]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[linux.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n",
53                                 vgpu->id, addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int next_pt_type;
160         int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164         [type] = { \
165                 .entry_type = e_type, \
166                 .next_pt_type = npt_type, \
167                 .pse_entry_type = pse_type, \
168         }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173                         GTT_TYPE_PPGTT_PML4_PT,
174                         GTT_TYPE_INVALID),
175         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176                         GTT_TYPE_PPGTT_PML4_ENTRY,
177                         GTT_TYPE_PPGTT_PDP_PT,
178                         GTT_TYPE_INVALID),
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_ENTRY,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184                         GTT_TYPE_PPGTT_PDP_ENTRY,
185                         GTT_TYPE_PPGTT_PDE_PT,
186                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189                         GTT_TYPE_PPGTT_PDE_PT,
190                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192                         GTT_TYPE_PPGTT_PDP_ENTRY,
193                         GTT_TYPE_PPGTT_PDE_PT,
194                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196                         GTT_TYPE_PPGTT_PDE_ENTRY,
197                         GTT_TYPE_PPGTT_PTE_PT,
198                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200                         GTT_TYPE_PPGTT_PDE_ENTRY,
201                         GTT_TYPE_PPGTT_PTE_PT,
202                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205                         GTT_TYPE_INVALID,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_INVALID),
211         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212                         GTT_TYPE_PPGTT_PDE_ENTRY,
213                         GTT_TYPE_INVALID,
214                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_ENTRY,
217                         GTT_TYPE_INVALID,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220                         GTT_TYPE_GGTT_PTE,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227         return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232         return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237         return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244         return readq(addr);
245 }
246
247 static void write_pte64(struct drm_i915_private *dev_priv,
248                 unsigned long index, u64 pte)
249 {
250         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
251
252         writeq(pte, addr);
253
254         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
255         POSTING_READ(GFX_FLSH_CNTL_GEN6);
256 }
257
258 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
259                 struct intel_gvt_gtt_entry *e,
260                 unsigned long index, bool hypervisor_access, unsigned long gpa,
261                 struct intel_vgpu *vgpu)
262 {
263         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
264         int ret;
265
266         if (WARN_ON(info->gtt_entry_size != 8))
267                 return e;
268
269         if (hypervisor_access) {
270                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
271                                 (index << info->gtt_entry_size_shift),
272                                 &e->val64, 8);
273                 WARN_ON(ret);
274         } else if (!pt) {
275                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
276         } else {
277                 e->val64 = *((u64 *)pt + index);
278         }
279         return e;
280 }
281
282 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
283                 struct intel_gvt_gtt_entry *e,
284                 unsigned long index, bool hypervisor_access, unsigned long gpa,
285                 struct intel_vgpu *vgpu)
286 {
287         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288         int ret;
289
290         if (WARN_ON(info->gtt_entry_size != 8))
291                 return e;
292
293         if (hypervisor_access) {
294                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
295                                 (index << info->gtt_entry_size_shift),
296                                 &e->val64, 8);
297                 WARN_ON(ret);
298         } else if (!pt) {
299                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
300         } else {
301                 *((u64 *)pt + index) = e->val64;
302         }
303         return e;
304 }
305
306 #define GTT_HAW 46
307
308 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
309 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
310 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
311
312 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
313 {
314         unsigned long pfn;
315
316         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
317                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
318         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
319                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
320         else
321                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
322         return pfn;
323 }
324
325 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
326 {
327         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
328                 e->val64 &= ~ADDR_1G_MASK;
329                 pfn &= (ADDR_1G_MASK >> 12);
330         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
331                 e->val64 &= ~ADDR_2M_MASK;
332                 pfn &= (ADDR_2M_MASK >> 12);
333         } else {
334                 e->val64 &= ~ADDR_4K_MASK;
335                 pfn &= (ADDR_4K_MASK >> 12);
336         }
337
338         e->val64 |= (pfn << 12);
339 }
340
341 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
342 {
343         /* Entry doesn't have PSE bit. */
344         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
345                 return false;
346
347         e->type = get_entry_type(e->type);
348         if (!(e->val64 & (1 << 7)))
349                 return false;
350
351         e->type = get_pse_type(e->type);
352         return true;
353 }
354
355 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
356 {
357         /*
358          * i915 writes PDP root pointer registers without present bit,
359          * it also works, so we need to treat root pointer entry
360          * specifically.
361          */
362         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
363                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
364                 return (e->val64 != 0);
365         else
366                 return (e->val64 & (1 << 0));
367 }
368
369 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
370 {
371         e->val64 &= ~(1 << 0);
372 }
373
374 /*
375  * Per-platform GMA routines.
376  */
377 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
378 {
379         unsigned long x = (gma >> GTT_PAGE_SHIFT);
380
381         trace_gma_index(__func__, gma, x);
382         return x;
383 }
384
385 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
386 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
387 { \
388         unsigned long x = (exp); \
389         trace_gma_index(__func__, gma, x); \
390         return x; \
391 }
392
393 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
394 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
395 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
396 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
398
399 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
400         .get_entry = gtt_get_entry64,
401         .set_entry = gtt_set_entry64,
402         .clear_present = gtt_entry_clear_present,
403         .test_present = gen8_gtt_test_present,
404         .test_pse = gen8_gtt_test_pse,
405         .get_pfn = gen8_gtt_get_pfn,
406         .set_pfn = gen8_gtt_set_pfn,
407 };
408
409 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
410         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
411         .gma_to_pte_index = gen8_gma_to_pte_index,
412         .gma_to_pde_index = gen8_gma_to_pde_index,
413         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
414         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
415         .gma_to_pml4_index = gen8_gma_to_pml4_index,
416 };
417
418 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
419                 struct intel_gvt_gtt_entry *m)
420 {
421         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
422         unsigned long gfn, mfn;
423
424         *m = *p;
425
426         if (!ops->test_present(p))
427                 return 0;
428
429         gfn = ops->get_pfn(p);
430
431         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
432         if (mfn == INTEL_GVT_INVALID_ADDR) {
433                 gvt_err("fail to translate gfn: 0x%lx\n", gfn);
434                 return -ENXIO;
435         }
436
437         ops->set_pfn(m, mfn);
438         return 0;
439 }
440
441 /*
442  * MM helpers.
443  */
444 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
445                 void *page_table, struct intel_gvt_gtt_entry *e,
446                 unsigned long index)
447 {
448         struct intel_gvt *gvt = mm->vgpu->gvt;
449         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
450
451         e->type = mm->page_table_entry_type;
452
453         ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
454         ops->test_pse(e);
455         return e;
456 }
457
458 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
459                 void *page_table, struct intel_gvt_gtt_entry *e,
460                 unsigned long index)
461 {
462         struct intel_gvt *gvt = mm->vgpu->gvt;
463         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
464
465         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
466 }
467
468 /*
469  * PPGTT shadow page table helpers.
