]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
drm/i915/gvt: Enable gfx virtualiztion for CFL
[linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "gvt.h"
40
41 #define RING_CTX_OFF(x) \
42         offsetof(struct execlist_ring_context, x)
43
44 static void set_context_pdp_root_pointer(
45                 struct execlist_ring_context *ring_context,
46                 u32 pdp[8])
47 {
48         int i;
49
50         for (i = 0; i < 8; i++)
51                 ring_context->pdps[i].val = pdp[7 - i];
52 }
53
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56         struct drm_i915_gem_object *ctx_obj =
57                 workload->req->hw_context->state->obj;
58         struct execlist_ring_context *shadow_ring_context;
59         struct page *page;
60
61         if (WARN_ON(!workload->shadow_mm))
62                 return;
63
64         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65                 return;
66
67         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68         shadow_ring_context = kmap(page);
69         set_context_pdp_root_pointer(shadow_ring_context,
70                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71         kunmap(page);
72 }
73
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80                 u32 *reg_state, bool save)
81 {
82         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85         int i = 0;
86         u32 flex_mmio[] = {
87                 i915_mmio_reg_offset(EU_PERF_CNTL0),
88                 i915_mmio_reg_offset(EU_PERF_CNTL1),
89                 i915_mmio_reg_offset(EU_PERF_CNTL2),
90                 i915_mmio_reg_offset(EU_PERF_CNTL3),
91                 i915_mmio_reg_offset(EU_PERF_CNTL4),
92                 i915_mmio_reg_offset(EU_PERF_CNTL5),
93                 i915_mmio_reg_offset(EU_PERF_CNTL6),
94         };
95
96         if (workload->ring_id != RCS)
97                 return;
98
99         if (save) {
100                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101
102                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103                         u32 state_offset = ctx_flexeu0 + i * 2;
104
105                         workload->flex_mmio[i] = reg_state[state_offset + 1];
106                 }
107         } else {
108                 reg_state[ctx_oactxctrl] =
109                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111
112                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113                         u32 state_offset = ctx_flexeu0 + i * 2;
114                         u32 mmio = flex_mmio[i];
115
116                         reg_state[state_offset] = mmio;
117                         reg_state[state_offset + 1] = workload->flex_mmio[i];
118                 }
119         }
120 }
121
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124         struct intel_vgpu *vgpu = workload->vgpu;
125         struct intel_gvt *gvt = vgpu->gvt;
126         int ring_id = workload->ring_id;
127         struct drm_i915_gem_object *ctx_obj =
128                 workload->req->hw_context->state->obj;
129         struct execlist_ring_context *shadow_ring_context;
130         struct page *page;
131         void *dst;
132         unsigned long context_gpa, context_page_num;
133         int i;
134
135         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136         shadow_ring_context = kmap(page);
137
138         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144                                               + RING_CTX_OFF(name.val),\
145                                               &shadow_ring_context->name.val, 4);\
146                 shadow_ring_context->name.val |= 0xffff << 16;\
147         }
148
149         COPY_REG_MASKED(ctx_ctrl);
150         COPY_REG(ctx_timestamp);
151
152         if (ring_id == RCS) {
153                 COPY_REG(bb_per_ctx_ptr);
154                 COPY_REG(rcs_indirect_ctx);
155                 COPY_REG(rcs_indirect_ctx_offset);
156         }
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159
160         intel_gvt_hypervisor_read_gpa(vgpu,
161                         workload->ring_context_gpa +
162                         sizeof(*shadow_ring_context),
163                         (void *)shadow_ring_context +
164                         sizeof(*shadow_ring_context),
165                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166
167         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168         kunmap(page);
169
170         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171                 return 0;
172
173         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174                         workload->ctx_desc.lrca);
175
176         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177
178         context_page_num = context_page_num >> PAGE_SHIFT;
179
180         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
181                 context_page_num = 19;
182
183         i = 2;
184         while (i < context_page_num) {
185                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186                                 (u32)((workload->ctx_desc.lrca + i) <<
187                                 I915_GTT_PAGE_SHIFT));
188                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189                         gvt_vgpu_err("Invalid guest context descriptor\n");
190                         return -EFAULT;
191                 }
192
193                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194                 dst = kmap(page);
195                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196                                 I915_GTT_PAGE_SIZE);
197                 kunmap(page);
198                 i++;
199         }
200         return 0;
201 }
202
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205         return i915_gem_context_force_single_submission(req->gem_context);
206 }
207
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212         i915_reg_t reg;
213
214         reg = RING_INSTDONE(ring_base);
215         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216         reg = RING_ACTHD(ring_base);
217         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218         reg = RING_ACTHD_UDW(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221
222 static int shadow_context_status_change(struct notifier_block *nb,
223                 unsigned long action, void *data)
224 {
225         struct i915_request *req = data;
226         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227                                 shadow_ctx_notifier_block[req->engine->id]);
228         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229         enum intel_engine_id ring_id = req->engine->id;
230         struct intel_vgpu_workload *workload;
231         unsigned long flags;
232
233         if (!is_gvt_request(req)) {
234                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236                     scheduler->engine_owner[ring_id]) {
237                         /* Switch ring from vGPU to host. */
238                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239                                               NULL, ring_id);
240                         scheduler->engine_owner[ring_id] = NULL;
241                 }
242                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243
244                 return NOTIFY_OK;
245         }
246
247         workload = scheduler->current_workload[ring_id];
248         if (unlikely(!workload))
249                 return NOTIFY_OK;
250
251         switch (action) {
252         case INTEL_CONTEXT_SCHEDULE_IN:
253                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255                         /* Switch ring from host to vGPU or vGPU to vGPU. */
