]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gt/intel_lrc.c
df58d1d838f7445fdf77146c02e24f875913fe3f
[linux.git] / drivers / gpu / drm / i915 / gt / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include "gem/i915_gem_context.h"
137
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_engine_pm.h"
142 #include "intel_lrc_reg.h"
143 #include "intel_mocs.h"
144 #include "intel_reset.h"
145 #include "intel_workarounds.h"
146
147 #define RING_EXECLIST_QFULL             (1 << 0x2)
148 #define RING_EXECLIST1_VALID            (1 << 0x3)
149 #define RING_EXECLIST0_VALID            (1 << 0x4)
150 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
151 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
152 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
153
154 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
155 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
157 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
158 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
159 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
160
161 #define GEN8_CTX_STATUS_COMPLETED_MASK \
162          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163
164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166 #define WA_TAIL_DWORDS 2
167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168
169 struct virtual_engine {
170         struct intel_engine_cs base;
171         struct intel_context context;
172
173         /*
174          * We allow only a single request through the virtual engine at a time
175          * (each request in the timeline waits for the completion fence of
176          * the previous before being submitted). By restricting ourselves to
177          * only submitting a single request, each request is placed on to a
178          * physical to maximise load spreading (by virtue of the late greedy
179          * scheduling -- each real engine takes the next available request
180          * upon idling).
181          */
182         struct i915_request *request;
183
184         /*
185          * We keep a rbtree of available virtual engines inside each physical
186          * engine, sorted by priority. Here we preallocate the nodes we need
187          * for the virtual engine, indexed by physical_engine->id.
188          */
189         struct ve_node {
190                 struct rb_node rb;
191                 int prio;
192         } nodes[I915_NUM_ENGINES];
193
194         /*
195          * Keep track of bonded pairs -- restrictions upon on our selection
196          * of physical engines any particular request may be submitted to.
197          * If we receive a submit-fence from a master engine, we will only
198          * use one of sibling_mask physical engines.
199          */
200         struct ve_bond {
201                 const struct intel_engine_cs *master;
202                 intel_engine_mask_t sibling_mask;
203         } *bonds;
204         unsigned int num_bonds;
205
206         /* And finally, which physical engines this virtual engine maps onto. */
207         unsigned int num_siblings;
208         struct intel_engine_cs *siblings[0];
209 };
210
211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
212 {
213         GEM_BUG_ON(!intel_engine_is_virtual(engine));
214         return container_of(engine, struct virtual_engine, base);
215 }
216
217 static int execlists_context_deferred_alloc(struct intel_context *ce,
218                                             struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220                                      struct intel_context *ce,
221                                      struct intel_engine_cs *engine,
222                                      struct intel_ring *ring);
223
224 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
225 {
226         return rb_entry(rb, struct i915_priolist, node);
227 }
228
229 static inline int rq_prio(const struct i915_request *rq)
230 {
231         return rq->sched.attr.priority;
232 }
233
234 static int effective_prio(const struct i915_request *rq)
235 {
236         int prio = rq_prio(rq);
237
238         /*
239          * On unwinding the active request, we give it a priority bump
240          * if it has completed waiting on any semaphore. If we know that
241          * the request has already started, we can prevent an unwanted
242          * preempt-to-idle cycle by taking that into account now.
243          */
244         if (__i915_request_has_started(rq))
245                 prio |= I915_PRIORITY_NOSEMAPHORE;
246
247         /* Restrict mere WAIT boosts from triggering preemption */
248         return prio | __NO_PREEMPTION;
249 }
250
251 static int queue_prio(const struct intel_engine_execlists *execlists)
252 {
253         struct i915_priolist *p;
254         struct rb_node *rb;
255
256         rb = rb_first_cached(&execlists->queue);
257         if (!rb)
258                 return INT_MIN;
259
260         /*
261          * As the priolist[] are inverted, with the highest priority in [0],
262          * we have to flip the index value to become priority.
263          */
264         p = to_priolist(rb);
265         return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
266 }
267
268 static inline bool need_preempt(const struct intel_engine_cs *engine,
269                                 const struct i915_request *rq,
270                                 struct rb_node *rb)
271 {
272         int last_prio;
273
274         if (!engine->preempt_context)
275                 return false;
276
277         if (i915_request_completed(rq))
278                 return false;
279
280         /*
281          * Check if the current priority hint merits a preemption attempt.
282          *
283          * We record the highest value priority we saw during rescheduling
284          * prior to this dequeue, therefore we know that if it is strictly
285          * less than the current tail of ESLP[0], we do not need to force
286          * a preempt-to-idle cycle.
287          *
288          * However, the priority hint is a mere hint that we may need to
289          * preempt. If that hint is stale or we may be trying to preempt
290          * ourselves, ignore the request.
291          */
292         last_prio = effective_prio(rq);
293         if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
294                                          last_prio))
295                 return false;
296
297         /*
298          * Check against the first request in ELSP[1], it will, thanks to the
299          * power of PI, be the highest priority of that context.
300          */
301         if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
302             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
303                 return true;
304
305         if (rb) {
306                 struct virtual_engine *ve =
307                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
308                 bool preempt = false;
309
310                 if (engine == ve->siblings[0]) { /* only preempt one sibling */
311                         struct i915_request *next;
312
313                         rcu_read_lock();
314                         next = READ_ONCE(ve->request);
315                         if (next)
316                                 preempt = rq_prio(next) > last_prio;
317                         rcu_read_unlock();
318                 }
319
320                 if (preempt)
321                         return preempt;
322         }
323
324         /*
325          * If the inflight context did not trigger the preemption, then maybe
326          * it was the set of queued requests? Pick the highest priority in
327          * the queue (the first active priolist) and see if it deserves to be
328          * running instead of ELSP[0].
329          *
330          * The highest priority request in the queue can not be either
331          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
332          * context, it's priority would not exceed ELSP[0] aka last_prio.
333          */
334         return queue_prio(&engine->execlists) > last_prio;
335 }
336
337 __maybe_unused static inline bool
338 assert_priority_queue(const struct i915_request *prev,
339                       const struct i915_request *next)
340 {
341         const struct intel_engine_execlists *execlists =
342                 &prev->engine->execlists;
343
344         /*
345          * Without preemption, the prev may refer to the still active element
346          * which we refuse to let go.
347          *
348          * Even with preemption, there are times when we think it is better not
349          * to preempt and leave an ostensibly lower priority request in flight.
350          */
351         if (port_request(execlists->port) == prev)
352                 return true;
353
354         return rq_prio(prev) >= rq_prio(next);
355 }
356
357 /*
358  * The context descriptor encodes various attributes of a context,
359  * including its GTT address and some flags. Because it's fairly
360  * expensive to calculate, we'll just do it once and cache the result,
361  * which remains valid until the context is unpinned.
362  *
363  * This is what a descriptor looks like, from LSB to MSB::
364  *
365  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368  *      bits 53-54:    mbz, reserved for use by hardware
369  *      bits 55-63:    group ID, currently unused and set to 0
370  *
371  * Starting from Gen11, the upper dword of the descriptor has a new format:
372  *
373  *      bits 32-36:    reserved
374  *      bits 37-47:    SW context ID
375  *      bits 48:53:    engine instance
376  *      bit 54:        mbz, reserved for use by hardware
377  *      bits 55-60:    SW counter
378  *      bits 61-63:    engine class
379  *
380  * engine info, SW context ID and SW counter need to form a unique number
381  * (Context ID) per lrc.
382  */
383 static u64
384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385 {
386         struct i915_gem_context *ctx = ce->gem_context;
387         u64 desc;
388
389         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
390         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391
392         desc = ctx->desc_template;                              /* bits  0-11 */
393         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
394
395         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396                                                                 /* bits 12-31 */
397         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
398
399         /*
400          * The following 32bits are copied into the OA reports (dword 2).
401          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
402          * anything below.
403          */
404         if (INTEL_GEN(engine->i915) >= 11) {
405                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
406                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
407                                                                 /* bits 37-47 */
408
409                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
410                                                                 /* bits 48-53 */
411
412                 /* TODO: decide what to do with SW counter (bits 55-60) */
413
414                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
415                                                                 /* bits 61-63 */
416         } else {
417                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
418                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
419         }
420
421         return desc;
422 }
423
424 static void unwind_wa_tail(struct i915_request *rq)
425 {
426         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
427         assert_ring_tail_valid(rq->ring, rq->tail);
428 }
429
430 static struct i915_request *
431 __unwind_incomplete_requests(struct intel_engine_cs *engine)
432 {
433         struct i915_request *rq, *rn, *active = NULL;
434         struct list_head *uninitialized_var(pl);
435         int prio = I915_PRIORITY_INVALID;
436
437         lockdep_assert_held(&engine->active.lock);
438
439         list_for_each_entry_safe_reverse(rq, rn,
440                                          &engine->active.requests,
441                                          sched.link) {
442                 struct intel_engine_cs *owner;
443
444                 if (i915_request_completed(rq))
445                         break;
446
447                 __i915_request_unsubmit(rq);
448                 unwind_wa_tail(rq);
449
450                 GEM_BUG_ON(rq->hw_context->inflight);
451
452                 /*
453                  * Push the request back into the queue for later resubmission.
454                  * If this request is not native to this physical engine (i.e.
455                  * it came from a virtual source), push it back onto the virtual
456                  * engine so that it can be moved across onto another physical
457                  * engine as load dictates.
458                  */
459                 owner = rq->hw_context->engine;
460                 if (likely(owner == engine)) {
461                         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
462                         if (rq_prio(rq) != prio) {
463                                 prio = rq_prio(rq);
464                                 pl = i915_sched_lookup_priolist(engine, prio);
465                         }
466                         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467
468                         list_move(&rq->sched.link, pl);
469                         active = rq;
470                 } else {
471                         rq->engine = owner;
472                         owner->submit_request(rq);
473                         active = NULL;
474                 }
475         }
476
477         return active;
478 }
479
480 struct i915_request *
481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
482 {
483         struct intel_engine_cs *engine =
484                 container_of(execlists, typeof(*engine), execlists);
485
486         return __unwind_incomplete_requests(engine);
487 }
488
489 static inline void
490 execlists_context_status_change(struct i915_request *rq, unsigned long status)
491 {
492         /*
493          * Only used when GVT-g is enabled now. When GVT-g is disabled,
494          * The compiler should eliminate this function as dead-code.
495          */
496         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
497                 return;
498
499         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
500                                    status, rq);
501 }
502
503 inline void
504 execlists_user_begin(struct intel_engine_execlists *execlists,
505                      const struct execlist_port *port)
506 {
507         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
508 }
509
510 inline void
511 execlists_user_end(struct intel_engine_execlists *execlists)
512 {
513         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
514 }
515
516 static inline void
517 execlists_context_schedule_in(struct i915_request *rq)
518 {
519         GEM_BUG_ON(rq->hw_context->inflight);
520
521         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522         intel_engine_context_in(rq->engine);
523         rq->hw_context->inflight = rq->engine;
524 }
525
526 static void kick_siblings(struct i915_request *rq)
527 {
528         struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
529         struct i915_request *next = READ_ONCE(ve->request);
530
531         if (next && next->execution_mask & ~rq->execution_mask)
532                 tasklet_schedule(&ve->base.execlists.tasklet);
533 }
534
535 static inline void
536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537 {
538         rq->hw_context->inflight = NULL;
539         intel_engine_context_out(rq->engine);
540         execlists_context_status_change(rq, status);
541         trace_i915_request_out(rq);
542
543         /*
544          * If this is part of a virtual engine, its next request may have
545          * been blocked waiting for access to the active context. We have
546          * to kick all the siblings again in case we need to switch (e.g.
547          * the next request is not runnable on this engine). Hopefully,
548          * we will already have submitted the next request before the
549          * tasklet runs and do not need to rebuild each virtual tree
550          * and kick everyone again.
551          */
552         if (rq->engine != rq->hw_context->engine)
553                 kick_siblings(rq);
554 }
555
556 static u64 execlists_update_context(struct i915_request *rq)
557 {
558         struct intel_context *ce = rq->hw_context;
559
560         ce->lrc_reg_state[CTX_RING_TAIL + 1] =
561                 intel_ring_set_tail(rq->ring, rq->tail);
562
563         /*
564          * Make sure the context image is complete before we submit it to HW.
565          *
566          * Ostensibly, writes (including the WCB) should be flushed prior to
567          * an uncached write such as our mmio register access, the empirical
568          * evidence (esp. on Braswell) suggests that the WC write into memory
569          * may not be visible to the HW prior to the completion of the UC
570          * register write and that we may begin execution from the context
571          * before its image is complete leading to invalid PD chasing.
572          *
573          * Furthermore, Braswell, at least, wants a full mb to be sure that
574          * the writes are coherent in memory (visible to the GPU) prior to
575          * execution, and not just visible to other CPUs (as is the result of
576          * wmb).
577          */
578         mb();
579         return ce->lrc_desc;
580 }
581
582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
583 {
584         if (execlists->ctrl_reg) {
585                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
586                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
587         } else {
588                 writel(upper_32_bits(desc), execlists->submit_reg);
589                 writel(lower_32_bits(desc), execlists->submit_reg);
590         }
591 }
592
593 static void execlists_submit_ports(struct intel_engine_cs *engine)
594 {
595         struct intel_engine_execlists *execlists = &engine->execlists;
596         struct execlist_port *port = execlists->port;
597         unsigned int n;
598
599         /*
600          * We can skip acquiring intel_runtime_pm_get() here as it was taken
601          * on our behalf by the request (see i915_gem_mark_busy()) and it will
602          * not be relinquished until the device is idle (see
603          * i915_gem_idle_work_handler()). As a precaution, we make sure
604          * that all ELSP are drained i.e. we have processed the CSB,
605          * before allowing ourselves to idle and calling intel_runtime_pm_put().
