]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_lrc.h"
39 #include "intel_reset.h"
40 #include "intel_ring.h"
41
42 /* Haswell does have the CXT_SIZE register however it does not appear to be
43  * valid. Now, docs explain in dwords what is in the context object. The full
44  * size is 70720 bytes, however, the power context and execlist context will
45  * never be saved (power context is stored elsewhere, and execlists don't work
46  * on HSW) - so the final size, including the extra state required for the
47  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
48  */
49 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
50
51 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
52 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
53 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
54 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
55 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
56
57 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
58
59 #define MAX_MMIO_BASES 3
60 struct engine_info {
61         unsigned int hw_id;
62         u8 class;
63         u8 instance;
64         /* mmio bases table *must* be sorted in reverse gen order */
65         struct engine_mmio_base {
66                 u32 gen : 8;
67                 u32 base : 24;
68         } mmio_bases[MAX_MMIO_BASES];
69 };
70
71 static const struct engine_info intel_engines[] = {
72         [RCS0] = {
73                 .hw_id = RCS0_HW,
74                 .class = RENDER_CLASS,
75                 .instance = 0,
76                 .mmio_bases = {
77                         { .gen = 1, .base = RENDER_RING_BASE }
78                 },
79         },
80         [BCS0] = {
81                 .hw_id = BCS0_HW,
82                 .class = COPY_ENGINE_CLASS,
83                 .instance = 0,
84                 .mmio_bases = {
85                         { .gen = 6, .base = BLT_RING_BASE }
86                 },
87         },
88         [VCS0] = {
89                 .hw_id = VCS0_HW,
90                 .class = VIDEO_DECODE_CLASS,
91                 .instance = 0,
92                 .mmio_bases = {
93                         { .gen = 11, .base = GEN11_BSD_RING_BASE },
94                         { .gen = 6, .base = GEN6_BSD_RING_BASE },
95                         { .gen = 4, .base = BSD_RING_BASE }
96                 },
97         },
98         [VCS1] = {
99                 .hw_id = VCS1_HW,
100                 .class = VIDEO_DECODE_CLASS,
101                 .instance = 1,
102                 .mmio_bases = {
103                         { .gen = 11, .base = GEN11_BSD2_RING_BASE },
104                         { .gen = 8, .base = GEN8_BSD2_RING_BASE }
105                 },
106         },
107         [VCS2] = {
108                 .hw_id = VCS2_HW,
109                 .class = VIDEO_DECODE_CLASS,
110                 .instance = 2,
111                 .mmio_bases = {
112                         { .gen = 11, .base = GEN11_BSD3_RING_BASE }
113                 },
114         },
115         [VCS3] = {
116                 .hw_id = VCS3_HW,
117                 .class = VIDEO_DECODE_CLASS,
118                 .instance = 3,
119                 .mmio_bases = {
120                         { .gen = 11, .base = GEN11_BSD4_RING_BASE }
121                 },
122         },
123         [VECS0] = {
124                 .hw_id = VECS0_HW,
125                 .class = VIDEO_ENHANCEMENT_CLASS,
126                 .instance = 0,
127                 .mmio_bases = {
128                         { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
129                         { .gen = 7, .base = VEBOX_RING_BASE }
130                 },
131         },
132         [VECS1] = {
133                 .hw_id = VECS1_HW,
134                 .class = VIDEO_ENHANCEMENT_CLASS,
135                 .instance = 1,
136                 .mmio_bases = {
137                         { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
138                 },
139         },
140 };
141
142 /**
143  * intel_engine_context_size() - return the size of the context for an engine
144  * @gt: the gt
145  * @class: engine class
146  *
147  * Each engine class may require a different amount of space for a context
148  * image.
149  *
150  * Return: size (in bytes) of an engine class specific context image
151  *
152  * Note: this size includes the HWSP, which is part of the context image
153  * in LRC mode, but does not include the "shared data page" used with
154  * GuC submission. The caller should account for this if using the GuC.
155  */
156 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157 {
158         struct intel_uncore *uncore = gt->uncore;
159         u32 cxt_size;
160
161         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
162
163         switch (class) {
164         case RENDER_CLASS:
165                 switch (INTEL_GEN(gt->i915)) {
166                 default:
167                         MISSING_CASE(INTEL_GEN(gt->i915));
168                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169                 case 12:
170                 case 11:
171                         return GEN11_LR_CONTEXT_RENDER_SIZE;
172                 case 10:
173                         return GEN10_LR_CONTEXT_RENDER_SIZE;
174                 case 9:
175                         return GEN9_LR_CONTEXT_RENDER_SIZE;
176                 case 8:
177                         return GEN8_LR_CONTEXT_RENDER_SIZE;
178                 case 7:
179                         if (IS_HASWELL(gt->i915))
180                                 return HSW_CXT_TOTAL_SIZE;
181
182                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
184                                         PAGE_SIZE);
185                 case 6:
186                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
188                                         PAGE_SIZE);
189                 case 5:
190                 case 4:
191                         /*
192                          * There is a discrepancy here between the size reported
193                          * by the register and the size of the context layout
194                          * in the docs. Both are described as authorative!
195                          *
196                          * The discrepancy is on the order of a few cachelines,
197                          * but the total is under one page (4k), which is our
198                          * minimum allocation anyway so it should all come
199                          * out in the wash.
