]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
8caf72c1e79425893160a2eecca0cd04e50d1b4e
[linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "gvt.h"
40
41 #define RING_CTX_OFF(x) \
42         offsetof(struct execlist_ring_context, x)
43
44 static void set_context_pdp_root_pointer(
45                 struct execlist_ring_context *ring_context,
46                 u32 pdp[8])
47 {
48         struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49         int i;
50
51         for (i = 0; i < 8; i++)
52                 pdp_pair[i].val = pdp[7 - i];
53 }
54
55 /*
56  * when populating shadow ctx from guest, we should not overrride oa related
57  * registers, so that they will not be overlapped by guest oa configs. Thus
58  * made it possible to capture oa data from host for both host and guests.
59  */
60 static void sr_oa_regs(struct intel_vgpu_workload *workload,
61                 u32 *reg_state, bool save)
62 {
63         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
64         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
65         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
66         int i = 0;
67         u32 flex_mmio[] = {
68                 i915_mmio_reg_offset(EU_PERF_CNTL0),
69                 i915_mmio_reg_offset(EU_PERF_CNTL1),
70                 i915_mmio_reg_offset(EU_PERF_CNTL2),
71                 i915_mmio_reg_offset(EU_PERF_CNTL3),
72                 i915_mmio_reg_offset(EU_PERF_CNTL4),
73                 i915_mmio_reg_offset(EU_PERF_CNTL5),
74                 i915_mmio_reg_offset(EU_PERF_CNTL6),
75         };
76
77         if (!workload || !reg_state || workload->ring_id != RCS)
78                 return;
79
80         if (save) {
81                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
82
83                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
84                         u32 state_offset = ctx_flexeu0 + i * 2;
85
86                         workload->flex_mmio[i] = reg_state[state_offset + 1];
87                 }
88         } else {
89                 reg_state[ctx_oactxctrl] =
90                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
91                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
92
93                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
94                         u32 state_offset = ctx_flexeu0 + i * 2;
95                         u32 mmio = flex_mmio[i];
96
97                         reg_state[state_offset] = mmio;
98                         reg_state[state_offset + 1] = workload->flex_mmio[i];
99                 }
100         }
101 }
102
103 static int populate_shadow_context(struct intel_vgpu_workload *workload)
104 {
105         struct intel_vgpu *vgpu = workload->vgpu;
106         struct intel_gvt *gvt = vgpu->gvt;
107         int ring_id = workload->ring_id;
108         struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
109         struct drm_i915_gem_object *ctx_obj =
110                 shadow_ctx->engine[ring_id].state->obj;
111         struct execlist_ring_context *shadow_ring_context;
112         struct page *page;
113         void *dst;
114         unsigned long context_gpa, context_page_num;
115         int i;
116
117         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
118                         workload->ctx_desc.lrca);
119
120         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
121
122         context_page_num = context_page_num >> PAGE_SHIFT;
123
124         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
125                 context_page_num = 19;
126
127         i = 2;
128
129         while (i < context_page_num) {
130                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
131                                 (u32)((workload->ctx_desc.lrca + i) <<
132                                 I915_GTT_PAGE_SHIFT));
133                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
134                         gvt_vgpu_err("Invalid guest context descriptor\n");
135                         return -EFAULT;
136                 }
137
138                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
139                 dst = kmap(page);
140                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
141                                 I915_GTT_PAGE_SIZE);
142                 kunmap(page);
143                 i++;
144         }
145
146         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
147         shadow_ring_context = kmap(page);
148
149         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
150 #define COPY_REG(name) \
151         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
153
154         COPY_REG(ctx_ctrl);
155         COPY_REG(ctx_timestamp);
156
157         if (ring_id == RCS) {
158                 COPY_REG(bb_per_ctx_ptr);
159                 COPY_REG(rcs_indirect_ctx);
160                 COPY_REG(rcs_indirect_ctx_offset);
161         }
162 #undef COPY_REG
163
164         set_context_pdp_root_pointer(shadow_ring_context,
165                                      workload->shadow_mm->shadow_page_table);
166
167         intel_gvt_hypervisor_read_gpa(vgpu,
168                         workload->ring_context_gpa +
169                         sizeof(*shadow_ring_context),
170                         (void *)shadow_ring_context +
171                         sizeof(*shadow_ring_context),
172                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
173
174         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
175         kunmap(page);
176         return 0;
177 }
178
179 static inline bool is_gvt_request(struct drm_i915_gem_request *req)
180 {
181         return i915_gem_context_force_single_submission(req->ctx);
182 }
183
184 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
185 {
186         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
187         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
188         i915_reg_t reg;
189
190         reg = RING_INSTDONE(ring_base);
191         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
192         reg = RING_ACTHD(ring_base);
193         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
194         reg = RING_ACTHD_UDW(ring_base);
195         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
196 }
197
198 static int shadow_context_status_change(struct notifier_block *nb,
199                 unsigned long action, void *data)
200 {
201         struct drm_i915_gem_request *req = (struct drm_i915_gem_request *)data;
