]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gt/intel_lrc.c
drm/i915/execlists: Avoid sync calls during park
[linux.git] / drivers / gpu / drm / i915 / gt / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include "gem/i915_gem_context.h"
137
138 #include "i915_drv.h"
139 #include "i915_perf.h"
140 #include "i915_trace.h"
141 #include "i915_vgpu.h"
142 #include "intel_engine_pm.h"
143 #include "intel_gt.h"
144 #include "intel_gt_pm.h"
145 #include "intel_lrc_reg.h"
146 #include "intel_mocs.h"
147 #include "intel_reset.h"
148 #include "intel_workarounds.h"
149
150 #define RING_EXECLIST_QFULL             (1 << 0x2)
151 #define RING_EXECLIST1_VALID            (1 << 0x3)
152 #define RING_EXECLIST0_VALID            (1 << 0x4)
153 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
154 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
155 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
156
157 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
158 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
159 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
160 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
161 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
162 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
163
164 #define GEN8_CTX_STATUS_COMPLETED_MASK \
165          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
166
167 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
168
169 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
170 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
171 #define WA_TAIL_DWORDS 2
172 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
173
174 struct virtual_engine {
175         struct intel_engine_cs base;
176         struct intel_context context;
177
178         /*
179          * We allow only a single request through the virtual engine at a time
180          * (each request in the timeline waits for the completion fence of
181          * the previous before being submitted). By restricting ourselves to
182          * only submitting a single request, each request is placed on to a
183          * physical to maximise load spreading (by virtue of the late greedy
184          * scheduling -- each real engine takes the next available request
185          * upon idling).
186          */
187         struct i915_request *request;
188
189         /*
190          * We keep a rbtree of available virtual engines inside each physical
191          * engine, sorted by priority. Here we preallocate the nodes we need
192          * for the virtual engine, indexed by physical_engine->id.
193          */
194         struct ve_node {
195                 struct rb_node rb;
196                 int prio;
197         } nodes[I915_NUM_ENGINES];
198
199         /*
200          * Keep track of bonded pairs -- restrictions upon on our selection
201          * of physical engines any particular request may be submitted to.
202          * If we receive a submit-fence from a master engine, we will only
203          * use one of sibling_mask physical engines.
204          */
205         struct ve_bond {
206                 const struct intel_engine_cs *master;
207                 intel_engine_mask_t sibling_mask;
208         } *bonds;
209         unsigned int num_bonds;
210
211         /* And finally, which physical engines this virtual engine maps onto. */
212         unsigned int num_siblings;
213         struct intel_engine_cs *siblings[0];
214 };
215
216 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
217 {
218         GEM_BUG_ON(!intel_engine_is_virtual(engine));
219         return container_of(engine, struct virtual_engine, base);
220 }
221
222 static int __execlists_context_alloc(struct intel_context *ce,
223                                      struct intel_engine_cs *engine);
224
225 static void execlists_init_reg_state(u32 *reg_state,
226                                      struct intel_context *ce,
227                                      struct intel_engine_cs *engine,
228                                      struct intel_ring *ring);
229
230 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
231 {
232         return (i915_ggtt_offset(engine->status_page.vma) +
233                 I915_GEM_HWS_PREEMPT_ADDR);
234 }
235
236 static inline void
237 ring_set_paused(const struct intel_engine_cs *engine, int state)
238 {
239         /*
240          * We inspect HWS_PREEMPT with a semaphore inside
241          * engine->emit_fini_breadcrumb. If the dword is true,
242          * the ring is paused as the semaphore will busywait
243          * until the dword is false.
244          */
245         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
246         if (state)
247                 wmb();
248 }
249
250 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
251 {
252         return rb_entry(rb, struct i915_priolist, node);
253 }
254
255 static inline int rq_prio(const struct i915_request *rq)
256 {
257         return rq->sched.attr.priority;
258 }
259
260 static int effective_prio(const struct i915_request *rq)
261 {
262         int prio = rq_prio(rq);
263
264         /*
265          * If this request is special and must not be interrupted at any
266          * cost, so be it. Note we are only checking the most recent request
267          * in the context and so may be masking an earlier vip request. It
268          * is hoped that under the conditions where nopreempt is used, this
269          * will not matter (i.e. all requests to that context will be
270          * nopreempt for as long as desired).
271          */
272         if (i915_request_has_nopreempt(rq))
273                 prio = I915_PRIORITY_UNPREEMPTABLE;
274
275         /*
276          * On unwinding the active request, we give it a priority bump
277          * if it has completed waiting on any semaphore. If we know that
278          * the request has already started, we can prevent an unwanted
279          * preempt-to-idle cycle by taking that into account now.
280          */
281         if (__i915_request_has_started(rq))
282                 prio |= I915_PRIORITY_NOSEMAPHORE;
283
284         /* Restrict mere WAIT boosts from triggering preemption */
285         BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
286         return prio | __NO_PREEMPTION;
287 }
288
289 static int queue_prio(const struct intel_engine_execlists *execlists)
290 {
291         struct i915_priolist *p;
292         struct rb_node *rb;
293
294         rb = rb_first_cached(&execlists->queue);
295         if (!rb)
296                 return INT_MIN;
297
298         /*
299          * As the priolist[] are inverted, with the highest priority in [0],
300          * we have to flip the index value to become priority.
301          */
302         p = to_priolist(rb);
303         return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
304 }
305
306 static inline bool need_preempt(const struct intel_engine_cs *engine,
307                                 const struct i915_request *rq,
308                                 struct rb_node *rb)
309 {
310         int last_prio;
311
312         if (!intel_engine_has_semaphores(engine))
313                 return false;
314
315         /*
316          * Check if the current priority hint merits a preemption attempt.
317          *
318          * We record the highest value priority we saw during rescheduling
319          * prior to this dequeue, therefore we know that if it is strictly
320          * less than the current tail of ESLP[0], we do not need to force
321          * a preempt-to-idle cycle.
322          *
323          * However, the priority hint is a mere hint that we may need to
324          * preempt. If that hint is stale or we may be trying to preempt
325          * ourselves, ignore the request.
326          */
327         last_prio = effective_prio(rq);
328         if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
329                                          last_prio))
330                 return false;
331
332         /*
333          * Check against the first request in ELSP[1], it will, thanks to the
334          * power of PI, be the highest priority of that context.
335          */
336         if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
337             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
338                 return true;
339
340         if (rb) {
341                 struct virtual_engine *ve =
342                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
343                 bool preempt = false;
344
345                 if (engine == ve->siblings[0]) { /* only preempt one sibling */
346                         struct i915_request *next;
347
348                         rcu_read_lock();
349                         next = READ_ONCE(ve->request);
350                         if (next)
351                                 preempt = rq_prio(next) > last_prio;
352                         rcu_read_unlock();
353                 }
354
355                 if (preempt)
356                         return preempt;
357         }
358
359         /*
360          * If the inflight context did not trigger the preemption, then maybe
361          * it was the set of queued requests? Pick the highest priority in
362          * the queue (the first active priolist) and see if it deserves to be
363          * running instead of ELSP[0].
364          *
365          * The highest priority request in the queue can not be either
366          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
367          * context, it's priority would not exceed ELSP[0] aka last_prio.
368          */
369         return queue_prio(&engine->execlists) > last_prio;
370 }
371
372 __maybe_unused static inline bool
373 assert_priority_queue(const struct i915_request *prev,
374                       const struct i915_request *next)
375 {
376         /*
377          * Without preemption, the prev may refer to the still active element
378          * which we refuse to let go.
379          *
380          * Even with preemption, there are times when we think it is better not
381          * to preempt and leave an ostensibly lower priority request in flight.
382          */
383         if (i915_request_is_active(prev))
384                 return true;
385
386         return rq_prio(prev) >= rq_prio(next);
387 }
388
389 /*
390  * The context descriptor encodes various attributes of a context,
391  * including its GTT address and some flags. Because it's fairly
392  * expensive to calculate, we'll just do it once and cache the result,
393  * which remains valid until the context is unpinned.
394  *
395  * This is what a descriptor looks like, from LSB to MSB::
396  *
397  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
398  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
399  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
400  *      bits 53-54:    mbz, reserved for use by hardware
401  *      bits 55-63:    group ID, currently unused and set to 0
402  *
403  * Starting from Gen11, the upper dword of the descriptor has a new format:
404  *
405  *      bits 32-36:    reserved
406  *      bits 37-47:    SW context ID
407  *      bits 48:53:    engine instance
408  *      bit 54:        mbz, reserved for use by hardware
409  *      bits 55-60:    SW counter
410  *      bits 61-63:    engine class
411  *
412  * engine info, SW context ID and SW counter need to form a unique number
413  * (Context ID) per lrc.
414  */
415 static u64
416 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
417 {
418         struct i915_gem_context *ctx = ce->gem_context;
419         u64 desc;
420
421         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
422         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
423
424         desc = INTEL_LEGACY_32B_CONTEXT;
425         if (i915_vm_is_4lvl(ce->vm))
426                 desc = INTEL_LEGACY_64B_CONTEXT;
427         desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
428
429         desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
430         if (IS_GEN(engine->i915, 8))
431                 desc |= GEN8_CTX_L3LLC_COHERENT;
432
433         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
434                                                                 /* bits 12-31 */
435         /*
436          * The following 32bits are copied into the OA reports (dword 2).
437          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
438          * anything below.
439          */
440         if (INTEL_GEN(engine->i915) >= 11) {
441                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
442                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
443                                                                 /* bits 37-47 */
444
445                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
446                                                                 /* bits 48-53 */
447
448                 /* TODO: decide what to do with SW counter (bits 55-60) */
449
450                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
451                                                                 /* bits 61-63 */
452         } else {
453                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
454                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
455         }
456
457         return desc;
458 }
459
460 static void unwind_wa_tail(struct i915_request *rq)
461 {
462         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
463         assert_ring_tail_valid(rq->ring, rq->tail);
464 }
465
466 static struct i915_request *
467 __unwind_incomplete_requests(struct intel_engine_cs *engine)
468 {
469         struct i915_request *rq, *rn, *active = NULL;
470         struct list_head *uninitialized_var(pl);
471         int prio = I915_PRIORITY_INVALID;
472
473         lockdep_assert_held(&engine->active.lock);
474
475         list_for_each_entry_safe_reverse(rq, rn,
476                                          &engine->active.requests,
477                                          sched.link) {
478                 struct intel_engine_cs *owner;
479
480                 if (i915_request_completed(rq))
481                         continue; /* XXX */
482
483                 __i915_request_unsubmit(rq);
484                 unwind_wa_tail(rq);
485
486                 /*
487                  * Push the request back into the queue for later resubmission.
488                  * If this request is not native to this physical engine (i.e.
489                  * it came from a virtual source), push it back onto the virtual
490                  * engine so that it can be moved across onto another physical
491                  * engine as load dictates.
492                  */
493                 owner = rq->hw_context->engine;
494                 if (likely(owner == engine)) {
495                         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
496                         if (rq_prio(rq) != prio) {
497                                 prio = rq_prio(rq);
498                                 pl = i915_sched_lookup_priolist(engine, prio);
499                         }
500                         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
501
502                         list_move(&rq->sched.link, pl);
503                         active = rq;
504                 } else {
505                         /*
506                          * Decouple the virtual breadcrumb before moving it
507                          * back to the virtual engine -- we don't want the
508                          * request to complete in the background and try
509                          * and cancel the breadcrumb on the virtual engine
510                          * (instead of the old engine where it is linked)!
511                          */
512                         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
513                                      &rq->fence.flags)) {
514                                 spin_lock(&rq->lock);
515                                 i915_request_cancel_breadcrumb(rq);
516                                 spin_unlock(&rq->lock);
517                         }
518                         rq->engine = owner;
519                         owner->submit_request(rq);
520                         active = NULL;
521                 }
522         }
523
524         return active;
525 }
526
527 struct i915_request *
528 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
529 {
530         struct intel_engine_cs *engine =
531                 container_of(execlists, typeof(*engine), execlists);
532
533         return __unwind_incomplete_requests(engine);
534 }
535
536 static inline void
537 execlists_context_status_change(struct i915_request *rq, unsigned long status)
538 {
539         /*
540          * Only used when GVT-g is enabled now. When GVT-g is disabled,
541          * The compiler should eliminate this function as dead-code.
542          */
543         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
544                 return;
545
546         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
547                                    status, rq);
548 }
549
550 static inline struct i915_request *
551 execlists_schedule_in(struct i915_request *rq, int idx)
552 {
553         struct intel_context *ce = rq->hw_context;
554         int count;
555
556         trace_i915_request_in(rq, idx);
557
558         count = intel_context_inflight_count(ce);
559         if (!count) {
560                 intel_context_get(ce);
561                 ce->inflight = rq->engine;
562
563                 intel_gt_pm_get(ce->inflight->gt);
564                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
565                 intel_engine_context_in(ce->inflight);
566         }
567
568         intel_context_inflight_inc(ce);
569         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
570
571         return i915_request_get(rq);
572 }
573
574 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
575 {
576         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
577         struct i915_request *next = READ_ONCE(ve->request);
578
579         if (next && next->execution_mask & ~rq->execution_mask)
580                 tasklet_schedule(&ve->base.execlists.tasklet);
581 }
582
583 static inline void
584 execlists_schedule_out(struct i915_request *rq)
585 {
586         struct intel_context *ce = rq->hw_context;
587
588         GEM_BUG_ON(!intel_context_inflight_count(ce));
589
590         trace_i915_request_out(rq);
591
592         intel_context_inflight_dec(ce);
593         if (!intel_context_inflight_count(ce)) {
594                 intel_engine_context_out(ce->inflight);
595                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
596                 intel_gt_pm_put(ce->inflight->gt);
597
598                 /*
599                  * If this is part of a virtual engine, its next request may
600                  * have been blocked waiting for access to the active context.
