]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
drm/i915: Rename i915_hw_ppgtt to i915_ppgtt
[linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41
42 #include "i915_drv.h"
43 #include "gvt.h"
44
45 #define RING_CTX_OFF(x) \
46         offsetof(struct execlist_ring_context, x)
47
48 static void set_context_pdp_root_pointer(
49                 struct execlist_ring_context *ring_context,
50                 u32 pdp[8])
51 {
52         int i;
53
54         for (i = 0; i < 8; i++)
55                 ring_context->pdps[i].val = pdp[7 - i];
56 }
57
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60         struct drm_i915_gem_object *ctx_obj =
61                 workload->req->hw_context->state->obj;
62         struct execlist_ring_context *shadow_ring_context;
63         struct page *page;
64
65         if (WARN_ON(!workload->shadow_mm))
66                 return;
67
68         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69                 return;
70
71         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72         shadow_ring_context = kmap(page);
73         set_context_pdp_root_pointer(shadow_ring_context,
74                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75         kunmap(page);
76 }
77
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84                 u32 *reg_state, bool save)
85 {
86         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89         int i = 0;
90         u32 flex_mmio[] = {
91                 i915_mmio_reg_offset(EU_PERF_CNTL0),
92                 i915_mmio_reg_offset(EU_PERF_CNTL1),
93                 i915_mmio_reg_offset(EU_PERF_CNTL2),
94                 i915_mmio_reg_offset(EU_PERF_CNTL3),
95                 i915_mmio_reg_offset(EU_PERF_CNTL4),
96                 i915_mmio_reg_offset(EU_PERF_CNTL5),
97                 i915_mmio_reg_offset(EU_PERF_CNTL6),
98         };
99
100         if (workload->ring_id != RCS0)
101                 return;
102
103         if (save) {
104                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107                         u32 state_offset = ctx_flexeu0 + i * 2;
108
109                         workload->flex_mmio[i] = reg_state[state_offset + 1];
110                 }
111         } else {
112                 reg_state[ctx_oactxctrl] =
113                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117                         u32 state_offset = ctx_flexeu0 + i * 2;
118                         u32 mmio = flex_mmio[i];
119
120                         reg_state[state_offset] = mmio;
121                         reg_state[state_offset + 1] = workload->flex_mmio[i];
122                 }
123         }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128         struct intel_vgpu *vgpu = workload->vgpu;
129         struct intel_gvt *gvt = vgpu->gvt;
130         int ring_id = workload->ring_id;
131         struct drm_i915_gem_object *ctx_obj =
132                 workload->req->hw_context->state->obj;
133         struct execlist_ring_context *shadow_ring_context;
134         struct page *page;
135         void *dst;
136         unsigned long context_gpa, context_page_num;
137         int i;
138
139         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140         shadow_ring_context = kmap(page);
141
142         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148                                               + RING_CTX_OFF(name.val),\
149                                               &shadow_ring_context->name.val, 4);\
150                 shadow_ring_context->name.val |= 0xffff << 16;\
151         }
152
153         COPY_REG_MASKED(ctx_ctrl);
154         COPY_REG(ctx_timestamp);
155
156         if (ring_id == RCS0) {
157                 COPY_REG(bb_per_ctx_ptr);
158                 COPY_REG(rcs_indirect_ctx);
159                 COPY_REG(rcs_indirect_ctx_offset);
160         }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164         intel_gvt_hypervisor_read_gpa(vgpu,
165                         workload->ring_context_gpa +
166                         sizeof(*shadow_ring_context),
167                         (void *)shadow_ring_context +
168                         sizeof(*shadow_ring_context),
169                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172         kunmap(page);
173
174         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175                 return 0;
176
177         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178                         workload->ctx_desc.lrca);
179
180         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182         context_page_num = context_page_num >> PAGE_SHIFT;
183
184         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185                 context_page_num = 19;
186
187         i = 2;
188         while (i < context_page_num) {
189                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190                                 (u32)((workload->ctx_desc.lrca + i) <<
191                                 I915_GTT_PAGE_SHIFT));
192                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193                         gvt_vgpu_err("Invalid guest context descriptor\n");
194                         return -EFAULT;
195                 }
196
197                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198                 dst = kmap(page);
199                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200                                 I915_GTT_PAGE_SIZE);
201                 kunmap(page);
202                 i++;
203         }
204         return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209         return i915_gem_context_force_single_submission(req->gem_context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216         i915_reg_t reg;
217
218         reg = RING_INSTDONE(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220         reg = RING_ACTHD(ring_base);
221         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222         reg = RING_ACTHD_UDW(ring_base);
223         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225
226 static int shadow_context_status_change(struct notifier_block *nb,
227                 unsigned long action, void *data)
228 {
229         struct i915_request *req = data;
230         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231                                 shadow_ctx_notifier_block[req->engine->id]);
232         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233         enum intel_engine_id ring_id = req->engine->id;
234         struct intel_vgpu_workload *workload;
235         unsigned long flags;
236
237         if (!is_gvt_request(req)) {
238                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240                     scheduler->engine_owner[ring_id]) {
241                         /* Switch ring from vGPU to host. */
242                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243                                               NULL, ring_id);
244                         scheduler->engine_owner[ring_id] = NULL;
245                 }
246                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248                 return NOTIFY_OK;
249         }
250
251         workload = scheduler->current_workload[ring_id];
252         if (unlikely(!workload))
253                 return NOTIFY_OK;
254
255         switch (action) {
256         case INTEL_CONTEXT_SCHEDULE_IN:
257                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259                         /* Switch ring from host to vGPU or vGPU to vGPU. */
260                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261                                               workload->vgpu, ring_id);
262                         scheduler->engine_owner[ring_id] = workload->vgpu;