470  */
471 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
472                 struct intel_vgpu_ppgtt_spt *spt,
473                 void *page_table, int type,
474                 struct intel_gvt_gtt_entry *e, unsigned long index,
475                 bool guest)
476 {
477         struct intel_gvt *gvt = spt->vgpu->gvt;
478         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
479
480         e->type = get_entry_type(type);
481
482         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
483                 return e;
484
485         ops->get_entry(page_table, e, index, guest,
486                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
487                         spt->vgpu);
488         ops->test_pse(e);
489         return e;
490 }
491
492 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
493                 struct intel_vgpu_ppgtt_spt *spt,
494                 void *page_table, int type,
495                 struct intel_gvt_gtt_entry *e, unsigned long index,
496                 bool guest)
497 {
498         struct intel_gvt *gvt = spt->vgpu->gvt;
499         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500
501         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
502                 return e;
503
504         return ops->set_entry(page_table, e, index, guest,
505                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
506                         spt->vgpu);
507 }
508
509 #define ppgtt_get_guest_entry(spt, e, index) \
510         ppgtt_spt_get_entry(spt, NULL, \
511                 spt->guest_page_type, e, index, true)
512
513 #define ppgtt_set_guest_entry(spt, e, index) \
514         ppgtt_spt_set_entry(spt, NULL, \
515                 spt->guest_page_type, e, index, true)
516
517 #define ppgtt_get_shadow_entry(spt, e, index) \
518         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
519                 spt->shadow_page.type, e, index, false)
520
521 #define ppgtt_set_shadow_entry(spt, e, index) \
522         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
523                 spt->shadow_page.type, e, index, false)
524
525 /**
526  * intel_vgpu_init_guest_page - init a guest page data structure
527  * @vgpu: a vGPU
528  * @p: a guest page data structure
529  * @gfn: guest memory page frame number
530  * @handler: function will be called when target guest memory page has
531  * been modified.
532  *
533  * This function is called when user wants to track a guest memory page.
534  *
535  * Returns:
536  * Zero on success, negative error code if failed.
537  */
538 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
539                 struct intel_vgpu_guest_page *p,
540                 unsigned long gfn,
541                 int (*handler)(void *, u64, void *, int),
542                 void *data)
543 {
544         INIT_HLIST_NODE(&p->node);
545
546         p->writeprotection = false;
547         p->gfn = gfn;
548         p->handler = handler;
549         p->data = data;
550         p->oos_page = NULL;
551         p->write_cnt = 0;
552
553         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
554         return 0;
555 }
556
557 static int detach_oos_page(struct intel_vgpu *vgpu,
558                 struct intel_vgpu_oos_page *oos_page);
559
560 /**
561  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
562  * structure
563  * @vgpu: a vGPU
564  * @p: a tracked guest page
565  *
566  * This function is called when user tries to stop tracking a guest memory
567  * page.
568  */
569 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
570                 struct intel_vgpu_guest_page *p)
571 {
572         if (!hlist_unhashed(&p->node))
573                 hash_del(&p->node);
574
575         if (p->oos_page)
576                 detach_oos_page(vgpu, p->oos_page);
577
578         if (p->writeprotection)
579                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
580 }
581
582 /**
583  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
584  * @vgpu: a vGPU
585  * @gfn: guest memory page frame number
586  *
587  * This function is called when emulation logic wants to know if a trapped GFN
588  * is a tracked guest page.
589  *
590  * Returns:
591  * Pointer to guest page data structure, NULL if failed.
592  */
593 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
594                 struct intel_vgpu *vgpu, unsigned long gfn)
595 {
596         struct intel_vgpu_guest_page *p;
597
598         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
599                 p, node, gfn) {
600                 if (p->gfn == gfn)
601                         return p;
602         }
603         return NULL;
604 }
605
606 static inline int init_shadow_page(struct intel_vgpu *vgpu,
607                 struct intel_vgpu_shadow_page *p, int type)
608 {
609         p->vaddr = page_address(p->page);
610         p->type = type;
611
612         INIT_HLIST_NODE(&p->node);
613
614         p->mfn = intel_gvt_hypervisor_virt_to_mfn(p->vaddr);
615         if (p->mfn == INTEL_GVT_INVALID_ADDR)
616                 return -EFAULT;
617
618         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
619         return 0;
620 }
621
622 static inline void clean_shadow_page(struct intel_vgpu_shadow_page *p)
623 {
624         if (!hlist_unhashed(&p->node))
625                 hash_del(&p->node);
626 }
627
628 static inline struct intel_vgpu_shadow_page *find_shadow_page(
629                 struct intel_vgpu *vgpu, unsigned long mfn)
630 {
631         struct intel_vgpu_shadow_page *p;
632
633         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
634                 p, node, mfn) {
635                 if (p->mfn == mfn)
636                         return p;
637         }
638         return NULL;
639 }
640
641 #define guest_page_to_ppgtt_spt(ptr) \
642         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
643
644 #define shadow_page_to_ppgtt_spt(ptr) \
645         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
646
647 static void *alloc_spt(gfp_t gfp_mask)
648 {
649         struct intel_vgpu_ppgtt_spt *spt;
650
651         spt = kzalloc(sizeof(*spt), gfp_mask);
652         if (!spt)
653                 return NULL;
654
655         spt->shadow_page.page = alloc_page(gfp_mask);
656         if (!spt->shadow_page.page) {
657                 kfree(spt);
658                 return NULL;
659         }
660         return spt;
661 }
662
663 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
664 {
665         __free_page(spt->shadow_page.page);
666         kfree(spt);
667 }
668
669 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
670 {
671         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
672
673         clean_shadow_page(&spt->shadow_page);
674         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
675         list_del_init(&spt->post_shadow_list);
676
677         free_spt(spt);
678 }
679
680 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
681 {
682         struct hlist_node *n;
683         struct intel_vgpu_shadow_page *sp;
684         int i;
685
686         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
687                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
688 }
689
690 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
691                 u64 pa, void *p_data, int bytes);
692
693 static int ppgtt_write_protection_handler(void *gp, u64 pa,
694                 void *p_data, int bytes)
695 {
696         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
697         int ret;
698
699         if (bytes != 4 && bytes != 8)
700                 return -EINVAL;
701
702         if (!gpt->writeprotection)
703                 return -EINVAL;
704
705         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
706                 pa, p_data, bytes);
707         if (ret)
708                 return ret;
709         return ret;
710 }
711
712 static int reclaim_one_mm(struct intel_gvt *gvt);
713
714 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
715                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
716 {
717         struct intel_vgpu_ppgtt_spt *spt = NULL;
718         int ret;
719
720 retry:
721         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
722         if (!spt) {
723                 if (reclaim_one_mm(vgpu->gvt))
724                         goto retry;
725
726                 gvt_err("fail to allocate ppgtt shadow page\n");
727                 return ERR_PTR(-ENOMEM);
728         }
729
730         spt->vgpu = vgpu;
731         spt->guest_page_type = type;
732         atomic_set(&spt->refcount, 1);
733         INIT_LIST_HEAD(&spt->post_shadow_list);
734
735         /*
736          * TODO: guest page type may be different with shadow page type,
737          *       when we support PSE page in future.
