]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gt/intel_ring_submission.c
Merge tag 'sound-fix-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux.git] / drivers / gpu / drm / i915 / gt / intel_ring_submission.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/i915_drm.h>
33
34 #include "gem/i915_gem_context.h"
35
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_context.h"
39 #include "intel_gt.h"
40 #include "intel_gt_irq.h"
41 #include "intel_gt_pm_irq.h"
42 #include "intel_reset.h"
43 #include "intel_ring.h"
44 #include "intel_workarounds.h"
45
46 /* Rough estimate of the typical request size, performing a flush,
47  * set-context and then emitting the batch.
48  */
49 #define LEGACY_REQUEST_SIZE 200
50
51 static int
52 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
53 {
54         unsigned int num_store_dw;
55         u32 cmd, *cs;
56
57         cmd = MI_FLUSH;
58         num_store_dw = 0;
59         if (mode & EMIT_INVALIDATE)
60                 cmd |= MI_READ_FLUSH;
61         if (mode & EMIT_FLUSH)
62                 num_store_dw = 4;
63
64         cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
65         if (IS_ERR(cs))
66                 return PTR_ERR(cs);
67
68         *cs++ = cmd;
69         while (num_store_dw--) {
70                 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
71                 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
72                                                 INTEL_GT_SCRATCH_FIELD_DEFAULT);
73                 *cs++ = 0;
74         }
75         *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
76
77         intel_ring_advance(rq, cs);
78
79         return 0;
80 }
81
82 static int
83 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
84 {
85         u32 cmd, *cs;
86         int i;
87
88         /*
89          * read/write caches:
90          *
91          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
92          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
93          * also flushed at 2d versus 3d pipeline switches.
94          *
95          * read-only caches:
96          *
97          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
98          * MI_READ_FLUSH is set, and is always flushed on 965.
99          *
100          * I915_GEM_DOMAIN_COMMAND may not exist?
101          *
102          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
103          * invalidated when MI_EXE_FLUSH is set.
104          *
105          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
106          * invalidated with every MI_FLUSH.
107          *
108          * TLBs:
109          *
110          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
111          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
112          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
113          * are flushed at any MI_FLUSH.
114          */
115
116         cmd = MI_FLUSH;
117         if (mode & EMIT_INVALIDATE) {
118                 cmd |= MI_EXE_FLUSH;
119                 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
120                         cmd |= MI_INVALIDATE_ISP;
121         }
122
123         i = 2;
124         if (mode & EMIT_INVALIDATE)
125                 i += 20;
126
127         cs = intel_ring_begin(rq, i);
128         if (IS_ERR(cs))
129                 return PTR_ERR(cs);
130
131         *cs++ = cmd;
132
133         /*
134          * A random delay to let the CS invalidate take effect? Without this
135          * delay, the GPU relocation path fails as the CS does not see
136          * the updated contents. Just as important, if we apply the flushes
137          * to the EMIT_FLUSH branch (i.e. immediately after the relocation
138          * write and before the invalidate on the next batch), the relocations
139          * still fail. This implies that is a delay following invalidation
140          * that is required to reset the caches as opposed to a delay to
141          * ensure the memory is written.
142          */
143         if (mode & EMIT_INVALIDATE) {
144                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
145                 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
146                                                 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
147                         PIPE_CONTROL_GLOBAL_GTT;
148                 *cs++ = 0;
149                 *cs++ = 0;
150
151                 for (i = 0; i < 12; i++)
152                         *cs++ = MI_FLUSH;
153
154                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
155                 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
156                                                 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
157                         PIPE_CONTROL_GLOBAL_GTT;
158                 *cs++ = 0;
159                 *cs++ = 0;
160         }
161
162         *cs++ = cmd;
163
164         intel_ring_advance(rq, cs);
165
166         return 0;
167 }
168
169 /*
170  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
171  * implementing two workarounds on gen6.  From section 1.4.7.1
172  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
173  *
174  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
175  * produced by non-pipelined state commands), software needs to first
176  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
177  * 0.
178  *
179  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
180  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
181  *
182  * And the workaround for these two requires this workaround first:
183  *
184  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
185  * BEFORE the pipe-control with a post-sync op and no write-cache
186  * flushes.
187  *
188  * And this last workaround is tricky because of the requirements on
189  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
190  * volume 2 part 1:
191  *
192  *     "1 of the following must also be set:
193  *      - Render Target Cache Flush Enable ([12] of DW1)
194  *      - Depth Cache Flush Enable ([0] of DW1)
195  *      - Stall at Pixel Scoreboard ([1] of DW1)
196  *      - Depth Stall ([13] of DW1)
197  *      - Post-Sync Operation ([13] of DW1)
198  *      - Notify Enable ([8] of DW1)"
199  *
200  * The cache flushes require the workaround flush that triggered this
201  * one, so we can't use it.  Depth stall would trigger the same.
202  * Post-sync nonzero is what triggered this second workaround, so we
203  * can't use that one either.  Notify enable is IRQs, which aren't
204  * really our business.  That leaves only stall at scoreboard.
205  */
206 static int
207 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
208 {
209         u32 scratch_addr =
210                 intel_gt_scratch_offset(rq->engine->gt,
211                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
212         u32 *cs;
213
214         cs = intel_ring_begin(rq, 6);
215         if (IS_ERR(cs))
216                 return PTR_ERR(cs);
217
218         *cs++ = GFX_OP_PIPE_CONTROL(5);
219         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
220         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
221         *cs++ = 0; /* low dword */
222         *cs++ = 0; /* high dword */
223         *cs++ = MI_NOOP;
224         intel_ring_advance(rq, cs);
225
226         cs = intel_ring_begin(rq, 6);
227         if (IS_ERR(cs))
228                 return PTR_ERR(cs);
229
230         *cs++ = GFX_OP_PIPE_CONTROL(5);
231         *cs++ = PIPE_CONTROL_QW_WRITE;
232         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
233         *cs++ = 0;
234         *cs++ = 0;
235         *cs++ = MI_NOOP;
236         intel_ring_advance(rq, cs);
237
238         return 0;
239 }
240
241 static int
242 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
243 {
244         u32 scratch_addr =
245                 intel_gt_scratch_offset(rq->engine->gt,
246                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
247         u32 *cs, flags = 0;
248         int ret;
249
250         /* Force SNB workarounds for PIPE_CONTROL flushes */
251         ret = gen6_emit_post_sync_nonzero_flush(rq);
252         if (ret)
253                 return ret;
254
255         /* Just flush everything.  Experiments have shown that reducing the
256          * number of bits based on the write domains has little performance
257          * impact.
258          */
259         if (mode & EMIT_FLUSH) {
260                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
261                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
262                 /*
263                  * Ensure that any following seqno writes only happen
264                  * when the render cache is indeed flushed.
265                  */
266                 flags |= PIPE_CONTROL_CS_STALL;
267         }
268         if (mode & EMIT_INVALIDATE) {
269                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
270                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
271                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
272                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
273                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
274                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
275                 /*
276                  * TLB invalidate requires a post-sync write.