263                 } else
264                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265                                       ring_id, workload->vgpu->id);
266                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267                 atomic_set(&workload->shadow_ctx_active, 1);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_OUT:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 atomic_set(&workload->shadow_ctx_active, 0);
272                 break;
273         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274                 save_ring_hw_state(workload->vgpu, ring_id);
275                 break;
276         default:
277                 WARN_ON(1);
278                 return NOTIFY_OK;
279         }
280         wake_up(&workload->shadow_ctx_status_wq);
281         return NOTIFY_OK;
282 }
283
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286                                  struct intel_vgpu_workload *workload)
287 {
288         u64 desc = ce->lrc_desc;
289
290         /*
291          * Update bits 0-11 of the context descriptor which includes flags
292          * like GEN8_CTX_* cached in desc_template
293          */
294         desc &= U64_MAX << 12;
295         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
296
297         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
298         desc |= workload->ctx_desc.addressing_mode <<
299                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
300
301         ce->lrc_desc = desc;
302 }
303
304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
305 {
306         struct intel_vgpu *vgpu = workload->vgpu;
307         struct i915_request *req = workload->req;
308         void *shadow_ring_buffer_va;
309         u32 *cs;
310         int err;
311
312         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
313                 intel_vgpu_restore_inhibit_context(vgpu, req);
314
315         /*
316          * To track whether a request has started on HW, we can emit a
317          * breadcrumb at the beginning of the request and check its
318          * timeline's HWSP to see if the breadcrumb has advanced past the
319          * start of this request. Actually, the request must have the
320          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
321          * scheduler might get a wrong state of it during reset. Since the
322          * requests from gvt always set the has_init_breadcrumb flag, here
323          * need to do the emit_init_breadcrumb for all the requests.
324          */
325         if (req->engine->emit_init_breadcrumb) {
326                 err = req->engine->emit_init_breadcrumb(req);
327                 if (err) {
328                         gvt_vgpu_err("fail to emit init breadcrumb\n");
329                         return err;
330                 }
331         }
332
333         /* allocate shadow ring buffer */
334         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
335         if (IS_ERR(cs)) {
336                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
337                         workload->rb_len);
338                 return PTR_ERR(cs);
339         }
340
341         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
342
343         /* get shadow ring buffer va */
344         workload->shadow_ring_buffer_va = cs;
345
346         memcpy(cs, shadow_ring_buffer_va,
347                         workload->rb_len);
348
349         cs += workload->rb_len / sizeof(u32);
350         intel_ring_advance(workload->req, cs);
351
352         return 0;
353 }
354
355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357         if (!wa_ctx->indirect_ctx.obj)
358                 return;
359
360         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
361         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
362
363         wa_ctx->indirect_ctx.obj = NULL;
364         wa_ctx->indirect_ctx.shadow_va = NULL;
365 }
366
367 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
368                                          struct i915_gem_context *ctx)
369 {
370         struct intel_vgpu_mm *mm = workload->shadow_mm;
371         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
372         int i = 0;
373
374         if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
375                 return -EINVAL;
376
377         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
378                 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
379         } else {
380                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
381                         px_dma(ppgtt->pdp.page_directory[i]) =
382                                 mm->ppgtt_mm.shadow_pdps[i];
383                 }
384         }
385
386         return 0;
387 }
388
389 static int
390 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
391 {
392         struct intel_vgpu *vgpu = workload->vgpu;
393         struct intel_vgpu_submission *s = &vgpu->submission;
394         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
395         struct i915_request *rq;
396
397         lockdep_assert_held(&dev_priv->drm.struct_mutex);
398
399         if (workload->req)
400                 return 0;
401
402         rq = i915_request_create(s->shadow[workload->ring_id]);
403         if (IS_ERR(rq)) {
404                 gvt_vgpu_err("fail to allocate gem request\n");
405                 return PTR_ERR(rq);
406         }
407
408         workload->req = i915_request_get(rq);
409         return 0;
410 }
411
412 /**
413  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
414  * shadow it as well, include ringbuffer,wa_ctx and ctx.
415  * @workload: an abstract entity for each execlist submission.
416  *
417  * This function is called before the workload submitting to i915, to make
418  * sure the content of the workload is valid.
419  */
420 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
421 {
422         struct intel_vgpu *vgpu = workload->vgpu;
423         struct intel_vgpu_submission *s = &vgpu->submission;
424         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
425         int ret;
426
427         lockdep_assert_held(&dev_priv->drm.struct_mutex);
428
429         if (workload->shadow)
430                 return 0;
431
432         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
433                 shadow_context_descriptor_update(s->shadow[workload->ring_id],
434                                                  workload);
435
436         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
437         if (ret)
438                 return ret;
439
440         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
441                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
442                 if (ret)
443                         goto err_shadow;
444         }
445
446         workload->shadow = true;
447         return 0;
448 err_shadow:
449         release_shadow_wa_ctx(&workload->wa_ctx);
450         return ret;
451 }
452
453 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
454
455 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
456 {
457         struct intel_gvt *gvt = workload->vgpu->gvt;
458         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
459         struct intel_vgpu_shadow_bb *bb;
460         int ret;
461
462         list_for_each_entry(bb, &workload->shadow_bb, list) {
463                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
464                  * is only updated into ring_scan_buffer, not real ring address
465                  * allocated in later copy_workload_to_ring_buffer. pls be noted
466                  * shadow_ring_buffer_va is now pointed to real ring buffer va
467                  * in copy_workload_to_ring_buffer.