202         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
203                                 shadow_ctx_notifier_block[req->engine->id]);
204         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
205         enum intel_engine_id ring_id = req->engine->id;
206         struct intel_vgpu_workload *workload;
207         unsigned long flags;
208
209         if (!is_gvt_request(req)) {
210                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
211                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
212                     scheduler->engine_owner[ring_id]) {
213                         /* Switch ring from vGPU to host. */
214                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
215                                               NULL, ring_id);
216                         scheduler->engine_owner[ring_id] = NULL;
217                 }
218                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
219
220                 return NOTIFY_OK;
221         }
222
223         workload = scheduler->current_workload[ring_id];
224         if (unlikely(!workload))
225                 return NOTIFY_OK;
226
227         switch (action) {
228         case INTEL_CONTEXT_SCHEDULE_IN:
229                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
230                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
231                         /* Switch ring from host to vGPU or vGPU to vGPU. */
232                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
233                                               workload->vgpu, ring_id);
234                         scheduler->engine_owner[ring_id] = workload->vgpu;
235                 } else
236                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
237                                       ring_id, workload->vgpu->id);
238                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
239                 atomic_set(&workload->shadow_ctx_active, 1);
240                 break;
241         case INTEL_CONTEXT_SCHEDULE_OUT:
242                 save_ring_hw_state(workload->vgpu, ring_id);
243                 atomic_set(&workload->shadow_ctx_active, 0);
244                 break;
245         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
246                 save_ring_hw_state(workload->vgpu, ring_id);
247                 break;
248         default:
249                 WARN_ON(1);
250                 return NOTIFY_OK;
251         }
252         wake_up(&workload->shadow_ctx_status_wq);
253         return NOTIFY_OK;
254 }
255
256 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
257                 struct intel_engine_cs *engine)
258 {
259         struct intel_context *ce = &ctx->engine[engine->id];
260         u64 desc = 0;
261
262         desc = ce->lrc_desc;
263
264         /* Update bits 0-11 of the context descriptor which includes flags
265          * like GEN8_CTX_* cached in desc_template
266          */
267         desc &= U64_MAX << 12;
268         desc |= ctx->desc_template & ((1ULL << 12) - 1);
269
270         ce->lrc_desc = desc;
271 }
272
273 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
274 {
275         struct intel_vgpu *vgpu = workload->vgpu;
276         void *shadow_ring_buffer_va;
277         u32 *cs;
278
279         /* allocate shadow ring buffer */
280         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
281         if (IS_ERR(cs)) {
282                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
283                         workload->rb_len);
284                 return PTR_ERR(cs);
285         }
286
287         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
288
289         /* get shadow ring buffer va */
290         workload->shadow_ring_buffer_va = cs;
291
292         memcpy(cs, shadow_ring_buffer_va,
293                         workload->rb_len);
294
295         cs += workload->rb_len / sizeof(u32);
296         intel_ring_advance(workload->req, cs);
297
298         return 0;
299 }
300
301 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
302 {
303         if (!wa_ctx->indirect_ctx.obj)
304                 return;
305
306         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
307         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
308 }
309
310 /**
311  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
312  * shadow it as well, include ringbuffer,wa_ctx and ctx.
313  * @workload: an abstract entity for each execlist submission.
314  *
315  * This function is called before the workload submitting to i915, to make
316  * sure the content of the workload is valid.
317  */
318 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
319 {
320         struct intel_vgpu *vgpu = workload->vgpu;
321         struct intel_vgpu_submission *s = &vgpu->submission;
322         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
323         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
324         int ring_id = workload->ring_id;
325         struct intel_engine_cs *engine = dev_priv->engine[ring_id];
326         struct intel_ring *ring;
327         int ret;
328
329         lockdep_assert_held(&dev_priv->drm.struct_mutex);
330
331         if (workload->shadowed)
332                 return 0;
333
334         shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
335         shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
336                                     GEN8_CTX_ADDRESSING_MODE_SHIFT;
337
338         if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
339                 shadow_context_descriptor_update(shadow_ctx,
340                                         dev_priv->engine[ring_id]);
341
342         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
343         if (ret)
344                 goto err_scan;
345
346         if ((workload->ring_id == RCS) &&
347             (workload->wa_ctx.indirect_ctx.size != 0)) {
348                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
349                 if (ret)
350                         goto err_scan;
351         }
352
353         /* pin shadow context by gvt even the shadow context will be pinned
354          * when i915 alloc request. That is because gvt will update the guest
355          * context from shadow context when workload is completed, and at that
356          * moment, i915 may already unpined the shadow context to make the
357          * shadow_ctx pages invalid. So gvt need to pin itself. After update
358          * the guest context, gvt can unpin the shadow_ctx safely.
