]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gt/intel_lrc.c
415fdf2eb997e395969d5b85111b3cc371a8f319
[linux.git] / drivers / gpu / drm / i915 / gt / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include "gem/i915_gem_context.h"
137
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_engine_pm.h"
142 #include "intel_lrc_reg.h"
143 #include "intel_mocs.h"
144 #include "intel_reset.h"
145 #include "intel_workarounds.h"
146
147 #define RING_EXECLIST_QFULL             (1 << 0x2)
148 #define RING_EXECLIST1_VALID            (1 << 0x3)
149 #define RING_EXECLIST0_VALID            (1 << 0x4)
150 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
151 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
152 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
153
154 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
155 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
157 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
158 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
159 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
160
161 #define GEN8_CTX_STATUS_COMPLETED_MASK \
162          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163
164 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
165
166 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
167 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
168 #define WA_TAIL_DWORDS 2
169 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
170
171 struct virtual_engine {
172         struct intel_engine_cs base;
173         struct intel_context context;
174
175         /*
176          * We allow only a single request through the virtual engine at a time
177          * (each request in the timeline waits for the completion fence of
178          * the previous before being submitted). By restricting ourselves to
179          * only submitting a single request, each request is placed on to a
180          * physical to maximise load spreading (by virtue of the late greedy
181          * scheduling -- each real engine takes the next available request
182          * upon idling).
183          */
184         struct i915_request *request;
185
186         /*
187          * We keep a rbtree of available virtual engines inside each physical
188          * engine, sorted by priority. Here we preallocate the nodes we need
189          * for the virtual engine, indexed by physical_engine->id.
190          */
191         struct ve_node {
192                 struct rb_node rb;
193                 int prio;
194         } nodes[I915_NUM_ENGINES];
195
196         /*
197          * Keep track of bonded pairs -- restrictions upon on our selection
198          * of physical engines any particular request may be submitted to.
199          * If we receive a submit-fence from a master engine, we will only
200          * use one of sibling_mask physical engines.
201          */
202         struct ve_bond {
203                 const struct intel_engine_cs *master;
204                 intel_engine_mask_t sibling_mask;
205         } *bonds;
206         unsigned int num_bonds;
207
208         /* And finally, which physical engines this virtual engine maps onto. */
209         unsigned int num_siblings;
210         struct intel_engine_cs *siblings[0];
211 };
212
213 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
214 {
215         GEM_BUG_ON(!intel_engine_is_virtual(engine));
216         return container_of(engine, struct virtual_engine, base);
217 }
218
219 static int execlists_context_deferred_alloc(struct intel_context *ce,
220                                             struct intel_engine_cs *engine);
221 static void execlists_init_reg_state(u32 *reg_state,
222                                      struct intel_context *ce,
223                                      struct intel_engine_cs *engine,
224                                      struct intel_ring *ring);
225
226 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
227 {
228         return (i915_ggtt_offset(engine->status_page.vma) +
229                 I915_GEM_HWS_PREEMPT_ADDR);
230 }
231
232 static inline void
233 ring_set_paused(const struct intel_engine_cs *engine, int state)
234 {
235         /*
236          * We inspect HWS_PREEMPT with a semaphore inside
237          * engine->emit_fini_breadcrumb. If the dword is true,
238          * the ring is paused as the semaphore will busywait
239          * until the dword is false.
240          */
241         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
242         wmb();
243 }
244
245 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
246 {
247         return rb_entry(rb, struct i915_priolist, node);
248 }
249
250 static inline int rq_prio(const struct i915_request *rq)
251 {
252         return rq->sched.attr.priority;
253 }
254
255 static int effective_prio(const struct i915_request *rq)
256 {
257         int prio = rq_prio(rq);
258
259         /*
260          * On unwinding the active request, we give it a priority bump
261          * if it has completed waiting on any semaphore. If we know that
262          * the request has already started, we can prevent an unwanted
263          * preempt-to-idle cycle by taking that into account now.
264          */
265         if (__i915_request_has_started(rq))
266                 prio |= I915_PRIORITY_NOSEMAPHORE;
267
268         /* Restrict mere WAIT boosts from triggering preemption */
269         BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
270         return prio | __NO_PREEMPTION;
271 }
272
273 static int queue_prio(const struct intel_engine_execlists *execlists)
274 {
275         struct i915_priolist *p;
276         struct rb_node *rb;
277
278         rb = rb_first_cached(&execlists->queue);
279         if (!rb)
280                 return INT_MIN;
281
282         /*
283          * As the priolist[] are inverted, with the highest priority in [0],
284          * we have to flip the index value to become priority.
285          */
286         p = to_priolist(rb);
287         return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
288 }
289
290 static inline bool need_preempt(const struct intel_engine_cs *engine,
291                                 const struct i915_request *rq,
292                                 struct rb_node *rb)
293 {
294         int last_prio;
295
296         /*
297          * Check if the current priority hint merits a preemption attempt.
298          *
299          * We record the highest value priority we saw during rescheduling
300          * prior to this dequeue, therefore we know that if it is strictly
301          * less than the current tail of ESLP[0], we do not need to force
302          * a preempt-to-idle cycle.
303          *
304          * However, the priority hint is a mere hint that we may need to
305          * preempt. If that hint is stale or we may be trying to preempt
306          * ourselves, ignore the request.
307          */
308         last_prio = effective_prio(rq);
309         if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
310                                          last_prio))
311                 return false;
312
313         /*
314          * Check against the first request in ELSP[1], it will, thanks to the
315          * power of PI, be the highest priority of that context.
316          */
317         if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
318             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
319                 return true;
320
321         if (rb) {
322                 struct virtual_engine *ve =
323                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
324                 bool preempt = false;
325
326                 if (engine == ve->siblings[0]) { /* only preempt one sibling */
327                         struct i915_request *next;
328
329                         rcu_read_lock();
330                         next = READ_ONCE(ve->request);
331                         if (next)
332                                 preempt = rq_prio(next) > last_prio;
333                         rcu_read_unlock();
334                 }
335
336                 if (preempt)
337                         return preempt;
338         }
339
340         /*
341          * If the inflight context did not trigger the preemption, then maybe
342          * it was the set of queued requests? Pick the highest priority in
343          * the queue (the first active priolist) and see if it deserves to be
344          * running instead of ELSP[0].
345          *
346          * The highest priority request in the queue can not be either
347          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
348          * context, it's priority would not exceed ELSP[0] aka last_prio.
349          */
350         return queue_prio(&engine->execlists) > last_prio;
351 }
352
353 __maybe_unused static inline bool
354 assert_priority_queue(const struct i915_request *prev,
355                       const struct i915_request *next)
356 {
357         /*
358          * Without preemption, the prev may refer to the still active element
359          * which we refuse to let go.
360          *
361          * Even with preemption, there are times when we think it is better not
362          * to preempt and leave an ostensibly lower priority request in flight.
363          */
364         if (i915_request_is_active(prev))
365                 return true;
366
367         return rq_prio(prev) >= rq_prio(next);
368 }
369
370 /*
371  * The context descriptor encodes various attributes of a context,
372  * including its GTT address and some flags. Because it's fairly
373  * expensive to calculate, we'll just do it once and cache the result,
374  * which remains valid until the context is unpinned.
375  *
376  * This is what a descriptor looks like, from LSB to MSB::
377  *
378  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
379  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
380  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
381  *      bits 53-54:    mbz, reserved for use by hardware
382  *      bits 55-63:    group ID, currently unused and set to 0
383  *
384  * Starting from Gen11, the upper dword of the descriptor has a new format:
385  *
386  *      bits 32-36:    reserved
387  *      bits 37-47:    SW context ID
388  *      bits 48:53:    engine instance
389  *      bit 54:        mbz, reserved for use by hardware
390  *      bits 55-60:    SW counter
391  *      bits 61-63:    engine class
392  *
393  * engine info, SW context ID and SW counter need to form a unique number
394  * (Context ID) per lrc.
395  */
396 static u64
397 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
398 {
399         struct i915_gem_context *ctx = ce->gem_context;
400         u64 desc;
401
402         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
403         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
404
405         desc = ctx->desc_template;                              /* bits  0-11 */
406         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
407
408         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
409                                                                 /* bits 12-31 */
410         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
411
412         /*
413          * The following 32bits are copied into the OA reports (dword 2).
414          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
415          * anything below.
416          */
417         if (INTEL_GEN(engine->i915) >= 11) {
418                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
419                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
420                                                                 /* bits 37-47 */
421
422                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
423                                                                 /* bits 48-53 */
424
425                 /* TODO: decide what to do with SW counter (bits 55-60) */
426
427                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
428                                                                 /* bits 61-63 */
429         } else {
430                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
431                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
432         }
433
434         return desc;
435 }
436
437 static void unwind_wa_tail(struct i915_request *rq)
438 {
439         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
440         assert_ring_tail_valid(rq->ring, rq->tail);
441 }
442
443 static struct i915_request *
444 __unwind_incomplete_requests(struct intel_engine_cs *engine)
445 {
446         struct i915_request *rq, *rn, *active = NULL;
447         struct list_head *uninitialized_var(pl);
448         int prio = I915_PRIORITY_INVALID;
449
450         lockdep_assert_held(&engine->active.lock);
451
452         list_for_each_entry_safe_reverse(rq, rn,
453                                          &engine->active.requests,
454                                          sched.link) {
455                 struct intel_engine_cs *owner;
456
457                 if (i915_request_completed(rq))
458                         continue; /* XXX */
459
460                 __i915_request_unsubmit(rq);
461                 unwind_wa_tail(rq);
462
463                 /*
464                  * Push the request back into the queue for later resubmission.
465                  * If this request is not native to this physical engine (i.e.
466                  * it came from a virtual source), push it back onto the virtual
467                  * engine so that it can be moved across onto another physical
468                  * engine as load dictates.
469                  */
470                 owner = rq->hw_context->engine;
471                 if (likely(owner == engine)) {
472                         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
473                         if (rq_prio(rq) != prio) {
474                                 prio = rq_prio(rq);
475                                 pl = i915_sched_lookup_priolist(engine, prio);
476                         }
477                         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
478
479                         list_move(&rq->sched.link, pl);
480                         active = rq;
481                 } else {
482                         rq->engine = owner;
483                         owner->submit_request(rq);
484                         active = NULL;
485                 }
486         }
487
488         return active;
489 }
490
491 struct i915_request *
492 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
493 {
494         struct intel_engine_cs *engine =
495                 container_of(execlists, typeof(*engine), execlists);
496
497         return __unwind_incomplete_requests(engine);
498 }
499
500 static inline void
501 execlists_context_status_change(struct i915_request *rq, unsigned long status)
502 {
503         /*
504          * Only used when GVT-g is enabled now. When GVT-g is disabled,
505          * The compiler should eliminate this function as dead-code.
506          */
507         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
508                 return;
509
510         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
511                                    status, rq);
512 }
513
514 static inline struct i915_request *
515 execlists_schedule_in(struct i915_request *rq, int idx)
516 {
517         struct intel_context *ce = rq->hw_context;
518         int count;
519
520         trace_i915_request_in(rq, idx);
521
522         count = intel_context_inflight_count(ce);
523         if (!count) {
524                 intel_context_get(ce);
525                 ce->inflight = rq->engine;
526
527                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
528                 intel_engine_context_in(ce->inflight);
529         }
530
531         intel_context_inflight_inc(ce);
532         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
533
534         return i915_request_get(rq);
535 }
536
537 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
538 {
539         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
540         struct i915_request *next = READ_ONCE(ve->request);
541
542         if (next && next->execution_mask & ~rq->execution_mask)
543                 tasklet_schedule(&ve->base.execlists.tasklet);
544 }
545
546 static inline void
547 execlists_schedule_out(struct i915_request *rq)
548 {
549         struct intel_context *ce = rq->hw_context;
550
551         GEM_BUG_ON(!intel_context_inflight_count(ce));
552
553         trace_i915_request_out(rq);
554
555         intel_context_inflight_dec(ce);
556         if (!intel_context_inflight_count(ce)) {
557                 intel_engine_context_out(ce->inflight);
558                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
559
560                 /*
561                  * If this is part of a virtual engine, its next request may
562                  * have been blocked waiting for access to the active context.
563                  * We have to kick all the siblings again in case we need to
564                  * switch (e.g. the next request is not runnable on this
565                  * engine). Hopefully, we will already have submitted the next
566                  * request before the tasklet runs and do not need to rebuild
567                  * each virtual tree and kick everyone again.
568                  */
569                 ce->inflight = NULL;
570                 if (rq->engine != ce->engine)
571                         kick_siblings(rq, ce);
572
573                 intel_context_put(ce);
574         }
575
576         i915_request_put(rq);
577 }
578
579 static u64 execlists_update_context(const struct i915_request *rq)
580 {
581         struct intel_context *ce = rq->hw_context;
582         u64 desc;
583
584         ce->lrc_reg_state[CTX_RING_TAIL + 1] =
585                 intel_ring_set_tail(rq->ring, rq->tail);
586
587         /*
588          * Make sure the context image is complete before we submit it to HW.
589          *
590          * Ostensibly, writes (including the WCB) should be flushed prior to
591          * an uncached write such as our mmio register access, the empirical
592          * evidence (esp. on Braswell) suggests that the WC write into memory
593          * may not be visible to the HW prior to the completion of the UC
594          * register write and that we may begin execution from the context
595          * before its image is complete leading to invalid PD chasing.
596          *
597          * Furthermore, Braswell, at least, wants a full mb to be sure that
598          * the writes are coherent in memory (visible to the GPU) prior to
599          * execution, and not just visible to other CPUs (as is the result of
600          * wmb).