606          */
607         GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608
609         /*
610          * ELSQ note: the submit queue is not cleared after being submitted
611          * to the HW so we need to make sure we always clean it up. This is
612          * currently ensured by the fact that we always write the same number
613          * of elsq entries, keep this in mind before changing the loop below.
614          */
615         for (n = execlists_num_ports(execlists); n--; ) {
616                 struct i915_request *rq;
617                 unsigned int count;
618                 u64 desc;
619
620                 rq = port_unpack(&port[n], &count);
621                 if (rq) {
622                         GEM_BUG_ON(count > !n);
623                         if (!count++)
624                                 execlists_context_schedule_in(rq);
625                         port_set(&port[n], port_pack(rq, count));
626                         desc = execlists_update_context(rq);
627                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628
629                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630                                   engine->name, n,
631                                   port[n].context_id, count,
632                                   rq->fence.context, rq->fence.seqno,
633                                   hwsp_seqno(rq),
634                                   rq_prio(rq));
635                 } else {
636                         GEM_BUG_ON(!n);
637                         desc = 0;
638                 }
639
640                 write_desc(execlists, desc, n);
641         }
642
643         /* we need to manually load the submit queue */
644         if (execlists->ctrl_reg)
645                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
646
647         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 }
649
650 static bool ctx_single_port_submission(const struct intel_context *ce)
651 {
652         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653                 i915_gem_context_force_single_submission(ce->gem_context));
654 }
655
656 static bool can_merge_ctx(const struct intel_context *prev,
657                           const struct intel_context *next)
658 {
659         if (prev != next)
660                 return false;
661
662         if (ctx_single_port_submission(prev))
663                 return false;
664
665         return true;
666 }
667
668 static bool can_merge_rq(const struct i915_request *prev,
669                          const struct i915_request *next)
670 {
671         GEM_BUG_ON(!assert_priority_queue(prev, next));
672
673         if (!can_merge_ctx(prev->hw_context, next->hw_context))
674                 return false;
675
676         return true;
677 }
678
679 static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 {
681         GEM_BUG_ON(rq == port_request(port));
682
683         if (port_isset(port))
684                 i915_request_put(port_request(port));
685
686         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 }
688
689 static void inject_preempt_context(struct intel_engine_cs *engine)
690 {
691         struct intel_engine_execlists *execlists = &engine->execlists;
692         struct intel_context *ce = engine->preempt_context;
693         unsigned int n;
694
695         GEM_BUG_ON(execlists->preempt_complete_status !=
696                    upper_32_bits(ce->lrc_desc));
697
698         /*
699          * Switch to our empty preempt context so
700          * the state of the GPU is known (idle).
701          */
702         GEM_TRACE("%s\n", engine->name);
703         for (n = execlists_num_ports(execlists); --n; )
704                 write_desc(execlists, 0, n);
705
706         write_desc(execlists, ce->lrc_desc, n);
707
708         /* we need to manually load the submit queue */
709         if (execlists->ctrl_reg)
710                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
711
712         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
713         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714
715         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 }
717
718 static void complete_preempt_context(struct intel_engine_execlists *execlists)
719 {
720         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
721
722         if (inject_preempt_hang(execlists))
723                 return;
724
725         execlists_cancel_port_requests(execlists);
726         __unwind_incomplete_requests(container_of(execlists,
727                                                   struct intel_engine_cs,
728                                                   execlists));
729 }
730
731 static void virtual_update_register_offsets(u32 *regs,
732                                             struct intel_engine_cs *engine)
733 {
734         u32 base = engine->mmio_base;
735
736         /* Must match execlists_init_reg_state()! */
737
738         regs[CTX_CONTEXT_CONTROL] =
739                 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
740         regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
741         regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
742         regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
743         regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
744
745         regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
746         regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
747         regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
748         regs[CTX_SECOND_BB_HEAD_U] =
749                 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
750         regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
751         regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
752
753         regs[CTX_CTX_TIMESTAMP] =
754                 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
755         regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
756         regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
757         regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
758         regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
759         regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
760         regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
761         regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
762         regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
763
764         if (engine->class == RENDER_CLASS) {
765                 regs[CTX_RCS_INDIRECT_CTX] =
766                         i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
767                 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
768                         i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
769                 regs[CTX_BB_PER_CTX_PTR] =
770                         i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
771
772                 regs[CTX_R_PWR_CLK_STATE] =
773                         i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
774         }
775 }
776
777 static bool virtual_matches(const struct virtual_engine *ve,
778                             const struct i915_request *rq,
779                             const struct intel_engine_cs *engine)
780 {
781         const struct intel_engine_cs *inflight;
782
783         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
784                 return false;
785
786         /*
787          * We track when the HW has completed saving the context image
788          * (i.e. when we have seen the final CS event switching out of
789          * the context) and must not overwrite the context image before
790          * then. This restricts us to only using the active engine
791          * while the previous virtualized request is inflight (so
792          * we reuse the register offsets). This is a very small
793          * hystersis on the greedy seelction algorithm.
794          */
795         inflight = READ_ONCE(ve->context.inflight);
796         if (inflight && inflight != engine)
797                 return false;
798
799         return true;
800 }
801
802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
803                                      struct intel_engine_cs *engine)
804 {
805         struct intel_engine_cs *old = ve->siblings[0];
806
807         /* All unattached (rq->engine == old) must already be completed */
808
809         spin_lock(&old->breadcrumbs.irq_lock);
810         if (!list_empty(&ve->context.signal_link)) {
811                 list_move_tail(&ve->context.signal_link,
812                                &engine->breadcrumbs.signalers);
813                 intel_engine_queue_breadcrumbs(engine);
814         }
815         spin_unlock(&old->breadcrumbs.irq_lock);
816 }
817
818 static void execlists_dequeue(struct intel_engine_cs *engine)
819 {
820         struct intel_engine_execlists * const execlists = &engine->execlists;
821         struct execlist_port *port = execlists->port;
822         const struct execlist_port * const last_port =
823                 &execlists->port[execlists->port_mask];
824         struct i915_request *last = port_request(port);
825         struct rb_node *rb;
826         bool submit = false;
827
828         /*
829          * Hardware submission is through 2 ports. Conceptually each port
830          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
831          * static for a context, and unique to each, so we only execute
832          * requests belonging to a single context from each ring. RING_HEAD
833          * is maintained by the CS in the context image, it marks the place
834          * where it got up to last time, and through RING_TAIL we tell the CS
835          * where we want to execute up to this time.
836          *
837          * In this list the requests are in order of execution. Consecutive
838          * requests from the same context are adjacent in the ringbuffer. We
839          * can combine these requests into a single RING_TAIL update:
840          *
841          *              RING_HEAD...req1...req2
842          *                                    ^- RING_TAIL
843          * since to execute req2 the CS must first execute req1.
844          *
845          * Our goal then is to point each port to the end of a consecutive
846          * sequence of requests as being the most optimal (fewest wake ups
847          * and context switches) submission.
848          */
849
850         for (rb = rb_first_cached(&execlists->virtual); rb; ) {
851                 struct virtual_engine *ve =
852                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
853                 struct i915_request *rq = READ_ONCE(ve->request);
854
855                 if (!rq) { /* lazily cleanup after another engine handled rq */
856                         rb_erase_cached(rb, &execlists->virtual);
857                         RB_CLEAR_NODE(rb);
858                         rb = rb_first_cached(&execlists->virtual);
859                         continue;
860                 }
861
862                 if (!virtual_matches(ve, rq, engine)) {
863                         rb = rb_next(rb);
864                         continue;
865                 }
866
867                 break;
868         }
869
870         if (last) {
871                 /*
872                  * Don't resubmit or switch until all outstanding
873                  * preemptions (lite-restore) are seen. Then we
874                  * know the next preemption status we see corresponds
875                  * to this ELSP update.
876                  */
877                 GEM_BUG_ON(!execlists_is_active(execlists,
878                                                 EXECLISTS_ACTIVE_USER));
879                 GEM_BUG_ON(!port_count(&port[0]));
880
881                 /*
882                  * If we write to ELSP a second time before the HW has had
883                  * a chance to respond to the previous write, we can confuse
884                  * the HW and hit "undefined behaviour". After writing to ELSP,
885                  * we must then wait until we see a context-switch event from
886                  * the HW to indicate that it has had a chance to respond.
887                  */
888                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889                         return;
890
891                 if (need_preempt(engine, last, rb)) {
892                         inject_preempt_context(engine);
893                         return;
894                 }
895
896                 /*
897                  * In theory, we could coalesce more requests onto
898                  * the second port (the first port is active, with
899                  * no preemptions pending). However, that means we
900                  * then have to deal with the possible lite-restore
901                  * of the second port (as we submit the ELSP, there
902                  * may be a context-switch) but also we may complete
903                  * the resubmission before the context-switch. Ergo,
904                  * coalescing onto the second port will cause a
905                  * preemption event, but we cannot predict whether
906                  * that will affect port[0] or port[1].
907                  *
908                  * If the second port is already active, we can wait
909                  * until the next context-switch before contemplating
910                  * new requests. The GPU will be busy and we should be
911                  * able to resubmit the new ELSP before it idles,
912                  * avoiding pipeline bubbles (momentary pauses where
913                  * the driver is unable to keep up the supply of new
914                  * work). However, we have to double check that the
915                  * priorities of the ports haven't been switch.
916                  */
917                 if (port_count(&port[1]))
918                         return;
919
920                 /*
921                  * WaIdleLiteRestore:bdw,skl
922                  * Apply the wa NOOPs to prevent
923                  * ring:HEAD == rq:TAIL as we resubmit the
924                  * request. See gen8_emit_fini_breadcrumb() for
925                  * where we prepare the padding after the
926                  * end of the request.
927                  */
928                 last->tail = last->wa_tail;
929         }
930
931         while (rb) { /* XXX virtual is always taking precedence */
932                 struct virtual_engine *ve =
933                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
934                 struct i915_request *rq;
935
936                 spin_lock(&ve->base.active.lock);
937
938                 rq = ve->request;
939                 if (unlikely(!rq)) { /* lost the race to a sibling */
940                         spin_unlock(&ve->base.active.lock);
941                         rb_erase_cached(rb, &execlists->virtual);
942                         RB_CLEAR_NODE(rb);
943                         rb = rb_first_cached(&execlists->virtual);
944                         continue;
945                 }
946
947                 GEM_BUG_ON(rq != ve->request);
948                 GEM_BUG_ON(rq->engine != &ve->base);
949                 GEM_BUG_ON(rq->hw_context != &ve->context);
950
951                 if (rq_prio(rq) >= queue_prio(execlists)) {
952                         if (!virtual_matches(ve, rq, engine)) {
953                                 spin_unlock(&ve->base.active.lock);
954                                 rb = rb_next(rb);
955                                 continue;
956                         }
957
958                         if (last && !can_merge_rq(last, rq)) {
959                                 spin_unlock(&ve->base.active.lock);
960                                 return; /* leave this rq for another engine */
961                         }
962
963                         GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
964                                   engine->name,
965                                   rq->fence.context,
966                                   rq->fence.seqno,
967                                   i915_request_completed(rq) ? "!" :
968                                   i915_request_started(rq) ? "*" :
969                                   "",
970                                   yesno(engine != ve->siblings[0]));
971
972                         ve->request = NULL;
973                         ve->base.execlists.queue_priority_hint = INT_MIN;
974                         rb_erase_cached(rb, &execlists->virtual);
975                         RB_CLEAR_NODE(rb);
976
977                         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978                         rq->engine = engine;
979
980                         if (engine != ve->siblings[0]) {
981                                 u32 *regs = ve->context.lrc_reg_state;
982                                 unsigned int n;
983
984                                 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
985                                 virtual_update_register_offsets(regs, engine);
986
987                                 if (!list_empty(&ve->context.signals))
988                                         virtual_xfer_breadcrumbs(ve, engine);
989
990                                 /*
991                                  * Move the bound engine to the top of the list
992                                  * for future execution. We then kick this
993                                  * tasklet first before checking others, so that
994                                  * we preferentially reuse this set of bound
995                                  * registers.
996                                  */
997                                 for (n = 1; n < ve->num_siblings; n++) {
998                                         if (ve->siblings[n] == engine) {
999                                                 swap(ve->siblings[n],
1000                                                      ve->siblings[0]);
1001                                                 break;
1002                                         }
1003                                 }
1004
1005                                 GEM_BUG_ON(ve->siblings[0] != engine);
1006                         }
1007
1008                         __i915_request_submit(rq);
1009                         trace_i915_request_in(rq, port_index(port, execlists));
1010                         submit = true;
1011                         last = rq;
1012                 }
1013
1014                 spin_unlock(&ve->base.active.lock);
1015                 break;
1016         }
1017
1018         while ((rb = rb_first_cached(&execlists->queue))) {
1019                 struct i915_priolist *p = to_priolist(rb);
1020                 struct i915_request *rq, *rn;
1021                 int i;
1022
1023                 priolist_for_each_request_consume(rq, rn, p, i) {
1024                         /*
1025                          * Can we combine this request with the current port?