200                          */
201                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202                         DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
203                                          INTEL_GEN(gt->i915),
204                                          cxt_size * 64,
205                                          cxt_size - 1);
206                         return round_up(cxt_size * 64, PAGE_SIZE);
207                 case 3:
208                 case 2:
209                 /* For the special day when i810 gets merged. */
210                 case 1:
211                         return 0;
212                 }
213                 break;
214         default:
215                 MISSING_CASE(class);
216                 /* fall through */
217         case VIDEO_DECODE_CLASS:
218         case VIDEO_ENHANCEMENT_CLASS:
219         case COPY_ENGINE_CLASS:
220                 if (INTEL_GEN(gt->i915) < 8)
221                         return 0;
222                 return GEN8_LR_CONTEXT_OTHER_SIZE;
223         }
224 }
225
226 static u32 __engine_mmio_base(struct drm_i915_private *i915,
227                               const struct engine_mmio_base *bases)
228 {
229         int i;
230
231         for (i = 0; i < MAX_MMIO_BASES; i++)
232                 if (INTEL_GEN(i915) >= bases[i].gen)
233                         break;
234
235         GEM_BUG_ON(i == MAX_MMIO_BASES);
236         GEM_BUG_ON(!bases[i].base);
237
238         return bases[i].base;
239 }
240
241 static void __sprint_engine_name(struct intel_engine_cs *engine)
242 {
243         /*
244          * Before we know what the uABI name for this engine will be,
245          * we still would like to keep track of this engine in the debug logs.
246          * We throw in a ' here as a reminder that this isn't its final name.
247          */
248         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
249                              intel_engine_class_repr(engine->class),
250                              engine->instance) >= sizeof(engine->name));
251 }
252
253 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
254 {
255         /*
256          * Though they added more rings on g4x/ilk, they did not add
257          * per-engine HWSTAM until gen6.
258          */
259         if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260                 return;
261
262         if (INTEL_GEN(engine->i915) >= 3)
263                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
264         else
265                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 }
267
268 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
269 {
270         /* Mask off all writes into the unknown HWSP */
271         intel_engine_set_hwsp_writemask(engine, ~0u);
272 }
273
274 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 {
276         const struct engine_info *info = &intel_engines[id];
277         struct intel_engine_cs *engine;
278
279         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
280         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
281
282         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
283                 return -EINVAL;
284
285         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
286                 return -EINVAL;
287
288         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
289                 return -EINVAL;
290
291         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
292                 return -EINVAL;
293
294         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
295         if (!engine)
296                 return -ENOMEM;
297
298         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
299
300         engine->id = id;
301         engine->legacy_idx = INVALID_ENGINE;
302         engine->mask = BIT(id);
303         engine->i915 = gt->i915;
304         engine->gt = gt;
305         engine->uncore = gt->uncore;
306         engine->hw_id = engine->guc_id = info->hw_id;
307         engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
308
309         engine->class = info->class;
310         engine->instance = info->instance;
311         __sprint_engine_name(engine);
312
313         engine->props.heartbeat_interval_ms =
314                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
315         engine->props.preempt_timeout_ms =
316                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
317         engine->props.stop_timeout_ms =
318                 CONFIG_DRM_I915_STOP_TIMEOUT;
319         engine->props.timeslice_duration_ms =
320                 CONFIG_DRM_I915_TIMESLICE_DURATION;
321
322         engine->context_size = intel_engine_context_size(gt, engine->class);
323         if (WARN_ON(engine->context_size > BIT(20)))
324                 engine->context_size = 0;
325         if (engine->context_size)
326                 DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
327
328         /* Nothing to do here, execute in order of dependencies */
329         engine->schedule = NULL;
330
331         ewma__engine_latency_init(&engine->latency);
332         seqlock_init(&engine->stats.lock);
333
334         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
335
336         /* Scrub mmio state on takeover */
337         intel_engine_sanitize_mmio(engine);
338
339         gt->engine_class[info->class][info->instance] = engine;
340         gt->engine[id] = engine;
341
342         gt->i915->engine[id] = engine;
343
344         return 0;
345 }
346
347 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
348 {
349         struct drm_i915_private *i915 = engine->i915;
350
351         if (engine->class == VIDEO_DECODE_CLASS) {
352                 /*
353                  * HEVC support is present on first engine instance
354                  * before Gen11 and on all instances afterwards.
355                  */
356                 if (INTEL_GEN(i915) >= 11 ||
357                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
358                         engine->uabi_capabilities |=
359                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
360
361                 /*
362                  * SFC block is present only on even logical engine
363                  * instances.
364                  */
365                 if ((INTEL_GEN(i915) >= 11 &&
366                      RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
367                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
368                         engine->uabi_capabilities |=
369                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
370         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
371                 if (INTEL_GEN(i915) >= 9)
372                         engine->uabi_capabilities |=
373                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
374         }
375 }
376
377 static void intel_setup_engine_capabilities(struct intel_gt *gt)
378 {
379         struct intel_engine_cs *engine;
380         enum intel_engine_id id;
381
382         for_each_engine(engine, gt, id)
383                 __setup_engine_capabilities(engine);
384 }
385
386 /**
387  * intel_engines_release() - free the resources allocated for Command Streamers
388  * @gt: pointer to struct intel_gt
389  */
390 void intel_engines_release(struct intel_gt *gt)
391 {
392         struct intel_engine_cs *engine;
393         enum intel_engine_id id;
394
395         /* Decouple the backend; but keep the layout for late GPU resets */
396         for_each_engine(engine, gt, id) {
397                 if (!engine->release)
398                         continue;
399
400                 engine->release(engine);
401                 engine->release = NULL;
402
403                 memset(&engine->reset, 0, sizeof(engine->reset));
404
405                 gt->i915->engine[id] = NULL;
406         }
407 }
408
409 void intel_engines_free(struct intel_gt *gt)
410 {
411         struct intel_engine_cs *engine;
412         enum intel_engine_id id;
413
414         for_each_engine(engine, gt, id) {
415                 kfree(engine);
416                 gt->engine[id] = NULL;
417         }
418 }
419
420 /**
421  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
422  * @gt: pointer to struct intel_gt
423  *
424  * Return: non-zero if the initialization failed.
425  */
426 int intel_engines_init_mmio(struct intel_gt *gt)
427 {
428         struct drm_i915_private *i915 = gt->i915;
429         struct intel_device_info *device_info = mkwrite_device_info(i915);
430         const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
431         unsigned int mask = 0;
432         unsigned int i;
433         int err;
434
435         WARN_ON(engine_mask == 0);
436         WARN_ON(engine_mask &
437                 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
438
439         if (i915_inject_probe_failure(i915))
440                 return -ENODEV;
441
442         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
443                 if (!HAS_ENGINE(i915, i))
444                         continue;
445
446                 err = intel_engine_setup(gt, i);
447                 if (err)
448                         goto cleanup;
449
450                 mask |= BIT(i);
451         }
452
453         /*
454          * Catch failures to update intel_engines table when the new engines
455          * are added to the driver by a warning and disabling the forgotten
456          * engines.
