         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3896         u32 deemph_reg_value, margin_reg_value;
3897         bool uniq_trans_scale = false;
3898         u8 train_set = intel_dp->train_set[0];
3899
3900         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3901         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3902                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3903                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3904                         deemph_reg_value = 128;
3905                         margin_reg_value = 52;
3906                         break;
3907                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3908                         deemph_reg_value = 128;
3909                         margin_reg_value = 77;
3910                         break;
3911                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3912                         deemph_reg_value = 128;
3913                         margin_reg_value = 102;
3914                         break;
3915                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3916                         deemph_reg_value = 128;
3917                         margin_reg_value = 154;
3918                         uniq_trans_scale = true;
3919                         break;
3920                 default:
3921                         return 0;
3922                 }
3923                 break;
3924         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3925                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3926                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3927                         deemph_reg_value = 85;
3928                         margin_reg_value = 78;
3929                         break;
3930                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3931                         deemph_reg_value = 85;
3932                         margin_reg_value = 116;
3933                         break;
3934                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3935                         deemph_reg_value = 85;
3936                         margin_reg_value = 154;
3937                         break;
3938                 default:
3939                         return 0;
3940                 }
3941                 break;
3942         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3943                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3944                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3945                         deemph_reg_value = 64;
3946                         margin_reg_value = 104;
3947                         break;
3948                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3949                         deemph_reg_value = 64;
3950                         margin_reg_value = 154;
3951                         break;
3952                 default:
3953                         return 0;
3954                 }
3955                 break;
3956         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3957                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3958                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3959                         deemph_reg_value = 43;
3960                         margin_reg_value = 154;
3961                         break;
3962                 default:
3963                         return 0;
3964                 }
3965                 break;
3966         default:
3967                 return 0;
3968         }
3969
3970         chv_set_phy_signal_level(encoder, deemph_reg_value,
3971                                  margin_reg_value, uniq_trans_scale);
3972
3973         return 0;
3974 }
3975
3976 static u32
3977 g4x_signal_levels(u8 train_set)
3978 {
3979         u32 signal_levels = 0;
3980
3981         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3982         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3983         default:
3984                 signal_levels |= DP_VOLTAGE_0_4;
3985                 break;
3986         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3987                 signal_levels |= DP_VOLTAGE_0_6;
3988                 break;
3989         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3990                 signal_levels |= DP_VOLTAGE_0_8;
3991                 break;
3992         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3993                 signal_levels |= DP_VOLTAGE_1_2;
3994                 break;
3995         }
3996         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3997         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3998         default:
3999                 signal_levels |= DP_PRE_EMPHASIS_0;
4000                 break;
4001         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4002                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4003                 break;
4004         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4005                 signal_levels |= DP_PRE_EMPHASIS_6;
4006                 break;
4007         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4008                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4009                 break;
4010         }
4011         return signal_levels;
4012 }
4013
4014 /* SNB CPU eDP voltage swing and pre-emphasis control */
4015 static u32
4016 snb_cpu_edp_signal_levels(u8 train_set)
4017 {
4018         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4019                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4020         switch (signal_levels) {
4021         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4022         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4023                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4024         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4025                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4026         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4027         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4028                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4029         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4030         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4031                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4032         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4033         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4034                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4035         default:
4036                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4037                               "0x%x\n", signal_levels);
4038                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4039         }
4040 }
4041
4042 /* IVB CPU eDP voltage swing and pre-emphasis control */
4043 static u32
4044 ivb_cpu_edp_signal_levels(u8 train_set)
4045 {
4046         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4047                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4048         switch (signal_levels) {
4049         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4050                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4051         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4052                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4053         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4054                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4055
4056         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4057                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4058         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4059                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4060
4061         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4062                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4063         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4064                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4065
4066         default:
4067                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4068                               "0x%x\n", signal_levels);
4069                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4070         }
4071 }
4072
4073 void
4074 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4075 {
4076         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4077         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4078         enum port port = intel_dig_port->base.port;
4079         u32 signal_levels, mask = 0;
4080         u8 train_set = intel_dp->train_set[0];
4081
4082         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4083                 signal_levels = bxt_signal_levels(intel_dp);
4084         } else if (HAS_DDI(dev_priv)) {
4085                 signal_levels = ddi_signal_levels(intel_dp);
4086                 mask = DDI_BUF_EMP_MASK;
4087         } else if (IS_CHERRYVIEW(dev_priv)) {
4088                 signal_levels = chv_signal_levels(intel_dp);
4089         } else if (IS_VALLEYVIEW(dev_priv)) {
4090                 signal_levels = vlv_signal_levels(intel_dp);
4091         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4092                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4093                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4094         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4095                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4096                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4097         } else {
4098                 signal_levels = g4x_signal_levels(train_set);
4099                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4100         }
4101
4102         if (mask)
4103                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4104
4105         DRM_DEBUG_KMS("Using vswing level %d\n",
4106                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4107         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4108                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4109                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
4110
4111         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4112
4113         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4114         POSTING_READ(intel_dp->output_reg);
4115 }
4116
4117 void
4118 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4119                                        u8 dp_train_pat)
4120 {
4121         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4122         struct drm_i915_private *dev_priv =
4123                 to_i915(intel_dig_port->base.base.dev);
4124
4125         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4126
4127         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4128         POSTING_READ(intel_dp->output_reg);
4129 }
4130
4131 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4132 {
4133         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4134         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4135         enum port port = intel_dig_port->base.port;
4136         u32 val;
4137
4138         if (!HAS_DDI(dev_priv))
4139                 return;
4140
4141         val = I915_READ(intel_dp->regs.dp_tp_ctl);
4142         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4143         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4144         I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4145
4146         /*
4147          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4148          * reason we need to set idle transmission mode is to work around a HW
4149          * issue where we enable the pipe while not in idle link-training mode.
4150          * In this case there is requirement to wait for a minimum number of
4151          * idle patterns to be sent.
4152          */
4153         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4154                 return;
4155
4156         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4157                                   DP_TP_STATUS_IDLE_DONE, 1))
4158                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4159 }
4160
4161 static void
4162 intel_dp_link_down(struct intel_encoder *encoder,
4163                    const struct intel_crtc_state *old_crtc_state)
4164 {
4165         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4166         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4167         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4168         enum port port = encoder->port;
4169         u32 DP = intel_dp->DP;
4170
4171         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4172                 return;
4173
4174         DRM_DEBUG_KMS("\n");
4175
4176         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4177             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4178                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4179                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4180         } else {
4181                 DP &= ~DP_LINK_TRAIN_MASK;
4182                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4183         }
4184         I915_WRITE(intel_dp->output_reg, DP);
4185         POSTING_READ(intel_dp->output_reg);
4186
4187         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4188         I915_WRITE(intel_dp->output_reg, DP);
4189         POSTING_READ(intel_dp->output_reg);
4190
4191         /*
4192          * HW workaround for IBX, we need to move the port
4193          * to transcoder A after disabling it to allow the
4194          * matching HDMI port to be enabled on transcoder A.
4195          */
4196         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4197                 /*
4198                  * We get CPU/PCH FIFO underruns on the other pipe when
4199                  * doing the workaround. Sweep them under the rug.
4200                  */
4201                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4202                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4203
4204                 /* always enable with pattern 1 (as per spec) */
4205                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4206                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4207                         DP_LINK_TRAIN_PAT_1;
4208                 I915_WRITE(intel_dp->output_reg, DP);
4209                 POSTING_READ(intel_dp->output_reg);
4210
4211                 DP &= ~DP_PORT_EN;
4212                 I915_WRITE(intel_dp->output_reg, DP);
4213                 POSTING_READ(intel_dp->output_reg);
4214
4215                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4216                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4217                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4218         }
4219
4220         msleep(intel_dp->panel_power_down_delay);
4221
4222         intel_dp->DP = DP;
4223
4224         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4225                 intel_wakeref_t wakeref;
4226
4227                 with_pps_lock(intel_dp, wakeref)
4228                         intel_dp->active_pipe = INVALID_PIPE;
4229         }
4230 }
4231
4232 static void
4233 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4234 {
4235         u8 dpcd_ext[6];
4236
4237         /*
4238          * Prior to DP1.3 the bit represented by
4239          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4240          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4241          * the true capability of the panel. The only way to check is to
4242          * then compare 0000h and 2200h.
4243          */
4244         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4245               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4246                 return;
4247
4248         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4249                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4250                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4251                 return;
4252         }
4253
4254         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4255                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4256                 return;
4257         }
4258
4259         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4260                 return;
4261
4262         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4263                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4264
4265         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4266 }
4267
4268 bool
4269 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4270 {
4271         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4272                              sizeof(intel_dp->dpcd)) < 0)
4273                 return false; /* aux transfer failed */
4274
4275         intel_dp_extended_receiver_capabilities(intel_dp);
4276
4277         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4278
4279         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4280 }
4281
4282 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4283 {
4284         u8 dprx = 0;
4285
4286         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4287                               &dprx) != 1)
4288                 return false;
4289         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4290 }
4291
4292 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4293 {
4294         /*
4295          * Clear the cached register set to avoid using stale values
4296          * for the sinks that do not support DSC.
4297          */
4298         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4299
4300         /* Clear fec_capable to avoid using stale values */
4301         intel_dp->fec_capable = 0;
4302
4303         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4304         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4305             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4306                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4307                                      intel_dp->dsc_dpcd,
4308                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4309                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4310                                   DP_DSC_SUPPORT);
4311
4312                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4313                               (int)sizeof(intel_dp->dsc_dpcd),
4314                               intel_dp->dsc_dpcd);
4315
4316                 /* FEC is supported only on DP 1.4 */
4317                 if (!intel_dp_is_edp(intel_dp) &&
4318                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4319                                       &intel_dp->fec_capable) < 0)
4320                         DRM_ERROR("Failed to read FEC DPCD register\n");
4321
4322                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4323         }
4324 }
4325
4326 static bool
4327 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4328 {
4329         struct drm_i915_private *dev_priv =
4330                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4331
4332         /* this function is meant to be called only once */
4333         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4334
4335         if (!intel_dp_read_dpcd(intel_dp))
4336                 return false;
4337
4338         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4339                          drm_dp_is_branch(intel_dp->dpcd));
4340
4341         /*
4342          * Read the eDP display control registers.
4343          *
4344          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4345          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4346          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4347          * method). The display control registers should read zero if they're
4348          * not supported anyway.
4349          */
4350         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4351                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4352                              sizeof(intel_dp->edp_dpcd))
4353                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4354                               intel_dp->edp_dpcd);
4355
4356         /*
4357          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4358          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4359          */
4360         intel_psr_init_dpcd(intel_dp);
4361
4362         /* Read the eDP 1.4+ supported link rates. */
4363         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4364                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4365                 int i;
4366
4367                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4368                                 sink_rates, sizeof(sink_rates));
4369
4370                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4371                         int val = le16_to_cpu(sink_rates[i]);
4372
4373                         if (val == 0)
4374                                 break;
4375
4376                         /* Value read multiplied by 200kHz gives the per-lane
4377                          * link rate in kHz. The source rates are, however,
4378                          * stored in terms of LS_Clk kHz. The full conversion
4379                          * back to symbols is
4380                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4381                          */
4382                         intel_dp->sink_rates[i] = (val * 200) / 10;
4383                 }
4384                 intel_dp->num_sink_rates = i;
4385         }
4386
4387         /*
4388          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4389          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4390          */
4391         if (intel_dp->num_sink_rates)
4392                 intel_dp->use_rate_select = true;
4393         else
4394                 intel_dp_set_sink_rates(intel_dp);
4395
4396         intel_dp_set_common_rates(intel_dp);
4397
4398         /* Read the eDP DSC DPCD registers */
4399         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4400                 intel_dp_get_dsc_sink_cap(intel_dp);
4401
4402         return true;
4403 }
4404
4405
4406 static bool
4407 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4408 {
4409         if (!intel_dp_read_dpcd(intel_dp))
4410                 return false;
4411
4412         /*
4413          * Don't clobber cached eDP rates. Also skip re-reading
4414          * the OUI/ID since we know it won't change.
4415          */
4416         if (!intel_dp_is_edp(intel_dp)) {
4417                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4418                                  drm_dp_is_branch(intel_dp->dpcd));
4419
4420                 intel_dp_set_sink_rates(intel_dp);
4421                 intel_dp_set_common_rates(intel_dp);
4422         }
4423
4424         /*
4425          * Some eDP panels do not set a valid value for sink count, that is why
4426          * it don't care about read it here and in intel_edp_init_dpcd().