738          */
739         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
740         if (ret) {
741                 gvt_err("fail to initialize shadow page for spt\n");
742                 goto err;
743         }
744
745         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
746                         gfn, ppgtt_write_protection_handler, NULL);
747         if (ret) {
748                 gvt_err("fail to initialize guest page for spt\n");
749                 goto err;
750         }
751
752         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
753         return spt;
754 err:
755         ppgtt_free_shadow_page(spt);
756         return ERR_PTR(ret);
757 }
758
759 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
760                 struct intel_vgpu *vgpu, unsigned long mfn)
761 {
762         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
763
764         if (p)
765                 return shadow_page_to_ppgtt_spt(p);
766
767         gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n",
768                         vgpu->id, mfn);
769         return NULL;
770 }
771
772 #define pt_entry_size_shift(spt) \
773         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
774
775 #define pt_entries(spt) \
776         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
777
778 #define for_each_present_guest_entry(spt, e, i) \
779         for (i = 0; i < pt_entries(spt); i++) \
780         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
781                 ppgtt_get_guest_entry(spt, e, i)))
782
783 #define for_each_present_shadow_entry(spt, e, i) \
784         for (i = 0; i < pt_entries(spt); i++) \
785         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
786                 ppgtt_get_shadow_entry(spt, e, i)))
787
788 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
789 {
790         int v = atomic_read(&spt->refcount);
791
792         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
793
794         atomic_inc(&spt->refcount);
795 }
796
797 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
798
799 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
800                 struct intel_gvt_gtt_entry *e)
801 {
802         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
803         struct intel_vgpu_ppgtt_spt *s;
804         intel_gvt_gtt_type_t cur_pt_type;
805
806         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
807                 return -EINVAL;
808
809         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
810                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
811                 cur_pt_type = get_next_pt_type(e->type) + 1;
812                 if (ops->get_pfn(e) ==
813                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
814                         return 0;
815         }
816         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
817         if (!s) {
818                 gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n",
819                                 vgpu->id, ops->get_pfn(e));
820                 return -ENXIO;
821         }
822         return ppgtt_invalidate_shadow_page(s);
823 }
824
825 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
826 {
827         struct intel_gvt_gtt_entry e;
828         unsigned long index;
829         int ret;
830         int v = atomic_read(&spt->refcount);
831
832         trace_spt_change(spt->vgpu->id, "die", spt,
833                         spt->guest_page.gfn, spt->shadow_page.type);
834
835         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
836
837         if (atomic_dec_return(&spt->refcount) > 0)
838                 return 0;
839
840         if (gtt_type_is_pte_pt(spt->shadow_page.type))
841                 goto release;
842
843         for_each_present_shadow_entry(spt, &e, index) {
844                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
845                         gvt_err("GVT doesn't support pse bit for now\n");
846                         return -EINVAL;
847                 }
848                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
849                                 spt->vgpu, &e);
850                 if (ret)
851                         goto fail;
852         }
853 release:
854         trace_spt_change(spt->vgpu->id, "release", spt,
855                         spt->guest_page.gfn, spt->shadow_page.type);
856         ppgtt_free_shadow_page(spt);
857         return 0;
858 fail:
859         gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n",
860                         spt->vgpu->id, spt, e.val64, e.type);
861         return ret;
862 }
863
864 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
865
866 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
867                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
868 {
869         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
870         struct intel_vgpu_ppgtt_spt *s = NULL;
871         struct intel_vgpu_guest_page *g;
872         int ret;
873
874         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
875                 ret = -EINVAL;
876                 goto fail;
877         }
878
879         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
880         if (g) {
881                 s = guest_page_to_ppgtt_spt(g);
882                 ppgtt_get_shadow_page(s);
883         } else {
884                 int type = get_next_pt_type(we->type);
885
886                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
887                 if (IS_ERR(s)) {
888                         ret = PTR_ERR(s);
889                         goto fail;
890                 }
891
892                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
893                 if (ret)
894                         goto fail;
895
896                 ret = ppgtt_populate_shadow_page(s);
897                 if (ret)
898                         goto fail;
899
900                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
901                         s->shadow_page.type);
902         }
903         return s;
904 fail:
905         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
906                         vgpu->id, s, we->val64, we->type);
907         return ERR_PTR(ret);
908 }
909
910 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
911                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
912 {
913         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
914
915         se->type = ge->type;
916         se->val64 = ge->val64;
917
918         ops->set_pfn(se, s->shadow_page.mfn);
919 }
920
921 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
922 {
923         struct intel_vgpu *vgpu = spt->vgpu;
924         struct intel_vgpu_ppgtt_spt *s;
925         struct intel_gvt_gtt_entry se, ge;
926         unsigned long i;
927         int ret;
928
929         trace_spt_change(spt->vgpu->id, "born", spt,
930                         spt->guest_page.gfn, spt->shadow_page.type);
931
932         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
933                 for_each_present_guest_entry(spt, &ge, i) {
934                         ret = gtt_entry_p2m(vgpu, &ge, &se);
935                         if (ret)
936                                 goto fail;
937                         ppgtt_set_shadow_entry(spt, &se, i);
938                 }
939                 return 0;
940         }
941
942         for_each_present_guest_entry(spt, &ge, i) {
943                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
944                         gvt_err("GVT doesn't support pse bit now\n");
945                         ret = -EINVAL;
946                         goto fail;
947                 }
948
949                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
950                 if (IS_ERR(s)) {
951                         ret = PTR_ERR(s);
952                         goto fail;
953                 }
954                 ppgtt_get_shadow_entry(spt, &se, i);
955                 ppgtt_generate_shadow_entry(&se, s, &ge);
956                 ppgtt_set_shadow_entry(spt, &se, i);
957         }
958         return 0;
959 fail:
960         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
961                         vgpu->id, spt, ge.val64, ge.type);
962         return ret;
963 }
964
965 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
966                 unsigned long index)
967 {
968         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
969         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
970         struct intel_vgpu *vgpu = spt->vgpu;
971         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
972         struct intel_gvt_gtt_entry e;
973         int ret;
974
975         ppgtt_get_shadow_entry(spt, &e, index);
976
977         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
978                          index);
979
980         if (!ops->test_present(&e))
981                 return 0;
982
983         if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
984                 return 0;
985
986         if (gtt_type_is_pt(get_next_pt_type(e.type))) {
987                 struct intel_vgpu_ppgtt_spt *s =
988                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
989                 if (!s) {
990                         gvt_err("fail to find guest page\n");
991                         ret = -ENXIO;
992                         goto fail;
993                 }
994                 ret = ppgtt_invalidate_shadow_page(s);
995                 if (ret)
996                         goto fail;
997         }
998         ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
999         ppgtt_set_shadow_entry(spt, &e, index);
1000         return 0;
1001 fail:
1002         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
1003                         vgpu->id, spt, e.val64, e.type);
1004         return ret;
1005 }
1006