468                  */
469
470                 if (bb->bb_offset)
471                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
472                                 + bb->bb_offset;
473
474                 if (bb->ppgtt) {
475                         /* for non-priv bb, scan&shadow is only for
476                          * debugging purpose, so the content of shadow bb
477                          * is the same as original bb. Therefore,
478                          * here, rather than switch to shadow bb's gma
479                          * address, we directly use original batch buffer's
480                          * gma address, and send original bb to hardware
481                          * directly
482                          */
483                         if (bb->clflush & CLFLUSH_AFTER) {
484                                 drm_clflush_virt_range(bb->va,
485                                                 bb->obj->base.size);
486                                 bb->clflush &= ~CLFLUSH_AFTER;
487                         }
488                         i915_gem_object_finish_access(bb->obj);
489                         bb->accessing = false;
490
491                 } else {
492                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
493                                         NULL, 0, 0, 0);
494                         if (IS_ERR(bb->vma)) {
495                                 ret = PTR_ERR(bb->vma);
496                                 goto err;
497                         }
498
499                         /* relocate shadow batch buffer */
500                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
501                         if (gmadr_bytes == 8)
502                                 bb->bb_start_cmd_va[2] = 0;
503
504                         /* No one is going to touch shadow bb from now on. */
505                         if (bb->clflush & CLFLUSH_AFTER) {
506                                 drm_clflush_virt_range(bb->va,
507                                                 bb->obj->base.size);
508                                 bb->clflush &= ~CLFLUSH_AFTER;
509                         }
510
511                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
512                                                                 false);
513                         if (ret)
514                                 goto err;
515
516                         ret = i915_vma_move_to_active(bb->vma,
517                                                       workload->req,
518                                                       0);
519                         if (ret)
520                                 goto err;
521
522                         i915_gem_object_finish_access(bb->obj);
523                         bb->accessing = false;
524                 }
525         }
526         return 0;
527 err:
528         release_shadow_batch_buffer(workload);
529         return ret;
530 }
531
532 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
533 {
534         struct intel_vgpu_workload *workload =
535                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
536         struct i915_request *rq = workload->req;
537         struct execlist_ring_context *shadow_ring_context =
538                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
539
540         shadow_ring_context->bb_per_ctx_ptr.val =
541                 (shadow_ring_context->bb_per_ctx_ptr.val &
542                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
543         shadow_ring_context->rcs_indirect_ctx.val =
544                 (shadow_ring_context->rcs_indirect_ctx.val &
545                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
546 }
547
548 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
549 {
550         struct i915_vma *vma;
551         unsigned char *per_ctx_va =
552                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
553                 wa_ctx->indirect_ctx.size;
554
555         if (wa_ctx->indirect_ctx.size == 0)
556                 return 0;
557
558         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
559                                        0, CACHELINE_BYTES, 0);
560         if (IS_ERR(vma))
561                 return PTR_ERR(vma);
562
563         /* FIXME: we are not tracking our pinned VMA leaving it
564          * up to the core to fix up the stray pin_count upon
565          * free.
566          */
567
568         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
569
570         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
571         memset(per_ctx_va, 0, CACHELINE_BYTES);
572
573         update_wa_ctx_2_shadow_ctx(wa_ctx);
574         return 0;
575 }
576
577 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
578 {
579         struct intel_vgpu *vgpu = workload->vgpu;
580         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
581         struct intel_vgpu_shadow_bb *bb, *pos;
582
583         if (list_empty(&workload->shadow_bb))
584                 return;
585
586         bb = list_first_entry(&workload->shadow_bb,
587                         struct intel_vgpu_shadow_bb, list);
588
589         mutex_lock(&dev_priv->drm.struct_mutex);
590
591         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
592                 if (bb->obj) {
593                         if (bb->accessing)
594                                 i915_gem_object_finish_access(bb->obj);
595
596                         if (bb->va && !IS_ERR(bb->va))
597                                 i915_gem_object_unpin_map(bb->obj);
598
599                         if (bb->vma && !IS_ERR(bb->vma)) {
600                                 i915_vma_unpin(bb->vma);
601                                 i915_vma_close(bb->vma);
602                         }
603                         i915_gem_object_put(bb->obj);