601                  * We have to kick all the siblings again in case we need to
602                  * switch (e.g. the next request is not runnable on this
603                  * engine). Hopefully, we will already have submitted the next
604                  * request before the tasklet runs and do not need to rebuild
605                  * each virtual tree and kick everyone again.
606                  */
607                 ce->inflight = NULL;
608                 if (rq->engine != ce->engine)
609                         kick_siblings(rq, ce);
610
611                 intel_context_put(ce);
612         }
613
614         i915_request_put(rq);
615 }
616
617 static u64 execlists_update_context(const struct i915_request *rq)
618 {
619         struct intel_context *ce = rq->hw_context;
620         u64 desc;
621
622         ce->lrc_reg_state[CTX_RING_TAIL + 1] =
623                 intel_ring_set_tail(rq->ring, rq->tail);
624
625         /*
626          * Make sure the context image is complete before we submit it to HW.
627          *
628          * Ostensibly, writes (including the WCB) should be flushed prior to
629          * an uncached write such as our mmio register access, the empirical
630          * evidence (esp. on Braswell) suggests that the WC write into memory
631          * may not be visible to the HW prior to the completion of the UC
632          * register write and that we may begin execution from the context
633          * before its image is complete leading to invalid PD chasing.
634          *
635          * Furthermore, Braswell, at least, wants a full mb to be sure that
636          * the writes are coherent in memory (visible to the GPU) prior to
637          * execution, and not just visible to other CPUs (as is the result of
638          * wmb).
639          */
640         mb();
641
642         desc = ce->lrc_desc;
643         ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
644
645         return desc;
646 }
647
648 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
649 {
650         if (execlists->ctrl_reg) {
651                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
652                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
653         } else {
654                 writel(upper_32_bits(desc), execlists->submit_reg);
655                 writel(lower_32_bits(desc), execlists->submit_reg);
656         }
657 }
658
659 static __maybe_unused void
660 trace_ports(const struct intel_engine_execlists *execlists,
661             const char *msg,
662             struct i915_request * const *ports)
663 {
664         const struct intel_engine_cs *engine =
665                 container_of(execlists, typeof(*engine), execlists);
666
667         GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
668                   engine->name, msg,
669                   ports[0]->fence.context,
670                   ports[0]->fence.seqno,
671                   i915_request_completed(ports[0]) ? "!" :
672                   i915_request_started(ports[0]) ? "*" :
673                   "",
674                   ports[1] ? ports[1]->fence.context : 0,
675                   ports[1] ? ports[1]->fence.seqno : 0);
676 }
677
678 static __maybe_unused bool
679 assert_pending_valid(const struct intel_engine_execlists *execlists,
680                      const char *msg)
681 {
682         struct i915_request * const *port, *rq;
683         struct intel_context *ce = NULL;
684
685         trace_ports(execlists, msg, execlists->pending);
686
687         if (execlists->pending[execlists_num_ports(execlists)])
688                 return false;
689
690         for (port = execlists->pending; (rq = *port); port++) {
691                 if (ce == rq->hw_context)
692                         return false;
693
694                 ce = rq->hw_context;
695                 if (i915_request_completed(rq))
696                         continue;
697
698                 if (i915_active_is_idle(&ce->active))
699                         return false;
700
701                 if (!i915_vma_is_pinned(ce->state))
702                         return false;
703         }
704
705         return ce;
706 }
707
708 static void execlists_submit_ports(struct intel_engine_cs *engine)
709 {
710         struct intel_engine_execlists *execlists = &engine->execlists;
711         unsigned int n;
712
713         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
714
715         /*
716          * We can skip acquiring intel_runtime_pm_get() here as it was taken
717          * on our behalf by the request (see i915_gem_mark_busy()) and it will
718          * not be relinquished until the device is idle (see
719          * i915_gem_idle_work_handler()). As a precaution, we make sure
720          * that all ELSP are drained i.e. we have processed the CSB,
721          * before allowing ourselves to idle and calling intel_runtime_pm_put().
722          */
723         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
724
725         /*
726          * ELSQ note: the submit queue is not cleared after being submitted
727          * to the HW so we need to make sure we always clean it up. This is
728          * currently ensured by the fact that we always write the same number
729          * of elsq entries, keep this in mind before changing the loop below.
730          */
731         for (n = execlists_num_ports(execlists); n--; ) {
732                 struct i915_request *rq = execlists->pending[n];
733
734                 write_desc(execlists,
735                            rq ? execlists_update_context(rq) : 0,
736                            n);
737         }
738
739         /* we need to manually load the submit queue */
740         if (execlists->ctrl_reg)
741                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
742 }
743
744 static bool ctx_single_port_submission(const struct intel_context *ce)
745 {
746         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
747                 i915_gem_context_force_single_submission(ce->gem_context));
748 }
749
750 static bool can_merge_ctx(const struct intel_context *prev,
751                           const struct intel_context *next)
752 {
753         if (prev != next)
754                 return false;
755
756         if (ctx_single_port_submission(prev))
757                 return false;
758
759         return true;
760 }
761
762 static bool can_merge_rq(const struct i915_request *prev,
763                          const struct i915_request *next)
764 {
765         GEM_BUG_ON(prev == next);
766         GEM_BUG_ON(!assert_priority_queue(prev, next));
767
768         if (!can_merge_ctx(prev->hw_context, next->hw_context))
769                 return false;
770
771         return true;
772 }
773
774 static void virtual_update_register_offsets(u32 *regs,
775                                             struct intel_engine_cs *engine)
776 {
777         u32 base = engine->mmio_base;
778
779         /* Must match execlists_init_reg_state()! */
780
781         regs[CTX_CONTEXT_CONTROL] =
782                 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
783         regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
784         regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
785         regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
786         regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
787
788         regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
789         regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
790         regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
791         regs[CTX_SECOND_BB_HEAD_U] =
792                 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
793         regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
794         regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
795
796         regs[CTX_CTX_TIMESTAMP] =
797                 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
798         regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
799         regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
800         regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
801         regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
802         regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
803         regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
804         regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
805         regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
806
807         if (engine->class == RENDER_CLASS) {
808                 regs[CTX_RCS_INDIRECT_CTX] =
809                         i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
810                 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
811                         i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
812                 regs[CTX_BB_PER_CTX_PTR] =
813                         i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
814
815                 regs[CTX_R_PWR_CLK_STATE] =
816                         i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
817         }
818 }
819
820 static bool virtual_matches(const struct virtual_engine *ve,
821                             const struct i915_request *rq,
822                             const struct intel_engine_cs *engine)
823 {
824         const struct intel_engine_cs *inflight;
825
826         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
827                 return false;
828
829         /*
830          * We track when the HW has completed saving the context image
831          * (i.e. when we have seen the final CS event switching out of
832          * the context) and must not overwrite the context image before
833          * then. This restricts us to only using the active engine
834          * while the previous virtualized request is inflight (so
835          * we reuse the register offsets). This is a very small
836          * hystersis on the greedy seelction algorithm.
837          */
838         inflight = intel_context_inflight(&ve->context);
839         if (inflight && inflight != engine)
840                 return false;
841
842         return true;
843 }
844
845 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
846                                      struct intel_engine_cs *engine)
847 {
848         struct intel_engine_cs *old = ve->siblings[0];
849
850         /* All unattached (rq->engine == old) must already be completed */
851
852         spin_lock(&old->breadcrumbs.irq_lock);
853         if (!list_empty(&ve->context.signal_link)) {
854                 list_move_tail(&ve->context.signal_link,
855                                &engine->breadcrumbs.signalers);
856                 intel_engine_queue_breadcrumbs(engine);
857         }
858         spin_unlock(&old->breadcrumbs.irq_lock);
859 }
860
861 static struct i915_request *
862 last_active(const struct intel_engine_execlists *execlists)
863 {
864         struct i915_request * const *last = execlists->active;
865
866         while (*last && i915_request_completed(*last))
867                 last++;
868
869         return *last;
870 }
871
872 static void defer_request(struct i915_request *rq, struct list_head * const pl)
873 {
874         LIST_HEAD(list);
875
876         /*
877          * We want to move the interrupted request to the back of
878          * the round-robin list (i.e. its priority level), but
879          * in doing so, we must then move all requests that were in
880          * flight and were waiting for the interrupted request to
881          * be run after it again.
882          */
883         do {
884                 struct i915_dependency *p;
885
886                 GEM_BUG_ON(i915_request_is_active(rq));
887                 list_move_tail(&rq->sched.link, pl);
888
889                 list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
890                         struct i915_request *w =
891                                 container_of(p->waiter, typeof(*w), sched);
892
893                         /* Leave semaphores spinning on the other engines */
894                         if (w->engine != rq->engine)
895                                 continue;
896
897                         /* No waiter should start before its signaler */
898                         GEM_BUG_ON(i915_request_started(w) &&
899                                    !i915_request_completed(rq));
900
901                         GEM_BUG_ON(i915_request_is_active(w));
902                         if (list_empty(&w->sched.link))
903                                 continue; /* Not yet submitted; unready */
904
905                         if (rq_prio(w) < rq_prio(rq))
906                                 continue;
907
908                         GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
909                         list_move_tail(&w->sched.link, &list);
910                 }
911
912                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
913         } while (rq);
914 }
915
916 static void defer_active(struct intel_engine_cs *engine)
917 {
918         struct i915_request *rq;
919
920         rq = __unwind_incomplete_requests(engine);
921         if (!rq)
922                 return;
923
924         defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
925 }
926
927 static bool
928 need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
929 {
930         int hint;
931
932         if (!intel_engine_has_semaphores(engine))
933                 return false;
934
935         if (list_is_last(&rq->sched.link, &engine->active.requests))
936                 return false;
937
938         hint = max(rq_prio(list_next_entry(rq, sched.link)),
939                    engine->execlists.queue_priority_hint);
940
941         return hint >= effective_prio(rq);
942 }
943
944 static bool
945 enable_timeslice(struct intel_engine_cs *engine)
946 {
947         struct i915_request *last = last_active(&engine->execlists);
948
949         return last && need_timeslice(engine, last);
950 }
951
952 static void record_preemption(struct intel_engine_execlists *execlists)
953 {
954         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
955 }
956
957 static void execlists_dequeue(struct intel_engine_cs *engine)
958 {
959         struct intel_engine_execlists * const execlists = &engine->execlists;
960         struct i915_request **port = execlists->pending;
961         struct i915_request ** const last_port = port + execlists->port_mask;
962         struct i915_request *last;
963         struct rb_node *rb;
964         bool submit = false;
965
966         /*
967          * Hardware submission is through 2 ports. Conceptually each port
968          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
969          * static for a context, and unique to each, so we only execute
970          * requests belonging to a single context from each ring. RING_HEAD
971          * is maintained by the CS in the context image, it marks the place
972          * where it got up to last time, and through RING_TAIL we tell the CS
973          * where we want to execute up to this time.
974          *
975          * In this list the requests are in order of execution. Consecutive
976          * requests from the same context are adjacent in the ringbuffer. We
977          * can combine these requests into a single RING_TAIL update:
978          *
979          *              RING_HEAD...req1...req2
980          *                                    ^- RING_TAIL
981          * since to execute req2 the CS must first execute req1.
982          *
983          * Our goal then is to point each port to the end of a consecutive
984          * sequence of requests as being the most optimal (fewest wake ups
985          * and context switches) submission.
986          */
987
988         for (rb = rb_first_cached(&execlists->virtual); rb; ) {
989                 struct virtual_engine *ve =
990                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
991                 struct i915_request *rq = READ_ONCE(ve->request);
992
993                 if (!rq) { /* lazily cleanup after another engine handled rq */
994                         rb_erase_cached(rb, &execlists->virtual);
995                         RB_CLEAR_NODE(rb);
996                         rb = rb_first_cached(&execlists->virtual);
997                         continue;
998                 }
999
1000                 if (!virtual_matches(ve, rq, engine)) {
1001                         rb = rb_next(rb);
1002                         continue;
1003                 }
1004
1005                 break;
1006         }
1007
1008         /*
1009          * If the queue is higher priority than the last
1010          * request in the currently active context, submit afresh.
1011          * We will resubmit again afterwards in case we need to split
1012          * the active context to interject the preemption request,
1013          * i.e. we will retrigger preemption following the ack in case
1014          * of trouble.
1015          */
1016         last = last_active(execlists);
1017         if (last) {
1018                 if (need_preempt(engine, last, rb)) {
1019                         GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
1020                                   engine->name,
1021                                   last->fence.context,
1022                                   last->fence.seqno,
1023                                   last->sched.attr.priority,
1024                                   execlists->queue_priority_hint);
1025                         record_preemption(execlists);
1026
1027                         /*
1028                          * Don't let the RING_HEAD advance past the breadcrumb
1029                          * as we unwind (and until we resubmit) so that we do
1030                          * not accidentally tell it to go backwards.
1031                          */
1032                         ring_set_paused(engine, 1);
1033
1034                         /*
1035                          * Note that we have not stopped the GPU at this point,
1036                          * so we are unwinding the incomplete requests as they
1037                          * remain inflight and so by the time we do complete
1038                          * the preemption, some of the unwound requests may
1039                          * complete!
1040                          */
1041                         __unwind_incomplete_requests(engine);
1042
1043                         /*
1044                          * If we need to return to the preempted context, we
1045                          * need to skip the lite-restore and force it to
1046                          * reload the RING_TAIL. Otherwise, the HW has a
1047                          * tendency to ignore us rewinding the TAIL to the
1048                          * end of an earlier request.
1049                          */
1050                         last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
1051                         last = NULL;
1052                 } else if (need_timeslice(engine, last) &&
1053                            !timer_pending(&engine->execlists.timer)) {
1054                         GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
1055                                   engine->name,
1056                                   last->fence.context,
1057                                   last->fence.seqno,
1058                                   last->sched.attr.priority,
1059                                   execlists->queue_priority_hint);
1060
1061                         ring_set_paused(engine, 1);
1062                         defer_active(engine);
1063
1064                         /*
1065                          * Unlike for preemption, if we rewind and continue
1066                          * executing the same context as previously active,
1067                          * the order of execution will remain the same and
1068                          * the tail will only advance. We do not need to
1069                          * force a full context restore, as a lite-restore
1070                          * is sufficient to resample the monotonic TAIL.