1007 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1008                 struct intel_gvt_gtt_entry *we, unsigned long index)
1009 {
1010         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1011         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1012         struct intel_vgpu *vgpu = spt->vgpu;
1013         struct intel_gvt_gtt_entry m;
1014         struct intel_vgpu_ppgtt_spt *s;
1015         int ret;
1016
1017         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1018                 we->val64, index);
1019
1020         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1021                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1022                 if (IS_ERR(s)) {
1023                         ret = PTR_ERR(s);
1024                         goto fail;
1025                 }
1026                 ppgtt_get_shadow_entry(spt, &m, index);
1027                 ppgtt_generate_shadow_entry(&m, s, we);
1028                 ppgtt_set_shadow_entry(spt, &m, index);
1029         } else {
1030                 ret = gtt_entry_p2m(vgpu, we, &m);
1031                 if (ret)
1032                         goto fail;
1033                 ppgtt_set_shadow_entry(spt, &m, index);
1034         }
1035         return 0;
1036 fail:
1037         gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id,
1038                         spt, we->val64, we->type);
1039         return ret;
1040 }
1041
1042 static int sync_oos_page(struct intel_vgpu *vgpu,
1043                 struct intel_vgpu_oos_page *oos_page)
1044 {
1045         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1046         struct intel_gvt *gvt = vgpu->gvt;
1047         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1048         struct intel_vgpu_ppgtt_spt *spt =
1049                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1050         struct intel_gvt_gtt_entry old, new, m;
1051         int index;
1052         int ret;
1053
1054         trace_oos_change(vgpu->id, "sync", oos_page->id,
1055                         oos_page->guest_page, spt->guest_page_type);
1056
1057         old.type = new.type = get_entry_type(spt->guest_page_type);
1058         old.val64 = new.val64 = 0;
1059
1060         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1061                 index++) {
1062                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1063                 ops->get_entry(NULL, &new, index, true,
1064                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1065
1066                 if (old.val64 == new.val64
1067                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1068                         continue;
1069
1070                 trace_oos_sync(vgpu->id, oos_page->id,
1071                                 oos_page->guest_page, spt->guest_page_type,
1072                                 new.val64, index);
1073
1074                 ret = gtt_entry_p2m(vgpu, &new, &m);
1075                 if (ret)
1076                         return ret;
1077
1078                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1079                 ppgtt_set_shadow_entry(spt, &m, index);
1080         }
1081
1082         oos_page->guest_page->write_cnt = 0;
1083         list_del_init(&spt->post_shadow_list);
1084         return 0;
1085 }
1086
1087 static int detach_oos_page(struct intel_vgpu *vgpu,
1088                 struct intel_vgpu_oos_page *oos_page)
1089 {
1090         struct intel_gvt *gvt = vgpu->gvt;
1091         struct intel_vgpu_ppgtt_spt *spt =
1092                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1093
1094         trace_oos_change(vgpu->id, "detach", oos_page->id,
1095                         oos_page->guest_page, spt->guest_page_type);
1096
1097         oos_page->guest_page->write_cnt = 0;
1098         oos_page->guest_page->oos_page = NULL;
1099         oos_page->guest_page = NULL;
1100
1101         list_del_init(&oos_page->vm_list);
1102         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1103
1104         return 0;
1105 }
1106
1107 static int attach_oos_page(struct intel_vgpu *vgpu,
1108                 struct intel_vgpu_oos_page *oos_page,
1109                 struct intel_vgpu_guest_page *gpt)
1110 {
1111         struct intel_gvt *gvt = vgpu->gvt;
1112         int ret;
1113
1114         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1115                 oos_page->mem, GTT_PAGE_SIZE);
1116         if (ret)
1117                 return ret;
1118
1119         oos_page->guest_page = gpt;
1120         gpt->oos_page = oos_page;
1121
1122         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1123
1124         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1125                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1126         return 0;
1127 }
1128
1129 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1130                 struct intel_vgpu_guest_page *gpt)
1131 {
1132         int ret;
1133
1134         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1135         if (ret)
1136                 return ret;
1137
1138         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1139                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1140
1141         list_del_init(&gpt->oos_page->vm_list);
1142         return sync_oos_page(vgpu, gpt->oos_page);
1143 }
1144
1145 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1146                 struct intel_vgpu_guest_page *gpt)
1147 {
1148         struct intel_gvt *gvt = vgpu->gvt;
1149         struct intel_gvt_gtt *gtt = &gvt->gtt;
1150         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1151         int ret;
1152
1153         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1154
1155         if (list_empty(&gtt->oos_page_free_list_head)) {
1156                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1157                         struct intel_vgpu_oos_page, list);
1158                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1159                 if (ret)
1160                         return ret;
1161                 ret = detach_oos_page(vgpu, oos_page);
1162                 if (ret)
1163                         return ret;
1164         } else
1165                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1166                         struct intel_vgpu_oos_page, list);
1167         return attach_oos_page(vgpu, oos_page, gpt);
1168 }
1169
1170 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1171                 struct intel_vgpu_guest_page *gpt)
1172 {
1173         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1174
1175         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1176                 return -EINVAL;
1177
1178         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1179                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1180
1181         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1182         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1183 }
1184
1185 /**
1186  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1187  * @vgpu: a vGPU
1188  *
1189  * This function is called before submitting a guest workload to host,
1190  * to sync all the out-of-synced shadow for vGPU
1191  *
1192  * Returns:
1193  * Zero on success, negative error code if failed.
1194  */
1195 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1196 {
1197         struct list_head *pos, *n;
1198         struct intel_vgpu_oos_page *oos_page;
1199         int ret;
1200
1201         if (!enable_out_of_sync)
1202                 return 0;
1203
1204         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1205                 oos_page = container_of(pos,
1206                                 struct intel_vgpu_oos_page, vm_list);
1207                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1208                 if (ret)
1209                         return ret;
1210         }
1211         return 0;
1212 }
1213
1214 /*
1215  * The heart of PPGTT shadow page table.
1216  */
1217 static int ppgtt_handle_guest_write_page_table(
1218                 struct intel_vgpu_guest_page *gpt,
1219                 struct intel_gvt_gtt_entry *we, unsigned long index)
1220 {
1221         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1222         struct intel_vgpu *vgpu = spt->vgpu;
1223         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224
1225         int ret;
1226         int new_present;
1227
1228         new_present = ops->test_present(we);
1229
1230         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1231         if (ret)
1232                 goto fail;
1233
1234         if (new_present) {
1235                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1236                 if (ret)
1237                         goto fail;
1238         }
1239         return 0;
1240 fail:
1241         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n",
1242                         vgpu->id, spt, we->val64, we->type);
1243         return ret;
1244 }
1245
1246 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1247 {
1248         return enable_out_of_sync
1249                 && gtt_type_is_pte_pt(
1250                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1251                 && gpt->write_cnt >= 2;
1252 }
1253
1254 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1255                 unsigned long index)
1256 {
1257         set_bit(index, spt->post_shadow_bitmap);
1258         if (!list_empty(&spt->post_shadow_list))
1259                 return;
1260
1261         list_add_tail(&spt->post_shadow_list,
1262                         &spt->vgpu->gtt.post_shadow_list_head);
1263 }
1264
1265 /**
1266  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1267  * @vgpu: a vGPU
1268  *
1269  * This function is called before submitting a guest workload to host,
1270  * to flush all the post shadows for a vGPU.
1271  *
1272  * Returns:
1273  * Zero on success, negative error code if failed.