277                  */
278                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
279         }
280
281         cs = intel_ring_begin(rq, 4);
282         if (IS_ERR(cs))
283                 return PTR_ERR(cs);
284
285         *cs++ = GFX_OP_PIPE_CONTROL(4);
286         *cs++ = flags;
287         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
288         *cs++ = 0;
289         intel_ring_advance(rq, cs);
290
291         return 0;
292 }
293
294 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
295 {
296         /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
297         *cs++ = GFX_OP_PIPE_CONTROL(4);
298         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
299         *cs++ = 0;
300         *cs++ = 0;
301
302         *cs++ = GFX_OP_PIPE_CONTROL(4);
303         *cs++ = PIPE_CONTROL_QW_WRITE;
304         *cs++ = intel_gt_scratch_offset(rq->engine->gt,
305                                         INTEL_GT_SCRATCH_FIELD_DEFAULT) |
306                 PIPE_CONTROL_GLOBAL_GTT;
307         *cs++ = 0;
308
309         /* Finally we can flush and with it emit the breadcrumb */
310         *cs++ = GFX_OP_PIPE_CONTROL(4);
311         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
312                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
313                  PIPE_CONTROL_DC_FLUSH_ENABLE |
314                  PIPE_CONTROL_QW_WRITE |
315                  PIPE_CONTROL_CS_STALL);
316         *cs++ = i915_request_active_timeline(rq)->hwsp_offset |
317                 PIPE_CONTROL_GLOBAL_GTT;
318         *cs++ = rq->fence.seqno;
319
320         *cs++ = MI_USER_INTERRUPT;
321         *cs++ = MI_NOOP;
322
323         rq->tail = intel_ring_offset(rq, cs);
324         assert_ring_tail_valid(rq->ring, rq->tail);
325
326         return cs;
327 }
328
329 static int
330 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
331 {
332         u32 *cs;
333
334         cs = intel_ring_begin(rq, 4);
335         if (IS_ERR(cs))
336                 return PTR_ERR(cs);
337
338         *cs++ = GFX_OP_PIPE_CONTROL(4);
339         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
340         *cs++ = 0;
341         *cs++ = 0;
342         intel_ring_advance(rq, cs);
343
344         return 0;
345 }
346
347 static int
348 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
349 {
350         u32 scratch_addr =
351                 intel_gt_scratch_offset(rq->engine->gt,
352                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
353         u32 *cs, flags = 0;
354
355         /*
356          * Ensure that any following seqno writes only happen when the render
357          * cache is indeed flushed.
358          *
359          * Workaround: 4th PIPE_CONTROL command (except the ones with only
360          * read-cache invalidate bits set) must have the CS_STALL bit set. We
361          * don't try to be clever and just set it unconditionally.
362          */
363         flags |= PIPE_CONTROL_CS_STALL;
364
365         /* Just flush everything.  Experiments have shown that reducing the
366          * number of bits based on the write domains has little performance
367          * impact.
368          */
369         if (mode & EMIT_FLUSH) {
370                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
371                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
372                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
373                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
374         }
375         if (mode & EMIT_INVALIDATE) {
376                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
377                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
378                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
379                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
380                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
381                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
383                 /*
384                  * TLB invalidate requires a post-sync write.
385                  */
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388
389                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
390
391                 /* Workaround: we must issue a pipe_control with CS-stall bit
392                  * set before a pipe_control command that has the state cache
393                  * invalidate bit set. */
394                 gen7_render_ring_cs_stall_wa(rq);
395         }
396
397         cs = intel_ring_begin(rq, 4);
398         if (IS_ERR(cs))
399                 return PTR_ERR(cs);
400
401         *cs++ = GFX_OP_PIPE_CONTROL(4);
402         *cs++ = flags;
403         *cs++ = scratch_addr;
404         *cs++ = 0;
405         intel_ring_advance(rq, cs);
406
407         return 0;
408 }
409
410 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
411 {
412         *cs++ = GFX_OP_PIPE_CONTROL(4);
413         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
414                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
415                  PIPE_CONTROL_DC_FLUSH_ENABLE |
416                  PIPE_CONTROL_FLUSH_ENABLE |
417                  PIPE_CONTROL_QW_WRITE |
418                  PIPE_CONTROL_GLOBAL_GTT_IVB |
419                  PIPE_CONTROL_CS_STALL);
420         *cs++ = i915_request_active_timeline(rq)->hwsp_offset;
421         *cs++ = rq->fence.seqno;
422
423         *cs++ = MI_USER_INTERRUPT;
424         *cs++ = MI_NOOP;
425
426         rq->tail = intel_ring_offset(rq, cs);
427         assert_ring_tail_valid(rq->ring, rq->tail);
428
429         return cs;
430 }
431
432 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
433 {
434         GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
435         GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
436
437         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
438         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
439         *cs++ = rq->fence.seqno;
440
441         *cs++ = MI_USER_INTERRUPT;
442
443         rq->tail = intel_ring_offset(rq, cs);
444         assert_ring_tail_valid(rq->ring, rq->tail);
445
446         return cs;
447 }
448
449 #define GEN7_XCS_WA 32
450 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
451 {
452         int i;
453
454         GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
455         GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
456
457         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
458         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
459         *cs++ = rq->fence.seqno;
460
461         for (i = 0; i < GEN7_XCS_WA; i++) {
462                 *cs++ = MI_STORE_DWORD_INDEX;
463                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
464                 *cs++ = rq->fence.seqno;
465         }
466
467         *cs++ = MI_FLUSH_DW;
468         *cs++ = 0;
469         *cs++ = 0;
470
471         *cs++ = MI_USER_INTERRUPT;
472         *cs++ = MI_NOOP;
473
474         rq->tail = intel_ring_offset(rq, cs);
475         assert_ring_tail_valid(rq->ring, rq->tail);
476
477         return cs;
478 }
479 #undef GEN7_XCS_WA
480
481 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
482 {
483         /*
484          * Keep the render interrupt unmasked as this papers over
485          * lost interrupts following a reset.
486          */
487         if (engine->class == RENDER_CLASS) {
488                 if (INTEL_GEN(engine->i915) >= 6)
489                         mask &= ~BIT(0);
490                 else
491                         mask &= ~I915_USER_INTERRUPT;
492         }
493
494         intel_engine_set_hwsp_writemask(engine, mask);
495 }
496
497 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
498 {
499         struct drm_i915_private *dev_priv = engine->i915;
500         u32 addr;
501
502         addr = lower_32_bits(phys);
503         if (INTEL_GEN(dev_priv) >= 4)
504                 addr |= (phys >> 28) & 0xf0;
505
506         I915_WRITE(HWS_PGA, addr);
507 }
508
509 static struct page *status_page(struct intel_engine_cs *engine)
510 {
511         struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
512
513         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
514         return sg_page(obj->mm.pages->sgl);
515 }
516
517 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
518 {
519         set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
520         set_hwstam(engine, ~0u);
521 }
522
523 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
524 {
525         struct drm_i915_private *dev_priv = engine->i915;
526         i915_reg_t hwsp;
527
528         /*
529          * The ring status page addresses are no longer next to the rest of
530          * the ring registers as of gen7.
531          */
532         if (IS_GEN(dev_priv, 7)) {
533                 switch (engine->id) {
534                 /*
535                  * No more rings exist on Gen7. Default case is only to shut up
536                  * gcc switch check warning.