4427          */
4428         if (!intel_dp_is_edp(intel_dp) &&
4429             !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4430                 u8 count;
4431                 ssize_t r;
4432
4433                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4434                 if (r < 1)
4435                         return false;
4436
4437                 /*
4438                  * Sink count can change between short pulse hpd hence
4439                  * a member variable in intel_dp will track any changes
4440                  * between short pulse interrupts.
4441                  */
4442                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4443
4444                 /*
4445                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4446                  * a dongle is present but no display. Unless we require to know
4447                  * if a dongle is present or not, we don't need to update
4448                  * downstream port information. So, an early return here saves
4449                  * time from performing other operations which are not required.
4450                  */
4451                 if (!intel_dp->sink_count)
4452                         return false;
4453         }
4454
4455         if (!drm_dp_is_branch(intel_dp->dpcd))
4456                 return true; /* native DP sink */
4457
4458         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4459                 return true; /* no per-port downstream info */
4460
4461         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4462                              intel_dp->downstream_ports,
4463                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4464                 return false; /* downstream port status fetch failed */
4465
4466         return true;
4467 }
4468
4469 static bool
4470 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4471 {
4472         u8 mstm_cap;
4473
4474         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4475                 return false;
4476
4477         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4478                 return false;
4479
4480         return mstm_cap & DP_MST_CAP;
4481 }
4482
4483 static bool
4484 intel_dp_can_mst(struct intel_dp *intel_dp)
4485 {
4486         return i915_modparams.enable_dp_mst &&
4487                 intel_dp->can_mst &&
4488                 intel_dp_sink_can_mst(intel_dp);
4489 }
4490
4491 static void
4492 intel_dp_configure_mst(struct intel_dp *intel_dp)
4493 {
4494         struct intel_encoder *encoder =
4495                 &dp_to_dig_port(intel_dp)->base;
4496         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4497
4498         DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4499                       encoder->base.base.id, encoder->base.name,
4500                       yesno(intel_dp->can_mst), yesno(sink_can_mst),
4501                       yesno(i915_modparams.enable_dp_mst));
4502
4503         if (!intel_dp->can_mst)
4504                 return;
4505
4506         intel_dp->is_mst = sink_can_mst &&
4507                 i915_modparams.enable_dp_mst;
4508
4509         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4510                                         intel_dp->is_mst);
4511 }
4512
4513 static bool
4514 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4515 {
4516         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4517                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4518                 DP_DPRX_ESI_LEN;
4519 }
4520
4521 bool
4522 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4523                        const struct drm_connector_state *conn_state)
4524 {
4525         /*
4526          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4527          * of Color Encoding Format and Content Color Gamut], in order to
4528          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4529          */
4530         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4531                 return true;
4532
4533         switch (conn_state->colorspace) {
4534         case DRM_MODE_COLORIMETRY_SYCC_601:
4535         case DRM_MODE_COLORIMETRY_OPYCC_601:
4536         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4537         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4538         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4539                 return true;
4540         default:
4541                 break;
4542         }
4543
4544         return false;
4545 }
4546
4547 static void
4548 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4549                        const struct intel_crtc_state *crtc_state,
4550                        const struct drm_connector_state *conn_state)
4551 {
4552         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4553         struct dp_sdp vsc_sdp = {};
4554
4555         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4556         vsc_sdp.sdp_header.HB0 = 0;
4557         vsc_sdp.sdp_header.HB1 = 0x7;
4558
4559         /*
4560          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4561          * Colorimetry Format indication.
4562          */
4563         vsc_sdp.sdp_header.HB2 = 0x5;
4564
4565         /*
4566          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4567          * Colorimetry Format indication (HB2 = 05h).
4568          */
4569         vsc_sdp.sdp_header.HB3 = 0x13;
4570
4571         /* DP 1.4a spec, Table 2-120 */
4572         switch (crtc_state->output_format) {
4573         case INTEL_OUTPUT_FORMAT_YCBCR444:
4574                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4575                 break;
4576         case INTEL_OUTPUT_FORMAT_YCBCR420:
4577                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4578                 break;
4579         case INTEL_OUTPUT_FORMAT_RGB:
4580         default:
4581                 /* RGB: DB16[7:4] = 0h */
4582                 break;
4583         }
4584
4585         switch (conn_state->colorspace) {
4586         case DRM_MODE_COLORIMETRY_BT709_YCC:
4587                 vsc_sdp.db[16] |= 0x1;
4588                 break;
4589         case DRM_MODE_COLORIMETRY_XVYCC_601:
4590                 vsc_sdp.db[16] |= 0x2;
4591                 break;
4592         case DRM_MODE_COLORIMETRY_XVYCC_709:
4593                 vsc_sdp.db[16] |= 0x3;
4594                 break;
4595         case DRM_MODE_COLORIMETRY_SYCC_601:
4596                 vsc_sdp.db[16] |= 0x4;
4597                 break;
4598         case DRM_MODE_COLORIMETRY_OPYCC_601:
4599                 vsc_sdp.db[16] |= 0x5;
4600                 break;
4601         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4602         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4603                 vsc_sdp.db[16] |= 0x6;
4604                 break;
4605         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4606                 vsc_sdp.db[16] |= 0x7;
4607                 break;
4608         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4609         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4610                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4611                 break;
4612         default:
4613                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4614
4615                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4616                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4617                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4618                 break;
4619         }
4620
4621         /*
4622          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4623          * the following Component Bit Depth values are defined:
4624          * 001b = 8bpc.
4625          * 010b = 10bpc.
4626          * 011b = 12bpc.
4627          * 100b = 16bpc.
4628          */
4629         switch (crtc_state->pipe_bpp) {
4630         case 24: /* 8bpc */
4631                 vsc_sdp.db[17] = 0x1;
4632                 break;
4633         case 30: /* 10bpc */
4634                 vsc_sdp.db[17] = 0x2;
4635                 break;
4636         case 36: /* 12bpc */
4637                 vsc_sdp.db[17] = 0x3;
4638                 break;
4639         case 48: /* 16bpc */
4640                 vsc_sdp.db[17] = 0x4;
4641                 break;
4642         default:
4643                 MISSING_CASE(crtc_state->pipe_bpp);
4644                 break;
4645         }
4646
4647         /*
4648          * Dynamic Range (Bit 7)
4649          * 0 = VESA range, 1 = CTA range.
4650          * all YCbCr are always limited range
4651          */
4652         vsc_sdp.db[17] |= 0x80;
4653
4654         /*
4655          * Content Type (Bits 2:0)
4656          * 000b = Not defined.
4657          * 001b = Graphics.
4658          * 010b = Photo.
4659          * 011b = Video.
4660          * 100b = Game
4661          * All other values are RESERVED.
4662          * Note: See CTA-861-G for the definition and expected
4663          * processing by a stream sink for the above contect types.
4664          */
4665         vsc_sdp.db[18] = 0;
4666
4667         intel_dig_port->write_infoframe(&intel_dig_port->base,
4668                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4669 }
4670
4671 static void
4672 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4673                                           const struct intel_crtc_state *crtc_state,
4674                                           const struct drm_connector_state *conn_state)
4675 {
4676         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4677         struct dp_sdp infoframe_sdp = {};
4678         struct hdmi_drm_infoframe drm_infoframe = {};
4679         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4680         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4681         ssize_t len;
4682         int ret;
4683
4684         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4685         if (ret) {
4686                 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4687                 return;
4688         }
4689
4690         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4691         if (len < 0) {
4692                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4693                 return;
4694         }
4695
4696         if (len != infoframe_size) {
4697                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4698                 return;
4699         }
4700
4701         /*
4702          * Set up the infoframe sdp packet for HDR static metadata.
4703          * Prepare VSC Header for SU as per DP 1.4a spec,
4704          * Table 2-100 and Table 2-101
4705          */
4706
4707         /* Packet ID, 00h for non-Audio INFOFRAME */
4708         infoframe_sdp.sdp_header.HB0 = 0;
4709         /*
4710          * Packet Type 80h + Non-audio INFOFRAME Type value
4711          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4712          */
4713         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4714         /*
4715          * Least Significant Eight Bits of (Data Byte Count – 1)
4716          * infoframe_size - 1,
4717          */
4718         infoframe_sdp.sdp_header.HB2 = 0x1D;
4719         /* INFOFRAME SDP Version Number */
4720         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4721         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4722         infoframe_sdp.db[0] = drm_infoframe.version;
4723         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4724         infoframe_sdp.db[1] = drm_infoframe.length;
4725         /*
4726          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4727          * HDMI_INFOFRAME_HEADER_SIZE
4728          */
4729         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4730         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4731                HDMI_DRM_INFOFRAME_SIZE);
4732
4733         /*
4734          * Size of DP infoframe sdp packet for HDR static metadata is consist of
4735          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4736          * - Two Data Blocks: 2 bytes
4737          *    CTA Header Byte2 (INFOFRAME Version Number)
4738          *    CTA Header Byte3 (Length of INFOFRAME)
4739          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4740          *
4741          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4742          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4743          * will pad rest of the size.
4744          */
4745         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4746                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
4747                                         &infoframe_sdp,
4748                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4749 }
4750
4751 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4752                          const struct intel_crtc_state *crtc_state,
4753                          const struct drm_connector_state *conn_state)
4754 {
4755         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4756                 return;
4757
4758         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4759 }
4760
4761 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4762                                   const struct intel_crtc_state *crtc_state,
4763                                   const struct drm_connector_state *conn_state)
4764 {
4765         if (!conn_state->hdr_output_metadata)
4766                 return;
4767
4768         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4769                                                   crtc_state,
4770                                                   conn_state);
4771 }
4772
4773 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4774 {
4775         int status = 0;
4776         int test_link_rate;
4777         u8 test_lane_count, test_link_bw;
4778         /* (DP CTS 1.2)
4779          * 4.3.1.11
4780          */
4781         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4782         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4783                                    &test_lane_count);
4784
4785         if (status <= 0) {
4786                 DRM_DEBUG_KMS("Lane count read failed\n");
4787                 return DP_TEST_NAK;
4788         }
4789         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4790
4791         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4792                                    &test_link_bw);
4793         if (status <= 0) {
4794                 DRM_DEBUG_KMS("Link Rate read failed\n");
4795                 return DP_TEST_NAK;
4796         }
4797         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4798
4799         /* Validate the requested link rate and lane count */
4800         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4801                                         test_lane_count))
4802                 return DP_TEST_NAK;
4803
4804         intel_dp->compliance.test_lane_count = test_lane_count;
4805         intel_dp->compliance.test_link_rate = test_link_rate;
4806
4807         return DP_TEST_ACK;
4808 }
4809
4810 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4811 {
4812         u8 test_pattern;
4813         u8 test_misc;
4814         __be16 h_width, v_height;
4815         int status = 0;
4816
4817         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4818         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4819                                    &test_pattern);
4820         if (status <= 0) {
4821                 DRM_DEBUG_KMS("Test pattern read failed\n");
4822                 return DP_TEST_NAK;
4823         }
4824         if (test_pattern != DP_COLOR_RAMP)
4825                 return DP_TEST_NAK;
4826
4827         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4828                                   &h_width, 2);
4829         if (status <= 0) {
4830                 DRM_DEBUG_KMS("H Width read failed\n");
4831                 return DP_TEST_NAK;
4832         }
4833
4834         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4835                                   &v_height, 2);
4836         if (status <= 0) {
4837                 DRM_DEBUG_KMS("V Height read failed\n");
4838                 return DP_TEST_NAK;
4839         }
4840
4841         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4842                                    &test_misc);
4843         if (status <= 0) {
4844                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4845                 return DP_TEST_NAK;
4846         }
4847         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4848                 return DP_TEST_NAK;
4849         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4850                 return DP_TEST_NAK;
4851         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4852         case DP_TEST_BIT_DEPTH_6:
4853                 intel_dp->compliance.test_data.bpc = 6;
4854                 break;
4855         case DP_TEST_BIT_DEPTH_8:
4856                 intel_dp->compliance.test_data.bpc = 8;
4857                 break;
4858         default:
4859                 return DP_TEST_NAK;
4860         }
4861
4862         intel_dp->compliance.test_data.video_pattern = test_pattern;
4863         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4864         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4865         /* Set test active flag here so userspace doesn't interrupt things */
4866         intel_dp->compliance.test_active = 1;
4867
4868         return DP_TEST_ACK;
4869 }
4870
4871 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4872 {
4873         u8 test_result = DP_TEST_ACK;
4874         struct intel_connector *intel_connector = intel_dp->attached_connector;
4875         struct drm_connector *connector = &intel_connector->base;
4876
4877         if (intel_connector->detect_edid == NULL ||
4878             connector->edid_corrupt ||
4879             intel_dp->aux.i2c_defer_count > 6) {
4880                 /* Check EDID read for NACKs, DEFERs and corruption
4881                  * (DP CTS 1.2 Core r1.1)
4882                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4883                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4884                  *    4.2.2.6 : EDID corruption detected
4885                  * Use failsafe mode for all cases
4886                  */
4887                 if (intel_dp->aux.i2c_nack_count > 0 ||
4888                         intel_dp->aux.i2c_defer_count > 0)
4889                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4890                                       intel_dp->aux.i2c_nack_count,
4891                                       intel_dp->aux.i2c_defer_count);
4892                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4893         } else {
4894                 struct edid *block = intel_connector->detect_edid;
4895
4896                 /* We have to write the checksum
4897                  * of the last block read
4898                  */
4899                 block += intel_connector->detect_edid->extensions;
4900
4901                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4902                                        block->checksum) <= 0)
4903                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4904
4905                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4906                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4907         }
4908
4909         /* Set test active flag here so userspace doesn't interrupt things */
4910         intel_dp->compliance.test_active = 1;
4911
4912         return test_result;
4913 }
4914
4915 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4916 {
4917         u8 test_result = DP_TEST_NAK;
4918         return test_result;
4919 }
4920
4921 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4922 {
4923         u8 response = DP_TEST_NAK;
4924         u8 request = 0;
4925         int status;
4926
4927         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4928         if (status <= 0) {
4929                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4930                 goto update_status;
4931         }
4932
4933         switch (request) {
4934         case DP_TEST_LINK_TRAINING:
4935                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4936                 response = intel_dp_autotest_link_training(intel_dp);
4937                 break;
4938         case DP_TEST_LINK_VIDEO_PATTERN:
4939                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4940                 response = intel_dp_autotest_video_pattern(intel_dp);
4941                 break;
4942         case DP_TEST_LINK_EDID_READ:
4943                 DRM_DEBUG_KMS("EDID test requested\n");
4944                 response = intel_dp_autotest_edid(intel_dp);
4945                 break;
4946         case DP_TEST_LINK_PHY_TEST_PATTERN:
4947                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4948                 response = intel_dp_autotest_phy_pattern(intel_dp);
4949                 break;
4950         default:
4951                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4952                 break;
4953         }
4954
4955         if (response & DP_TEST_ACK)
4956                 intel_dp->compliance.test_type = request;
4957
4958 update_status:
4959         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4960         if (status <= 0)
4961                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4962 }
4963
4964 static int
4965 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4966 {
4967         bool bret;
4968
4969         if (intel_dp->is_mst) {
4970                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4971                 int ret = 0;
4972                 int retry;
4973                 bool handled;
4974
4975                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4976                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4977 go_again:
4978                 if (bret == true) {
4979
4980                         /* check link status - esi[10] = 0x200c */
4981                         if (intel_dp->active_mst_links > 0 &&
4982                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4983                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4984                                 intel_dp_start_link_train(intel_dp);
4985                                 intel_dp_stop_link_train(intel_dp);
4986                         }
4987
4988                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4989                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4990
4991                         if (handled) {
4992                                 for (retry = 0; retry < 3; retry++) {
4993                                         int wret;
4994                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4995                                                                  DP_SINK_COUNT_ESI+1,
4996                                                                  &esi[1], 3);
4997                                         if (wret == 3) {
4998                                                 break;
4999                                         }
5000                                 }
5001
5002                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5003                                 if (bret == true) {
5004                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5005                                         goto go_again;
5006                                 }
5007                         } else
5008                                 ret = 0;
5009
5010                         return ret;
5011                 } else {
5012                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5013                         intel_dp->is_mst = false;
5014                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5015                                                         intel_dp->is_mst);
5016                 }
5017         }
5018         return -EINVAL;
5019 }
5020
5021 static bool
5022 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5023 {
5024         u8 link_status[DP_LINK_STATUS_SIZE];
5025
5026         if (!intel_dp->link_trained)
5027                 return false;
5028
5029         /*
5030          * While PSR source HW is enabled, it will control main-link sending
5031          * frames, enabling and disabling it so trying to do a retrain will fail
5032          * as the link would or not be on or it could mix training patterns
5033          * and frame data at the same time causing retrain to fail.
5034          * Also when exiting PSR, HW will retrain the link anyways fixing
5035          * any link status error.
5036          */
5037         if (intel_psr_enabled(intel_dp))
5038                 return false;
5039
5040         if (!intel_dp_get_link_status(intel_dp, link_status))
5041                 return false;
5042
5043         /*
5044          * Validate the cached values of intel_dp->link_rate and
5045          * intel_dp->lane_count before attempting to retrain.
5046          */
5047         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5048                                         intel_dp->lane_count))
5049                 return false;
5050
5051         /* Retrain if Channel EQ or CR not ok */
5052         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5053 }
5054
5055 int intel_dp_retrain_link(struct intel_encoder *encoder,
5056                           struct drm_modeset_acquire_ctx *ctx)
5057 {
5058         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5059         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
5060         struct intel_connector *connector = intel_dp->attached_connector;
5061         struct drm_connector_state *conn_state;
5062         struct intel_crtc_state *crtc_state;
5063         struct intel_crtc *crtc;
5064         int ret;
5065
5066         /* FIXME handle the MST connectors as well */
5067
5068         if (!connector || connector->base.status != connector_status_connected)
5069                 return 0;
5070
5071         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5072                                ctx);
5073         if (ret)
5074                 return ret;
5075
5076         conn_state = connector->base.state;
5077
5078         crtc = to_intel_crtc(conn_state->crtc);
5079         if (!crtc)
5080                 return 0;
5081
5082         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5083         if (ret)
5084                 return ret;
5085
5086         crtc_state = to_intel_crtc_state(crtc->base.state);
5087
5088         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5089
5090         if (!crtc_state->hw.active)
5091                 return 0;
5092
5093         if (conn_state->commit &&
5094             !try_wait_for_completion(&conn_state->commit->hw_done))
5095                 return 0;
5096
5097         if (!intel_dp_needs_link_retrain(intel_dp))
5098                 return 0;
5099
5100         /* Suppress underruns caused by re-training */
5101         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5102         if (crtc_state->has_pch_encoder)
5103                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5104                                                       intel_crtc_pch_transcoder(crtc), false);
5105
5106         intel_dp_start_link_train(intel_dp);
5107         intel_dp_stop_link_train(intel_dp);
5108
5109         /* Keep underrun reporting disabled until things are stable */
5110         intel_wait_for_vblank(dev_priv, crtc->pipe);
5111
5112         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5113         if (crtc_state->has_pch_encoder)
5114                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5115                                                       intel_crtc_pch_transcoder(crtc), true);
5116
5117         return 0;
5118 }
5119
5120 /*
5121  * If display is now connected check links status,
5122  * there has been known issues of link loss triggering
5123  * long pulse.
5124  *
5125  * Some sinks (eg. ASUS PB287Q) seem to perform some
5126  * weird HPD ping pong during modesets. So we can apparently
5127  * end up with HPD going low during a modeset, and then
5128  * going back up soon after. And once that happens we must
5129  * retrain the link to get a picture. That's in case no
5130  * userspace component reacted to intermittent HPD dip.
5131  */
5132 static enum intel_hotplug_state
5133 intel_dp_hotplug(struct intel_encoder *encoder,
5134                  struct intel_connector *connector,
5135                  bool irq_received)
5136 {
5137         struct drm_modeset_acquire_ctx ctx;
5138         enum intel_hotplug_state state;
5139         int ret;
5140
5141         state = intel_encoder_hotplug(encoder, connector, irq_received);
5142
5143         drm_modeset_acquire_init(&ctx, 0);
5144
5145         for (;;) {
5146                 ret = intel_dp_retrain_link(encoder, &ctx);
5147
5148                 if (ret == -EDEADLK) {
5149                         drm_modeset_backoff(&ctx);
5150                         continue;
5151                 }
5152
5153                 break;
5154         }
5155
5156         drm_modeset_drop_locks(&ctx);
5157         drm_modeset_acquire_fini(&ctx);
5158         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5159
5160         /*
5161          * Keeping it consistent with intel_ddi_hotplug() and
5162          * intel_hdmi_hotplug().
5163          */
5164         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5165                 state = INTEL_HOTPLUG_RETRY;
5166
5167         return state;
5168 }
5169
5170 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5171 {
5172         u8 val;
5173
5174         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5175                 return;
5176
5177         if (drm_dp_dpcd_readb(&intel_dp->aux,
5178                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5179                 return;
5180
5181         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5182
5183         if (val & DP_AUTOMATED_TEST_REQUEST)
5184                 intel_dp_handle_test_request(intel_dp);
5185
5186         if (val & DP_CP_IRQ)
5187                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5188
5189         if (val & DP_SINK_SPECIFIC_IRQ)
5190                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5191 }
5192
5193 /*
5194  * According to DP spec
5195  * 5.1.2:
5196  *  1. Read DPCD
5197  *  2. Configure link according to Receiver Capabilities
5198  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5199  *  4. Check link status on receipt of hot-plug interrupt
5200  *
5201  * intel_dp_short_pulse -  handles short pulse interrupts
5202  * when full detection is not required.
5203  * Returns %true if short pulse is handled and full detection
5204  * is NOT required and %false otherwise.
5205  */
5206 static bool
5207 intel_dp_short_pulse(struct intel_dp *intel_dp)
5208 {
5209         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5210         u8 old_sink_count = intel_dp->sink_count;
5211         bool ret;
5212
5213         /*
5214          * Clearing compliance test variables to allow capturing
5215          * of values for next automated test request.
5216          */
5217         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5218
5219         /*
5220          * Now read the DPCD to see if it's actually running
5221          * If the current value of sink count doesn't match with
5222          * the value that was stored earlier or dpcd read failed
5223          * we need to do full detection
5224          */
5225         ret = intel_dp_get_dpcd(intel_dp);
5226
5227         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5228                 /* No need to proceed if we are going to do full detect */
5229                 return false;
5230         }
5231
5232         intel_dp_check_service_irq(intel_dp);
5233
5234         /* Handle CEC interrupts, if any */
5235         drm_dp_cec_irq(&intel_dp->aux);
5236
5237         /* defer to the hotplug work for link retraining if needed */
5238         if (intel_dp_needs_link_retrain(intel_dp))
5239                 return false;
5240
5241         intel_psr_short_pulse(intel_dp);
5242
5243         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5244                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5245                 /* Send a Hotplug Uevent to userspace to start modeset */
5246                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5247         }
5248
5249         return true;
5250 }
5251
5252 /* XXX this is probably wrong for multiple downstream ports */
5253 static enum drm_connector_status
5254 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5255 {
5256         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5257         u8 *dpcd = intel_dp->dpcd;
5258         u8 type;
5259
5260         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5261                 return connector_status_connected;
5262
5263         if (lspcon->active)
5264                 lspcon_resume(lspcon);
5265
5266         if (!intel_dp_get_dpcd(intel_dp))
5267                 return connector_status_disconnected;
5268
5269         /* if there's no downstream port, we're done */
5270         if (!drm_dp_is_branch(dpcd))
5271                 return connector_status_connected;
5272
5273         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5274         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5275             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5276
5277                 return intel_dp->sink_count ?