359          */
360         ring = engine->context_pin(engine, shadow_ctx);
361         if (IS_ERR(ring)) {
362                 ret = PTR_ERR(ring);
363                 gvt_vgpu_err("fail to pin shadow context\n");
364                 goto err_shadow;
365         }
366
367         ret = populate_shadow_context(workload);
368         if (ret)
369                 goto err_unpin;
370         workload->shadowed = true;
371         return 0;
372
373 err_unpin:
374         engine->context_unpin(engine, shadow_ctx);
375 err_shadow:
376         release_shadow_wa_ctx(&workload->wa_ctx);
377 err_scan:
378         return ret;
379 }
380
381 static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
382 {
383         int ring_id = workload->ring_id;
384         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
385         struct intel_engine_cs *engine = dev_priv->engine[ring_id];
386         struct drm_i915_gem_request *rq;
387         struct intel_vgpu *vgpu = workload->vgpu;
388         struct intel_vgpu_submission *s = &vgpu->submission;
389         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
390         int ret;
391
392         rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
393         if (IS_ERR(rq)) {
394                 gvt_vgpu_err("fail to allocate gem request\n");
395                 ret = PTR_ERR(rq);
396                 goto err_unpin;
397         }
398
399         gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
400
401         workload->req = i915_gem_request_get(rq);
402         ret = copy_workload_to_ring_buffer(workload);
403         if (ret)
404                 goto err_unpin;
405         return 0;
406
407 err_unpin:
408         engine->context_unpin(engine, shadow_ctx);
409         release_shadow_wa_ctx(&workload->wa_ctx);
410         return ret;
411 }
412
413 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
414
415 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
416 {
417         struct intel_gvt *gvt = workload->vgpu->gvt;
418         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
419         struct intel_vgpu_shadow_bb *bb;
420         int ret;
421
422         list_for_each_entry(bb, &workload->shadow_bb, list) {
423                 bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0);
424                 if (IS_ERR(bb->vma)) {
425                         ret = PTR_ERR(bb->vma);
426                         goto err;
427                 }
428
429                 /* relocate shadow batch buffer */
430                 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
431                 if (gmadr_bytes == 8)
432                         bb->bb_start_cmd_va[2] = 0;
433
434                 /* No one is going to touch shadow bb from now on. */
435                 if (bb->clflush & CLFLUSH_AFTER) {
436                         drm_clflush_virt_range(bb->va, bb->obj->base.size);
437                         bb->clflush &= ~CLFLUSH_AFTER;
438                 }
439
440                 ret = i915_gem_object_set_to_gtt_domain(bb->obj, false);
441                 if (ret)
442                         goto err;
443
444                 i915_gem_obj_finish_shmem_access(bb->obj);
445                 bb->accessing = false;
446
447                 i915_vma_move_to_active(bb->vma, workload->req, 0);
448         }
449         return 0;
450 err:
451         release_shadow_batch_buffer(workload);
452         return ret;
453 }
454
455 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
456 {
457         struct intel_vgpu_workload *workload = container_of(wa_ctx,
458                                         struct intel_vgpu_workload,
459                                         wa_ctx);
460         int ring_id = workload->ring_id;
461         struct intel_vgpu_submission *s = &workload->vgpu->submission;
462         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
463         struct drm_i915_gem_object *ctx_obj =
464                 shadow_ctx->engine[ring_id].state->obj;
465         struct execlist_ring_context *shadow_ring_context;
466         struct page *page;
467
468         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
469         shadow_ring_context = kmap_atomic(page);
470
471         shadow_ring_context->bb_per_ctx_ptr.val =
472                 (shadow_ring_context->bb_per_ctx_ptr.val &
473                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
474         shadow_ring_context->rcs_indirect_ctx.val =
475                 (shadow_ring_context->rcs_indirect_ctx.val &
476                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
477
478         kunmap_atomic(shadow_ring_context);
479         return 0;
480 }
481
482 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
483 {
484         struct i915_vma *vma;
485         unsigned char *per_ctx_va =
486                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
487                 wa_ctx->indirect_ctx.size;
488
489         if (wa_ctx->indirect_ctx.size == 0)
490                 return 0;
491
492         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
493                                        0, CACHELINE_BYTES, 0);
494         if (IS_ERR(vma))
495                 return PTR_ERR(vma);
496
497         /* FIXME: we are not tracking our pinned VMA leaving it
498          * up to the core to fix up the stray pin_count upon
499          * free.