1274  */
1275 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1276 {
1277         struct list_head *pos, *n;
1278         struct intel_vgpu_ppgtt_spt *spt;
1279         struct intel_gvt_gtt_entry ge;
1280         unsigned long index;
1281         int ret;
1282
1283         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1284                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1285                                 post_shadow_list);
1286
1287                 for_each_set_bit(index, spt->post_shadow_bitmap,
1288                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1289                         ppgtt_get_guest_entry(spt, &ge, index);
1290
1291                         ret = ppgtt_handle_guest_write_page_table(
1292                                         &spt->guest_page, &ge, index);
1293                         if (ret)
1294                                 return ret;
1295                         clear_bit(index, spt->post_shadow_bitmap);
1296                 }
1297                 list_del_init(&spt->post_shadow_list);
1298         }
1299         return 0;
1300 }
1301
1302 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1303                 u64 pa, void *p_data, int bytes)
1304 {
1305         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1306         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1307         struct intel_vgpu *vgpu = spt->vgpu;
1308         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1309         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1310         struct intel_gvt_gtt_entry we;
1311         unsigned long index;
1312         int ret;
1313
1314         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1315
1316         ppgtt_get_guest_entry(spt, &we, index);
1317
1318         ops->test_pse(&we);
1319
1320         if (bytes == info->gtt_entry_size) {
1321                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1322                 if (ret)
1323                         return ret;
1324         } else {
1325                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1326                         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1327                         if (ret)
1328                                 return ret;
1329                 }
1330
1331                 ppgtt_set_post_shadow(spt, index);
1332         }
1333
1334         if (!enable_out_of_sync)
1335                 return 0;
1336
1337         gpt->write_cnt++;
1338
1339         if (gpt->oos_page)
1340                 ops->set_entry(gpt->oos_page->mem, &we, index,
1341                                 false, 0, vgpu);
1342
1343         if (can_do_out_of_sync(gpt)) {
1344                 if (!gpt->oos_page)
1345                         ppgtt_allocate_oos_page(vgpu, gpt);
1346
1347                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1348                 if (ret < 0)
1349                         return ret;
1350         }
1351         return 0;
1352 }
1353
1354 /*
1355  * mm page table allocation policy for bdw+
1356  *  - for ggtt, only virtual page table will be allocated.
1357  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1358  */
1359 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1360 {
1361         struct intel_vgpu *vgpu = mm->vgpu;
1362         struct intel_gvt *gvt = vgpu->gvt;
1363         const struct intel_gvt_device_info *info = &gvt->device_info;
1364         void *mem;
1365
1366         if (mm->type == INTEL_GVT_MM_PPGTT) {
1367                 mm->page_table_entry_cnt = 4;
1368                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1369                         info->gtt_entry_size;
1370                 mem = kzalloc(mm->has_shadow_page_table ?
1371                         mm->page_table_entry_size * 2
1372                                 : mm->page_table_entry_size, GFP_KERNEL);
1373                 if (!mem)
1374                         return -ENOMEM;
1375                 mm->virtual_page_table = mem;
1376                 if (!mm->has_shadow_page_table)
1377                         return 0;
1378                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1379         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1380                 mm->page_table_entry_cnt =
1381                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1382                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1383                         info->gtt_entry_size;
1384                 mem = vzalloc(mm->page_table_entry_size);
1385                 if (!mem)
1386                         return -ENOMEM;
1387                 mm->virtual_page_table = mem;
1388         }
1389         return 0;
1390 }
1391
1392 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1393 {
1394         if (mm->type == INTEL_GVT_MM_PPGTT) {
1395                 kfree(mm->virtual_page_table);
1396         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1397                 if (mm->virtual_page_table)
1398                         vfree(mm->virtual_page_table);
1399         }
1400         mm->virtual_page_table = mm->shadow_page_table = NULL;
1401 }
1402
1403 static void invalidate_mm(struct intel_vgpu_mm *mm)
1404 {
1405         struct intel_vgpu *vgpu = mm->vgpu;
1406         struct intel_gvt *gvt = vgpu->gvt;
1407         struct intel_gvt_gtt *gtt = &gvt->gtt;
1408         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1409         struct intel_gvt_gtt_entry se;
1410         int i;
1411
1412         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1413                 return;
1414
1415         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1416                 ppgtt_get_shadow_root_entry(mm, &se, i);
1417                 if (!ops->test_present(&se))
1418                         continue;
1419                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1420                                 vgpu, &se);
1421                 se.val64 = 0;
1422                 ppgtt_set_shadow_root_entry(mm, &se, i);
1423
1424                 trace_gpt_change(vgpu->id, "destroy root pointer",
1425                                 NULL, se.type, se.val64, i);
1426         }
1427         mm->shadowed = false;
1428 }
1429
1430 /**
1431  * intel_vgpu_destroy_mm - destroy a mm object
1432  * @mm: a kref object
1433  *
1434  * This function is used to destroy a mm object for vGPU
1435  *
1436  */
1437 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1438 {
1439         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1440         struct intel_vgpu *vgpu = mm->vgpu;
1441         struct intel_gvt *gvt = vgpu->gvt;
1442         struct intel_gvt_gtt *gtt = &gvt->gtt;
1443
1444         if (!mm->initialized)
1445                 goto out;
1446
1447         list_del(&mm->list);
1448         list_del(&mm->lru_list);
1449
1450         if (mm->has_shadow_page_table)
1451                 invalidate_mm(mm);
1452
1453         gtt->mm_free_page_table(mm);
1454 out:
1455         kfree(mm);
1456 }
1457
1458 static int shadow_mm(struct intel_vgpu_mm *mm)
1459 {
1460         struct intel_vgpu *vgpu = mm->vgpu;
1461         struct intel_gvt *gvt = vgpu->gvt;
1462         struct intel_gvt_gtt *gtt = &gvt->gtt;
1463         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1464         struct intel_vgpu_ppgtt_spt *spt;
1465         struct intel_gvt_gtt_entry ge, se;
1466         int i;
1467         int ret;
1468
1469         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1470                 return 0;
1471
1472         mm->shadowed = true;
1473
1474         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1475                 ppgtt_get_guest_root_entry(mm, &ge, i);
1476                 if (!ops->test_present(&ge))
1477                         continue;
1478
1479                 trace_gpt_change(vgpu->id, __func__, NULL,
1480                                 ge.type, ge.val64, i);
1481
1482                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1483                 if (IS_ERR(spt)) {
1484                         gvt_err("fail to populate guest root pointer\n");
1485                         ret = PTR_ERR(spt);
1486                         goto fail;
1487                 }
1488                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1489                 ppgtt_set_shadow_root_entry(mm, &se, i);
1490
1491                 trace_gpt_change(vgpu->id, "populate root pointer",
1492                                 NULL, se.type, se.val64, i);
1493         }
1494         return 0;
1495 fail:
1496         invalidate_mm(mm);
1497         return ret;
1498 }
1499
1500 /**
1501  * intel_vgpu_create_mm - create a mm object for a vGPU
1502  * @vgpu: a vGPU
1503  * @mm_type: mm object type, should be PPGTT or GGTT
1504  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1505  *      to populate shadow later.
1506  * @page_table_level: describe the page table level of the mm object
1507  * @pde_base_index: pde root pointer base in GGTT MMIO.
1508  *
1509  * This function is used to create a mm object for a vGPU.
1510  *
1511  * Returns:
1512  * Zero on success, negative error code in pointer if failed.