457          */
458         if (WARN_ON(mask != engine_mask))
459                 device_info->engine_mask = mask;
460
461         RUNTIME_INFO(i915)->num_engines = hweight32(mask);
462
463         intel_gt_check_and_clear_faults(gt);
464
465         intel_setup_engine_capabilities(gt);
466
467         return 0;
468
469 cleanup:
470         intel_engines_free(gt);
471         return err;
472 }
473
474 void intel_engine_init_execlists(struct intel_engine_cs *engine)
475 {
476         struct intel_engine_execlists * const execlists = &engine->execlists;
477
478         execlists->port_mask = 1;
479         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
480         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
481
482         memset(execlists->pending, 0, sizeof(execlists->pending));
483         execlists->active =
484                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
485
486         execlists->queue_priority_hint = INT_MIN;
487         execlists->queue = RB_ROOT_CACHED;
488 }
489
490 static void cleanup_status_page(struct intel_engine_cs *engine)
491 {
492         struct i915_vma *vma;
493
494         /* Prevent writes into HWSP after returning the page to the system */
495         intel_engine_set_hwsp_writemask(engine, ~0u);
496
497         vma = fetch_and_zero(&engine->status_page.vma);
498         if (!vma)
499                 return;
500
501         if (!HWS_NEEDS_PHYSICAL(engine->i915))
502                 i915_vma_unpin(vma);
503
504         i915_gem_object_unpin_map(vma->obj);
505         i915_gem_object_put(vma->obj);
506 }
507
508 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
509                                 struct i915_vma *vma)
510 {
511         unsigned int flags;
512
513         flags = PIN_GLOBAL;
514         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
515                 /*
516                  * On g33, we cannot place HWS above 256MiB, so
517                  * restrict its pinning to the low mappable arena.
518                  * Though this restriction is not documented for
519                  * gen4, gen5, or byt, they also behave similarly
520                  * and hang if the HWS is placed at the top of the
521                  * GTT. To generalise, it appears that all !llc
522                  * platforms have issues with us placing the HWS
523                  * above the mappable region (even though we never
524                  * actually map it).
525                  */
526                 flags |= PIN_MAPPABLE;
527         else
528                 flags |= PIN_HIGH;
529
530         return i915_vma_pin(vma, 0, 0, flags);
531 }
532
533 static int init_status_page(struct intel_engine_cs *engine)
534 {
535         struct drm_i915_gem_object *obj;
536         struct i915_vma *vma;
537         void *vaddr;
538         int ret;
539
540         /*
541          * Though the HWS register does support 36bit addresses, historically
542          * we have had hangs and corruption reported due to wild writes if
543          * the HWS is placed above 4G. We only allow objects to be allocated
544          * in GFP_DMA32 for i965, and no earlier physical address users had
545          * access to more than 4G.
546          */
547         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
548         if (IS_ERR(obj)) {
549                 DRM_ERROR("Failed to allocate status page\n");
550                 return PTR_ERR(obj);
551         }
552
553         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
554
555         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
556         if (IS_ERR(vma)) {
557                 ret = PTR_ERR(vma);
558                 goto err;
559         }
560
561         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
562         if (IS_ERR(vaddr)) {
563                 ret = PTR_ERR(vaddr);
564                 goto err;
565         }
566
567         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
568         engine->status_page.vma = vma;
569
570         if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
571                 ret = pin_ggtt_status_page(engine, vma);
572                 if (ret)
573                         goto err_unpin;
574         }
575
576         return 0;
577
578 err_unpin:
579         i915_gem_object_unpin_map(obj);
580 err:
581         i915_gem_object_put(obj);
582         return ret;
583 }
584
585 static int engine_setup_common(struct intel_engine_cs *engine)
586 {
587         int err;
588
589         init_llist_head(&engine->barrier_tasks);
590
591         err = init_status_page(engine);
592         if (err)
593                 return err;
594
595         intel_engine_init_active(engine, ENGINE_PHYSICAL);
596         intel_engine_init_breadcrumbs(engine);
597         intel_engine_init_execlists(engine);
598         intel_engine_init_cmd_parser(engine);
599         intel_engine_init__pm(engine);
600         intel_engine_init_retire(engine);
601
602         intel_engine_pool_init(&engine->pool);
603
604         /* Use the whole device by default */
605         engine->sseu =
606                 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
607
608         intel_engine_init_workarounds(engine);
609         intel_engine_init_whitelist(engine);
610         intel_engine_init_ctx_wa(engine);
611
612         return 0;
613 }
614
615 struct measure_breadcrumb {
616         struct i915_request rq;
617         struct intel_timeline timeline;
618         struct intel_ring ring;
619         u32 cs[1024];
620 };
621
622 static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
623 {
624         struct measure_breadcrumb *frame;
625         int dw = -ENOMEM;
626
627         GEM_BUG_ON(!engine->gt->scratch);
628
629         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
630         if (!frame)
631                 return -ENOMEM;
632
633         if (intel_timeline_init(&frame->timeline,
634                                 engine->gt,
635                                 engine->status_page.vma))
636                 goto out_frame;
637
638         mutex_lock(&frame->timeline.mutex);
639
640         frame->ring.vaddr = frame->cs;
641         frame->ring.size = sizeof(frame->cs);
642         frame->ring.effective_size = frame->ring.size;
643         intel_ring_update_space(&frame->ring);
644
645         frame->rq.i915 = engine->i915;
646         frame->rq.engine = engine;
647         frame->rq.ring = &frame->ring;
648         rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
649
650         dw = intel_timeline_pin(&frame->timeline);
651         if (dw < 0)
652                 goto out_timeline;
653
654         spin_lock_irq(&engine->active.lock);
655         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
656         spin_unlock_irq(&engine->active.lock);
657
658         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
659
660         intel_timeline_unpin(&frame->timeline);
661
662 out_timeline:
663         mutex_unlock(&frame->timeline.mutex);
664         intel_timeline_fini(&frame->timeline);
665 out_frame:
666         kfree(frame);
667         return dw;
668 }
669
670 void
671 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
672 {
673         INIT_LIST_HEAD(&engine->active.requests);
674         INIT_LIST_HEAD(&engine->active.hold);
675
676         spin_lock_init(&engine->active.lock);
677         lockdep_set_subclass(&engine->active.lock, subclass);
678
679         /*
680          * Due to an interesting quirk in lockdep's internal debug tracking,
681          * after setting a subclass we must ensure the lock is used. Otherwise,
682          * nr_unused_locks is incremented once too often.