601          */
602         mb();
603
604         desc = ce->lrc_desc;
605         ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
606
607         return desc;
608 }
609
610 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
611 {
612         if (execlists->ctrl_reg) {
613                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
614                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
615         } else {
616                 writel(upper_32_bits(desc), execlists->submit_reg);
617                 writel(lower_32_bits(desc), execlists->submit_reg);
618         }
619 }
620
621 static __maybe_unused void
622 trace_ports(const struct intel_engine_execlists *execlists,
623             const char *msg,
624             struct i915_request * const *ports)
625 {
626         const struct intel_engine_cs *engine =
627                 container_of(execlists, typeof(*engine), execlists);
628
629         GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
630                   engine->name, msg,
631                   ports[0]->fence.context,
632                   ports[0]->fence.seqno,
633                   i915_request_completed(ports[0]) ? "!" :
634                   i915_request_started(ports[0]) ? "*" :
635                   "",
636                   ports[1] ? ports[1]->fence.context : 0,
637                   ports[1] ? ports[1]->fence.seqno : 0);
638 }
639
640 static __maybe_unused bool
641 assert_pending_valid(const struct intel_engine_execlists *execlists,
642                      const char *msg)
643 {
644         struct i915_request * const *port, *rq;
645         struct intel_context *ce = NULL;
646
647         trace_ports(execlists, msg, execlists->pending);
648
649         if (execlists->pending[execlists_num_ports(execlists)])
650                 return false;
651
652         for (port = execlists->pending; (rq = *port); port++) {
653                 if (ce == rq->hw_context)
654                         return false;
655
656                 ce = rq->hw_context;
657                 if (i915_request_completed(rq))
658                         continue;
659
660                 if (i915_active_is_idle(&ce->active))
661                         return false;
662
663                 if (!i915_vma_is_pinned(ce->state))
664                         return false;
665         }
666
667         return ce;
668 }
669
670 static void execlists_submit_ports(struct intel_engine_cs *engine)
671 {
672         struct intel_engine_execlists *execlists = &engine->execlists;
673         unsigned int n;
674
675         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
676
677         /*
678          * We can skip acquiring intel_runtime_pm_get() here as it was taken
679          * on our behalf by the request (see i915_gem_mark_busy()) and it will
680          * not be relinquished until the device is idle (see
681          * i915_gem_idle_work_handler()). As a precaution, we make sure
682          * that all ELSP are drained i.e. we have processed the CSB,
683          * before allowing ourselves to idle and calling intel_runtime_pm_put().
684          */
685         GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
686
687         /*
688          * ELSQ note: the submit queue is not cleared after being submitted
689          * to the HW so we need to make sure we always clean it up. This is
690          * currently ensured by the fact that we always write the same number
691          * of elsq entries, keep this in mind before changing the loop below.
692          */
693         for (n = execlists_num_ports(execlists); n--; ) {
694                 struct i915_request *rq = execlists->pending[n];
695
696                 write_desc(execlists,
697                            rq ? execlists_update_context(rq) : 0,
698                            n);
699         }
700
701         /* we need to manually load the submit queue */
702         if (execlists->ctrl_reg)
703                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
704 }
705
706 static bool ctx_single_port_submission(const struct intel_context *ce)
707 {
708         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
709                 i915_gem_context_force_single_submission(ce->gem_context));
710 }
711
712 static bool can_merge_ctx(const struct intel_context *prev,
713                           const struct intel_context *next)
714 {
715         if (prev != next)
716                 return false;
717
718         if (ctx_single_port_submission(prev))
719                 return false;
720
721         return true;
722 }
723
724 static bool can_merge_rq(const struct i915_request *prev,
725                          const struct i915_request *next)
726 {
727         GEM_BUG_ON(prev == next);
728         GEM_BUG_ON(!assert_priority_queue(prev, next));
729
730         if (!can_merge_ctx(prev->hw_context, next->hw_context))
731                 return false;
732
733         return true;
734 }
735
736 static void virtual_update_register_offsets(u32 *regs,
737                                             struct intel_engine_cs *engine)
738 {
739         u32 base = engine->mmio_base;
740
741         /* Must match execlists_init_reg_state()! */
742
743         regs[CTX_CONTEXT_CONTROL] =
744                 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
745         regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
746         regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
747         regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
748         regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
749
750         regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
751         regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
752         regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
753         regs[CTX_SECOND_BB_HEAD_U] =
754                 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
755         regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
756         regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
757
758         regs[CTX_CTX_TIMESTAMP] =
759                 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
760         regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
761         regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
762         regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
763         regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
764         regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
765         regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
766         regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
767         regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
768
769         if (engine->class == RENDER_CLASS) {
770                 regs[CTX_RCS_INDIRECT_CTX] =
771                         i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
772                 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
773                         i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
774                 regs[CTX_BB_PER_CTX_PTR] =
775                         i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
776
777                 regs[CTX_R_PWR_CLK_STATE] =
778                         i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
779         }
780 }
781
782 static bool virtual_matches(const struct virtual_engine *ve,
783                             const struct i915_request *rq,
784                             const struct intel_engine_cs *engine)
785 {
786         const struct intel_engine_cs *inflight;
787
788         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
789                 return false;
790
791         /*
792          * We track when the HW has completed saving the context image
793          * (i.e. when we have seen the final CS event switching out of
794          * the context) and must not overwrite the context image before
795          * then. This restricts us to only using the active engine
796          * while the previous virtualized request is inflight (so
797          * we reuse the register offsets). This is a very small
798          * hystersis on the greedy seelction algorithm.
799          */
800         inflight = intel_context_inflight(&ve->context);
801         if (inflight && inflight != engine)
802                 return false;
803
804         return true;
805 }
806
807 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
808                                      struct intel_engine_cs *engine)
809 {
810         struct intel_engine_cs *old = ve->siblings[0];
811
812         /* All unattached (rq->engine == old) must already be completed */
813
814         spin_lock(&old->breadcrumbs.irq_lock);
815         if (!list_empty(&ve->context.signal_link)) {
816                 list_move_tail(&ve->context.signal_link,
817                                &engine->breadcrumbs.signalers);
818                 intel_engine_queue_breadcrumbs(engine);
819         }
820         spin_unlock(&old->breadcrumbs.irq_lock);
821 }
822
823 static struct i915_request *
824 last_active(const struct intel_engine_execlists *execlists)
825 {
826         struct i915_request * const *last = execlists->active;
827
828         while (*last && i915_request_completed(*last))
829                 last++;
830
831         return *last;
832 }
833
834 static void
835 defer_request(struct i915_request * const rq, struct list_head * const pl)
836 {
837         struct i915_dependency *p;
838
839         /*
840          * We want to move the interrupted request to the back of
841          * the round-robin list (i.e. its priority level), but
842          * in doing so, we must then move all requests that were in
843          * flight and were waiting for the interrupted request to
844          * be run after it again.
845          */
846         list_move_tail(&rq->sched.link, pl);
847
848         list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
849                 struct i915_request *w =
850                         container_of(p->waiter, typeof(*w), sched);
851
852                 /* Leave semaphores spinning on the other engines */
853                 if (w->engine != rq->engine)
854                         continue;
855
856                 /* No waiter should start before the active request completed */
857                 GEM_BUG_ON(i915_request_started(w));
858
859                 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
860                 if (rq_prio(w) < rq_prio(rq))
861                         continue;
862
863                 if (list_empty(&w->sched.link))
864                         continue; /* Not yet submitted; unready */
865
866                 /*
867                  * This should be very shallow as it is limited by the
868                  * number of requests that can fit in a ring (<64) and
869                  * the number of contexts that can be in flight on this
870                  * engine.
871                  */
872                 defer_request(w, pl);
873         }
874 }
875
876 static void defer_active(struct intel_engine_cs *engine)
877 {
878         struct i915_request *rq;
879
880         rq = __unwind_incomplete_requests(engine);
881         if (!rq)
882                 return;
883
884         defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
885 }
886
887 static bool
888 need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
889 {
890         int hint;
891
892         if (list_is_last(&rq->sched.link, &engine->active.requests))
893                 return false;
894
895         hint = max(rq_prio(list_next_entry(rq, sched.link)),
896                    engine->execlists.queue_priority_hint);
897
898         return hint >= rq_prio(rq);
899 }
900
901 static bool
902 enable_timeslice(struct intel_engine_cs *engine)
903 {
904         struct i915_request *last = last_active(&engine->execlists);
905
906         return last && need_timeslice(engine, last);
907 }
908
909 static void execlists_dequeue(struct intel_engine_cs *engine)
910 {
911         struct intel_engine_execlists * const execlists = &engine->execlists;
912         struct i915_request **port = execlists->pending;
913         struct i915_request ** const last_port = port + execlists->port_mask;
914         struct i915_request *last;
915         struct rb_node *rb;
916         bool submit = false;
917
918         /*
919          * Hardware submission is through 2 ports. Conceptually each port
920          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
921          * static for a context, and unique to each, so we only execute
922          * requests belonging to a single context from each ring. RING_HEAD
923          * is maintained by the CS in the context image, it marks the place
924          * where it got up to last time, and through RING_TAIL we tell the CS
925          * where we want to execute up to this time.
926          *
927          * In this list the requests are in order of execution. Consecutive
928          * requests from the same context are adjacent in the ringbuffer. We
929          * can combine these requests into a single RING_TAIL update:
930          *
931          *              RING_HEAD...req1...req2
932          *                                    ^- RING_TAIL
933          * since to execute req2 the CS must first execute req1.
934          *
935          * Our goal then is to point each port to the end of a consecutive
936          * sequence of requests as being the most optimal (fewest wake ups
937          * and context switches) submission.
938          */
939
940         for (rb = rb_first_cached(&execlists->virtual); rb; ) {
941                 struct virtual_engine *ve =
942                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
943                 struct i915_request *rq = READ_ONCE(ve->request);
944
945                 if (!rq) { /* lazily cleanup after another engine handled rq */
946                         rb_erase_cached(rb, &execlists->virtual);
947                         RB_CLEAR_NODE(rb);
948                         rb = rb_first_cached(&execlists->virtual);
949                         continue;
950                 }
951
952                 if (!virtual_matches(ve, rq, engine)) {
953                         rb = rb_next(rb);
954                         continue;
955                 }
956
957                 break;
958         }
959
960         /*
961          * If the queue is higher priority than the last
962          * request in the currently active context, submit afresh.
963          * We will resubmit again afterwards in case we need to split
964          * the active context to interject the preemption request,
965          * i.e. we will retrigger preemption following the ack in case
966          * of trouble.
967          */
968         last = last_active(execlists);
969         if (last) {
970                 if (need_preempt(engine, last, rb)) {
971                         GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
972                                   engine->name,
973                                   last->fence.context,
974                                   last->fence.seqno,
975                                   last->sched.attr.priority,
976                                   execlists->queue_priority_hint);
977                         /*
978                          * Don't let the RING_HEAD advance past the breadcrumb
979                          * as we unwind (and until we resubmit) so that we do
980                          * not accidentally tell it to go backwards.
981                          */
982                         ring_set_paused(engine, 1);
983
984                         /*
985                          * Note that we have not stopped the GPU at this point,
986                          * so we are unwinding the incomplete requests as they
987                          * remain inflight and so by the time we do complete
988                          * the preemption, some of the unwound requests may
989                          * complete!
990                          */
991                         __unwind_incomplete_requests(engine);
992
993                         /*
994                          * If we need to return to the preempted context, we
995                          * need to skip the lite-restore and force it to
996                          * reload the RING_TAIL. Otherwise, the HW has a
997                          * tendency to ignore us rewinding the TAIL to the
998                          * end of an earlier request.
999                          */
1000                         last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
1001                         last = NULL;
1002                 } else if (need_timeslice(engine, last) &&
1003                            !timer_pending(&engine->execlists.timer)) {
1004                         GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
1005                                   engine->name,
1006                                   last->fence.context,
1007                                   last->fence.seqno,
1008                                   last->sched.attr.priority,
1009                                   execlists->queue_priority_hint);
1010
1011                         ring_set_paused(engine, 1);
1012                         defer_active(engine);
1013
1014                         /*
1015                          * Unlike for preemption, if we rewind and continue
1016                          * executing the same context as previously active,
1017                          * the order of execution will remain the same and
1018                          * the tail will only advance. We do not need to
1019                          * force a full context restore, as a lite-restore
1020                          * is sufficient to resample the monotonic TAIL.
1021                          *
1022                          * If we switch to any other context, similarly we
1023                          * will not rewind TAIL of current context, and
1024                          * normal save/restore will preserve state and allow
1025                          * us to later continue executing the same request.
1026                          */
1027                         last = NULL;
1028                 } else {
1029                         /*
1030                          * Otherwise if we already have a request pending
1031                          * for execution after the current one, we can
1032                          * just wait until the next CS event before
1033                          * queuing more. In either case we will force a
1034                          * lite-restore preemption event, but if we wait
1035                          * we hopefully coalesce several updates into a single
1036                          * submission.
1037                          */
1038                         if (!list_is_last(&last->sched.link,
1039                                           &engine->active.requests))
1040                                 return;
1041
1042                         /*
1043                          * WaIdleLiteRestore:bdw,skl
1044                          * Apply the wa NOOPs to prevent
1045                          * ring:HEAD == rq:TAIL as we resubmit the
1046                          * request. See gen8_emit_fini_breadcrumb() for
1047                          * where we prepare the padding after the
1048                          * end of the request.