604                 }
605                 list_del(&bb->list);
606                 kfree(bb);
607         }
608
609         mutex_unlock(&dev_priv->drm.struct_mutex);
610 }
611
612 static int prepare_workload(struct intel_vgpu_workload *workload)
613 {
614         struct intel_vgpu *vgpu = workload->vgpu;
615         int ret = 0;
616
617         ret = intel_vgpu_pin_mm(workload->shadow_mm);
618         if (ret) {
619                 gvt_vgpu_err("fail to vgpu pin mm\n");
620                 return ret;
621         }
622
623         update_shadow_pdps(workload);
624
625         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
626         if (ret) {
627                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
628                 goto err_unpin_mm;
629         }
630
631         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
632         if (ret) {
633                 gvt_vgpu_err("fail to flush post shadow\n");
634                 goto err_unpin_mm;
635         }
636
637         ret = copy_workload_to_ring_buffer(workload);
638         if (ret) {
639                 gvt_vgpu_err("fail to generate request\n");
640                 goto err_unpin_mm;
641         }
642
643         ret = prepare_shadow_batch_buffer(workload);
644         if (ret) {
645                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
646                 goto err_unpin_mm;
647         }
648
649         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
650         if (ret) {
651                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
652                 goto err_shadow_batch;
653         }
654
655         if (workload->prepare) {
656                 ret = workload->prepare(workload);
657                 if (ret)
658                         goto err_shadow_wa_ctx;
659         }
660
661         return 0;
662 err_shadow_wa_ctx:
663         release_shadow_wa_ctx(&workload->wa_ctx);
664 err_shadow_batch:
665         release_shadow_batch_buffer(workload);
666 err_unpin_mm:
667         intel_vgpu_unpin_mm(workload->shadow_mm);
668         return ret;
669 }
670
671 static int dispatch_workload(struct intel_vgpu_workload *workload)
672 {
673         struct intel_vgpu *vgpu = workload->vgpu;
674         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
675         struct intel_vgpu_submission *s = &vgpu->submission;
676         struct i915_request *rq;
677         int ring_id = workload->ring_id;
678         int ret;
679
680         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
681                 ring_id, workload);
682
683         mutex_lock(&vgpu->vgpu_lock);
684         mutex_lock(&dev_priv->drm.struct_mutex);
685
686         ret = set_context_ppgtt_from_shadow(workload,
687                                             s->shadow[ring_id]->gem_context);
688         if (ret < 0) {
689                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
690                 goto err_req;
691         }
692
693         ret = intel_gvt_workload_req_alloc(workload);
694         if (ret)
695                 goto err_req;
696
697         ret = intel_gvt_scan_and_shadow_workload(workload);
698         if (ret)
699                 goto out;
700
701         ret = populate_shadow_context(workload);
702         if (ret) {
703                 release_shadow_wa_ctx(&workload->wa_ctx);
704                 goto out;
705         }
706
707         ret = prepare_workload(workload);
708 out:
709         if (ret) {
710                 /* We might still need to add request with
711                  * clean ctx to retire it properly..
712                  */
713                 rq = fetch_and_zero(&workload->req);
714                 i915_request_put(rq);
715         }
716
717         if (!IS_ERR_OR_NULL(workload->req)) {
718                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
719                                 ring_id, workload->req);
720                 i915_request_add(workload->req);
721                 workload->dispatched = true;
722         }
723 err_req:
724         if (ret)
725                 workload->status = ret;
726         mutex_unlock(&dev_priv->drm.struct_mutex);
727         mutex_unlock(&vgpu->vgpu_lock);
728         return ret;
729 }
730
731 static struct intel_vgpu_workload *pick_next_workload(
732                 struct intel_gvt *gvt, int ring_id)
733 {
734         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
735         struct intel_vgpu_workload *workload = NULL;
736
737         mutex_lock(&gvt->sched_lock);
738
739         /*
740          * no current vgpu / will be scheduled out / no workload
741          * bail out
742          */
743         if (!scheduler->current_vgpu) {
744                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
745                 goto out;
746         }
747
748         if (scheduler->need_reschedule) {
749                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
750                 goto out;
751         }
752
753         if (!scheduler->current_vgpu->active ||
754             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
755                 goto out;
756
757         /*
758          * still have current workload, maybe the workload disptacher
759          * fail to submit it for some reason, resubmit it.
760          */
761         if (scheduler->current_workload[ring_id]) {
762                 workload = scheduler->current_workload[ring_id];
763                 gvt_dbg_sched("ring id %d still have current workload %p\n",
764                                 ring_id, workload);
765                 goto out;
766         }
767
768         /*
769          * pick a workload as current workload
770          * once current workload is set, schedule policy routines
771          * will wait the current workload is finished when trying to
772          * schedule out a vgpu.