1026                          * It has to be the same context/ringbuffer and not
1027                          * have any exceptions (e.g. GVT saying never to
1028                          * combine contexts).
1029                          *
1030                          * If we can combine the requests, we can execute both
1031                          * by updating the RING_TAIL to point to the end of the
1032                          * second request, and so we never need to tell the
1033                          * hardware about the first.
1034                          */
1035                         if (last && !can_merge_rq(last, rq)) {
1036                                 /*
1037                                  * If we are on the second port and cannot
1038                                  * combine this request with the last, then we
1039                                  * are done.
1040                                  */
1041                                 if (port == last_port)
1042                                         goto done;
1043
1044                                 /*
1045                                  * We must not populate both ELSP[] with the
1046                                  * same LRCA, i.e. we must submit 2 different
1047                                  * contexts if we submit 2 ELSP.
1048                                  */
1049                                 if (last->hw_context == rq->hw_context)
1050                                         goto done;
1051
1052                                 /*
1053                                  * If GVT overrides us we only ever submit
1054                                  * port[0], leaving port[1] empty. Note that we
1055                                  * also have to be careful that we don't queue
1056                                  * the same context (even though a different
1057                                  * request) to the second port.
1058                                  */
1059                                 if (ctx_single_port_submission(last->hw_context) ||
1060                                     ctx_single_port_submission(rq->hw_context))
1061                                         goto done;
1062
1063
1064                                 if (submit)
1065                                         port_assign(port, last);
1066                                 port++;
1067
1068                                 GEM_BUG_ON(port_isset(port));
1069                         }
1070
1071                         __i915_request_submit(rq);
1072                         trace_i915_request_in(rq, port_index(port, execlists));
1073
1074                         last = rq;
1075                         submit = true;
1076                 }
1077
1078                 rb_erase_cached(&p->node, &execlists->queue);
1079                 i915_priolist_free(p);
1080         }
1081
1082 done:
1083         /*
1084          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1085          *
1086          * We choose the priority hint such that if we add a request of greater
1087          * priority than this, we kick the submission tasklet to decide on
1088          * the right order of submitting the requests to hardware. We must
1089          * also be prepared to reorder requests as they are in-flight on the
1090          * HW. We derive the priority hint then as the first "hole" in
1091          * the HW submission ports and if there are no available slots,
1092          * the priority of the lowest executing request, i.e. last.
1093          *
1094          * When we do receive a higher priority request ready to run from the
1095          * user, see queue_request(), the priority hint is bumped to that
1096          * request triggering preemption on the next dequeue (or subsequent
1097          * interrupt for secondary ports).
1098          */
1099         execlists->queue_priority_hint = queue_prio(execlists);
1100
1101         if (submit) {
1102                 port_assign(port, last);
1103                 execlists_submit_ports(engine);
1104         }
1105
1106         /* We must always keep the beast fed if we have work piled up */
1107         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1108                    !port_isset(execlists->port));
1109
1110         /* Re-evaluate the executing context setup after each preemptive kick */
1111         if (last)
1112                 execlists_user_begin(execlists, execlists->port);
1113
1114         /* If the engine is now idle, so should be the flag; and vice versa. */
1115         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1116                                        EXECLISTS_ACTIVE_USER) ==
1117                    !port_isset(engine->execlists.port));
1118 }
1119
1120 void
1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122 {
1123         struct execlist_port *port = execlists->port;
1124         unsigned int num_ports = execlists_num_ports(execlists);
1125
1126         while (num_ports-- && port_isset(port)) {
1127                 struct i915_request *rq = port_request(port);
1128
1129                 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130                           rq->engine->name,
1131                           (unsigned int)(port - execlists->port),
1132                           rq->fence.context, rq->fence.seqno,
1133                           hwsp_seqno(rq));
1134
1135                 GEM_BUG_ON(!execlists->active);
1136                 execlists_context_schedule_out(rq,
1137                                                i915_request_completed(rq) ?
1138                                                INTEL_CONTEXT_SCHEDULE_OUT :
1139                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140
1141                 i915_request_put(rq);
1142
1143                 memset(port, 0, sizeof(*port));
1144                 port++;
1145         }
1146
1147         execlists_clear_all_active(execlists);
1148 }
1149
1150 static inline void
1151 invalidate_csb_entries(const u32 *first, const u32 *last)
1152 {
1153         clflush((void *)first);
1154         clflush((void *)last);
1155 }
1156
1157 static inline bool
1158 reset_in_progress(const struct intel_engine_execlists *execlists)
1159 {
1160         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1161 }
1162
1163 static void process_csb(struct intel_engine_cs *engine)
1164 {
1165         struct intel_engine_execlists * const execlists = &engine->execlists;
1166         struct execlist_port *port = execlists->port;
1167         const u32 * const buf = execlists->csb_status;
1168         const u8 num_entries = execlists->csb_size;
1169         u8 head, tail;
1170
1171         lockdep_assert_held(&engine->active.lock);
1172
1173         /*
1174          * Note that csb_write, csb_status may be either in HWSP or mmio.
1175          * When reading from the csb_write mmio register, we have to be
1176          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1177          * the low 4bits. As it happens we know the next 4bits are always
1178          * zero and so we can simply masked off the low u8 of the register
1179          * and treat it identically to reading from the HWSP (without having
1180          * to use explicit shifting and masking, and probably bifurcating
1181          * the code to handle the legacy mmio read).
1182          */
1183         head = execlists->csb_head;
1184         tail = READ_ONCE(*execlists->csb_write);
1185         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1186         if (unlikely(head == tail))
1187                 return;
1188
1189         /*
1190          * Hopefully paired with a wmb() in HW!
1191          *
1192          * We must complete the read of the write pointer before any reads
1193          * from the CSB, so that we do not see stale values. Without an rmb
1194          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1195          * we perform the READ_ONCE(*csb_write).
1196          */
1197         rmb();
1198
1199         do {
1200                 struct i915_request *rq;
1201                 unsigned int status;
1202                 unsigned int count;
1203
1204                 if (++head == num_entries)
1205                         head = 0;
1206
1207                 /*
1208                  * We are flying near dragons again.
1209                  *
1210                  * We hold a reference to the request in execlist_port[]
1211                  * but no more than that. We are operating in softirq
1212                  * context and so cannot hold any mutex or sleep. That
1213                  * prevents us stopping the requests we are processing
1214                  * in port[] from being retired simultaneously (the
1215                  * breadcrumb will be complete before we see the
1216                  * context-switch). As we only hold the reference to the
1217                  * request, any pointer chasing underneath the request
1218                  * is subject to a potential use-after-free. Thus we
1219                  * store all of the bookkeeping within port[] as
1220                  * required, and avoid using unguarded pointers beneath
1221                  * request itself. The same applies to the atomic
1222                  * status notifier.
1223                  */
1224
1225                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1226                           engine->name, head,
1227                           buf[2 * head + 0], buf[2 * head + 1],
1228                           execlists->active);
1229
1230                 status = buf[2 * head];
1231                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1232                               GEN8_CTX_STATUS_PREEMPTED))
1233                         execlists_set_active(execlists,
1234                                              EXECLISTS_ACTIVE_HWACK);
1235                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1236                         execlists_clear_active(execlists,
1237                                                EXECLISTS_ACTIVE_HWACK);
1238
1239                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1240                         continue;
1241
1242                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1243                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1244
1245                 if (status & GEN8_CTX_STATUS_COMPLETE &&
1246                     buf[2*head + 1] == execlists->preempt_complete_status) {
1247                         GEM_TRACE("%s preempt-idle\n", engine->name);
1248                         complete_preempt_context(execlists);
1249                         continue;
1250                 }
1251
1252                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1253                     execlists_is_active(execlists,
1254                                         EXECLISTS_ACTIVE_PREEMPT))
1255                         continue;
1256
1257                 GEM_BUG_ON(!execlists_is_active(execlists,
1258                                                 EXECLISTS_ACTIVE_USER));
1259
1260                 rq = port_unpack(port, &count);
1261                 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1262                           engine->name,
1263                           port->context_id, count,
1264                           rq ? rq->fence.context : 0,
1265                           rq ? rq->fence.seqno : 0,
1266                           rq ? hwsp_seqno(rq) : 0,
1267                           rq ? rq_prio(rq) : 0);
1268
1269                 /* Check the context/desc id for this event matches */
1270                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1271
1272                 GEM_BUG_ON(count == 0);
1273                 if (--count == 0) {
1274                         /*
1275                          * On the final event corresponding to the
1276                          * submission of this context, we expect either
1277                          * an element-switch event or a completion
1278                          * event (and on completion, the active-idle
1279                          * marker). No more preemptions, lite-restore
1280                          * or otherwise.
1281                          */
1282                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1283                         GEM_BUG_ON(port_isset(&port[1]) &&
1284                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1285                         GEM_BUG_ON(!port_isset(&port[1]) &&
1286                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1287
1288                         /*
1289                          * We rely on the hardware being strongly
1290                          * ordered, that the breadcrumb write is
1291                          * coherent (visible from the CPU) before the
1292                          * user interrupt and CSB is processed.
1293                          */
1294                         GEM_BUG_ON(!i915_request_completed(rq));
1295
1296                         execlists_context_schedule_out(rq,
1297                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1298                         i915_request_put(rq);
1299
1300                         GEM_TRACE("%s completed ctx=%d\n",
1301                                   engine->name, port->context_id);
1302
1303                         port = execlists_port_complete(execlists, port);
1304                         if (port_isset(port))
1305                                 execlists_user_begin(execlists, port);
1306                         else
1307                                 execlists_user_end(execlists);
1308                 } else {
1309                         port_set(port, port_pack(rq, count));
1310                 }
1311         } while (head != tail);
1312
1313         execlists->csb_head = head;
1314
1315         /*
1316          * Gen11 has proven to fail wrt global observation point between
1317          * entry and tail update, failing on the ordering and thus
1318          * we see an old entry in the context status buffer.
1319          *
1320          * Forcibly evict out entries for the next gpu csb update,
1321          * to increase the odds that we get a fresh entries with non
1322          * working hardware. The cost for doing so comes out mostly with
1323          * the wash as hardware, working or not, will need to do the
1324          * invalidation before.
1325          */
1326         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1327 }
1328
1329 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1330 {
1331         lockdep_assert_held(&engine->active.lock);
1332
1333         process_csb(engine);
1334         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1335                 execlists_dequeue(engine);
1336 }
1337
1338 /*
1339  * Check the unread Context Status Buffers and manage the submission of new
1340  * contexts to the ELSP accordingly.