683          */
684 #ifdef CONFIG_DEBUG_LOCK_ALLOC
685         local_irq_disable();
686         lock_map_acquire(&engine->active.lock.dep_map);
687         lock_map_release(&engine->active.lock.dep_map);
688         local_irq_enable();
689 #endif
690 }
691
692 static struct intel_context *
693 create_kernel_context(struct intel_engine_cs *engine)
694 {
695         static struct lock_class_key kernel;
696         struct intel_context *ce;
697         int err;
698
699         ce = intel_context_create(engine);
700         if (IS_ERR(ce))
701                 return ce;
702
703         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
704
705         err = intel_context_pin(ce); /* perma-pin so it is always available */
706         if (err) {
707                 intel_context_put(ce);
708                 return ERR_PTR(err);
709         }
710
711         /*
712          * Give our perma-pinned kernel timelines a separate lockdep class,
713          * so that we can use them from within the normal user timelines
714          * should we need to inject GPU operations during their request
715          * construction.
716          */
717         lockdep_set_class(&ce->timeline->mutex, &kernel);
718
719         return ce;
720 }
721
722 /**
723  * intel_engines_init_common - initialize cengine state which might require hw access
724  * @engine: Engine to initialize.
725  *
726  * Initializes @engine@ structure members shared between legacy and execlists
727  * submission modes which do require hardware access.
728  *
729  * Typcally done at later stages of submission mode specific engine setup.
730  *
731  * Returns zero on success or an error code on failure.
732  */
733 static int engine_init_common(struct intel_engine_cs *engine)
734 {
735         struct intel_context *ce;
736         int ret;
737
738         engine->set_default_submission(engine);
739
740         ret = measure_breadcrumb_dw(engine);
741         if (ret < 0)
742                 return ret;
743
744         engine->emit_fini_breadcrumb_dw = ret;
745
746         /*
747          * We may need to do things with the shrinker which
748          * require us to immediately switch back to the default
749          * context. This can cause a problem as pinning the
750          * default context also requires GTT space which may not
751          * be available. To avoid this we always pin the default
752          * context.
753          */
754         ce = create_kernel_context(engine);
755         if (IS_ERR(ce))
756                 return PTR_ERR(ce);
757
758         engine->kernel_context = ce;
759
760         return 0;
761 }
762
763 int intel_engines_init(struct intel_gt *gt)
764 {
765         int (*setup)(struct intel_engine_cs *engine);
766         struct intel_engine_cs *engine;
767         enum intel_engine_id id;
768         int err;
769
770         if (HAS_EXECLISTS(gt->i915))
771                 setup = intel_execlists_submission_setup;
772         else
773                 setup = intel_ring_submission_setup;
774
775         for_each_engine(engine, gt, id) {
776                 err = engine_setup_common(engine);
777                 if (err)
778                         return err;
779
780                 err = setup(engine);
781                 if (err)
782                         return err;
783
784                 err = engine_init_common(engine);
785                 if (err)
786                         return err;
787
788                 intel_engine_add_user(engine);
789         }
790
791         return 0;
792 }
793
794 /**
795  * intel_engines_cleanup_common - cleans up the engine state created by
796  *                                the common initiailizers.
797  * @engine: Engine to cleanup.
798  *
799  * This cleans up everything created by the common helpers.
800  */
801 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
802 {
803         GEM_BUG_ON(!list_empty(&engine->active.requests));
804         tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
805
806         cleanup_status_page(engine);
807
808         intel_engine_fini_retire(engine);
809         intel_engine_pool_fini(&engine->pool);
810         intel_engine_fini_breadcrumbs(engine);
811         intel_engine_cleanup_cmd_parser(engine);
812
813         if (engine->default_state)
814                 i915_gem_object_put(engine->default_state);
815
816         if (engine->kernel_context) {
817                 intel_context_unpin(engine->kernel_context);
818                 intel_context_put(engine->kernel_context);
819         }
820         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
821
822         intel_wa_list_free(&engine->ctx_wa_list);
823         intel_wa_list_free(&engine->wa_list);
824         intel_wa_list_free(&engine->whitelist);
825 }
826
827 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
828 {
829         struct drm_i915_private *i915 = engine->i915;
830
831         u64 acthd;
832
833         if (INTEL_GEN(i915) >= 8)
834                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
835         else if (INTEL_GEN(i915) >= 4)
836                 acthd = ENGINE_READ(engine, RING_ACTHD);
837         else
838                 acthd = ENGINE_READ(engine, ACTHD);
839
840         return acthd;
841 }
842
843 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
844 {
845         u64 bbaddr;
846
847         if (INTEL_GEN(engine->i915) >= 8)
848                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
849         else
850                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
851
852         return bbaddr;
853 }
854
855 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
856 {
857         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
858                 return 0;
859
860         /*
861          * If we are doing a normal GPU reset, we can take our time and allow
862          * the engine to quiesce. We've stopped submission to the engine, and
863          * if we wait long enough an innocent context should complete and
864          * leave the engine idle. So they should not be caught unaware by
865          * the forthcoming GPU reset (which usually follows the stop_cs)!