773          */
774         scheduler->current_workload[ring_id] = container_of(
775                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
776                         struct intel_vgpu_workload, list);
777
778         workload = scheduler->current_workload[ring_id];
779
780         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
781
782         atomic_inc(&workload->vgpu->submission.running_workload_num);
783 out:
784         mutex_unlock(&gvt->sched_lock);
785         return workload;
786 }
787
788 static void update_guest_context(struct intel_vgpu_workload *workload)
789 {
790         struct i915_request *rq = workload->req;
791         struct intel_vgpu *vgpu = workload->vgpu;
792         struct intel_gvt *gvt = vgpu->gvt;
793         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
794         struct execlist_ring_context *shadow_ring_context;
795         struct page *page;
796         void *src;
797         unsigned long context_gpa, context_page_num;
798         int i;
799
800         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
801                       workload->ctx_desc.lrca);
802
803         context_page_num = rq->engine->context_size;
804         context_page_num = context_page_num >> PAGE_SHIFT;
805
806         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
807                 context_page_num = 19;
808
809         i = 2;
810
811         while (i < context_page_num) {
812                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
813                                 (u32)((workload->ctx_desc.lrca + i) <<
814                                         I915_GTT_PAGE_SHIFT));
815                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
816                         gvt_vgpu_err("invalid guest context descriptor\n");
817                         return;
818                 }
819
820                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
821                 src = kmap(page);
822                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
823                                 I915_GTT_PAGE_SIZE);
824                 kunmap(page);
825                 i++;
826         }
827
828         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
829                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
830
831         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
832         shadow_ring_context = kmap(page);
833
834 #define COPY_REG(name) \
835         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
836                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
837
838         COPY_REG(ctx_ctrl);
839         COPY_REG(ctx_timestamp);
840
841 #undef COPY_REG
842
843         intel_gvt_hypervisor_write_gpa(vgpu,
844                         workload->ring_context_gpa +
845                         sizeof(*shadow_ring_context),
846                         (void *)shadow_ring_context +
847                         sizeof(*shadow_ring_context),
848                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
849
850         kunmap(page);
851 }
852
853 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
854                                 intel_engine_mask_t engine_mask)
855 {
856         struct intel_vgpu_submission *s = &vgpu->submission;
857         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
858         struct intel_engine_cs *engine;
859         struct intel_vgpu_workload *pos, *n;
860         intel_engine_mask_t tmp;
861
862         /* free the unsubmited workloads in the queues. */
863         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
864                 list_for_each_entry_safe(pos, n,
865                         &s->workload_q_head[engine->id], list) {
866                         list_del_init(&pos->list);
867                         intel_vgpu_destroy_workload(pos);
868                 }
869                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
870         }
871 }
872
873 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
874 {
875         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
876         struct intel_vgpu_workload *workload =
877                 scheduler->current_workload[ring_id];
878         struct intel_vgpu *vgpu = workload->vgpu;
879         struct intel_vgpu_submission *s = &vgpu->submission;
880         struct i915_request *rq = workload->req;
881         int event;
882
883         mutex_lock(&vgpu->vgpu_lock);
884         mutex_lock(&gvt->sched_lock);
885
886         /* For the workload w/ request, needs to wait for the context
887          * switch to make sure request is completed.
888          * For the workload w/o request, directly complete the workload.
889          */
890         if (rq) {
891                 wait_event(workload->shadow_ctx_status_wq,
892                            !atomic_read(&workload->shadow_ctx_active));
893
894                 /* If this request caused GPU hang, req->fence.error will
895                  * be set to -EIO. Use -EIO to set workload status so
896                  * that when this request caused GPU hang, didn't trigger
897                  * context switch interrupt to guest.
898                  */
899                 if (likely(workload->status == -EINPROGRESS)) {
900                         if (workload->req->fence.error == -EIO)
901                                 workload->status = -EIO;
902                         else
903                                 workload->status = 0;
904                 }
905
906                 if (!workload->status &&
907                     !(vgpu->resetting_eng & BIT(ring_id))) {
908                         update_guest_context(workload);
909
910                         for_each_set_bit(event, workload->pending_events,
911                                          INTEL_GVT_EVENT_MAX)
912                                 intel_vgpu_trigger_virtual_event(vgpu, event);
913                 }
914
915                 i915_request_put(fetch_and_zero(&workload->req));
916         }
917
918         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
919                         ring_id, workload, workload->status);
920
921         scheduler->current_workload[ring_id] = NULL;
922
923         list_del_init(&workload->list);
924
925         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
926                 /* if workload->status is not successful means HW GPU
927                  * has occurred GPU hang or something wrong with i915/GVT,
928                  * and GVT won't inject context switch interrupt to guest.
929                  * So this error is a vGPU hang actually to the guest.
930                  * According to this we should emunlate a vGPU hang. If
931                  * there are pending workloads which are already submitted
932                  * from guest, we should clean them up like HW GPU does.
933                  *
934                  * if it is in middle of engine resetting, the pending
935                  * workloads won't be submitted to HW GPU and will be
936                  * cleaned up during the resetting process later, so doing
937                  * the workload clean up here doesn't have any impact.