537                  */
538                 default:
539                         GEM_BUG_ON(engine->id);
540                         /* fallthrough */
541                 case RCS0:
542                         hwsp = RENDER_HWS_PGA_GEN7;
543                         break;
544                 case BCS0:
545                         hwsp = BLT_HWS_PGA_GEN7;
546                         break;
547                 case VCS0:
548                         hwsp = BSD_HWS_PGA_GEN7;
549                         break;
550                 case VECS0:
551                         hwsp = VEBOX_HWS_PGA_GEN7;
552                         break;
553                 }
554         } else if (IS_GEN(dev_priv, 6)) {
555                 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
556         } else {
557                 hwsp = RING_HWS_PGA(engine->mmio_base);
558         }
559
560         I915_WRITE(hwsp, offset);
561         POSTING_READ(hwsp);
562 }
563
564 static void flush_cs_tlb(struct intel_engine_cs *engine)
565 {
566         struct drm_i915_private *dev_priv = engine->i915;
567
568         if (!IS_GEN_RANGE(dev_priv, 6, 7))
569                 return;
570
571         /* ring should be idle before issuing a sync flush*/
572         WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
573
574         ENGINE_WRITE(engine, RING_INSTPM,
575                      _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
576                                         INSTPM_SYNC_FLUSH));
577         if (intel_wait_for_register(engine->uncore,
578                                     RING_INSTPM(engine->mmio_base),
579                                     INSTPM_SYNC_FLUSH, 0,
580                                     1000))
581                 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
582                           engine->name);
583 }
584
585 static void ring_setup_status_page(struct intel_engine_cs *engine)
586 {
587         set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
588         set_hwstam(engine, ~0u);
589
590         flush_cs_tlb(engine);
591 }
592
593 static bool stop_ring(struct intel_engine_cs *engine)
594 {
595         struct drm_i915_private *dev_priv = engine->i915;
596
597         if (INTEL_GEN(dev_priv) > 2) {
598                 ENGINE_WRITE(engine,
599                              RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
600                 if (intel_wait_for_register(engine->uncore,
601                                             RING_MI_MODE(engine->mmio_base),
602                                             MODE_IDLE,
603                                             MODE_IDLE,
604                                             1000)) {
605                         DRM_ERROR("%s : timed out trying to stop ring\n",
606                                   engine->name);
607
608                         /*
609                          * Sometimes we observe that the idle flag is not
610                          * set even though the ring is empty. So double
611                          * check before giving up.
612                          */
613                         if (ENGINE_READ(engine, RING_HEAD) !=
614                             ENGINE_READ(engine, RING_TAIL))
615                                 return false;
616                 }
617         }
618
619         ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
620
621         ENGINE_WRITE(engine, RING_HEAD, 0);
622         ENGINE_WRITE(engine, RING_TAIL, 0);
623
624         /* The ring must be empty before it is disabled */
625         ENGINE_WRITE(engine, RING_CTL, 0);
626
627         return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
628 }
629
630 static int xcs_resume(struct intel_engine_cs *engine)
631 {
632         struct drm_i915_private *dev_priv = engine->i915;
633         struct intel_ring *ring = engine->legacy.ring;
634         int ret = 0;
635
636         GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
637                   engine->name, ring->head, ring->tail);
638
639         intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
640
641         /* WaClearRingBufHeadRegAtInit:ctg,elk */
642         if (!stop_ring(engine)) {
643                 /* G45 ring initialization often fails to reset head to zero */
644                 DRM_DEBUG_DRIVER("%s head not reset to zero "
645                                 "ctl %08x head %08x tail %08x start %08x\n",
646                                 engine->name,
647                                 ENGINE_READ(engine, RING_CTL),
648                                 ENGINE_READ(engine, RING_HEAD),
649                                 ENGINE_READ(engine, RING_TAIL),
650                                 ENGINE_READ(engine, RING_START));
651
652                 if (!stop_ring(engine)) {
653                         DRM_ERROR("failed to set %s head to zero "
654                                   "ctl %08x head %08x tail %08x start %08x\n",
655                                   engine->name,
656                                   ENGINE_READ(engine, RING_CTL),
657                                   ENGINE_READ(engine, RING_HEAD),
658                                   ENGINE_READ(engine, RING_TAIL),
659                                   ENGINE_READ(engine, RING_START));
660                         ret = -EIO;
661                         goto out;
662                 }
663         }
664
665         if (HWS_NEEDS_PHYSICAL(dev_priv))
666                 ring_setup_phys_status_page(engine);
667         else
668                 ring_setup_status_page(engine);
669
670         intel_engine_reset_breadcrumbs(engine);
671
672         /* Enforce ordering by reading HEAD register back */
673         ENGINE_POSTING_READ(engine, RING_HEAD);
674
675         /*
676          * Initialize the ring. This must happen _after_ we've cleared the ring
677          * registers with the above sequence (the readback of the HEAD registers
678          * also enforces ordering), otherwise the hw might lose the new ring
679          * register values.
680          */
681         ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
682
683         /* Check that the ring offsets point within the ring! */
684         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
685         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
686         intel_ring_update_space(ring);
687
688         /* First wake the ring up to an empty/idle ring */
689         ENGINE_WRITE(engine, RING_HEAD, ring->head);
690         ENGINE_WRITE(engine, RING_TAIL, ring->head);
691         ENGINE_POSTING_READ(engine, RING_TAIL);
692
693         ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
694
695         /* If the head is still not zero, the ring is dead */
696         if (intel_wait_for_register(engine->uncore,
697                                     RING_CTL(engine->mmio_base),
698                                     RING_VALID, RING_VALID,
699                                     50)) {
700                 DRM_ERROR("%s initialization failed "
701                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
702                           engine->name,
703                           ENGINE_READ(engine, RING_CTL),
704                           ENGINE_READ(engine, RING_CTL) & RING_VALID,
705                           ENGINE_READ(engine, RING_HEAD), ring->head,
706                           ENGINE_READ(engine, RING_TAIL), ring->tail,
707                           ENGINE_READ(engine, RING_START),
708                           i915_ggtt_offset(ring->vma));
709                 ret = -EIO;
710                 goto out;
711         }
712
713         if (INTEL_GEN(dev_priv) > 2)
714                 ENGINE_WRITE(engine,
715                              RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
716
717         /* Now awake, let it get started */
718         if (ring->tail != ring->head) {
719                 ENGINE_WRITE(engine, RING_TAIL, ring->tail);
720                 ENGINE_POSTING_READ(engine, RING_TAIL);
721         }
722
723         /* Papering over lost _interrupts_ immediately following the restart */
724         intel_engine_queue_breadcrumbs(engine);
725 out:
726         intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
727
728         return ret;
729 }
730
731 static void reset_prepare(struct intel_engine_cs *engine)
732 {
733         struct intel_uncore *uncore = engine->uncore;
734         const u32 base = engine->mmio_base;
735
736         /*
737          * We stop engines, otherwise we might get failed reset and a
738          * dead gpu (on elk). Also as modern gpu as kbl can suffer
739          * from system hang if batchbuffer is progressing when
740          * the reset is issued, regardless of READY_TO_RESET ack.
741          * Thus assume it is best to stop engines on all gens
742          * where we have a gpu reset.
743          *
744          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
745          *
746          * WaMediaResetMainRingCleanup:ctg,elk (presumably)
747          *
748          * FIXME: Wa for more modern gens needs to be validated
749          */
750         GEM_TRACE("%s\n", engine->name);
751
752         if (intel_engine_stop_cs(engine))
753                 GEM_TRACE("%s: timed out on STOP_RING\n", engine->name);
754
755         intel_uncore_write_fw(uncore,
756                               RING_HEAD(base),
757                               intel_uncore_read_fw(uncore, RING_TAIL(base)));
758         intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
759
760         intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
761         intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
762         intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
763
764         /* The ring must be empty before it is disabled */
765         intel_uncore_write_fw(uncore, RING_CTL(base), 0);
766
767         /* Check acts as a post */
768         if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
769                 GEM_TRACE("%s: ring head [%x] not parked\n",
770                           engine->name,
771                           intel_uncore_read_fw(uncore, RING_HEAD(base)));
772 }
773
774 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
775 {
776         struct i915_request *pos, *rq;
777         unsigned long flags;
778         u32 head;
779
780         rq = NULL;
781         spin_lock_irqsave(&engine->active.lock, flags);
782         list_for_each_entry(pos, &engine->active.requests, sched.link) {
783                 if (!i915_request_completed(pos)) {
784                         rq = pos;
785                         break;
786                 }
787         }
788
789         /*
790          * The guilty request will get skipped on a hung engine.