1513  */
1514 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1515                 int mm_type, void *virtual_page_table, int page_table_level,
1516                 u32 pde_base_index)
1517 {
1518         struct intel_gvt *gvt = vgpu->gvt;
1519         struct intel_gvt_gtt *gtt = &gvt->gtt;
1520         struct intel_vgpu_mm *mm;
1521         int ret;
1522
1523         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1524         if (!mm) {
1525                 ret = -ENOMEM;
1526                 goto fail;
1527         }
1528
1529         mm->type = mm_type;
1530
1531         if (page_table_level == 1)
1532                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1533         else if (page_table_level == 3)
1534                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1535         else if (page_table_level == 4)
1536                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1537         else {
1538                 WARN_ON(1);
1539                 ret = -EINVAL;
1540                 goto fail;
1541         }
1542
1543         mm->page_table_level = page_table_level;
1544         mm->pde_base_index = pde_base_index;
1545
1546         mm->vgpu = vgpu;
1547         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1548
1549         kref_init(&mm->ref);
1550         atomic_set(&mm->pincount, 0);
1551         INIT_LIST_HEAD(&mm->list);
1552         INIT_LIST_HEAD(&mm->lru_list);
1553         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1554
1555         ret = gtt->mm_alloc_page_table(mm);
1556         if (ret) {
1557                 gvt_err("fail to allocate page table for mm\n");
1558                 goto fail;
1559         }
1560
1561         mm->initialized = true;
1562
1563         if (virtual_page_table)
1564                 memcpy(mm->virtual_page_table, virtual_page_table,
1565                                 mm->page_table_entry_size);
1566
1567         if (mm->has_shadow_page_table) {
1568                 ret = shadow_mm(mm);
1569                 if (ret)
1570                         goto fail;
1571                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1572         }
1573         return mm;
1574 fail:
1575         gvt_err("fail to create mm\n");
1576         if (mm)
1577                 intel_gvt_mm_unreference(mm);
1578         return ERR_PTR(ret);
1579 }
1580
1581 /**
1582  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1583  * @mm: a vGPU mm object
1584  *
1585  * This function is called when user doesn't want to use a vGPU mm object
1586  */
1587 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1588 {
1589         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1590                 return;
1591
1592         atomic_dec(&mm->pincount);
1593 }
1594
1595 /**
1596  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1597  * @vgpu: a vGPU
1598  *
1599  * This function is called when user wants to use a vGPU mm object. If this
1600  * mm object hasn't been shadowed yet, the shadow will be populated at this
1601  * time.
1602  *
1603  * Returns:
1604  * Zero on success, negative error code if failed.
1605  */
1606 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1607 {
1608         int ret;
1609
1610         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1611                 return 0;
1612
1613         atomic_inc(&mm->pincount);
1614
1615         if (!mm->shadowed) {
1616                 ret = shadow_mm(mm);
1617                 if (ret)
1618                         return ret;
1619         }
1620
1621         list_del_init(&mm->lru_list);
1622         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1623         return 0;
1624 }
1625
1626 static int reclaim_one_mm(struct intel_gvt *gvt)
1627 {
1628         struct intel_vgpu_mm *mm;
1629         struct list_head *pos, *n;
1630
1631         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1632                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1633
1634                 if (mm->type != INTEL_GVT_MM_PPGTT)
1635                         continue;
1636                 if (atomic_read(&mm->pincount))
1637                         continue;
1638
1639                 list_del_init(&mm->lru_list);
1640                 invalidate_mm(mm);
1641                 return 1;
1642         }
1643         return 0;
1644 }
1645
1646 /*
1647  * GMA translation APIs.
1648  */
1649 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1650                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1651 {
1652         struct intel_vgpu *vgpu = mm->vgpu;
1653         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1654         struct intel_vgpu_ppgtt_spt *s;
1655
1656         if (WARN_ON(!mm->has_shadow_page_table))
1657                 return -EINVAL;
1658
1659         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1660         if (!s)
1661                 return -ENXIO;
1662
1663         if (!guest)
1664                 ppgtt_get_shadow_entry(s, e, index);
1665         else
1666                 ppgtt_get_guest_entry(s, e, index);
1667         return 0;
1668 }
1669
1670 /**
1671  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1672  * @mm: mm object. could be a PPGTT or GGTT mm object
1673  * @gma: graphics memory address in this mm object
1674  *
1675  * This function is used to translate a graphics memory address in specific
1676  * graphics memory space to guest physical address.
1677  *
1678  * Returns:
1679  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1680  */
1681 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1682 {
1683         struct intel_vgpu *vgpu = mm->vgpu;
1684         struct intel_gvt *gvt = vgpu->gvt;
1685         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1686         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1687         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1688         unsigned long gma_index[4];
1689         struct intel_gvt_gtt_entry e;
1690         int i, index;
1691         int ret;
1692
1693         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1694                 return INTEL_GVT_INVALID_ADDR;
1695
1696         if (mm->type == INTEL_GVT_MM_GGTT) {
1697                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1698                         goto err;
1699
1700                 ggtt_get_guest_entry(mm, &e,
1701                         gma_ops->gma_to_ggtt_pte_index(gma));
1702                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1703                         + (gma & ~GTT_PAGE_MASK);
1704
1705                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1706                 return gpa;
1707         }
1708
1709         switch (mm->page_table_level) {
1710         case 4:
1711                 ppgtt_get_shadow_root_entry(mm, &e, 0);
1712                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1713                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1714                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1715                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1716                 index = 4;
1717                 break;
1718         case 3:
1719                 ppgtt_get_shadow_root_entry(mm, &e,
1720                                 gma_ops->gma_to_l3_pdp_index(gma));
1721                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1722                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1723                 index = 2;
1724                 break;
1725         case 2:
1726                 ppgtt_get_shadow_root_entry(mm, &e,
1727                                 gma_ops->gma_to_pde_index(gma));
1728                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1729                 index = 1;
1730                 break;
1731         default:
1732                 WARN_ON(1);
1733                 goto err;
1734         }
1735
1736         /* walk into the shadow page table and get gpa from guest entry */
1737         for (i = 0; i < index; i++) {
1738                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1739                         (i == index - 1));
1740                 if (ret)
1741                         goto err;
1742         }
1743
1744         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1745                 + (gma & ~GTT_PAGE_MASK);
1746
1747         trace_gma_translate(vgpu->id, "ppgtt", 0,
1748                         mm->page_table_level, gma, gpa);
1749         return gpa;
1750 err:
1751         gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1752         return INTEL_GVT_INVALID_ADDR;
1753 }
1754
1755 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1756         unsigned int off, void *p_data, unsigned int bytes)
1757 {
1758         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1759         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1760         unsigned long index = off >> info->gtt_entry_size_shift;
1761         struct intel_gvt_gtt_entry e;
1762
1763         if (bytes != 4 && bytes != 8)
1764                 return -EINVAL;
1765
1766         ggtt_get_guest_entry(ggtt_mm, &e, index);
1767         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1768                         bytes);
1769         return 0;
1770 }
1771
1772 /**
1773  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1774  * @vgpu: a vGPU
1775  * @off: register offset
1776  * @p_data: data will be returned to guest
1777  * @bytes: data length
1778  *
1779  * This function is used to emulate the GTT MMIO register read
1780  *
1781  * Returns:
1782  * Zero on success, error code if failed.