1071                          *
1072                          * If we switch to any other context, similarly we
1073                          * will not rewind TAIL of current context, and
1074                          * normal save/restore will preserve state and allow
1075                          * us to later continue executing the same request.
1076                          */
1077                         last = NULL;
1078                 } else {
1079                         /*
1080                          * Otherwise if we already have a request pending
1081                          * for execution after the current one, we can
1082                          * just wait until the next CS event before
1083                          * queuing more. In either case we will force a
1084                          * lite-restore preemption event, but if we wait
1085                          * we hopefully coalesce several updates into a single
1086                          * submission.
1087                          */
1088                         if (!list_is_last(&last->sched.link,
1089                                           &engine->active.requests))
1090                                 return;
1091
1092                         /*
1093                          * WaIdleLiteRestore:bdw,skl
1094                          * Apply the wa NOOPs to prevent
1095                          * ring:HEAD == rq:TAIL as we resubmit the
1096                          * request. See gen8_emit_fini_breadcrumb() for
1097                          * where we prepare the padding after the
1098                          * end of the request.
1099                          */
1100                         last->tail = last->wa_tail;
1101                 }
1102         }
1103
1104         while (rb) { /* XXX virtual is always taking precedence */
1105                 struct virtual_engine *ve =
1106                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1107                 struct i915_request *rq;
1108
1109                 spin_lock(&ve->base.active.lock);
1110
1111                 rq = ve->request;
1112                 if (unlikely(!rq)) { /* lost the race to a sibling */
1113                         spin_unlock(&ve->base.active.lock);
1114                         rb_erase_cached(rb, &execlists->virtual);
1115                         RB_CLEAR_NODE(rb);
1116                         rb = rb_first_cached(&execlists->virtual);
1117                         continue;
1118                 }
1119
1120                 GEM_BUG_ON(rq != ve->request);
1121                 GEM_BUG_ON(rq->engine != &ve->base);
1122                 GEM_BUG_ON(rq->hw_context != &ve->context);
1123
1124                 if (rq_prio(rq) >= queue_prio(execlists)) {
1125                         if (!virtual_matches(ve, rq, engine)) {
1126                                 spin_unlock(&ve->base.active.lock);
1127                                 rb = rb_next(rb);
1128                                 continue;
1129                         }
1130
1131                         if (i915_request_completed(rq)) {
1132                                 ve->request = NULL;
1133                                 ve->base.execlists.queue_priority_hint = INT_MIN;
1134                                 rb_erase_cached(rb, &execlists->virtual);
1135                                 RB_CLEAR_NODE(rb);
1136
1137                                 rq->engine = engine;
1138                                 __i915_request_submit(rq);
1139
1140                                 spin_unlock(&ve->base.active.lock);
1141
1142                                 rb = rb_first_cached(&execlists->virtual);
1143                                 continue;
1144                         }
1145
1146                         if (last && !can_merge_rq(last, rq)) {
1147                                 spin_unlock(&ve->base.active.lock);
1148                                 return; /* leave this for another */
1149                         }
1150
1151                         GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
1152                                   engine->name,
1153                                   rq->fence.context,
1154                                   rq->fence.seqno,
1155                                   i915_request_completed(rq) ? "!" :
1156                                   i915_request_started(rq) ? "*" :
1157                                   "",
1158                                   yesno(engine != ve->siblings[0]));
1159
1160                         ve->request = NULL;
1161                         ve->base.execlists.queue_priority_hint = INT_MIN;
1162                         rb_erase_cached(rb, &execlists->virtual);
1163                         RB_CLEAR_NODE(rb);
1164
1165                         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1166                         rq->engine = engine;
1167
1168                         if (engine != ve->siblings[0]) {
1169                                 u32 *regs = ve->context.lrc_reg_state;
1170                                 unsigned int n;
1171
1172                                 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1173                                 virtual_update_register_offsets(regs, engine);
1174
1175                                 if (!list_empty(&ve->context.signals))
1176                                         virtual_xfer_breadcrumbs(ve, engine);
1177
1178                                 /*
1179                                  * Move the bound engine to the top of the list
1180                                  * for future execution. We then kick this
1181                                  * tasklet first before checking others, so that
1182                                  * we preferentially reuse this set of bound
1183                                  * registers.
1184                                  */
1185                                 for (n = 1; n < ve->num_siblings; n++) {
1186                                         if (ve->siblings[n] == engine) {
1187                                                 swap(ve->siblings[n],
1188                                                      ve->siblings[0]);
1189                                                 break;
1190                                         }
1191                                 }
1192
1193                                 GEM_BUG_ON(ve->siblings[0] != engine);
1194                         }
1195
1196                         __i915_request_submit(rq);
1197                         if (!i915_request_completed(rq)) {
1198                                 submit = true;
1199                                 last = rq;
1200                         }
1201                 }
1202
1203                 spin_unlock(&ve->base.active.lock);
1204                 break;
1205         }
1206
1207         while ((rb = rb_first_cached(&execlists->queue))) {
1208                 struct i915_priolist *p = to_priolist(rb);
1209                 struct i915_request *rq, *rn;
1210                 int i;
1211
1212                 priolist_for_each_request_consume(rq, rn, p, i) {
1213                         if (i915_request_completed(rq))
1214                                 goto skip;
1215
1216                         /*
1217                          * Can we combine this request with the current port?
1218                          * It has to be the same context/ringbuffer and not
1219                          * have any exceptions (e.g. GVT saying never to
1220                          * combine contexts).
1221                          *
1222                          * If we can combine the requests, we can execute both
1223                          * by updating the RING_TAIL to point to the end of the
1224                          * second request, and so we never need to tell the
1225                          * hardware about the first.
1226                          */
1227                         if (last && !can_merge_rq(last, rq)) {
1228                                 /*
1229                                  * If we are on the second port and cannot
1230                                  * combine this request with the last, then we
1231                                  * are done.
1232                                  */
1233                                 if (port == last_port)
1234                                         goto done;
1235
1236                                 /*
1237                                  * We must not populate both ELSP[] with the
1238                                  * same LRCA, i.e. we must submit 2 different
1239                                  * contexts if we submit 2 ELSP.
1240                                  */
1241                                 if (last->hw_context == rq->hw_context)
1242                                         goto done;
1243
1244                                 /*
1245                                  * If GVT overrides us we only ever submit
1246                                  * port[0], leaving port[1] empty. Note that we
1247                                  * also have to be careful that we don't queue
1248                                  * the same context (even though a different
1249                                  * request) to the second port.
1250                                  */
1251                                 if (ctx_single_port_submission(last->hw_context) ||
1252                                     ctx_single_port_submission(rq->hw_context))
1253                                         goto done;
1254
1255                                 *port = execlists_schedule_in(last, port - execlists->pending);
1256                                 port++;
1257                         }
1258
1259                         last = rq;
1260                         submit = true;
1261 skip:
1262                         __i915_request_submit(rq);
1263                 }
1264
1265                 rb_erase_cached(&p->node, &execlists->queue);
1266                 i915_priolist_free(p);
1267         }
1268
1269 done:
1270         /*
1271          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1272          *
1273          * We choose the priority hint such that if we add a request of greater
1274          * priority than this, we kick the submission tasklet to decide on
1275          * the right order of submitting the requests to hardware. We must
1276          * also be prepared to reorder requests as they are in-flight on the
1277          * HW. We derive the priority hint then as the first "hole" in
1278          * the HW submission ports and if there are no available slots,
1279          * the priority of the lowest executing request, i.e. last.
1280          *
1281          * When we do receive a higher priority request ready to run from the
1282          * user, see queue_request(), the priority hint is bumped to that
1283          * request triggering preemption on the next dequeue (or subsequent
1284          * interrupt for secondary ports).
1285          */
1286         execlists->queue_priority_hint = queue_prio(execlists);
1287         GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
1288                   engine->name, execlists->queue_priority_hint,
1289                   yesno(submit));
1290
1291         if (submit) {
1292                 *port = execlists_schedule_in(last, port - execlists->pending);
1293                 memset(port + 1, 0, (last_port - port) * sizeof(*port));
1294                 execlists_submit_ports(engine);
1295         } else {
1296                 ring_set_paused(engine, 0);
1297         }
1298 }
1299
1300 void
1301 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1302 {
1303         struct i915_request * const *port, *rq;
1304
1305         for (port = execlists->pending; (rq = *port); port++)
1306                 execlists_schedule_out(rq);
1307         memset(execlists->pending, 0, sizeof(execlists->pending));
1308
1309         for (port = execlists->active; (rq = *port); port++)
1310                 execlists_schedule_out(rq);
1311         execlists->active =
1312                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1313 }
1314
1315 static inline void
1316 invalidate_csb_entries(const u32 *first, const u32 *last)
1317 {
1318         clflush((void *)first);
1319         clflush((void *)last);
1320 }
1321
1322 static inline bool
1323 reset_in_progress(const struct intel_engine_execlists *execlists)
1324 {
1325         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1326 }
1327
1328 enum csb_step {
1329         CSB_NOP,
1330         CSB_PROMOTE,
1331         CSB_PREEMPT,
1332         CSB_COMPLETE,
1333 };
1334
1335 static inline enum csb_step
1336 csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1337 {
1338         unsigned int status = *csb;
1339
1340         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
1341                 return CSB_PROMOTE;
1342
1343         if (status & GEN8_CTX_STATUS_PREEMPTED)
1344                 return CSB_PREEMPT;
1345
1346         if (*execlists->active)
1347                 return CSB_COMPLETE;
1348
1349         return CSB_NOP;
1350 }
1351
1352 static void process_csb(struct intel_engine_cs *engine)
1353 {
1354         struct intel_engine_execlists * const execlists = &engine->execlists;
1355         const u32 * const buf = execlists->csb_status;
1356         const u8 num_entries = execlists->csb_size;
1357         u8 head, tail;
1358
1359         lockdep_assert_held(&engine->active.lock);
1360         GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1361
1362         /*
1363          * Note that csb_write, csb_status may be either in HWSP or mmio.
1364          * When reading from the csb_write mmio register, we have to be
1365          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1366          * the low 4bits. As it happens we know the next 4bits are always
1367          * zero and so we can simply masked off the low u8 of the register
1368          * and treat it identically to reading from the HWSP (without having
1369          * to use explicit shifting and masking, and probably bifurcating
1370          * the code to handle the legacy mmio read).
1371          */
1372         head = execlists->csb_head;
1373         tail = READ_ONCE(*execlists->csb_write);
1374         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1375         if (unlikely(head == tail))
1376                 return;
1377
1378         /*
1379          * Hopefully paired with a wmb() in HW!
1380          *
1381          * We must complete the read of the write pointer before any reads
1382          * from the CSB, so that we do not see stale values. Without an rmb
1383          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1384          * we perform the READ_ONCE(*csb_write).
1385          */
1386         rmb();
1387
1388         do {
1389                 if (++head == num_entries)
1390                         head = 0;
1391
1392                 /*
1393                  * We are flying near dragons again.
1394                  *
1395                  * We hold a reference to the request in execlist_port[]
1396                  * but no more than that. We are operating in softirq
1397                  * context and so cannot hold any mutex or sleep. That
1398                  * prevents us stopping the requests we are processing
1399                  * in port[] from being retired simultaneously (the
1400                  * breadcrumb will be complete before we see the
1401                  * context-switch). As we only hold the reference to the
1402                  * request, any pointer chasing underneath the request
1403                  * is subject to a potential use-after-free. Thus we
1404                  * store all of the bookkeeping within port[] as
1405                  * required, and avoid using unguarded pointers beneath
1406                  * request itself. The same applies to the atomic
1407                  * status notifier.
1408                  */
1409
1410                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1411                           engine->name, head,
1412                           buf[2 * head + 0], buf[2 * head + 1]);
1413
1414                 switch (csb_parse(execlists, buf + 2 * head)) {
1415                 case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
1416                         trace_ports(execlists, "preempted", execlists->active);
1417
1418                         while (*execlists->active)
1419                                 execlists_schedule_out(*execlists->active++);
1420
1421                         /* fallthrough */
1422                 case CSB_PROMOTE: /* switch pending to inflight */
1423                         GEM_BUG_ON(*execlists->active);
1424                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1425                         execlists->active =
1426                                 memcpy(execlists->inflight,
1427                                        execlists->pending,
1428                                        execlists_num_ports(execlists) *
1429                                        sizeof(*execlists->pending));
1430                         execlists->pending[0] = NULL;
1431
1432                         trace_ports(execlists, "promoted", execlists->active);
1433
1434                         if (enable_timeslice(engine))
1435                                 mod_timer(&execlists->timer, jiffies + 1);
1436
1437                         if (!inject_preempt_hang(execlists))
1438                                 ring_set_paused(engine, 0);
1439                         break;
1440
1441                 case CSB_COMPLETE: /* port0 completed, advanced to port1 */
1442                         trace_ports(execlists, "completed", execlists->active);
1443
1444                         /*
1445                          * We rely on the hardware being strongly
1446                          * ordered, that the breadcrumb write is
1447                          * coherent (visible from the CPU) before the
1448                          * user interrupt and CSB is processed.
1449                          */
1450                         GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
1451                                    !reset_in_progress(execlists));
1452                         execlists_schedule_out(*execlists->active++);
1453
1454                         GEM_BUG_ON(execlists->active - execlists->inflight >
1455                                    execlists_num_ports(execlists));
1456                         break;
1457
1458                 case CSB_NOP:
1459                         break;
1460                 }
1461         } while (head != tail);
1462
1463         execlists->csb_head = head;
1464
1465         /*
1466          * Gen11 has proven to fail wrt global observation point between
1467          * entry and tail update, failing on the ordering and thus
1468          * we see an old entry in the context status buffer.