5278                 connector_status_connected : connector_status_disconnected;
5279         }
5280
5281         if (intel_dp_can_mst(intel_dp))
5282                 return connector_status_connected;
5283
5284         /* If no HPD, poke DDC gently */
5285         if (drm_probe_ddc(&intel_dp->aux.ddc))
5286                 return connector_status_connected;
5287
5288         /* Well we tried, say unknown for unreliable port types */
5289         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5290                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5291                 if (type == DP_DS_PORT_TYPE_VGA ||
5292                     type == DP_DS_PORT_TYPE_NON_EDID)
5293                         return connector_status_unknown;
5294         } else {
5295                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5296                         DP_DWN_STRM_PORT_TYPE_MASK;
5297                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5298                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5299                         return connector_status_unknown;
5300         }
5301
5302         /* Anything else is out of spec, warn and ignore */
5303         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5304         return connector_status_disconnected;
5305 }
5306
5307 static enum drm_connector_status
5308 edp_detect(struct intel_dp *intel_dp)
5309 {
5310         return connector_status_connected;
5311 }
5312
5313 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5314 {
5315         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5316         u32 bit;
5317
5318         switch (encoder->hpd_pin) {
5319         case HPD_PORT_B:
5320                 bit = SDE_PORTB_HOTPLUG;
5321                 break;
5322         case HPD_PORT_C:
5323                 bit = SDE_PORTC_HOTPLUG;
5324                 break;
5325         case HPD_PORT_D:
5326                 bit = SDE_PORTD_HOTPLUG;
5327                 break;
5328         default:
5329                 MISSING_CASE(encoder->hpd_pin);
5330                 return false;
5331         }
5332
5333         return I915_READ(SDEISR) & bit;
5334 }
5335
5336 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5337 {
5338         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5339         u32 bit;
5340
5341         switch (encoder->hpd_pin) {
5342         case HPD_PORT_B:
5343                 bit = SDE_PORTB_HOTPLUG_CPT;
5344                 break;
5345         case HPD_PORT_C:
5346                 bit = SDE_PORTC_HOTPLUG_CPT;
5347                 break;
5348         case HPD_PORT_D:
5349                 bit = SDE_PORTD_HOTPLUG_CPT;
5350                 break;
5351         default:
5352                 MISSING_CASE(encoder->hpd_pin);
5353                 return false;
5354         }
5355
5356         return I915_READ(SDEISR) & bit;
5357 }
5358
5359 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5360 {
5361         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5362         u32 bit;
5363
5364         switch (encoder->hpd_pin) {
5365         case HPD_PORT_A:
5366                 bit = SDE_PORTA_HOTPLUG_SPT;
5367                 break;
5368         case HPD_PORT_E:
5369                 bit = SDE_PORTE_HOTPLUG_SPT;
5370                 break;
5371         default:
5372                 return cpt_digital_port_connected(encoder);
5373         }
5374
5375         return I915_READ(SDEISR) & bit;
5376 }
5377
5378 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5379 {
5380         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5381         u32 bit;
5382
5383         switch (encoder->hpd_pin) {
5384         case HPD_PORT_B:
5385                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5386                 break;
5387         case HPD_PORT_C:
5388                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5389                 break;
5390         case HPD_PORT_D:
5391                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5392                 break;
5393         default:
5394                 MISSING_CASE(encoder->hpd_pin);
5395                 return false;
5396         }
5397
5398         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5399 }
5400
5401 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5402 {
5403         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5404         u32 bit;
5405
5406         switch (encoder->hpd_pin) {
5407         case HPD_PORT_B:
5408                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5409                 break;
5410         case HPD_PORT_C:
5411                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5412                 break;
5413         case HPD_PORT_D:
5414                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5415                 break;
5416         default:
5417                 MISSING_CASE(encoder->hpd_pin);
5418                 return false;
5419         }
5420
5421         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5422 }
5423
5424 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5425 {
5426         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5427
5428         if (encoder->hpd_pin == HPD_PORT_A)
5429                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5430         else
5431                 return ibx_digital_port_connected(encoder);
5432 }
5433
5434 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5435 {
5436         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5437
5438         if (encoder->hpd_pin == HPD_PORT_A)
5439                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5440         else
5441                 return cpt_digital_port_connected(encoder);
5442 }
5443
5444 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5445 {
5446         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5447
5448         if (encoder->hpd_pin == HPD_PORT_A)
5449                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5450         else
5451                 return cpt_digital_port_connected(encoder);
5452 }
5453
5454 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5455 {
5456         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5457
5458         if (encoder->hpd_pin == HPD_PORT_A)
5459                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5460         else
5461                 return cpt_digital_port_connected(encoder);
5462 }
5463
5464 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5465 {
5466         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5467         u32 bit;
5468
5469         switch (encoder->hpd_pin) {
5470         case HPD_PORT_A:
5471                 bit = BXT_DE_PORT_HP_DDIA;
5472                 break;
5473         case HPD_PORT_B:
5474                 bit = BXT_DE_PORT_HP_DDIB;
5475                 break;
5476         case HPD_PORT_C:
5477                 bit = BXT_DE_PORT_HP_DDIC;
5478                 break;
5479         default:
5480                 MISSING_CASE(encoder->hpd_pin);
5481                 return false;
5482         }
5483
5484         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5485 }
5486
5487 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5488                                       enum phy phy)
5489 {
5490         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5491                 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5492
5493         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5494 }
5495
5496 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5497 {
5498         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5499         struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5500         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5501
5502         if (intel_phy_is_combo(dev_priv, phy))
5503                 return intel_combo_phy_connected(dev_priv, phy);
5504         else if (intel_phy_is_tc(dev_priv, phy))
5505                 return intel_tc_port_connected(dig_port);
5506         else
5507                 MISSING_CASE(encoder->hpd_pin);
5508
5509         return false;
5510 }
5511
5512 /*
5513  * intel_digital_port_connected - is the specified port connected?
5514  * @encoder: intel_encoder
5515  *
5516  * In cases where there's a connector physically connected but it can't be used
5517  * by our hardware we also return false, since the rest of the driver should
5518  * pretty much treat the port as disconnected. This is relevant for type-C
5519  * (starting on ICL) where there's ownership involved.
5520  *
5521  * Return %true if port is connected, %false otherwise.
5522  */
5523 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5524 {
5525         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5526
5527         if (HAS_GMCH(dev_priv)) {
5528                 if (IS_GM45(dev_priv))
5529                         return gm45_digital_port_connected(encoder);
5530                 else
5531                         return g4x_digital_port_connected(encoder);
5532         }
5533
5534         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5535                 return icp_digital_port_connected(encoder);
5536         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5537                 return spt_digital_port_connected(encoder);
5538         else if (IS_GEN9_LP(dev_priv))
5539                 return bxt_digital_port_connected(encoder);
5540         else if (IS_GEN(dev_priv, 8))
5541                 return bdw_digital_port_connected(encoder);
5542         else if (IS_GEN(dev_priv, 7))
5543                 return ivb_digital_port_connected(encoder);
5544         else if (IS_GEN(dev_priv, 6))
5545                 return snb_digital_port_connected(encoder);
5546         else if (IS_GEN(dev_priv, 5))
5547                 return ilk_digital_port_connected(encoder);
5548
5549         MISSING_CASE(INTEL_GEN(dev_priv));
5550         return false;
5551 }
5552
5553 bool intel_digital_port_connected(struct intel_encoder *encoder)
5554 {
5555         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5556         bool is_connected = false;
5557         intel_wakeref_t wakeref;
5558
5559         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5560                 is_connected = __intel_digital_port_connected(encoder);
5561
5562         return is_connected;
5563 }
5564
5565 static struct edid *
5566 intel_dp_get_edid(struct intel_dp *intel_dp)
5567 {
5568         struct intel_connector *intel_connector = intel_dp->attached_connector;
5569
5570         /* use cached edid if we have one */
5571         if (intel_connector->edid) {
5572                 /* invalid edid */
5573                 if (IS_ERR(intel_connector->edid))
5574                         return NULL;
5575
5576                 return drm_edid_duplicate(intel_connector->edid);
5577         } else
5578                 return drm_get_edid(&intel_connector->base,
5579                                     &intel_dp->aux.ddc);
5580 }
5581
5582 static void
5583 intel_dp_set_edid(struct intel_dp *intel_dp)
5584 {
5585         struct intel_connector *intel_connector = intel_dp->attached_connector;
5586         struct edid *edid;
5587
5588         intel_dp_unset_edid(intel_dp);
5589         edid = intel_dp_get_edid(intel_dp);
5590         intel_connector->detect_edid = edid;
5591
5592         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5593         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5594 }
5595
5596 static void
5597 intel_dp_unset_edid(struct intel_dp *intel_dp)
5598 {
5599         struct intel_connector *intel_connector = intel_dp->attached_connector;
5600
5601         drm_dp_cec_unset_edid(&intel_dp->aux);
5602         kfree(intel_connector->detect_edid);
5603         intel_connector->detect_edid = NULL;
5604
5605         intel_dp->has_audio = false;
5606 }
5607
5608 static int
5609 intel_dp_detect(struct drm_connector *connector,
5610                 struct drm_modeset_acquire_ctx *ctx,
5611                 bool force)
5612 {
5613         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5614         struct intel_dp *intel_dp = intel_attached_dp(connector);
5615         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5616         struct intel_encoder *encoder = &dig_port->base;
5617         enum drm_connector_status status;
5618
5619         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5620                       connector->base.id, connector->name);
5621         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5622
5623         /* Can't disconnect eDP */
5624         if (intel_dp_is_edp(intel_dp))
5625                 status = edp_detect(intel_dp);
5626         else if (intel_digital_port_connected(encoder))
5627                 status = intel_dp_detect_dpcd(intel_dp);
5628         else
5629                 status = connector_status_disconnected;
5630
5631         if (status == connector_status_disconnected) {
5632                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5633                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5634
5635                 if (intel_dp->is_mst) {
5636                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5637                                       intel_dp->is_mst,
5638                                       intel_dp->mst_mgr.mst_state);
5639                         intel_dp->is_mst = false;
5640                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5641                                                         intel_dp->is_mst);
5642                 }
5643
5644                 goto out;
5645         }
5646
5647         if (intel_dp->reset_link_params) {
5648                 /* Initial max link lane count */
5649                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5650
5651                 /* Initial max link rate */
5652                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5653
5654                 intel_dp->reset_link_params = false;
5655         }
5656
5657         intel_dp_print_rates(intel_dp);
5658
5659         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5660         if (INTEL_GEN(dev_priv) >= 11)
5661                 intel_dp_get_dsc_sink_cap(intel_dp);
5662
5663         intel_dp_configure_mst(intel_dp);
5664
5665         if (intel_dp->is_mst) {
5666                 /*
5667                  * If we are in MST mode then this connector
5668                  * won't appear connected or have anything
5669                  * with EDID on it
5670                  */
5671                 status = connector_status_disconnected;
5672                 goto out;
5673         }
5674
5675         /*
5676          * Some external monitors do not signal loss of link synchronization
5677          * with an IRQ_HPD, so force a link status check.
5678          */
5679         if (!intel_dp_is_edp(intel_dp)) {
5680                 int ret;
5681
5682                 ret = intel_dp_retrain_link(encoder, ctx);
5683                 if (ret)
5684                         return ret;
5685         }
5686
5687         /*
5688          * Clearing NACK and defer counts to get their exact values
5689          * while reading EDID which are required by Compliance tests
5690          * 4.2.2.4 and 4.2.2.5
5691          */
5692         intel_dp->aux.i2c_nack_count = 0;
5693         intel_dp->aux.i2c_defer_count = 0;
5694
5695         intel_dp_set_edid(intel_dp);
5696         if (intel_dp_is_edp(intel_dp) ||
5697             to_intel_connector(connector)->detect_edid)
5698                 status = connector_status_connected;
5699
5700         intel_dp_check_service_irq(intel_dp);
5701
5702 out:
5703         if (status != connector_status_connected && !intel_dp->is_mst)
5704                 intel_dp_unset_edid(intel_dp);
5705
5706         /*
5707          * Make sure the refs for power wells enabled during detect are
5708          * dropped to avoid a new detect cycle triggered by HPD polling.
5709          */
5710         intel_display_power_flush_work(dev_priv);
5711
5712         return status;
5713 }
5714
5715 static void
5716 intel_dp_force(struct drm_connector *connector)
5717 {
5718         struct intel_dp *intel_dp = intel_attached_dp(connector);
5719         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5720         struct intel_encoder *intel_encoder = &dig_port->base;
5721         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5722         enum intel_display_power_domain aux_domain =
5723                 intel_aux_power_domain(dig_port);
5724         intel_wakeref_t wakeref;
5725
5726         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5727                       connector->base.id, connector->name);
5728         intel_dp_unset_edid(intel_dp);
5729
5730         if (connector->status != connector_status_connected)
5731                 return;
5732
5733         wakeref = intel_display_power_get(dev_priv, aux_domain);
5734
5735         intel_dp_set_edid(intel_dp);
5736
5737         intel_display_power_put(dev_priv, aux_domain, wakeref);
5738 }
5739
5740 static int intel_dp_get_modes(struct drm_connector *connector)
5741 {
5742         struct intel_connector *intel_connector = to_intel_connector(connector);
5743         struct edid *edid;
5744
5745         edid = intel_connector->detect_edid;
5746         if (edid) {
5747                 int ret = intel_connector_update_modes(connector, edid);
5748                 if (ret)
5749                         return ret;
5750         }
5751
5752         /* if eDP has no EDID, fall back to fixed mode */
5753         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5754             intel_connector->panel.fixed_mode) {
5755                 struct drm_display_mode *mode;
5756
5757                 mode = drm_mode_duplicate(connector->dev,
5758                                           intel_connector->panel.fixed_mode);
5759                 if (mode) {
5760                         drm_mode_probed_add(connector, mode);
5761                         return 1;
5762                 }
5763         }
5764
5765         return 0;
5766 }
5767
5768 static int
5769 intel_dp_connector_register(struct drm_connector *connector)
5770 {
5771         struct intel_dp *intel_dp = intel_attached_dp(connector);
5772         int ret;
5773
5774         ret = intel_connector_register(connector);
5775         if (ret)
5776                 return ret;
5777
5778         i915_debugfs_connector_add(connector);
5779
5780         DRM_DEBUG_KMS("registering %s bus for %s\n",
5781                       intel_dp->aux.name, connector->kdev->kobj.name);
5782
5783         intel_dp->aux.dev = connector->kdev;
5784         ret = drm_dp_aux_register(&intel_dp->aux);
5785         if (!ret)
5786                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5787         return ret;
5788 }
5789
5790 static void
5791 intel_dp_connector_unregister(struct drm_connector *connector)
5792 {
5793         struct intel_dp *intel_dp = intel_attached_dp(connector);
5794
5795         drm_dp_cec_unregister_connector(&intel_dp->aux);
5796         drm_dp_aux_unregister(&intel_dp->aux);
5797         intel_connector_unregister(connector);
5798 }
5799
5800 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5801 {
5802         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5803         struct intel_dp *intel_dp = &intel_dig_port->dp;
5804
5805         intel_dp_mst_encoder_cleanup(intel_dig_port);
5806         if (intel_dp_is_edp(intel_dp)) {
5807                 intel_wakeref_t wakeref;
5808
5809                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5810                 /*
5811                  * vdd might still be enabled do to the delayed vdd off.
