]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Squelch reset messages during selftests
[linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79  */
80
81 #define DRIVER_NAME             "i915"
82 #define DRIVER_DESC             "Intel Graphics"
83 #define DRIVER_DATE             "20170717"
84 #define DRIVER_TIMESTAMP        1500275179
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({                        \
94         int __ret_warn_on = !!(condition);                              \
95         if (unlikely(__ret_warn_on))                                    \
96                 if (!WARN(i915.verbose_state_checks, format))           \
97                         DRM_ERROR(format);                              \
98         unlikely(__ret_warn_on);                                        \
99 })
100
101 #define I915_STATE_WARN_ON(x)                                           \
102         I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106         __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109         uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113         uint_fixed_16_16_t fp; \
114         fp.val = UINT_MAX; \
115         fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120         if (val.val == 0)
121                 return true;
122         return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127         uint_fixed_16_16_t fp;
128
129         WARN_ON(val >> 16);
130
131         fp.val = val << 16;
132         return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137         return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142         return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146                                                  uint_fixed_16_16_t min2)
147 {
148         uint_fixed_16_16_t min;
149
150         min.val = min(min1.val, min2.val);
151         return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155                                                  uint_fixed_16_16_t max2)
156 {
157         uint_fixed_16_16_t max;
158
159         max.val = max(max1.val, max2.val);
160         return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165         uint_fixed_16_16_t fp;
166         WARN_ON(val >> 32);
167         fp.val = clamp_t(uint32_t, val, 0, ~0);
168         return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172                                             uint_fixed_16_16_t d)
173 {
174         return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178                                                 uint_fixed_16_16_t mul)
179 {
180         uint64_t intermediate_val;
181
182         intermediate_val = (uint64_t) val * mul.val;
183         intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184         WARN_ON(intermediate_val >> 32);
185         return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189                                              uint_fixed_16_16_t mul)
190 {
191         uint64_t intermediate_val;
192
193         intermediate_val = (uint64_t) val.val * mul.val;
194         intermediate_val = intermediate_val >> 16;
195         return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200         uint64_t interm_val;
201
202         interm_val = (uint64_t)val << 16;
203         interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204         return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208                                                 uint_fixed_16_16_t d)
209 {
210         uint64_t interm_val;
211
212         interm_val = (uint64_t)val << 16;
213         interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214         WARN_ON(interm_val >> 32);
215         return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219                                                      uint_fixed_16_16_t mul)
220 {
221         uint64_t intermediate_val;
222
223         intermediate_val = (uint64_t) val * mul.val;
224         return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228                                              uint_fixed_16_16_t add2)
229 {
230         uint64_t interm_sum;
231
232         interm_sum = (uint64_t) add1.val + add2.val;
233         return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237                                                  uint32_t add2)
238 {
239         uint64_t interm_sum;
240         uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242         interm_sum = (uint64_t) add1.val + interm_add2.val;
243         return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248         return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253         return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258         return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262         INVALID_PIPE = -1,
263         PIPE_A = 0,
264         PIPE_B,
265         PIPE_C,
266         _PIPE_EDP,
267         I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272         TRANSCODER_A = 0,
273         TRANSCODER_B,
274         TRANSCODER_C,
275         TRANSCODER_EDP,
276         TRANSCODER_DSI_A,
277         TRANSCODER_DSI_C,
278         I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283         switch (transcoder) {
284         case TRANSCODER_A:
285                 return "A";
286         case TRANSCODER_B:
287                 return "B";
288         case TRANSCODER_C:
289                 return "C";
290         case TRANSCODER_EDP:
291                 return "EDP";
292         case TRANSCODER_DSI_A:
293                 return "DSI A";
294         case TRANSCODER_DSI_C:
295                 return "DSI C";
296         default:
297                 return "<invalid>";
298         }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303         return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307  * Global legacy plane identifier. Valid only for primary/sprite
308  * planes on pre-g4x, and only for primary planes on g4x+.
309  */
310 enum plane {
311         PLANE_A,
312         PLANE_B,
313         PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320  * Per-pipe plane identifier.
321  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322  * number of planes per CRTC.  Not all platforms really have this many planes,
323  * which means some arrays of size I915_MAX_PLANES may have unused entries
324  * between the topmost sprite plane and the cursor plane.