1469          *
1470          * Forcibly evict out entries for the next gpu csb update,
1471          * to increase the odds that we get a fresh entries with non
1472          * working hardware. The cost for doing so comes out mostly with
1473          * the wash as hardware, working or not, will need to do the
1474          * invalidation before.
1475          */
1476         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1477 }
1478
1479 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1480 {
1481         lockdep_assert_held(&engine->active.lock);
1482
1483         process_csb(engine);
1484         if (!engine->execlists.pending[0])
1485                 execlists_dequeue(engine);
1486 }
1487
1488 /*
1489  * Check the unread Context Status Buffers and manage the submission of new
1490  * contexts to the ELSP accordingly.
1491  */
1492 static void execlists_submission_tasklet(unsigned long data)
1493 {
1494         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1495         unsigned long flags;
1496
1497         spin_lock_irqsave(&engine->active.lock, flags);
1498         __execlists_submission_tasklet(engine);
1499         spin_unlock_irqrestore(&engine->active.lock, flags);
1500 }
1501
1502 static void execlists_submission_timer(struct timer_list *timer)
1503 {
1504         struct intel_engine_cs *engine =
1505                 from_timer(engine, timer, execlists.timer);
1506
1507         /* Kick the tasklet for some interrupt coalescing and reset handling */
1508         tasklet_hi_schedule(&engine->execlists.tasklet);
1509 }
1510
1511 static void queue_request(struct intel_engine_cs *engine,
1512                           struct i915_sched_node *node,
1513                           int prio)
1514 {
1515         GEM_BUG_ON(!list_empty(&node->link));
1516         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1517 }
1518
1519 static void __submit_queue_imm(struct intel_engine_cs *engine)
1520 {
1521         struct intel_engine_execlists * const execlists = &engine->execlists;
1522
1523         if (reset_in_progress(execlists))
1524                 return; /* defer until we restart the engine following reset */
1525
1526         if (execlists->tasklet.func == execlists_submission_tasklet)
1527                 __execlists_submission_tasklet(engine);
1528         else
1529                 tasklet_hi_schedule(&execlists->tasklet);
1530 }
1531
1532 static void submit_queue(struct intel_engine_cs *engine,
1533                          const struct i915_request *rq)
1534 {
1535         struct intel_engine_execlists *execlists = &engine->execlists;
1536
1537         if (rq_prio(rq) <= execlists->queue_priority_hint)
1538                 return;
1539
1540         execlists->queue_priority_hint = rq_prio(rq);
1541         __submit_queue_imm(engine);
1542 }
1543
1544 static void execlists_submit_request(struct i915_request *request)
1545 {
1546         struct intel_engine_cs *engine = request->engine;
1547         unsigned long flags;
1548
1549         /* Will be called from irq-context when using foreign fences. */
1550         spin_lock_irqsave(&engine->active.lock, flags);
1551
1552         queue_request(engine, &request->sched, rq_prio(request));
1553
1554         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1555         GEM_BUG_ON(list_empty(&request->sched.link));
1556
1557         submit_queue(engine, request);
1558
1559         spin_unlock_irqrestore(&engine->active.lock, flags);
1560 }
1561
1562 static void __execlists_context_fini(struct intel_context *ce)
1563 {
1564         intel_ring_put(ce->ring);
1565         i915_vma_put(ce->state);
1566 }
1567
1568 static void execlists_context_destroy(struct kref *kref)
1569 {
1570         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1571
1572         GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1573         GEM_BUG_ON(intel_context_is_pinned(ce));
1574
1575         if (ce->state)
1576                 __execlists_context_fini(ce);
1577
1578         intel_context_fini(ce);
1579         intel_context_free(ce);
1580 }
1581
1582 static void execlists_context_unpin(struct intel_context *ce)
1583 {
1584         i915_gem_context_unpin_hw_id(ce->gem_context);
1585         i915_gem_object_unpin_map(ce->state->obj);
1586 }
1587
1588 static void
1589 __execlists_update_reg_state(struct intel_context *ce,
1590                              struct intel_engine_cs *engine)
1591 {
1592         struct intel_ring *ring = ce->ring;
1593         u32 *regs = ce->lrc_reg_state;
1594
1595         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1596         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1597
1598         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1599         regs[CTX_RING_HEAD + 1] = ring->head;
1600         regs[CTX_RING_TAIL + 1] = ring->tail;
1601
1602         /* RPCS */
1603         if (engine->class == RENDER_CLASS) {
1604                 regs[CTX_R_PWR_CLK_STATE + 1] =
1605                         intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1606
1607                 i915_oa_init_reg_state(engine, ce, regs);
1608         }
1609 }
1610
1611 static int
1612 __execlists_context_pin(struct intel_context *ce,
1613                         struct intel_engine_cs *engine)
1614 {
1615         void *vaddr;
1616         int ret;
1617
1618         GEM_BUG_ON(!ce->state);
1619
1620         ret = intel_context_active_acquire(ce);
1621         if (ret)
1622                 goto err;
1623         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1624
1625         vaddr = i915_gem_object_pin_map(ce->state->obj,
1626                                         i915_coherent_map_type(engine->i915) |
1627                                         I915_MAP_OVERRIDE);
1628         if (IS_ERR(vaddr)) {
1629                 ret = PTR_ERR(vaddr);
1630                 goto unpin_active;
1631         }
1632
1633         ret = i915_gem_context_pin_hw_id(ce->gem_context);
1634         if (ret)
1635                 goto unpin_map;
1636
1637         ce->lrc_desc = lrc_descriptor(ce, engine);
1638         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1639         __execlists_update_reg_state(ce, engine);
1640
1641         return 0;
1642
1643 unpin_map:
1644         i915_gem_object_unpin_map(ce->state->obj);
1645 unpin_active:
1646         intel_context_active_release(ce);
1647 err:
1648         return ret;
1649 }
1650
1651 static int execlists_context_pin(struct intel_context *ce)
1652 {
1653         return __execlists_context_pin(ce, ce->engine);
1654 }
1655
1656 static int execlists_context_alloc(struct intel_context *ce)
1657 {
1658         return __execlists_context_alloc(ce, ce->engine);
1659 }
1660
1661 static void execlists_context_reset(struct intel_context *ce)
1662 {
1663         /*
1664          * Because we emit WA_TAIL_DWORDS there may be a disparity
1665          * between our bookkeeping in ce->ring->head and ce->ring->tail and
1666          * that stored in context. As we only write new commands from
1667          * ce->ring->tail onwards, everything before that is junk. If the GPU
1668          * starts reading from its RING_HEAD from the context, it may try to
1669          * execute that junk and die.
1670          *
1671          * The contexts that are stilled pinned on resume belong to the
1672          * kernel, and are local to each engine. All other contexts will
1673          * have their head/tail sanitized upon pinning before use, so they
1674          * will never see garbage,
1675          *
1676          * So to avoid that we reset the context images upon resume. For
1677          * simplicity, we just zero everything out.
1678          */
1679         intel_ring_reset(ce->ring, 0);
1680         __execlists_update_reg_state(ce, ce->engine);
1681 }
1682
1683 static const struct intel_context_ops execlists_context_ops = {
1684         .alloc = execlists_context_alloc,
1685
1686         .pin = execlists_context_pin,
1687         .unpin = execlists_context_unpin,
1688
1689         .enter = intel_context_enter_engine,
1690         .exit = intel_context_exit_engine,
1691
1692         .reset = execlists_context_reset,
1693         .destroy = execlists_context_destroy,
1694 };
1695
1696 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1697 {
1698         u32 *cs;
1699
1700         GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1701
1702         cs = intel_ring_begin(rq, 6);
1703         if (IS_ERR(cs))
1704                 return PTR_ERR(cs);
1705
1706         /*
1707          * Check if we have been preempted before we even get started.
1708          *
1709          * After this point i915_request_started() reports true, even if
1710          * we get preempted and so are no longer running.
1711          */
1712         *cs++ = MI_ARB_CHECK;
1713         *cs++ = MI_NOOP;
1714
1715         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1716         *cs++ = rq->timeline->hwsp_offset;
1717         *cs++ = 0;
1718         *cs++ = rq->fence.seqno - 1;
1719
1720         intel_ring_advance(rq, cs);
1721
1722         /* Record the updated position of the request's payload */
1723         rq->infix = intel_ring_offset(rq, cs);
1724
1725         return 0;
1726 }
1727
1728 static int emit_pdps(struct i915_request *rq)
1729 {
1730         const struct intel_engine_cs * const engine = rq->engine;
1731         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->hw_context->vm);
1732         int err, i;
1733         u32 *cs;
1734
1735         GEM_BUG_ON(intel_vgpu_active(rq->i915));
1736
1737         /*
1738          * Beware ye of the dragons, this sequence is magic!
1739          *
1740          * Small changes to this sequence can cause anything from
1741          * GPU hangs to forcewake errors and machine lockups!
1742          */
1743
1744         /* Flush any residual operations from the context load */
1745         err = engine->emit_flush(rq, EMIT_FLUSH);
1746         if (err)
1747                 return err;
1748
1749         /* Magic required to prevent forcewake errors! */
1750         err = engine->emit_flush(rq, EMIT_INVALIDATE);
1751         if (err)
1752                 return err;
1753
1754         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1755         if (IS_ERR(cs))
1756                 return PTR_ERR(cs);
1757
1758         /* Ensure the LRI have landed before we invalidate & continue */
1759         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1760         for (i = GEN8_3LVL_PDPES; i--; ) {
1761                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1762                 u32 base = engine->mmio_base;
1763
1764                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1765                 *cs++ = upper_32_bits(pd_daddr);
1766                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1767                 *cs++ = lower_32_bits(pd_daddr);
1768         }
1769         *cs++ = MI_NOOP;
1770
1771         intel_ring_advance(rq, cs);
1772
1773         /* Be doubly sure the LRI have landed before proceeding */
1774         err = engine->emit_flush(rq, EMIT_FLUSH);
1775         if (err)
1776                 return err;
1777
1778         /* Re-invalidate the TLB for luck */
1779         return engine->emit_flush(rq, EMIT_INVALIDATE);
1780 }
1781
1782 static int execlists_request_alloc(struct i915_request *request)
1783 {
1784         int ret;
1785
1786         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1787
1788         /*
1789          * Flush enough space to reduce the likelihood of waiting after
1790          * we start building the request - in which case we will just
1791          * have to repeat work.
1792          */
1793         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1794
1795         /*
1796          * Note that after this point, we have committed to using
1797          * this request as it is being used to both track the
1798          * state of engine initialisation and liveness of the
1799          * golden renderstate above. Think twice before you try
1800          * to cancel/unwind this request now.
1801          */
1802
1803         /* Unconditionally invalidate GPU caches and TLBs. */
1804         if (i915_vm_is_4lvl(request->hw_context->vm))
1805                 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1806         else
1807                 ret = emit_pdps(request);
1808         if (ret)
1809                 return ret;
1810
1811         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1812         return 0;
1813 }
1814
1815 /*
1816  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1817  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1818  * but there is a slight complication as this is applied in WA batch where the
1819  * values are only initialized once so we cannot take register value at the
1820  * beginning and reuse it further; hence we save its value to memory, upload a
1821  * constant value with bit21 set and then we restore it back with the saved value.
1822  * To simplify the WA, a constant value is formed by using the default value
1823  * of this register. This shouldn't be a problem because we are only modifying
1824  * it for a short period and this batch in non-premptible. We can ofcourse
1825  * use additional instructions that read the actual value of the register
1826  * at that time and set our bit of interest but it makes the WA complicated.
1827  *
1828  * This WA is also required for Gen9 so extracting as a function avoids
1829  * code duplication.
1830  */
1831 static u32 *
1832 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1833 {
1834         /* NB no one else is allowed to scribble over scratch + 256! */
1835         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1836         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1837         *batch++ = intel_gt_scratch_offset(engine->gt,
1838                                            INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1839         *batch++ = 0;
1840
1841         *batch++ = MI_LOAD_REGISTER_IMM(1);
1842         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1843         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1844
1845         batch = gen8_emit_pipe_control(batch,
1846                                        PIPE_CONTROL_CS_STALL |
1847                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1848                                        0);
1849
1850         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1851         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1852         *batch++ = intel_gt_scratch_offset(engine->gt,
1853                                            INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1854         *batch++ = 0;
1855
1856         return batch;
1857 }
1858
1859 static u32 slm_offset(struct intel_engine_cs *engine)
1860 {
1861         return intel_gt_scratch_offset(engine->gt,
1862                                        INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
1863 }
1864
1865 /*
1866  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1867  * initialized at the beginning and shared across all contexts but this field
1868  * helps us to have multiple batches at different offsets and select them based
1869  * on a criteria. At the moment this batch always start at the beginning of the page
1870  * and at this point we don't have multiple wa_ctx batch buffers.
1871  *
1872  * The number of WA applied are not known at the beginning; we use this field
1873  * to return the no of DWORDS written.
1874  *
1875  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1876  * so it adds NOOPs as padding to make it cacheline aligned.
1877  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1878  * makes a complete batch buffer.