1341  */
1342 static void execlists_submission_tasklet(unsigned long data)
1343 {
1344         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1345         unsigned long flags;
1346
1347         GEM_TRACE("%s awake?=%d, active=%x\n",
1348                   engine->name,
1349                   !!intel_wakeref_active(&engine->wakeref),
1350                   engine->execlists.active);
1351
1352         spin_lock_irqsave(&engine->active.lock, flags);
1353         __execlists_submission_tasklet(engine);
1354         spin_unlock_irqrestore(&engine->active.lock, flags);
1355 }
1356
1357 static void queue_request(struct intel_engine_cs *engine,
1358                           struct i915_sched_node *node,
1359                           int prio)
1360 {
1361         GEM_BUG_ON(!list_empty(&node->link));
1362         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1363 }
1364
1365 static void __submit_queue_imm(struct intel_engine_cs *engine)
1366 {
1367         struct intel_engine_execlists * const execlists = &engine->execlists;
1368
1369         if (reset_in_progress(execlists))
1370                 return; /* defer until we restart the engine following reset */
1371
1372         if (execlists->tasklet.func == execlists_submission_tasklet)
1373                 __execlists_submission_tasklet(engine);
1374         else
1375                 tasklet_hi_schedule(&execlists->tasklet);
1376 }
1377
1378 static void submit_queue(struct intel_engine_cs *engine, int prio)
1379 {
1380         if (prio > engine->execlists.queue_priority_hint) {
1381                 engine->execlists.queue_priority_hint = prio;
1382                 __submit_queue_imm(engine);
1383         }
1384 }
1385
1386 static void execlists_submit_request(struct i915_request *request)
1387 {
1388         struct intel_engine_cs *engine = request->engine;
1389         unsigned long flags;
1390
1391         /* Will be called from irq-context when using foreign fences. */
1392         spin_lock_irqsave(&engine->active.lock, flags);
1393
1394         queue_request(engine, &request->sched, rq_prio(request));
1395
1396         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1397         GEM_BUG_ON(list_empty(&request->sched.link));
1398
1399         submit_queue(engine, rq_prio(request));
1400
1401         spin_unlock_irqrestore(&engine->active.lock, flags);
1402 }
1403
1404 static void __execlists_context_fini(struct intel_context *ce)
1405 {
1406         intel_ring_put(ce->ring);
1407
1408         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1409         i915_gem_object_put(ce->state->obj);
1410 }
1411
1412 static void execlists_context_destroy(struct kref *kref)
1413 {
1414         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1415
1416         GEM_BUG_ON(intel_context_is_pinned(ce));
1417
1418         if (ce->state)
1419                 __execlists_context_fini(ce);
1420
1421         intel_context_free(ce);
1422 }
1423
1424 static void execlists_context_unpin(struct intel_context *ce)
1425 {
1426         i915_gem_context_unpin_hw_id(ce->gem_context);
1427         i915_gem_object_unpin_map(ce->state->obj);
1428         intel_ring_unpin(ce->ring);
1429 }
1430
1431 static void
1432 __execlists_update_reg_state(struct intel_context *ce,
1433                              struct intel_engine_cs *engine)
1434 {
1435         struct intel_ring *ring = ce->ring;
1436         u32 *regs = ce->lrc_reg_state;
1437
1438         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1439         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1440
1441         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1442         regs[CTX_RING_HEAD + 1] = ring->head;
1443         regs[CTX_RING_TAIL + 1] = ring->tail;
1444
1445         /* RPCS */
1446         if (engine->class == RENDER_CLASS)
1447                 regs[CTX_R_PWR_CLK_STATE + 1] =
1448                         intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1449 }
1450
1451 static int
1452 __execlists_context_pin(struct intel_context *ce,
1453                         struct intel_engine_cs *engine)
1454 {
1455         void *vaddr;
1456         int ret;
1457
1458         GEM_BUG_ON(!ce->gem_context->vm);
1459
1460         ret = execlists_context_deferred_alloc(ce, engine);
1461         if (ret)
1462                 goto err;
1463         GEM_BUG_ON(!ce->state);
1464
1465         ret = intel_context_active_acquire(ce,
1466                                            engine->i915->ggtt.pin_bias |
1467                                            PIN_OFFSET_BIAS |
1468                                            PIN_HIGH);
1469         if (ret)
1470                 goto err;
1471
1472         vaddr = i915_gem_object_pin_map(ce->state->obj,
1473                                         i915_coherent_map_type(engine->i915) |
1474                                         I915_MAP_OVERRIDE);
1475         if (IS_ERR(vaddr)) {
1476                 ret = PTR_ERR(vaddr);
1477                 goto unpin_active;
1478         }
1479
1480         ret = intel_ring_pin(ce->ring);
1481         if (ret)
1482                 goto unpin_map;
1483
1484         ret = i915_gem_context_pin_hw_id(ce->gem_context);
1485         if (ret)
1486                 goto unpin_ring;
1487
1488         ce->lrc_desc = lrc_descriptor(ce, engine);
1489         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1490         __execlists_update_reg_state(ce, engine);
1491
1492         return 0;
1493
1494 unpin_ring:
1495         intel_ring_unpin(ce->ring);
1496 unpin_map:
1497         i915_gem_object_unpin_map(ce->state->obj);
1498 unpin_active:
1499         intel_context_active_release(ce);
1500 err:
1501         return ret;
1502 }
1503
1504 static int execlists_context_pin(struct intel_context *ce)
1505 {
1506         return __execlists_context_pin(ce, ce->engine);
1507 }
1508
1509 static void execlists_context_reset(struct intel_context *ce)
1510 {
1511         /*
1512          * Because we emit WA_TAIL_DWORDS there may be a disparity
1513          * between our bookkeeping in ce->ring->head and ce->ring->tail and
1514          * that stored in context. As we only write new commands from
1515          * ce->ring->tail onwards, everything before that is junk. If the GPU
1516          * starts reading from its RING_HEAD from the context, it may try to
1517          * execute that junk and die.
1518          *
1519          * The contexts that are stilled pinned on resume belong to the
1520          * kernel, and are local to each engine. All other contexts will
1521          * have their head/tail sanitized upon pinning before use, so they
1522          * will never see garbage,
1523          *
1524          * So to avoid that we reset the context images upon resume. For
1525          * simplicity, we just zero everything out.
1526          */
1527         intel_ring_reset(ce->ring, 0);
1528         __execlists_update_reg_state(ce, ce->engine);
1529 }
1530
1531 static const struct intel_context_ops execlists_context_ops = {
1532         .pin = execlists_context_pin,
1533         .unpin = execlists_context_unpin,
1534
1535         .enter = intel_context_enter_engine,
1536         .exit = intel_context_exit_engine,
1537
1538         .reset = execlists_context_reset,
1539         .destroy = execlists_context_destroy,
1540 };
1541
1542 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1543 {
1544         u32 *cs;
1545
1546         GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1547
1548         cs = intel_ring_begin(rq, 6);
1549         if (IS_ERR(cs))
1550                 return PTR_ERR(cs);
1551
1552         /*
1553          * Check if we have been preempted before we even get started.
1554          *
1555          * After this point i915_request_started() reports true, even if
1556          * we get preempted and so are no longer running.
1557          */
1558         *cs++ = MI_ARB_CHECK;
1559         *cs++ = MI_NOOP;
1560
1561         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1562         *cs++ = rq->timeline->hwsp_offset;
1563         *cs++ = 0;
1564         *cs++ = rq->fence.seqno - 1;
1565
1566         intel_ring_advance(rq, cs);
1567
1568         /* Record the updated position of the request's payload */
1569         rq->infix = intel_ring_offset(rq, cs);
1570
1571         return 0;
1572 }
1573
1574 static int emit_pdps(struct i915_request *rq)
1575 {
1576         const struct intel_engine_cs * const engine = rq->engine;
1577         struct i915_ppgtt * const ppgtt =
1578                 i915_vm_to_ppgtt(rq->gem_context->vm);
1579         int err, i;
1580         u32 *cs;
1581
1582         GEM_BUG_ON(intel_vgpu_active(rq->i915));
1583
1584         /*
1585          * Beware ye of the dragons, this sequence is magic!
1586          *
1587          * Small changes to this sequence can cause anything from
1588          * GPU hangs to forcewake errors and machine lockups!
1589          */
1590
1591         /* Flush any residual operations from the context load */
1592         err = engine->emit_flush(rq, EMIT_FLUSH);
1593         if (err)
1594                 return err;
1595
1596         /* Magic required to prevent forcewake errors! */
1597         err = engine->emit_flush(rq, EMIT_INVALIDATE);
1598         if (err)
1599                 return err;
1600
1601         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1602         if (IS_ERR(cs))
1603                 return PTR_ERR(cs);
1604
1605         /* Ensure the LRI have landed before we invalidate & continue */
1606         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1607         for (i = GEN8_3LVL_PDPES; i--; ) {
1608                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1609                 u32 base = engine->mmio_base;
1610
1611                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1612                 *cs++ = upper_32_bits(pd_daddr);
1613                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1614                 *cs++ = lower_32_bits(pd_daddr);
1615         }
1616         *cs++ = MI_NOOP;
1617
1618         intel_ring_advance(rq, cs);
1619
1620         /* Be doubly sure the LRI have landed before proceeding */
1621         err = engine->emit_flush(rq, EMIT_FLUSH);
1622         if (err)
1623                 return err;
1624
1625         /* Re-invalidate the TLB for luck */
1626         return engine->emit_flush(rq, EMIT_INVALIDATE);
1627 }
1628
1629 static int execlists_request_alloc(struct i915_request *request)
1630 {
1631         int ret;
1632
1633         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1634
1635         /*
1636          * Flush enough space to reduce the likelihood of waiting after
1637          * we start building the request - in which case we will just
1638          * have to repeat work.
1639          */
1640         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1641
1642         /*
1643          * Note that after this point, we have committed to using
1644          * this request as it is being used to both track the
1645          * state of engine initialisation and liveness of the
1646          * golden renderstate above. Think twice before you try
1647          * to cancel/unwind this request now.
1648          */
1649
1650         /* Unconditionally invalidate GPU caches and TLBs. */
1651         if (i915_vm_is_4lvl(request->gem_context->vm))
1652                 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1653         else
1654                 ret = emit_pdps(request);
1655         if (ret)
1656                 return ret;
1657
1658         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1659         return 0;
1660 }
1661
1662 /*
1663  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1664  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1665  * but there is a slight complication as this is applied in WA batch where the
1666  * values are only initialized once so we cannot take register value at the
1667  * beginning and reuse it further; hence we save its value to memory, upload a
1668  * constant value with bit21 set and then we restore it back with the saved value.
1669  * To simplify the WA, a constant value is formed by using the default value
1670  * of this register. This shouldn't be a problem because we are only modifying
1671  * it for a short period and this batch in non-premptible. We can ofcourse
1672  * use additional instructions that read the actual value of the register
1673  * at that time and set our bit of interest but it makes the WA complicated.
1674  *
1675  * This WA is also required for Gen9 so extracting as a function avoids
1676  * code duplication.
1677  */
1678 static u32 *
1679 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1680 {
1681         /* NB no one else is allowed to scribble over scratch + 256! */
1682         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1683         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1684         *batch++ = i915_scratch_offset(engine->i915) + 256;
1685         *batch++ = 0;
1686
1687         *batch++ = MI_LOAD_REGISTER_IMM(1);
1688         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1689         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1690
1691         batch = gen8_emit_pipe_control(batch,
1692                                        PIPE_CONTROL_CS_STALL |
1693                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1694                                        0);
1695
1696         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1697         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1698         *batch++ = i915_scratch_offset(engine->i915) + 256;
1699         *batch++ = 0;
1700
1701         return batch;
1702 }
1703
1704 /*
1705  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1706  * initialized at the beginning and shared across all contexts but this field
1707  * helps us to have multiple batches at different offsets and select them based
1708  * on a criteria. At the moment this batch always start at the beginning of the page
1709  * and at this point we don't have multiple wa_ctx batch buffers.
1710  *
1711  * The number of WA applied are not known at the beginning; we use this field
1712  * to return the no of DWORDS written.
1713  *
1714  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1715  * so it adds NOOPs as padding to make it cacheline aligned.
1716  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1717  * makes a complete batch buffer.
1718  */
1719 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1720 {
1721         /* WaDisableCtxRestoreArbitration:bdw,chv */
1722         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1723
1724         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1725         if (IS_BROADWELL(engine->i915))
1726                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1727
1728         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1729         /* Actual scratch location is at 128 bytes offset */
1730         batch = gen8_emit_pipe_control(batch,
1731                                        PIPE_CONTROL_FLUSH_L3 |
1732                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1733                                        PIPE_CONTROL_CS_STALL |
1734                                        PIPE_CONTROL_QW_WRITE,
1735                                        i915_scratch_offset(engine->i915) +
1736                                        2 * CACHELINE_BYTES);
1737
1738         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1739
1740         /* Pad to end of cacheline */
1741         while ((unsigned long)batch % CACHELINE_BYTES)
1742                 *batch++ = MI_NOOP;
1743
1744         /*
1745          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1746          * execution depends on the length specified in terms of cache lines
1747          * in the register CTX_RCS_INDIRECT_CTX
1748          */
1749
1750         return batch;
1751 }
1752
1753 struct lri {
1754         i915_reg_t reg;
1755         u32 value;
1756 };
1757
1758 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1759 {
1760         GEM_BUG_ON(!count || count > 63);
1761
1762         *batch++ = MI_LOAD_REGISTER_IMM(count);
1763         do {
1764                 *batch++ = i915_mmio_reg_offset(lri->reg);
1765                 *batch++ = lri->value;
1766         } while (lri++, --count);
1767         *batch++ = MI_NOOP;
1768
1769         return batch;
1770 }
1771
1772 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1773 {
1774         static const struct lri lri[] = {
1775                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1776                 {
1777                         COMMON_SLICE_CHICKEN2,
1778                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1779                                        0),
1780                 },
1781
1782                 /* BSpec: 11391 */
1783                 {
1784                         FF_SLICE_CHICKEN,
1785                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1786                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1787                 },
1788
1789                 /* BSpec: 11299 */
1790                 {
1791                         _3D_CHICKEN3,
1792                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1793                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1794                 }
1795         };
1796
1797         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1798
1799         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1800         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1801
1802         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1803
1804         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1805         if (HAS_POOLED_EU(engine->i915)) {
1806                 /*
1807                  * EU pool configuration is setup along with golden context
1808                  * during context initialization. This value depends on
1809                  * device type (2x6 or 3x6) and needs to be updated based
1810                  * on which subslice is disabled especially for 2x6
1811                  * devices, however it is safe to load default
1812                  * configuration of 3x6 device instead of masking off
1813                  * corresponding bits because HW ignores bits of a disabled
1814                  * subslice and drops down to appropriate config. Please
1815                  * see render_state_setup() in i915_gem_render_state.c for
1816                  * possible configurations, to avoid duplication they are
1817                  * not shown here again.
1818                  */
1819                 *batch++ = GEN9_MEDIA_POOL_STATE;
1820                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1821                 *batch++ = 0x00777000;
1822                 *batch++ = 0;
1823                 *batch++ = 0;
1824                 *batch++ = 0;
1825         }
1826
1827         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1828
1829         /* Pad to end of cacheline */
1830         while ((unsigned long)batch % CACHELINE_BYTES)
1831                 *batch++ = MI_NOOP;
1832
1833         return batch;
1834 }
1835
1836 static u32 *
1837 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1838 {
1839         int i;
1840
1841         /*
1842          * WaPipeControlBefore3DStateSamplePattern: cnl
1843          *
1844          * Ensure the engine is idle prior to programming a
1845          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1846          */
1847         batch = gen8_emit_pipe_control(batch,
1848                                        PIPE_CONTROL_CS_STALL,
1849                                        0);
1850         /*
1851          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1852          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1853          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1854          * confusing. Since gen8_emit_pipe_control() already advances the
1855          * batch by 6 dwords, we advance the other 10 here, completing a
1856          * cacheline. It's not clear if the workaround requires this padding
1857          * before other commands, or if it's just the regular padding we would
1858          * already have for the workaround bb, so leave it here for now.