325  *
326  * This is expected to be passed to various register macros
327  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328  */
329 enum plane_id {
330         PLANE_PRIMARY,
331         PLANE_SPRITE0,
332         PLANE_SPRITE1,
333         PLANE_SPRITE2,
334         PLANE_CURSOR,
335         I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339         for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340                 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343         PORT_NONE = -1,
344         PORT_A = 0,
345         PORT_B,
346         PORT_C,
347         PORT_D,
348         PORT_E,
349         I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356         DPIO_CH0,
357         DPIO_CH1
358 };
359
360 enum dpio_phy {
361         DPIO_PHY0,
362         DPIO_PHY1,
363         DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367         POWER_DOMAIN_PIPE_A,
368         POWER_DOMAIN_PIPE_B,
369         POWER_DOMAIN_PIPE_C,
370         POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371         POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372         POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373         POWER_DOMAIN_TRANSCODER_A,
374         POWER_DOMAIN_TRANSCODER_B,
375         POWER_DOMAIN_TRANSCODER_C,
376         POWER_DOMAIN_TRANSCODER_EDP,
377         POWER_DOMAIN_TRANSCODER_DSI_A,
378         POWER_DOMAIN_TRANSCODER_DSI_C,
379         POWER_DOMAIN_PORT_DDI_A_LANES,
380         POWER_DOMAIN_PORT_DDI_B_LANES,
381         POWER_DOMAIN_PORT_DDI_C_LANES,
382         POWER_DOMAIN_PORT_DDI_D_LANES,
383         POWER_DOMAIN_PORT_DDI_E_LANES,
384         POWER_DOMAIN_PORT_DDI_A_IO,
385         POWER_DOMAIN_PORT_DDI_B_IO,
386         POWER_DOMAIN_PORT_DDI_C_IO,
387         POWER_DOMAIN_PORT_DDI_D_IO,
388         POWER_DOMAIN_PORT_DDI_E_IO,
389         POWER_DOMAIN_PORT_DSI,
390         POWER_DOMAIN_PORT_CRT,
391         POWER_DOMAIN_PORT_OTHER,
392         POWER_DOMAIN_VGA,
393         POWER_DOMAIN_AUDIO,
394         POWER_DOMAIN_PLLS,
395         POWER_DOMAIN_AUX_A,
396         POWER_DOMAIN_AUX_B,
397         POWER_DOMAIN_AUX_C,
398         POWER_DOMAIN_AUX_D,
399         POWER_DOMAIN_GMBUS,
400         POWER_DOMAIN_MODESET,
401         POWER_DOMAIN_INIT,
402
403         POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408                 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410         ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411          (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414         HPD_NONE = 0,
415         HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
416         HPD_CRT,
417         HPD_SDVO_B,
418         HPD_SDVO_C,
419         HPD_PORT_A,
420         HPD_PORT_B,
421         HPD_PORT_C,
422         HPD_PORT_D,
423         HPD_PORT_E,
424         HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428         for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433         struct work_struct hotplug_work;
434
435         struct {
436                 unsigned long last_jiffies;
437                 int count;
438                 enum {
439                         HPD_ENABLED = 0,
440                         HPD_DISABLED = 1,
441                         HPD_MARK_DISABLED = 2
442                 } state;
443         } stats[HPD_NUM_PINS];
444         u32 event_bits;
445         struct delayed_work reenable_work;
446
447         struct intel_digital_port *irq_port[I915_MAX_PORTS];
448         u32 long_port_mask;
449         u32 short_port_mask;
450         struct work_struct dig_port_work;
451
452         struct work_struct poll_init_work;
453         bool poll_enabled;
454
455         unsigned int hpd_storm_threshold;
456
457         /*
458          * if we get a HPD irq from DP and a HPD irq from non-DP
459          * the non-DP HPD could block the workqueue on a mode config
460          * mutex getting, that userspace may have taken. However
461          * userspace is waiting on the DP workqueue to run which is
462          * blocked behind the non-DP one.