500          */
501
502         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
503
504         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
505         memset(per_ctx_va, 0, CACHELINE_BYTES);
506
507         update_wa_ctx_2_shadow_ctx(wa_ctx);
508         return 0;
509 }
510
511 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
512 {
513         struct intel_vgpu *vgpu = workload->vgpu;
514         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
515         struct intel_vgpu_shadow_bb *bb, *pos;
516
517         if (list_empty(&workload->shadow_bb))
518                 return;
519
520         bb = list_first_entry(&workload->shadow_bb,
521                         struct intel_vgpu_shadow_bb, list);
522
523         mutex_lock(&dev_priv->drm.struct_mutex);
524
525         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
526                 if (bb->obj) {
527                         if (bb->accessing)
528                                 i915_gem_obj_finish_shmem_access(bb->obj);
529
530                         if (bb->va && !IS_ERR(bb->va))
531                                 i915_gem_object_unpin_map(bb->obj);
532
533                         if (bb->vma && !IS_ERR(bb->vma)) {
534                                 i915_vma_unpin(bb->vma);
535                                 i915_vma_close(bb->vma);
536                         }
537                         __i915_gem_object_release_unless_active(bb->obj);
538                 }
539                 list_del(&bb->list);
540                 kfree(bb);
541         }
542
543         mutex_unlock(&dev_priv->drm.struct_mutex);
544 }
545
546 static int prepare_workload(struct intel_vgpu_workload *workload)
547 {
548         struct intel_vgpu *vgpu = workload->vgpu;
549         int ret = 0;
550
551         ret = intel_vgpu_pin_mm(workload->shadow_mm);
552         if (ret) {
553                 gvt_vgpu_err("fail to vgpu pin mm\n");
554                 return ret;
555         }
556
557         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
558         if (ret) {
559                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
560                 goto err_unpin_mm;
561         }
562
563         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
564         if (ret) {
565                 gvt_vgpu_err("fail to flush post shadow\n");
566                 goto err_unpin_mm;
567         }
568
569         ret = intel_gvt_generate_request(workload);
570         if (ret) {
571                 gvt_vgpu_err("fail to generate request\n");
572                 goto err_unpin_mm;
573         }
574
575         ret = prepare_shadow_batch_buffer(workload);
576         if (ret) {
577                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
578                 goto err_unpin_mm;
579         }
580
581         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
582         if (ret) {
583                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
584                 goto err_shadow_batch;
585         }
586
587         if (workload->prepare) {
588                 ret = workload->prepare(workload);
589                 if (ret)
590                         goto err_shadow_wa_ctx;
591         }
592
593         return 0;
594 err_shadow_wa_ctx:
595         release_shadow_wa_ctx(&workload->wa_ctx);
596 err_shadow_batch:
597         release_shadow_batch_buffer(workload);
598 err_unpin_mm:
599         intel_vgpu_unpin_mm(workload->shadow_mm);
600         return ret;
601 }
602
603 static int dispatch_workload(struct intel_vgpu_workload *workload)
604 {
605         struct intel_vgpu *vgpu = workload->vgpu;
606         struct intel_vgpu_submission *s = &vgpu->submission;
607         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
608         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
609         int ring_id = workload->ring_id;
610         struct intel_engine_cs *engine = dev_priv->engine[ring_id];
611         int ret = 0;
612
613         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
614                 ring_id, workload);
615
616         mutex_lock(&dev_priv->drm.struct_mutex);
617
618         ret = intel_gvt_scan_and_shadow_workload(workload);
619         if (ret)
620                 goto out;
621
622         ret = prepare_workload(workload);
623         if (ret) {
624                 engine->context_unpin(engine, shadow_ctx);
625                 goto out;
626         }
627
628 out:
629         if (ret)
630                 workload->status = ret;
631
632         if (!IS_ERR_OR_NULL(workload->req)) {
633                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
634                                 ring_id, workload->req);
635                 i915_add_request(workload->req);
636                 workload->dispatched = true;
637         }
638
639         mutex_unlock(&dev_priv->drm.struct_mutex);
640         return ret;
641 }
642
643 static struct intel_vgpu_workload *pick_next_workload(
644                 struct intel_gvt *gvt, int ring_id)
645 {
646         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
647         struct intel_vgpu_workload *workload = NULL;
648
649         mutex_lock(&gvt->lock);
650
651         /*
652          * no current vgpu / will be scheduled out / no workload
653          * bail out
654          */
655         if (!scheduler->current_vgpu) {
656                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
657                 goto out;
658         }
659
660         if (scheduler->need_reschedule) {
661                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
662                 goto out;
663         }
664
665         if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
666                 goto out;
667
668         /*
669          * still have current workload, maybe the workload disptacher
670          * fail to submit it for some reason, resubmit it.
671          */
672         if (scheduler->current_workload[ring_id]) {
673                 workload = scheduler->current_workload[ring_id];
674                 gvt_dbg_sched("ring id %d still have current workload %p\n",
675                                 ring_id, workload);
676                 goto out;
677         }
678
679         /*
680          * pick a workload as current workload
681          * once current workload is set, schedule policy routines
682          * will wait the current workload is finished when trying to
683          * schedule out a vgpu.