1783  */
1784 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1785         void *p_data, unsigned int bytes)
1786 {
1787         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1788         int ret;
1789
1790         if (bytes != 4 && bytes != 8)
1791                 return -EINVAL;
1792
1793         off -= info->gtt_start_offset;
1794         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1795         return ret;
1796 }
1797
1798 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1799         void *p_data, unsigned int bytes)
1800 {
1801         struct intel_gvt *gvt = vgpu->gvt;
1802         const struct intel_gvt_device_info *info = &gvt->device_info;
1803         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1804         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1805         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1806         unsigned long gma;
1807         struct intel_gvt_gtt_entry e, m;
1808         int ret;
1809
1810         if (bytes != 4 && bytes != 8)
1811                 return -EINVAL;
1812
1813         gma = g_gtt_index << GTT_PAGE_SHIFT;
1814
1815         /* the VM may configure the whole GM space when ballooning is used */
1816         if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma),
1817                                 "vgpu%d: found oob ggtt write, offset %x\n",
1818                                 vgpu->id, off)) {
1819                 return 0;
1820         }
1821
1822         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1823
1824         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1825                         bytes);
1826
1827         if (ops->test_present(&e)) {
1828                 ret = gtt_entry_p2m(vgpu, &e, &m);
1829                 if (ret) {
1830                         gvt_err("vgpu%d: fail to translate guest gtt entry\n",
1831                                         vgpu->id);
1832                         return ret;
1833                 }
1834         } else {
1835                 m = e;
1836                 m.val64 = 0;
1837         }
1838
1839         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1840         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1841         return 0;
1842 }
1843
1844 /*
1845  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1846  * @vgpu: a vGPU
1847  * @off: register offset
1848  * @p_data: data from guest write
1849  * @bytes: data length
1850  *
1851  * This function is used to emulate the GTT MMIO register write
1852  *
1853  * Returns:
1854  * Zero on success, error code if failed.
1855  */
1856 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1857         void *p_data, unsigned int bytes)
1858 {
1859         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1860         int ret;
1861
1862         if (bytes != 4 && bytes != 8)
1863                 return -EINVAL;
1864
1865         off -= info->gtt_start_offset;
1866         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1867         return ret;
1868 }
1869
1870 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1871                 intel_gvt_gtt_type_t type)
1872 {
1873         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1874         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1875         int page_entry_num = GTT_PAGE_SIZE >>
1876                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1877         void *scratch_pt;
1878         unsigned long mfn;
1879         int i;
1880
1881         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1882                 return -EINVAL;
1883
1884         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1885         if (!scratch_pt) {
1886                 gvt_err("fail to allocate scratch page\n");
1887                 return -ENOMEM;
1888         }
1889
1890         mfn = intel_gvt_hypervisor_virt_to_mfn(scratch_pt);
1891         if (mfn == INTEL_GVT_INVALID_ADDR) {
1892                 gvt_err("fail to translate vaddr:0x%lx\n", (unsigned long)scratch_pt);
1893                 free_page((unsigned long)scratch_pt);
1894                 return -EFAULT;
1895         }
1896         gtt->scratch_pt[type].page_mfn = mfn;
1897         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1898         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1899                         vgpu->id, type, mfn);
1900
1901         /* Build the tree by full filled the scratch pt with the entries which
1902          * point to the next level scratch pt or scratch page. The
1903          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1904          * 'type' pt.
1905          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1906          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1907          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1908          */
1909         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1910                 struct intel_gvt_gtt_entry se;
1911
1912                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1913                 se.type = get_entry_type(type - 1);
1914                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1915
1916                 /* The entry parameters like present/writeable/cache type
1917                  * set to the same as i915's scratch page tree.
1918                  */
1919                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1920                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1921                         se.val64 |= PPAT_CACHED_INDEX;
1922
1923                 for (i = 0; i < page_entry_num; i++)
1924                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1925         }
1926
1927         return 0;
1928 }
1929
1930 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1931 {
1932         int i;
1933
1934         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1935                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1936                         __free_page(vgpu->gtt.scratch_pt[i].page);
1937                         vgpu->gtt.scratch_pt[i].page = NULL;
1938                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
1939                 }
1940         }
1941
1942         return 0;
1943 }
1944
1945 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1946 {
1947         int i, ret;
1948
1949         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1950                 ret = alloc_scratch_pages(vgpu, i);
1951                 if (ret)
1952                         goto err;
1953         }
1954
1955         return 0;
1956
1957 err:
1958         release_scratch_page_tree(vgpu);
1959         return ret;
1960 }
1961
1962 /**
1963  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1964  * @vgpu: a vGPU
1965  *
1966  * This function is used to initialize per-vGPU graphics memory virtualization
1967  * components.
1968  *
1969  * Returns:
1970  * Zero on success, error code if failed.
1971  */
1972 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1973 {
1974         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1975         struct intel_vgpu_mm *ggtt_mm;
1976
1977         hash_init(gtt->guest_page_hash_table);
1978         hash_init(gtt->shadow_page_hash_table);
1979
1980         INIT_LIST_HEAD(&gtt->mm_list_head);
1981         INIT_LIST_HEAD(&gtt->oos_page_list_head);
1982         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
1983
1984         intel_vgpu_reset_ggtt(vgpu);
1985
1986         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
1987                         NULL, 1, 0);
1988         if (IS_ERR(ggtt_mm)) {
1989                 gvt_err("fail to create mm for ggtt.\n");
1990                 return PTR_ERR(ggtt_mm);
1991         }
1992
1993         gtt->ggtt_mm = ggtt_mm;
1994
1995         return create_scratch_page_tree(vgpu);
1996 }
1997
1998 /**
1999  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2000  * @vgpu: a vGPU
2001  *
2002  * This function is used to clean up per-vGPU graphics memory virtualization
2003  * components.
2004  *
2005  * Returns:
2006  * Zero on success, error code if failed.
2007  */
2008 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2009 {
2010         struct list_head *pos, *n;
2011         struct intel_vgpu_mm *mm;
2012
2013         ppgtt_free_all_shadow_page(vgpu);
2014         release_scratch_page_tree(vgpu);
2015
2016         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2017                 mm = container_of(pos, struct intel_vgpu_mm, list);
2018                 vgpu->gvt->gtt.mm_free_page_table(mm);
2019                 list_del(&mm->list);
2020                 list_del(&mm->lru_list);
2021                 kfree(mm);
2022         }
2023 }
2024
2025 static void clean_spt_oos(struct intel_gvt *gvt)
2026 {
2027         struct intel_gvt_gtt *gtt = &gvt->gtt;
2028         struct list_head *pos, *n;
2029         struct intel_vgpu_oos_page *oos_page;
2030
2031         WARN(!list_empty(&gtt->oos_page_use_list_head),
2032                 "someone is still using oos page\n");
2033
2034         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2035                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2036                 list_del(&oos_page->list);
2037                 kfree(oos_page);
2038         }
2039 }
2040
2041 static int setup_spt_oos(struct intel_gvt *gvt)
2042 {
2043         struct intel_gvt_gtt *gtt = &gvt->gtt;
2044         struct intel_vgpu_oos_page *oos_page;
2045         int i;
2046         int ret;
2047
2048         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2049         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2050
2051         for (i = 0; i < preallocated_oos_pages; i++) {
2052                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2053                 if (!oos_page) {
2054                         gvt_err("fail to pre-allocate oos page\n");
2055                         ret = -ENOMEM;
2056                         goto fail;
2057                 }
2058
2059                 INIT_LIST_HEAD(&oos_page->list);
2060                 INIT_LIST_HEAD(&oos_page->vm_list);
2061                 oos_page->id = i;
2062                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2063         }
2064
2065         gvt_dbg_mm("%d oos pages preallocated\n", i);
2066
2067         return 0;
2068 fail:
2069         clean_spt_oos(gvt);
2070         return ret;
2071 }
2072
2073 /**
2074  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2075  * @vgpu: a vGPU
2076  * @page_table_level: PPGTT page table level
2077  * @root_entry: PPGTT page table root pointers
2078  *
2079  * This function is used to find a PPGTT mm object from mm object pool
2080  *
2081  * Returns:
2082  * pointer to mm object on success, NULL if failed.