938                  **/
939                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
940         }
941
942         workload->complete(workload);
943
944         atomic_dec(&s->running_workload_num);
945         wake_up(&scheduler->workload_complete_wq);
946
947         if (gvt->scheduler.need_reschedule)
948                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
949
950         mutex_unlock(&gvt->sched_lock);
951         mutex_unlock(&vgpu->vgpu_lock);
952 }
953
954 struct workload_thread_param {
955         struct intel_gvt *gvt;
956         int ring_id;
957 };
958
959 static int workload_thread(void *priv)
960 {
961         struct workload_thread_param *p = (struct workload_thread_param *)priv;
962         struct intel_gvt *gvt = p->gvt;
963         int ring_id = p->ring_id;
964         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
965         struct intel_vgpu_workload *workload = NULL;
966         struct intel_vgpu *vgpu = NULL;
967         int ret;
968         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
969         DEFINE_WAIT_FUNC(wait, woken_wake_function);
970
971         kfree(p);
972
973         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
974
975         while (!kthread_should_stop()) {
976                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
977                 do {
978                         workload = pick_next_workload(gvt, ring_id);
979                         if (workload)
980                                 break;
981                         wait_woken(&wait, TASK_INTERRUPTIBLE,
982                                    MAX_SCHEDULE_TIMEOUT);
983                 } while (!kthread_should_stop());
984                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
985
986                 if (!workload)
987                         break;
988
989                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
990                                 workload->ring_id, workload,
991                                 workload->vgpu->id);
992
993                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
994                                 workload->ring_id, workload);
995
996                 if (need_force_wake)
997                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
998                                         FORCEWAKE_ALL);
999
1000                 ret = dispatch_workload(workload);
1001
1002                 if (ret) {
1003                         vgpu = workload->vgpu;
1004                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1005                         goto complete;
1006                 }
1007
1008                 gvt_dbg_sched("ring id %d wait workload %p\n",
1009                                 workload->ring_id, workload);
1010                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1011
1012 complete:
1013                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1014                                 workload, workload->status);
1015
1016                 complete_current_workload(gvt, ring_id);
1017
1018                 if (need_force_wake)
1019                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1020                                         FORCEWAKE_ALL);
1021
1022                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1023                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1024         }
1025         return 0;
1026 }
1027
1028 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1029 {
1030         struct intel_vgpu_submission *s = &vgpu->submission;
1031         struct intel_gvt *gvt = vgpu->gvt;
1032         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1033
1034         if (atomic_read(&s->running_workload_num)) {
1035                 gvt_dbg_sched("wait vgpu idle\n");
1036
1037                 wait_event(scheduler->workload_complete_wq,
1038                                 !atomic_read(&s->running_workload_num));
1039         }
1040 }
1041
1042 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1043 {
1044         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1045         struct intel_engine_cs *engine;
1046         enum intel_engine_id i;
1047
1048         gvt_dbg_core("clean workload scheduler\n");
1049
1050         for_each_engine(engine, gvt->dev_priv, i) {
1051                 atomic_notifier_chain_unregister(
1052                                         &engine->context_status_notifier,
1053                                         &gvt->shadow_ctx_notifier_block[i]);
1054                 kthread_stop(scheduler->thread[i]);
1055         }
1056 }
1057
1058 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1059 {
1060         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1061         struct workload_thread_param *param = NULL;
1062         struct intel_engine_cs *engine;
1063         enum intel_engine_id i;
1064         int ret;
1065
1066         gvt_dbg_core("init workload scheduler\n");
1067
1068         init_waitqueue_head(&scheduler->workload_complete_wq);
1069
1070         for_each_engine(engine, gvt->dev_priv, i) {
1071                 init_waitqueue_head(&scheduler->waitq[i]);
1072
1073                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1074                 if (!param) {
1075                         ret = -ENOMEM;
1076                         goto err;
1077                 }
1078
1079                 param->gvt = gvt;
1080                 param->ring_id = i;
1081
1082                 scheduler->thread[i] = kthread_run(workload_thread, param,
1083                         "gvt workload %d", i);
1084                 if (IS_ERR(scheduler->thread[i])) {
1085                         gvt_err("fail to create workload thread\n");
1086                         ret = PTR_ERR(scheduler->thread[i]);
1087                         goto err;
1088                 }
1089
1090                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1091                                         shadow_context_status_change;
1092                 atomic_notifier_chain_register(&engine->context_status_notifier,
1093                                         &gvt->shadow_ctx_notifier_block[i]);
1094         }
1095         return 0;
1096 err:
1097         intel_gvt_clean_workload_scheduler(gvt);
1098         kfree(param);
1099         param = NULL;
1100         return ret;
1101 }
1102
1103 static void
1104 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1105                                 struct i915_ppgtt *ppgtt)
1106 {
1107         int i;
1108
1109         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1110                 px_dma(&ppgtt->pml4) = s->i915_context_pml4;
1111         } else {
1112                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1113                         px_dma(ppgtt->pdp.page_directory[i]) =
1114                                 s->i915_context_pdps[i];
1115         }
1116 }
1117
1118 /**
1119  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1120  * @vgpu: a vGPU
1121  *
1122  * This function is called when a vGPU is being destroyed.
1123  *
1124  */
1125 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1126 {
1127         struct intel_vgpu_submission *s = &vgpu->submission;
1128         struct intel_engine_cs *engine;
1129         enum intel_engine_id id;
1130
1131         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1132
1133         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->gem_context->vm));
1134         for_each_engine(engine, vgpu->gvt->dev_priv, id)
1135                 intel_context_unpin(s->shadow[id]);
1136
1137         kmem_cache_destroy(s->workloads);
1138 }
1139
1140
1141 /**
1142  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1143  * @vgpu: a vGPU
1144  * @engine_mask: engines expected to be reset
1145  *
1146  * This function is called when a vGPU is being destroyed.
1147  *
1148  */
1149 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1150                                  intel_engine_mask_t engine_mask)
1151 {
1152         struct intel_vgpu_submission *s = &vgpu->submission;
1153
1154         if (!s->active)
1155                 return;
1156
1157         intel_vgpu_clean_workloads(vgpu, engine_mask);
1158         s->ops->reset(vgpu, engine_mask);
1159 }
1160
1161 static void
1162 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1163                              struct i915_ppgtt *ppgtt)
1164 {
1165         int i;
1166
1167         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1168                 s->i915_context_pml4 = px_dma(&ppgtt->pml4);
1169         } else {
1170                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1171                         s->i915_context_pdps[i] =
1172                                 px_dma(ppgtt->pdp.page_directory[i]);
1173         }
1174 }
1175
1176 /**
1177  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1178  * @vgpu: a vGPU
1179  *
1180  * This function is called when a vGPU is being created.