684          */
685         scheduler->current_workload[ring_id] = container_of(
686                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
687                         struct intel_vgpu_workload, list);
688
689         workload = scheduler->current_workload[ring_id];
690
691         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
692
693         atomic_inc(&workload->vgpu->submission.running_workload_num);
694 out:
695         mutex_unlock(&gvt->lock);
696         return workload;
697 }
698
699 static void update_guest_context(struct intel_vgpu_workload *workload)
700 {
701         struct intel_vgpu *vgpu = workload->vgpu;
702         struct intel_gvt *gvt = vgpu->gvt;
703         struct intel_vgpu_submission *s = &vgpu->submission;
704         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
705         int ring_id = workload->ring_id;
706         struct drm_i915_gem_object *ctx_obj =
707                 shadow_ctx->engine[ring_id].state->obj;
708         struct execlist_ring_context *shadow_ring_context;
709         struct page *page;
710         void *src;
711         unsigned long context_gpa, context_page_num;
712         int i;
713
714         gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
715                         workload->ctx_desc.lrca);
716
717         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
718
719         context_page_num = context_page_num >> PAGE_SHIFT;
720
721         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
722                 context_page_num = 19;
723
724         i = 2;
725
726         while (i < context_page_num) {
727                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
728                                 (u32)((workload->ctx_desc.lrca + i) <<
729                                         I915_GTT_PAGE_SHIFT));
730                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
731                         gvt_vgpu_err("invalid guest context descriptor\n");
732                         return;
733                 }
734
735                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
736                 src = kmap(page);
737                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
738                                 I915_GTT_PAGE_SIZE);
739                 kunmap(page);
740                 i++;
741         }
742
743         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
744                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
745
746         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
747         shadow_ring_context = kmap(page);
748
749 #define COPY_REG(name) \
750         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
751                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
752
753         COPY_REG(ctx_ctrl);
754         COPY_REG(ctx_timestamp);
755
756 #undef COPY_REG
757
758         intel_gvt_hypervisor_write_gpa(vgpu,
759                         workload->ring_context_gpa +
760                         sizeof(*shadow_ring_context),
761                         (void *)shadow_ring_context +
762                         sizeof(*shadow_ring_context),
763                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
764
765         kunmap(page);
766 }
767
768 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
769 {
770         struct intel_vgpu_submission *s = &vgpu->submission;
771         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
772         struct intel_engine_cs *engine;
773         struct intel_vgpu_workload *pos, *n;
774         unsigned int tmp;
775
776         /* free the unsubmited workloads in the queues. */
777         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
778                 list_for_each_entry_safe(pos, n,
779                         &s->workload_q_head[engine->id], list) {
780                         list_del_init(&pos->list);
781                         intel_vgpu_destroy_workload(pos);
782                 }
783                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
784         }
785 }
786
787 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
788 {
789         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
790         struct intel_vgpu_workload *workload =
791                 scheduler->current_workload[ring_id];
792         struct intel_vgpu *vgpu = workload->vgpu;
793         struct intel_vgpu_submission *s = &vgpu->submission;
794         int event;
795
796         mutex_lock(&gvt->lock);
797
798         /* For the workload w/ request, needs to wait for the context
799          * switch to make sure request is completed.
800          * For the workload w/o request, directly complete the workload.
801          */
802         if (workload->req) {
803                 struct drm_i915_private *dev_priv =
804                         workload->vgpu->gvt->dev_priv;
805                 struct intel_engine_cs *engine =
806                         dev_priv->engine[workload->ring_id];
807                 wait_event(workload->shadow_ctx_status_wq,
808                            !atomic_read(&workload->shadow_ctx_active));
809
810                 /* If this request caused GPU hang, req->fence.error will
811                  * be set to -EIO. Use -EIO to set workload status so
812                  * that when this request caused GPU hang, didn't trigger
813                  * context switch interrupt to guest.
814                  */
815                 if (likely(workload->status == -EINPROGRESS)) {
816                         if (workload->req->fence.error == -EIO)
817                                 workload->status = -EIO;
818                         else
819                                 workload->status = 0;
820                 }
821
822                 i915_gem_request_put(fetch_and_zero(&workload->req));
823
824                 if (!workload->status && !(vgpu->resetting_eng &
825                                            ENGINE_MASK(ring_id))) {
826                         update_guest_context(workload);
827
828                         for_each_set_bit(event, workload->pending_events,
829                                          INTEL_GVT_EVENT_MAX)
830                                 intel_vgpu_trigger_virtual_event(vgpu, event);
831                 }
832                 mutex_lock(&dev_priv->drm.struct_mutex);
833                 /* unpin shadow ctx as the shadow_ctx update is done */
834                 engine->context_unpin(engine, s->shadow_ctx);
835                 mutex_unlock(&dev_priv->drm.struct_mutex);
836         }
837
838         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
839                         ring_id, workload, workload->status);
840
841         scheduler->current_workload[ring_id] = NULL;
842
843         list_del_init(&workload->list);
844
845         if (!workload->status) {
846                 release_shadow_batch_buffer(workload);
847                 release_shadow_wa_ctx(&workload->wa_ctx);
848         }
849
850         if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
851                 /* if workload->status is not successful means HW GPU
852                  * has occurred GPU hang or something wrong with i915/GVT,
853                  * and GVT won't inject context switch interrupt to guest.
854                  * So this error is a vGPU hang actually to the guest.
855                  * According to this we should emunlate a vGPU hang. If
856                  * there are pending workloads which are already submitted
857                  * from guest, we should clean them up like HW GPU does.
858                  *
859                  * if it is in middle of engine resetting, the pending
860                  * workloads won't be submitted to HW GPU and will be
861                  * cleaned up during the resetting process later, so doing
862                  * the workload clean up here doesn't have any impact.