866          */
867         return READ_ONCE(engine->props.stop_timeout_ms);
868 }
869
870 int intel_engine_stop_cs(struct intel_engine_cs *engine)
871 {
872         struct intel_uncore *uncore = engine->uncore;
873         const u32 base = engine->mmio_base;
874         const i915_reg_t mode = RING_MI_MODE(base);
875         int err;
876
877         if (INTEL_GEN(engine->i915) < 3)
878                 return -ENODEV;
879
880         ENGINE_TRACE(engine, "\n");
881
882         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
883
884         err = 0;
885         if (__intel_wait_for_register_fw(uncore,
886                                          mode, MODE_IDLE, MODE_IDLE,
887                                          1000, stop_timeout(engine),
888                                          NULL)) {
889                 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
890                 err = -ETIMEDOUT;
891         }
892
893         /* A final mmio read to let GPU writes be hopefully flushed to memory */
894         intel_uncore_posting_read_fw(uncore, mode);
895
896         return err;
897 }
898
899 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
900 {
901         ENGINE_TRACE(engine, "\n");
902
903         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
904 }
905
906 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
907 {
908         switch (type) {
909         case I915_CACHE_NONE: return " uncached";
910         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
911         case I915_CACHE_L3_LLC: return " L3+LLC";
912         case I915_CACHE_WT: return " WT";
913         default: return "";
914         }
915 }
916
917 static u32
918 read_subslice_reg(const struct intel_engine_cs *engine,
919                   int slice, int subslice, i915_reg_t reg)
920 {
921         struct drm_i915_private *i915 = engine->i915;
922         struct intel_uncore *uncore = engine->uncore;
923         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
924         enum forcewake_domains fw_domains;
925
926         if (INTEL_GEN(i915) >= 11) {
927                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
928                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
929         } else {
930                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
931                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
932         }
933
934         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
935                                                     FW_REG_READ);
936         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
937                                                      GEN8_MCR_SELECTOR,
938                                                      FW_REG_READ | FW_REG_WRITE);
939
940         spin_lock_irq(&uncore->lock);
941         intel_uncore_forcewake_get__locked(uncore, fw_domains);
942
943         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
944
945         mcr &= ~mcr_mask;
946         mcr |= mcr_ss;
947         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
948
949         val = intel_uncore_read_fw(uncore, reg);
950
951         mcr &= ~mcr_mask;
952         mcr |= old_mcr & mcr_mask;
953
954         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
955
956         intel_uncore_forcewake_put__locked(uncore, fw_domains);
957         spin_unlock_irq(&uncore->lock);
958
959         return val;
960 }
961
962 /* NB: please notice the memset */
963 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
964                                struct intel_instdone *instdone)
965 {
966         struct drm_i915_private *i915 = engine->i915;
967         const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
968         struct intel_uncore *uncore = engine->uncore;
969         u32 mmio_base = engine->mmio_base;
970         int slice;
971         int subslice;
972
973         memset(instdone, 0, sizeof(*instdone));
974
975         switch (INTEL_GEN(i915)) {
976         default:
977                 instdone->instdone =
978                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
979
980                 if (engine->id != RCS0)
981                         break;
982
983                 instdone->slice_common =
984                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
985                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
986                         instdone->sampler[slice][subslice] =
987                                 read_subslice_reg(engine, slice, subslice,
988                                                   GEN7_SAMPLER_INSTDONE);
989                         instdone->row[slice][subslice] =
990                                 read_subslice_reg(engine, slice, subslice,
991                                                   GEN7_ROW_INSTDONE);
992                 }
993                 break;
994         case 7:
995                 instdone->instdone =
996                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
997
998                 if (engine->id != RCS0)
999                         break;
1000
1001                 instdone->slice_common =
1002                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1003                 instdone->sampler[0][0] =
1004                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1005                 instdone->row[0][0] =
1006                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1007
1008                 break;
1009         case 6:
1010         case 5:
1011         case 4:
1012                 instdone->instdone =
1013                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1014                 if (engine->id == RCS0)
1015                         /* HACK: Using the wrong struct member */
1016                         instdone->slice_common =
1017                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1018                 break;
1019         case 3:
1020         case 2:
1021                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1022                 break;
1023         }
1024 }
1025
1026 static bool ring_is_idle(struct intel_engine_cs *engine)
1027 {
1028         bool idle = true;
1029
1030         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1031                 return true;
1032
1033         if (!intel_engine_pm_get_if_awake(engine))
1034                 return true;
1035
1036         /* First check that no commands are left in the ring */
1037         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1038             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1039                 idle = false;
1040
1041         /* No bit for gen2, so assume the CS parser is idle */
1042         if (INTEL_GEN(engine->i915) > 2 &&
1043             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1044                 idle = false;
1045
1046         intel_engine_pm_put(engine);
1047
1048         return idle;
1049 }
1050
1051 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1052 {
1053         struct tasklet_struct *t = &engine->execlists.tasklet;
1054
1055         if (__tasklet_is_scheduled(t)) {
1056                 local_bh_disable();
1057                 if (tasklet_trylock(t)) {
1058                         /* Must wait for any GPU reset in progress. */
1059                         if (__tasklet_is_enabled(t))
1060                                 t->func(t->data);
1061                         tasklet_unlock(t);
1062                 }
1063                 local_bh_enable();
1064         }
1065
1066         /* Otherwise flush the tasklet if it was running on another cpu */
1067         tasklet_unlock_wait(t);
1068 }
1069
1070 /**
1071  * intel_engine_is_idle() - Report if the engine has finished process all work
1072  * @engine: the intel_engine_cs
1073  *
1074  * Return true if there are no requests pending, nothing left to be submitted
1075  * to hardware, and that the engine is idle.