1049                          */
1050                         last->tail = last->wa_tail;
1051                 }
1052         }
1053
1054         while (rb) { /* XXX virtual is always taking precedence */
1055                 struct virtual_engine *ve =
1056                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1057                 struct i915_request *rq;
1058
1059                 spin_lock(&ve->base.active.lock);
1060
1061                 rq = ve->request;
1062                 if (unlikely(!rq)) { /* lost the race to a sibling */
1063                         spin_unlock(&ve->base.active.lock);
1064                         rb_erase_cached(rb, &execlists->virtual);
1065                         RB_CLEAR_NODE(rb);
1066                         rb = rb_first_cached(&execlists->virtual);
1067                         continue;
1068                 }
1069
1070                 GEM_BUG_ON(rq != ve->request);
1071                 GEM_BUG_ON(rq->engine != &ve->base);
1072                 GEM_BUG_ON(rq->hw_context != &ve->context);
1073
1074                 if (rq_prio(rq) >= queue_prio(execlists)) {
1075                         if (!virtual_matches(ve, rq, engine)) {
1076                                 spin_unlock(&ve->base.active.lock);
1077                                 rb = rb_next(rb);
1078                                 continue;
1079                         }
1080
1081                         if (i915_request_completed(rq)) {
1082                                 ve->request = NULL;
1083                                 ve->base.execlists.queue_priority_hint = INT_MIN;
1084                                 rb_erase_cached(rb, &execlists->virtual);
1085                                 RB_CLEAR_NODE(rb);
1086
1087                                 rq->engine = engine;
1088                                 __i915_request_submit(rq);
1089
1090                                 spin_unlock(&ve->base.active.lock);
1091
1092                                 rb = rb_first_cached(&execlists->virtual);
1093                                 continue;
1094                         }
1095
1096                         if (last && !can_merge_rq(last, rq)) {
1097                                 spin_unlock(&ve->base.active.lock);
1098                                 return; /* leave this for another */
1099                         }
1100
1101                         GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
1102                                   engine->name,
1103                                   rq->fence.context,
1104                                   rq->fence.seqno,
1105                                   i915_request_completed(rq) ? "!" :
1106                                   i915_request_started(rq) ? "*" :
1107                                   "",
1108                                   yesno(engine != ve->siblings[0]));
1109
1110                         ve->request = NULL;
1111                         ve->base.execlists.queue_priority_hint = INT_MIN;
1112                         rb_erase_cached(rb, &execlists->virtual);
1113                         RB_CLEAR_NODE(rb);
1114
1115                         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1116                         rq->engine = engine;
1117
1118                         if (engine != ve->siblings[0]) {
1119                                 u32 *regs = ve->context.lrc_reg_state;
1120                                 unsigned int n;
1121
1122                                 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1123                                 virtual_update_register_offsets(regs, engine);
1124
1125                                 if (!list_empty(&ve->context.signals))
1126                                         virtual_xfer_breadcrumbs(ve, engine);
1127
1128                                 /*
1129                                  * Move the bound engine to the top of the list
1130                                  * for future execution. We then kick this
1131                                  * tasklet first before checking others, so that
1132                                  * we preferentially reuse this set of bound
1133                                  * registers.
1134                                  */
1135                                 for (n = 1; n < ve->num_siblings; n++) {
1136                                         if (ve->siblings[n] == engine) {
1137                                                 swap(ve->siblings[n],
1138                                                      ve->siblings[0]);
1139                                                 break;
1140                                         }
1141                                 }
1142
1143                                 GEM_BUG_ON(ve->siblings[0] != engine);
1144                         }
1145
1146                         __i915_request_submit(rq);
1147                         if (!i915_request_completed(rq)) {
1148                                 submit = true;
1149                                 last = rq;
1150                         }
1151                 }
1152
1153                 spin_unlock(&ve->base.active.lock);
1154                 break;
1155         }
1156
1157         while ((rb = rb_first_cached(&execlists->queue))) {
1158                 struct i915_priolist *p = to_priolist(rb);
1159                 struct i915_request *rq, *rn;
1160                 int i;
1161
1162                 priolist_for_each_request_consume(rq, rn, p, i) {
1163                         if (i915_request_completed(rq))
1164                                 goto skip;
1165
1166                         /*
1167                          * Can we combine this request with the current port?
1168                          * It has to be the same context/ringbuffer and not
1169                          * have any exceptions (e.g. GVT saying never to
1170                          * combine contexts).
1171                          *
1172                          * If we can combine the requests, we can execute both
1173                          * by updating the RING_TAIL to point to the end of the
1174                          * second request, and so we never need to tell the
1175                          * hardware about the first.
1176                          */
1177                         if (last && !can_merge_rq(last, rq)) {
1178                                 /*
1179                                  * If we are on the second port and cannot
1180                                  * combine this request with the last, then we
1181                                  * are done.
1182                                  */
1183                                 if (port == last_port)
1184                                         goto done;
1185
1186                                 /*
1187                                  * We must not populate both ELSP[] with the
1188                                  * same LRCA, i.e. we must submit 2 different
1189                                  * contexts if we submit 2 ELSP.
1190                                  */
1191                                 if (last->hw_context == rq->hw_context)
1192                                         goto done;
1193
1194                                 /*
1195                                  * If GVT overrides us we only ever submit
1196                                  * port[0], leaving port[1] empty. Note that we
1197                                  * also have to be careful that we don't queue
1198                                  * the same context (even though a different
1199                                  * request) to the second port.
1200                                  */
1201                                 if (ctx_single_port_submission(last->hw_context) ||
1202                                     ctx_single_port_submission(rq->hw_context))
1203                                         goto done;
1204
1205                                 *port = execlists_schedule_in(last, port - execlists->pending);
1206                                 port++;
1207                         }
1208
1209                         last = rq;
1210                         submit = true;
1211 skip:
1212                         __i915_request_submit(rq);
1213                 }
1214
1215                 rb_erase_cached(&p->node, &execlists->queue);
1216                 i915_priolist_free(p);
1217         }
1218
1219 done:
1220         /*
1221          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1222          *
1223          * We choose the priority hint such that if we add a request of greater
1224          * priority than this, we kick the submission tasklet to decide on
1225          * the right order of submitting the requests to hardware. We must
1226          * also be prepared to reorder requests as they are in-flight on the
1227          * HW. We derive the priority hint then as the first "hole" in
1228          * the HW submission ports and if there are no available slots,
1229          * the priority of the lowest executing request, i.e. last.
1230          *
1231          * When we do receive a higher priority request ready to run from the
1232          * user, see queue_request(), the priority hint is bumped to that
1233          * request triggering preemption on the next dequeue (or subsequent
1234          * interrupt for secondary ports).
1235          */
1236         execlists->queue_priority_hint = queue_prio(execlists);
1237         GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
1238                   engine->name, execlists->queue_priority_hint,
1239                   yesno(submit));
1240
1241         if (submit) {
1242                 *port = execlists_schedule_in(last, port - execlists->pending);
1243                 memset(port + 1, 0, (last_port - port) * sizeof(*port));
1244                 execlists_submit_ports(engine);
1245         }
1246 }
1247
1248 void
1249 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1250 {
1251         struct i915_request * const *port, *rq;
1252
1253         for (port = execlists->pending; (rq = *port); port++)
1254                 execlists_schedule_out(rq);
1255         memset(execlists->pending, 0, sizeof(execlists->pending));
1256
1257         for (port = execlists->active; (rq = *port); port++)
1258                 execlists_schedule_out(rq);
1259         execlists->active =
1260                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1261 }
1262
1263 static inline void
1264 invalidate_csb_entries(const u32 *first, const u32 *last)
1265 {
1266         clflush((void *)first);
1267         clflush((void *)last);
1268 }
1269
1270 static inline bool
1271 reset_in_progress(const struct intel_engine_execlists *execlists)
1272 {
1273         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1274 }
1275
1276 static void process_csb(struct intel_engine_cs *engine)
1277 {
1278         struct intel_engine_execlists * const execlists = &engine->execlists;
1279         const u32 * const buf = execlists->csb_status;
1280         const u8 num_entries = execlists->csb_size;
1281         u8 head, tail;
1282
1283         lockdep_assert_held(&engine->active.lock);
1284         GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1285
1286         /*
1287          * Note that csb_write, csb_status may be either in HWSP or mmio.
1288          * When reading from the csb_write mmio register, we have to be
1289          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1290          * the low 4bits. As it happens we know the next 4bits are always
1291          * zero and so we can simply masked off the low u8 of the register
1292          * and treat it identically to reading from the HWSP (without having
1293          * to use explicit shifting and masking, and probably bifurcating
1294          * the code to handle the legacy mmio read).
1295          */
1296         head = execlists->csb_head;
1297         tail = READ_ONCE(*execlists->csb_write);
1298         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1299         if (unlikely(head == tail))
1300                 return;
1301
1302         /*
1303          * Hopefully paired with a wmb() in HW!
1304          *
1305          * We must complete the read of the write pointer before any reads
1306          * from the CSB, so that we do not see stale values. Without an rmb
1307          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1308          * we perform the READ_ONCE(*csb_write).
1309          */
1310         rmb();
1311
1312         do {
1313                 unsigned int status;
1314
1315                 if (++head == num_entries)
1316                         head = 0;
1317
1318                 /*
1319                  * We are flying near dragons again.
1320                  *
1321                  * We hold a reference to the request in execlist_port[]
1322                  * but no more than that. We are operating in softirq
1323                  * context and so cannot hold any mutex or sleep. That
1324                  * prevents us stopping the requests we are processing
1325                  * in port[] from being retired simultaneously (the
1326                  * breadcrumb will be complete before we see the
1327                  * context-switch). As we only hold the reference to the
1328                  * request, any pointer chasing underneath the request
1329                  * is subject to a potential use-after-free. Thus we
1330                  * store all of the bookkeeping within port[] as
1331                  * required, and avoid using unguarded pointers beneath
1332                  * request itself. The same applies to the atomic
1333                  * status notifier.
1334                  */
1335
1336                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1337                           engine->name, head,
1338                           buf[2 * head + 0], buf[2 * head + 1]);
1339
1340                 status = buf[2 * head];
1341                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE) {
1342                         GEM_BUG_ON(*execlists->active);
1343 promote:
1344                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1345                         execlists->active =
1346                                 memcpy(execlists->inflight,
1347                                        execlists->pending,
1348                                        execlists_num_ports(execlists) *
1349                                        sizeof(*execlists->pending));
1350                         execlists->pending[0] = NULL;
1351
1352                         if (enable_timeslice(engine))
1353                                 mod_timer(&execlists->timer, jiffies + 1);
1354
1355                         if (!inject_preempt_hang(execlists))
1356                                 ring_set_paused(engine, 0);
1357                 } else if (status & GEN8_CTX_STATUS_PREEMPTED) {
1358                         struct i915_request * const *port = execlists->active;
1359
1360                         trace_ports(execlists, "preempted", execlists->active);
1361
1362                         while (*port)
1363                                 execlists_schedule_out(*port++);
1364
1365                         goto promote;
1366                 } else if (*execlists->active) {
1367                         struct i915_request *rq = *execlists->active++;
1368
1369                         trace_ports(execlists, "completed",
1370                                     execlists->active - 1);
1371
1372                         /*
1373                          * We rely on the hardware being strongly
1374                          * ordered, that the breadcrumb write is
1375                          * coherent (visible from the CPU) before the
1376                          * user interrupt and CSB is processed.
1377                          */
1378                         GEM_BUG_ON(!i915_request_completed(rq));
1379                         execlists_schedule_out(rq);
1380
1381                         GEM_BUG_ON(execlists->active - execlists->inflight >
1382                                    execlists_num_ports(execlists));
1383                 }
1384         } while (head != tail);
1385
1386         execlists->csb_head = head;
1387
1388         /*
1389          * Gen11 has proven to fail wrt global observation point between
1390          * entry and tail update, failing on the ordering and thus
1391          * we see an old entry in the context status buffer.
1392          *
1393          * Forcibly evict out entries for the next gpu csb update,
1394          * to increase the odds that we get a fresh entries with non
1395          * working hardware. The cost for doing so comes out mostly with
1396          * the wash as hardware, working or not, will need to do the
1397          * invalidation before.
1398          */
1399         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1400 }
1401
1402 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1403 {
1404         lockdep_assert_held(&engine->active.lock);
1405
1406         process_csb(engine);
1407         if (!engine->execlists.pending[0])
1408                 execlists_dequeue(engine);
1409 }
1410
1411 /*
1412  * Check the unread Context Status Buffers and manage the submission of new
1413  * contexts to the ELSP accordingly.