2083  */
2084 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2085                 int page_table_level, void *root_entry)
2086 {
2087         struct list_head *pos;
2088         struct intel_vgpu_mm *mm;
2089         u64 *src, *dst;
2090
2091         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2092                 mm = container_of(pos, struct intel_vgpu_mm, list);
2093                 if (mm->type != INTEL_GVT_MM_PPGTT)
2094                         continue;
2095
2096                 if (mm->page_table_level != page_table_level)
2097                         continue;
2098
2099                 src = root_entry;
2100                 dst = mm->virtual_page_table;
2101
2102                 if (page_table_level == 3) {
2103                         if (src[0] == dst[0]
2104                                         && src[1] == dst[1]
2105                                         && src[2] == dst[2]
2106                                         && src[3] == dst[3])
2107                                 return mm;
2108                 } else {
2109                         if (src[0] == dst[0])
2110                                 return mm;
2111                 }
2112         }
2113         return NULL;
2114 }
2115
2116 /**
2117  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2118  * g2v notification
2119  * @vgpu: a vGPU
2120  * @page_table_level: PPGTT page table level
2121  *
2122  * This function is used to create a PPGTT mm object from a guest to GVT-g
2123  * notification.
2124  *
2125  * Returns:
2126  * Zero on success, negative error code if failed.
2127  */
2128 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2129                 int page_table_level)
2130 {
2131         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2132         struct intel_vgpu_mm *mm;
2133
2134         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2135                 return -EINVAL;
2136
2137         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2138         if (mm) {
2139                 intel_gvt_mm_reference(mm);
2140         } else {
2141                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2142                                 pdp, page_table_level, 0);
2143                 if (IS_ERR(mm)) {
2144                         gvt_err("fail to create mm\n");
2145                         return PTR_ERR(mm);
2146                 }
2147         }
2148         return 0;
2149 }
2150
2151 /**
2152  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2153  * g2v notification
2154  * @vgpu: a vGPU
2155  * @page_table_level: PPGTT page table level
2156  *
2157  * This function is used to create a PPGTT mm object from a guest to GVT-g
2158  * notification.
2159  *
2160  * Returns:
2161  * Zero on success, negative error code if failed.
2162  */
2163 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2164                 int page_table_level)
2165 {
2166         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2167         struct intel_vgpu_mm *mm;
2168
2169         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2170                 return -EINVAL;
2171
2172         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2173         if (!mm) {
2174                 gvt_err("fail to find ppgtt instance.\n");
2175                 return -EINVAL;
2176         }
2177         intel_gvt_mm_unreference(mm);
2178         return 0;
2179 }
2180
2181 /**
2182  * intel_gvt_init_gtt - initialize mm components of a GVT device
2183  * @gvt: GVT device
2184  *
2185  * This function is called at the initialization stage, to initialize
2186  * the mm components of a GVT device.
2187  *
2188  * Returns:
2189  * zero on success, negative error code if failed.
2190  */
2191 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2192 {
2193         int ret;
2194         void *page;
2195
2196         gvt_dbg_core("init gtt\n");
2197
2198         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
2199                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2200                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2201                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2202                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2203         } else {
2204                 return -ENODEV;
2205         }
2206
2207         page = (void *)get_zeroed_page(GFP_KERNEL);
2208         if (!page) {
2209                 gvt_err("fail to allocate scratch ggtt page\n");
2210                 return -ENOMEM;
2211         }
2212         gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2213
2214         gvt->gtt.scratch_ggtt_mfn = intel_gvt_hypervisor_virt_to_mfn(page);
2215         if (gvt->gtt.scratch_ggtt_mfn == INTEL_GVT_INVALID_ADDR) {
2216                 gvt_err("fail to translate scratch ggtt page\n");
2217                 __free_page(gvt->gtt.scratch_ggtt_page);
2218                 return -EFAULT;
2219         }
2220
2221         if (enable_out_of_sync) {
2222                 ret = setup_spt_oos(gvt);
2223                 if (ret) {
2224                         gvt_err("fail to initialize SPT oos\n");
2225                         return ret;
2226                 }
2227         }
2228         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2229         return 0;
2230 }
2231
2232 /**
2233  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2234  * @gvt: GVT device
2235  *
2236  * This function is called at the driver unloading stage, to clean up the
2237  * the mm components of a GVT device.
2238  *
2239  */
2240 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2241 {
2242         __free_page(gvt->gtt.scratch_ggtt_page);
2243
2244         if (enable_out_of_sync)
2245                 clean_spt_oos(gvt);
2246 }
2247
2248 /**
2249  * intel_vgpu_reset_ggtt - reset the GGTT entry
2250  * @vgpu: a vGPU
2251  *
2252  * This function is called at the vGPU create stage
2253  * to reset all the GGTT entries.
2254  *
2255  */
2256 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2257 {
2258         struct intel_gvt *gvt = vgpu->gvt;
2259         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2260         u32 index;
2261         u32 offset;
2262         u32 num_entries;
2263         struct intel_gvt_gtt_entry e;
2264
2265         memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2266         e.type = GTT_TYPE_GGTT_PTE;
2267         ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2268         e.val64 |= _PAGE_PRESENT;
2269
2270         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2271         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2272         for (offset = 0; offset < num_entries; offset++)
2273                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2274
2275         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2276         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2277         for (offset = 0; offset < num_entries; offset++)
2278                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2279 }
2280
2281 /**
2282  * intel_vgpu_reset_gtt - reset the all GTT related status
2283  * @vgpu: a vGPU
2284  * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2285  *
2286  * This function is called from vfio core to reset reset all
2287  * GTT related status, including GGTT, PPGTT, scratch page.
2288  *
2289  */
2290 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2291 {
2292         int i;
2293
2294         ppgtt_free_all_shadow_page(vgpu);
2295         if (!dmlr)
2296                 return;
2297
2298         intel_vgpu_reset_ggtt(vgpu);
2299
2300         /* clear scratch page for security */
2301         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2302                 if (vgpu->gtt.scratch_pt[i].page != NULL)
2303                         memset(page_address(vgpu->gtt.scratch_pt[i].page),
2304                                 0, PAGE_SIZE);
2305         }
2306 }