256                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257                                               workload->vgpu, ring_id);
258                         scheduler->engine_owner[ring_id] = workload->vgpu;
259                 } else
260                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261                                       ring_id, workload->vgpu->id);
262                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263                 atomic_set(&workload->shadow_ctx_active, 1);
264                 break;
265         case INTEL_CONTEXT_SCHEDULE_OUT:
266                 save_ring_hw_state(workload->vgpu, ring_id);
267                 atomic_set(&workload->shadow_ctx_active, 0);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 break;
272         default:
273                 WARN_ON(1);
274                 return NOTIFY_OK;
275         }
276         wake_up(&workload->shadow_ctx_status_wq);
277         return NOTIFY_OK;
278 }
279
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282         u64 desc = 0;
283
284         desc = ce->lrc_desc;
285
286         /* Update bits 0-11 of the context descriptor which includes flags
287          * like GEN8_CTX_* cached in desc_template
288          */
289         desc &= U64_MAX << 12;
290         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291
292         ce->lrc_desc = desc;
293 }
294
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297         struct intel_vgpu *vgpu = workload->vgpu;
298         struct i915_request *req = workload->req;
299         void *shadow_ring_buffer_va;
300         u32 *cs;
301
302         if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)
303                 || IS_COFFEELAKE(req->i915))
304                 && is_inhibit_context(req->hw_context))
305                 intel_vgpu_restore_inhibit_context(vgpu, req);
306
307         /* allocate shadow ring buffer */
308         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309         if (IS_ERR(cs)) {
310                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
311                         workload->rb_len);
312                 return PTR_ERR(cs);
313         }
314
315         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316
317         /* get shadow ring buffer va */
318         workload->shadow_ring_buffer_va = cs;
319
320         memcpy(cs, shadow_ring_buffer_va,
321                         workload->rb_len);
322
323         cs += workload->rb_len / sizeof(u32);
324         intel_ring_advance(workload->req, cs);
325
326         return 0;
327 }
328
329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 {
331         if (!wa_ctx->indirect_ctx.obj)
332                 return;
333
334         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
335         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
336 }
337
338 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
339                                          struct i915_gem_context *ctx)
340 {
341         struct intel_vgpu_mm *mm = workload->shadow_mm;
342         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
343         int i = 0;
344
345         if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
346                 return -1;
347
348         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
349                 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
350         } else {
351                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
352                         px_dma(ppgtt->pdp.page_directory[i]) =
353                                 mm->ppgtt_mm.shadow_pdps[i];
354                 }
355         }
356
357         return 0;
358 }
359
360 /**
361  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
362  * shadow it as well, include ringbuffer,wa_ctx and ctx.
363  * @workload: an abstract entity for each execlist submission.
364  *
365  * This function is called before the workload submitting to i915, to make
366  * sure the content of the workload is valid.
367  */
368 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
369 {
370         struct intel_vgpu *vgpu = workload->vgpu;
371         struct intel_vgpu_submission *s = &vgpu->submission;
372         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
373         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
374         struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
375         struct intel_context *ce;
376         struct i915_request *rq;
377         int ret;
378
379         lockdep_assert_held(&dev_priv->drm.struct_mutex);
380
381         if (workload->req)
382                 return 0;
383
384         ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
385         if (ret < 0) {
386                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
387                 return ret;
388         }
389
390         /* pin shadow context by gvt even the shadow context will be pinned
391          * when i915 alloc request. That is because gvt will update the guest
392          * context from shadow context when workload is completed, and at that
393          * moment, i915 may already unpined the shadow context to make the
394          * shadow_ctx pages invalid. So gvt need to pin itself. After update
395          * the guest context, gvt can unpin the shadow_ctx safely.
396          */
397         ce = intel_context_pin(shadow_ctx, engine);
398         if (IS_ERR(ce)) {
399                 gvt_vgpu_err("fail to pin shadow context\n");
400                 return PTR_ERR(ce);
401         }
402
403         shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
404         shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
405                                     GEN8_CTX_ADDRESSING_MODE_SHIFT;
406
407         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
408                 shadow_context_descriptor_update(ce);
409
410         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
411         if (ret)
412                 goto err_unpin;
413
414         if ((workload->ring_id == RCS) &&
415             (workload->wa_ctx.indirect_ctx.size != 0)) {
416                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
417                 if (ret)
418                         goto err_shadow;
419         }
420
421         rq = i915_request_alloc(engine, shadow_ctx);
422         if (IS_ERR(rq)) {
423                 gvt_vgpu_err("fail to allocate gem request\n");
424                 ret = PTR_ERR(rq);
425                 goto err_shadow;
426         }
427         workload->req = i915_request_get(rq);
428
429         ret = populate_shadow_context(workload);
430         if (ret)
431                 goto err_req;
432
433         return 0;
434 err_req:
435         rq = fetch_and_zero(&workload->req);
436         i915_request_put(rq);
437 err_shadow:
438         release_shadow_wa_ctx(&workload->wa_ctx);
439 err_unpin:
440         intel_context_unpin(ce);
441         return ret;
442 }
443
444 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
445
446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
447 {
448         struct intel_gvt *gvt = workload->vgpu->gvt;
449         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
450         struct intel_vgpu_shadow_bb *bb;
451         int ret;
452
453         list_for_each_entry(bb, &workload->shadow_bb, list) {
454                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
455                  * is only updated into ring_scan_buffer, not real ring address
456                  * allocated in later copy_workload_to_ring_buffer. pls be noted
457                  * shadow_ring_buffer_va is now pointed to real ring buffer va
458                  * in copy_workload_to_ring_buffer.