1414  */
1415 static void execlists_submission_tasklet(unsigned long data)
1416 {
1417         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1418         unsigned long flags;
1419
1420         spin_lock_irqsave(&engine->active.lock, flags);
1421         __execlists_submission_tasklet(engine);
1422         spin_unlock_irqrestore(&engine->active.lock, flags);
1423 }
1424
1425 static void execlists_submission_timer(struct timer_list *timer)
1426 {
1427         struct intel_engine_cs *engine =
1428                 from_timer(engine, timer, execlists.timer);
1429
1430         /* Kick the tasklet for some interrupt coalescing and reset handling */
1431         tasklet_hi_schedule(&engine->execlists.tasklet);
1432 }
1433
1434 static void queue_request(struct intel_engine_cs *engine,
1435                           struct i915_sched_node *node,
1436                           int prio)
1437 {
1438         GEM_BUG_ON(!list_empty(&node->link));
1439         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1440 }
1441
1442 static void __submit_queue_imm(struct intel_engine_cs *engine)
1443 {
1444         struct intel_engine_execlists * const execlists = &engine->execlists;
1445
1446         if (reset_in_progress(execlists))
1447                 return; /* defer until we restart the engine following reset */
1448
1449         if (execlists->tasklet.func == execlists_submission_tasklet)
1450                 __execlists_submission_tasklet(engine);
1451         else
1452                 tasklet_hi_schedule(&execlists->tasklet);
1453 }
1454
1455 static void submit_queue(struct intel_engine_cs *engine,
1456                          const struct i915_request *rq)
1457 {
1458         struct intel_engine_execlists *execlists = &engine->execlists;
1459
1460         if (rq_prio(rq) <= execlists->queue_priority_hint)
1461                 return;
1462
1463         execlists->queue_priority_hint = rq_prio(rq);
1464         __submit_queue_imm(engine);
1465 }
1466
1467 static void execlists_submit_request(struct i915_request *request)
1468 {
1469         struct intel_engine_cs *engine = request->engine;
1470         unsigned long flags;
1471
1472         /* Will be called from irq-context when using foreign fences. */
1473         spin_lock_irqsave(&engine->active.lock, flags);
1474
1475         queue_request(engine, &request->sched, rq_prio(request));
1476
1477         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1478         GEM_BUG_ON(list_empty(&request->sched.link));
1479
1480         submit_queue(engine, request);
1481
1482         spin_unlock_irqrestore(&engine->active.lock, flags);
1483 }
1484
1485 static void __execlists_context_fini(struct intel_context *ce)
1486 {
1487         intel_ring_put(ce->ring);
1488
1489         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1490         i915_gem_object_put(ce->state->obj);
1491 }
1492
1493 static void execlists_context_destroy(struct kref *kref)
1494 {
1495         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1496
1497         GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1498         GEM_BUG_ON(intel_context_is_pinned(ce));
1499
1500         if (ce->state)
1501                 __execlists_context_fini(ce);
1502
1503         intel_context_free(ce);
1504 }
1505
1506 static void execlists_context_unpin(struct intel_context *ce)
1507 {
1508         i915_gem_context_unpin_hw_id(ce->gem_context);
1509         i915_gem_object_unpin_map(ce->state->obj);
1510 }
1511
1512 static void
1513 __execlists_update_reg_state(struct intel_context *ce,
1514                              struct intel_engine_cs *engine)
1515 {
1516         struct intel_ring *ring = ce->ring;
1517         u32 *regs = ce->lrc_reg_state;
1518
1519         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1520         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1521
1522         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1523         regs[CTX_RING_HEAD + 1] = ring->head;
1524         regs[CTX_RING_TAIL + 1] = ring->tail;
1525
1526         /* RPCS */
1527         if (engine->class == RENDER_CLASS)
1528                 regs[CTX_R_PWR_CLK_STATE + 1] =
1529                         intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1530 }
1531
1532 static int
1533 __execlists_context_pin(struct intel_context *ce,
1534                         struct intel_engine_cs *engine)
1535 {
1536         void *vaddr;
1537         int ret;
1538
1539         GEM_BUG_ON(!ce->gem_context->vm);
1540
1541         ret = execlists_context_deferred_alloc(ce, engine);
1542         if (ret)
1543                 goto err;
1544         GEM_BUG_ON(!ce->state);
1545
1546         ret = intel_context_active_acquire(ce,
1547                                            engine->i915->ggtt.pin_bias |
1548                                            PIN_OFFSET_BIAS |
1549                                            PIN_HIGH);
1550         if (ret)
1551                 goto err;
1552
1553         vaddr = i915_gem_object_pin_map(ce->state->obj,
1554                                         i915_coherent_map_type(engine->i915) |
1555                                         I915_MAP_OVERRIDE);
1556         if (IS_ERR(vaddr)) {
1557                 ret = PTR_ERR(vaddr);
1558                 goto unpin_active;
1559         }
1560
1561         ret = i915_gem_context_pin_hw_id(ce->gem_context);
1562         if (ret)
1563                 goto unpin_map;
1564
1565         ce->lrc_desc = lrc_descriptor(ce, engine);
1566         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1567         __execlists_update_reg_state(ce, engine);
1568
1569         return 0;
1570
1571 unpin_map:
1572         i915_gem_object_unpin_map(ce->state->obj);
1573 unpin_active:
1574         intel_context_active_release(ce);
1575 err:
1576         return ret;
1577 }
1578
1579 static int execlists_context_pin(struct intel_context *ce)
1580 {
1581         return __execlists_context_pin(ce, ce->engine);
1582 }
1583
1584 static void execlists_context_reset(struct intel_context *ce)
1585 {
1586         /*
1587          * Because we emit WA_TAIL_DWORDS there may be a disparity
1588          * between our bookkeeping in ce->ring->head and ce->ring->tail and
1589          * that stored in context. As we only write new commands from
1590          * ce->ring->tail onwards, everything before that is junk. If the GPU
1591          * starts reading from its RING_HEAD from the context, it may try to
1592          * execute that junk and die.
1593          *
1594          * The contexts that are stilled pinned on resume belong to the
1595          * kernel, and are local to each engine. All other contexts will
1596          * have their head/tail sanitized upon pinning before use, so they
1597          * will never see garbage,
1598          *
1599          * So to avoid that we reset the context images upon resume. For
1600          * simplicity, we just zero everything out.
1601          */
1602         intel_ring_reset(ce->ring, 0);
1603         __execlists_update_reg_state(ce, ce->engine);
1604 }
1605
1606 static const struct intel_context_ops execlists_context_ops = {
1607         .pin = execlists_context_pin,
1608         .unpin = execlists_context_unpin,
1609
1610         .enter = intel_context_enter_engine,
1611         .exit = intel_context_exit_engine,
1612
1613         .reset = execlists_context_reset,
1614         .destroy = execlists_context_destroy,
1615 };
1616
1617 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1618 {
1619         u32 *cs;
1620
1621         GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1622
1623         cs = intel_ring_begin(rq, 6);
1624         if (IS_ERR(cs))
1625                 return PTR_ERR(cs);
1626
1627         /*
1628          * Check if we have been preempted before we even get started.
1629          *
1630          * After this point i915_request_started() reports true, even if
1631          * we get preempted and so are no longer running.
1632          */
1633         *cs++ = MI_ARB_CHECK;
1634         *cs++ = MI_NOOP;
1635
1636         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1637         *cs++ = rq->timeline->hwsp_offset;
1638         *cs++ = 0;
1639         *cs++ = rq->fence.seqno - 1;
1640
1641         intel_ring_advance(rq, cs);
1642
1643         /* Record the updated position of the request's payload */
1644         rq->infix = intel_ring_offset(rq, cs);
1645
1646         return 0;
1647 }
1648
1649 static int emit_pdps(struct i915_request *rq)
1650 {
1651         const struct intel_engine_cs * const engine = rq->engine;
1652         struct i915_ppgtt * const ppgtt =
1653                 i915_vm_to_ppgtt(rq->gem_context->vm);
1654         int err, i;
1655         u32 *cs;
1656
1657         GEM_BUG_ON(intel_vgpu_active(rq->i915));
1658
1659         /*
1660          * Beware ye of the dragons, this sequence is magic!
1661          *
1662          * Small changes to this sequence can cause anything from
1663          * GPU hangs to forcewake errors and machine lockups!
1664          */
1665
1666         /* Flush any residual operations from the context load */
1667         err = engine->emit_flush(rq, EMIT_FLUSH);
1668         if (err)
1669                 return err;
1670
1671         /* Magic required to prevent forcewake errors! */
1672         err = engine->emit_flush(rq, EMIT_INVALIDATE);
1673         if (err)
1674                 return err;
1675
1676         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1677         if (IS_ERR(cs))
1678                 return PTR_ERR(cs);
1679
1680         /* Ensure the LRI have landed before we invalidate & continue */
1681         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1682         for (i = GEN8_3LVL_PDPES; i--; ) {
1683                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1684                 u32 base = engine->mmio_base;
1685
1686                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1687                 *cs++ = upper_32_bits(pd_daddr);
1688                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1689                 *cs++ = lower_32_bits(pd_daddr);
1690         }
1691         *cs++ = MI_NOOP;
1692
1693         intel_ring_advance(rq, cs);
1694
1695         /* Be doubly sure the LRI have landed before proceeding */
1696         err = engine->emit_flush(rq, EMIT_FLUSH);
1697         if (err)
1698                 return err;
1699
1700         /* Re-invalidate the TLB for luck */
1701         return engine->emit_flush(rq, EMIT_INVALIDATE);
1702 }
1703
1704 static int execlists_request_alloc(struct i915_request *request)
1705 {
1706         int ret;
1707
1708         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1709
1710         /*
1711          * Flush enough space to reduce the likelihood of waiting after
1712          * we start building the request - in which case we will just
1713          * have to repeat work.
1714          */
1715         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1716
1717         /*
1718          * Note that after this point, we have committed to using
1719          * this request as it is being used to both track the
1720          * state of engine initialisation and liveness of the
1721          * golden renderstate above. Think twice before you try
1722          * to cancel/unwind this request now.
1723          */
1724
1725         /* Unconditionally invalidate GPU caches and TLBs. */
1726         if (i915_vm_is_4lvl(request->gem_context->vm))
1727                 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1728         else
1729                 ret = emit_pdps(request);
1730         if (ret)
1731                 return ret;
1732
1733         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1734         return 0;
1735 }
1736
1737 /*
1738  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1739  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1740  * but there is a slight complication as this is applied in WA batch where the
1741  * values are only initialized once so we cannot take register value at the
1742  * beginning and reuse it further; hence we save its value to memory, upload a
1743  * constant value with bit21 set and then we restore it back with the saved value.
1744  * To simplify the WA, a constant value is formed by using the default value
1745  * of this register. This shouldn't be a problem because we are only modifying
1746  * it for a short period and this batch in non-premptible. We can ofcourse
1747  * use additional instructions that read the actual value of the register
1748  * at that time and set our bit of interest but it makes the WA complicated.
1749  *
1750  * This WA is also required for Gen9 so extracting as a function avoids
1751  * code duplication.
1752  */
1753 static u32 *
1754 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1755 {
1756         /* NB no one else is allowed to scribble over scratch + 256! */
1757         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1758         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1759         *batch++ = i915_scratch_offset(engine->i915) + 256;
1760         *batch++ = 0;
1761
1762         *batch++ = MI_LOAD_REGISTER_IMM(1);
1763         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1764         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1765
1766         batch = gen8_emit_pipe_control(batch,
1767                                        PIPE_CONTROL_CS_STALL |
1768                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1769                                        0);
1770
1771         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1772         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1773         *batch++ = i915_scratch_offset(engine->i915) + 256;
1774         *batch++ = 0;
1775
1776         return batch;
1777 }
1778
1779 /*
1780  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1781  * initialized at the beginning and shared across all contexts but this field
1782  * helps us to have multiple batches at different offsets and select them based
1783  * on a criteria. At the moment this batch always start at the beginning of the page
1784  * and at this point we don't have multiple wa_ctx batch buffers.
1785  *
1786  * The number of WA applied are not known at the beginning; we use this field
1787  * to return the no of DWORDS written.
1788  *
1789  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1790  * so it adds NOOPs as padding to make it cacheline aligned.
1791  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1792  * makes a complete batch buffer.
1793  */
1794 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1795 {
1796         /* WaDisableCtxRestoreArbitration:bdw,chv */
1797         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1798
1799         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1800         if (IS_BROADWELL(engine->i915))
1801                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1802
1803         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1804         /* Actual scratch location is at 128 bytes offset */
1805         batch = gen8_emit_pipe_control(batch,
1806                                        PIPE_CONTROL_FLUSH_L3 |
1807                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1808                                        PIPE_CONTROL_CS_STALL |
1809                                        PIPE_CONTROL_QW_WRITE,
1810                                        i915_scratch_offset(engine->i915) +
1811                                        2 * CACHELINE_BYTES);
1812
1813         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1814
1815         /* Pad to end of cacheline */
1816         while ((unsigned long)batch % CACHELINE_BYTES)
1817                 *batch++ = MI_NOOP;
1818
1819         /*
1820          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1821          * execution depends on the length specified in terms of cache lines
1822          * in the register CTX_RCS_INDIRECT_CTX
1823          */
1824
1825         return batch;
1826 }
1827
1828 struct lri {
1829         i915_reg_t reg;
1830         u32 value;
1831 };
1832
1833 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1834 {
1835         GEM_BUG_ON(!count || count > 63);
1836
1837         *batch++ = MI_LOAD_REGISTER_IMM(count);
1838         do {
1839                 *batch++ = i915_mmio_reg_offset(lri->reg);
1840                 *batch++ = lri->value;
1841         } while (lri++, --count);
1842         *batch++ = MI_NOOP;
1843
1844         return batch;
1845 }
1846
1847 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1848 {
1849         static const struct lri lri[] = {
1850                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1851                 {
1852                         COMMON_SLICE_CHICKEN2,
1853                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1854                                        0),
1855                 },
1856
1857                 /* BSpec: 11391 */
1858                 {
1859                         FF_SLICE_CHICKEN,
1860                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1861                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1862                 },
1863
1864                 /* BSpec: 11299 */
1865                 {
1866                         _3D_CHICKEN3,
1867                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1868                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1869                 }
1870         };
1871
1872         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1873
1874         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1875         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1876
1877         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1878
1879         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1880         if (HAS_POOLED_EU(engine->i915)) {
1881                 /*
1882                  * EU pool configuration is setup along with golden context
1883                  * during context initialization. This value depends on
1884                  * device type (2x6 or 3x6) and needs to be updated based
1885                  * on which subslice is disabled especially for 2x6
1886                  * devices, however it is safe to load default
1887                  * configuration of 3x6 device instead of masking off
1888                  * corresponding bits because HW ignores bits of a disabled
1889                  * subslice and drops down to appropriate config. Please
1890                  * see render_state_setup() in i915_gem_render_state.c for
1891                  * possible configurations, to avoid duplication they are
1892                  * not shown here again.