5812                  * Make sure vdd is actually turned off here.
5813                  */
5814                 with_pps_lock(intel_dp, wakeref)
5815                         edp_panel_vdd_off_sync(intel_dp);
5816
5817                 if (intel_dp->edp_notifier.notifier_call) {
5818                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5819                         intel_dp->edp_notifier.notifier_call = NULL;
5820                 }
5821         }
5822
5823         intel_dp_aux_fini(intel_dp);
5824 }
5825
5826 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5827 {
5828         intel_dp_encoder_flush_work(encoder);
5829
5830         drm_encoder_cleanup(encoder);
5831         kfree(enc_to_dig_port(encoder));
5832 }
5833
5834 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5835 {
5836         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5837         intel_wakeref_t wakeref;
5838
5839         if (!intel_dp_is_edp(intel_dp))
5840                 return;
5841
5842         /*
5843          * vdd might still be enabled do to the delayed vdd off.
5844          * Make sure vdd is actually turned off here.
5845          */
5846         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5847         with_pps_lock(intel_dp, wakeref)
5848                 edp_panel_vdd_off_sync(intel_dp);
5849 }
5850
5851 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5852 {
5853         long ret;
5854
5855 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5856         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5857                                                msecs_to_jiffies(timeout));
5858
5859         if (!ret)
5860                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5861 }
5862
5863 static
5864 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5865                                 u8 *an)
5866 {
5867         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5868         static const struct drm_dp_aux_msg msg = {
5869                 .request = DP_AUX_NATIVE_WRITE,
5870                 .address = DP_AUX_HDCP_AKSV,
5871                 .size = DRM_HDCP_KSV_LEN,
5872         };
5873         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5874         ssize_t dpcd_ret;
5875         int ret;
5876
5877         /* Output An first, that's easy */
5878         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5879                                      an, DRM_HDCP_AN_LEN);
5880         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5881                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5882                               dpcd_ret);
5883                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5884         }
5885
5886         /*
5887          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5888          * order to get it on the wire, we need to create the AUX header as if
5889          * we were writing the data, and then tickle the hardware to output the
5890          * data once the header is sent out.
5891          */
5892         intel_dp_aux_header(txbuf, &msg);
5893
5894         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5895                                 rxbuf, sizeof(rxbuf),
5896                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5897         if (ret < 0) {
5898                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5899                 return ret;
5900         } else if (ret == 0) {
5901                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5902                 return -EIO;
5903         }
5904
5905         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5906         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5907                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5908                               reply);
5909                 return -EIO;
5910         }
5911         return 0;
5912 }
5913
5914 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5915                                    u8 *bksv)
5916 {
5917         ssize_t ret;
5918         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5919                                DRM_HDCP_KSV_LEN);
5920         if (ret != DRM_HDCP_KSV_LEN) {
5921                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5922                 return ret >= 0 ? -EIO : ret;
5923         }
5924         return 0;
5925 }
5926
5927 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5928                                       u8 *bstatus)
5929 {
5930         ssize_t ret;
5931         /*
5932          * For some reason the HDMI and DP HDCP specs call this register
5933          * definition by different names. In the HDMI spec, it's called BSTATUS,
5934          * but in DP it's called BINFO.
5935          */
5936         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5937                                bstatus, DRM_HDCP_BSTATUS_LEN);
5938         if (ret != DRM_HDCP_BSTATUS_LEN) {
5939                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5940                 return ret >= 0 ? -EIO : ret;
5941         }
5942         return 0;
5943 }
5944
5945 static
5946 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5947                              u8 *bcaps)
5948 {
5949         ssize_t ret;
5950
5951         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5952                                bcaps, 1);
5953         if (ret != 1) {
5954                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5955                 return ret >= 0 ? -EIO : ret;
5956         }
5957
5958         return 0;
5959 }
5960
5961 static
5962 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5963                                    bool *repeater_present)
5964 {
5965         ssize_t ret;
5966         u8 bcaps;
5967
5968         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5969         if (ret)
5970                 return ret;
5971
5972         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5973         return 0;
5974 }
5975
5976 static
5977 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5978                                 u8 *ri_prime)
5979 {
5980         ssize_t ret;
5981         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5982                                ri_prime, DRM_HDCP_RI_LEN);
5983         if (ret != DRM_HDCP_RI_LEN) {
5984                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5985                 return ret >= 0 ? -EIO : ret;
5986         }
5987         return 0;
5988 }
5989
5990 static
5991 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5992                                  bool *ksv_ready)
5993 {
5994         ssize_t ret;
5995         u8 bstatus;
5996         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5997                                &bstatus, 1);
5998         if (ret != 1) {
5999                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6000                 return ret >= 0 ? -EIO : ret;
6001         }
6002         *ksv_ready = bstatus & DP_BSTATUS_READY;
6003         return 0;
6004 }
6005
6006 static
6007 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6008                                 int num_downstream, u8 *ksv_fifo)
6009 {
6010         ssize_t ret;
6011         int i;
6012
6013         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6014         for (i = 0; i < num_downstream; i += 3) {
6015                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6016                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6017                                        DP_AUX_HDCP_KSV_FIFO,
6018                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6019                                        len);
6020                 if (ret != len) {
6021                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6022                                       i, ret);
6023                         return ret >= 0 ? -EIO : ret;
6024                 }
6025         }
6026         return 0;
6027 }
6028
6029 static
6030 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6031                                     int i, u32 *part)
6032 {
6033         ssize_t ret;
6034
6035         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6036                 return -EINVAL;
6037
6038         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6039                                DP_AUX_HDCP_V_PRIME(i), part,
6040                                DRM_HDCP_V_PRIME_PART_LEN);
6041         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6042                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6043                 return ret >= 0 ? -EIO : ret;
6044         }
6045         return 0;
6046 }
6047
6048 static
6049 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6050                                     bool enable)
6051 {
6052         /* Not used for single stream DisplayPort setups */
6053         return 0;
6054 }
6055
6056 static
6057 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6058 {
6059         ssize_t ret;
6060         u8 bstatus;
6061
6062         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6063                                &bstatus, 1);
6064         if (ret != 1) {
6065                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6066                 return false;
6067         }
6068
6069         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6070 }
6071
6072 static
6073 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6074                           bool *hdcp_capable)
6075 {
6076         ssize_t ret;
6077         u8 bcaps;
6078
6079         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6080         if (ret)
6081                 return ret;
6082
6083         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6084         return 0;
6085 }
6086
6087 struct hdcp2_dp_errata_stream_type {
6088         u8      msg_id;
6089         u8      stream_type;
6090 } __packed;
6091
6092 struct hdcp2_dp_msg_data {
6093         u8 msg_id;
6094         u32 offset;
6095         bool msg_detectable;
6096         u32 timeout;
6097         u32 timeout2; /* Added for non_paired situation */
6098 };
6099
6100 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6101         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6102         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6103           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6104         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6105           false, 0, 0 },
6106         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6107           false, 0, 0 },
6108         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6109           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6110           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6111         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6112           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6113           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6114         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6115         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6116           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6117         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6118           0, 0 },
6119         { HDCP_2_2_REP_SEND_RECVID_LIST,
6120           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6121           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6122         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6123           0, 0 },
6124         { HDCP_2_2_REP_STREAM_MANAGE,
6125           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6126           0, 0 },
6127         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6128           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6129 /* local define to shovel this through the write_2_2 interface */
6130 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6131         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6132           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6133           0, 0 },
6134 };
6135
6136 static inline
6137 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6138                                   u8 *rx_status)
6139 {
6140         ssize_t ret;
6141
6142         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6143                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6144                                HDCP_2_2_DP_RXSTATUS_LEN);
6145         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6146                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6147                 return ret >= 0 ? -EIO : ret;
6148         }
6149
6150         return 0;
6151 }
6152
6153 static
6154 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6155                                   u8 msg_id, bool *msg_ready)
6156 {
6157         u8 rx_status;
6158         int ret;
6159
6160         *msg_ready = false;
6161         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6162         if (ret < 0)
6163                 return ret;
6164
6165         switch (msg_id) {
6166         case HDCP_2_2_AKE_SEND_HPRIME:
6167                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6168                         *msg_ready = true;
6169                 break;
6170         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6171                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6172                         *msg_ready = true;
6173                 break;
6174         case HDCP_2_2_REP_SEND_RECVID_LIST:
6175                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6176                         *msg_ready = true;
6177                 break;
6178         default:
6179                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6180                 return -EINVAL;
6181         }
6182
6183         return 0;
6184 }
6185
6186 static ssize_t
6187 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6188                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6189 {
6190         struct intel_dp *dp = &intel_dig_port->dp;
6191         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6192         u8 msg_id = hdcp2_msg_data->msg_id;
6193         int ret, timeout;
6194         bool msg_ready = false;
6195
6196         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6197                 timeout = hdcp2_msg_data->timeout2;
6198         else
6199                 timeout = hdcp2_msg_data->timeout;
6200
6201         /*
6202          * There is no way to detect the CERT, LPRIME and STREAM_READY
6203          * availability. So Wait for timeout and read the msg.
6204          */
6205         if (!hdcp2_msg_data->msg_detectable) {
6206                 mdelay(timeout);
6207                 ret = 0;
6208         } else {
6209                 /*
6210                  * As we want to check the msg availability at timeout, Ignoring
6211                  * the timeout at wait for CP_IRQ.
6212                  */
6213                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6214                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6215                                                     msg_id, &msg_ready);
6216                 if (!msg_ready)
6217                         ret = -ETIMEDOUT;
6218         }
6219
6220         if (ret)
6221                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6222                               hdcp2_msg_data->msg_id, ret, timeout);
6223
6224         return ret;
6225 }
6226
6227 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6228 {
6229         int i;
6230
6231         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6232                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6233                         return &hdcp2_dp_msg_data[i];
6234
6235         return NULL;
6236 }
6237
6238 static
6239 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6240                              void *buf, size_t size)
6241 {
6242         struct intel_dp *dp = &intel_dig_port->dp;
6243         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6244         unsigned int offset;
6245         u8 *byte = buf;
6246         ssize_t ret, bytes_to_write, len;
6247         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6248
6249         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6250         if (!hdcp2_msg_data)
6251                 return -EINVAL;
6252
6253         offset = hdcp2_msg_data->offset;
6254
6255         /* No msg_id in DP HDCP2.2 msgs */
6256         bytes_to_write = size - 1;
6257         byte++;
6258
6259         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6260
6261         while (bytes_to_write) {
6262                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6263                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6264
6265                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6266                                         offset, (void *)byte, len);
6267                 if (ret < 0)
6268                         return ret;
6269
6270                 bytes_to_write -= ret;
6271                 byte += ret;
6272                 offset += ret;
6273         }
6274
6275         return size;
6276 }
6277
6278 static
6279 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6280 {
6281         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6282         u32 dev_cnt;
6283         ssize_t ret;
6284
6285         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6286                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6287                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6288         if (ret != HDCP_2_2_RXINFO_LEN)
6289                 return ret >= 0 ? -EIO : ret;
6290
6291         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6292                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6293
6294         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6295                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6296
6297         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6298                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6299                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6300
6301         return ret;
6302 }
6303
6304 static
6305 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6306                             u8 msg_id, void *buf, size_t size)
6307 {
6308         unsigned int offset;
6309         u8 *byte = buf;
6310         ssize_t ret, bytes_to_recv, len;
6311         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6312
6313         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6314         if (!hdcp2_msg_data)
6315                 return -EINVAL;
6316         offset = hdcp2_msg_data->offset;
6317
6318         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6319         if (ret < 0)
6320                 return ret;
6321
6322         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6323                 ret = get_receiver_id_list_size(intel_dig_port);
6324                 if (ret < 0)
6325                         return ret;
6326
6327                 size = ret;
6328         }
6329         bytes_to_recv = size - 1;
6330
6331         /* DP adaptation msgs has no msg_id */
6332         byte++;
6333
6334         while (bytes_to_recv) {
6335                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6336                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6337
6338                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6339                                        (void *)byte, len);
6340                 if (ret < 0) {
6341                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6342                         return ret;
6343                 }
6344
6345                 bytes_to_recv -= ret;
6346                 byte += ret;
6347                 offset += ret;
6348         }
6349         byte = buf;
6350         *byte = msg_id;
6351
6352         return size;
6353 }
6354
6355 static
6356 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6357                                       bool is_repeater, u8 content_type)
6358 {
6359         struct hdcp2_dp_errata_stream_type stream_type_msg;
6360
6361         if (is_repeater)
6362                 return 0;
6363
6364         /*
6365          * Errata for DP: As Stream type is used for encryption, Receiver
6366          * should be communicated with stream type for the decryption of the
6367          * content.