1076  */
1077 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1078 {
1079         /* More white lies, if wedged, hw state is inconsistent */
1080         if (intel_gt_is_wedged(engine->gt))
1081                 return true;
1082
1083         if (!intel_engine_pm_is_awake(engine))
1084                 return true;
1085
1086         /* Waiting to drain ELSP? */
1087         if (execlists_active(&engine->execlists)) {
1088                 synchronize_hardirq(engine->i915->drm.pdev->irq);
1089
1090                 intel_engine_flush_submission(engine);
1091
1092                 if (execlists_active(&engine->execlists))
1093                         return false;
1094         }
1095
1096         /* ELSP is empty, but there are ready requests? E.g. after reset */
1097         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1098                 return false;
1099
1100         /* Ring stopped? */
1101         return ring_is_idle(engine);
1102 }
1103
1104 bool intel_engines_are_idle(struct intel_gt *gt)
1105 {
1106         struct intel_engine_cs *engine;
1107         enum intel_engine_id id;
1108
1109         /*
1110          * If the driver is wedged, HW state may be very inconsistent and
1111          * report that it is still busy, even though we have stopped using it.
1112          */
1113         if (intel_gt_is_wedged(gt))
1114                 return true;
1115
1116         /* Already parked (and passed an idleness test); must still be idle */
1117         if (!READ_ONCE(gt->awake))
1118                 return true;
1119
1120         for_each_engine(engine, gt, id) {
1121                 if (!intel_engine_is_idle(engine))
1122                         return false;
1123         }
1124
1125         return true;
1126 }
1127
1128 void intel_engines_reset_default_submission(struct intel_gt *gt)
1129 {
1130         struct intel_engine_cs *engine;
1131         enum intel_engine_id id;
1132
1133         for_each_engine(engine, gt, id)
1134                 engine->set_default_submission(engine);
1135 }
1136
1137 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1138 {
1139         switch (INTEL_GEN(engine->i915)) {
1140         case 2:
1141                 return false; /* uses physical not virtual addresses */
1142         case 3:
1143                 /* maybe only uses physical not virtual addresses */
1144                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1145         case 4:
1146                 return !IS_I965G(engine->i915); /* who knows! */
1147         case 6:
1148                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1149         default:
1150                 return true;
1151         }
1152 }
1153
1154 static int print_sched_attr(struct drm_i915_private *i915,
1155                             const struct i915_sched_attr *attr,
1156                             char *buf, int x, int len)
1157 {
1158         if (attr->priority == I915_PRIORITY_INVALID)
1159                 return x;
1160
1161         x += snprintf(buf + x, len - x,
1162                       " prio=%d", attr->priority);
1163
1164         return x;
1165 }
1166
1167 static void print_request(struct drm_printer *m,
1168                           struct i915_request *rq,
1169                           const char *prefix)
1170 {
1171         const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1172         char buf[80] = "";
1173         int x = 0;
1174
1175         x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1176
1177         drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1178                    prefix,
1179                    rq->fence.context, rq->fence.seqno,
1180                    i915_request_completed(rq) ? "!" :
1181                    i915_request_started(rq) ? "*" :
1182                    "",
1183                    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1184                             &rq->fence.flags) ? "+" :
1185                    test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1186                             &rq->fence.flags) ? "-" :
1187                    "",
1188                    buf,
1189                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1190                    name);
1191 }
1192
1193 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1194 {
1195         const size_t rowsize = 8 * sizeof(u32);
1196         const void *prev = NULL;
1197         bool skip = false;
1198         size_t pos;
1199
1200         for (pos = 0; pos < len; pos += rowsize) {
1201                 char line[128];
1202
1203                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1204                         if (!skip) {
1205                                 drm_printf(m, "*\n");
1206                                 skip = true;
1207                         }
1208                         continue;
1209                 }
1210
1211                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1212                                                 rowsize, sizeof(u32),
1213                                                 line, sizeof(line),
1214                                                 false) >= sizeof(line));
1215                 drm_printf(m, "[%04zx] %s\n", pos, line);
1216
1217                 prev = buf + pos;
1218                 skip = false;
1219         }
1220 }
1221
1222 static struct intel_timeline *get_timeline(struct i915_request *rq)
1223 {
1224         struct intel_timeline *tl;
1225
1226         /*
1227          * Even though we are holding the engine->active.lock here, there
1228          * is no control over the submission queue per-se and we are
1229          * inspecting the active state at a random point in time, with an
1230          * unknown queue. Play safe and make sure the timeline remains valid.
1231          * (Only being used for pretty printing, one extra kref shouldn't
1232          * cause a camel stampede!)