1893                  */
1894                 *batch++ = GEN9_MEDIA_POOL_STATE;
1895                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1896                 *batch++ = 0x00777000;
1897                 *batch++ = 0;
1898                 *batch++ = 0;
1899                 *batch++ = 0;
1900         }
1901
1902         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1903
1904         /* Pad to end of cacheline */
1905         while ((unsigned long)batch % CACHELINE_BYTES)
1906                 *batch++ = MI_NOOP;
1907
1908         return batch;
1909 }
1910
1911 static u32 *
1912 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1913 {
1914         int i;
1915
1916         /*
1917          * WaPipeControlBefore3DStateSamplePattern: cnl
1918          *
1919          * Ensure the engine is idle prior to programming a
1920          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1921          */
1922         batch = gen8_emit_pipe_control(batch,
1923                                        PIPE_CONTROL_CS_STALL,
1924                                        0);
1925         /*
1926          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1927          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1928          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1929          * confusing. Since gen8_emit_pipe_control() already advances the
1930          * batch by 6 dwords, we advance the other 10 here, completing a
1931          * cacheline. It's not clear if the workaround requires this padding
1932          * before other commands, or if it's just the regular padding we would
1933          * already have for the workaround bb, so leave it here for now.
1934          */
1935         for (i = 0; i < 10; i++)
1936                 *batch++ = MI_NOOP;
1937
1938         /* Pad to end of cacheline */
1939         while ((unsigned long)batch % CACHELINE_BYTES)
1940                 *batch++ = MI_NOOP;
1941
1942         return batch;
1943 }
1944
1945 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1946
1947 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1948 {
1949         struct drm_i915_gem_object *obj;
1950         struct i915_vma *vma;
1951         int err;
1952
1953         obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1954         if (IS_ERR(obj))
1955                 return PTR_ERR(obj);
1956
1957         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1958         if (IS_ERR(vma)) {
1959                 err = PTR_ERR(vma);
1960                 goto err;
1961         }
1962
1963         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1964         if (err)
1965                 goto err;
1966
1967         engine->wa_ctx.vma = vma;
1968         return 0;
1969
1970 err:
1971         i915_gem_object_put(obj);
1972         return err;
1973 }
1974
1975 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1976 {
1977         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1978 }
1979
1980 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1981
1982 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1983 {
1984         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1985         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1986                                             &wa_ctx->per_ctx };
1987         wa_bb_func_t wa_bb_fn[2];
1988         struct page *page;
1989         void *batch, *batch_ptr;
1990         unsigned int i;
1991         int ret;
1992
1993         if (engine->class != RENDER_CLASS)
1994                 return 0;
1995
1996         switch (INTEL_GEN(engine->i915)) {
1997         case 11:
1998                 return 0;
1999         case 10:
2000                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
2001                 wa_bb_fn[1] = NULL;
2002                 break;
2003         case 9:
2004                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
2005                 wa_bb_fn[1] = NULL;
2006                 break;
2007         case 8:
2008                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
2009                 wa_bb_fn[1] = NULL;
2010                 break;
2011         default:
2012                 MISSING_CASE(INTEL_GEN(engine->i915));
2013                 return 0;
2014         }
2015
2016         ret = lrc_setup_wa_ctx(engine);
2017         if (ret) {
2018                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
2019                 return ret;
2020         }
2021
2022         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2023         batch = batch_ptr = kmap_atomic(page);
2024
2025         /*
2026          * Emit the two workaround batch buffers, recording the offset from the
2027          * start of the workaround batch buffer object for each and their
2028          * respective sizes.
2029          */
2030         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2031                 wa_bb[i]->offset = batch_ptr - batch;
2032                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2033                                                   CACHELINE_BYTES))) {
2034                         ret = -EINVAL;
2035                         break;
2036                 }
2037                 if (wa_bb_fn[i])
2038                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2039                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2040         }
2041
2042         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2043
2044         kunmap_atomic(batch);
2045         if (ret)
2046                 lrc_destroy_wa_ctx(engine);
2047
2048         return ret;
2049 }
2050
2051 static void enable_execlists(struct intel_engine_cs *engine)
2052 {
2053         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2054
2055         if (INTEL_GEN(engine->i915) >= 11)
2056                 ENGINE_WRITE(engine,
2057                              RING_MODE_GEN7,
2058                              _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
2059         else
2060                 ENGINE_WRITE(engine,
2061                              RING_MODE_GEN7,
2062                              _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
2063
2064         ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2065
2066         ENGINE_WRITE(engine,
2067                      RING_HWS_PGA,
2068                      i915_ggtt_offset(engine->status_page.vma));
2069         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2070 }
2071
2072 static bool unexpected_starting_state(struct intel_engine_cs *engine)
2073 {
2074         bool unexpected = false;
2075
2076         if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2077                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2078                 unexpected = true;
2079         }
2080
2081         return unexpected;
2082 }
2083
2084 static int execlists_resume(struct intel_engine_cs *engine)
2085 {
2086         intel_engine_apply_workarounds(engine);
2087         intel_engine_apply_whitelist(engine);
2088
2089         intel_mocs_init_engine(engine);
2090
2091         intel_engine_reset_breadcrumbs(engine);
2092
2093         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2094                 struct drm_printer p = drm_debug_printer(__func__);
2095
2096                 intel_engine_dump(engine, &p, NULL);
2097         }
2098
2099         enable_execlists(engine);
2100
2101         return 0;
2102 }
2103
2104 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2105 {
2106         struct intel_engine_execlists * const execlists = &engine->execlists;
2107         unsigned long flags;
2108
2109         GEM_TRACE("%s: depth<-%d\n", engine->name,
2110                   atomic_read(&execlists->tasklet.count));
2111
2112         /*
2113          * Prevent request submission to the hardware until we have
2114          * completed the reset in i915_gem_reset_finish(). If a request
2115          * is completed by one engine, it may then queue a request
2116          * to a second via its execlists->tasklet *just* as we are
2117          * calling engine->resume() and also writing the ELSP.
2118          * Turning off the execlists->tasklet until the reset is over
2119          * prevents the race.
2120          */
2121         __tasklet_disable_sync_once(&execlists->tasklet);
2122         GEM_BUG_ON(!reset_in_progress(execlists));
2123
2124         intel_engine_stop_cs(engine);
2125
2126         /* And flush any current direct submission. */
2127         spin_lock_irqsave(&engine->active.lock, flags);
2128         spin_unlock_irqrestore(&engine->active.lock, flags);
2129 }
2130
2131 static void reset_csb_pointers(struct intel_engine_cs *engine)
2132 {
2133         struct intel_engine_execlists * const execlists = &engine->execlists;
2134         const unsigned int reset_value = execlists->csb_size - 1;
2135
2136         ring_set_paused(engine, 0);
2137
2138         /*
2139          * After a reset, the HW starts writing into CSB entry [0]. We
2140          * therefore have to set our HEAD pointer back one entry so that
2141          * the *first* entry we check is entry 0. To complicate this further,
2142          * as we don't wait for the first interrupt after reset, we have to
2143          * fake the HW write to point back to the last entry so that our
2144          * inline comparison of our cached head position against the last HW
2145          * write works even before the first interrupt.
2146          */
2147         execlists->csb_head = reset_value;
2148         WRITE_ONCE(*execlists->csb_write, reset_value);
2149         wmb(); /* Make sure this is visible to HW (paranoia?) */
2150
2151         invalidate_csb_entries(&execlists->csb_status[0],
2152                                &execlists->csb_status[reset_value]);
2153 }
2154
2155 static struct i915_request *active_request(struct i915_request *rq)
2156 {
2157         const struct list_head * const list = &rq->engine->active.requests;
2158         const struct intel_context * const context = rq->hw_context;
2159         struct i915_request *active = NULL;
2160
2161         list_for_each_entry_from_reverse(rq, list, sched.link) {
2162                 if (i915_request_completed(rq))
2163                         break;
2164
2165                 if (rq->hw_context != context)
2166                         break;
2167
2168                 active = rq;
2169         }
2170
2171         return active;
2172 }
2173
2174 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2175 {
2176         struct intel_engine_execlists * const execlists = &engine->execlists;
2177         struct intel_context *ce;
2178         struct i915_request *rq;
2179         u32 *regs;
2180
2181         process_csb(engine); /* drain preemption events */
2182
2183         /* Following the reset, we need to reload the CSB read/write pointers */
2184         reset_csb_pointers(engine);
2185
2186         /*
2187          * Save the currently executing context, even if we completed
2188          * its request, it was still running at the time of the
2189          * reset and will have been clobbered.
2190          */
2191         rq = execlists_active(execlists);
2192         if (!rq)
2193                 return;
2194
2195         ce = rq->hw_context;
2196         GEM_BUG_ON(i915_active_is_idle(&ce->active));
2197         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2198         rq = active_request(rq);
2199
2200         /*
2201          * Catch up with any missed context-switch interrupts.
2202          *
2203          * Ideally we would just read the remaining CSB entries now that we
2204          * know the gpu is idle. However, the CSB registers are sometimes^W
2205          * often trashed across a GPU reset! Instead we have to rely on
2206          * guessing the missed context-switch events by looking at what
2207          * requests were completed.
2208          */
2209         execlists_cancel_port_requests(execlists);
2210
2211         if (!rq) {
2212                 ce->ring->head = ce->ring->tail;
2213                 goto out_replay;
2214         }
2215
2216         ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2217
2218         /*
2219          * If this request hasn't started yet, e.g. it is waiting on a
2220          * semaphore, we need to avoid skipping the request or else we
2221          * break the signaling chain. However, if the context is corrupt
2222          * the request will not restart and we will be stuck with a wedged
2223          * device. It is quite often the case that if we issue a reset
2224          * while the GPU is loading the context image, that the context
2225          * image becomes corrupt.
2226          *
2227          * Otherwise, if we have not started yet, the request should replay
2228          * perfectly and we do not need to flag the result as being erroneous.
2229          */
2230         if (!i915_request_started(rq))
2231                 goto out_replay;
2232
2233         /*
2234          * If the request was innocent, we leave the request in the ELSP
2235          * and will try to replay it on restarting. The context image may
2236          * have been corrupted by the reset, in which case we may have
2237          * to service a new GPU hang, but more likely we can continue on
2238          * without impact.
2239          *
2240          * If the request was guilty, we presume the context is corrupt
2241          * and have to at least restore the RING register in the context
2242          * image back to the expected values to skip over the guilty request.
2243          */
2244         i915_reset_request(rq, stalled);
2245         if (!stalled)
2246                 goto out_replay;
2247
2248         /*
2249          * We want a simple context + ring to execute the breadcrumb update.
2250          * We cannot rely on the context being intact across the GPU hang,
2251          * so clear it and rebuild just what we need for the breadcrumb.
2252          * All pending requests for this context will be zapped, and any
2253          * future request will be after userspace has had the opportunity
2254          * to recreate its own state.
2255          */
2256         regs = ce->lrc_reg_state;
2257         if (engine->pinned_default_state) {
2258                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2259                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2260                        engine->context_size - PAGE_SIZE);
2261         }
2262         execlists_init_reg_state(regs, ce, engine, ce->ring);
2263
2264 out_replay:
2265         GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
2266                   engine->name, ce->ring->head, ce->ring->tail);
2267         intel_ring_update_space(ce->ring);
2268         __execlists_update_reg_state(ce, engine);
2269
2270         /* Push back any incomplete requests for replay after the reset. */
2271         __unwind_incomplete_requests(engine);
2272 }
2273
2274 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2275 {
2276         unsigned long flags;
2277
2278         GEM_TRACE("%s\n", engine->name);
2279
2280         spin_lock_irqsave(&engine->active.lock, flags);
2281
2282         __execlists_reset(engine, stalled);
2283
2284         spin_unlock_irqrestore(&engine->active.lock, flags);
2285 }
2286
2287 static void nop_submission_tasklet(unsigned long data)
2288 {
2289         /* The driver is wedged; don't process any more events. */
2290 }
2291
2292 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2293 {
2294         struct intel_engine_execlists * const execlists = &engine->execlists;
2295         struct i915_request *rq, *rn;
2296         struct rb_node *rb;
2297         unsigned long flags;
2298
2299         GEM_TRACE("%s\n", engine->name);
2300
2301         /*
2302          * Before we call engine->cancel_requests(), we should have exclusive
2303          * access to the submission state. This is arranged for us by the
2304          * caller disabling the interrupt generation, the tasklet and other
2305          * threads that may then access the same state, giving us a free hand
2306          * to reset state. However, we still need to let lockdep be aware that
2307          * we know this state may be accessed in hardirq context, so we
2308          * disable the irq around this manipulation and we want to keep
2309          * the spinlock focused on its duties and not accidentally conflate
2310          * coverage to the submission's irq state. (Similarly, although we
2311          * shouldn't need to disable irq around the manipulation of the
2312          * submission's irq state, we also wish to remind ourselves that
2313          * it is irq state.)