863                  **/
864                 clean_workloads(vgpu, ENGINE_MASK(ring_id));
865         }
866
867         workload->complete(workload);
868
869         atomic_dec(&s->running_workload_num);
870         wake_up(&scheduler->workload_complete_wq);
871
872         if (gvt->scheduler.need_reschedule)
873                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
874
875         mutex_unlock(&gvt->lock);
876 }
877
878 struct workload_thread_param {
879         struct intel_gvt *gvt;
880         int ring_id;
881 };
882
883 static int workload_thread(void *priv)
884 {
885         struct workload_thread_param *p = (struct workload_thread_param *)priv;
886         struct intel_gvt *gvt = p->gvt;
887         int ring_id = p->ring_id;
888         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
889         struct intel_vgpu_workload *workload = NULL;
890         struct intel_vgpu *vgpu = NULL;
891         int ret;
892         bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
893                         || IS_KABYLAKE(gvt->dev_priv);
894         DEFINE_WAIT_FUNC(wait, woken_wake_function);
895
896         kfree(p);
897
898         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
899
900         while (!kthread_should_stop()) {
901                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
902                 do {
903                         workload = pick_next_workload(gvt, ring_id);
904                         if (workload)
905                                 break;
906                         wait_woken(&wait, TASK_INTERRUPTIBLE,
907                                    MAX_SCHEDULE_TIMEOUT);
908                 } while (!kthread_should_stop());
909                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
910
911                 if (!workload)
912                         break;
913
914                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
915                                 workload->ring_id, workload,
916                                 workload->vgpu->id);
917
918                 intel_runtime_pm_get(gvt->dev_priv);
919
920                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
921                                 workload->ring_id, workload);
922
923                 if (need_force_wake)
924                         intel_uncore_forcewake_get(gvt->dev_priv,
925                                         FORCEWAKE_ALL);
926
927                 mutex_lock(&gvt->lock);
928                 ret = dispatch_workload(workload);
929                 mutex_unlock(&gvt->lock);
930
931                 if (ret) {
932                         vgpu = workload->vgpu;
933                         gvt_vgpu_err("fail to dispatch workload, skip\n");
934                         goto complete;
935                 }
936
937                 gvt_dbg_sched("ring id %d wait workload %p\n",
938                                 workload->ring_id, workload);
939                 i915_wait_request(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
940
941 complete:
942                 gvt_dbg_sched("will complete workload %p, status: %d\n",
943                                 workload, workload->status);
944
945                 complete_current_workload(gvt, ring_id);
946
947                 if (need_force_wake)
948                         intel_uncore_forcewake_put(gvt->dev_priv,
949                                         FORCEWAKE_ALL);
950
951                 intel_runtime_pm_put(gvt->dev_priv);
952                 if (ret && (vgpu_is_vm_unhealthy(ret)))
953                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
954         }
955         return 0;
956 }
957
958 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
959 {
960         struct intel_vgpu_submission *s = &vgpu->submission;
961         struct intel_gvt *gvt = vgpu->gvt;
962         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
963
964         if (atomic_read(&s->running_workload_num)) {
965                 gvt_dbg_sched("wait vgpu idle\n");
966
967                 wait_event(scheduler->workload_complete_wq,
968                                 !atomic_read(&s->running_workload_num));
969         }
970 }
971
972 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
973 {
974         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
975         struct intel_engine_cs *engine;
976         enum intel_engine_id i;
977
978         gvt_dbg_core("clean workload scheduler\n");
979
980         for_each_engine(engine, gvt->dev_priv, i) {
981                 atomic_notifier_chain_unregister(
982                                         &engine->context_status_notifier,
983                                         &gvt->shadow_ctx_notifier_block[i]);
984                 kthread_stop(scheduler->thread[i]);
985         }
986 }
987
988 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
989 {
990         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
991         struct workload_thread_param *param = NULL;
992         struct intel_engine_cs *engine;
993         enum intel_engine_id i;
994         int ret;
995
996         gvt_dbg_core("init workload scheduler\n");
997
998         init_waitqueue_head(&scheduler->workload_complete_wq);
999
1000         for_each_engine(engine, gvt->dev_priv, i) {
1001                 init_waitqueue_head(&scheduler->waitq[i]);
1002
1003                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1004                 if (!param) {
1005                         ret = -ENOMEM;
1006                         goto err;
1007                 }
1008
1009                 param->gvt = gvt;
1010                 param->ring_id = i;
1011
1012                 scheduler->thread[i] = kthread_run(workload_thread, param,
1013                         "gvt workload %d", i);
1014                 if (IS_ERR(scheduler->thread[i])) {
1015                         gvt_err("fail to create workload thread\n");
1016                         ret = PTR_ERR(scheduler->thread[i]);
1017                         goto err;
1018                 }
1019
1020                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1021                                         shadow_context_status_change;
1022                 atomic_notifier_chain_register(&engine->context_status_notifier,
1023                                         &gvt->shadow_ctx_notifier_block[i]);
1024         }
1025         return 0;
1026 err:
1027         intel_gvt_clean_workload_scheduler(gvt);
1028         kfree(param);
1029         param = NULL;
1030         return ret;
1031 }
1032
1033 /**
1034  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1035  * @vgpu: a vGPU
1036  *
1037  * This function is called when a vGPU is being destroyed.
1038  *
1039  */
1040 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1041 {
1042         struct intel_vgpu_submission *s = &vgpu->submission;
1043
1044         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1045         i915_gem_context_put(s->shadow_ctx);
1046         kmem_cache_destroy(s->workloads);
1047 }
1048
1049
1050 /**
1051  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1052  * @vgpu: a vGPU
1053  * @engine_mask: engines expected to be reset
1054  *
1055  * This function is called when a vGPU is being destroyed.