1233          */
1234         rcu_read_lock();
1235         tl = rcu_dereference(rq->timeline);
1236         if (!kref_get_unless_zero(&tl->kref))
1237                 tl = NULL;
1238         rcu_read_unlock();
1239
1240         return tl;
1241 }
1242
1243 static const char *repr_timer(const struct timer_list *t)
1244 {
1245         if (!READ_ONCE(t->expires))
1246                 return "inactive";
1247
1248         if (timer_pending(t))
1249                 return "active";
1250
1251         return "expired";
1252 }
1253
1254 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1255                                          struct drm_printer *m)
1256 {
1257         struct drm_i915_private *dev_priv = engine->i915;
1258         struct intel_engine_execlists * const execlists = &engine->execlists;
1259         u64 addr;
1260
1261         if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1262                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1263         drm_printf(m, "\tRING_START: 0x%08x\n",
1264                    ENGINE_READ(engine, RING_START));
1265         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1266                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1267         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1268                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1269         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1270                    ENGINE_READ(engine, RING_CTL),
1271                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1272         if (INTEL_GEN(engine->i915) > 2) {
1273                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1274                            ENGINE_READ(engine, RING_MI_MODE),
1275                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1276         }
1277
1278         if (INTEL_GEN(dev_priv) >= 6) {
1279                 drm_printf(m, "\tRING_IMR: %08x\n",
1280                            ENGINE_READ(engine, RING_IMR));
1281         }
1282
1283         addr = intel_engine_get_active_head(engine);
1284         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1285                    upper_32_bits(addr), lower_32_bits(addr));
1286         addr = intel_engine_get_last_batch_head(engine);
1287         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1288                    upper_32_bits(addr), lower_32_bits(addr));
1289         if (INTEL_GEN(dev_priv) >= 8)
1290                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1291         else if (INTEL_GEN(dev_priv) >= 4)
1292                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1293         else
1294                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1295         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1296                    upper_32_bits(addr), lower_32_bits(addr));
1297         if (INTEL_GEN(dev_priv) >= 4) {
1298                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1299                            ENGINE_READ(engine, RING_IPEIR));
1300                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1301                            ENGINE_READ(engine, RING_IPEHR));
1302         } else {
1303                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1304                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1305         }
1306
1307         if (HAS_EXECLISTS(dev_priv)) {
1308                 struct i915_request * const *port, *rq;
1309                 const u32 *hws =
1310                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1311                 const u8 num_entries = execlists->csb_size;
1312                 unsigned int idx;
1313                 u8 read, write;
1314
1315                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1316                            yesno(test_bit(TASKLET_STATE_SCHED,
1317                                           &engine->execlists.tasklet.state)),
1318                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1319                            repr_timer(&engine->execlists.preempt),
1320                            repr_timer(&engine->execlists.timer));
1321
1322                 read = execlists->csb_head;
1323                 write = READ_ONCE(*execlists->csb_write);
1324
1325                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1326                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1327                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1328                            read, write, num_entries);
1329
1330                 if (read >= num_entries)
1331                         read = 0;
1332                 if (write >= num_entries)
1333                         write = 0;
1334                 if (read > write)
1335                         write += num_entries;
1336                 while (read < write) {
1337                         idx = ++read % num_entries;
1338                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1339                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1340                 }
1341
1342                 execlists_active_lock_bh(execlists);
1343                 rcu_read_lock();
1344                 for (port = execlists->active; (rq = *port); port++) {
1345                         char hdr[80];
1346                         int len;
1347
1348                         len = snprintf(hdr, sizeof(hdr),
1349                                        "\t\tActive[%d]: ",
1350                                        (int)(port - execlists->active));
1351                         if (!i915_request_signaled(rq)) {
1352                                 struct intel_timeline *tl = get_timeline(rq);
1353
1354                                 len += snprintf(hdr + len, sizeof(hdr) - len,
1355                                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
1356                                                 i915_ggtt_offset(rq->ring->vma),
1357                                                 tl ? tl->hwsp_offset : 0,
1358                                                 hwsp_seqno(rq));
1359
1360                                 if (tl)
1361                                         intel_timeline_put(tl);
1362                         }
1363                         snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1364                         print_request(m, rq, hdr);
1365                 }
1366                 for (port = execlists->pending; (rq = *port); port++) {
1367                         struct intel_timeline *tl = get_timeline(rq);
1368                         char hdr[80];
1369
1370                         snprintf(hdr, sizeof(hdr),
1371                                  "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1372                                  (int)(port - execlists->pending),
1373                                  i915_ggtt_offset(rq->ring->vma),
1374                                  tl ? tl->hwsp_offset : 0,
1375                                  hwsp_seqno(rq));
1376                         print_request(m, rq, hdr);
1377
1378                         if (tl)
1379                                 intel_timeline_put(tl);
1380                 }
1381                 rcu_read_unlock();
1382                 execlists_active_unlock_bh(execlists);
1383         } else if (INTEL_GEN(dev_priv) > 6) {
1384                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1385                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1386                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1387                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1388                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1389                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1390         }
1391 }
1392
1393 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1394 {
1395         void *ring;
1396         int size;
1397
1398         drm_printf(m,
1399                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1400                    rq->head, rq->postfix, rq->tail,
1401                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1402                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1403
1404         size = rq->tail - rq->head;
1405         if (rq->tail < rq->head)
1406                 size += rq->ring->size;
1407
1408         ring = kmalloc(size, GFP_ATOMIC);
1409         if (ring) {
1410                 const void *vaddr = rq->ring->vaddr;
1411                 unsigned int head = rq->head;
1412                 unsigned int len = 0;
1413
1414                 if (rq->tail < head) {
1415                         len = rq->ring->size - head;
1416                         memcpy(ring, vaddr + head, len);
1417                         head = 0;
1418                 }
1419                 memcpy(ring + len, vaddr + head, size - len);
1420
1421                 hexdump(m, ring, size);
1422                 kfree(ring);
1423         }
1424 }
1425
1426 static unsigned long list_count(struct list_head *list)
1427 {
1428         struct list_head *pos;
1429         unsigned long count = 0;
1430
1431         list_for_each(pos, list)
1432                 count++;
1433
1434         return count;
1435 }
1436
1437 void intel_engine_dump(struct intel_engine_cs *engine,
1438                        struct drm_printer *m,
1439                        const char *header, ...)