791          *
792          * Users of client default contexts do not rely on logical
793          * state preserved between batches so it is safe to execute
794          * queued requests following the hang. Non default contexts
795          * rely on preserved state, so skipping a batch loses the
796          * evolution of the state and it needs to be considered corrupted.
797          * Executing more queued batches on top of corrupted state is
798          * risky. But we take the risk by trying to advance through
799          * the queued requests in order to make the client behaviour
800          * more predictable around resets, by not throwing away random
801          * amount of batches it has prepared for execution. Sophisticated
802          * clients can use gem_reset_stats_ioctl and dma fence status
803          * (exported via sync_file info ioctl on explicit fences) to observe
804          * when it loses the context state and should rebuild accordingly.
805          *
806          * The context ban, and ultimately the client ban, mechanism are safety
807          * valves if client submission ends up resulting in nothing more than
808          * subsequent hangs.
809          */
810
811         if (rq) {
812                 /*
813                  * Try to restore the logical GPU state to match the
814                  * continuation of the request queue. If we skip the
815                  * context/PD restore, then the next request may try to execute
816                  * assuming that its context is valid and loaded on the GPU and
817                  * so may try to access invalid memory, prompting repeated GPU
818                  * hangs.
819                  *
820                  * If the request was guilty, we still restore the logical
821                  * state in case the next request requires it (e.g. the
822                  * aliasing ppgtt), but skip over the hung batch.
823                  *
824                  * If the request was innocent, we try to replay the request
825                  * with the restored context.
826                  */
827                 __i915_request_reset(rq, stalled);
828
829                 GEM_BUG_ON(rq->ring != engine->legacy.ring);
830                 head = rq->head;
831         } else {
832                 head = engine->legacy.ring->tail;
833         }
834         engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
835
836         spin_unlock_irqrestore(&engine->active.lock, flags);
837 }
838
839 static void reset_finish(struct intel_engine_cs *engine)
840 {
841 }
842
843 static int rcs_resume(struct intel_engine_cs *engine)
844 {
845         struct drm_i915_private *dev_priv = engine->i915;
846
847         /*
848          * Disable CONSTANT_BUFFER before it is loaded from the context
849          * image. For as it is loaded, it is executed and the stored
850          * address may no longer be valid, leading to a GPU hang.
851          *
852          * This imposes the requirement that userspace reload their
853          * CONSTANT_BUFFER on every batch, fortunately a requirement
854          * they are already accustomed to from before contexts were
855          * enabled.
856          */
857         if (IS_GEN(dev_priv, 4))
858                 I915_WRITE(ECOSKPD,
859                            _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
860
861         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
862         if (IS_GEN_RANGE(dev_priv, 4, 6))
863                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
864
865         /* We need to disable the AsyncFlip performance optimisations in order
866          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
867          * programmed to '1' on all products.
868          *
869          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
870          */
871         if (IS_GEN_RANGE(dev_priv, 6, 7))
872                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
873
874         /* Required for the hardware to program scanline values for waiting */
875         /* WaEnableFlushTlbInvalidationMode:snb */
876         if (IS_GEN(dev_priv, 6))
877                 I915_WRITE(GFX_MODE,
878                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
879
880         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
881         if (IS_GEN(dev_priv, 7))
882                 I915_WRITE(GFX_MODE_GEN7,
883                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
884                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
885
886         if (IS_GEN(dev_priv, 6)) {
887                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
888                  * "If this bit is set, STCunit will have LRA as replacement
889                  *  policy. [...] This bit must be reset.  LRA replacement
890                  *  policy is not supported."
891                  */
892                 I915_WRITE(CACHE_MODE_0,
893                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
894         }
895
896         if (IS_GEN_RANGE(dev_priv, 6, 7))
897                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
898
899         return xcs_resume(engine);
900 }
901
902 static void cancel_requests(struct intel_engine_cs *engine)
903 {
904         struct i915_request *request;
905         unsigned long flags;
906
907         spin_lock_irqsave(&engine->active.lock, flags);
908
909         /* Mark all submitted requests as skipped. */
910         list_for_each_entry(request, &engine->active.requests, sched.link) {
911                 if (!i915_request_signaled(request))
912                         dma_fence_set_error(&request->fence, -EIO);
913
914                 i915_request_mark_complete(request);
915         }
916
917         /* Remaining _unready_ requests will be nop'ed when submitted */
918
919         spin_unlock_irqrestore(&engine->active.lock, flags);
920 }
921
922 static void i9xx_submit_request(struct i915_request *request)
923 {
924         i915_request_submit(request);
925         wmb(); /* paranoid flush writes out of the WCB before mmio */
926
927         ENGINE_WRITE(request->engine, RING_TAIL,
928                      intel_ring_set_tail(request->ring, request->tail));
929 }
930
931 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
932 {
933         GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
934         GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
935
936         *cs++ = MI_FLUSH;
937
938         *cs++ = MI_STORE_DWORD_INDEX;
939         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
940         *cs++ = rq->fence.seqno;
941
942         *cs++ = MI_USER_INTERRUPT;
943         *cs++ = MI_NOOP;
944
945         rq->tail = intel_ring_offset(rq, cs);
946         assert_ring_tail_valid(rq->ring, rq->tail);
947
948         return cs;
949 }
950
951 #define GEN5_WA_STORES 8 /* must be at least 1! */
952 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
953 {
954         int i;
955
956         GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
957         GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
958
959         *cs++ = MI_FLUSH;
960
961         BUILD_BUG_ON(GEN5_WA_STORES < 1);
962         for (i = 0; i < GEN5_WA_STORES; i++) {
963                 *cs++ = MI_STORE_DWORD_INDEX;
964                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
965                 *cs++ = rq->fence.seqno;
966         }
967
968         *cs++ = MI_USER_INTERRUPT;
969
970         rq->tail = intel_ring_offset(rq, cs);
971         assert_ring_tail_valid(rq->ring, rq->tail);
972
973         return cs;
974 }
975 #undef GEN5_WA_STORES
976
977 static void
978 gen5_irq_enable(struct intel_engine_cs *engine)
979 {
980         gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
981 }
982
983 static void
984 gen5_irq_disable(struct intel_engine_cs *engine)
985 {
986         gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
987 }
988
989 static void
990 i9xx_irq_enable(struct intel_engine_cs *engine)
991 {
992         engine->i915->irq_mask &= ~engine->irq_enable_mask;
993         intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
994         intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
995 }
996
997 static void
998 i9xx_irq_disable(struct intel_engine_cs *engine)
999 {
1000         engine->i915->irq_mask |= engine->irq_enable_mask;
1001         intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1002 }
1003