6368          * Repeater will be communicated with stream type as a part of it's
6369          * auth later in time.
6370          */
6371         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6372         stream_type_msg.stream_type = content_type;
6373
6374         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6375                                         sizeof(stream_type_msg));
6376 }
6377
6378 static
6379 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6380 {
6381         u8 rx_status;
6382         int ret;
6383
6384         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6385         if (ret)
6386                 return ret;
6387
6388         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6389                 ret = HDCP_REAUTH_REQUEST;
6390         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6391                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6392         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6393                 ret = HDCP_TOPOLOGY_CHANGE;
6394
6395         return ret;
6396 }
6397
6398 static
6399 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6400                            bool *capable)
6401 {
6402         u8 rx_caps[3];
6403         int ret;
6404
6405         *capable = false;
6406         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6407                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6408                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6409         if (ret != HDCP_2_2_RXCAPS_LEN)
6410                 return ret >= 0 ? -EIO : ret;
6411
6412         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6413             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6414                 *capable = true;
6415
6416         return 0;
6417 }
6418
6419 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6420         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6421         .read_bksv = intel_dp_hdcp_read_bksv,
6422         .read_bstatus = intel_dp_hdcp_read_bstatus,
6423         .repeater_present = intel_dp_hdcp_repeater_present,
6424         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6425         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6426         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6427         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6428         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6429         .check_link = intel_dp_hdcp_check_link,
6430         .hdcp_capable = intel_dp_hdcp_capable,
6431         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6432         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6433         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6434         .check_2_2_link = intel_dp_hdcp2_check_link,
6435         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6436         .protocol = HDCP_PROTOCOL_DP,
6437 };
6438
6439 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6440 {
6441         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6442         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6443
6444         lockdep_assert_held(&dev_priv->pps_mutex);
6445
6446         if (!edp_have_panel_vdd(intel_dp))
6447                 return;
6448
6449         /*
6450          * The VDD bit needs a power domain reference, so if the bit is
6451          * already enabled when we boot or resume, grab this reference and
6452          * schedule a vdd off, so we don't hold on to the reference
6453          * indefinitely.
6454          */
6455         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6456         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6457
6458         edp_panel_vdd_schedule_off(intel_dp);
6459 }
6460
6461 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6462 {
6463         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6464         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6465         enum pipe pipe;
6466
6467         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6468                                   encoder->port, &pipe))
6469                 return pipe;
6470
6471         return INVALID_PIPE;
6472 }
6473
6474 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6475 {
6476         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6477         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6478         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6479         intel_wakeref_t wakeref;
6480
6481         if (!HAS_DDI(dev_priv))
6482                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6483
6484         if (lspcon->active)
6485                 lspcon_resume(lspcon);
6486
6487         intel_dp->reset_link_params = true;
6488
6489         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6490             !intel_dp_is_edp(intel_dp))
6491                 return;
6492
6493         with_pps_lock(intel_dp, wakeref) {
6494                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6495                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6496
6497                 if (intel_dp_is_edp(intel_dp)) {
6498                         /*
6499                          * Reinit the power sequencer, in case BIOS did
6500                          * something nasty with it.
6501                          */
6502                         intel_dp_pps_init(intel_dp);
6503                         intel_edp_panel_vdd_sanitize(intel_dp);
6504                 }
6505         }
6506 }
6507
6508 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6509         .force = intel_dp_force,
6510         .fill_modes = drm_helper_probe_single_connector_modes,
6511         .atomic_get_property = intel_digital_connector_atomic_get_property,
6512         .atomic_set_property = intel_digital_connector_atomic_set_property,
6513         .late_register = intel_dp_connector_register,
6514         .early_unregister = intel_dp_connector_unregister,
6515         .destroy = intel_connector_destroy,
6516         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6517         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6518 };
6519
6520 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6521         .detect_ctx = intel_dp_detect,
6522         .get_modes = intel_dp_get_modes,
6523         .mode_valid = intel_dp_mode_valid,
6524         .atomic_check = intel_digital_connector_atomic_check,
6525 };
6526
6527 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6528         .reset = intel_dp_encoder_reset,
6529         .destroy = intel_dp_encoder_destroy,
6530 };
6531
6532 enum irqreturn
6533 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6534 {
6535         struct intel_dp *intel_dp = &intel_dig_port->dp;
6536
6537         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6538                 /*
6539                  * vdd off can generate a long pulse on eDP which
6540                  * would require vdd on to handle it, and thus we
6541                  * would end up in an endless cycle of
6542                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6543                  */
6544                 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6545                               intel_dig_port->base.base.base.id,
6546                               intel_dig_port->base.base.name);
6547                 return IRQ_HANDLED;
6548         }
6549
6550         DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6551                       intel_dig_port->base.base.base.id,
6552                       intel_dig_port->base.base.name,
6553                       long_hpd ? "long" : "short");
6554
6555         if (long_hpd) {
6556                 intel_dp->reset_link_params = true;
6557                 return IRQ_NONE;
6558         }
6559
6560         if (intel_dp->is_mst) {
6561                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6562                         /*
6563                          * If we were in MST mode, and device is not
6564                          * there, get out of MST mode
6565                          */
6566                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6567                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6568                         intel_dp->is_mst = false;
6569                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6570                                                         intel_dp->is_mst);
6571
6572                         return IRQ_NONE;
6573                 }
6574         }
6575
6576         if (!intel_dp->is_mst) {
6577                 bool handled;
6578
6579                 handled = intel_dp_short_pulse(intel_dp);
6580
6581                 if (!handled)
6582                         return IRQ_NONE;
6583         }
6584
6585         return IRQ_HANDLED;
6586 }
6587
6588 /* check the VBT to see whether the eDP is on another port */
6589 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6590 {
6591         /*
6592          * eDP not supported on g4x. so bail out early just
6593          * for a bit extra safety in case the VBT is bonkers.
6594          */
6595         if (INTEL_GEN(dev_priv) < 5)
6596                 return false;
6597
6598         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6599                 return true;
6600
6601         return intel_bios_is_port_edp(dev_priv, port);
6602 }
6603
6604 static void
6605 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6606 {
6607         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6608         enum port port = dp_to_dig_port(intel_dp)->base.port;
6609
6610         if (!IS_G4X(dev_priv) && port != PORT_A)
6611                 intel_attach_force_audio_property(connector);
6612
6613         intel_attach_broadcast_rgb_property(connector);
6614         if (HAS_GMCH(dev_priv))
6615                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6616         else if (INTEL_GEN(dev_priv) >= 5)
6617                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6618
6619         intel_attach_colorspace_property(connector);
6620
6621         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6622                 drm_object_attach_property(&connector->base,
6623                                            connector->dev->mode_config.hdr_output_metadata_property,
6624                                            0);
6625
6626         if (intel_dp_is_edp(intel_dp)) {
6627                 u32 allowed_scalers;
6628
6629                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6630                 if (!HAS_GMCH(dev_priv))
6631                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6632
6633                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6634
6635                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6636
6637         }
6638 }
6639
6640 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6641 {
6642         intel_dp->panel_power_off_time = ktime_get_boottime();
6643         intel_dp->last_power_on = jiffies;
6644         intel_dp->last_backlight_off = jiffies;
6645 }
6646
6647 static void
6648 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6649 {
6650         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6651         u32 pp_on, pp_off, pp_ctl;
6652         struct pps_registers regs;
6653
6654         intel_pps_get_registers(intel_dp, &regs);
6655
6656         pp_ctl = ironlake_get_pp_control(intel_dp);
6657
6658         /* Ensure PPS is unlocked */
6659         if (!HAS_DDI(dev_priv))
6660                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6661
6662         pp_on = I915_READ(regs.pp_on);
6663         pp_off = I915_READ(regs.pp_off);
6664
6665         /* Pull timing values out of registers */
6666         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6667         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6668         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6669         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6670
6671         if (i915_mmio_reg_valid(regs.pp_div)) {
6672                 u32 pp_div;
6673
6674                 pp_div = I915_READ(regs.pp_div);
6675
6676                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6677         } else {
6678                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6679         }
6680 }
6681
6682 static void
6683 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6684 {
6685         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6686                       state_name,
6687                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6688 }
6689
6690 static void
6691 intel_pps_verify_state(struct intel_dp *intel_dp)
6692 {
6693         struct edp_power_seq hw;
6694         struct edp_power_seq *sw = &intel_dp->pps_delays;
6695
6696         intel_pps_readout_hw_state(intel_dp, &hw);
6697
6698         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6699             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6700                 DRM_ERROR("PPS state mismatch\n");
6701                 intel_pps_dump_state("sw", sw);
6702                 intel_pps_dump_state("hw", &hw);
6703         }
6704 }
6705
6706 static void
6707 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6708 {
6709         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6710         struct edp_power_seq cur, vbt, spec,
6711                 *final = &intel_dp->pps_delays;
6712
6713         lockdep_assert_held(&dev_priv->pps_mutex);
6714
6715         /* already initialized? */
6716         if (final->t11_t12 != 0)
6717                 return;
6718
6719         intel_pps_readout_hw_state(intel_dp, &cur);
6720
6721         intel_pps_dump_state("cur", &cur);
6722
6723         vbt = dev_priv->vbt.edp.pps;
6724         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6725          * of 500ms appears to be too short. Ocassionally the panel
6726          * just fails to power back on. Increasing the delay to 800ms
6727          * seems sufficient to avoid this problem.
6728          */
6729         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6730                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6731                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6732                               vbt.t11_t12);
6733         }
6734         /* T11_T12 delay is special and actually in units of 100ms, but zero
6735          * based in the hw (so we need to add 100 ms). But the sw vbt
6736          * table multiplies it with 1000 to make it in units of 100usec,
6737          * too. */
6738         vbt.t11_t12 += 100 * 10;
6739
6740         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6741          * our hw here, which are all in 100usec. */
6742         spec.t1_t3 = 210 * 10;
6743         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6744         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6745         spec.t10 = 500 * 10;
6746         /* This one is special and actually in units of 100ms, but zero
6747          * based in the hw (so we need to add 100 ms). But the sw vbt
6748          * table multiplies it with 1000 to make it in units of 100usec,
6749          * too. */
6750         spec.t11_t12 = (510 + 100) * 10;
6751
6752         intel_pps_dump_state("vbt", &vbt);
6753
6754         /* Use the max of the register settings and vbt. If both are
6755          * unset, fall back to the spec limits. */
6756 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6757                                        spec.field : \
6758                                        max(cur.field, vbt.field))
6759         assign_final(t1_t3);
6760         assign_final(t8);
6761         assign_final(t9);
6762         assign_final(t10);
6763         assign_final(t11_t12);
6764 #undef assign_final
6765
6766 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6767         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6768         intel_dp->backlight_on_delay = get_delay(t8);
6769         intel_dp->backlight_off_delay = get_delay(t9);
6770         intel_dp->panel_power_down_delay = get_delay(t10);
6771         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6772 #undef get_delay
6773
6774         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6775                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6776                       intel_dp->panel_power_cycle_delay);
6777
6778         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6779                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6780
6781         /*
6782          * We override the HW backlight delays to 1 because we do manual waits
6783          * on them. For T8, even BSpec recommends doing it. For T9, if we
6784          * don't do this, we'll end up waiting for the backlight off delay
6785          * twice: once when we do the manual sleep, and once when we disable
6786          * the panel and wait for the PP_STATUS bit to become zero.
6787          */
6788         final->t8 = 1;
6789         final->t9 = 1;
6790
6791         /*
6792          * HW has only a 100msec granularity for t11_t12 so round it up
6793          * accordingly.