1056  *
1057  */
1058 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1059                 unsigned long engine_mask)
1060 {
1061         struct intel_vgpu_submission *s = &vgpu->submission;
1062
1063         if (!s->active)
1064                 return;
1065
1066         clean_workloads(vgpu, engine_mask);
1067         s->ops->reset(vgpu, engine_mask);
1068 }
1069
1070 /**
1071  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1072  * @vgpu: a vGPU
1073  *
1074  * This function is called when a vGPU is being created.
1075  *
1076  * Returns:
1077  * Zero on success, negative error code if failed.
1078  *
1079  */
1080 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1081 {
1082         struct intel_vgpu_submission *s = &vgpu->submission;
1083         enum intel_engine_id i;
1084         struct intel_engine_cs *engine;
1085         int ret;
1086
1087         s->shadow_ctx = i915_gem_context_create_gvt(
1088                         &vgpu->gvt->dev_priv->drm);
1089         if (IS_ERR(s->shadow_ctx))
1090                 return PTR_ERR(s->shadow_ctx);
1091
1092         if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv))
1093                 s->shadow_ctx->priority = INT_MAX;
1094
1095         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1096
1097         s->workloads = kmem_cache_create("gvt-g_vgpu_workload",
1098                         sizeof(struct intel_vgpu_workload), 0,
1099                         SLAB_HWCACHE_ALIGN,
1100                         NULL);
1101
1102         if (!s->workloads) {
1103                 ret = -ENOMEM;
1104                 goto out_shadow_ctx;
1105         }
1106
1107         for_each_engine(engine, vgpu->gvt->dev_priv, i)
1108                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1109
1110         atomic_set(&s->running_workload_num, 0);
1111         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1112
1113         return 0;
1114
1115 out_shadow_ctx:
1116         i915_gem_context_put(s->shadow_ctx);
1117         return ret;
1118 }
1119
1120 /**
1121  * intel_vgpu_select_submission_ops - select virtual submission interface
1122  * @vgpu: a vGPU
1123  * @interface: expected vGPU virtual submission interface
1124  *
1125  * This function is called when guest configures submission interface.
1126  *
1127  * Returns:
1128  * Zero on success, negative error code if failed.
1129  *
1130  */
1131 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1132                                      unsigned long engine_mask,
1133                                      unsigned int interface)
1134 {
1135         struct intel_vgpu_submission *s = &vgpu->submission;
1136         const struct intel_vgpu_submission_ops *ops[] = {
1137                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1138                         &intel_vgpu_execlist_submission_ops,
1139         };
1140         int ret;
1141
1142         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1143                 return -EINVAL;
1144
1145         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1146                 return -EINVAL;
1147
1148         if (s->active)
1149                 s->ops->clean(vgpu, engine_mask);
1150
1151         if (interface == 0) {
1152                 s->ops = NULL;
1153                 s->virtual_submission_interface = 0;
1154                 s->active = false;
1155                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1156                 return 0;
1157         }
1158
1159         ret = ops[interface]->init(vgpu, engine_mask);
1160         if (ret)
1161                 return ret;
1162
1163         s->ops = ops[interface];
1164         s->virtual_submission_interface = interface;
1165         s->active = true;
1166
1167         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1168                         vgpu->id, s->ops->name);
1169
1170         return 0;
1171 }
1172
1173 /**
1174  * intel_vgpu_destroy_workload - destroy a vGPU workload
1175  * @vgpu: a vGPU
1176  *
1177  * This function is called when destroy a vGPU workload.
1178  *
1179  */
1180 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1181 {
1182         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1183
1184         if (workload->shadow_mm)
1185                 intel_gvt_mm_unreference(workload->shadow_mm);
1186
1187         kmem_cache_free(s->workloads, workload);
1188 }
1189
1190 static struct intel_vgpu_workload *
1191 alloc_workload(struct intel_vgpu *vgpu)
1192 {
1193         struct intel_vgpu_submission *s = &vgpu->submission;
1194         struct intel_vgpu_workload *workload;
1195
1196         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1197         if (!workload)
1198                 return ERR_PTR(-ENOMEM);
1199
1200         INIT_LIST_HEAD(&workload->list);
1201         INIT_LIST_HEAD(&workload->shadow_bb);
1202
1203         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1204         atomic_set(&workload->shadow_ctx_active, 0);
1205
1206         workload->status = -EINPROGRESS;
1207         workload->shadowed = false;
1208         workload->vgpu = vgpu;
1209
1210         return workload;
1211 }
1212
1213 #define RING_CTX_OFF(x) \
1214         offsetof(struct execlist_ring_context, x)
1215
1216 static void read_guest_pdps(struct intel_vgpu *vgpu,
1217                 u64 ring_context_gpa, u32 pdp[8])
1218 {
1219         u64 gpa;
1220         int i;
1221
1222         gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
1223
1224         for (i = 0; i < 8; i++)
1225                 intel_gvt_hypervisor_read_gpa(vgpu,
1226                                 gpa + i * 8, &pdp[7 - i], 4);
1227 }
1228
1229 static int prepare_mm(struct intel_vgpu_workload *workload)
1230 {
1231         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1232         struct intel_vgpu_mm *mm;
1233         struct intel_vgpu *vgpu = workload->vgpu;
1234         int page_table_level;
1235         u32 pdp[8];
1236
1237         if (desc->addressing_mode == 1) { /* legacy 32-bit */
1238                 page_table_level = 3;
1239         } else if (desc->addressing_mode == 3) { /* legacy 64 bit */
1240                 page_table_level = 4;
1241         } else {
1242                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1243                 return -EINVAL;
1244         }
1245
1246         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
1247
1248         mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
1249         if (mm) {
1250                 intel_gvt_mm_reference(mm);
1251         } else {
1252
1253                 mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
1254                                 pdp, page_table_level, 0);
1255                 if (IS_ERR(mm)) {
1256                         gvt_vgpu_err("fail to create mm object.\n");
1257                         return PTR_ERR(mm);
1258                 }
1259         }
1260         workload->shadow_mm = mm;
1261         return 0;
1262 }
1263
1264 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1265                 ((a)->lrca == (b)->lrca))
1266
1267 #define get_last_workload(q) \
1268         (list_empty(q) ? NULL : container_of(q->prev, \
1269         struct intel_vgpu_workload, list))
1270 /**
1271  * intel_vgpu_create_workload - create a vGPU workload
1272  * @vgpu: a vGPU
1273  * @desc: a guest context descriptor
1274  *
1275  * This function is called when creating a vGPU workload.