1004 static void
1005 i8xx_irq_enable(struct intel_engine_cs *engine)
1006 {
1007         struct drm_i915_private *i915 = engine->i915;
1008
1009         i915->irq_mask &= ~engine->irq_enable_mask;
1010         intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1011         ENGINE_POSTING_READ16(engine, RING_IMR);
1012 }
1013
1014 static void
1015 i8xx_irq_disable(struct intel_engine_cs *engine)
1016 {
1017         struct drm_i915_private *i915 = engine->i915;
1018
1019         i915->irq_mask |= engine->irq_enable_mask;
1020         intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1021 }
1022
1023 static int
1024 bsd_ring_flush(struct i915_request *rq, u32 mode)
1025 {
1026         u32 *cs;
1027
1028         cs = intel_ring_begin(rq, 2);
1029         if (IS_ERR(cs))
1030                 return PTR_ERR(cs);
1031
1032         *cs++ = MI_FLUSH;
1033         *cs++ = MI_NOOP;
1034         intel_ring_advance(rq, cs);
1035         return 0;
1036 }
1037
1038 static void
1039 gen6_irq_enable(struct intel_engine_cs *engine)
1040 {
1041         ENGINE_WRITE(engine, RING_IMR,
1042                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
1043
1044         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1045         ENGINE_POSTING_READ(engine, RING_IMR);
1046
1047         gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1048 }
1049
1050 static void
1051 gen6_irq_disable(struct intel_engine_cs *engine)
1052 {
1053         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1054         gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1055 }
1056
1057 static void
1058 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1059 {
1060         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1061
1062         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1063         ENGINE_POSTING_READ(engine, RING_IMR);
1064
1065         gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1066 }
1067
1068 static void
1069 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1070 {
1071         ENGINE_WRITE(engine, RING_IMR, ~0);
1072         gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1073 }
1074
1075 static int
1076 i965_emit_bb_start(struct i915_request *rq,
1077                    u64 offset, u32 length,
1078                    unsigned int dispatch_flags)
1079 {
1080         u32 *cs;
1081
1082         cs = intel_ring_begin(rq, 2);
1083         if (IS_ERR(cs))
1084                 return PTR_ERR(cs);
1085
1086         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1087                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1088         *cs++ = offset;
1089         intel_ring_advance(rq, cs);
1090
1091         return 0;
1092 }
1093
1094 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1095 #define I830_BATCH_LIMIT SZ_256K
1096 #define I830_TLB_ENTRIES (2)
1097 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1098 static int
1099 i830_emit_bb_start(struct i915_request *rq,
1100                    u64 offset, u32 len,
1101                    unsigned int dispatch_flags)
1102 {
1103         u32 *cs, cs_offset =
1104                 intel_gt_scratch_offset(rq->engine->gt,
1105                                         INTEL_GT_SCRATCH_FIELD_DEFAULT);
1106
1107         GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1108
1109         cs = intel_ring_begin(rq, 6);
1110         if (IS_ERR(cs))
1111                 return PTR_ERR(cs);
1112
1113         /* Evict the invalid PTE TLBs */
1114         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1115         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1116         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1117         *cs++ = cs_offset;
1118         *cs++ = 0xdeadbeef;
1119         *cs++ = MI_NOOP;
1120         intel_ring_advance(rq, cs);
1121
1122         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1123                 if (len > I830_BATCH_LIMIT)
1124                         return -ENOSPC;
1125
1126                 cs = intel_ring_begin(rq, 6 + 2);
1127                 if (IS_ERR(cs))
1128                         return PTR_ERR(cs);
1129
1130                 /* Blit the batch (which has now all relocs applied) to the
1131                  * stable batch scratch bo area (so that the CS never
1132                  * stumbles over its tlb invalidation bug) ...
1133                  */
1134                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1135                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1136                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1137                 *cs++ = cs_offset;
1138                 *cs++ = 4096;
1139                 *cs++ = offset;
1140
1141                 *cs++ = MI_FLUSH;
1142                 *cs++ = MI_NOOP;
1143                 intel_ring_advance(rq, cs);
1144
1145                 /* ... and execute it. */
1146                 offset = cs_offset;
1147         }
1148
1149         cs = intel_ring_begin(rq, 2);
1150         if (IS_ERR(cs))
1151                 return PTR_ERR(cs);
1152
1153         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1154         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1155                 MI_BATCH_NON_SECURE);
1156         intel_ring_advance(rq, cs);
1157
1158         return 0;
1159 }
1160
1161 static int
1162 i915_emit_bb_start(struct i915_request *rq,
1163                    u64 offset, u32 len,
1164                    unsigned int dispatch_flags)
1165 {
1166         u32 *cs;
1167
1168         cs = intel_ring_begin(rq, 2);
1169         if (IS_ERR(cs))
1170                 return PTR_ERR(cs);
1171
1172         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1173         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1174                 MI_BATCH_NON_SECURE);
1175         intel_ring_advance(rq, cs);
1176
1177         return 0;
1178 }
1179
1180 static void __ring_context_fini(struct intel_context *ce)
1181 {
1182         i915_vma_put(ce->state);
1183 }
1184
1185 static void ring_context_destroy(struct kref *ref)
1186 {
1187         struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1188
1189         GEM_BUG_ON(intel_context_is_pinned(ce));
1190
1191         if (ce->state)
1192                 __ring_context_fini(ce);
1193
1194         intel_context_fini(ce);
1195         intel_context_free(ce);
1196 }
1197
1198 static struct i915_address_space *vm_alias(struct intel_context *ce)
1199 {
1200         struct i915_address_space *vm;
1201
1202         vm = ce->vm;
1203         if (i915_is_ggtt(vm))
1204                 vm = &i915_vm_to_ggtt(vm)->alias->vm;
1205
1206         return vm;
1207 }
1208
1209 static int __context_pin_ppgtt(struct intel_context *ce)
1210 {
1211         struct i915_address_space *vm;
1212         int err = 0;
1213
1214         vm = vm_alias(ce);
1215         if (vm)
1216                 err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1217
1218         return err;
1219 }
1220
1221 static void __context_unpin_ppgtt(struct intel_context *ce)
1222 {
1223         struct i915_address_space *vm;
1224
1225         vm = vm_alias(ce);
1226         if (vm)
1227                 gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1228 }
1229
1230 static void ring_context_unpin(struct intel_context *ce)
1231 {
1232         __context_unpin_ppgtt(ce);
1233 }
1234
1235 static struct i915_vma *
1236 alloc_context_vma(struct intel_engine_cs *engine)
1237 {
1238         struct drm_i915_private *i915 = engine->i915;
1239         struct drm_i915_gem_object *obj;
1240         struct i915_vma *vma;
1241         int err;
1242
1243         obj = i915_gem_object_create_shmem(i915, engine->context_size);
1244         if (IS_ERR(obj))
1245                 return ERR_CAST(obj);
1246
1247         /*
1248          * Try to make the context utilize L3 as well as LLC.
1249          *
1250          * On VLV we don't have L3 controls in the PTEs so we
1251          * shouldn't touch the cache level, especially as that
1252          * would make the object snooped which might have a
1253          * negative performance impact.
1254          *
1255          * Snooping is required on non-llc platforms in execlist
1256          * mode, but since all GGTT accesses use PAT entry 0 we
1257          * get snooping anyway regardless of cache_level.
1258          *
1259          * This is only applicable for Ivy Bridge devices since
1260          * later platforms don't have L3 control bits in the PTE.