6794          */
6795         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6796 }
6797
6798 static void
6799 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6800                                               bool force_disable_vdd)
6801 {
6802         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6803         u32 pp_on, pp_off, port_sel = 0;
6804         int div = dev_priv->rawclk_freq / 1000;
6805         struct pps_registers regs;
6806         enum port port = dp_to_dig_port(intel_dp)->base.port;
6807         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6808
6809         lockdep_assert_held(&dev_priv->pps_mutex);
6810
6811         intel_pps_get_registers(intel_dp, &regs);
6812
6813         /*
6814          * On some VLV machines the BIOS can leave the VDD
6815          * enabled even on power sequencers which aren't
6816          * hooked up to any port. This would mess up the
6817          * power domain tracking the first time we pick
6818          * one of these power sequencers for use since
6819          * edp_panel_vdd_on() would notice that the VDD was
6820          * already on and therefore wouldn't grab the power
6821          * domain reference. Disable VDD first to avoid this.
6822          * This also avoids spuriously turning the VDD on as
6823          * soon as the new power sequencer gets initialized.
6824          */
6825         if (force_disable_vdd) {
6826                 u32 pp = ironlake_get_pp_control(intel_dp);
6827
6828                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6829
6830                 if (pp & EDP_FORCE_VDD)
6831                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6832
6833                 pp &= ~EDP_FORCE_VDD;
6834
6835                 I915_WRITE(regs.pp_ctrl, pp);
6836         }
6837
6838         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6839                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6840         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6841                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6842
6843         /* Haswell doesn't have any port selection bits for the panel
6844          * power sequencer any more. */
6845         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6846                 port_sel = PANEL_PORT_SELECT_VLV(port);
6847         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6848                 switch (port) {
6849                 case PORT_A:
6850                         port_sel = PANEL_PORT_SELECT_DPA;
6851                         break;
6852                 case PORT_C:
6853                         port_sel = PANEL_PORT_SELECT_DPC;
6854                         break;
6855                 case PORT_D:
6856                         port_sel = PANEL_PORT_SELECT_DPD;
6857                         break;
6858                 default:
6859                         MISSING_CASE(port);
6860                         break;
6861                 }
6862         }
6863
6864         pp_on |= port_sel;
6865
6866         I915_WRITE(regs.pp_on, pp_on);
6867         I915_WRITE(regs.pp_off, pp_off);
6868
6869         /*
6870          * Compute the divisor for the pp clock, simply match the Bspec formula.
6871          */
6872         if (i915_mmio_reg_valid(regs.pp_div)) {
6873                 I915_WRITE(regs.pp_div,
6874                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6875                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6876         } else {
6877                 u32 pp_ctl;
6878
6879                 pp_ctl = I915_READ(regs.pp_ctrl);
6880                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6881                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6882                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6883         }
6884
6885         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6886                       I915_READ(regs.pp_on),
6887                       I915_READ(regs.pp_off),
6888                       i915_mmio_reg_valid(regs.pp_div) ?
6889                       I915_READ(regs.pp_div) :
6890                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6891 }
6892
6893 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6894 {
6895         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6896
6897         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6898                 vlv_initial_power_sequencer_setup(intel_dp);
6899         } else {
6900                 intel_dp_init_panel_power_sequencer(intel_dp);
6901                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6902         }
6903 }
6904
6905 /**
6906  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6907  * @dev_priv: i915 device
6908  * @crtc_state: a pointer to the active intel_crtc_state
6909  * @refresh_rate: RR to be programmed
6910  *
6911  * This function gets called when refresh rate (RR) has to be changed from
6912  * one frequency to another. Switches can be between high and low RR
6913  * supported by the panel or to any other RR based on media playback (in
6914  * this case, RR value needs to be passed from user space).
6915  *
6916  * The caller of this function needs to take a lock on dev_priv->drrs.
6917  */
6918 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6919                                     const struct intel_crtc_state *crtc_state,
6920                                     int refresh_rate)
6921 {
6922         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
6924         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6925
6926         if (refresh_rate <= 0) {
6927                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6928                 return;
6929         }
6930
6931         if (intel_dp == NULL) {
6932                 DRM_DEBUG_KMS("DRRS not supported.\n");
6933                 return;
6934         }
6935
6936         if (!intel_crtc) {
6937                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6938                 return;
6939         }
6940
6941         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6942                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6943                 return;
6944         }
6945
6946         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6947                         refresh_rate)
6948                 index = DRRS_LOW_RR;
6949
6950         if (index == dev_priv->drrs.refresh_rate_type) {
6951                 DRM_DEBUG_KMS(
6952                         "DRRS requested for previously set RR...ignoring\n");
6953                 return;
6954         }
6955
6956         if (!crtc_state->hw.active) {
6957                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6958                 return;
6959         }
6960
6961         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6962                 switch (index) {
6963                 case DRRS_HIGH_RR:
6964                         intel_dp_set_m_n(crtc_state, M1_N1);
6965                         break;
6966                 case DRRS_LOW_RR:
6967                         intel_dp_set_m_n(crtc_state, M2_N2);
6968                         break;
6969                 case DRRS_MAX_RR:
6970                 default:
6971                         DRM_ERROR("Unsupported refreshrate type\n");
6972                 }
6973         } else if (INTEL_GEN(dev_priv) > 6) {
6974                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6975                 u32 val;
6976
6977                 val = I915_READ(reg);
6978                 if (index > DRRS_HIGH_RR) {
6979                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6980                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6981                         else
6982                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6983                 } else {
6984                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6985                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6986                         else
6987                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6988                 }
6989                 I915_WRITE(reg, val);
6990         }
6991
6992         dev_priv->drrs.refresh_rate_type = index;
6993
6994         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6995 }
6996
6997 /**
6998  * intel_edp_drrs_enable - init drrs struct if supported
6999  * @intel_dp: DP struct
7000  * @crtc_state: A pointer to the active crtc state.
7001  *
7002  * Initializes frontbuffer_bits and drrs.dp
7003  */
7004 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7005                            const struct intel_crtc_state *crtc_state)
7006 {
7007         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7008
7009         if (!crtc_state->has_drrs) {
7010                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7011                 return;
7012         }
7013
7014         if (dev_priv->psr.enabled) {
7015                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7016                 return;
7017         }
7018
7019         mutex_lock(&dev_priv->drrs.mutex);
7020         if (dev_priv->drrs.dp) {
7021                 DRM_DEBUG_KMS("DRRS already enabled\n");
7022                 goto unlock;
7023         }
7024
7025         dev_priv->drrs.busy_frontbuffer_bits = 0;
7026
7027         dev_priv->drrs.dp = intel_dp;
7028
7029 unlock:
7030         mutex_unlock(&dev_priv->drrs.mutex);
7031 }
7032
7033 /**
7034  * intel_edp_drrs_disable - Disable DRRS
7035  * @intel_dp: DP struct
7036  * @old_crtc_state: Pointer to old crtc_state.
7037  *
7038  */
7039 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7040                             const struct intel_crtc_state *old_crtc_state)
7041 {
7042         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7043
7044         if (!old_crtc_state->has_drrs)
7045                 return;
7046
7047         mutex_lock(&dev_priv->drrs.mutex);
7048         if (!dev_priv->drrs.dp) {
7049                 mutex_unlock(&dev_priv->drrs.mutex);
7050                 return;
7051         }
7052
7053         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7054                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7055                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7056
7057         dev_priv->drrs.dp = NULL;
7058         mutex_unlock(&dev_priv->drrs.mutex);
7059
7060         cancel_delayed_work_sync(&dev_priv->drrs.work);
7061 }
7062
7063 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7064 {
7065         struct drm_i915_private *dev_priv =
7066                 container_of(work, typeof(*dev_priv), drrs.work.work);
7067         struct intel_dp *intel_dp;
7068
7069         mutex_lock(&dev_priv->drrs.mutex);
7070
7071         intel_dp = dev_priv->drrs.dp;
7072
7073         if (!intel_dp)
7074                 goto unlock;
7075
7076         /*
7077          * The delayed work can race with an invalidate hence we need to
7078          * recheck.
7079          */
7080
7081         if (dev_priv->drrs.busy_frontbuffer_bits)
7082                 goto unlock;
7083
7084         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7085                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7086
7087                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7088                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7089         }
7090
7091 unlock:
7092         mutex_unlock(&dev_priv->drrs.mutex);
7093 }
7094
7095 /**
7096  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7097  * @dev_priv: i915 device
7098  * @frontbuffer_bits: frontbuffer plane tracking bits
7099  *
7100  * This function gets called everytime rendering on the given planes start.
7101  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7102  *
7103  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7104  */
7105 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7106                                unsigned int frontbuffer_bits)
7107 {
7108         struct drm_crtc *crtc;
7109         enum pipe pipe;
7110
7111         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7112                 return;
7113
7114         cancel_delayed_work(&dev_priv->drrs.work);
7115
7116         mutex_lock(&dev_priv->drrs.mutex);
7117         if (!dev_priv->drrs.dp) {
7118                 mutex_unlock(&dev_priv->drrs.mutex);
7119                 return;
7120         }
7121
7122         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7123         pipe = to_intel_crtc(crtc)->pipe;
7124
7125         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7126         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7127
7128         /* invalidate means busy screen hence upclock */
7129         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7130                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7131                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7132
7133         mutex_unlock(&dev_priv->drrs.mutex);
7134 }
7135
7136 /**
7137  * intel_edp_drrs_flush - Restart Idleness DRRS
7138  * @dev_priv: i915 device
7139  * @frontbuffer_bits: frontbuffer plane tracking bits
7140  *
7141  * This function gets called every time rendering on the given planes has
7142  * completed or flip on a crtc is completed. So DRRS should be upclocked
7143  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7144  * if no other planes are dirty.
7145  *
7146  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7147  */
7148 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7149                           unsigned int frontbuffer_bits)
7150 {
7151         struct drm_crtc *crtc;
7152         enum pipe pipe;
7153
7154         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7155                 return;
7156
7157         cancel_delayed_work(&dev_priv->drrs.work);
7158
7159         mutex_lock(&dev_priv->drrs.mutex);
7160         if (!dev_priv->drrs.dp) {
7161                 mutex_unlock(&dev_priv->drrs.mutex);
7162                 return;
7163         }
7164
7165         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7166         pipe = to_intel_crtc(crtc)->pipe;
7167
7168         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7169         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7170
7171         /* flush means busy screen hence upclock */
7172         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7173                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7174                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7175
7176         /*
7177          * flush also means no more activity hence schedule downclock, if all
7178          * other fbs are quiescent too
7179          */
7180         if (!dev_priv->drrs.busy_frontbuffer_bits)
7181                 schedule_delayed_work(&dev_priv->drrs.work,
7182                                 msecs_to_jiffies(1000));
7183         mutex_unlock(&dev_priv->drrs.mutex);
7184 }
7185
7186 /**
7187  * DOC: Display Refresh Rate Switching (DRRS)
7188  *
7189  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7190  * which enables swtching between low and high refresh rates,
7191  * dynamically, based on the usage scenario. This feature is applicable
7192  * for internal panels.
7193  *
7194  * Indication that the panel supports DRRS is given by the panel EDID, which
7195  * would list multiple refresh rates for one resolution.
7196  *
7197  * DRRS is of 2 types - static and seamless.
7198  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7199  * (may appear as a blink on screen) and is used in dock-undock scenario.
7200  * Seamless DRRS involves changing RR without any visual effect to the user
7201  * and can be used during normal system usage. This is done by programming
7202  * certain registers.
7203  *
7204  * Support for static/seamless DRRS may be indicated in the VBT based on
7205  * inputs from the panel spec.
7206  *
7207  * DRRS saves power by switching to low RR based on usage scenarios.
7208  *
7209  * The implementation is based on frontbuffer tracking implementation.  When
7210  * there is a disturbance on the screen triggered by user activity or a periodic
7211  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7212  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7213  * made.
7214  *
7215  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7216  * and intel_edp_drrs_flush() are called.
7217  *
7218  * DRRS can be further extended to support other internal panels and also
7219  * the scenario of video playback wherein RR is set based on the rate
7220  * requested by userspace.
7221  */
7222
7223 /**
7224  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7225  * @connector: eDP connector
7226  * @fixed_mode: preferred mode of panel
7227  *
7228  * This function is  called only once at driver load to initialize basic
7229  * DRRS stuff.
7230  *
7231  * Returns:
7232  * Downclock mode if panel supports it, else return NULL.
7233  * DRRS support is determined by the presence of downclock mode (apart
7234  * from VBT setting).