1276  *
1277  * Returns:
1278  * struct intel_vgpu_workload * on success, negative error code in
1279  * pointer if failed.
1280  *
1281  */
1282 struct intel_vgpu_workload *
1283 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1284                            struct execlist_ctx_descriptor_format *desc)
1285 {
1286         struct intel_vgpu_submission *s = &vgpu->submission;
1287         struct list_head *q = workload_q_head(vgpu, ring_id);
1288         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1289         struct intel_vgpu_workload *workload = NULL;
1290         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1291         u64 ring_context_gpa;
1292         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1293         int ret;
1294
1295         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1296                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1297         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1298                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1299                 return ERR_PTR(-EINVAL);
1300         }
1301
1302         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1303                         RING_CTX_OFF(ring_header.val), &head, 4);
1304
1305         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1306                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1307
1308         head &= RB_HEAD_OFF_MASK;
1309         tail &= RB_TAIL_OFF_MASK;
1310
1311         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1312                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1313                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1314                                 last_workload->rb_tail);
1315                 /*
1316                  * cannot use guest context head pointer here,
1317                  * as it might not be updated at this time
1318                  */
1319                 head = last_workload->rb_tail;
1320         }
1321
1322         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1323
1324         /* record some ring buffer register values for scan and shadow */
1325         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1326                         RING_CTX_OFF(rb_start.val), &start, 4);
1327         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1328                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1329         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1330                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1331
1332         workload = alloc_workload(vgpu);
1333         if (IS_ERR(workload))
1334                 return workload;
1335
1336         workload->ring_id = ring_id;
1337         workload->ctx_desc = *desc;
1338         workload->ring_context_gpa = ring_context_gpa;
1339         workload->rb_head = head;
1340         workload->rb_tail = tail;
1341         workload->rb_start = start;
1342         workload->rb_ctl = ctl;
1343
1344         if (ring_id == RCS) {
1345                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1346                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1347                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1348                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1349
1350                 workload->wa_ctx.indirect_ctx.guest_gma =
1351                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1352                 workload->wa_ctx.indirect_ctx.size =
1353                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1354                         CACHELINE_BYTES;
1355                 workload->wa_ctx.per_ctx.guest_gma =
1356                         per_ctx & PER_CTX_ADDR_MASK;
1357                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1358         }
1359
1360         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1361                         workload, ring_id, head, tail, start, ctl);
1362
1363         ret = prepare_mm(workload);
1364         if (ret) {
1365                 kmem_cache_free(s->workloads, workload);
1366                 return ERR_PTR(ret);
1367         }
1368
1369         /* Only scan and shadow the first workload in the queue
1370          * as there is only one pre-allocated buf-obj for shadow.
1371          */
1372         if (list_empty(workload_q_head(vgpu, ring_id))) {
1373                 intel_runtime_pm_get(dev_priv);
1374                 mutex_lock(&dev_priv->drm.struct_mutex);
1375                 ret = intel_gvt_scan_and_shadow_workload(workload);
1376                 mutex_unlock(&dev_priv->drm.struct_mutex);
1377                 intel_runtime_pm_put(dev_priv);
1378         }
1379
1380         if (ret && (vgpu_is_vm_unhealthy(ret))) {
1381                 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1382                 intel_vgpu_destroy_workload(workload);
1383                 return ERR_PTR(ret);
1384         }
1385
1386         return workload;
1387 }
1388
1389 /**
1390  * intel_vgpu_queue_workload - Qeue a vGPU workload
1391  * @workload: the workload to queue in
1392  */
1393 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1394 {
1395         list_add_tail(&workload->list,
1396                 workload_q_head(workload->vgpu, workload->ring_id));
1397         intel_gvt_kick_schedule(workload->vgpu->gvt);
1398         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1399 }