459                  */
460
461                 if (bb->bb_offset)
462                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
463                                 + bb->bb_offset;
464
465                 if (bb->ppgtt) {
466                         /* for non-priv bb, scan&shadow is only for
467                          * debugging purpose, so the content of shadow bb
468                          * is the same as original bb. Therefore,
469                          * here, rather than switch to shadow bb's gma
470                          * address, we directly use original batch buffer's
471                          * gma address, and send original bb to hardware
472                          * directly
473                          */
474                         if (bb->clflush & CLFLUSH_AFTER) {
475                                 drm_clflush_virt_range(bb->va,
476                                                 bb->obj->base.size);
477                                 bb->clflush &= ~CLFLUSH_AFTER;
478                         }
479                         i915_gem_obj_finish_shmem_access(bb->obj);
480                         bb->accessing = false;
481
482                 } else {
483                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
484                                         NULL, 0, 0, 0);
485                         if (IS_ERR(bb->vma)) {
486                                 ret = PTR_ERR(bb->vma);
487                                 goto err;
488                         }
489
490                         /* relocate shadow batch buffer */
491                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
492                         if (gmadr_bytes == 8)
493                                 bb->bb_start_cmd_va[2] = 0;
494
495                         /* No one is going to touch shadow bb from now on. */
496                         if (bb->clflush & CLFLUSH_AFTER) {
497                                 drm_clflush_virt_range(bb->va,
498                                                 bb->obj->base.size);
499                                 bb->clflush &= ~CLFLUSH_AFTER;
500                         }
501
502                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
503                                         false);
504                         if (ret)
505                                 goto err;
506
507                         i915_gem_obj_finish_shmem_access(bb->obj);
508                         bb->accessing = false;
509
510                         ret = i915_vma_move_to_active(bb->vma,
511                                                       workload->req,
512                                                       0);
513                         if (ret)
514                                 goto err;
515                 }
516         }
517         return 0;
518 err:
519         release_shadow_batch_buffer(workload);
520         return ret;
521 }
522
523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
524 {
525         struct intel_vgpu_workload *workload =
526                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
527         struct i915_request *rq = workload->req;
528         struct execlist_ring_context *shadow_ring_context =
529                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
530
531         shadow_ring_context->bb_per_ctx_ptr.val =
532                 (shadow_ring_context->bb_per_ctx_ptr.val &
533                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
534         shadow_ring_context->rcs_indirect_ctx.val =
535                 (shadow_ring_context->rcs_indirect_ctx.val &
536                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
537 }
538
539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
540 {
541         struct i915_vma *vma;
542         unsigned char *per_ctx_va =
543                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
544                 wa_ctx->indirect_ctx.size;
545
546         if (wa_ctx->indirect_ctx.size == 0)
547                 return 0;
548
549         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
550                                        0, CACHELINE_BYTES, 0);
551         if (IS_ERR(vma))
552                 return PTR_ERR(vma);
553
554         /* FIXME: we are not tracking our pinned VMA leaving it
555          * up to the core to fix up the stray pin_count upon
556          * free.