1261          */
1262         if (IS_IVYBRIDGE(i915))
1263                 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1264
1265         if (engine->default_state) {
1266                 void *defaults, *vaddr;
1267
1268                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1269                 if (IS_ERR(vaddr)) {
1270                         err = PTR_ERR(vaddr);
1271                         goto err_obj;
1272                 }
1273
1274                 defaults = i915_gem_object_pin_map(engine->default_state,
1275                                                    I915_MAP_WB);
1276                 if (IS_ERR(defaults)) {
1277                         err = PTR_ERR(defaults);
1278                         goto err_map;
1279                 }
1280
1281                 memcpy(vaddr, defaults, engine->context_size);
1282                 i915_gem_object_unpin_map(engine->default_state);
1283
1284                 i915_gem_object_flush_map(obj);
1285                 i915_gem_object_unpin_map(obj);
1286         }
1287
1288         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1289         if (IS_ERR(vma)) {
1290                 err = PTR_ERR(vma);
1291                 goto err_obj;
1292         }
1293
1294         return vma;
1295
1296 err_map:
1297         i915_gem_object_unpin_map(obj);
1298 err_obj:
1299         i915_gem_object_put(obj);
1300         return ERR_PTR(err);
1301 }
1302
1303 static int ring_context_alloc(struct intel_context *ce)
1304 {
1305         struct intel_engine_cs *engine = ce->engine;
1306
1307         /* One ringbuffer to rule them all */
1308         GEM_BUG_ON(!engine->legacy.ring);
1309         ce->ring = engine->legacy.ring;
1310         ce->timeline = intel_timeline_get(engine->legacy.timeline);
1311
1312         GEM_BUG_ON(ce->state);
1313         if (engine->context_size) {
1314                 struct i915_vma *vma;
1315
1316                 vma = alloc_context_vma(engine);
1317                 if (IS_ERR(vma))
1318                         return PTR_ERR(vma);
1319
1320                 ce->state = vma;
1321         }
1322
1323         return 0;
1324 }
1325
1326 static int ring_context_pin(struct intel_context *ce)
1327 {
1328         int err;
1329
1330         err = intel_context_active_acquire(ce);
1331         if (err)
1332                 return err;
1333
1334         err = __context_pin_ppgtt(ce);
1335         if (err)
1336                 goto err_active;
1337
1338         return 0;
1339
1340 err_active:
1341         intel_context_active_release(ce);
1342         return err;
1343 }
1344
1345 static void ring_context_reset(struct intel_context *ce)
1346 {
1347         intel_ring_reset(ce->ring, 0);
1348 }
1349
1350 static const struct intel_context_ops ring_context_ops = {
1351         .alloc = ring_context_alloc,
1352
1353         .pin = ring_context_pin,
1354         .unpin = ring_context_unpin,
1355
1356         .enter = intel_context_enter_engine,
1357         .exit = intel_context_exit_engine,
1358
1359         .reset = ring_context_reset,
1360         .destroy = ring_context_destroy,
1361 };
1362
1363 static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1364 {
1365         const struct intel_engine_cs * const engine = rq->engine;
1366         u32 *cs;
1367
1368         cs = intel_ring_begin(rq, 6);
1369         if (IS_ERR(cs))
1370                 return PTR_ERR(cs);
1371
1372         *cs++ = MI_LOAD_REGISTER_IMM(1);
1373         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1374         *cs++ = PP_DIR_DCLV_2G;
1375
1376         *cs++ = MI_LOAD_REGISTER_IMM(1);
1377         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1378         *cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1379
1380         intel_ring_advance(rq, cs);
1381
1382         return 0;
1383 }
1384
1385 static int flush_pd_dir(struct i915_request *rq)
1386 {
1387         const struct intel_engine_cs * const engine = rq->engine;
1388         u32 *cs;
1389
1390         cs = intel_ring_begin(rq, 4);
1391         if (IS_ERR(cs))
1392                 return PTR_ERR(cs);
1393
1394         /* Stall until the page table load is complete */
1395         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1396         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1397         *cs++ = intel_gt_scratch_offset(rq->engine->gt,
1398                                         INTEL_GT_SCRATCH_FIELD_DEFAULT);
1399         *cs++ = MI_NOOP;
1400
1401         intel_ring_advance(rq, cs);
1402         return 0;
1403 }
1404
1405 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1406 {
1407         struct drm_i915_private *i915 = rq->i915;
1408         struct intel_engine_cs *engine = rq->engine;
1409         enum intel_engine_id id;
1410         const int num_engines =
1411                 IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1412         bool force_restore = false;
1413         int len;
1414         u32 *cs;
1415
1416         flags |= MI_MM_SPACE_GTT;
1417         if (IS_HASWELL(i915))
1418                 /* These flags are for resource streamer on HSW+ */
1419                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1420         else
1421                 /* We need to save the extended state for powersaving modes */
1422                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1423
1424         len = 4;
1425         if (IS_GEN(i915, 7))
1426                 len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1427         else if (IS_GEN(i915, 5))
1428                 len += 2;
1429         if (flags & MI_FORCE_RESTORE) {
1430                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1431                 flags &= ~MI_FORCE_RESTORE;
1432                 force_restore = true;
1433                 len += 2;
1434         }
1435
1436         cs = intel_ring_begin(rq, len);
1437         if (IS_ERR(cs))
1438                 return PTR_ERR(cs);
1439
1440         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1441         if (IS_GEN(i915, 7)) {
1442                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1443                 if (num_engines) {
1444                         struct intel_engine_cs *signaller;
1445
1446                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1447                         for_each_engine(signaller, engine->gt, id) {
1448                                 if (signaller == engine)
1449                                         continue;
1450
1451                                 *cs++ = i915_mmio_reg_offset(
1452                                            RING_PSMI_CTL(signaller->mmio_base));
1453                                 *cs++ = _MASKED_BIT_ENABLE(
1454                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1455                         }
1456                 }
1457         } else if (IS_GEN(i915, 5)) {
1458                 /*
1459                  * This w/a is only listed for pre-production ilk a/b steppings,
1460                  * but is also mentioned for programming the powerctx. To be
1461                  * safe, just apply the workaround; we do not use SyncFlush so
1462                  * this should never take effect and so be a no-op!
1463                  */
1464                 *cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1465         }
1466
1467         if (force_restore) {
1468                 /*
1469                  * The HW doesn't handle being told to restore the current
1470                  * context very well. Quite often it likes goes to go off and
1471                  * sulk, especially when it is meant to be reloading PP_DIR.
1472                  * A very simple fix to force the reload is to simply switch
1473                  * away from the current context and back again.
1474                  *
1475                  * Note that the kernel_context will contain random state
1476                  * following the INHIBIT_RESTORE. We accept this since we
1477                  * never use the kernel_context state; it is merely a
1478                  * placeholder we use to flush other contexts.
1479                  */
1480                 *cs++ = MI_SET_CONTEXT;
1481                 *cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1482                         MI_MM_SPACE_GTT |
1483                         MI_RESTORE_INHIBIT;
1484         }
1485
1486         *cs++ = MI_NOOP;
1487         *cs++ = MI_SET_CONTEXT;
1488         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1489         /*
1490          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1491          * WaMiSetContext_Hang:snb,ivb,vlv
1492          */
1493         *cs++ = MI_NOOP;
1494
1495         if (IS_GEN(i915, 7)) {
1496                 if (num_engines) {
1497                         struct intel_engine_cs *signaller;
1498                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1499
1500                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1501                         for_each_engine(signaller, engine->gt, id) {
1502                                 if (signaller == engine)
1503                                         continue;
1504
1505                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1506                                 *cs++ = i915_mmio_reg_offset(last_reg);
1507                                 *cs++ = _MASKED_BIT_DISABLE(
1508                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1509                         }
1510
1511                         /* Insert a delay before the next switch! */
1512                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1513                         *cs++ = i915_mmio_reg_offset(last_reg);
1514                         *cs++ = intel_gt_scratch_offset(engine->gt,
1515                                                         INTEL_GT_SCRATCH_FIELD_DEFAULT);
1516                         *cs++ = MI_NOOP;
1517                 }
1518                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1519         } else if (IS_GEN(i915, 5)) {
1520                 *cs++ = MI_SUSPEND_FLUSH;
1521         }
1522
1523         intel_ring_advance(rq, cs);
1524
1525         return 0;
1526 }
1527
1528 static int remap_l3_slice(struct i915_request *rq, int slice)
1529 {
1530         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1531         int i;
1532
1533         if (!remap_info)
1534                 return 0;
1535
1536         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1537         if (IS_ERR(cs))
1538                 return PTR_ERR(cs);
1539
1540         /*
1541          * Note: We do not worry about the concurrent register cacheline hang
1542          * here because no other code should access these registers other than
1543          * at initialization time.