1879  */
1880 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1881 {
1882         /* WaDisableCtxRestoreArbitration:bdw,chv */
1883         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1884
1885         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1886         if (IS_BROADWELL(engine->i915))
1887                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1888
1889         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1890         /* Actual scratch location is at 128 bytes offset */
1891         batch = gen8_emit_pipe_control(batch,
1892                                        PIPE_CONTROL_FLUSH_L3 |
1893                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1894                                        PIPE_CONTROL_CS_STALL |
1895                                        PIPE_CONTROL_QW_WRITE,
1896                                        slm_offset(engine));
1897
1898         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1899
1900         /* Pad to end of cacheline */
1901         while ((unsigned long)batch % CACHELINE_BYTES)
1902                 *batch++ = MI_NOOP;
1903
1904         /*
1905          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1906          * execution depends on the length specified in terms of cache lines
1907          * in the register CTX_RCS_INDIRECT_CTX
1908          */
1909
1910         return batch;
1911 }
1912
1913 struct lri {
1914         i915_reg_t reg;
1915         u32 value;
1916 };
1917
1918 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1919 {
1920         GEM_BUG_ON(!count || count > 63);
1921
1922         *batch++ = MI_LOAD_REGISTER_IMM(count);
1923         do {
1924                 *batch++ = i915_mmio_reg_offset(lri->reg);
1925                 *batch++ = lri->value;
1926         } while (lri++, --count);
1927         *batch++ = MI_NOOP;
1928
1929         return batch;
1930 }
1931
1932 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1933 {
1934         static const struct lri lri[] = {
1935                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1936                 {
1937                         COMMON_SLICE_CHICKEN2,
1938                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1939                                        0),
1940                 },
1941
1942                 /* BSpec: 11391 */
1943                 {
1944                         FF_SLICE_CHICKEN,
1945                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1946                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1947                 },
1948
1949                 /* BSpec: 11299 */
1950                 {
1951                         _3D_CHICKEN3,
1952                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1953                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1954                 }
1955         };
1956
1957         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1958
1959         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1960         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1961
1962         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1963
1964         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1965         if (HAS_POOLED_EU(engine->i915)) {
1966                 /*
1967                  * EU pool configuration is setup along with golden context
1968                  * during context initialization. This value depends on
1969                  * device type (2x6 or 3x6) and needs to be updated based
1970                  * on which subslice is disabled especially for 2x6
1971                  * devices, however it is safe to load default
1972                  * configuration of 3x6 device instead of masking off
1973                  * corresponding bits because HW ignores bits of a disabled
1974                  * subslice and drops down to appropriate config. Please
1975                  * see render_state_setup() in i915_gem_render_state.c for
1976                  * possible configurations, to avoid duplication they are
1977                  * not shown here again.
1978                  */
1979                 *batch++ = GEN9_MEDIA_POOL_STATE;
1980                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1981                 *batch++ = 0x00777000;
1982                 *batch++ = 0;
1983                 *batch++ = 0;
1984                 *batch++ = 0;
1985         }
1986
1987         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1988
1989         /* Pad to end of cacheline */
1990         while ((unsigned long)batch % CACHELINE_BYTES)
1991                 *batch++ = MI_NOOP;
1992
1993         return batch;
1994 }
1995
1996 static u32 *
1997 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1998 {
1999         int i;
2000
2001         /*
2002          * WaPipeControlBefore3DStateSamplePattern: cnl
2003          *
2004          * Ensure the engine is idle prior to programming a
2005          * 3DSTATE_SAMPLE_PATTERN during a context restore.
2006          */
2007         batch = gen8_emit_pipe_control(batch,
2008                                        PIPE_CONTROL_CS_STALL,
2009                                        0);
2010         /*
2011          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
2012          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
2013          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
2014          * confusing. Since gen8_emit_pipe_control() already advances the
2015          * batch by 6 dwords, we advance the other 10 here, completing a
2016          * cacheline. It's not clear if the workaround requires this padding
2017          * before other commands, or if it's just the regular padding we would
2018          * already have for the workaround bb, so leave it here for now.
2019          */
2020         for (i = 0; i < 10; i++)
2021                 *batch++ = MI_NOOP;
2022
2023         /* Pad to end of cacheline */
2024         while ((unsigned long)batch % CACHELINE_BYTES)
2025                 *batch++ = MI_NOOP;
2026
2027         return batch;
2028 }
2029
2030 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
2031
2032 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
2033 {
2034         struct drm_i915_gem_object *obj;
2035         struct i915_vma *vma;
2036         int err;
2037
2038         obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
2039         if (IS_ERR(obj))
2040                 return PTR_ERR(obj);
2041
2042         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2043         if (IS_ERR(vma)) {
2044                 err = PTR_ERR(vma);
2045                 goto err;
2046         }
2047
2048         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2049         if (err)
2050                 goto err;
2051
2052         engine->wa_ctx.vma = vma;
2053         return 0;
2054
2055 err:
2056         i915_gem_object_put(obj);
2057         return err;
2058 }
2059
2060 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2061 {
2062         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2063 }
2064
2065 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
2066
2067 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2068 {
2069         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2070         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
2071                                             &wa_ctx->per_ctx };
2072         wa_bb_func_t wa_bb_fn[2];
2073         struct page *page;
2074         void *batch, *batch_ptr;
2075         unsigned int i;
2076         int ret;
2077
2078         if (engine->class != RENDER_CLASS)
2079                 return 0;
2080
2081         switch (INTEL_GEN(engine->i915)) {
2082         case 11:
2083                 return 0;
2084         case 10:
2085                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
2086                 wa_bb_fn[1] = NULL;
2087                 break;
2088         case 9:
2089                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
2090                 wa_bb_fn[1] = NULL;
2091                 break;
2092         case 8:
2093                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
2094                 wa_bb_fn[1] = NULL;
2095                 break;
2096         default:
2097                 MISSING_CASE(INTEL_GEN(engine->i915));
2098                 return 0;
2099         }
2100
2101         ret = lrc_setup_wa_ctx(engine);
2102         if (ret) {
2103                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
2104                 return ret;
2105         }
2106
2107         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2108         batch = batch_ptr = kmap_atomic(page);
2109
2110         /*
2111          * Emit the two workaround batch buffers, recording the offset from the
2112          * start of the workaround batch buffer object for each and their
2113          * respective sizes.
2114          */
2115         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2116                 wa_bb[i]->offset = batch_ptr - batch;
2117                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2118                                                   CACHELINE_BYTES))) {
2119                         ret = -EINVAL;
2120                         break;
2121                 }
2122                 if (wa_bb_fn[i])
2123                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2124                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2125         }
2126
2127         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2128
2129         kunmap_atomic(batch);
2130         if (ret)
2131                 lrc_destroy_wa_ctx(engine);
2132
2133         return ret;
2134 }
2135
2136 static void enable_execlists(struct intel_engine_cs *engine)
2137 {
2138         u32 mode;
2139
2140         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2141
2142         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2143
2144         if (INTEL_GEN(engine->i915) >= 11)
2145                 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2146         else
2147                 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2148         ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2149
2150         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2151
2152         ENGINE_WRITE_FW(engine,
2153                         RING_HWS_PGA,
2154                         i915_ggtt_offset(engine->status_page.vma));
2155         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2156 }
2157
2158 static bool unexpected_starting_state(struct intel_engine_cs *engine)
2159 {
2160         bool unexpected = false;
2161
2162         if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2163                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2164                 unexpected = true;
2165         }
2166
2167         return unexpected;
2168 }
2169
2170 static int execlists_resume(struct intel_engine_cs *engine)
2171 {
2172         intel_engine_apply_workarounds(engine);
2173         intel_engine_apply_whitelist(engine);
2174
2175         intel_mocs_init_engine(engine);
2176
2177         intel_engine_reset_breadcrumbs(engine);
2178
2179         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2180                 struct drm_printer p = drm_debug_printer(__func__);
2181
2182                 intel_engine_dump(engine, &p, NULL);
2183         }
2184
2185         enable_execlists(engine);
2186
2187         return 0;
2188 }
2189
2190 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2191 {
2192         struct intel_engine_execlists * const execlists = &engine->execlists;
2193         unsigned long flags;
2194
2195         GEM_TRACE("%s: depth<-%d\n", engine->name,
2196                   atomic_read(&execlists->tasklet.count));
2197
2198         /*
2199          * Prevent request submission to the hardware until we have
2200          * completed the reset in i915_gem_reset_finish(). If a request
2201          * is completed by one engine, it may then queue a request
2202          * to a second via its execlists->tasklet *just* as we are
2203          * calling engine->resume() and also writing the ELSP.
2204          * Turning off the execlists->tasklet until the reset is over
2205          * prevents the race.
2206          */
2207         __tasklet_disable_sync_once(&execlists->tasklet);
2208         GEM_BUG_ON(!reset_in_progress(execlists));
2209
2210         /* And flush any current direct submission. */
2211         spin_lock_irqsave(&engine->active.lock, flags);
2212         spin_unlock_irqrestore(&engine->active.lock, flags);
2213
2214         /*
2215          * We stop engines, otherwise we might get failed reset and a
2216          * dead gpu (on elk). Also as modern gpu as kbl can suffer
2217          * from system hang if batchbuffer is progressing when
2218          * the reset is issued, regardless of READY_TO_RESET ack.
2219          * Thus assume it is best to stop engines on all gens
2220          * where we have a gpu reset.
2221          *
2222          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2223          *
2224          * FIXME: Wa for more modern gens needs to be validated
2225          */
2226         intel_engine_stop_cs(engine);
2227 }
2228
2229 static void reset_csb_pointers(struct intel_engine_cs *engine)
2230 {
2231         struct intel_engine_execlists * const execlists = &engine->execlists;
2232         const unsigned int reset_value = execlists->csb_size - 1;
2233
2234         ring_set_paused(engine, 0);
2235
2236         /*
2237          * After a reset, the HW starts writing into CSB entry [0]. We
2238          * therefore have to set our HEAD pointer back one entry so that
2239          * the *first* entry we check is entry 0. To complicate this further,
2240          * as we don't wait for the first interrupt after reset, we have to
2241          * fake the HW write to point back to the last entry so that our
2242          * inline comparison of our cached head position against the last HW
2243          * write works even before the first interrupt.
2244          */
2245         execlists->csb_head = reset_value;
2246         WRITE_ONCE(*execlists->csb_write, reset_value);
2247         wmb(); /* Make sure this is visible to HW (paranoia?) */
2248
2249         invalidate_csb_entries(&execlists->csb_status[0],
2250                                &execlists->csb_status[reset_value]);
2251 }
2252
2253 static struct i915_request *active_request(struct i915_request *rq)
2254 {
2255         const struct list_head * const list = &rq->timeline->requests;
2256         const struct intel_context * const ce = rq->hw_context;
2257         struct i915_request *active = NULL;
2258
2259         list_for_each_entry_from_reverse(rq, list, link) {
2260                 if (i915_request_completed(rq))
2261                         break;
2262
2263                 if (rq->hw_context != ce)
2264                         break;
2265
2266                 active = rq;
2267         }
2268
2269         return active;
2270 }
2271
2272 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2273 {
2274         struct intel_engine_execlists * const execlists = &engine->execlists;
2275         struct intel_context *ce;
2276         struct i915_request *rq;
2277         u32 *regs;
2278
2279         process_csb(engine); /* drain preemption events */
2280
2281         /* Following the reset, we need to reload the CSB read/write pointers */
2282         reset_csb_pointers(engine);
2283
2284         /*
2285          * Save the currently executing context, even if we completed
2286          * its request, it was still running at the time of the
2287          * reset and will have been clobbered.
2288          */
2289         rq = execlists_active(execlists);
2290         if (!rq)
2291                 goto unwind;
2292
2293         ce = rq->hw_context;
2294         GEM_BUG_ON(i915_active_is_idle(&ce->active));
2295         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2296         rq = active_request(rq);
2297         if (!rq) {
2298                 ce->ring->head = ce->ring->tail;
2299                 goto out_replay;
2300         }
2301
2302         ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2303
2304         /*
2305          * If this request hasn't started yet, e.g. it is waiting on a
2306          * semaphore, we need to avoid skipping the request or else we
2307          * break the signaling chain. However, if the context is corrupt
2308          * the request will not restart and we will be stuck with a wedged
2309          * device. It is quite often the case that if we issue a reset
2310          * while the GPU is loading the context image, that the context
2311          * image becomes corrupt.
2312          *
2313          * Otherwise, if we have not started yet, the request should replay
2314          * perfectly and we do not need to flag the result as being erroneous.
2315          */
2316         if (!i915_request_started(rq))
2317                 goto out_replay;
2318
2319         /*
2320          * If the request was innocent, we leave the request in the ELSP
2321          * and will try to replay it on restarting. The context image may
2322          * have been corrupted by the reset, in which case we may have
2323          * to service a new GPU hang, but more likely we can continue on
2324          * without impact.
2325          *
2326          * If the request was guilty, we presume the context is corrupt
2327          * and have to at least restore the RING register in the context
2328          * image back to the expected values to skip over the guilty request.
2329          */
2330         __i915_request_reset(rq, stalled);
2331         if (!stalled)
2332                 goto out_replay;
2333
2334         /*
2335          * We want a simple context + ring to execute the breadcrumb update.
2336          * We cannot rely on the context being intact across the GPU hang,
2337          * so clear it and rebuild just what we need for the breadcrumb.
2338          * All pending requests for this context will be zapped, and any
2339          * future request will be after userspace has had the opportunity
2340          * to recreate its own state.
2341          */
2342         regs = ce->lrc_reg_state;
2343         if (engine->pinned_default_state) {
2344                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2345                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2346                        engine->context_size - PAGE_SIZE);
2347         }
2348         execlists_init_reg_state(regs, ce, engine, ce->ring);
2349
2350 out_replay:
2351         GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
2352                   engine->name, ce->ring->head, ce->ring->tail);
2353         intel_ring_update_space(ce->ring);
2354         __execlists_update_reg_state(ce, engine);
2355
2356 unwind:
2357         /* Push back any incomplete requests for replay after the reset. */
2358         execlists_cancel_port_requests(execlists);
2359         __unwind_incomplete_requests(engine);
2360 }
2361
2362 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2363 {
2364         unsigned long flags;
2365
2366         GEM_TRACE("%s\n", engine->name);
2367
2368         spin_lock_irqsave(&engine->active.lock, flags);
2369
2370         __execlists_reset(engine, stalled);
2371
2372         spin_unlock_irqrestore(&engine->active.lock, flags);
2373 }
2374
2375 static void nop_submission_tasklet(unsigned long data)
2376 {
2377         /* The driver is wedged; don't process any more events. */
2378 }
2379
2380 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2381 {
2382         struct intel_engine_execlists * const execlists = &engine->execlists;
2383         struct i915_request *rq, *rn;
2384         struct rb_node *rb;
2385         unsigned long flags;
2386
2387         GEM_TRACE("%s\n", engine->name);
2388
2389         /*
2390          * Before we call engine->cancel_requests(), we should have exclusive
2391          * access to the submission state. This is arranged for us by the
2392          * caller disabling the interrupt generation, the tasklet and other
2393          * threads that may then access the same state, giving us a free hand
2394          * to reset state. However, we still need to let lockdep be aware that
2395          * we know this state may be accessed in hardirq context, so we
2396          * disable the irq around this manipulation and we want to keep
2397          * the spinlock focused on its duties and not accidentally conflate
2398          * coverage to the submission's irq state. (Similarly, although we
2399          * shouldn't need to disable irq around the manipulation of the
2400          * submission's irq state, we also wish to remind ourselves that
2401          * it is irq state.)