557          */
558
559         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
560
561         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
562         memset(per_ctx_va, 0, CACHELINE_BYTES);
563
564         update_wa_ctx_2_shadow_ctx(wa_ctx);
565         return 0;
566 }
567
568 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
569 {
570         struct intel_vgpu *vgpu = workload->vgpu;
571         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
572         struct intel_vgpu_shadow_bb *bb, *pos;
573
574         if (list_empty(&workload->shadow_bb))
575                 return;
576
577         bb = list_first_entry(&workload->shadow_bb,
578                         struct intel_vgpu_shadow_bb, list);
579
580         mutex_lock(&dev_priv->drm.struct_mutex);
581
582         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
583                 if (bb->obj) {
584                         if (bb->accessing)
585                                 i915_gem_obj_finish_shmem_access(bb->obj);
586
587                         if (bb->va && !IS_ERR(bb->va))
588                                 i915_gem_object_unpin_map(bb->obj);
589
590                         if (bb->vma && !IS_ERR(bb->vma)) {
591                                 i915_vma_unpin(bb->vma);
592                                 i915_vma_close(bb->vma);
593                         }
594                         __i915_gem_object_release_unless_active(bb->obj);
595                 }
596                 list_del(&bb->list);
597                 kfree(bb);
598         }
599
600         mutex_unlock(&dev_priv->drm.struct_mutex);
601 }
602
603 static int prepare_workload(struct intel_vgpu_workload *workload)
604 {
605         struct intel_vgpu *vgpu = workload->vgpu;
606         int ret = 0;
607
608         ret = intel_vgpu_pin_mm(workload->shadow_mm);
609         if (ret) {
610                 gvt_vgpu_err("fail to vgpu pin mm\n");
611                 return ret;
612         }
613
614         update_shadow_pdps(workload);
615
616         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
617         if (ret) {
618                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
619                 goto err_unpin_mm;
620         }
621
622         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
623         if (ret) {
624                 gvt_vgpu_err("fail to flush post shadow\n");
625                 goto err_unpin_mm;
626         }
627
628         ret = copy_workload_to_ring_buffer(workload);
629         if (ret) {
630                 gvt_vgpu_err("fail to generate request\n");
631                 goto err_unpin_mm;
632         }
633
634         ret = prepare_shadow_batch_buffer(workload);
635         if (ret) {
636                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
637                 goto err_unpin_mm;
638         }
639
640         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
641         if (ret) {
642                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
643                 goto err_shadow_batch;
644         }
645
646         if (workload->prepare) {
647                 ret = workload->prepare(workload);
648                 if (ret)
649                         goto err_shadow_wa_ctx;
650         }
651
652         return 0;
653 err_shadow_wa_ctx:
654         release_shadow_wa_ctx(&workload->wa_ctx);
655 err_shadow_batch:
656         release_shadow_batch_buffer(workload);
657 err_unpin_mm:
658         intel_vgpu_unpin_mm(workload->shadow_mm);
659         return ret;
660 }
661
662 static int dispatch_workload(struct intel_vgpu_workload *workload)
663 {
664         struct intel_vgpu *vgpu = workload->vgpu;
665         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
666         int ring_id = workload->ring_id;
667         int ret;
668
669         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
670                 ring_id, workload);
671
672         mutex_lock(&vgpu->vgpu_lock);
673         mutex_lock(&dev_priv->drm.struct_mutex);
674
675         ret = intel_gvt_scan_and_shadow_workload(workload);
676         if (ret)
677                 goto out;
678
679         ret = prepare_workload(workload);
680
681 out:
682         if (ret)
683                 workload->status = ret;
684
685         if (!IS_ERR_OR_NULL(workload->req)) {
686                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
687                                 ring_id, workload->req);
688                 i915_request_add(workload->req);
689                 workload->dispatched = true;
690         }
691
692         mutex_unlock(&dev_priv->drm.struct_mutex);
693         mutex_unlock(&vgpu->vgpu_lock);
694         return ret;
695 }
696
697 static struct intel_vgpu_workload *pick_next_workload(
698                 struct intel_gvt *gvt, int ring_id)
699 {
700         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
701         struct intel_vgpu_workload *workload = NULL;
702
703         mutex_lock(&gvt->sched_lock);
704
705         /*
706          * no current vgpu / will be scheduled out / no workload
707          * bail out
708          */
709         if (!scheduler->current_vgpu) {
710                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
711                 goto out;
712         }
713
714         if (scheduler->need_reschedule) {
715                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
716                 goto out;
717         }
718
719         if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
720                 goto out;
721
722         /*
723          * still have current workload, maybe the workload disptacher
724          * fail to submit it for some reason, resubmit it.
725          */
726         if (scheduler->current_workload[ring_id]) {
727                 workload = scheduler->current_workload[ring_id];
728                 gvt_dbg_sched("ring id %d still have current workload %p\n",
729                                 ring_id, workload);
730                 goto out;
731         }
732
733         /*
734          * pick a workload as current workload
735          * once current workload is set, schedule policy routines
736          * will wait the current workload is finished when trying to
737          * schedule out a vgpu.