1181  *
1182  * Returns:
1183  * Zero on success, negative error code if failed.
1184  *
1185  */
1186 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1187 {
1188         struct intel_vgpu_submission *s = &vgpu->submission;
1189         struct intel_engine_cs *engine;
1190         struct i915_gem_context *ctx;
1191         enum intel_engine_id i;
1192         int ret;
1193
1194         ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1195         if (IS_ERR(ctx))
1196                 return PTR_ERR(ctx);
1197
1198         i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1199
1200         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1201                 struct intel_context *ce;
1202
1203                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1204                 s->shadow[i] = ERR_PTR(-EINVAL);
1205
1206                 ce = i915_gem_context_get_engine(ctx, i);
1207                 if (IS_ERR(ce)) {
1208                         ret = PTR_ERR(ce);
1209                         goto out_shadow_ctx;
1210                 }
1211
1212                 ret = intel_context_pin(ce);
1213                 intel_context_put(ce);
1214                 if (ret)
1215                         goto out_shadow_ctx;
1216
1217                 s->shadow[i] = ce;
1218         }
1219
1220         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1221
1222         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1223                                                   sizeof(struct intel_vgpu_workload), 0,
1224                                                   SLAB_HWCACHE_ALIGN,
1225                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1226                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1227                                                   NULL);
1228
1229         if (!s->workloads) {
1230                 ret = -ENOMEM;
1231                 goto out_shadow_ctx;
1232         }
1233
1234         atomic_set(&s->running_workload_num, 0);
1235         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1236
1237         i915_gem_context_put(ctx);
1238         return 0;
1239
1240 out_shadow_ctx:
1241         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1242         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1243                 if (IS_ERR(s->shadow[i]))
1244                         break;
1245
1246                 intel_context_unpin(s->shadow[i]);
1247         }
1248         i915_gem_context_put(ctx);
1249         return ret;
1250 }
1251
1252 /**
1253  * intel_vgpu_select_submission_ops - select virtual submission interface
1254  * @vgpu: a vGPU
1255  * @engine_mask: either ALL_ENGINES or target engine mask
1256  * @interface: expected vGPU virtual submission interface
1257  *
1258  * This function is called when guest configures submission interface.
1259  *
1260  * Returns:
1261  * Zero on success, negative error code if failed.
1262  *
1263  */
1264 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1265                                      intel_engine_mask_t engine_mask,
1266                                      unsigned int interface)
1267 {
1268         struct intel_vgpu_submission *s = &vgpu->submission;
1269         const struct intel_vgpu_submission_ops *ops[] = {
1270                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1271                         &intel_vgpu_execlist_submission_ops,
1272         };
1273         int ret;
1274
1275         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1276                 return -EINVAL;
1277
1278         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1279                 return -EINVAL;
1280
1281         if (s->active)
1282                 s->ops->clean(vgpu, engine_mask);
1283
1284         if (interface == 0) {
1285                 s->ops = NULL;
1286                 s->virtual_submission_interface = 0;
1287                 s->active = false;
1288                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1289                 return 0;
1290         }
1291
1292         ret = ops[interface]->init(vgpu, engine_mask);
1293         if (ret)
1294                 return ret;
1295
1296         s->ops = ops[interface];
1297         s->virtual_submission_interface = interface;
1298         s->active = true;
1299
1300         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1301                         vgpu->id, s->ops->name);
1302
1303         return 0;
1304 }
1305
1306 /**
1307  * intel_vgpu_destroy_workload - destroy a vGPU workload
1308  * @workload: workload to destroy
1309  *
1310  * This function is called when destroy a vGPU workload.