2402          */
2403         spin_lock_irqsave(&engine->active.lock, flags);
2404
2405         __execlists_reset(engine, true);
2406
2407         /* Mark all executing requests as skipped. */
2408         list_for_each_entry(rq, &engine->active.requests, sched.link) {
2409                 if (!i915_request_signaled(rq))
2410                         dma_fence_set_error(&rq->fence, -EIO);
2411
2412                 i915_request_mark_complete(rq);
2413         }
2414
2415         /* Flush the queued requests to the timeline list (for retiring). */
2416         while ((rb = rb_first_cached(&execlists->queue))) {
2417                 struct i915_priolist *p = to_priolist(rb);
2418                 int i;
2419
2420                 priolist_for_each_request_consume(rq, rn, p, i) {
2421                         list_del_init(&rq->sched.link);
2422                         __i915_request_submit(rq);
2423                         dma_fence_set_error(&rq->fence, -EIO);
2424                         i915_request_mark_complete(rq);
2425                 }
2426
2427                 rb_erase_cached(&p->node, &execlists->queue);
2428                 i915_priolist_free(p);
2429         }
2430
2431         /* Cancel all attached virtual engines */
2432         while ((rb = rb_first_cached(&execlists->virtual))) {
2433                 struct virtual_engine *ve =
2434                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2435
2436                 rb_erase_cached(rb, &execlists->virtual);
2437                 RB_CLEAR_NODE(rb);
2438
2439                 spin_lock(&ve->base.active.lock);
2440                 if (ve->request) {
2441                         ve->request->engine = engine;
2442                         __i915_request_submit(ve->request);
2443                         dma_fence_set_error(&ve->request->fence, -EIO);
2444                         i915_request_mark_complete(ve->request);
2445                         ve->base.execlists.queue_priority_hint = INT_MIN;
2446                         ve->request = NULL;
2447                 }
2448                 spin_unlock(&ve->base.active.lock);
2449         }
2450
2451         /* Remaining _unready_ requests will be nop'ed when submitted */
2452
2453         execlists->queue_priority_hint = INT_MIN;
2454         execlists->queue = RB_ROOT_CACHED;
2455
2456         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2457         execlists->tasklet.func = nop_submission_tasklet;
2458
2459         spin_unlock_irqrestore(&engine->active.lock, flags);
2460 }
2461
2462 static void execlists_reset_finish(struct intel_engine_cs *engine)
2463 {
2464         struct intel_engine_execlists * const execlists = &engine->execlists;
2465
2466         /*
2467          * After a GPU reset, we may have requests to replay. Do so now while
2468          * we still have the forcewake to be sure that the GPU is not allowed
2469          * to sleep before we restart and reload a context.
2470          */
2471         GEM_BUG_ON(!reset_in_progress(execlists));
2472         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2473                 execlists->tasklet.func(execlists->tasklet.data);
2474
2475         if (__tasklet_enable(&execlists->tasklet))
2476                 /* And kick in case we missed a new request submission. */
2477                 tasklet_hi_schedule(&execlists->tasklet);
2478         GEM_TRACE("%s: depth->%d\n", engine->name,
2479                   atomic_read(&execlists->tasklet.count));
2480 }
2481
2482 static int gen8_emit_bb_start(struct i915_request *rq,
2483                               u64 offset, u32 len,
2484                               const unsigned int flags)
2485 {
2486         u32 *cs;
2487
2488         cs = intel_ring_begin(rq, 4);
2489         if (IS_ERR(cs))
2490                 return PTR_ERR(cs);
2491
2492         /*
2493          * WaDisableCtxRestoreArbitration:bdw,chv
2494          *
2495          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2496          * particular all the gen that do not need the w/a at all!), if we
2497          * took care to make sure that on every switch into this context
2498          * (both ordinary and for preemption) that arbitrartion was enabled
2499          * we would be fine.  However, for gen8 there is another w/a that
2500          * requires us to not preempt inside GPGPU execution, so we keep
2501          * arbitration disabled for gen8 batches. Arbitration will be
2502          * re-enabled before we close the request
2503          * (engine->emit_fini_breadcrumb).
2504          */
2505         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2506
2507         /* FIXME(BDW+): Address space and security selectors. */
2508         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2509                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2510         *cs++ = lower_32_bits(offset);
2511         *cs++ = upper_32_bits(offset);
2512
2513         intel_ring_advance(rq, cs);
2514
2515         return 0;
2516 }
2517
2518 static int gen9_emit_bb_start(struct i915_request *rq,
2519                               u64 offset, u32 len,
2520                               const unsigned int flags)
2521 {
2522         u32 *cs;
2523
2524         cs = intel_ring_begin(rq, 6);
2525         if (IS_ERR(cs))
2526                 return PTR_ERR(cs);
2527
2528         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2529
2530         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2531                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2532         *cs++ = lower_32_bits(offset);
2533         *cs++ = upper_32_bits(offset);
2534
2535         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2536         *cs++ = MI_NOOP;
2537
2538         intel_ring_advance(rq, cs);
2539
2540         return 0;
2541 }
2542
2543 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2544 {
2545         ENGINE_WRITE(engine, RING_IMR,
2546                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
2547         ENGINE_POSTING_READ(engine, RING_IMR);
2548 }
2549
2550 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2551 {
2552         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2553 }
2554
2555 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2556 {
2557         u32 cmd, *cs;
2558
2559         cs = intel_ring_begin(request, 4);
2560         if (IS_ERR(cs))
2561                 return PTR_ERR(cs);
2562
2563         cmd = MI_FLUSH_DW + 1;
2564
2565         /* We always require a command barrier so that subsequent
2566          * commands, such as breadcrumb interrupts, are strictly ordered
2567          * wrt the contents of the write cache being flushed to memory
2568          * (and thus being coherent from the CPU).
2569          */
2570         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2571
2572         if (mode & EMIT_INVALIDATE) {
2573                 cmd |= MI_INVALIDATE_TLB;
2574                 if (request->engine->class == VIDEO_DECODE_CLASS)
2575                         cmd |= MI_INVALIDATE_BSD;
2576         }
2577
2578         *cs++ = cmd;
2579         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2580         *cs++ = 0; /* upper addr */
2581         *cs++ = 0; /* value */
2582         intel_ring_advance(request, cs);
2583
2584         return 0;
2585 }
2586
2587 static int gen8_emit_flush_render(struct i915_request *request,
2588                                   u32 mode)
2589 {
2590         struct intel_engine_cs *engine = request->engine;
2591         u32 scratch_addr =
2592                 intel_gt_scratch_offset(engine->gt,
2593                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2594         bool vf_flush_wa = false, dc_flush_wa = false;
2595         u32 *cs, flags = 0;
2596         int len;
2597
2598         flags |= PIPE_CONTROL_CS_STALL;
2599
2600         if (mode & EMIT_FLUSH) {
2601                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2602                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2603                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2604                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2605         }
2606
2607         if (mode & EMIT_INVALIDATE) {
2608                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2609                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2610                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2611                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2612                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2613                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2614                 flags |= PIPE_CONTROL_QW_WRITE;
2615                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2616
2617                 /*
2618                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2619                  * pipe control.
2620                  */
2621                 if (IS_GEN(request->i915, 9))
2622                         vf_flush_wa = true;
2623
2624                 /* WaForGAMHang:kbl */
2625                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2626                         dc_flush_wa = true;
2627         }
2628
2629         len = 6;
2630
2631         if (vf_flush_wa)
2632                 len += 6;
2633
2634         if (dc_flush_wa)
2635                 len += 12;
2636
2637         cs = intel_ring_begin(request, len);
2638         if (IS_ERR(cs))
2639                 return PTR_ERR(cs);
2640
2641         if (vf_flush_wa)
2642                 cs = gen8_emit_pipe_control(cs, 0, 0);
2643
2644         if (dc_flush_wa)
2645                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2646                                             0);
2647
2648         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2649
2650         if (dc_flush_wa)
2651                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2652
2653         intel_ring_advance(request, cs);
2654
2655         return 0;
2656 }
2657
2658 /*
2659  * Reserve space for 2 NOOPs at the end of each request to be
2660  * used as a workaround for not being allowed to do lite
2661  * restore with HEAD==TAIL (WaIdleLiteRestore).
2662  */
2663 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2664 {
2665         /* Ensure there's always at least one preemption point per-request. */
2666         *cs++ = MI_ARB_CHECK;
2667         *cs++ = MI_NOOP;
2668         request->wa_tail = intel_ring_offset(request, cs);
2669
2670         return cs;
2671 }
2672
2673 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
2674 {
2675         *cs++ = MI_SEMAPHORE_WAIT |
2676                 MI_SEMAPHORE_GLOBAL_GTT |
2677                 MI_SEMAPHORE_POLL |
2678                 MI_SEMAPHORE_SAD_EQ_SDD;
2679         *cs++ = 0;
2680         *cs++ = intel_hws_preempt_address(request->engine);
2681         *cs++ = 0;
2682
2683         return cs;
2684 }
2685
2686 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2687 {
2688         cs = gen8_emit_ggtt_write(cs,
2689                                   request->fence.seqno,
2690                                   request->timeline->hwsp_offset,
2691                                   0);
2692         *cs++ = MI_USER_INTERRUPT;
2693
2694         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2695         if (intel_engine_has_semaphores(request->engine))
2696                 cs = emit_preempt_busywait(request, cs);
2697
2698         request->tail = intel_ring_offset(request, cs);
2699         assert_ring_tail_valid(request->ring, request->tail);
2700
2701         return gen8_emit_wa_tail(request, cs);
2702 }
2703
2704 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2705 {
2706         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2707         cs = gen8_emit_ggtt_write_rcs(cs,
2708                                       request->fence.seqno,
2709                                       request->timeline->hwsp_offset,
2710                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2711                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2712                                       PIPE_CONTROL_DC_FLUSH_ENABLE);
2713         cs = gen8_emit_pipe_control(cs,
2714                                     PIPE_CONTROL_FLUSH_ENABLE |
2715                                     PIPE_CONTROL_CS_STALL,
2716                                     0);
2717         *cs++ = MI_USER_INTERRUPT;
2718
2719         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2720         if (intel_engine_has_semaphores(request->engine))
2721                 cs = emit_preempt_busywait(request, cs);
2722
2723         request->tail = intel_ring_offset(request, cs);
2724         assert_ring_tail_valid(request->ring, request->tail);
2725
2726         return gen8_emit_wa_tail(request, cs);
2727 }
2728
2729 static void execlists_park(struct intel_engine_cs *engine)
2730 {
2731         del_timer(&engine->execlists.timer);
2732 }
2733
2734 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2735 {
2736         engine->submit_request = execlists_submit_request;
2737         engine->cancel_requests = execlists_cancel_requests;
2738         engine->schedule = i915_schedule;
2739         engine->execlists.tasklet.func = execlists_submission_tasklet;
2740
2741         engine->reset.prepare = execlists_reset_prepare;
2742         engine->reset.reset = execlists_reset;
2743         engine->reset.finish = execlists_reset_finish;
2744
2745         engine->park = execlists_park;
2746         engine->unpark = NULL;
2747
2748         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2749         if (!intel_vgpu_active(engine->i915)) {
2750                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2751                 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2752                         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2753         }
2754 }
2755
2756 static void execlists_destroy(struct intel_engine_cs *engine)
2757 {
2758         intel_engine_cleanup_common(engine);
2759         lrc_destroy_wa_ctx(engine);
2760         kfree(engine);
2761 }
2762
2763 static void
2764 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2765 {
2766         /* Default vfuncs which can be overriden by each engine. */
2767
2768         engine->destroy = execlists_destroy;
2769         engine->resume = execlists_resume;
2770
2771         engine->reset.prepare = execlists_reset_prepare;
2772         engine->reset.reset = execlists_reset;
2773         engine->reset.finish = execlists_reset_finish;
2774
2775         engine->cops = &execlists_context_ops;
2776         engine->request_alloc = execlists_request_alloc;
2777
2778         engine->emit_flush = gen8_emit_flush;
2779         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2780         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2781
2782         engine->set_default_submission = intel_execlists_set_default_submission;
2783
2784         if (INTEL_GEN(engine->i915) < 11) {
2785                 engine->irq_enable = gen8_logical_ring_enable_irq;
2786                 engine->irq_disable = gen8_logical_ring_disable_irq;
2787         } else {
2788                 /*
2789                  * TODO: On Gen11 interrupt masks need to be clear
2790                  * to allow C6 entry. Keep interrupts enabled at
2791                  * and take the hit of generating extra interrupts
2792                  * until a more refined solution exists.