738          */
739         scheduler->current_workload[ring_id] = container_of(
740                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
741                         struct intel_vgpu_workload, list);
742
743         workload = scheduler->current_workload[ring_id];
744
745         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
746
747         atomic_inc(&workload->vgpu->submission.running_workload_num);
748 out:
749         mutex_unlock(&gvt->sched_lock);
750         return workload;
751 }
752
753 static void update_guest_context(struct intel_vgpu_workload *workload)
754 {
755         struct i915_request *rq = workload->req;
756         struct intel_vgpu *vgpu = workload->vgpu;
757         struct intel_gvt *gvt = vgpu->gvt;
758         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
759         struct execlist_ring_context *shadow_ring_context;
760         struct page *page;
761         void *src;
762         unsigned long context_gpa, context_page_num;
763         int i;
764
765         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
766                       workload->ctx_desc.lrca);
767
768         context_page_num = rq->engine->context_size;
769         context_page_num = context_page_num >> PAGE_SHIFT;
770
771         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
772                 context_page_num = 19;
773
774         i = 2;
775
776         while (i < context_page_num) {
777                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
778                                 (u32)((workload->ctx_desc.lrca + i) <<
779                                         I915_GTT_PAGE_SHIFT));
780                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
781                         gvt_vgpu_err("invalid guest context descriptor\n");
782                         return;
783                 }
784
785                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
786                 src = kmap(page);
787                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
788                                 I915_GTT_PAGE_SIZE);
789                 kunmap(page);
790                 i++;
791         }
792
793         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
794                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
795
796         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
797         shadow_ring_context = kmap(page);
798
799 #define COPY_REG(name) \
800         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
801                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
802
803         COPY_REG(ctx_ctrl);
804         COPY_REG(ctx_timestamp);
805
806 #undef COPY_REG
807
808         intel_gvt_hypervisor_write_gpa(vgpu,
809                         workload->ring_context_gpa +
810                         sizeof(*shadow_ring_context),
811                         (void *)shadow_ring_context +
812                         sizeof(*shadow_ring_context),
813                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
814
815         kunmap(page);
816 }
817
818 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
819                                 unsigned long engine_mask)
820 {
821         struct intel_vgpu_submission *s = &vgpu->submission;
822         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
823         struct intel_engine_cs *engine;
824         struct intel_vgpu_workload *pos, *n;
825         unsigned int tmp;
826
827         /* free the unsubmited workloads in the queues. */
828         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
829                 list_for_each_entry_safe(pos, n,
830                         &s->workload_q_head[engine->id], list) {
831                         list_del_init(&pos->list);
832                         intel_vgpu_destroy_workload(pos);
833                 }
834                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
835         }
836 }
837
838 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
839 {
840         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
841         struct intel_vgpu_workload *workload =
842                 scheduler->current_workload[ring_id];
843         struct intel_vgpu *vgpu = workload->vgpu;
844         struct intel_vgpu_submission *s = &vgpu->submission;
845         struct i915_request *rq = workload->req;
846         int event;
847
848         mutex_lock(&vgpu->vgpu_lock);
849         mutex_lock(&gvt->sched_lock);
850
851         /* For the workload w/ request, needs to wait for the context
852          * switch to make sure request is completed.
853          * For the workload w/o request, directly complete the workload.
854          */
855         if (rq) {
856                 wait_event(workload->shadow_ctx_status_wq,
857                            !atomic_read(&workload->shadow_ctx_active));
858
859                 /* If this request caused GPU hang, req->fence.error will
860                  * be set to -EIO. Use -EIO to set workload status so
861                  * that when this request caused GPU hang, didn't trigger
862                  * context switch interrupt to guest.
863                  */
864                 if (likely(workload->status == -EINPROGRESS)) {
865                         if (workload->req->fence.error == -EIO)
866                                 workload->status = -EIO;
867                         else
868                                 workload->status = 0;
869                 }
870
871                 if (!workload->status && !(vgpu->resetting_eng &
872                                            ENGINE_MASK(ring_id))) {
873                         update_guest_context(workload);
874
875                         for_each_set_bit(event, workload->pending_events,
876                                          INTEL_GVT_EVENT_MAX)
877                                 intel_vgpu_trigger_virtual_event(vgpu, event);
878                 }
879
880                 /* unpin shadow ctx as the shadow_ctx update is done */
881                 mutex_lock(&rq->i915->drm.struct_mutex);
882                 intel_context_unpin(rq->hw_context);
883                 mutex_unlock(&rq->i915->drm.struct_mutex);
884
885                 i915_request_put(fetch_and_zero(&workload->req));
886         }
887
888         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
889                         ring_id, workload, workload->status);
890
891         scheduler->current_workload[ring_id] = NULL;
892
893         list_del_init(&workload->list);
894
895         if (!workload->status) {
896                 release_shadow_batch_buffer(workload);
897                 release_shadow_wa_ctx(&workload->wa_ctx);
898         }
899
900         if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
901                 /* if workload->status is not successful means HW GPU
902                  * has occurred GPU hang or something wrong with i915/GVT,
903                  * and GVT won't inject context switch interrupt to guest.
904                  * So this error is a vGPU hang actually to the guest.
905                  * According to this we should emunlate a vGPU hang. If
906                  * there are pending workloads which are already submitted
907                  * from guest, we should clean them up like HW GPU does.
908                  *
909                  * if it is in middle of engine resetting, the pending
910                  * workloads won't be submitted to HW GPU and will be
911                  * cleaned up during the resetting process later, so doing
912                  * the workload clean up here doesn't have any impact.