463          */
464         struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468         (I915_GEM_DOMAIN_RENDER | \
469          I915_GEM_DOMAIN_SAMPLER | \
470          I915_GEM_DOMAIN_COMMAND | \
471          I915_GEM_DOMAIN_INSTRUCTION | \
472          I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478                 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p)               \
480         for ((__p) = 0;                                                 \
481              (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482              (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s)                           \
484         for ((__s) = 0;                                                 \
485              (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];        \
486              (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489         for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)  \
490                 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493         list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496         list_for_each_entry(intel_plane,                        \
497                             &(dev)->mode_config.plane_list,     \
498                             base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)         \
501         list_for_each_entry(intel_plane,                                \
502                             &(dev)->mode_config.plane_list,             \
503                             base.head)                                  \
504                 for_each_if ((plane_mask) &                             \
505                              (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)      \
508         list_for_each_entry(intel_plane,                                \
509                             &(dev)->mode_config.plane_list,             \
510                             base.head)                                  \
511                 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc)                            \
514         list_for_each_entry(intel_crtc,                                 \
515                             &(dev)->mode_config.crtc_list,              \
516                             base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)            \
519         list_for_each_entry(intel_crtc,                                 \
520                             &(dev)->mode_config.crtc_list,              \
521                             base.head)                                  \
522                 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder)              \
525         list_for_each_entry(intel_encoder,                      \
526                             &(dev)->mode_config.encoder_list,   \
527                             base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530         while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533         list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534                 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537         list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538                 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask)                             \
541         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
542                 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well)                           \
545         for ((__power_well) = (__dev_priv)->power_domains.power_wells;  \
546              (__power_well) - (__dev_priv)->power_domains.power_wells < \
547                 (__dev_priv)->power_domains.power_well_count;           \
548              (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well)                       \
551         for ((__power_well) = (__dev_priv)->power_domains.power_wells +         \
552                               (__dev_priv)->power_domains.power_well_count - 1; \
553              (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;     \
554              (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)     \
557         for_each_power_well(__dev_priv, __power_well)                           \
558                 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561         for_each_power_well_rev(__dev_priv, __power_well)                       \
562                 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565         for ((__i) = 0; \
566              (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567                      ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568                       (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569              (__i)++) \
570                 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577         struct drm_i915_private *dev_priv;
578         struct drm_file *file;
579
580         struct {
581                 spinlock_t lock;
582                 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584  * chosen to prevent the CPU getting more than a frame ahead of the GPU
585  * (when using lax throttling for the frontbuffer). We also use it to
586  * offer free GPU waitboosts for severely congested workloads.
587  */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589         } mm;
590         struct idr context_idr;
591
592         struct intel_rps_client {
593                 atomic_t boosts;
594         } rps;
595
596         unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599  * it is denied of creating new contexts. As one context
600  * ban needs 4 consecutive hangs, and more if there is
601  * progress in between, this is a last resort stop gap measure
602  * to limit the badly behaving clients access to gpu.
603  */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605         atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610         uint32_t        tu;
611         uint32_t        gmch_m;
612         uint32_t        gmch_n;
613         uint32_t        link_m;
614         uint32_t        link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618                             int pixel_clock, int link_clock,
619                             struct intel_link_m_n *m_n,
620                             bool reduce_m_n);
621
622 /* Interface history:
623  *
624  * 1.1: Original.
625  * 1.2: Add Power Management
626  * 1.3: Add vblank support
627  * 1.4: Fix cmdbuffer path, add heap destroy
628  * 1.5: Add vblank pipe configuration
629  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630  *      - Support vertical blank on secondary display pipe
631  */
632 #define DRIVER_MAJOR            1
633 #define DRIVER_MINOR            6
634 #define DRIVER_PATCHLEVEL       0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642         struct opregion_header *header;
643         struct opregion_acpi *acpi;
644         struct opregion_swsci *swsci;
645         u32 swsci_gbda_sub_functions;
646         u32 swsci_sbcb_sub_functions;
647         struct opregion_asle *asle;