2793                  */
2794         }
2795         if (IS_GEN(engine->i915, 8))
2796                 engine->emit_bb_start = gen8_emit_bb_start;
2797         else
2798                 engine->emit_bb_start = gen9_emit_bb_start;
2799 }
2800
2801 static inline void
2802 logical_ring_default_irqs(struct intel_engine_cs *engine)
2803 {
2804         unsigned int shift = 0;
2805
2806         if (INTEL_GEN(engine->i915) < 11) {
2807                 const u8 irq_shifts[] = {
2808                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2809                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2810                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2811                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2812                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
2813                 };
2814
2815                 shift = irq_shifts[engine->id];
2816         }
2817
2818         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2819         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2820 }
2821
2822 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2823 {
2824         tasklet_init(&engine->execlists.tasklet,
2825                      execlists_submission_tasklet, (unsigned long)engine);
2826         timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
2827
2828         logical_ring_default_vfuncs(engine);
2829         logical_ring_default_irqs(engine);
2830
2831         if (engine->class == RENDER_CLASS) {
2832                 engine->emit_flush = gen8_emit_flush_render;
2833                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2834         }
2835
2836         return 0;
2837 }
2838
2839 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2840 {
2841         struct intel_engine_execlists * const execlists = &engine->execlists;
2842         struct drm_i915_private *i915 = engine->i915;
2843         struct intel_uncore *uncore = engine->uncore;
2844         u32 base = engine->mmio_base;
2845         int ret;
2846
2847         ret = intel_engine_init_common(engine);
2848         if (ret)
2849                 return ret;
2850
2851         if (intel_init_workaround_bb(engine))
2852                 /*
2853                  * We continue even if we fail to initialize WA batch
2854                  * because we only expect rare glitches but nothing
2855                  * critical to prevent us from using GPU
2856                  */
2857                 DRM_ERROR("WA batch buffer initialization failed\n");
2858
2859         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2860                 execlists->submit_reg = uncore->regs +
2861                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2862                 execlists->ctrl_reg = uncore->regs +
2863                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2864         } else {
2865                 execlists->submit_reg = uncore->regs +
2866                         i915_mmio_reg_offset(RING_ELSP(base));
2867         }
2868
2869         execlists->csb_status =
2870                 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2871
2872         execlists->csb_write =
2873                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2874
2875         if (INTEL_GEN(i915) < 11)
2876                 execlists->csb_size = GEN8_CSB_ENTRIES;
2877         else
2878                 execlists->csb_size = GEN11_CSB_ENTRIES;
2879
2880         reset_csb_pointers(engine);
2881
2882         return 0;
2883 }
2884
2885 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2886 {
2887         u32 indirect_ctx_offset;
2888
2889         switch (INTEL_GEN(engine->i915)) {
2890         default:
2891                 MISSING_CASE(INTEL_GEN(engine->i915));
2892                 /* fall through */
2893         case 11:
2894                 indirect_ctx_offset =
2895                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2896                 break;
2897         case 10:
2898                 indirect_ctx_offset =
2899                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2900                 break;
2901         case 9:
2902                 indirect_ctx_offset =
2903                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2904                 break;
2905         case 8:
2906                 indirect_ctx_offset =
2907                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2908                 break;
2909         }
2910
2911         return indirect_ctx_offset;
2912 }
2913
2914 static void execlists_init_reg_state(u32 *regs,
2915                                      struct intel_context *ce,
2916                                      struct intel_engine_cs *engine,
2917                                      struct intel_ring *ring)
2918 {
2919         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
2920         bool rcs = engine->class == RENDER_CLASS;
2921         u32 base = engine->mmio_base;
2922
2923         /*
2924          * A context is actually a big batch buffer with several
2925          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2926          * values we are setting here are only for the first context restore:
2927          * on a subsequent save, the GPU will recreate this batchbuffer with new
2928          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2929          * we are not initializing here).
2930          *
2931          * Must keep consistent with virtual_update_register_offsets().
2932          */
2933         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2934                                  MI_LRI_FORCE_POSTED;
2935
2936         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2937                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2938                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2939         if (INTEL_GEN(engine->i915) < 11) {
2940                 regs[CTX_CONTEXT_CONTROL + 1] |=
2941                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2942                                             CTX_CTRL_RS_CTX_ENABLE);
2943         }
2944         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2945         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2946         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2947         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2948                 RING_CTL_SIZE(ring->size) | RING_VALID);
2949         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2950         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2951         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2952         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2953         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2954         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2955         if (rcs) {
2956                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2957
2958                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2959                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2960                         RING_INDIRECT_CTX_OFFSET(base), 0);
2961                 if (wa_ctx->indirect_ctx.size) {
2962                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2963
2964                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2965                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2966                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2967
2968                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2969                                 intel_lr_indirect_ctx_offset(engine) << 6;
2970                 }
2971
2972                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2973                 if (wa_ctx->per_ctx.size) {
2974                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2975
2976                         regs[CTX_BB_PER_CTX_PTR + 1] =
2977                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2978                 }
2979         }
2980
2981         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2982
2983         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2984         /* PDP values well be assigned later if needed */
2985         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2986         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2987         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2988         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2989         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2990         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2991         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2992         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2993
2994         if (i915_vm_is_4lvl(&ppgtt->vm)) {
2995                 /* 64b PPGTT (48bit canonical)
2996                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2997                  * other PDP Descriptors are ignored.
2998                  */
2999                 ASSIGN_CTX_PML4(ppgtt, regs);
3000         } else {
3001                 ASSIGN_CTX_PDP(ppgtt, regs, 3);
3002                 ASSIGN_CTX_PDP(ppgtt, regs, 2);
3003                 ASSIGN_CTX_PDP(ppgtt, regs, 1);
3004                 ASSIGN_CTX_PDP(ppgtt, regs, 0);
3005         }
3006
3007         if (rcs) {
3008                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
3009                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
3010         }
3011
3012         regs[CTX_END] = MI_BATCH_BUFFER_END;
3013         if (INTEL_GEN(engine->i915) >= 10)
3014                 regs[CTX_END] |= BIT(0);
3015 }
3016
3017 static int
3018 populate_lr_context(struct intel_context *ce,
3019                     struct drm_i915_gem_object *ctx_obj,
3020                     struct intel_engine_cs *engine,
3021                     struct intel_ring *ring)
3022 {
3023         void *vaddr;
3024         u32 *regs;
3025         int ret;
3026
3027         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
3028         if (IS_ERR(vaddr)) {
3029                 ret = PTR_ERR(vaddr);
3030                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
3031                 return ret;
3032         }
3033
3034         if (engine->default_state) {
3035                 /*
3036                  * We only want to copy over the template context state;
3037                  * skipping over the headers reserved for GuC communication,
3038                  * leaving those as zero.
3039                  */
3040                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
3041                 void *defaults;
3042
3043                 defaults = i915_gem_object_pin_map(engine->default_state,
3044                                                    I915_MAP_WB);
3045                 if (IS_ERR(defaults)) {
3046                         ret = PTR_ERR(defaults);
3047                         goto err_unpin_ctx;
3048                 }
3049
3050                 memcpy(vaddr + start, defaults + start, engine->context_size);
3051                 i915_gem_object_unpin_map(engine->default_state);
3052         }
3053
3054         /* The second page of the context object contains some fields which must
3055          * be set up prior to the first execution. */
3056         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3057         execlists_init_reg_state(regs, ce, engine, ring);
3058         if (!engine->default_state)
3059                 regs[CTX_CONTEXT_CONTROL + 1] |=
3060                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3061
3062         ret = 0;
3063 err_unpin_ctx:
3064         __i915_gem_object_flush_map(ctx_obj,
3065                                     LRC_HEADER_PAGES * PAGE_SIZE,
3066                                     engine->context_size);
3067         i915_gem_object_unpin_map(ctx_obj);
3068         return ret;
3069 }
3070
3071 static int __execlists_context_alloc(struct intel_context *ce,
3072                                      struct intel_engine_cs *engine)
3073 {
3074         struct drm_i915_gem_object *ctx_obj;
3075         struct intel_ring *ring;
3076         struct i915_vma *vma;
3077         u32 context_size;
3078         int ret;
3079
3080         GEM_BUG_ON(ce->state);
3081         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3082
3083         /*
3084          * Before the actual start of the context image, we insert a few pages
3085          * for our own use and for sharing with the GuC.
3086          */
3087         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3088
3089         ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3090         if (IS_ERR(ctx_obj))
3091                 return PTR_ERR(ctx_obj);
3092
3093         vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3094         if (IS_ERR(vma)) {
3095                 ret = PTR_ERR(vma);
3096                 goto error_deref_obj;
3097         }
3098
3099         if (!ce->timeline) {
3100                 struct intel_timeline *tl;
3101
3102                 tl = intel_timeline_create(engine->gt, NULL);
3103                 if (IS_ERR(tl)) {
3104                         ret = PTR_ERR(tl);
3105                         goto error_deref_obj;
3106                 }
3107
3108                 ce->timeline = tl;
3109         }
3110
3111         ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
3112         if (IS_ERR(ring)) {
3113                 ret = PTR_ERR(ring);
3114                 goto error_deref_obj;
3115         }
3116
3117         ret = populate_lr_context(ce, ctx_obj, engine, ring);
3118         if (ret) {
3119                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3120                 goto error_ring_free;
3121         }
3122
3123         ce->ring = ring;
3124         ce->state = vma;
3125
3126         return 0;
3127
3128 error_ring_free:
3129         intel_ring_put(ring);
3130 error_deref_obj:
3131         i915_gem_object_put(ctx_obj);
3132         return ret;
3133 }
3134
3135 static struct list_head *virtual_queue(struct virtual_engine *ve)
3136 {
3137         return &ve->base.execlists.default_priolist.requests[0];
3138 }
3139
3140 static void virtual_context_destroy(struct kref *kref)
3141 {
3142         struct virtual_engine *ve =
3143                 container_of(kref, typeof(*ve), context.ref);
3144         unsigned int n;
3145
3146         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3147         GEM_BUG_ON(ve->request);
3148         GEM_BUG_ON(ve->context.inflight);
3149
3150         for (n = 0; n < ve->num_siblings; n++) {
3151                 struct intel_engine_cs *sibling = ve->siblings[n];
3152                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3153
3154                 if (RB_EMPTY_NODE(node))
3155                         continue;
3156
3157                 spin_lock_irq(&sibling->active.lock);
3158
3159                 /* Detachment is lazily performed in the execlists tasklet */
3160                 if (!RB_EMPTY_NODE(node))
3161                         rb_erase_cached(node, &sibling->execlists.virtual);
3162
3163                 spin_unlock_irq(&sibling->active.lock);
3164         }
3165         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3166
3167         if (ve->context.state)
3168                 __execlists_context_fini(&ve->context);
3169         intel_context_fini(&ve->context);
3170
3171         kfree(ve->bonds);
3172         kfree(ve);
3173 }
3174
3175 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3176 {
3177         int swp;
3178
3179         /*
3180          * Pick a random sibling on starting to help spread the load around.
3181          *
3182          * New contexts are typically created with exactly the same order
3183          * of siblings, and often started in batches. Due to the way we iterate
3184          * the array of sibling when submitting requests, sibling[0] is
3185          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3186          * randomised across the system, we also help spread the load by the
3187          * first engine we inspect being different each time.
3188          *
3189          * NB This does not force us to execute on this engine, it will just
3190          * typically be the first we inspect for submission.
3191          */
3192         swp = prandom_u32_max(ve->num_siblings);
3193         if (!swp)
3194                 return;
3195
3196         swap(ve->siblings[swp], ve->siblings[0]);
3197         virtual_update_register_offsets(ve->context.lrc_reg_state,
3198                                         ve->siblings[0]);
3199 }
3200
3201 static int virtual_context_pin(struct intel_context *ce)
3202 {
3203         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3204         int err;
3205
3206         /* Note: we must use a real engine class for setting up reg state */
3207         err = __execlists_context_pin(ce, ve->siblings[0]);
3208         if (err)
3209                 return err;
3210
3211         virtual_engine_initial_hint(ve);
3212         return 0;
3213 }
3214
3215 static void virtual_context_enter(struct intel_context *ce)
3216 {
3217         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3218         unsigned int n;
3219
3220         for (n = 0; n < ve->num_siblings; n++)
3221                 intel_engine_pm_get(ve->siblings[n]);
3222 }
3223
3224 static void virtual_context_exit(struct intel_context *ce)
3225 {
3226         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3227         unsigned int n;
3228
3229         for (n = 0; n < ve->num_siblings; n++)
3230                 intel_engine_pm_put(ve->siblings[n]);
3231 }
3232
3233 static const struct intel_context_ops virtual_context_ops = {
3234         .pin = virtual_context_pin,
3235         .unpin = execlists_context_unpin,
3236
3237         .enter = virtual_context_enter,
3238         .exit = virtual_context_exit,
3239
3240         .destroy = virtual_context_destroy,
3241 };
3242
3243 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3244 {
3245         struct i915_request *rq;
3246         intel_engine_mask_t mask;
3247
3248         rq = READ_ONCE(ve->request);
3249         if (!rq)
3250                 return 0;
3251
3252         /* The rq is ready for submission; rq->execution_mask is now stable. */
3253         mask = rq->execution_mask;
3254         if (unlikely(!mask)) {
3255                 /* Invalid selection, submit to a random engine in error */
3256                 i915_request_skip(rq, -ENODEV);
3257                 mask = ve->siblings[0]->mask;
3258         }
3259
3260         GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3261                   ve->base.name,
3262                   rq->fence.context, rq->fence.seqno,
3263                   mask, ve->base.execlists.queue_priority_hint);
3264
3265         return mask;
3266 }
3267
3268 static void virtual_submission_tasklet(unsigned long data)
3269 {
3270         struct virtual_engine * const ve = (struct virtual_engine *)data;
3271         const int prio = ve->base.execlists.queue_priority_hint;
3272         intel_engine_mask_t mask;
3273         unsigned int n;
3274
3275         rcu_read_lock();
3276         mask = virtual_submission_mask(ve);
3277         rcu_read_unlock();
3278         if (unlikely(!mask))
3279                 return;
3280
3281         local_irq_disable();
3282         for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3283                 struct intel_engine_cs *sibling = ve->siblings[n];
3284                 struct ve_node * const node = &ve->nodes[sibling->id];
3285                 struct rb_node **parent, *rb;
3286                 bool first;
3287
3288                 if (unlikely(!(mask & sibling->mask))) {
3289                         if (!RB_EMPTY_NODE(&node->rb)) {
3290                                 spin_lock(&sibling->active.lock);
3291                                 rb_erase_cached(&node->rb,
3292                                                 &sibling->execlists.virtual);
3293                                 RB_CLEAR_NODE(&node->rb);
3294                                 spin_unlock(&sibling->active.lock);
3295                         }
3296                         continue;
3297                 }
3298
3299                 spin_lock(&sibling->active.lock);
3300
3301                 if (!RB_EMPTY_NODE(&node->rb)) {
3302                         /*
3303                          * Cheat and avoid rebalancing the tree if we can
3304                          * reuse this node in situ.