1859          */
1860         for (i = 0; i < 10; i++)
1861                 *batch++ = MI_NOOP;
1862
1863         /* Pad to end of cacheline */
1864         while ((unsigned long)batch % CACHELINE_BYTES)
1865                 *batch++ = MI_NOOP;
1866
1867         return batch;
1868 }
1869
1870 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1871
1872 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1873 {
1874         struct drm_i915_gem_object *obj;
1875         struct i915_vma *vma;
1876         int err;
1877
1878         obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1879         if (IS_ERR(obj))
1880                 return PTR_ERR(obj);
1881
1882         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1883         if (IS_ERR(vma)) {
1884                 err = PTR_ERR(vma);
1885                 goto err;
1886         }
1887
1888         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1889         if (err)
1890                 goto err;
1891
1892         engine->wa_ctx.vma = vma;
1893         return 0;
1894
1895 err:
1896         i915_gem_object_put(obj);
1897         return err;
1898 }
1899
1900 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1901 {
1902         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1903 }
1904
1905 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1906
1907 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1908 {
1909         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1910         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1911                                             &wa_ctx->per_ctx };
1912         wa_bb_func_t wa_bb_fn[2];
1913         struct page *page;
1914         void *batch, *batch_ptr;
1915         unsigned int i;
1916         int ret;
1917
1918         if (engine->class != RENDER_CLASS)
1919                 return 0;
1920
1921         switch (INTEL_GEN(engine->i915)) {
1922         case 11:
1923                 return 0;
1924         case 10:
1925                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1926                 wa_bb_fn[1] = NULL;
1927                 break;
1928         case 9:
1929                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1930                 wa_bb_fn[1] = NULL;
1931                 break;
1932         case 8:
1933                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1934                 wa_bb_fn[1] = NULL;
1935                 break;
1936         default:
1937                 MISSING_CASE(INTEL_GEN(engine->i915));
1938                 return 0;
1939         }
1940
1941         ret = lrc_setup_wa_ctx(engine);
1942         if (ret) {
1943                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1944                 return ret;
1945         }
1946
1947         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1948         batch = batch_ptr = kmap_atomic(page);
1949
1950         /*
1951          * Emit the two workaround batch buffers, recording the offset from the
1952          * start of the workaround batch buffer object for each and their
1953          * respective sizes.
1954          */
1955         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1956                 wa_bb[i]->offset = batch_ptr - batch;
1957                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1958                                                   CACHELINE_BYTES))) {
1959                         ret = -EINVAL;
1960                         break;
1961                 }
1962                 if (wa_bb_fn[i])
1963                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1964                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1965         }
1966
1967         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1968
1969         kunmap_atomic(batch);
1970         if (ret)
1971                 lrc_destroy_wa_ctx(engine);
1972
1973         return ret;
1974 }
1975
1976 static void enable_execlists(struct intel_engine_cs *engine)
1977 {
1978         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1979
1980         if (INTEL_GEN(engine->i915) >= 11)
1981                 ENGINE_WRITE(engine,
1982                              RING_MODE_GEN7,
1983                              _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1984         else
1985                 ENGINE_WRITE(engine,
1986                              RING_MODE_GEN7,
1987                              _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1988
1989         ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1990
1991         ENGINE_WRITE(engine,
1992                      RING_HWS_PGA,
1993                      i915_ggtt_offset(engine->status_page.vma));
1994         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
1995 }
1996
1997 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1998 {
1999         bool unexpected = false;
2000
2001         if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2002                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2003                 unexpected = true;
2004         }
2005
2006         return unexpected;
2007 }
2008
2009 static int execlists_resume(struct intel_engine_cs *engine)
2010 {
2011         intel_engine_apply_workarounds(engine);
2012         intel_engine_apply_whitelist(engine);
2013
2014         intel_mocs_init_engine(engine);
2015
2016         intel_engine_reset_breadcrumbs(engine);
2017
2018         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2019                 struct drm_printer p = drm_debug_printer(__func__);
2020
2021                 intel_engine_dump(engine, &p, NULL);
2022         }
2023
2024         enable_execlists(engine);
2025
2026         return 0;
2027 }
2028
2029 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2030 {
2031         struct intel_engine_execlists * const execlists = &engine->execlists;
2032         unsigned long flags;
2033
2034         GEM_TRACE("%s: depth<-%d\n", engine->name,
2035                   atomic_read(&execlists->tasklet.count));
2036
2037         /*
2038          * Prevent request submission to the hardware until we have
2039          * completed the reset in i915_gem_reset_finish(). If a request
2040          * is completed by one engine, it may then queue a request
2041          * to a second via its execlists->tasklet *just* as we are
2042          * calling engine->resume() and also writing the ELSP.
2043          * Turning off the execlists->tasklet until the reset is over
2044          * prevents the race.
2045          */
2046         __tasklet_disable_sync_once(&execlists->tasklet);
2047         GEM_BUG_ON(!reset_in_progress(execlists));
2048
2049         intel_engine_stop_cs(engine);
2050
2051         /* And flush any current direct submission. */
2052         spin_lock_irqsave(&engine->active.lock, flags);
2053         spin_unlock_irqrestore(&engine->active.lock, flags);
2054 }
2055
2056 static bool lrc_regs_ok(const struct i915_request *rq)
2057 {
2058         const struct intel_ring *ring = rq->ring;
2059         const u32 *regs = rq->hw_context->lrc_reg_state;
2060
2061         /* Quick spot check for the common signs of context corruption */
2062
2063         if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2064             (RING_CTL_SIZE(ring->size) | RING_VALID))
2065                 return false;
2066
2067         if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2068                 return false;
2069
2070         return true;
2071 }
2072
2073 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2074 {
2075         const unsigned int reset_value = execlists->csb_size - 1;
2076
2077         /*
2078          * After a reset, the HW starts writing into CSB entry [0]. We
2079          * therefore have to set our HEAD pointer back one entry so that
2080          * the *first* entry we check is entry 0. To complicate this further,
2081          * as we don't wait for the first interrupt after reset, we have to
2082          * fake the HW write to point back to the last entry so that our
2083          * inline comparison of our cached head position against the last HW
2084          * write works even before the first interrupt.
2085          */
2086         execlists->csb_head = reset_value;
2087         WRITE_ONCE(*execlists->csb_write, reset_value);
2088         wmb(); /* Make sure this is visible to HW (paranoia?) */
2089
2090         invalidate_csb_entries(&execlists->csb_status[0],
2091                                &execlists->csb_status[reset_value]);
2092 }
2093
2094 static struct i915_request *active_request(struct i915_request *rq)
2095 {
2096         const struct list_head * const list = &rq->engine->active.requests;
2097         const struct intel_context * const context = rq->hw_context;
2098         struct i915_request *active = NULL;
2099
2100         list_for_each_entry_from_reverse(rq, list, sched.link) {
2101                 if (i915_request_completed(rq))
2102                         break;
2103
2104                 if (rq->hw_context != context)
2105                         break;
2106
2107                 active = rq;
2108         }
2109
2110         return active;
2111 }
2112
2113 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2114 {
2115         struct intel_engine_execlists * const execlists = &engine->execlists;
2116         struct intel_context *ce;
2117         struct i915_request *rq;
2118         u32 *regs;
2119
2120         process_csb(engine); /* drain preemption events */
2121
2122         /* Following the reset, we need to reload the CSB read/write pointers */
2123         reset_csb_pointers(&engine->execlists);
2124
2125         /*
2126          * Save the currently executing context, even if we completed
2127          * its request, it was still running at the time of the
2128          * reset and will have been clobbered.
2129          */
2130         if (!port_isset(execlists->port))
2131                 goto out_clear;
2132
2133         rq = port_request(execlists->port);
2134         ce = rq->hw_context;
2135
2136         /*
2137          * Catch up with any missed context-switch interrupts.
2138          *
2139          * Ideally we would just read the remaining CSB entries now that we
2140          * know the gpu is idle. However, the CSB registers are sometimes^W
2141          * often trashed across a GPU reset! Instead we have to rely on
2142          * guessing the missed context-switch events by looking at what
2143          * requests were completed.
2144          */
2145         execlists_cancel_port_requests(execlists);
2146
2147         rq = active_request(rq);
2148         if (!rq)
2149                 goto out_replay;
2150
2151         /*
2152          * If this request hasn't started yet, e.g. it is waiting on a
2153          * semaphore, we need to avoid skipping the request or else we
2154          * break the signaling chain. However, if the context is corrupt
2155          * the request will not restart and we will be stuck with a wedged
2156          * device. It is quite often the case that if we issue a reset
2157          * while the GPU is loading the context image, that the context
2158          * image becomes corrupt.
2159          *
2160          * Otherwise, if we have not started yet, the request should replay
2161          * perfectly and we do not need to flag the result as being erroneous.
2162          */
2163         if (!i915_request_started(rq) && lrc_regs_ok(rq))
2164                 goto out_replay;
2165
2166         /*
2167          * If the request was innocent, we leave the request in the ELSP
2168          * and will try to replay it on restarting. The context image may
2169          * have been corrupted by the reset, in which case we may have
2170          * to service a new GPU hang, but more likely we can continue on
2171          * without impact.
2172          *
2173          * If the request was guilty, we presume the context is corrupt
2174          * and have to at least restore the RING register in the context
2175          * image back to the expected values to skip over the guilty request.
2176          */
2177         i915_reset_request(rq, stalled);
2178         if (!stalled && lrc_regs_ok(rq))
2179                 goto out_replay;
2180
2181         /*
2182          * We want a simple context + ring to execute the breadcrumb update.
2183          * We cannot rely on the context being intact across the GPU hang,
2184          * so clear it and rebuild just what we need for the breadcrumb.
2185          * All pending requests for this context will be zapped, and any
2186          * future request will be after userspace has had the opportunity
2187          * to recreate its own state.
2188          */
2189         regs = ce->lrc_reg_state;
2190         if (engine->pinned_default_state) {
2191                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2192                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2193                        engine->context_size - PAGE_SIZE);
2194         }
2195         execlists_init_reg_state(regs, ce, engine, ce->ring);
2196
2197 out_replay:
2198         /* Rerun the request; its payload has been neutered (if guilty). */
2199         ce->ring->head =
2200                 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2201         intel_ring_update_space(ce->ring);
2202         __execlists_update_reg_state(ce, engine);
2203
2204         /* Push back any incomplete requests for replay after the reset. */
2205         __unwind_incomplete_requests(engine);
2206
2207 out_clear:
2208         execlists_clear_all_active(execlists);
2209 }
2210
2211 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2212 {
2213         unsigned long flags;
2214
2215         GEM_TRACE("%s\n", engine->name);
2216
2217         spin_lock_irqsave(&engine->active.lock, flags);
2218
2219         __execlists_reset(engine, stalled);
2220
2221         spin_unlock_irqrestore(&engine->active.lock, flags);
2222 }
2223
2224 static void nop_submission_tasklet(unsigned long data)
2225 {
2226         /* The driver is wedged; don't process any more events. */
2227 }
2228
2229 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2230 {
2231         struct intel_engine_execlists * const execlists = &engine->execlists;
2232         struct i915_request *rq, *rn;
2233         struct rb_node *rb;
2234         unsigned long flags;
2235
2236         GEM_TRACE("%s\n", engine->name);
2237
2238         /*
2239          * Before we call engine->cancel_requests(), we should have exclusive
2240          * access to the submission state. This is arranged for us by the
2241          * caller disabling the interrupt generation, the tasklet and other
2242          * threads that may then access the same state, giving us a free hand
2243          * to reset state. However, we still need to let lockdep be aware that
2244          * we know this state may be accessed in hardirq context, so we
2245          * disable the irq around this manipulation and we want to keep
2246          * the spinlock focused on its duties and not accidentally conflate
2247          * coverage to the submission's irq state. (Similarly, although we
2248          * shouldn't need to disable irq around the manipulation of the
2249          * submission's irq state, we also wish to remind ourselves that
2250          * it is irq state.)