913                  **/
914                 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
915         }
916
917         workload->complete(workload);
918
919         atomic_dec(&s->running_workload_num);
920         wake_up(&scheduler->workload_complete_wq);
921
922         if (gvt->scheduler.need_reschedule)
923                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
924
925         mutex_unlock(&gvt->sched_lock);
926         mutex_unlock(&vgpu->vgpu_lock);
927 }
928
929 struct workload_thread_param {
930         struct intel_gvt *gvt;
931         int ring_id;
932 };
933
934 static int workload_thread(void *priv)
935 {
936         struct workload_thread_param *p = (struct workload_thread_param *)priv;
937         struct intel_gvt *gvt = p->gvt;
938         int ring_id = p->ring_id;
939         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
940         struct intel_vgpu_workload *workload = NULL;
941         struct intel_vgpu *vgpu = NULL;
942         int ret;
943         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
944         DEFINE_WAIT_FUNC(wait, woken_wake_function);
945
946         kfree(p);
947
948         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
949
950         while (!kthread_should_stop()) {
951                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
952                 do {
953                         workload = pick_next_workload(gvt, ring_id);
954                         if (workload)
955                                 break;
956                         wait_woken(&wait, TASK_INTERRUPTIBLE,
957                                    MAX_SCHEDULE_TIMEOUT);
958                 } while (!kthread_should_stop());
959                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
960
961                 if (!workload)
962                         break;
963
964                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
965                                 workload->ring_id, workload,
966                                 workload->vgpu->id);
967
968                 intel_runtime_pm_get(gvt->dev_priv);
969
970                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
971                                 workload->ring_id, workload);
972
973                 if (need_force_wake)
974                         intel_uncore_forcewake_get(gvt->dev_priv,
975                                         FORCEWAKE_ALL);
976
977                 ret = dispatch_workload(workload);
978
979                 if (ret) {
980                         vgpu = workload->vgpu;
981                         gvt_vgpu_err("fail to dispatch workload, skip\n");
982                         goto complete;
983                 }
984
985                 gvt_dbg_sched("ring id %d wait workload %p\n",
986                                 workload->ring_id, workload);
987                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
988
989 complete:
990                 gvt_dbg_sched("will complete workload %p, status: %d\n",
991                                 workload, workload->status);
992
993                 complete_current_workload(gvt, ring_id);
994
995                 if (need_force_wake)
996                         intel_uncore_forcewake_put(gvt->dev_priv,
997                                         FORCEWAKE_ALL);
998
999                 intel_runtime_pm_put(gvt->dev_priv);
1000                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1001                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1002         }
1003         return 0;
1004 }
1005
1006 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1007 {
1008         struct intel_vgpu_submission *s = &vgpu->submission;
1009         struct intel_gvt *gvt = vgpu->gvt;
1010         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1011
1012         if (atomic_read(&s->running_workload_num)) {
1013                 gvt_dbg_sched("wait vgpu idle\n");
1014
1015                 wait_event(scheduler->workload_complete_wq,
1016                                 !atomic_read(&s->running_workload_num));
1017         }
1018 }
1019
1020 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1021 {
1022         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1023         struct intel_engine_cs *engine;
1024         enum intel_engine_id i;
1025
1026         gvt_dbg_core("clean workload scheduler\n");
1027
1028         for_each_engine(engine, gvt->dev_priv, i) {
1029                 atomic_notifier_chain_unregister(
1030                                         &engine->context_status_notifier,
1031                                         &gvt->shadow_ctx_notifier_block[i]);
1032                 kthread_stop(scheduler->thread[i]);
1033         }
1034 }
1035
1036 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1037 {
1038         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1039         struct workload_thread_param *param = NULL;
1040         struct intel_engine_cs *engine;
1041         enum intel_engine_id i;
1042         int ret;
1043
1044         gvt_dbg_core("init workload scheduler\n");
1045
1046         init_waitqueue_head(&scheduler->workload_complete_wq);
1047
1048         for_each_engine(engine, gvt->dev_priv, i) {
1049                 init_waitqueue_head(&scheduler->waitq[i]);
1050
1051                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1052                 if (!param) {
1053                         ret = -ENOMEM;
1054                         goto err;
1055                 }
1056
1057                 param->gvt = gvt;
1058                 param->ring_id = i;
1059
1060                 scheduler->thread[i] = kthread_run(workload_thread, param,
1061                         "gvt workload %d", i);
1062                 if (IS_ERR(scheduler->thread[i])) {
1063                         gvt_err("fail to create workload thread\n");
1064                         ret = PTR_ERR(scheduler->thread[i]);
1065                         goto err;
1066                 }
1067
1068                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1069                                         shadow_context_status_change;
1070                 atomic_notifier_chain_register(&engine->context_status_notifier,
1071                                         &gvt->shadow_ctx_notifier_block[i]);
1072         }
1073         return 0;
1074 err:
1075         intel_gvt_clean_workload_scheduler(gvt);
1076         kfree(param);
1077         param = NULL;
1078         return ret;
1079 }
1080
1081 static void
1082 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1083 {
1084         struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1085         int i;
1086
1087         if (i915_vm_is_48bit(&i915_ppgtt->vm))
1088                 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1089         else {
1090                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1091                         px_dma(i915_ppgtt->pdp.page_directory[i]) =
1092                                                 s->i915_context_pdps[i];
1093         }
1094 }
1095
1096 /**
1097  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1098  * @vgpu: a vGPU
1099  *
1100  * This function is called when a vGPU is being destroyed.
1101  *
1102  */
1103 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1104 {
1105         struct intel_vgpu_submission *s = &vgpu->submission;
1106
1107         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1108         i915_context_ppgtt_root_restore(s);
1109         i915_gem_context_put(s->shadow_ctx);
1110         kmem_cache_destroy(s->workloads);
1111 }
1112
1113
1114 /**
1115  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1116  * @vgpu: a vGPU
1117  * @engine_mask: engines expected to be reset
1118  *
1119  * This function is called when a vGPU is being destroyed.