2314          */
2315         spin_lock_irqsave(&engine->active.lock, flags);
2316
2317         __execlists_reset(engine, true);
2318
2319         /* Mark all executing requests as skipped. */
2320         list_for_each_entry(rq, &engine->active.requests, sched.link) {
2321                 if (!i915_request_signaled(rq))
2322                         dma_fence_set_error(&rq->fence, -EIO);
2323
2324                 i915_request_mark_complete(rq);
2325         }
2326
2327         /* Flush the queued requests to the timeline list (for retiring). */
2328         while ((rb = rb_first_cached(&execlists->queue))) {
2329                 struct i915_priolist *p = to_priolist(rb);
2330                 int i;
2331
2332                 priolist_for_each_request_consume(rq, rn, p, i) {
2333                         list_del_init(&rq->sched.link);
2334                         __i915_request_submit(rq);
2335                         dma_fence_set_error(&rq->fence, -EIO);
2336                         i915_request_mark_complete(rq);
2337                 }
2338
2339                 rb_erase_cached(&p->node, &execlists->queue);
2340                 i915_priolist_free(p);
2341         }
2342
2343         /* Cancel all attached virtual engines */
2344         while ((rb = rb_first_cached(&execlists->virtual))) {
2345                 struct virtual_engine *ve =
2346                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2347
2348                 rb_erase_cached(rb, &execlists->virtual);
2349                 RB_CLEAR_NODE(rb);
2350
2351                 spin_lock(&ve->base.active.lock);
2352                 if (ve->request) {
2353                         ve->request->engine = engine;
2354                         __i915_request_submit(ve->request);
2355                         dma_fence_set_error(&ve->request->fence, -EIO);
2356                         i915_request_mark_complete(ve->request);
2357                         ve->base.execlists.queue_priority_hint = INT_MIN;
2358                         ve->request = NULL;
2359                 }
2360                 spin_unlock(&ve->base.active.lock);
2361         }
2362
2363         /* Remaining _unready_ requests will be nop'ed when submitted */
2364
2365         execlists->queue_priority_hint = INT_MIN;
2366         execlists->queue = RB_ROOT_CACHED;
2367
2368         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2369         execlists->tasklet.func = nop_submission_tasklet;
2370
2371         spin_unlock_irqrestore(&engine->active.lock, flags);
2372 }
2373
2374 static void execlists_reset_finish(struct intel_engine_cs *engine)
2375 {
2376         struct intel_engine_execlists * const execlists = &engine->execlists;
2377
2378         /*
2379          * After a GPU reset, we may have requests to replay. Do so now while
2380          * we still have the forcewake to be sure that the GPU is not allowed
2381          * to sleep before we restart and reload a context.
2382          */
2383         GEM_BUG_ON(!reset_in_progress(execlists));
2384         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2385                 execlists->tasklet.func(execlists->tasklet.data);
2386
2387         if (__tasklet_enable(&execlists->tasklet))
2388                 /* And kick in case we missed a new request submission. */
2389                 tasklet_hi_schedule(&execlists->tasklet);
2390         GEM_TRACE("%s: depth->%d\n", engine->name,
2391                   atomic_read(&execlists->tasklet.count));
2392 }
2393
2394 static int gen8_emit_bb_start(struct i915_request *rq,
2395                               u64 offset, u32 len,
2396                               const unsigned int flags)
2397 {
2398         u32 *cs;
2399
2400         cs = intel_ring_begin(rq, 4);
2401         if (IS_ERR(cs))
2402                 return PTR_ERR(cs);
2403
2404         /*
2405          * WaDisableCtxRestoreArbitration:bdw,chv
2406          *
2407          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2408          * particular all the gen that do not need the w/a at all!), if we
2409          * took care to make sure that on every switch into this context
2410          * (both ordinary and for preemption) that arbitrartion was enabled
2411          * we would be fine.  However, for gen8 there is another w/a that
2412          * requires us to not preempt inside GPGPU execution, so we keep
2413          * arbitration disabled for gen8 batches. Arbitration will be
2414          * re-enabled before we close the request
2415          * (engine->emit_fini_breadcrumb).
2416          */
2417         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2418
2419         /* FIXME(BDW+): Address space and security selectors. */
2420         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2421                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2422         *cs++ = lower_32_bits(offset);
2423         *cs++ = upper_32_bits(offset);
2424
2425         intel_ring_advance(rq, cs);
2426
2427         return 0;
2428 }
2429
2430 static int gen9_emit_bb_start(struct i915_request *rq,
2431                               u64 offset, u32 len,
2432                               const unsigned int flags)
2433 {
2434         u32 *cs;
2435
2436         cs = intel_ring_begin(rq, 6);
2437         if (IS_ERR(cs))
2438                 return PTR_ERR(cs);
2439
2440         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2441
2442         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2443                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2444         *cs++ = lower_32_bits(offset);
2445         *cs++ = upper_32_bits(offset);
2446
2447         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2448         *cs++ = MI_NOOP;
2449
2450         intel_ring_advance(rq, cs);
2451
2452         return 0;
2453 }
2454
2455 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2456 {
2457         ENGINE_WRITE(engine, RING_IMR,
2458                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
2459         ENGINE_POSTING_READ(engine, RING_IMR);
2460 }
2461
2462 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2463 {
2464         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2465 }
2466
2467 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2468 {
2469         u32 cmd, *cs;
2470
2471         cs = intel_ring_begin(request, 4);
2472         if (IS_ERR(cs))
2473                 return PTR_ERR(cs);
2474
2475         cmd = MI_FLUSH_DW + 1;
2476
2477         /* We always require a command barrier so that subsequent
2478          * commands, such as breadcrumb interrupts, are strictly ordered
2479          * wrt the contents of the write cache being flushed to memory
2480          * (and thus being coherent from the CPU).
2481          */
2482         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2483
2484         if (mode & EMIT_INVALIDATE) {
2485                 cmd |= MI_INVALIDATE_TLB;
2486                 if (request->engine->class == VIDEO_DECODE_CLASS)
2487                         cmd |= MI_INVALIDATE_BSD;
2488         }
2489
2490         *cs++ = cmd;
2491         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2492         *cs++ = 0; /* upper addr */
2493         *cs++ = 0; /* value */
2494         intel_ring_advance(request, cs);
2495
2496         return 0;
2497 }
2498
2499 static int gen8_emit_flush_render(struct i915_request *request,
2500                                   u32 mode)
2501 {
2502         struct intel_engine_cs *engine = request->engine;
2503         u32 scratch_addr =
2504                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2505         bool vf_flush_wa = false, dc_flush_wa = false;
2506         u32 *cs, flags = 0;
2507         int len;
2508
2509         flags |= PIPE_CONTROL_CS_STALL;
2510
2511         if (mode & EMIT_FLUSH) {
2512                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2513                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2514                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2515                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2516         }
2517
2518         if (mode & EMIT_INVALIDATE) {
2519                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2520                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2521                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2522                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2523                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2524                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2525                 flags |= PIPE_CONTROL_QW_WRITE;
2526                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2527
2528                 /*
2529                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2530                  * pipe control.
2531                  */
2532                 if (IS_GEN(request->i915, 9))
2533                         vf_flush_wa = true;
2534
2535                 /* WaForGAMHang:kbl */
2536                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2537                         dc_flush_wa = true;
2538         }
2539
2540         len = 6;
2541
2542         if (vf_flush_wa)
2543                 len += 6;
2544
2545         if (dc_flush_wa)
2546                 len += 12;
2547
2548         cs = intel_ring_begin(request, len);
2549         if (IS_ERR(cs))
2550                 return PTR_ERR(cs);
2551
2552         if (vf_flush_wa)
2553                 cs = gen8_emit_pipe_control(cs, 0, 0);
2554
2555         if (dc_flush_wa)
2556                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2557                                             0);
2558
2559         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2560
2561         if (dc_flush_wa)
2562                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2563
2564         intel_ring_advance(request, cs);
2565
2566         return 0;
2567 }
2568
2569 /*
2570  * Reserve space for 2 NOOPs at the end of each request to be
2571  * used as a workaround for not being allowed to do lite
2572  * restore with HEAD==TAIL (WaIdleLiteRestore).
2573  */
2574 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2575 {
2576         /* Ensure there's always at least one preemption point per-request. */
2577         *cs++ = MI_ARB_CHECK;
2578         *cs++ = MI_NOOP;
2579         request->wa_tail = intel_ring_offset(request, cs);
2580
2581         return cs;
2582 }
2583
2584 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
2585 {
2586         *cs++ = MI_SEMAPHORE_WAIT |
2587                 MI_SEMAPHORE_GLOBAL_GTT |
2588                 MI_SEMAPHORE_POLL |
2589                 MI_SEMAPHORE_SAD_EQ_SDD;
2590         *cs++ = 0;
2591         *cs++ = intel_hws_preempt_address(request->engine);
2592         *cs++ = 0;
2593
2594         return cs;
2595 }
2596
2597 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2598 {
2599         cs = gen8_emit_ggtt_write(cs,
2600                                   request->fence.seqno,
2601                                   request->timeline->hwsp_offset,
2602                                   0);
2603         *cs++ = MI_USER_INTERRUPT;
2604
2605         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2606         cs = emit_preempt_busywait(request, cs);
2607
2608         request->tail = intel_ring_offset(request, cs);
2609         assert_ring_tail_valid(request->ring, request->tail);
2610
2611         return gen8_emit_wa_tail(request, cs);
2612 }
2613
2614 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2615 {
2616         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2617         cs = gen8_emit_ggtt_write_rcs(cs,
2618                                       request->fence.seqno,
2619                                       request->timeline->hwsp_offset,
2620                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2621                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2622                                       PIPE_CONTROL_DC_FLUSH_ENABLE);
2623         cs = gen8_emit_pipe_control(cs,
2624                                     PIPE_CONTROL_FLUSH_ENABLE |
2625                                     PIPE_CONTROL_CS_STALL,
2626                                     0);
2627         *cs++ = MI_USER_INTERRUPT;
2628
2629         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2630         cs = emit_preempt_busywait(request, cs);
2631
2632         request->tail = intel_ring_offset(request, cs);
2633         assert_ring_tail_valid(request->ring, request->tail);
2634
2635         return gen8_emit_wa_tail(request, cs);
2636 }
2637
2638 static int gen8_init_rcs_context(struct i915_request *rq)
2639 {
2640         int ret;
2641
2642         ret = intel_engine_emit_ctx_wa(rq);
2643         if (ret)
2644                 return ret;
2645
2646         ret = intel_rcs_context_init_mocs(rq);
2647         /*
2648          * Failing to program the MOCS is non-fatal.The system will not
2649          * run at peak performance. So generate an error and carry on.
2650          */
2651         if (ret)
2652                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2653
2654         return i915_gem_render_state_emit(rq);
2655 }
2656
2657 static void execlists_park(struct intel_engine_cs *engine)
2658 {
2659         del_timer_sync(&engine->execlists.timer);
2660         intel_engine_park(engine);
2661 }
2662
2663 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2664 {
2665         engine->submit_request = execlists_submit_request;
2666         engine->cancel_requests = execlists_cancel_requests;
2667         engine->schedule = i915_schedule;
2668         engine->execlists.tasklet.func = execlists_submission_tasklet;
2669
2670         engine->reset.prepare = execlists_reset_prepare;
2671         engine->reset.reset = execlists_reset;
2672         engine->reset.finish = execlists_reset_finish;
2673
2674         engine->park = execlists_park;
2675         engine->unpark = NULL;
2676
2677         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2678         if (!intel_vgpu_active(engine->i915))
2679                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2680         if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2681                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2682 }
2683
2684 static void execlists_destroy(struct intel_engine_cs *engine)
2685 {
2686         intel_engine_cleanup_common(engine);
2687         lrc_destroy_wa_ctx(engine);
2688         kfree(engine);
2689 }
2690
2691 static void
2692 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2693 {
2694         /* Default vfuncs which can be overriden by each engine. */
2695
2696         engine->destroy = execlists_destroy;
2697         engine->resume = execlists_resume;
2698
2699         engine->reset.prepare = execlists_reset_prepare;
2700         engine->reset.reset = execlists_reset;
2701         engine->reset.finish = execlists_reset_finish;
2702
2703         engine->cops = &execlists_context_ops;
2704         engine->request_alloc = execlists_request_alloc;
2705
2706         engine->emit_flush = gen8_emit_flush;
2707         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2708         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2709
2710         engine->set_default_submission = intel_execlists_set_default_submission;
2711
2712         if (INTEL_GEN(engine->i915) < 11) {
2713                 engine->irq_enable = gen8_logical_ring_enable_irq;
2714                 engine->irq_disable = gen8_logical_ring_disable_irq;
2715         } else {
2716                 /*
2717                  * TODO: On Gen11 interrupt masks need to be clear
2718                  * to allow C6 entry. Keep interrupts enabled at
2719                  * and take the hit of generating extra interrupts
2720                  * until a more refined solution exists.