1440 {
1441         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1442         struct i915_request *rq;
1443         intel_wakeref_t wakeref;
1444         unsigned long flags;
1445
1446         if (header) {
1447                 va_list ap;
1448
1449                 va_start(ap, header);
1450                 drm_vprintf(m, header, &ap);
1451                 va_end(ap);
1452         }
1453
1454         if (intel_gt_is_wedged(engine->gt))
1455                 drm_printf(m, "*** WEDGED ***\n");
1456
1457         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1458         drm_printf(m, "\tBarriers?: %s\n",
1459                    yesno(!llist_empty(&engine->barrier_tasks)));
1460         drm_printf(m, "\tLatency: %luus\n",
1461                    ewma__engine_latency_read(&engine->latency));
1462
1463         rcu_read_lock();
1464         rq = READ_ONCE(engine->heartbeat.systole);
1465         if (rq)
1466                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1467                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1468         rcu_read_unlock();
1469         drm_printf(m, "\tReset count: %d (global %d)\n",
1470                    i915_reset_engine_count(error, engine),
1471                    i915_reset_count(error));
1472
1473         drm_printf(m, "\tRequests:\n");
1474
1475         spin_lock_irqsave(&engine->active.lock, flags);
1476         rq = intel_engine_find_active_request(engine);
1477         if (rq) {
1478                 struct intel_timeline *tl = get_timeline(rq);
1479
1480                 print_request(m, rq, "\t\tactive ");
1481
1482                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1483                            i915_ggtt_offset(rq->ring->vma));
1484                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1485                            rq->ring->head);
1486                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1487                            rq->ring->tail);
1488                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1489                            rq->ring->emit);
1490                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1491                            rq->ring->space);
1492
1493                 if (tl) {
1494                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1495                                    tl->hwsp_offset);
1496                         intel_timeline_put(tl);
1497                 }
1498
1499                 print_request_ring(m, rq);
1500
1501                 if (rq->context->lrc_reg_state) {
1502                         drm_printf(m, "Logical Ring Context:\n");
1503                         hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1504                 }
1505         }
1506         drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1507         spin_unlock_irqrestore(&engine->active.lock, flags);
1508
1509         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1510         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1511         if (wakeref) {
1512                 intel_engine_print_registers(engine, m);
1513                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1514         } else {
1515                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1516         }
1517
1518         intel_execlists_show_requests(engine, m, print_request, 8);
1519
1520         drm_printf(m, "HWSP:\n");
1521         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1522
1523         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1524
1525         intel_engine_print_breadcrumbs(engine, m);
1526 }
1527
1528 /**
1529  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1530  * @engine: engine to enable stats collection
1531  *
1532  * Start collecting the engine busyness data for @engine.
1533  *
1534  * Returns 0 on success or a negative error code.
1535  */
1536 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1537 {
1538         struct intel_engine_execlists *execlists = &engine->execlists;
1539         unsigned long flags;
1540         int err = 0;
1541
1542         if (!intel_engine_supports_stats(engine))
1543                 return -ENODEV;
1544
1545         execlists_active_lock_bh(execlists);
1546         write_seqlock_irqsave(&engine->stats.lock, flags);
1547
1548         if (unlikely(engine->stats.enabled == ~0)) {
1549                 err = -EBUSY;
1550                 goto unlock;
1551         }
1552
1553         if (engine->stats.enabled++ == 0) {
1554                 struct i915_request * const *port;
1555                 struct i915_request *rq;
1556
1557                 engine->stats.enabled_at = ktime_get();
1558
1559                 /* XXX submission method oblivious? */
1560                 for (port = execlists->active; (rq = *port); port++)
1561                         engine->stats.active++;
1562
1563                 for (port = execlists->pending; (rq = *port); port++) {
1564                         /* Exclude any contexts already counted in active */
1565                         if (!intel_context_inflight_count(rq->context))
1566                                 engine->stats.active++;
1567                 }
1568
1569                 if (engine->stats.active)
1570                         engine->stats.start = engine->stats.enabled_at;
1571         }
1572
1573 unlock:
1574         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1575         execlists_active_unlock_bh(execlists);
1576
1577         return err;
1578 }
1579
1580 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1581 {
1582         ktime_t total = engine->stats.total;
1583
1584         /*
1585          * If the engine is executing something at the moment
1586          * add it to the total.
1587          */
1588         if (engine->stats.active)
1589                 total = ktime_add(total,
1590                                   ktime_sub(ktime_get(), engine->stats.start));
1591
1592         return total;
1593 }
1594
1595 /**
1596  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1597  * @engine: engine to report on
1598  *
1599  * Returns accumulated time @engine was busy since engine stats were enabled.
1600  */
1601 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1602 {
1603         unsigned int seq;
1604         ktime_t total;
1605
1606         do {
1607                 seq = read_seqbegin(&engine->stats.lock);
1608                 total = __intel_engine_get_busy_time(engine);
1609         } while (read_seqretry(&engine->stats.lock, seq));
1610
1611         return total;
1612 }
1613
1614 /**
1615  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1616  * @engine: engine to disable stats collection
1617  *
1618  * Stops collecting the engine busyness data for @engine.
1619  */
1620 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1621 {
1622         unsigned long flags;
1623
1624         if (!intel_engine_supports_stats(engine))
1625                 return;
1626
1627         write_seqlock_irqsave(&engine->stats.lock, flags);
1628         WARN_ON_ONCE(engine->stats.enabled == 0);
1629         if (--engine->stats.enabled == 0) {
1630                 engine->stats.total = __intel_engine_get_busy_time(engine);
1631                 engine->stats.active = 0;
1632         }
1633         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1634 }
1635
1636 static bool match_ring(struct i915_request *rq)
1637 {
1638         u32 ring = ENGINE_READ(rq->engine, RING_START);
1639
1640         return ring == i915_ggtt_offset(rq->ring->vma);
1641 }
1642
1643 struct i915_request *
1644 intel_engine_find_active_request(struct intel_engine_cs *engine)
1645 {
1646         struct i915_request *request, *active = NULL;
1647
1648         /*
1649          * We are called by the error capture, reset and to dump engine
1650          * state at random points in time. In particular, note that neither is
1651          * crucially ordered with an interrupt. After a hang, the GPU is dead
1652          * and we assume that no more writes can happen (we waited long enough
1653          * for all writes that were in transaction to be flushed) - adding an
1654          * extra delay for a recent interrupt is pointless. Hence, we do
1655          * not need an engine->irq_seqno_barrier() before the seqno reads.
1656          * At all other times, we must assume the GPU is still running, but
1657          * we only care about the snapshot of this moment.
1658          */
1659         lockdep_assert_held(&engine->active.lock);
1660         list_for_each_entry(request, &engine->active.requests, sched.link) {
1661                 if (i915_request_completed(request))
1662                         continue;
1663
1664                 if (!i915_request_started(request))
1665                         continue;
1666
1667                 /* More than one preemptible request may match! */
1668                 if (!match_ring(request))
1669                         continue;
1670
1671                 active = request;
1672                 break;
1673         }
1674
1675         return active;
1676 }
1677
1678 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1679 #include "mock_engine.c"
1680 #include "selftest_engine.c"
1681 #include "selftest_engine_cs.c"
1682 #endif