1544          */
1545         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1546         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1547                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1548                 *cs++ = remap_info[i];
1549         }
1550         *cs++ = MI_NOOP;
1551         intel_ring_advance(rq, cs);
1552
1553         return 0;
1554 }
1555
1556 static int remap_l3(struct i915_request *rq)
1557 {
1558         struct i915_gem_context *ctx = rq->gem_context;
1559         int i, err;
1560
1561         if (!ctx->remap_slice)
1562                 return 0;
1563
1564         for (i = 0; i < MAX_L3_SLICES; i++) {
1565                 if (!(ctx->remap_slice & BIT(i)))
1566                         continue;
1567
1568                 err = remap_l3_slice(rq, i);
1569                 if (err)
1570                         return err;
1571         }
1572
1573         ctx->remap_slice = 0;
1574         return 0;
1575 }
1576
1577 static int switch_context(struct i915_request *rq)
1578 {
1579         struct intel_context *ce = rq->hw_context;
1580         struct i915_address_space *vm = vm_alias(ce);
1581         int ret;
1582
1583         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1584
1585         if (vm) {
1586                 ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm));
1587                 if (ret)
1588                         return ret;
1589         }
1590
1591         if (ce->state) {
1592                 u32 hw_flags;
1593
1594                 GEM_BUG_ON(rq->engine->id != RCS0);
1595
1596                 /*
1597                  * The kernel context(s) is treated as pure scratch and is not
1598                  * expected to retain any state (as we sacrifice it during
1599                  * suspend and on resume it may be corrupted). This is ok,
1600                  * as nothing actually executes using the kernel context; it
1601                  * is purely used for flushing user contexts.
1602                  */
1603                 hw_flags = 0;
1604                 if (i915_gem_context_is_kernel(rq->gem_context))
1605                         hw_flags = MI_RESTORE_INHIBIT;
1606
1607                 ret = mi_set_context(rq, hw_flags);
1608                 if (ret)
1609                         return ret;
1610         }
1611
1612         if (vm) {
1613                 struct intel_engine_cs *engine = rq->engine;
1614
1615                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1616                 if (ret)
1617                         return ret;
1618
1619                 ret = flush_pd_dir(rq);
1620                 if (ret)
1621                         return ret;
1622
1623                 /*
1624                  * Not only do we need a full barrier (post-sync write) after
1625                  * invalidating the TLBs, but we need to wait a little bit
1626                  * longer. Whether this is merely delaying us, or the
1627                  * subsequent flush is a key part of serialising with the
1628                  * post-sync op, this extra pass appears vital before a
1629                  * mm switch!
1630                  */
1631                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1632                 if (ret)
1633                         return ret;
1634
1635                 ret = engine->emit_flush(rq, EMIT_FLUSH);
1636                 if (ret)
1637                         return ret;
1638         }
1639
1640         ret = remap_l3(rq);
1641         if (ret)
1642                 return ret;
1643
1644         return 0;
1645 }
1646
1647 static int ring_request_alloc(struct i915_request *request)
1648 {
1649         int ret;
1650
1651         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1652         GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb);
1653
1654         /*
1655          * Flush enough space to reduce the likelihood of waiting after
1656          * we start building the request - in which case we will just
1657          * have to repeat work.
1658          */
1659         request->reserved_space += LEGACY_REQUEST_SIZE;
1660
1661         /* Unconditionally invalidate GPU caches and TLBs. */
1662         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1663         if (ret)
1664                 return ret;
1665
1666         ret = switch_context(request);
1667         if (ret)
1668                 return ret;
1669
1670         request->reserved_space -= LEGACY_REQUEST_SIZE;
1671         return 0;
1672 }
1673
1674 static void gen6_bsd_submit_request(struct i915_request *request)
1675 {
1676         struct intel_uncore *uncore = request->engine->uncore;
1677
1678         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1679
1680        /* Every tail move must follow the sequence below */
1681
1682         /* Disable notification that the ring is IDLE. The GT
1683          * will then assume that it is busy and bring it out of rc6.
1684          */
1685         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1686                               _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1687
1688         /* Clear the context id. Here be magic! */
1689         intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1690
1691         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1692         if (__intel_wait_for_register_fw(uncore,
1693                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
1694                                          GEN6_BSD_SLEEP_INDICATOR,
1695                                          0,
1696                                          1000, 0, NULL))
1697                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1698
1699         /* Now that the ring is fully powered up, update the tail */
1700         i9xx_submit_request(request);
1701
1702         /* Let the ring send IDLE messages to the GT again,
1703          * and so let it sleep to conserve power when idle.
1704          */
1705         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1706                               _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1707
1708         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1709 }
1710
1711 static int mi_flush_dw(struct i915_request *rq, u32 flags)
1712 {
1713         u32 cmd, *cs;
1714
1715         cs = intel_ring_begin(rq, 4);
1716         if (IS_ERR(cs))
1717                 return PTR_ERR(cs);
1718
1719         cmd = MI_FLUSH_DW;
1720
1721         /*
1722          * We always require a command barrier so that subsequent
1723          * commands, such as breadcrumb interrupts, are strictly ordered
1724          * wrt the contents of the write cache being flushed to memory
1725          * (and thus being coherent from the CPU).
1726          */
1727         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1728
1729         /*
1730          * Bspec vol 1c.3 - blitter engine command streamer:
1731          * "If ENABLED, all TLBs will be invalidated once the flush
1732          * operation is complete. This bit is only valid when the
1733          * Post-Sync Operation field is a value of 1h or 3h."
1734          */
1735         cmd |= flags;
1736
1737         *cs++ = cmd;
1738         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1739         *cs++ = 0;
1740         *cs++ = MI_NOOP;
1741
1742         intel_ring_advance(rq, cs);
1743
1744         return 0;
1745 }
1746
1747 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
1748 {
1749         return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
1750 }
1751
1752 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1753 {
1754         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
1755 }
1756
1757 static int
1758 hsw_emit_bb_start(struct i915_request *rq,
1759                   u64 offset, u32 len,
1760                   unsigned int dispatch_flags)
1761 {
1762         u32 *cs;
1763
1764         cs = intel_ring_begin(rq, 2);
1765         if (IS_ERR(cs))
1766                 return PTR_ERR(cs);
1767
1768         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1769                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
1770         /* bit0-7 is the length on GEN6+ */
1771         *cs++ = offset;
1772         intel_ring_advance(rq, cs);
1773
1774         return 0;
1775 }
1776
1777 static int
1778 gen6_emit_bb_start(struct i915_request *rq,
1779                    u64 offset, u32 len,
1780                    unsigned int dispatch_flags)
1781 {
1782         u32 *cs;
1783
1784         cs = intel_ring_begin(rq, 2);
1785         if (IS_ERR(cs))
1786                 return PTR_ERR(cs);
1787
1788         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1789                 0 : MI_BATCH_NON_SECURE_I965);
1790         /* bit0-7 is the length on GEN6+ */
1791         *cs++ = offset;
1792         intel_ring_advance(rq, cs);
1793
1794         return 0;
1795 }
1796
1797 /* Blitter support (SandyBridge+) */
1798
1799 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1800 {
1801         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
1802 }
1803
1804 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1805 {
1806         engine->submit_request = i9xx_submit_request;
1807         engine->cancel_requests = cancel_requests;
1808
1809         engine->park = NULL;
1810         engine->unpark = NULL;
1811 }
1812
1813 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1814 {
1815         i9xx_set_default_submission(engine);
1816         engine->submit_request = gen6_bsd_submit_request;
1817 }
1818
1819 static void ring_destroy(struct intel_engine_cs *engine)
1820 {
1821         struct drm_i915_private *dev_priv = engine->i915;
1822
1823         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1824                 (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1825
1826         intel_engine_cleanup_common(engine);
1827
1828         intel_ring_unpin(engine->legacy.ring);
1829         intel_ring_put(engine->legacy.ring);
1830
1831         intel_timeline_unpin(engine->legacy.timeline);
1832         intel_timeline_put(engine->legacy.timeline);
1833
1834         kfree(engine);
1835 }
1836
1837 static void setup_irq(struct intel_engine_cs *engine)
1838 {
1839         struct drm_i915_private *i915 = engine->i915;
1840
1841         if (INTEL_GEN(i915) >= 6) {
1842                 engine->irq_enable = gen6_irq_enable;
1843                 engine->irq_disable = gen6_irq_disable;
1844         } else if (INTEL_GEN(i915) >= 5) {
1845                 engine->irq_enable = gen5_irq_enable;
1846                 engine->irq_disable = gen5_irq_disable;
1847         } else if (INTEL_GEN(i915) >= 3) {
1848                 engine->irq_enable = i9xx_irq_enable;
1849                 engine->irq_disable = i9xx_irq_disable;
1850         } else {
1851                 engine->irq_enable = i8xx_irq_enable;
1852                 engine->irq_disable = i8xx_irq_disable;
1853         }
1854 }
1855
1856 static void setup_common(struct intel_engine_cs *engine)
1857 {
1858         struct drm_i915_private *i915 = engine->i915;
1859
1860         /* gen8+ are only supported with execlists */
1861         GEM_BUG_ON(INTEL_GEN(i915) >= 8);
1862
1863         setup_irq(engine);
1864
1865         engine->destroy = ring_destroy;
1866
1867         engine->resume = xcs_resume;
1868         engine->reset.prepare = reset_prepare;
1869         engine->reset.reset = reset_ring;
1870         engine->reset.finish = reset_finish;
1871
1872         engine->cops = &ring_context_ops;
1873         engine->request_alloc = ring_request_alloc;
1874
1875         /*
1876          * Using a global execution timeline; the previous final breadcrumb is
1877          * equivalent to our next initial bread so we can elide
1878          * engine->emit_init_breadcrumb().