2721                  */
2722         }
2723         if (IS_GEN(engine->i915, 8))
2724                 engine->emit_bb_start = gen8_emit_bb_start;
2725         else
2726                 engine->emit_bb_start = gen9_emit_bb_start;
2727 }
2728
2729 static inline void
2730 logical_ring_default_irqs(struct intel_engine_cs *engine)
2731 {
2732         unsigned int shift = 0;
2733
2734         if (INTEL_GEN(engine->i915) < 11) {
2735                 const u8 irq_shifts[] = {
2736                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2737                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2738                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2739                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2740                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
2741                 };
2742
2743                 shift = irq_shifts[engine->id];
2744         }
2745
2746         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2747         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2748 }
2749
2750 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2751 {
2752         /* Intentionally left blank. */
2753         engine->buffer = NULL;
2754
2755         tasklet_init(&engine->execlists.tasklet,
2756                      execlists_submission_tasklet, (unsigned long)engine);
2757         timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
2758
2759         logical_ring_default_vfuncs(engine);
2760         logical_ring_default_irqs(engine);
2761
2762         if (engine->class == RENDER_CLASS) {
2763                 engine->init_context = gen8_init_rcs_context;
2764                 engine->emit_flush = gen8_emit_flush_render;
2765                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2766         }
2767
2768         return 0;
2769 }
2770
2771 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2772 {
2773         struct intel_engine_execlists * const execlists = &engine->execlists;
2774         struct drm_i915_private *i915 = engine->i915;
2775         struct intel_uncore *uncore = engine->uncore;
2776         u32 base = engine->mmio_base;
2777         int ret;
2778
2779         ret = intel_engine_init_common(engine);
2780         if (ret)
2781                 return ret;
2782
2783         intel_engine_init_workarounds(engine);
2784         intel_engine_init_whitelist(engine);
2785
2786         if (intel_init_workaround_bb(engine))
2787                 /*
2788                  * We continue even if we fail to initialize WA batch
2789                  * because we only expect rare glitches but nothing
2790                  * critical to prevent us from using GPU
2791                  */
2792                 DRM_ERROR("WA batch buffer initialization failed\n");
2793
2794         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2795                 execlists->submit_reg = uncore->regs +
2796                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2797                 execlists->ctrl_reg = uncore->regs +
2798                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2799         } else {
2800                 execlists->submit_reg = uncore->regs +
2801                         i915_mmio_reg_offset(RING_ELSP(base));
2802         }
2803
2804         execlists->csb_status =
2805                 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2806
2807         execlists->csb_write =
2808                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2809
2810         if (INTEL_GEN(i915) < 11)
2811                 execlists->csb_size = GEN8_CSB_ENTRIES;
2812         else
2813                 execlists->csb_size = GEN11_CSB_ENTRIES;
2814
2815         reset_csb_pointers(engine);
2816
2817         return 0;
2818 }
2819
2820 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2821 {
2822         u32 indirect_ctx_offset;
2823
2824         switch (INTEL_GEN(engine->i915)) {
2825         default:
2826                 MISSING_CASE(INTEL_GEN(engine->i915));
2827                 /* fall through */
2828         case 11:
2829                 indirect_ctx_offset =
2830                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2831                 break;
2832         case 10:
2833                 indirect_ctx_offset =
2834                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2835                 break;
2836         case 9:
2837                 indirect_ctx_offset =
2838                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2839                 break;
2840         case 8:
2841                 indirect_ctx_offset =
2842                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2843                 break;
2844         }
2845
2846         return indirect_ctx_offset;
2847 }
2848
2849 static void execlists_init_reg_state(u32 *regs,
2850                                      struct intel_context *ce,
2851                                      struct intel_engine_cs *engine,
2852                                      struct intel_ring *ring)
2853 {
2854         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2855         bool rcs = engine->class == RENDER_CLASS;
2856         u32 base = engine->mmio_base;
2857
2858         /*
2859          * A context is actually a big batch buffer with several
2860          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2861          * values we are setting here are only for the first context restore:
2862          * on a subsequent save, the GPU will recreate this batchbuffer with new
2863          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2864          * we are not initializing here).
2865          *
2866          * Must keep consistent with virtual_update_register_offsets().
2867          */
2868         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2869                                  MI_LRI_FORCE_POSTED;
2870
2871         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2872                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2873                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2874         if (INTEL_GEN(engine->i915) < 11) {
2875                 regs[CTX_CONTEXT_CONTROL + 1] |=
2876                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2877                                             CTX_CTRL_RS_CTX_ENABLE);
2878         }
2879         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2880         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2881         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2882         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2883                 RING_CTL_SIZE(ring->size) | RING_VALID);
2884         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2885         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2886         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2887         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2888         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2889         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2890         if (rcs) {
2891                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2892
2893                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2894                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2895                         RING_INDIRECT_CTX_OFFSET(base), 0);
2896                 if (wa_ctx->indirect_ctx.size) {
2897                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2898
2899                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2900                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2901                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2902
2903                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2904                                 intel_lr_indirect_ctx_offset(engine) << 6;
2905                 }
2906
2907                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2908                 if (wa_ctx->per_ctx.size) {
2909                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2910
2911                         regs[CTX_BB_PER_CTX_PTR + 1] =
2912                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2913                 }
2914         }
2915
2916         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2917
2918         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2919         /* PDP values well be assigned later if needed */
2920         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2921         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2922         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2923         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2924         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2925         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2926         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2927         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2928
2929         if (i915_vm_is_4lvl(&ppgtt->vm)) {
2930                 /* 64b PPGTT (48bit canonical)
2931                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2932                  * other PDP Descriptors are ignored.
2933                  */
2934                 ASSIGN_CTX_PML4(ppgtt, regs);
2935         } else {
2936                 ASSIGN_CTX_PDP(ppgtt, regs, 3);
2937                 ASSIGN_CTX_PDP(ppgtt, regs, 2);
2938                 ASSIGN_CTX_PDP(ppgtt, regs, 1);
2939                 ASSIGN_CTX_PDP(ppgtt, regs, 0);
2940         }
2941
2942         if (rcs) {
2943                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2944                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2945
2946                 i915_oa_init_reg_state(engine, ce, regs);
2947         }
2948
2949         regs[CTX_END] = MI_BATCH_BUFFER_END;
2950         if (INTEL_GEN(engine->i915) >= 10)
2951                 regs[CTX_END] |= BIT(0);
2952 }
2953
2954 static int
2955 populate_lr_context(struct intel_context *ce,
2956                     struct drm_i915_gem_object *ctx_obj,
2957                     struct intel_engine_cs *engine,
2958                     struct intel_ring *ring)
2959 {
2960         void *vaddr;
2961         u32 *regs;
2962         int ret;
2963
2964         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2965         if (IS_ERR(vaddr)) {
2966                 ret = PTR_ERR(vaddr);
2967                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2968                 return ret;
2969         }
2970
2971         if (engine->default_state) {
2972                 /*
2973                  * We only want to copy over the template context state;
2974                  * skipping over the headers reserved for GuC communication,
2975                  * leaving those as zero.
2976                  */
2977                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2978                 void *defaults;
2979
2980                 defaults = i915_gem_object_pin_map(engine->default_state,
2981                                                    I915_MAP_WB);
2982                 if (IS_ERR(defaults)) {
2983                         ret = PTR_ERR(defaults);
2984                         goto err_unpin_ctx;
2985                 }
2986
2987                 memcpy(vaddr + start, defaults + start, engine->context_size);
2988                 i915_gem_object_unpin_map(engine->default_state);
2989         }
2990
2991         /* The second page of the context object contains some fields which must
2992          * be set up prior to the first execution. */
2993         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2994         execlists_init_reg_state(regs, ce, engine, ring);
2995         if (!engine->default_state)
2996                 regs[CTX_CONTEXT_CONTROL + 1] |=
2997                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2998
2999         ret = 0;
3000 err_unpin_ctx:
3001         __i915_gem_object_flush_map(ctx_obj,
3002                                     LRC_HEADER_PAGES * PAGE_SIZE,
3003                                     engine->context_size);
3004         i915_gem_object_unpin_map(ctx_obj);
3005         return ret;
3006 }
3007
3008 static struct i915_timeline *
3009 get_timeline(struct i915_gem_context *ctx, struct intel_gt *gt)
3010 {
3011         if (ctx->timeline)
3012                 return i915_timeline_get(ctx->timeline);
3013         else
3014                 return i915_timeline_create(gt, NULL);
3015 }
3016
3017 static int execlists_context_deferred_alloc(struct intel_context *ce,
3018                                             struct intel_engine_cs *engine)
3019 {
3020         struct drm_i915_gem_object *ctx_obj;
3021         struct i915_vma *vma;
3022         u32 context_size;
3023         struct intel_ring *ring;
3024         struct i915_timeline *timeline;
3025         int ret;
3026
3027         if (ce->state)
3028                 return 0;
3029
3030         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3031
3032         /*
3033          * Before the actual start of the context image, we insert a few pages
3034          * for our own use and for sharing with the GuC.
3035          */
3036         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3037
3038         ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3039         if (IS_ERR(ctx_obj))
3040                 return PTR_ERR(ctx_obj);
3041
3042         vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3043         if (IS_ERR(vma)) {
3044                 ret = PTR_ERR(vma);
3045                 goto error_deref_obj;
3046         }
3047
3048         timeline = get_timeline(ce->gem_context, engine->gt);
3049         if (IS_ERR(timeline)) {
3050                 ret = PTR_ERR(timeline);
3051                 goto error_deref_obj;
3052         }
3053
3054         ring = intel_engine_create_ring(engine,
3055                                         timeline,
3056                                         ce->gem_context->ring_size);
3057         i915_timeline_put(timeline);
3058         if (IS_ERR(ring)) {
3059                 ret = PTR_ERR(ring);
3060                 goto error_deref_obj;
3061         }
3062
3063         ret = populate_lr_context(ce, ctx_obj, engine, ring);
3064         if (ret) {
3065                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3066                 goto error_ring_free;
3067         }
3068
3069         ce->ring = ring;
3070         ce->state = vma;
3071
3072         return 0;
3073
3074 error_ring_free:
3075         intel_ring_put(ring);
3076 error_deref_obj:
3077         i915_gem_object_put(ctx_obj);
3078         return ret;
3079 }
3080
3081 static struct list_head *virtual_queue(struct virtual_engine *ve)
3082 {
3083         return &ve->base.execlists.default_priolist.requests[0];
3084 }
3085
3086 static void virtual_context_destroy(struct kref *kref)
3087 {
3088         struct virtual_engine *ve =
3089                 container_of(kref, typeof(*ve), context.ref);
3090         unsigned int n;
3091
3092         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3093         GEM_BUG_ON(ve->request);
3094         GEM_BUG_ON(ve->context.inflight);
3095
3096         for (n = 0; n < ve->num_siblings; n++) {
3097                 struct intel_engine_cs *sibling = ve->siblings[n];
3098                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3099
3100                 if (RB_EMPTY_NODE(node))
3101                         continue;
3102
3103                 spin_lock_irq(&sibling->active.lock);
3104
3105                 /* Detachment is lazily performed in the execlists tasklet */
3106                 if (!RB_EMPTY_NODE(node))
3107                         rb_erase_cached(node, &sibling->execlists.virtual);
3108
3109                 spin_unlock_irq(&sibling->active.lock);
3110         }
3111         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3112
3113         if (ve->context.state)
3114                 __execlists_context_fini(&ve->context);
3115
3116         kfree(ve->bonds);
3117         kfree(ve);
3118 }
3119
3120 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3121 {
3122         int swp;
3123
3124         /*
3125          * Pick a random sibling on starting to help spread the load around.
3126          *
3127          * New contexts are typically created with exactly the same order
3128          * of siblings, and often started in batches. Due to the way we iterate
3129          * the array of sibling when submitting requests, sibling[0] is
3130          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3131          * randomised across the system, we also help spread the load by the
3132          * first engine we inspect being different each time.
3133          *
3134          * NB This does not force us to execute on this engine, it will just
3135          * typically be the first we inspect for submission.
3136          */
3137         swp = prandom_u32_max(ve->num_siblings);
3138         if (!swp)
3139                 return;
3140
3141         swap(ve->siblings[swp], ve->siblings[0]);
3142         virtual_update_register_offsets(ve->context.lrc_reg_state,
3143                                         ve->siblings[0]);
3144 }
3145
3146 static int virtual_context_pin(struct intel_context *ce)
3147 {
3148         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3149         int err;
3150
3151         /* Note: we must use a real engine class for setting up reg state */
3152         err = __execlists_context_pin(ce, ve->siblings[0]);
3153         if (err)
3154                 return err;
3155
3156         virtual_engine_initial_hint(ve);
3157         return 0;
3158 }
3159
3160 static void virtual_context_enter(struct intel_context *ce)
3161 {
3162         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3163         unsigned int n;
3164
3165         for (n = 0; n < ve->num_siblings; n++)
3166                 intel_engine_pm_get(ve->siblings[n]);
3167 }
3168
3169 static void virtual_context_exit(struct intel_context *ce)
3170 {
3171         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3172         unsigned int n;
3173
3174         for (n = 0; n < ve->num_siblings; n++)
3175                 intel_engine_pm_put(ve->siblings[n]);
3176 }
3177
3178 static const struct intel_context_ops virtual_context_ops = {
3179         .pin = virtual_context_pin,
3180         .unpin = execlists_context_unpin,
3181
3182         .enter = virtual_context_enter,
3183         .exit = virtual_context_exit,
3184
3185         .destroy = virtual_context_destroy,
3186 };
3187
3188 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3189 {
3190         struct i915_request *rq;
3191         intel_engine_mask_t mask;
3192
3193         rq = READ_ONCE(ve->request);
3194         if (!rq)
3195                 return 0;
3196
3197         /* The rq is ready for submission; rq->execution_mask is now stable. */
3198         mask = rq->execution_mask;
3199         if (unlikely(!mask)) {
3200                 /* Invalid selection, submit to a random engine in error */
3201                 i915_request_skip(rq, -ENODEV);
3202                 mask = ve->siblings[0]->mask;
3203         }
3204
3205         GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3206                   ve->base.name,
3207                   rq->fence.context, rq->fence.seqno,
3208                   mask, ve->base.execlists.queue_priority_hint);
3209
3210         return mask;
3211 }
3212
3213 static void virtual_submission_tasklet(unsigned long data)
3214 {
3215         struct virtual_engine * const ve = (struct virtual_engine *)data;
3216         const int prio = ve->base.execlists.queue_priority_hint;
3217         intel_engine_mask_t mask;
3218         unsigned int n;
3219
3220         rcu_read_lock();
3221         mask = virtual_submission_mask(ve);
3222         rcu_read_unlock();
3223         if (unlikely(!mask))
3224                 return;
3225
3226         local_irq_disable();
3227         for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3228                 struct intel_engine_cs *sibling = ve->siblings[n];
3229                 struct ve_node * const node = &ve->nodes[sibling->id];
3230                 struct rb_node **parent, *rb;
3231                 bool first;
3232
3233                 if (unlikely(!(mask & sibling->mask))) {
3234                         if (!RB_EMPTY_NODE(&node->rb)) {
3235                                 spin_lock(&sibling->active.lock);
3236                                 rb_erase_cached(&node->rb,
3237                                                 &sibling->execlists.virtual);
3238                                 RB_CLEAR_NODE(&node->rb);
3239                                 spin_unlock(&sibling->active.lock);
3240                         }
3241                         continue;
3242                 }
3243
3244                 spin_lock(&sibling->active.lock);
3245
3246                 if (!RB_EMPTY_NODE(&node->rb)) {
3247                         /*
3248                          * Cheat and avoid rebalancing the tree if we can
3249                          * reuse this node in situ.