7235  */
7236 static struct drm_display_mode *
7237 intel_dp_drrs_init(struct intel_connector *connector,
7238                    struct drm_display_mode *fixed_mode)
7239 {
7240         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7241         struct drm_display_mode *downclock_mode = NULL;
7242
7243         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7244         mutex_init(&dev_priv->drrs.mutex);
7245
7246         if (INTEL_GEN(dev_priv) <= 6) {
7247                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7248                 return NULL;
7249         }
7250
7251         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7252                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7253                 return NULL;
7254         }
7255
7256         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7257         if (!downclock_mode) {
7258                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7259                 return NULL;
7260         }
7261
7262         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7263
7264         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7265         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7266         return downclock_mode;
7267 }
7268
7269 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7270                                      struct intel_connector *intel_connector)
7271 {
7272         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7273         struct drm_device *dev = &dev_priv->drm;
7274         struct drm_connector *connector = &intel_connector->base;
7275         struct drm_display_mode *fixed_mode = NULL;
7276         struct drm_display_mode *downclock_mode = NULL;
7277         bool has_dpcd;
7278         enum pipe pipe = INVALID_PIPE;
7279         intel_wakeref_t wakeref;
7280         struct edid *edid;
7281
7282         if (!intel_dp_is_edp(intel_dp))
7283                 return true;
7284
7285         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7286
7287         /*
7288          * On IBX/CPT we may get here with LVDS already registered. Since the
7289          * driver uses the only internal power sequencer available for both
7290          * eDP and LVDS bail out early in this case to prevent interfering
7291          * with an already powered-on LVDS power sequencer.
7292          */
7293         if (intel_get_lvds_encoder(dev_priv)) {
7294                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7295                 DRM_INFO("LVDS was detected, not registering eDP\n");
7296
7297                 return false;
7298         }
7299
7300         with_pps_lock(intel_dp, wakeref) {
7301                 intel_dp_init_panel_power_timestamps(intel_dp);
7302                 intel_dp_pps_init(intel_dp);
7303                 intel_edp_panel_vdd_sanitize(intel_dp);
7304         }
7305
7306         /* Cache DPCD and EDID for edp. */
7307         has_dpcd = intel_edp_init_dpcd(intel_dp);
7308
7309         if (!has_dpcd) {
7310                 /* if this fails, presume the device is a ghost */
7311                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7312                 goto out_vdd_off;
7313         }
7314
7315         mutex_lock(&dev->mode_config.mutex);
7316         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7317         if (edid) {
7318                 if (drm_add_edid_modes(connector, edid)) {
7319                         drm_connector_update_edid_property(connector,
7320                                                                 edid);
7321                 } else {
7322                         kfree(edid);
7323                         edid = ERR_PTR(-EINVAL);
7324                 }
7325         } else {
7326                 edid = ERR_PTR(-ENOENT);
7327         }
7328         intel_connector->edid = edid;
7329
7330         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7331         if (fixed_mode)
7332                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7333
7334         /* fallback to VBT if available for eDP */
7335         if (!fixed_mode)
7336                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7337         mutex_unlock(&dev->mode_config.mutex);
7338
7339         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7340                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7341                 register_reboot_notifier(&intel_dp->edp_notifier);
7342
7343                 /*
7344                  * Figure out the current pipe for the initial backlight setup.
7345                  * If the current pipe isn't valid, try the PPS pipe, and if that
7346                  * fails just assume pipe A.
7347                  */
7348                 pipe = vlv_active_pipe(intel_dp);
7349
7350                 if (pipe != PIPE_A && pipe != PIPE_B)
7351                         pipe = intel_dp->pps_pipe;
7352
7353                 if (pipe != PIPE_A && pipe != PIPE_B)
7354                         pipe = PIPE_A;
7355
7356                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7357                               pipe_name(pipe));
7358         }
7359
7360         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7361         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7362         intel_panel_setup_backlight(connector, pipe);
7363
7364         if (fixed_mode)
7365                 drm_connector_init_panel_orientation_property(
7366                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7367
7368         return true;
7369
7370 out_vdd_off:
7371         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7372         /*
7373          * vdd might still be enabled do to the delayed vdd off.
7374          * Make sure vdd is actually turned off here.
7375          */
7376         with_pps_lock(intel_dp, wakeref)
7377                 edp_panel_vdd_off_sync(intel_dp);
7378
7379         return false;
7380 }
7381
7382 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7383 {
7384         struct intel_connector *intel_connector;
7385         struct drm_connector *connector;
7386
7387         intel_connector = container_of(work, typeof(*intel_connector),
7388                                        modeset_retry_work);
7389         connector = &intel_connector->base;
7390         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7391                       connector->name);
7392
7393         /* Grab the locks before changing connector property*/
7394         mutex_lock(&connector->dev->mode_config.mutex);
7395         /* Set connector link status to BAD and send a Uevent to notify
7396          * userspace to do a modeset.
7397          */
7398         drm_connector_set_link_status_property(connector,
7399                                                DRM_MODE_LINK_STATUS_BAD);
7400         mutex_unlock(&connector->dev->mode_config.mutex);
7401         /* Send Hotplug uevent so userspace can reprobe */
7402         drm_kms_helper_hotplug_event(connector->dev);
7403 }
7404
7405 bool
7406 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7407                         struct intel_connector *intel_connector)
7408 {
7409         struct drm_connector *connector = &intel_connector->base;
7410         struct intel_dp *intel_dp = &intel_dig_port->dp;
7411         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7412         struct drm_device *dev = intel_encoder->base.dev;
7413         struct drm_i915_private *dev_priv = to_i915(dev);
7414         enum port port = intel_encoder->port;
7415         enum phy phy = intel_port_to_phy(dev_priv, port);
7416         int type;
7417
7418         /* Initialize the work for modeset in case of link train failure */
7419         INIT_WORK(&intel_connector->modeset_retry_work,
7420                   intel_dp_modeset_retry_work_fn);
7421
7422         if (WARN(intel_dig_port->max_lanes < 1,
7423                  "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7424                  intel_dig_port->max_lanes, intel_encoder->base.base.id,
7425                  intel_encoder->base.name))
7426                 return false;
7427
7428         intel_dp_set_source_rates(intel_dp);
7429
7430         intel_dp->reset_link_params = true;
7431         intel_dp->pps_pipe = INVALID_PIPE;
7432         intel_dp->active_pipe = INVALID_PIPE;
7433
7434         /* Preserve the current hw state. */
7435         intel_dp->DP = I915_READ(intel_dp->output_reg);
7436         intel_dp->attached_connector = intel_connector;
7437
7438         if (intel_dp_is_port_edp(dev_priv, port)) {
7439                 /*
7440                  * Currently we don't support eDP on TypeC ports, although in
7441                  * theory it could work on TypeC legacy ports.
7442                  */
7443                 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7444                 type = DRM_MODE_CONNECTOR_eDP;
7445         } else {
7446                 type = DRM_MODE_CONNECTOR_DisplayPort;
7447         }
7448
7449         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7450                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7451
7452         /*
7453          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7454          * for DP the encoder type can be set by the caller to
7455          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7456          */
7457         if (type == DRM_MODE_CONNECTOR_eDP)
7458                 intel_encoder->type = INTEL_OUTPUT_EDP;
7459
7460         /* eDP only on port B and/or C on vlv/chv */
7461         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7462                     intel_dp_is_edp(intel_dp) &&
7463                     port != PORT_B && port != PORT_C))
7464                 return false;
7465
7466         DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7467                       type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7468                       intel_encoder->base.base.id, intel_encoder->base.name);
7469
7470         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7471         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7472
7473         if (!HAS_GMCH(dev_priv))
7474                 connector->interlace_allowed = true;
7475         connector->doublescan_allowed = 0;
7476
7477         if (INTEL_GEN(dev_priv) >= 11)
7478                 connector->ycbcr_420_allowed = true;
7479
7480         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7481
7482         intel_dp_aux_init(intel_dp);
7483
7484         intel_connector_attach_encoder(intel_connector, intel_encoder);
7485
7486         if (HAS_DDI(dev_priv))
7487                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7488         else
7489                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7490
7491         /* init MST on ports that can support it */
7492         intel_dp_mst_encoder_init(intel_dig_port,
7493                                   intel_connector->base.base.id);
7494
7495         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7496                 intel_dp_aux_fini(intel_dp);
7497                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7498                 goto fail;
7499         }
7500
7501         intel_dp_add_properties(intel_dp, connector);
7502
7503         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7504                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7505                 if (ret)
7506                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7507         }
7508
7509         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7510          * 0xd.  Failure to do so will result in spurious interrupts being
7511          * generated on the port when a cable is not attached.
7512          */
7513         if (IS_G45(dev_priv)) {
7514                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7515                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7516         }
7517
7518         return true;
7519
7520 fail:
7521         drm_connector_cleanup(connector);
7522
7523         return false;
7524 }
7525
7526 bool intel_dp_init(struct drm_i915_private *dev_priv,
7527                    i915_reg_t output_reg,
7528                    enum port port)
7529 {
7530         struct intel_digital_port *intel_dig_port;
7531         struct intel_encoder *intel_encoder;
7532         struct drm_encoder *encoder;
7533         struct intel_connector *intel_connector;
7534
7535         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7536         if (!intel_dig_port)
7537                 return false;
7538
7539         intel_connector = intel_connector_alloc();
7540         if (!intel_connector)
7541                 goto err_connector_alloc;
7542
7543         intel_encoder = &intel_dig_port->base;
7544         encoder = &intel_encoder->base;
7545
7546         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7547                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7548                              "DP %c", port_name(port)))
7549                 goto err_encoder_init;
7550
7551         intel_encoder->hotplug = intel_dp_hotplug;
7552         intel_encoder->compute_config = intel_dp_compute_config;
7553         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7554         intel_encoder->get_config = intel_dp_get_config;
7555         intel_encoder->update_pipe = intel_panel_update_backlight;
7556         intel_encoder->suspend = intel_dp_encoder_suspend;
7557         if (IS_CHERRYVIEW(dev_priv)) {
7558                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7559                 intel_encoder->pre_enable = chv_pre_enable_dp;
7560                 intel_encoder->enable = vlv_enable_dp;
7561                 intel_encoder->disable = vlv_disable_dp;
7562                 intel_encoder->post_disable = chv_post_disable_dp;
7563                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7564         } else if (IS_VALLEYVIEW(dev_priv)) {
7565                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7566                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7567                 intel_encoder->enable = vlv_enable_dp;
7568                 intel_encoder->disable = vlv_disable_dp;
7569                 intel_encoder->post_disable = vlv_post_disable_dp;
7570         } else {
7571                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7572                 intel_encoder->enable = g4x_enable_dp;
7573                 intel_encoder->disable = g4x_disable_dp;
7574                 intel_encoder->post_disable = g4x_post_disable_dp;
7575         }
7576
7577         intel_dig_port->dp.output_reg = output_reg;
7578         intel_dig_port->max_lanes = 4;
7579
7580         intel_encoder->type = INTEL_OUTPUT_DP;
7581         intel_encoder->power_domain = intel_port_to_power_domain(port);
7582         if (IS_CHERRYVIEW(dev_priv)) {
7583                 if (port == PORT_D)
7584                         intel_encoder->pipe_mask = BIT(PIPE_C);
7585                 else
7586                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7587         } else {
7588                 intel_encoder->pipe_mask = ~0;
7589         }
7590         intel_encoder->cloneable = 0;
7591         intel_encoder->port = port;
7592
7593         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7594
7595         if (port != PORT_A)
7596                 intel_infoframe_init(intel_dig_port);
7597
7598         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7599         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7600                 goto err_init_connector;
7601
7602         return true;
7603
7604 err_init_connector:
7605         drm_encoder_cleanup(encoder);
7606 err_encoder_init:
7607         kfree(intel_connector);
7608 err_connector_alloc:
7609         kfree(intel_dig_port);
7610         return false;
7611 }
7612
7613 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7614 {
7615         struct intel_encoder *encoder;
7616
7617         for_each_intel_encoder(&dev_priv->drm, encoder) {
7618                 struct intel_dp *intel_dp;
7619
7620                 if (encoder->type != INTEL_OUTPUT_DDI)
7621                         continue;
7622
7623                 intel_dp = enc_to_intel_dp(&encoder->base);
7624
7625                 if (!intel_dp->can_mst)
7626                         continue;
7627
7628                 if (intel_dp->is_mst)
7629                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7630         }
7631 }
7632
7633 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7634 {
7635         struct intel_encoder *encoder;
7636
7637         for_each_intel_encoder(&dev_priv->drm, encoder) {
7638                 struct intel_dp *intel_dp;
7639                 int ret;
7640
7641                 if (encoder->type != INTEL_OUTPUT_DDI)
7642                         continue;
7643
7644                 intel_dp = enc_to_intel_dp(&encoder->base);
7645
7646                 if (!intel_dp->can_mst)
7647                         continue;
7648
7649                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7650                                                      true);
7651                 if (ret) {
7652                         intel_dp->is_mst = false;
7653                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7654                                                         false);
7655                 }
7656         }
7657 }