1879          */
1880         engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
1881         if (IS_GEN(i915, 5))
1882                 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
1883
1884         engine->set_default_submission = i9xx_set_default_submission;
1885
1886         if (INTEL_GEN(i915) >= 6)
1887                 engine->emit_bb_start = gen6_emit_bb_start;
1888         else if (INTEL_GEN(i915) >= 4)
1889                 engine->emit_bb_start = i965_emit_bb_start;
1890         else if (IS_I830(i915) || IS_I845G(i915))
1891                 engine->emit_bb_start = i830_emit_bb_start;
1892         else
1893                 engine->emit_bb_start = i915_emit_bb_start;
1894 }
1895
1896 static void setup_rcs(struct intel_engine_cs *engine)
1897 {
1898         struct drm_i915_private *i915 = engine->i915;
1899
1900         if (HAS_L3_DPF(i915))
1901                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1902
1903         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1904
1905         if (INTEL_GEN(i915) >= 7) {
1906                 engine->emit_flush = gen7_render_ring_flush;
1907                 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
1908         } else if (IS_GEN(i915, 6)) {
1909                 engine->emit_flush = gen6_render_ring_flush;
1910                 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
1911         } else if (IS_GEN(i915, 5)) {
1912                 engine->emit_flush = gen4_render_ring_flush;
1913         } else {
1914                 if (INTEL_GEN(i915) < 4)
1915                         engine->emit_flush = gen2_render_ring_flush;
1916                 else
1917                         engine->emit_flush = gen4_render_ring_flush;
1918                 engine->irq_enable_mask = I915_USER_INTERRUPT;
1919         }
1920
1921         if (IS_HASWELL(i915))
1922                 engine->emit_bb_start = hsw_emit_bb_start;
1923
1924         engine->resume = rcs_resume;
1925 }
1926
1927 static void setup_vcs(struct intel_engine_cs *engine)
1928 {
1929         struct drm_i915_private *i915 = engine->i915;
1930
1931         if (INTEL_GEN(i915) >= 6) {
1932                 /* gen6 bsd needs a special wa for tail updates */
1933                 if (IS_GEN(i915, 6))
1934                         engine->set_default_submission = gen6_bsd_set_default_submission;
1935                 engine->emit_flush = gen6_bsd_ring_flush;
1936                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1937
1938                 if (IS_GEN(i915, 6))
1939                         engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1940                 else
1941                         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1942         } else {
1943                 engine->emit_flush = bsd_ring_flush;
1944                 if (IS_GEN(i915, 5))
1945                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1946                 else
1947                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1948         }
1949 }
1950
1951 static void setup_bcs(struct intel_engine_cs *engine)
1952 {
1953         struct drm_i915_private *i915 = engine->i915;
1954
1955         engine->emit_flush = gen6_ring_flush;
1956         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1957
1958         if (IS_GEN(i915, 6))
1959                 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1960         else
1961                 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1962 }
1963
1964 static void setup_vecs(struct intel_engine_cs *engine)
1965 {
1966         struct drm_i915_private *i915 = engine->i915;
1967
1968         GEM_BUG_ON(INTEL_GEN(i915) < 7);
1969
1970         engine->emit_flush = gen6_ring_flush;
1971         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1972         engine->irq_enable = hsw_vebox_irq_enable;
1973         engine->irq_disable = hsw_vebox_irq_disable;
1974
1975         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1976 }
1977
1978 int intel_ring_submission_setup(struct intel_engine_cs *engine)
1979 {
1980         setup_common(engine);
1981
1982         switch (engine->class) {
1983         case RENDER_CLASS:
1984                 setup_rcs(engine);
1985                 break;
1986         case VIDEO_DECODE_CLASS:
1987                 setup_vcs(engine);
1988                 break;
1989         case COPY_ENGINE_CLASS:
1990                 setup_bcs(engine);
1991                 break;
1992         case VIDEO_ENHANCEMENT_CLASS:
1993                 setup_vecs(engine);
1994                 break;
1995         default:
1996                 MISSING_CASE(engine->class);
1997                 return -ENODEV;
1998         }
1999
2000         return 0;
2001 }
2002
2003 int intel_ring_submission_init(struct intel_engine_cs *engine)
2004 {
2005         struct intel_timeline *timeline;
2006         struct intel_ring *ring;
2007         int err;
2008
2009         timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2010         if (IS_ERR(timeline)) {
2011                 err = PTR_ERR(timeline);
2012                 goto err;
2013         }
2014         GEM_BUG_ON(timeline->has_initial_breadcrumb);
2015
2016         err = intel_timeline_pin(timeline);
2017         if (err)
2018                 goto err_timeline;
2019
2020         ring = intel_engine_create_ring(engine, SZ_16K);
2021         if (IS_ERR(ring)) {
2022                 err = PTR_ERR(ring);
2023                 goto err_timeline_unpin;
2024         }
2025
2026         err = intel_ring_pin(ring);
2027         if (err)
2028                 goto err_ring;
2029
2030         GEM_BUG_ON(engine->legacy.ring);
2031         engine->legacy.ring = ring;
2032         engine->legacy.timeline = timeline;
2033
2034         err = intel_engine_init_common(engine);
2035         if (err)
2036                 goto err_ring_unpin;
2037
2038         GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2039
2040         return 0;
2041
2042 err_ring_unpin:
2043         intel_ring_unpin(ring);
2044 err_ring:
2045         intel_ring_put(ring);
2046 err_timeline_unpin:
2047         intel_timeline_unpin(timeline);
2048 err_timeline:
2049         intel_timeline_put(timeline);
2050 err:
2051         intel_engine_cleanup_common(engine);
2052         return err;
2053 }