2251          */
2252         spin_lock_irqsave(&engine->active.lock, flags);
2253
2254         __execlists_reset(engine, true);
2255
2256         /* Mark all executing requests as skipped. */
2257         list_for_each_entry(rq, &engine->active.requests, sched.link) {
2258                 if (!i915_request_signaled(rq))
2259                         dma_fence_set_error(&rq->fence, -EIO);
2260
2261                 i915_request_mark_complete(rq);
2262         }
2263
2264         /* Flush the queued requests to the timeline list (for retiring). */
2265         while ((rb = rb_first_cached(&execlists->queue))) {
2266                 struct i915_priolist *p = to_priolist(rb);
2267                 int i;
2268
2269                 priolist_for_each_request_consume(rq, rn, p, i) {
2270                         list_del_init(&rq->sched.link);
2271                         __i915_request_submit(rq);
2272                         dma_fence_set_error(&rq->fence, -EIO);
2273                         i915_request_mark_complete(rq);
2274                 }
2275
2276                 rb_erase_cached(&p->node, &execlists->queue);
2277                 i915_priolist_free(p);
2278         }
2279
2280         /* Cancel all attached virtual engines */
2281         while ((rb = rb_first_cached(&execlists->virtual))) {
2282                 struct virtual_engine *ve =
2283                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2284
2285                 rb_erase_cached(rb, &execlists->virtual);
2286                 RB_CLEAR_NODE(rb);
2287
2288                 spin_lock(&ve->base.active.lock);
2289                 if (ve->request) {
2290                         ve->request->engine = engine;
2291                         __i915_request_submit(ve->request);
2292                         dma_fence_set_error(&ve->request->fence, -EIO);
2293                         i915_request_mark_complete(ve->request);
2294                         ve->base.execlists.queue_priority_hint = INT_MIN;
2295                         ve->request = NULL;
2296                 }
2297                 spin_unlock(&ve->base.active.lock);
2298         }
2299
2300         /* Remaining _unready_ requests will be nop'ed when submitted */
2301
2302         execlists->queue_priority_hint = INT_MIN;
2303         execlists->queue = RB_ROOT_CACHED;
2304         GEM_BUG_ON(port_isset(execlists->port));
2305
2306         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2307         execlists->tasklet.func = nop_submission_tasklet;
2308
2309         spin_unlock_irqrestore(&engine->active.lock, flags);
2310 }
2311
2312 static void execlists_reset_finish(struct intel_engine_cs *engine)
2313 {
2314         struct intel_engine_execlists * const execlists = &engine->execlists;
2315
2316         /*
2317          * After a GPU reset, we may have requests to replay. Do so now while
2318          * we still have the forcewake to be sure that the GPU is not allowed
2319          * to sleep before we restart and reload a context.
2320          */
2321         GEM_BUG_ON(!reset_in_progress(execlists));
2322         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2323                 execlists->tasklet.func(execlists->tasklet.data);
2324
2325         if (__tasklet_enable(&execlists->tasklet))
2326                 /* And kick in case we missed a new request submission. */
2327                 tasklet_hi_schedule(&execlists->tasklet);
2328         GEM_TRACE("%s: depth->%d\n", engine->name,
2329                   atomic_read(&execlists->tasklet.count));
2330 }
2331
2332 static int gen8_emit_bb_start(struct i915_request *rq,
2333                               u64 offset, u32 len,
2334                               const unsigned int flags)
2335 {
2336         u32 *cs;
2337
2338         cs = intel_ring_begin(rq, 4);
2339         if (IS_ERR(cs))
2340                 return PTR_ERR(cs);
2341
2342         /*
2343          * WaDisableCtxRestoreArbitration:bdw,chv
2344          *
2345          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2346          * particular all the gen that do not need the w/a at all!), if we
2347          * took care to make sure that on every switch into this context
2348          * (both ordinary and for preemption) that arbitrartion was enabled
2349          * we would be fine.  However, for gen8 there is another w/a that
2350          * requires us to not preempt inside GPGPU execution, so we keep
2351          * arbitration disabled for gen8 batches. Arbitration will be
2352          * re-enabled before we close the request
2353          * (engine->emit_fini_breadcrumb).
2354          */
2355         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2356
2357         /* FIXME(BDW+): Address space and security selectors. */
2358         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2359                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2360         *cs++ = lower_32_bits(offset);
2361         *cs++ = upper_32_bits(offset);
2362
2363         intel_ring_advance(rq, cs);
2364
2365         return 0;
2366 }
2367
2368 static int gen9_emit_bb_start(struct i915_request *rq,
2369                               u64 offset, u32 len,
2370                               const unsigned int flags)
2371 {
2372         u32 *cs;
2373
2374         cs = intel_ring_begin(rq, 6);
2375         if (IS_ERR(cs))
2376                 return PTR_ERR(cs);
2377
2378         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2379
2380         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2381                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2382         *cs++ = lower_32_bits(offset);
2383         *cs++ = upper_32_bits(offset);
2384
2385         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2386         *cs++ = MI_NOOP;
2387
2388         intel_ring_advance(rq, cs);
2389
2390         return 0;
2391 }
2392
2393 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2394 {
2395         ENGINE_WRITE(engine, RING_IMR,
2396                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
2397         ENGINE_POSTING_READ(engine, RING_IMR);
2398 }
2399
2400 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2401 {
2402         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2403 }
2404
2405 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2406 {
2407         u32 cmd, *cs;
2408
2409         cs = intel_ring_begin(request, 4);
2410         if (IS_ERR(cs))
2411                 return PTR_ERR(cs);
2412
2413         cmd = MI_FLUSH_DW + 1;
2414
2415         /* We always require a command barrier so that subsequent
2416          * commands, such as breadcrumb interrupts, are strictly ordered
2417          * wrt the contents of the write cache being flushed to memory
2418          * (and thus being coherent from the CPU).
2419          */
2420         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2421
2422         if (mode & EMIT_INVALIDATE) {
2423                 cmd |= MI_INVALIDATE_TLB;
2424                 if (request->engine->class == VIDEO_DECODE_CLASS)
2425                         cmd |= MI_INVALIDATE_BSD;
2426         }
2427
2428         *cs++ = cmd;
2429         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2430         *cs++ = 0; /* upper addr */
2431         *cs++ = 0; /* value */
2432         intel_ring_advance(request, cs);
2433
2434         return 0;
2435 }
2436
2437 static int gen8_emit_flush_render(struct i915_request *request,
2438                                   u32 mode)
2439 {
2440         struct intel_engine_cs *engine = request->engine;
2441         u32 scratch_addr =
2442                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2443         bool vf_flush_wa = false, dc_flush_wa = false;
2444         u32 *cs, flags = 0;
2445         int len;
2446
2447         flags |= PIPE_CONTROL_CS_STALL;
2448
2449         if (mode & EMIT_FLUSH) {
2450                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2451                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2452                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2453                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2454         }
2455
2456         if (mode & EMIT_INVALIDATE) {
2457                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2458                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2459                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2460                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2461                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2462                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2463                 flags |= PIPE_CONTROL_QW_WRITE;
2464                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2465
2466                 /*
2467                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2468                  * pipe control.
2469                  */
2470                 if (IS_GEN(request->i915, 9))
2471                         vf_flush_wa = true;
2472
2473                 /* WaForGAMHang:kbl */
2474                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2475                         dc_flush_wa = true;
2476         }
2477
2478         len = 6;
2479
2480         if (vf_flush_wa)
2481                 len += 6;
2482
2483         if (dc_flush_wa)
2484                 len += 12;
2485
2486         cs = intel_ring_begin(request, len);
2487         if (IS_ERR(cs))
2488                 return PTR_ERR(cs);
2489
2490         if (vf_flush_wa)
2491                 cs = gen8_emit_pipe_control(cs, 0, 0);
2492
2493         if (dc_flush_wa)
2494                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2495                                             0);
2496
2497         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2498
2499         if (dc_flush_wa)
2500                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2501
2502         intel_ring_advance(request, cs);
2503
2504         return 0;
2505 }
2506
2507 /*
2508  * Reserve space for 2 NOOPs at the end of each request to be
2509  * used as a workaround for not being allowed to do lite
2510  * restore with HEAD==TAIL (WaIdleLiteRestore).
2511  */
2512 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2513 {
2514         /* Ensure there's always at least one preemption point per-request. */
2515         *cs++ = MI_ARB_CHECK;
2516         *cs++ = MI_NOOP;
2517         request->wa_tail = intel_ring_offset(request, cs);
2518
2519         return cs;
2520 }
2521
2522 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2523 {
2524         cs = gen8_emit_ggtt_write(cs,
2525                                   request->fence.seqno,
2526                                   request->timeline->hwsp_offset,
2527                                   0);
2528
2529         *cs++ = MI_USER_INTERRUPT;
2530         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2531
2532         request->tail = intel_ring_offset(request, cs);
2533         assert_ring_tail_valid(request->ring, request->tail);
2534
2535         return gen8_emit_wa_tail(request, cs);
2536 }
2537
2538 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2539 {
2540         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2541         cs = gen8_emit_ggtt_write_rcs(cs,
2542                                       request->fence.seqno,
2543                                       request->timeline->hwsp_offset,
2544                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2545                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2546                                       PIPE_CONTROL_DC_FLUSH_ENABLE);
2547         cs = gen8_emit_pipe_control(cs,
2548                                     PIPE_CONTROL_FLUSH_ENABLE |
2549                                     PIPE_CONTROL_CS_STALL,
2550                                     0);
2551
2552         *cs++ = MI_USER_INTERRUPT;
2553         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2554
2555         request->tail = intel_ring_offset(request, cs);
2556         assert_ring_tail_valid(request->ring, request->tail);
2557
2558         return gen8_emit_wa_tail(request, cs);
2559 }
2560
2561 static int gen8_init_rcs_context(struct i915_request *rq)
2562 {
2563         int ret;
2564
2565         ret = intel_engine_emit_ctx_wa(rq);
2566         if (ret)
2567                 return ret;
2568
2569         ret = intel_rcs_context_init_mocs(rq);
2570         /*
2571          * Failing to program the MOCS is non-fatal.The system will not
2572          * run at peak performance. So generate an error and carry on.
2573          */
2574         if (ret)
2575                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2576
2577         return i915_gem_render_state_emit(rq);
2578 }
2579
2580 static void execlists_park(struct intel_engine_cs *engine)
2581 {
2582         intel_engine_park(engine);
2583 }
2584
2585 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2586 {
2587         engine->submit_request = execlists_submit_request;
2588         engine->cancel_requests = execlists_cancel_requests;
2589         engine->schedule = i915_schedule;
2590         engine->execlists.tasklet.func = execlists_submission_tasklet;
2591
2592         engine->reset.prepare = execlists_reset_prepare;
2593         engine->reset.reset = execlists_reset;
2594         engine->reset.finish = execlists_reset_finish;
2595
2596         engine->park = execlists_park;
2597         engine->unpark = NULL;
2598
2599         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2600         if (!intel_vgpu_active(engine->i915))
2601                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2602         if (engine->preempt_context &&
2603             HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2604                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2605 }
2606
2607 static void execlists_destroy(struct intel_engine_cs *engine)
2608 {
2609         intel_engine_cleanup_common(engine);
2610         lrc_destroy_wa_ctx(engine);
2611         kfree(engine);
2612 }
2613
2614 static void
2615 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2616 {
2617         /* Default vfuncs which can be overriden by each engine. */
2618
2619         engine->destroy = execlists_destroy;
2620         engine->resume = execlists_resume;
2621
2622         engine->reset.prepare = execlists_reset_prepare;
2623         engine->reset.reset = execlists_reset;
2624         engine->reset.finish = execlists_reset_finish;
2625
2626         engine->cops = &execlists_context_ops;
2627         engine->request_alloc = execlists_request_alloc;
2628
2629         engine->emit_flush = gen8_emit_flush;
2630         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2631         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2632
2633         engine->set_default_submission = intel_execlists_set_default_submission;
2634
2635         if (INTEL_GEN(engine->i915) < 11) {
2636                 engine->irq_enable = gen8_logical_ring_enable_irq;
2637                 engine->irq_disable = gen8_logical_ring_disable_irq;
2638         } else {
2639                 /*
2640                  * TODO: On Gen11 interrupt masks need to be clear
2641                  * to allow C6 entry. Keep interrupts enabled at
2642                  * and take the hit of generating extra interrupts
2643                  * until a more refined solution exists.