3305                          */
3306                         first = rb_first_cached(&sibling->execlists.virtual) ==
3307                                 &node->rb;
3308                         if (prio == node->prio || (prio > node->prio && first))
3309                                 goto submit_engine;
3310
3311                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3312                 }
3313
3314                 rb = NULL;
3315                 first = true;
3316                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3317                 while (*parent) {
3318                         struct ve_node *other;
3319
3320                         rb = *parent;
3321                         other = rb_entry(rb, typeof(*other), rb);
3322                         if (prio > other->prio) {
3323                                 parent = &rb->rb_left;
3324                         } else {
3325                                 parent = &rb->rb_right;
3326                                 first = false;
3327                         }
3328                 }
3329
3330                 rb_link_node(&node->rb, rb, parent);
3331                 rb_insert_color_cached(&node->rb,
3332                                        &sibling->execlists.virtual,
3333                                        first);
3334
3335 submit_engine:
3336                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3337                 node->prio = prio;
3338                 if (first && prio > sibling->execlists.queue_priority_hint) {
3339                         sibling->execlists.queue_priority_hint = prio;
3340                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3341                 }
3342
3343                 spin_unlock(&sibling->active.lock);
3344         }
3345         local_irq_enable();
3346 }
3347
3348 static void virtual_submit_request(struct i915_request *rq)
3349 {
3350         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3351
3352         GEM_TRACE("%s: rq=%llx:%lld\n",
3353                   ve->base.name,
3354                   rq->fence.context,
3355                   rq->fence.seqno);
3356
3357         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3358
3359         GEM_BUG_ON(ve->request);
3360         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3361
3362         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3363         WRITE_ONCE(ve->request, rq);
3364
3365         list_move_tail(&rq->sched.link, virtual_queue(ve));
3366
3367         tasklet_schedule(&ve->base.execlists.tasklet);
3368 }
3369
3370 static struct ve_bond *
3371 virtual_find_bond(struct virtual_engine *ve,
3372                   const struct intel_engine_cs *master)
3373 {
3374         int i;
3375
3376         for (i = 0; i < ve->num_bonds; i++) {
3377                 if (ve->bonds[i].master == master)
3378                         return &ve->bonds[i];
3379         }
3380
3381         return NULL;
3382 }
3383
3384 static void
3385 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3386 {
3387         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3388         struct ve_bond *bond;
3389
3390         bond = virtual_find_bond(ve, to_request(signal)->engine);
3391         if (bond) {
3392                 intel_engine_mask_t old, new, cmp;
3393
3394                 cmp = READ_ONCE(rq->execution_mask);
3395                 do {
3396                         old = cmp;
3397                         new = cmp & bond->sibling_mask;
3398                 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3399         }
3400 }
3401
3402 struct intel_context *
3403 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3404                                struct intel_engine_cs **siblings,
3405                                unsigned int count)
3406 {
3407         struct virtual_engine *ve;
3408         unsigned int n;
3409         int err;
3410
3411         if (count == 0)
3412                 return ERR_PTR(-EINVAL);
3413
3414         if (count == 1)
3415                 return intel_context_create(ctx, siblings[0]);
3416
3417         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3418         if (!ve)
3419                 return ERR_PTR(-ENOMEM);
3420
3421         ve->base.i915 = ctx->i915;
3422         ve->base.gt = siblings[0]->gt;
3423         ve->base.id = -1;
3424         ve->base.class = OTHER_CLASS;
3425         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3426         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3427
3428         /*
3429          * The decision on whether to submit a request using semaphores
3430          * depends on the saturated state of the engine. We only compute
3431          * this during HW submission of the request, and we need for this
3432          * state to be globally applied to all requests being submitted
3433          * to this engine. Virtual engines encompass more than one physical
3434          * engine and so we cannot accurately tell in advance if one of those
3435          * engines is already saturated and so cannot afford to use a semaphore
3436          * and be pessimized in priority for doing so -- if we are the only
3437          * context using semaphores after all other clients have stopped, we
3438          * will be starved on the saturated system. Such a global switch for
3439          * semaphores is less than ideal, but alas is the current compromise.
3440          */
3441         ve->base.saturated = ALL_ENGINES;
3442
3443         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3444
3445         intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3446
3447         intel_engine_init_execlists(&ve->base);
3448
3449         ve->base.cops = &virtual_context_ops;
3450         ve->base.request_alloc = execlists_request_alloc;
3451
3452         ve->base.schedule = i915_schedule;
3453         ve->base.submit_request = virtual_submit_request;
3454         ve->base.bond_execute = virtual_bond_execute;
3455
3456         INIT_LIST_HEAD(virtual_queue(ve));
3457         ve->base.execlists.queue_priority_hint = INT_MIN;
3458         tasklet_init(&ve->base.execlists.tasklet,
3459                      virtual_submission_tasklet,
3460                      (unsigned long)ve);
3461
3462         intel_context_init(&ve->context, ctx, &ve->base);
3463
3464         for (n = 0; n < count; n++) {
3465                 struct intel_engine_cs *sibling = siblings[n];
3466
3467                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3468                 if (sibling->mask & ve->base.mask) {
3469                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3470                                   sibling->name);
3471                         err = -EINVAL;
3472                         goto err_put;
3473                 }
3474
3475                 /*
3476                  * The virtual engine implementation is tightly coupled to
3477                  * the execlists backend -- we push out request directly
3478                  * into a tree inside each physical engine. We could support
3479                  * layering if we handle cloning of the requests and
3480                  * submitting a copy into each backend.
3481                  */
3482                 if (sibling->execlists.tasklet.func !=
3483                     execlists_submission_tasklet) {
3484                         err = -ENODEV;
3485                         goto err_put;
3486                 }
3487
3488                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3489                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3490
3491                 ve->siblings[ve->num_siblings++] = sibling;
3492                 ve->base.mask |= sibling->mask;
3493
3494                 /*
3495                  * All physical engines must be compatible for their emission
3496                  * functions (as we build the instructions during request
3497                  * construction and do not alter them before submission
3498                  * on the physical engine). We use the engine class as a guide
3499                  * here, although that could be refined.
3500                  */
3501                 if (ve->base.class != OTHER_CLASS) {
3502                         if (ve->base.class != sibling->class) {
3503                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3504                                           sibling->class, ve->base.class);
3505                                 err = -EINVAL;
3506                                 goto err_put;
3507                         }
3508                         continue;
3509                 }
3510
3511                 ve->base.class = sibling->class;
3512                 ve->base.uabi_class = sibling->uabi_class;
3513                 snprintf(ve->base.name, sizeof(ve->base.name),
3514                          "v%dx%d", ve->base.class, count);
3515                 ve->base.context_size = sibling->context_size;
3516
3517                 ve->base.emit_bb_start = sibling->emit_bb_start;
3518                 ve->base.emit_flush = sibling->emit_flush;
3519                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3520                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3521                 ve->base.emit_fini_breadcrumb_dw =
3522                         sibling->emit_fini_breadcrumb_dw;
3523
3524                 ve->base.flags = sibling->flags;
3525         }
3526
3527         ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3528
3529         err = __execlists_context_alloc(&ve->context, siblings[0]);
3530         if (err)
3531                 goto err_put;
3532
3533         __set_bit(CONTEXT_ALLOC_BIT, &ve->context.flags);
3534
3535         return &ve->context;
3536
3537 err_put:
3538         intel_context_put(&ve->context);
3539         return ERR_PTR(err);
3540 }
3541
3542 struct intel_context *
3543 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3544                               struct intel_engine_cs *src)
3545 {
3546         struct virtual_engine *se = to_virtual_engine(src);
3547         struct intel_context *dst;
3548
3549         dst = intel_execlists_create_virtual(ctx,
3550                                              se->siblings,
3551                                              se->num_siblings);
3552         if (IS_ERR(dst))
3553                 return dst;
3554
3555         if (se->num_bonds) {
3556                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3557
3558                 de->bonds = kmemdup(se->bonds,
3559                                     sizeof(*se->bonds) * se->num_bonds,
3560                                     GFP_KERNEL);
3561                 if (!de->bonds) {
3562                         intel_context_put(dst);
3563                         return ERR_PTR(-ENOMEM);
3564                 }
3565
3566                 de->num_bonds = se->num_bonds;
3567         }
3568
3569         return dst;
3570 }
3571
3572 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3573                                      const struct intel_engine_cs *master,
3574                                      const struct intel_engine_cs *sibling)
3575 {
3576         struct virtual_engine *ve = to_virtual_engine(engine);
3577         struct ve_bond *bond;
3578         int n;
3579
3580         /* Sanity check the sibling is part of the virtual engine */
3581         for (n = 0; n < ve->num_siblings; n++)
3582                 if (sibling == ve->siblings[n])
3583                         break;
3584         if (n == ve->num_siblings)
3585                 return -EINVAL;
3586
3587         bond = virtual_find_bond(ve, master);
3588         if (bond) {
3589                 bond->sibling_mask |= sibling->mask;
3590                 return 0;
3591         }
3592
3593         bond = krealloc(ve->bonds,
3594                         sizeof(*bond) * (ve->num_bonds + 1),
3595                         GFP_KERNEL);
3596         if (!bond)
3597                 return -ENOMEM;
3598
3599         bond[ve->num_bonds].master = master;
3600         bond[ve->num_bonds].sibling_mask = sibling->mask;
3601
3602         ve->bonds = bond;
3603         ve->num_bonds++;
3604
3605         return 0;
3606 }
3607
3608 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3609                                    struct drm_printer *m,
3610                                    void (*show_request)(struct drm_printer *m,
3611                                                         struct i915_request *rq,
3612                                                         const char *prefix),
3613                                    unsigned int max)
3614 {
3615         const struct intel_engine_execlists *execlists = &engine->execlists;
3616         struct i915_request *rq, *last;
3617         unsigned long flags;
3618         unsigned int count;
3619         struct rb_node *rb;
3620
3621         spin_lock_irqsave(&engine->active.lock, flags);
3622
3623         last = NULL;
3624         count = 0;
3625         list_for_each_entry(rq, &engine->active.requests, sched.link) {
3626                 if (count++ < max - 1)
3627                         show_request(m, rq, "\t\tE ");
3628                 else
3629                         last = rq;
3630         }
3631         if (last) {
3632                 if (count > max) {
3633                         drm_printf(m,
3634                                    "\t\t...skipping %d executing requests...\n",
3635                                    count - max);
3636                 }
3637                 show_request(m, last, "\t\tE ");
3638         }
3639
3640         last = NULL;
3641         count = 0;
3642         if (execlists->queue_priority_hint != INT_MIN)
3643                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3644                            execlists->queue_priority_hint);
3645         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3646                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3647                 int i;
3648
3649                 priolist_for_each_request(rq, p, i) {
3650                         if (count++ < max - 1)
3651                                 show_request(m, rq, "\t\tQ ");
3652                         else
3653                                 last = rq;
3654                 }
3655         }
3656         if (last) {
3657                 if (count > max) {
3658                         drm_printf(m,
3659                                    "\t\t...skipping %d queued requests...\n",
3660                                    count - max);
3661                 }
3662                 show_request(m, last, "\t\tQ ");
3663         }
3664
3665         last = NULL;
3666         count = 0;
3667         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3668                 struct virtual_engine *ve =
3669                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3670                 struct i915_request *rq = READ_ONCE(ve->request);
3671
3672                 if (rq) {
3673                         if (count++ < max - 1)
3674                                 show_request(m, rq, "\t\tV ");
3675                         else
3676                                 last = rq;
3677                 }
3678         }
3679         if (last) {
3680                 if (count > max) {
3681                         drm_printf(m,
3682                                    "\t\t...skipping %d virtual requests...\n",
3683                                    count - max);
3684                 }
3685                 show_request(m, last, "\t\tV ");
3686         }
3687
3688         spin_unlock_irqrestore(&engine->active.lock, flags);
3689 }
3690
3691 void intel_lr_context_reset(struct intel_engine_cs *engine,
3692                             struct intel_context *ce,
3693                             u32 head,
3694                             bool scrub)
3695 {
3696         /*
3697          * We want a simple context + ring to execute the breadcrumb update.
3698          * We cannot rely on the context being intact across the GPU hang,
3699          * so clear it and rebuild just what we need for the breadcrumb.
3700          * All pending requests for this context will be zapped, and any
3701          * future request will be after userspace has had the opportunity
3702          * to recreate its own state.
3703          */
3704         if (scrub) {
3705                 u32 *regs = ce->lrc_reg_state;
3706
3707                 if (engine->pinned_default_state) {
3708                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
3709                                engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3710                                engine->context_size - PAGE_SIZE);
3711                 }
3712                 execlists_init_reg_state(regs, ce, engine, ce->ring);
3713         }
3714
3715         /* Rerun the request; its payload has been neutered (if guilty). */
3716         ce->ring->head = head;
3717         intel_ring_update_space(ce->ring);
3718
3719         __execlists_update_reg_state(ce, engine);
3720 }
3721
3722 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3723 #include "selftest_lrc.c"
3724 #endif