3250                          */
3251                         first = rb_first_cached(&sibling->execlists.virtual) ==
3252                                 &node->rb;
3253                         if (prio == node->prio || (prio > node->prio && first))
3254                                 goto submit_engine;
3255
3256                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3257                 }
3258
3259                 rb = NULL;
3260                 first = true;
3261                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3262                 while (*parent) {
3263                         struct ve_node *other;
3264
3265                         rb = *parent;
3266                         other = rb_entry(rb, typeof(*other), rb);
3267                         if (prio > other->prio) {
3268                                 parent = &rb->rb_left;
3269                         } else {
3270                                 parent = &rb->rb_right;
3271                                 first = false;
3272                         }
3273                 }
3274
3275                 rb_link_node(&node->rb, rb, parent);
3276                 rb_insert_color_cached(&node->rb,
3277                                        &sibling->execlists.virtual,
3278                                        first);
3279
3280 submit_engine:
3281                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3282                 node->prio = prio;
3283                 if (first && prio > sibling->execlists.queue_priority_hint) {
3284                         sibling->execlists.queue_priority_hint = prio;
3285                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3286                 }
3287
3288                 spin_unlock(&sibling->active.lock);
3289         }
3290         local_irq_enable();
3291 }
3292
3293 static void virtual_submit_request(struct i915_request *rq)
3294 {
3295         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3296
3297         GEM_TRACE("%s: rq=%llx:%lld\n",
3298                   ve->base.name,
3299                   rq->fence.context,
3300                   rq->fence.seqno);
3301
3302         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3303
3304         GEM_BUG_ON(ve->request);
3305         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3306
3307         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3308         WRITE_ONCE(ve->request, rq);
3309
3310         list_move_tail(&rq->sched.link, virtual_queue(ve));
3311
3312         tasklet_schedule(&ve->base.execlists.tasklet);
3313 }
3314
3315 static struct ve_bond *
3316 virtual_find_bond(struct virtual_engine *ve,
3317                   const struct intel_engine_cs *master)
3318 {
3319         int i;
3320
3321         for (i = 0; i < ve->num_bonds; i++) {
3322                 if (ve->bonds[i].master == master)
3323                         return &ve->bonds[i];
3324         }
3325
3326         return NULL;
3327 }
3328
3329 static void
3330 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3331 {
3332         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3333         struct ve_bond *bond;
3334
3335         bond = virtual_find_bond(ve, to_request(signal)->engine);
3336         if (bond) {
3337                 intel_engine_mask_t old, new, cmp;
3338
3339                 cmp = READ_ONCE(rq->execution_mask);
3340                 do {
3341                         old = cmp;
3342                         new = cmp & bond->sibling_mask;
3343                 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3344         }
3345 }
3346
3347 struct intel_context *
3348 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3349                                struct intel_engine_cs **siblings,
3350                                unsigned int count)
3351 {
3352         struct virtual_engine *ve;
3353         unsigned int n;
3354         int err;
3355
3356         if (count == 0)
3357                 return ERR_PTR(-EINVAL);
3358
3359         if (count == 1)
3360                 return intel_context_create(ctx, siblings[0]);
3361
3362         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3363         if (!ve)
3364                 return ERR_PTR(-ENOMEM);
3365
3366         ve->base.i915 = ctx->i915;
3367         ve->base.gt = siblings[0]->gt;
3368         ve->base.id = -1;
3369         ve->base.class = OTHER_CLASS;
3370         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3371         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3372         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3373
3374         /*
3375          * The decision on whether to submit a request using semaphores
3376          * depends on the saturated state of the engine. We only compute
3377          * this during HW submission of the request, and we need for this
3378          * state to be globally applied to all requests being submitted
3379          * to this engine. Virtual engines encompass more than one physical
3380          * engine and so we cannot accurately tell in advance if one of those
3381          * engines is already saturated and so cannot afford to use a semaphore
3382          * and be pessimized in priority for doing so -- if we are the only
3383          * context using semaphores after all other clients have stopped, we
3384          * will be starved on the saturated system. Such a global switch for
3385          * semaphores is less than ideal, but alas is the current compromise.
3386          */
3387         ve->base.saturated = ALL_ENGINES;
3388
3389         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3390
3391         intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3392
3393         intel_engine_init_execlists(&ve->base);
3394
3395         ve->base.cops = &virtual_context_ops;
3396         ve->base.request_alloc = execlists_request_alloc;
3397
3398         ve->base.schedule = i915_schedule;
3399         ve->base.submit_request = virtual_submit_request;
3400         ve->base.bond_execute = virtual_bond_execute;
3401
3402         INIT_LIST_HEAD(virtual_queue(ve));
3403         ve->base.execlists.queue_priority_hint = INT_MIN;
3404         tasklet_init(&ve->base.execlists.tasklet,
3405                      virtual_submission_tasklet,
3406                      (unsigned long)ve);
3407
3408         intel_context_init(&ve->context, ctx, &ve->base);
3409
3410         for (n = 0; n < count; n++) {
3411                 struct intel_engine_cs *sibling = siblings[n];
3412
3413                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3414                 if (sibling->mask & ve->base.mask) {
3415                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3416                                   sibling->name);
3417                         err = -EINVAL;
3418                         goto err_put;
3419                 }
3420
3421                 /*
3422                  * The virtual engine implementation is tightly coupled to
3423                  * the execlists backend -- we push out request directly
3424                  * into a tree inside each physical engine. We could support
3425                  * layering if we handle cloning of the requests and
3426                  * submitting a copy into each backend.
3427                  */
3428                 if (sibling->execlists.tasklet.func !=
3429                     execlists_submission_tasklet) {
3430                         err = -ENODEV;
3431                         goto err_put;
3432                 }
3433
3434                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3435                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3436
3437                 ve->siblings[ve->num_siblings++] = sibling;
3438                 ve->base.mask |= sibling->mask;
3439
3440                 /*
3441                  * All physical engines must be compatible for their emission
3442                  * functions (as we build the instructions during request
3443                  * construction and do not alter them before submission
3444                  * on the physical engine). We use the engine class as a guide
3445                  * here, although that could be refined.
3446                  */
3447                 if (ve->base.class != OTHER_CLASS) {
3448                         if (ve->base.class != sibling->class) {
3449                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3450                                           sibling->class, ve->base.class);
3451                                 err = -EINVAL;
3452                                 goto err_put;
3453                         }
3454                         continue;
3455                 }
3456
3457                 ve->base.class = sibling->class;
3458                 ve->base.uabi_class = sibling->uabi_class;
3459                 snprintf(ve->base.name, sizeof(ve->base.name),
3460                          "v%dx%d", ve->base.class, count);
3461                 ve->base.context_size = sibling->context_size;
3462
3463                 ve->base.emit_bb_start = sibling->emit_bb_start;
3464                 ve->base.emit_flush = sibling->emit_flush;
3465                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3466                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3467                 ve->base.emit_fini_breadcrumb_dw =
3468                         sibling->emit_fini_breadcrumb_dw;
3469         }
3470
3471         return &ve->context;
3472
3473 err_put:
3474         intel_context_put(&ve->context);
3475         return ERR_PTR(err);
3476 }
3477
3478 struct intel_context *
3479 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3480                               struct intel_engine_cs *src)
3481 {
3482         struct virtual_engine *se = to_virtual_engine(src);
3483         struct intel_context *dst;
3484
3485         dst = intel_execlists_create_virtual(ctx,
3486                                              se->siblings,
3487                                              se->num_siblings);
3488         if (IS_ERR(dst))
3489                 return dst;
3490
3491         if (se->num_bonds) {
3492                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3493
3494                 de->bonds = kmemdup(se->bonds,
3495                                     sizeof(*se->bonds) * se->num_bonds,
3496                                     GFP_KERNEL);
3497                 if (!de->bonds) {
3498                         intel_context_put(dst);
3499                         return ERR_PTR(-ENOMEM);
3500                 }
3501
3502                 de->num_bonds = se->num_bonds;
3503         }
3504
3505         return dst;
3506 }
3507
3508 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3509                                      const struct intel_engine_cs *master,
3510                                      const struct intel_engine_cs *sibling)
3511 {
3512         struct virtual_engine *ve = to_virtual_engine(engine);
3513         struct ve_bond *bond;
3514         int n;
3515
3516         /* Sanity check the sibling is part of the virtual engine */
3517         for (n = 0; n < ve->num_siblings; n++)
3518                 if (sibling == ve->siblings[n])
3519                         break;
3520         if (n == ve->num_siblings)
3521                 return -EINVAL;
3522
3523         bond = virtual_find_bond(ve, master);
3524         if (bond) {
3525                 bond->sibling_mask |= sibling->mask;
3526                 return 0;
3527         }
3528
3529         bond = krealloc(ve->bonds,
3530                         sizeof(*bond) * (ve->num_bonds + 1),
3531                         GFP_KERNEL);
3532         if (!bond)
3533                 return -ENOMEM;
3534
3535         bond[ve->num_bonds].master = master;
3536         bond[ve->num_bonds].sibling_mask = sibling->mask;
3537
3538         ve->bonds = bond;
3539         ve->num_bonds++;
3540
3541         return 0;
3542 }
3543
3544 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3545                                    struct drm_printer *m,
3546                                    void (*show_request)(struct drm_printer *m,
3547                                                         struct i915_request *rq,
3548                                                         const char *prefix),
3549                                    unsigned int max)
3550 {
3551         const struct intel_engine_execlists *execlists = &engine->execlists;
3552         struct i915_request *rq, *last;
3553         unsigned long flags;
3554         unsigned int count;
3555         struct rb_node *rb;
3556
3557         spin_lock_irqsave(&engine->active.lock, flags);
3558
3559         last = NULL;
3560         count = 0;
3561         list_for_each_entry(rq, &engine->active.requests, sched.link) {
3562                 if (count++ < max - 1)
3563                         show_request(m, rq, "\t\tE ");
3564                 else
3565                         last = rq;
3566         }
3567         if (last) {
3568                 if (count > max) {
3569                         drm_printf(m,
3570                                    "\t\t...skipping %d executing requests...\n",
3571                                    count - max);
3572                 }
3573                 show_request(m, last, "\t\tE ");
3574         }
3575
3576         last = NULL;
3577         count = 0;
3578         if (execlists->queue_priority_hint != INT_MIN)
3579                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3580                            execlists->queue_priority_hint);
3581         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3582                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3583                 int i;
3584
3585                 priolist_for_each_request(rq, p, i) {
3586                         if (count++ < max - 1)
3587                                 show_request(m, rq, "\t\tQ ");
3588                         else
3589                                 last = rq;
3590                 }
3591         }
3592         if (last) {
3593                 if (count > max) {
3594                         drm_printf(m,
3595                                    "\t\t...skipping %d queued requests...\n",
3596                                    count - max);
3597                 }
3598                 show_request(m, last, "\t\tQ ");
3599         }
3600
3601         last = NULL;
3602         count = 0;
3603         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3604                 struct virtual_engine *ve =
3605                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3606                 struct i915_request *rq = READ_ONCE(ve->request);
3607
3608                 if (rq) {
3609                         if (count++ < max - 1)
3610                                 show_request(m, rq, "\t\tV ");
3611                         else
3612                                 last = rq;
3613                 }
3614         }
3615         if (last) {
3616                 if (count > max) {
3617                         drm_printf(m,
3618                                    "\t\t...skipping %d virtual requests...\n",
3619                                    count - max);
3620                 }
3621                 show_request(m, last, "\t\tV ");
3622         }
3623
3624         spin_unlock_irqrestore(&engine->active.lock, flags);
3625 }
3626
3627 void intel_lr_context_reset(struct intel_engine_cs *engine,
3628                             struct intel_context *ce,
3629                             u32 head,
3630                             bool scrub)
3631 {
3632         /*
3633          * We want a simple context + ring to execute the breadcrumb update.
3634          * We cannot rely on the context being intact across the GPU hang,
3635          * so clear it and rebuild just what we need for the breadcrumb.
3636          * All pending requests for this context will be zapped, and any
3637          * future request will be after userspace has had the opportunity
3638          * to recreate its own state.
3639          */
3640         if (scrub) {
3641                 u32 *regs = ce->lrc_reg_state;
3642
3643                 if (engine->pinned_default_state) {
3644                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
3645                                engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3646                                engine->context_size - PAGE_SIZE);
3647                 }
3648                 execlists_init_reg_state(regs, ce, engine, ce->ring);
3649         }
3650
3651         /* Rerun the request; its payload has been neutered (if guilty). */
3652         ce->ring->head = head;
3653         intel_ring_update_space(ce->ring);
3654
3655         __execlists_update_reg_state(ce, engine);
3656 }
3657
3658 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3659 #include "selftest_lrc.c"
3660 #endif