1120  *
1121  */
1122 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1123                 unsigned long engine_mask)
1124 {
1125         struct intel_vgpu_submission *s = &vgpu->submission;
1126
1127         if (!s->active)
1128                 return;
1129
1130         intel_vgpu_clean_workloads(vgpu, engine_mask);
1131         s->ops->reset(vgpu, engine_mask);
1132 }
1133
1134 static void
1135 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1136 {
1137         struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1138         int i;
1139
1140         if (i915_vm_is_48bit(&i915_ppgtt->vm))
1141                 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1142         else {
1143                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1144                         s->i915_context_pdps[i] =
1145                                 px_dma(i915_ppgtt->pdp.page_directory[i]);
1146         }
1147 }
1148
1149 /**
1150  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1151  * @vgpu: a vGPU
1152  *
1153  * This function is called when a vGPU is being created.
1154  *
1155  * Returns:
1156  * Zero on success, negative error code if failed.
1157  *
1158  */
1159 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1160 {
1161         struct intel_vgpu_submission *s = &vgpu->submission;
1162         enum intel_engine_id i;
1163         struct intel_engine_cs *engine;
1164         int ret;
1165
1166         s->shadow_ctx = i915_gem_context_create_gvt(
1167                         &vgpu->gvt->dev_priv->drm);
1168         if (IS_ERR(s->shadow_ctx))
1169                 return PTR_ERR(s->shadow_ctx);
1170
1171         i915_context_ppgtt_root_save(s);
1172
1173         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1174
1175         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1176                                                   sizeof(struct intel_vgpu_workload), 0,
1177                                                   SLAB_HWCACHE_ALIGN,
1178                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1179                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1180                                                   NULL);
1181
1182         if (!s->workloads) {
1183                 ret = -ENOMEM;
1184                 goto out_shadow_ctx;
1185         }
1186
1187         for_each_engine(engine, vgpu->gvt->dev_priv, i)
1188                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1189
1190         atomic_set(&s->running_workload_num, 0);
1191         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1192
1193         return 0;
1194
1195 out_shadow_ctx:
1196         i915_gem_context_put(s->shadow_ctx);
1197         return ret;
1198 }
1199
1200 /**
1201  * intel_vgpu_select_submission_ops - select virtual submission interface
1202  * @vgpu: a vGPU
1203  * @engine_mask: either ALL_ENGINES or target engine mask
1204  * @interface: expected vGPU virtual submission interface
1205  *
1206  * This function is called when guest configures submission interface.
1207  *
1208  * Returns:
1209  * Zero on success, negative error code if failed.
1210  *
1211  */
1212 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1213                                      unsigned long engine_mask,
1214                                      unsigned int interface)
1215 {
1216         struct intel_vgpu_submission *s = &vgpu->submission;
1217         const struct intel_vgpu_submission_ops *ops[] = {
1218                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1219                         &intel_vgpu_execlist_submission_ops,
1220         };
1221         int ret;
1222
1223         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1224                 return -EINVAL;
1225
1226         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1227                 return -EINVAL;
1228
1229         if (s->active)
1230                 s->ops->clean(vgpu, engine_mask);
1231
1232         if (interface == 0) {
1233                 s->ops = NULL;
1234                 s->virtual_submission_interface = 0;
1235                 s->active = false;
1236                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1237                 return 0;
1238         }
1239
1240         ret = ops[interface]->init(vgpu, engine_mask);
1241         if (ret)
1242                 return ret;
1243
1244         s->ops = ops[interface];
1245         s->virtual_submission_interface = interface;
1246         s->active = true;
1247
1248         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1249                         vgpu->id, s->ops->name);
1250
1251         return 0;
1252 }
1253
1254 /**
1255  * intel_vgpu_destroy_workload - destroy a vGPU workload
1256  * @workload: workload to destroy
1257  *
1258  * This function is called when destroy a vGPU workload.