1311  *
1312  */
1313 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1314 {
1315         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1316
1317         release_shadow_batch_buffer(workload);
1318         release_shadow_wa_ctx(&workload->wa_ctx);
1319
1320         if (workload->shadow_mm)
1321                 intel_vgpu_mm_put(workload->shadow_mm);
1322
1323         kmem_cache_free(s->workloads, workload);
1324 }
1325
1326 static struct intel_vgpu_workload *
1327 alloc_workload(struct intel_vgpu *vgpu)
1328 {
1329         struct intel_vgpu_submission *s = &vgpu->submission;
1330         struct intel_vgpu_workload *workload;
1331
1332         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1333         if (!workload)
1334                 return ERR_PTR(-ENOMEM);
1335
1336         INIT_LIST_HEAD(&workload->list);
1337         INIT_LIST_HEAD(&workload->shadow_bb);
1338
1339         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1340         atomic_set(&workload->shadow_ctx_active, 0);
1341
1342         workload->status = -EINPROGRESS;
1343         workload->vgpu = vgpu;
1344
1345         return workload;
1346 }
1347
1348 #define RING_CTX_OFF(x) \
1349         offsetof(struct execlist_ring_context, x)
1350
1351 static void read_guest_pdps(struct intel_vgpu *vgpu,
1352                 u64 ring_context_gpa, u32 pdp[8])
1353 {
1354         u64 gpa;
1355         int i;
1356
1357         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1358
1359         for (i = 0; i < 8; i++)
1360                 intel_gvt_hypervisor_read_gpa(vgpu,
1361                                 gpa + i * 8, &pdp[7 - i], 4);
1362 }
1363
1364 static int prepare_mm(struct intel_vgpu_workload *workload)
1365 {
1366         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1367         struct intel_vgpu_mm *mm;
1368         struct intel_vgpu *vgpu = workload->vgpu;
1369         enum intel_gvt_gtt_type root_entry_type;
1370         u64 pdps[GVT_RING_CTX_NR_PDPS];
1371
1372         switch (desc->addressing_mode) {
1373         case 1: /* legacy 32-bit */
1374                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1375                 break;
1376         case 3: /* legacy 64-bit */
1377                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1378                 break;
1379         default:
1380                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1381                 return -EINVAL;
1382         }
1383
1384         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1385
1386         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1387         if (IS_ERR(mm))
1388                 return PTR_ERR(mm);
1389
1390         workload->shadow_mm = mm;
1391         return 0;
1392 }
1393
1394 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1395                 ((a)->lrca == (b)->lrca))
1396
1397 #define get_last_workload(q) \
1398         (list_empty(q) ? NULL : container_of(q->prev, \
1399         struct intel_vgpu_workload, list))
1400 /**
1401  * intel_vgpu_create_workload - create a vGPU workload
1402  * @vgpu: a vGPU
1403  * @ring_id: ring index
1404  * @desc: a guest context descriptor
1405  *
1406  * This function is called when creating a vGPU workload.
1407  *
1408  * Returns:
1409  * struct intel_vgpu_workload * on success, negative error code in
1410  * pointer if failed.
1411  *
1412  */
1413 struct intel_vgpu_workload *
1414 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1415                            struct execlist_ctx_descriptor_format *desc)
1416 {
1417         struct intel_vgpu_submission *s = &vgpu->submission;
1418         struct list_head *q = workload_q_head(vgpu, ring_id);
1419         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1420         struct intel_vgpu_workload *workload = NULL;
1421         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1422         u64 ring_context_gpa;
1423         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1424         int ret;
1425
1426         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1427                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1428         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1429                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1430                 return ERR_PTR(-EINVAL);
1431         }
1432
1433         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1434                         RING_CTX_OFF(ring_header.val), &head, 4);
1435
1436         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1437                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1438
1439         head &= RB_HEAD_OFF_MASK;
1440         tail &= RB_TAIL_OFF_MASK;
1441
1442         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1443                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1444                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1445                                 last_workload->rb_tail);
1446                 /*
1447                  * cannot use guest context head pointer here,
1448                  * as it might not be updated at this time
1449                  */
1450                 head = last_workload->rb_tail;
1451         }
1452
1453         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1454
1455         /* record some ring buffer register values for scan and shadow */
1456         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1457                         RING_CTX_OFF(rb_start.val), &start, 4);
1458         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1459                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1460         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1461                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1462
1463         workload = alloc_workload(vgpu);
1464         if (IS_ERR(workload))
1465                 return workload;
1466
1467         workload->ring_id = ring_id;
1468         workload->ctx_desc = *desc;
1469         workload->ring_context_gpa = ring_context_gpa;
1470         workload->rb_head = head;
1471         workload->rb_tail = tail;
1472         workload->rb_start = start;
1473         workload->rb_ctl = ctl;
1474
1475         if (ring_id == RCS0) {
1476                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1477                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1478                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1479                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1480
1481                 workload->wa_ctx.indirect_ctx.guest_gma =
1482                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1483                 workload->wa_ctx.indirect_ctx.size =
1484                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1485                         CACHELINE_BYTES;
1486                 workload->wa_ctx.per_ctx.guest_gma =
1487                         per_ctx & PER_CTX_ADDR_MASK;
1488                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1489         }
1490
1491         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1492                         workload, ring_id, head, tail, start, ctl);
1493
1494         ret = prepare_mm(workload);
1495         if (ret) {
1496                 kmem_cache_free(s->workloads, workload);
1497                 return ERR_PTR(ret);
1498         }
1499
1500         /* Only scan and shadow the first workload in the queue
1501          * as there is only one pre-allocated buf-obj for shadow.
1502          */
1503         if (list_empty(workload_q_head(vgpu, ring_id))) {
1504                 intel_runtime_pm_get(dev_priv);
1505                 mutex_lock(&dev_priv->drm.struct_mutex);
1506                 ret = intel_gvt_scan_and_shadow_workload(workload);
1507                 mutex_unlock(&dev_priv->drm.struct_mutex);
1508                 intel_runtime_pm_put_unchecked(dev_priv);
1509         }
1510
1511         if (ret) {
1512                 if (vgpu_is_vm_unhealthy(ret))
1513                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1514                 intel_vgpu_destroy_workload(workload);
1515                 return ERR_PTR(ret);
1516         }
1517
1518         return workload;
1519 }
1520
1521 /**
1522  * intel_vgpu_queue_workload - Qeue a vGPU workload
1523  * @workload: the workload to queue in
1524  */
1525 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1526 {
1527         list_add_tail(&workload->list,
1528                 workload_q_head(workload->vgpu, workload->ring_id));
1529         intel_gvt_kick_schedule(workload->vgpu->gvt);
1530         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1531 }