2644                  */
2645         }
2646         if (IS_GEN(engine->i915, 8))
2647                 engine->emit_bb_start = gen8_emit_bb_start;
2648         else
2649                 engine->emit_bb_start = gen9_emit_bb_start;
2650 }
2651
2652 static inline void
2653 logical_ring_default_irqs(struct intel_engine_cs *engine)
2654 {
2655         unsigned int shift = 0;
2656
2657         if (INTEL_GEN(engine->i915) < 11) {
2658                 const u8 irq_shifts[] = {
2659                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2660                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2661                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2662                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2663                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
2664                 };
2665
2666                 shift = irq_shifts[engine->id];
2667         }
2668
2669         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2670         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2671 }
2672
2673 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2674 {
2675         /* Intentionally left blank. */
2676         engine->buffer = NULL;
2677
2678         tasklet_init(&engine->execlists.tasklet,
2679                      execlists_submission_tasklet, (unsigned long)engine);
2680
2681         logical_ring_default_vfuncs(engine);
2682         logical_ring_default_irqs(engine);
2683
2684         if (engine->class == RENDER_CLASS) {
2685                 engine->init_context = gen8_init_rcs_context;
2686                 engine->emit_flush = gen8_emit_flush_render;
2687                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2688         }
2689
2690         return 0;
2691 }
2692
2693 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2694 {
2695         struct intel_engine_execlists * const execlists = &engine->execlists;
2696         struct drm_i915_private *i915 = engine->i915;
2697         struct intel_uncore *uncore = engine->uncore;
2698         u32 base = engine->mmio_base;
2699         int ret;
2700
2701         ret = intel_engine_init_common(engine);
2702         if (ret)
2703                 return ret;
2704
2705         intel_engine_init_workarounds(engine);
2706         intel_engine_init_whitelist(engine);
2707
2708         if (intel_init_workaround_bb(engine))
2709                 /*
2710                  * We continue even if we fail to initialize WA batch
2711                  * because we only expect rare glitches but nothing
2712                  * critical to prevent us from using GPU
2713                  */
2714                 DRM_ERROR("WA batch buffer initialization failed\n");
2715
2716         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2717                 execlists->submit_reg = uncore->regs +
2718                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2719                 execlists->ctrl_reg = uncore->regs +
2720                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2721         } else {
2722                 execlists->submit_reg = uncore->regs +
2723                         i915_mmio_reg_offset(RING_ELSP(base));
2724         }
2725
2726         execlists->preempt_complete_status = ~0u;
2727         if (engine->preempt_context)
2728                 execlists->preempt_complete_status =
2729                         upper_32_bits(engine->preempt_context->lrc_desc);
2730
2731         execlists->csb_status =
2732                 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2733
2734         execlists->csb_write =
2735                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2736
2737         if (INTEL_GEN(i915) < 11)
2738                 execlists->csb_size = GEN8_CSB_ENTRIES;
2739         else
2740                 execlists->csb_size = GEN11_CSB_ENTRIES;
2741
2742         reset_csb_pointers(execlists);
2743
2744         return 0;
2745 }
2746
2747 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2748 {
2749         u32 indirect_ctx_offset;
2750
2751         switch (INTEL_GEN(engine->i915)) {
2752         default:
2753                 MISSING_CASE(INTEL_GEN(engine->i915));
2754                 /* fall through */
2755         case 11:
2756                 indirect_ctx_offset =
2757                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2758                 break;
2759         case 10:
2760                 indirect_ctx_offset =
2761                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2762                 break;
2763         case 9:
2764                 indirect_ctx_offset =
2765                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2766                 break;
2767         case 8:
2768                 indirect_ctx_offset =
2769                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2770                 break;
2771         }
2772
2773         return indirect_ctx_offset;
2774 }
2775
2776 static void execlists_init_reg_state(u32 *regs,
2777                                      struct intel_context *ce,
2778                                      struct intel_engine_cs *engine,
2779                                      struct intel_ring *ring)
2780 {
2781         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2782         bool rcs = engine->class == RENDER_CLASS;
2783         u32 base = engine->mmio_base;
2784
2785         /*
2786          * A context is actually a big batch buffer with several
2787          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2788          * values we are setting here are only for the first context restore:
2789          * on a subsequent save, the GPU will recreate this batchbuffer with new
2790          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2791          * we are not initializing here).
2792          *
2793          * Must keep consistent with virtual_update_register_offsets().
2794          */
2795         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2796                                  MI_LRI_FORCE_POSTED;
2797
2798         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2799                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2800                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2801         if (INTEL_GEN(engine->i915) < 11) {
2802                 regs[CTX_CONTEXT_CONTROL + 1] |=
2803                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2804                                             CTX_CTRL_RS_CTX_ENABLE);
2805         }
2806         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2807         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2808         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2809         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2810                 RING_CTL_SIZE(ring->size) | RING_VALID);
2811         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2812         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2813         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2814         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2815         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2816         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2817         if (rcs) {
2818                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2819
2820                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2821                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2822                         RING_INDIRECT_CTX_OFFSET(base), 0);
2823                 if (wa_ctx->indirect_ctx.size) {
2824                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2825
2826                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2827                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2828                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2829
2830                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2831                                 intel_lr_indirect_ctx_offset(engine) << 6;
2832                 }
2833
2834                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2835                 if (wa_ctx->per_ctx.size) {
2836                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2837
2838                         regs[CTX_BB_PER_CTX_PTR + 1] =
2839                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2840                 }
2841         }
2842
2843         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2844
2845         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2846         /* PDP values well be assigned later if needed */
2847         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2848         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2849         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2850         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2851         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2852         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2853         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2854         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2855
2856         if (i915_vm_is_4lvl(&ppgtt->vm)) {
2857                 /* 64b PPGTT (48bit canonical)
2858                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2859                  * other PDP Descriptors are ignored.
2860                  */
2861                 ASSIGN_CTX_PML4(ppgtt, regs);
2862         } else {
2863                 ASSIGN_CTX_PDP(ppgtt, regs, 3);
2864                 ASSIGN_CTX_PDP(ppgtt, regs, 2);
2865                 ASSIGN_CTX_PDP(ppgtt, regs, 1);
2866                 ASSIGN_CTX_PDP(ppgtt, regs, 0);
2867         }
2868
2869         if (rcs) {
2870                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2871                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2872
2873                 i915_oa_init_reg_state(engine, ce, regs);
2874         }
2875
2876         regs[CTX_END] = MI_BATCH_BUFFER_END;
2877         if (INTEL_GEN(engine->i915) >= 10)
2878                 regs[CTX_END] |= BIT(0);
2879 }
2880
2881 static int
2882 populate_lr_context(struct intel_context *ce,
2883                     struct drm_i915_gem_object *ctx_obj,
2884                     struct intel_engine_cs *engine,
2885                     struct intel_ring *ring)
2886 {
2887         void *vaddr;
2888         u32 *regs;
2889         int ret;
2890
2891         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2892         if (IS_ERR(vaddr)) {
2893                 ret = PTR_ERR(vaddr);
2894                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2895                 return ret;
2896         }
2897
2898         if (engine->default_state) {
2899                 /*
2900                  * We only want to copy over the template context state;
2901                  * skipping over the headers reserved for GuC communication,
2902                  * leaving those as zero.
2903                  */
2904                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2905                 void *defaults;
2906
2907                 defaults = i915_gem_object_pin_map(engine->default_state,
2908                                                    I915_MAP_WB);
2909                 if (IS_ERR(defaults)) {
2910                         ret = PTR_ERR(defaults);
2911                         goto err_unpin_ctx;
2912                 }
2913
2914                 memcpy(vaddr + start, defaults + start, engine->context_size);
2915                 i915_gem_object_unpin_map(engine->default_state);
2916         }
2917
2918         /* The second page of the context object contains some fields which must
2919          * be set up prior to the first execution. */
2920         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2921         execlists_init_reg_state(regs, ce, engine, ring);
2922         if (!engine->default_state)
2923                 regs[CTX_CONTEXT_CONTROL + 1] |=
2924                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2925         if (ce->gem_context == engine->i915->preempt_context &&
2926             INTEL_GEN(engine->i915) < 11)
2927                 regs[CTX_CONTEXT_CONTROL + 1] |=
2928                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2929                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2930
2931         ret = 0;
2932 err_unpin_ctx:
2933         __i915_gem_object_flush_map(ctx_obj,
2934                                     LRC_HEADER_PAGES * PAGE_SIZE,
2935                                     engine->context_size);
2936         i915_gem_object_unpin_map(ctx_obj);
2937         return ret;
2938 }
2939
2940 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2941 {
2942         if (ctx->timeline)
2943                 return i915_timeline_get(ctx->timeline);
2944         else
2945                 return i915_timeline_create(ctx->i915, NULL);
2946 }
2947
2948 static int execlists_context_deferred_alloc(struct intel_context *ce,
2949                                             struct intel_engine_cs *engine)
2950 {
2951         struct drm_i915_gem_object *ctx_obj;
2952         struct i915_vma *vma;
2953         u32 context_size;
2954         struct intel_ring *ring;
2955         struct i915_timeline *timeline;
2956         int ret;
2957
2958         if (ce->state)
2959                 return 0;
2960
2961         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2962
2963         /*
2964          * Before the actual start of the context image, we insert a few pages
2965          * for our own use and for sharing with the GuC.
2966          */
2967         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2968
2969         ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
2970         if (IS_ERR(ctx_obj))
2971                 return PTR_ERR(ctx_obj);
2972
2973         vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2974         if (IS_ERR(vma)) {
2975                 ret = PTR_ERR(vma);
2976                 goto error_deref_obj;
2977         }
2978
2979         timeline = get_timeline(ce->gem_context);
2980         if (IS_ERR(timeline)) {
2981                 ret = PTR_ERR(timeline);
2982                 goto error_deref_obj;
2983         }
2984
2985         ring = intel_engine_create_ring(engine,
2986                                         timeline,
2987                                         ce->gem_context->ring_size);
2988         i915_timeline_put(timeline);
2989         if (IS_ERR(ring)) {
2990                 ret = PTR_ERR(ring);
2991                 goto error_deref_obj;
2992         }
2993
2994         ret = populate_lr_context(ce, ctx_obj, engine, ring);
2995         if (ret) {
2996                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2997                 goto error_ring_free;
2998         }
2999
3000         ce->ring = ring;
3001         ce->state = vma;
3002
3003         return 0;
3004
3005 error_ring_free:
3006         intel_ring_put(ring);
3007 error_deref_obj:
3008         i915_gem_object_put(ctx_obj);
3009         return ret;
3010 }
3011
3012 static struct list_head *virtual_queue(struct virtual_engine *ve)
3013 {
3014         return &ve->base.execlists.default_priolist.requests[0];
3015 }
3016
3017 static void virtual_context_destroy(struct kref *kref)
3018 {
3019         struct virtual_engine *ve =
3020                 container_of(kref, typeof(*ve), context.ref);
3021         unsigned int n;
3022
3023         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3024         GEM_BUG_ON(ve->request);
3025         GEM_BUG_ON(ve->context.inflight);
3026
3027         for (n = 0; n < ve->num_siblings; n++) {
3028                 struct intel_engine_cs *sibling = ve->siblings[n];
3029                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3030
3031                 if (RB_EMPTY_NODE(node))
3032                         continue;
3033
3034                 spin_lock_irq(&sibling->active.lock);
3035
3036                 /* Detachment is lazily performed in the execlists tasklet */
3037                 if (!RB_EMPTY_NODE(node))
3038                         rb_erase_cached(node, &sibling->execlists.virtual);
3039
3040                 spin_unlock_irq(&sibling->active.lock);
3041         }
3042         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3043
3044         if (ve->context.state)
3045                 __execlists_context_fini(&ve->context);
3046
3047         kfree(ve->bonds);
3048         kfree(ve);
3049 }
3050
3051 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3052 {
3053         int swp;
3054
3055         /*
3056          * Pick a random sibling on starting to help spread the load around.
3057          *
3058          * New contexts are typically created with exactly the same order
3059          * of siblings, and often started in batches. Due to the way we iterate
3060          * the array of sibling when submitting requests, sibling[0] is
3061          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3062          * randomised across the system, we also help spread the load by the
3063          * first engine we inspect being different each time.
3064          *
3065          * NB This does not force us to execute on this engine, it will just
3066          * typically be the first we inspect for submission.
3067          */
3068         swp = prandom_u32_max(ve->num_siblings);
3069         if (!swp)
3070                 return;
3071
3072         swap(ve->siblings[swp], ve->siblings[0]);
3073         virtual_update_register_offsets(ve->context.lrc_reg_state,
3074                                         ve->siblings[0]);
3075 }
3076
3077 static int virtual_context_pin(struct intel_context *ce)
3078 {
3079         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3080         int err;
3081
3082         /* Note: we must use a real engine class for setting up reg state */
3083         err = __execlists_context_pin(ce, ve->siblings[0]);
3084         if (err)
3085                 return err;
3086
3087         virtual_engine_initial_hint(ve);
3088         return 0;
3089 }
3090
3091 static void virtual_context_enter(struct intel_context *ce)
3092 {
3093         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3094         unsigned int n;
3095
3096         for (n = 0; n < ve->num_siblings; n++)
3097                 intel_engine_pm_get(ve->siblings[n]);
3098 }
3099
3100 static void virtual_context_exit(struct intel_context *ce)
3101 {
3102         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3103         unsigned int n;
3104
3105         for (n = 0; n < ve->num_siblings; n++)
3106                 intel_engine_pm_put(ve->siblings[n]);
3107 }
3108
3109 static const struct intel_context_ops virtual_context_ops = {
3110         .pin = virtual_context_pin,
3111         .unpin = execlists_context_unpin,
3112
3113         .enter = virtual_context_enter,
3114         .exit = virtual_context_exit,
3115
3116         .destroy = virtual_context_destroy,
3117 };
3118
3119 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3120 {
3121         struct i915_request *rq;
3122         intel_engine_mask_t mask;
3123
3124         rq = READ_ONCE(ve->request);
3125         if (!rq)
3126                 return 0;
3127
3128         /* The rq is ready for submission; rq->execution_mask is now stable. */
3129         mask = rq->execution_mask;
3130         if (unlikely(!mask)) {
3131                 /* Invalid selection, submit to a random engine in error */
3132                 i915_request_skip(rq, -ENODEV);
3133                 mask = ve->siblings[0]->mask;
3134         }
3135
3136         GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3137                   ve->base.name,
3138                   rq->fence.context, rq->fence.seqno,
3139                   mask, ve->base.execlists.queue_priority_hint);
3140
3141         return mask;
3142 }
3143
3144 static void virtual_submission_tasklet(unsigned long data)
3145 {
3146         struct virtual_engine * const ve = (struct virtual_engine *)data;
3147         const int prio = ve->base.execlists.queue_priority_hint;
3148         intel_engine_mask_t mask;
3149         unsigned int n;
3150
3151         rcu_read_lock();
3152         mask = virtual_submission_mask(ve);
3153         rcu_read_unlock();
3154         if (unlikely(!mask))
3155                 return;
3156
3157         local_irq_disable();
3158         for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3159                 struct intel_engine_cs *sibling = ve->siblings[n];
3160                 struct ve_node * const node = &ve->nodes[sibling->id];
3161                 struct rb_node **parent, *rb;
3162                 bool first;
3163
3164                 if (unlikely(!(mask & sibling->mask))) {
3165                         if (!RB_EMPTY_NODE(&node->rb)) {
3166                                 spin_lock(&sibling->active.lock);
3167                                 rb_erase_cached(&node->rb,
3168                                                 &sibling->execlists.virtual);
3169                                 RB_CLEAR_NODE(&node->rb);
3170                                 spin_unlock(&sibling->active.lock);
3171                         }
3172                         continue;
3173                 }
3174
3175                 spin_lock(&sibling->active.lock);
3176
3177                 if (!RB_EMPTY_NODE(&node->rb)) {
3178                         /*
3179                          * Cheat and avoid rebalancing the tree if we can
3180                          * reuse this node in situ.