1259  *
1260  */
1261 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1262 {
1263         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1264
1265         if (workload->shadow_mm)
1266                 intel_vgpu_mm_put(workload->shadow_mm);
1267
1268         kmem_cache_free(s->workloads, workload);
1269 }
1270
1271 static struct intel_vgpu_workload *
1272 alloc_workload(struct intel_vgpu *vgpu)
1273 {
1274         struct intel_vgpu_submission *s = &vgpu->submission;
1275         struct intel_vgpu_workload *workload;
1276
1277         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1278         if (!workload)
1279                 return ERR_PTR(-ENOMEM);
1280
1281         INIT_LIST_HEAD(&workload->list);
1282         INIT_LIST_HEAD(&workload->shadow_bb);
1283
1284         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1285         atomic_set(&workload->shadow_ctx_active, 0);
1286
1287         workload->status = -EINPROGRESS;
1288         workload->vgpu = vgpu;
1289
1290         return workload;
1291 }
1292
1293 #define RING_CTX_OFF(x) \
1294         offsetof(struct execlist_ring_context, x)
1295
1296 static void read_guest_pdps(struct intel_vgpu *vgpu,
1297                 u64 ring_context_gpa, u32 pdp[8])
1298 {
1299         u64 gpa;
1300         int i;
1301
1302         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1303
1304         for (i = 0; i < 8; i++)
1305                 intel_gvt_hypervisor_read_gpa(vgpu,
1306                                 gpa + i * 8, &pdp[7 - i], 4);
1307 }
1308
1309 static int prepare_mm(struct intel_vgpu_workload *workload)
1310 {
1311         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1312         struct intel_vgpu_mm *mm;
1313         struct intel_vgpu *vgpu = workload->vgpu;
1314         intel_gvt_gtt_type_t root_entry_type;
1315         u64 pdps[GVT_RING_CTX_NR_PDPS];
1316
1317         switch (desc->addressing_mode) {
1318         case 1: /* legacy 32-bit */
1319                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1320                 break;
1321         case 3: /* legacy 64-bit */
1322                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1323                 break;
1324         default:
1325                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1326                 return -EINVAL;
1327         }
1328
1329         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1330
1331         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1332         if (IS_ERR(mm))
1333                 return PTR_ERR(mm);
1334
1335         workload->shadow_mm = mm;
1336         return 0;
1337 }
1338
1339 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1340                 ((a)->lrca == (b)->lrca))
1341
1342 #define get_last_workload(q) \
1343         (list_empty(q) ? NULL : container_of(q->prev, \
1344         struct intel_vgpu_workload, list))
1345 /**
1346  * intel_vgpu_create_workload - create a vGPU workload
1347  * @vgpu: a vGPU
1348  * @ring_id: ring index
1349  * @desc: a guest context descriptor
1350  *
1351  * This function is called when creating a vGPU workload.
1352  *
1353  * Returns:
1354  * struct intel_vgpu_workload * on success, negative error code in
1355  * pointer if failed.
1356  *
1357  */
1358 struct intel_vgpu_workload *
1359 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1360                            struct execlist_ctx_descriptor_format *desc)
1361 {
1362         struct intel_vgpu_submission *s = &vgpu->submission;
1363         struct list_head *q = workload_q_head(vgpu, ring_id);
1364         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1365         struct intel_vgpu_workload *workload = NULL;
1366         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1367         u64 ring_context_gpa;
1368         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1369         int ret;
1370
1371         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1372                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1373         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1374                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1375                 return ERR_PTR(-EINVAL);
1376         }
1377
1378         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1379                         RING_CTX_OFF(ring_header.val), &head, 4);
1380
1381         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1382                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1383
1384         head &= RB_HEAD_OFF_MASK;
1385         tail &= RB_TAIL_OFF_MASK;
1386
1387         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1388                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1389                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1390                                 last_workload->rb_tail);
1391                 /*
1392                  * cannot use guest context head pointer here,
1393                  * as it might not be updated at this time
1394                  */
1395                 head = last_workload->rb_tail;
1396         }
1397
1398         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1399
1400         /* record some ring buffer register values for scan and shadow */
1401         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1402                         RING_CTX_OFF(rb_start.val), &start, 4);
1403         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1404                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1405         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1406                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1407
1408         workload = alloc_workload(vgpu);
1409         if (IS_ERR(workload))
1410                 return workload;
1411
1412         workload->ring_id = ring_id;
1413         workload->ctx_desc = *desc;
1414         workload->ring_context_gpa = ring_context_gpa;
1415         workload->rb_head = head;
1416         workload->rb_tail = tail;
1417         workload->rb_start = start;
1418         workload->rb_ctl = ctl;
1419
1420         if (ring_id == RCS) {
1421                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1422                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1423                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1424                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1425
1426                 workload->wa_ctx.indirect_ctx.guest_gma =
1427                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1428                 workload->wa_ctx.indirect_ctx.size =
1429                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1430                         CACHELINE_BYTES;
1431                 workload->wa_ctx.per_ctx.guest_gma =
1432                         per_ctx & PER_CTX_ADDR_MASK;
1433                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1434         }
1435
1436         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1437                         workload, ring_id, head, tail, start, ctl);
1438
1439         ret = prepare_mm(workload);
1440         if (ret) {
1441                 kmem_cache_free(s->workloads, workload);
1442                 return ERR_PTR(ret);
1443         }
1444
1445         /* Only scan and shadow the first workload in the queue
1446          * as there is only one pre-allocated buf-obj for shadow.
1447          */
1448         if (list_empty(workload_q_head(vgpu, ring_id))) {
1449                 intel_runtime_pm_get(dev_priv);
1450                 mutex_lock(&dev_priv->drm.struct_mutex);
1451                 ret = intel_gvt_scan_and_shadow_workload(workload);
1452                 mutex_unlock(&dev_priv->drm.struct_mutex);
1453                 intel_runtime_pm_put(dev_priv);
1454         }
1455
1456         if (ret && (vgpu_is_vm_unhealthy(ret))) {
1457                 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1458                 intel_vgpu_destroy_workload(workload);
1459                 return ERR_PTR(ret);
1460         }
1461
1462         return workload;
1463 }
1464
1465 /**
1466  * intel_vgpu_queue_workload - Qeue a vGPU workload
1467  * @workload: the workload to queue in
1468  */
1469 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1470 {
1471         list_add_tail(&workload->list,
1472                 workload_q_head(workload->vgpu, workload->ring_id));
1473         intel_gvt_kick_schedule(workload->vgpu->gvt);
1474         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1475 }