3181                          */
3182                         first = rb_first_cached(&sibling->execlists.virtual) ==
3183                                 &node->rb;
3184                         if (prio == node->prio || (prio > node->prio && first))
3185                                 goto submit_engine;
3186
3187                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3188                 }
3189
3190                 rb = NULL;
3191                 first = true;
3192                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3193                 while (*parent) {
3194                         struct ve_node *other;
3195
3196                         rb = *parent;
3197                         other = rb_entry(rb, typeof(*other), rb);
3198                         if (prio > other->prio) {
3199                                 parent = &rb->rb_left;
3200                         } else {
3201                                 parent = &rb->rb_right;
3202                                 first = false;
3203                         }
3204                 }
3205
3206                 rb_link_node(&node->rb, rb, parent);
3207                 rb_insert_color_cached(&node->rb,
3208                                        &sibling->execlists.virtual,
3209                                        first);
3210
3211 submit_engine:
3212                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3213                 node->prio = prio;
3214                 if (first && prio > sibling->execlists.queue_priority_hint) {
3215                         sibling->execlists.queue_priority_hint = prio;
3216                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3217                 }
3218
3219                 spin_unlock(&sibling->active.lock);
3220         }
3221         local_irq_enable();
3222 }
3223
3224 static void virtual_submit_request(struct i915_request *rq)
3225 {
3226         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3227
3228         GEM_TRACE("%s: rq=%llx:%lld\n",
3229                   ve->base.name,
3230                   rq->fence.context,
3231                   rq->fence.seqno);
3232
3233         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3234
3235         GEM_BUG_ON(ve->request);
3236         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3237
3238         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3239         WRITE_ONCE(ve->request, rq);
3240
3241         list_move_tail(&rq->sched.link, virtual_queue(ve));
3242
3243         tasklet_schedule(&ve->base.execlists.tasklet);
3244 }
3245
3246 static struct ve_bond *
3247 virtual_find_bond(struct virtual_engine *ve,
3248                   const struct intel_engine_cs *master)
3249 {
3250         int i;
3251
3252         for (i = 0; i < ve->num_bonds; i++) {
3253                 if (ve->bonds[i].master == master)
3254                         return &ve->bonds[i];
3255         }
3256
3257         return NULL;
3258 }
3259
3260 static void
3261 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3262 {
3263         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3264         struct ve_bond *bond;
3265
3266         bond = virtual_find_bond(ve, to_request(signal)->engine);
3267         if (bond) {
3268                 intel_engine_mask_t old, new, cmp;
3269
3270                 cmp = READ_ONCE(rq->execution_mask);
3271                 do {
3272                         old = cmp;
3273                         new = cmp & bond->sibling_mask;
3274                 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3275         }
3276 }
3277
3278 struct intel_context *
3279 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3280                                struct intel_engine_cs **siblings,
3281                                unsigned int count)
3282 {
3283         struct virtual_engine *ve;
3284         unsigned int n;
3285         int err;
3286
3287         if (count == 0)
3288                 return ERR_PTR(-EINVAL);
3289
3290         if (count == 1)
3291                 return intel_context_create(ctx, siblings[0]);
3292
3293         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3294         if (!ve)
3295                 return ERR_PTR(-ENOMEM);
3296
3297         ve->base.i915 = ctx->i915;
3298         ve->base.id = -1;
3299         ve->base.class = OTHER_CLASS;
3300         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3301         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3302         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3303
3304         /*
3305          * The decision on whether to submit a request using semaphores
3306          * depends on the saturated state of the engine. We only compute
3307          * this during HW submission of the request, and we need for this
3308          * state to be globally applied to all requests being submitted
3309          * to this engine. Virtual engines encompass more than one physical
3310          * engine and so we cannot accurately tell in advance if one of those
3311          * engines is already saturated and so cannot afford to use a semaphore
3312          * and be pessimized in priority for doing so -- if we are the only
3313          * context using semaphores after all other clients have stopped, we
3314          * will be starved on the saturated system. Such a global switch for
3315          * semaphores is less than ideal, but alas is the current compromise.
3316          */
3317         ve->base.saturated = ALL_ENGINES;
3318
3319         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3320
3321         intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3322
3323         intel_engine_init_execlists(&ve->base);
3324
3325         ve->base.cops = &virtual_context_ops;
3326         ve->base.request_alloc = execlists_request_alloc;
3327
3328         ve->base.schedule = i915_schedule;
3329         ve->base.submit_request = virtual_submit_request;
3330         ve->base.bond_execute = virtual_bond_execute;
3331
3332         INIT_LIST_HEAD(virtual_queue(ve));
3333         ve->base.execlists.queue_priority_hint = INT_MIN;
3334         tasklet_init(&ve->base.execlists.tasklet,
3335                      virtual_submission_tasklet,
3336                      (unsigned long)ve);
3337
3338         intel_context_init(&ve->context, ctx, &ve->base);
3339
3340         for (n = 0; n < count; n++) {
3341                 struct intel_engine_cs *sibling = siblings[n];
3342
3343                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3344                 if (sibling->mask & ve->base.mask) {
3345                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3346                                   sibling->name);
3347                         err = -EINVAL;
3348                         goto err_put;
3349                 }
3350
3351                 /*
3352                  * The virtual engine implementation is tightly coupled to
3353                  * the execlists backend -- we push out request directly
3354                  * into a tree inside each physical engine. We could support
3355                  * layering if we handle cloning of the requests and
3356                  * submitting a copy into each backend.
3357                  */
3358                 if (sibling->execlists.tasklet.func !=
3359                     execlists_submission_tasklet) {
3360                         err = -ENODEV;
3361                         goto err_put;
3362                 }
3363
3364                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3365                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3366
3367                 ve->siblings[ve->num_siblings++] = sibling;
3368                 ve->base.mask |= sibling->mask;
3369
3370                 /*
3371                  * All physical engines must be compatible for their emission
3372                  * functions (as we build the instructions during request
3373                  * construction and do not alter them before submission
3374                  * on the physical engine). We use the engine class as a guide
3375                  * here, although that could be refined.
3376                  */
3377                 if (ve->base.class != OTHER_CLASS) {
3378                         if (ve->base.class != sibling->class) {
3379                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3380                                           sibling->class, ve->base.class);
3381                                 err = -EINVAL;
3382                                 goto err_put;
3383                         }
3384                         continue;
3385                 }
3386
3387                 ve->base.class = sibling->class;
3388                 ve->base.uabi_class = sibling->uabi_class;
3389                 snprintf(ve->base.name, sizeof(ve->base.name),
3390                          "v%dx%d", ve->base.class, count);
3391                 ve->base.context_size = sibling->context_size;
3392
3393                 ve->base.emit_bb_start = sibling->emit_bb_start;
3394                 ve->base.emit_flush = sibling->emit_flush;
3395                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3396                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3397                 ve->base.emit_fini_breadcrumb_dw =
3398                         sibling->emit_fini_breadcrumb_dw;
3399         }
3400
3401         return &ve->context;
3402
3403 err_put:
3404         intel_context_put(&ve->context);
3405         return ERR_PTR(err);
3406 }
3407
3408 struct intel_context *
3409 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3410                               struct intel_engine_cs *src)
3411 {
3412         struct virtual_engine *se = to_virtual_engine(src);
3413         struct intel_context *dst;
3414
3415         dst = intel_execlists_create_virtual(ctx,
3416                                              se->siblings,
3417                                              se->num_siblings);
3418         if (IS_ERR(dst))
3419                 return dst;
3420
3421         if (se->num_bonds) {
3422                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3423
3424                 de->bonds = kmemdup(se->bonds,
3425                                     sizeof(*se->bonds) * se->num_bonds,
3426                                     GFP_KERNEL);
3427                 if (!de->bonds) {
3428                         intel_context_put(dst);
3429                         return ERR_PTR(-ENOMEM);
3430                 }
3431
3432                 de->num_bonds = se->num_bonds;
3433         }
3434
3435         return dst;
3436 }
3437
3438 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3439                                      const struct intel_engine_cs *master,
3440                                      const struct intel_engine_cs *sibling)
3441 {
3442         struct virtual_engine *ve = to_virtual_engine(engine);
3443         struct ve_bond *bond;
3444         int n;
3445
3446         /* Sanity check the sibling is part of the virtual engine */
3447         for (n = 0; n < ve->num_siblings; n++)
3448                 if (sibling == ve->siblings[n])
3449                         break;
3450         if (n == ve->num_siblings)
3451                 return -EINVAL;
3452
3453         bond = virtual_find_bond(ve, master);
3454         if (bond) {
3455                 bond->sibling_mask |= sibling->mask;
3456                 return 0;
3457         }
3458
3459         bond = krealloc(ve->bonds,
3460                         sizeof(*bond) * (ve->num_bonds + 1),
3461                         GFP_KERNEL);
3462         if (!bond)
3463                 return -ENOMEM;
3464
3465         bond[ve->num_bonds].master = master;
3466         bond[ve->num_bonds].sibling_mask = sibling->mask;
3467
3468         ve->bonds = bond;
3469         ve->num_bonds++;
3470
3471         return 0;
3472 }
3473
3474 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3475                                    struct drm_printer *m,
3476                                    void (*show_request)(struct drm_printer *m,
3477                                                         struct i915_request *rq,
3478                                                         const char *prefix),
3479                                    unsigned int max)
3480 {
3481         const struct intel_engine_execlists *execlists = &engine->execlists;
3482         struct i915_request *rq, *last;
3483         unsigned long flags;
3484         unsigned int count;
3485         struct rb_node *rb;
3486
3487         spin_lock_irqsave(&engine->active.lock, flags);
3488
3489         last = NULL;
3490         count = 0;
3491         list_for_each_entry(rq, &engine->active.requests, sched.link) {
3492                 if (count++ < max - 1)
3493                         show_request(m, rq, "\t\tE ");
3494                 else
3495                         last = rq;
3496         }
3497         if (last) {
3498                 if (count > max) {
3499                         drm_printf(m,
3500                                    "\t\t...skipping %d executing requests...\n",
3501                                    count - max);
3502                 }
3503                 show_request(m, last, "\t\tE ");
3504         }
3505
3506         last = NULL;
3507         count = 0;
3508         if (execlists->queue_priority_hint != INT_MIN)
3509                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3510                            execlists->queue_priority_hint);
3511         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3512                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3513                 int i;
3514
3515                 priolist_for_each_request(rq, p, i) {
3516                         if (count++ < max - 1)
3517                                 show_request(m, rq, "\t\tQ ");
3518                         else
3519                                 last = rq;
3520                 }
3521         }
3522         if (last) {
3523                 if (count > max) {
3524                         drm_printf(m,
3525                                    "\t\t...skipping %d queued requests...\n",
3526                                    count - max);
3527                 }
3528                 show_request(m, last, "\t\tQ ");
3529         }
3530
3531         last = NULL;
3532         count = 0;
3533         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3534                 struct virtual_engine *ve =
3535                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3536                 struct i915_request *rq = READ_ONCE(ve->request);
3537
3538                 if (rq) {
3539                         if (count++ < max - 1)
3540                                 show_request(m, rq, "\t\tV ");
3541                         else
3542                                 last = rq;
3543                 }
3544         }
3545         if (last) {
3546                 if (count > max) {
3547                         drm_printf(m,
3548                                    "\t\t...skipping %d virtual requests...\n",
3549                                    count - max);
3550                 }
3551                 show_request(m, last, "\t\tV ");
3552         }
3553
3554         spin_unlock_irqrestore(&engine->active.lock, flags);
3555 }
3556
3557 void intel_lr_context_reset(struct intel_engine_cs *engine,
3558                             struct intel_context *ce,
3559                             u32 head,
3560                             bool scrub)
3561 {
3562         /*
3563          * We want a simple context + ring to execute the breadcrumb update.
3564          * We cannot rely on the context being intact across the GPU hang,
3565          * so clear it and rebuild just what we need for the breadcrumb.
3566          * All pending requests for this context will be zapped, and any
3567          * future request will be after userspace has had the opportunity
3568          * to recreate its own state.
3569          */
3570         if (scrub) {
3571                 u32 *regs = ce->lrc_reg_state;
3572
3573                 if (engine->pinned_default_state) {
3574                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
3575                                engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3576                                engine->context_size - PAGE_SIZE);
3577                 }
3578                 execlists_init_reg_state(regs, ce, engine, ce->ring);
3579         }
3580
3581         /* Rerun the request; its payload has been neutered (if guilty). */
3582         ce->ring->head = head;
3583         intel_ring_update_space(ce->ring);
3584
3585         __execlists_update_reg_state(ce, engine);
3586 }
3587
3588 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3589 #include "selftest_lrc.c"
3590 #endif