648         void *rvda;
649         const void *vbt;
650         u32 vbt_size;
651         u32 *lid_state;
652         struct work_struct asle_work;
653 };
654 #define OPREGION_SIZE            (8*1024)
655
656 struct intel_overlay;
657 struct intel_overlay_error_state;
658
659 struct sdvo_device_mapping {
660         u8 initialized;
661         u8 dvo_port;
662         u8 slave_addr;
663         u8 dvo_wiring;
664         u8 i2c_pin;
665         u8 ddc_pin;
666 };
667
668 struct intel_connector;
669 struct intel_encoder;
670 struct intel_atomic_state;
671 struct intel_crtc_state;
672 struct intel_initial_plane_config;
673 struct intel_crtc;
674 struct intel_limit;
675 struct dpll;
676 struct intel_cdclk_state;
677
678 struct drm_i915_display_funcs {
679         void (*get_cdclk)(struct drm_i915_private *dev_priv,
680                           struct intel_cdclk_state *cdclk_state);
681         void (*set_cdclk)(struct drm_i915_private *dev_priv,
682                           const struct intel_cdclk_state *cdclk_state);
683         int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
684         int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
685         int (*compute_intermediate_wm)(struct drm_device *dev,
686                                        struct intel_crtc *intel_crtc,
687                                        struct intel_crtc_state *newstate);
688         void (*initial_watermarks)(struct intel_atomic_state *state,
689                                    struct intel_crtc_state *cstate);
690         void (*atomic_update_watermarks)(struct intel_atomic_state *state,
691                                          struct intel_crtc_state *cstate);
692         void (*optimize_watermarks)(struct intel_atomic_state *state,
693                                     struct intel_crtc_state *cstate);
694         int (*compute_global_watermarks)(struct drm_atomic_state *state);
695         void (*update_wm)(struct intel_crtc *crtc);
696         int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
697         /* Returns the active state of the crtc, and if the crtc is active,
698          * fills out the pipe-config with the hw state. */
699         bool (*get_pipe_config)(struct intel_crtc *,
700                                 struct intel_crtc_state *);
701         void (*get_initial_plane_config)(struct intel_crtc *,
702                                          struct intel_initial_plane_config *);
703         int (*crtc_compute_clock)(struct intel_crtc *crtc,
704                                   struct intel_crtc_state *crtc_state);
705         void (*crtc_enable)(struct intel_crtc_state *pipe_config,
706                             struct drm_atomic_state *old_state);
707         void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
708                              struct drm_atomic_state *old_state);
709         void (*update_crtcs)(struct drm_atomic_state *state,
710                              unsigned int *crtc_vblank_mask);
711         void (*audio_codec_enable)(struct drm_connector *connector,
712                                    struct intel_encoder *encoder,
713                                    const struct drm_display_mode *adjusted_mode);
714         void (*audio_codec_disable)(struct intel_encoder *encoder);
715         void (*fdi_link_train)(struct intel_crtc *crtc,
716                                const struct intel_crtc_state *crtc_state);
717         void (*init_clock_gating)(struct drm_i915_private *dev_priv);
718         void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
719         /* clock updates for mode set */
720         /* cursor updates */
721         /* render clock increase/decrease */
722         /* display clock increase/decrease */
723         /* pll clock increase/decrease */
724
725         void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
726         void (*load_luts)(struct drm_crtc_state *crtc_state);
727 };
728
729 #define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
730 #define CSR_VERSION_MAJOR(version)      ((version) >> 16)
731 #define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
732
733 struct intel_csr {
734         struct work_struct work;
735         const char *fw_path;
736         uint32_t *dmc_payload;
737         uint32_t dmc_fw_size;
738         uint32_t version;
739         uint32_t mmio_count;
740         i915_reg_t mmioaddr[8];
741         uint32_t mmiodata[8];
742         uint32_t dc_state;
743         uint32_t allowed_dc_mask;
744 };
745
746 #define DEV_INFO_FOR_EACH_FLAG(func) \
747         func(is_mobile); \
748         func(is_lp); \
749         func(is_alpha_support); \
750         /* Keep has_* in alphabetical order */ \
751         func(has_64bit_reloc); \
752         func(has_aliasing_ppgtt); \
753         func(has_csr); \
754         func(has_ddi); \
755         func(has_dp_mst); \
756         func(has_reset_engine); \
757         func(has_fbc); \
758         func(has_fpga_dbg); \
759         func(has_full_ppgtt); \
760         func(has_full_48bit_ppgtt); \
761         func(has_gmbus_irq); \
762         func(has_gmch_display); \
763         func(has_guc); \
764         func(has_guc_ct); \
765         func(has_hotplug); \
766         func(has_l3_dpf); \
767         func(has_llc); \
768         func(has_logical_ring_contexts); \
769         func(has_overlay); \
770         func(has_pipe_cxsr); \
771         func(has_pooled_eu); \
772         func(has_psr); \
773         func(has_rc6); \
774         func(has_rc6p); \
775         func(has_resource_streamer); \
776         func(has_runtime_pm); \
777         func(has_snoop); \
778         func(unfenced_needs_alignment); \
779         func(cursor_needs_physical); \
780         func(hws_needs_physical); \
781         func(overlay_needs_physical); \
782         func(supports_tv);
783
784 struct sseu_dev_info {
785         u8 slice_mask;
786         u8 subslice_mask;
787         u8 eu_total;
788         u8 eu_per_subslice;
789         u8 min_eu_in_pool;
790         /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
791         u8 subslice_7eu[3];
792         u8 has_slice_pg:1;
793         u8 has_subslice_pg:1;
794         u8 has_eu_pg:1;
795 };
796
797 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
798 {
799         return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
800 }
801
802 /* Keep in gen based order, and chronological order within a gen */
803 enum intel_platform {
804         INTEL_PLATFORM_UNINITIALIZED = 0,
805         INTEL_I830,
806         INTEL_I845G,
807         INTEL_I85X,
808         INTEL_I865G,
809         INTEL_I915G,
810         INTEL_I915GM,
811         INTEL_I945G,
812         INTEL_I945GM,
813         INTEL_G33,
814         INTEL_PINEVIEW,
815         INTEL_I965G,
816         INTEL_I965GM,
817         INTEL_G45,
818         INTEL_GM45,
819         INTEL_IRONLAKE,
820         INTEL_SANDYBRIDGE,
821         INTEL_IVYBRIDGE,
822         INTEL_VALLEYVIEW,
823         INTEL_HASWELL,
824         INTEL_BROADWELL,
825         INTEL_CHERRYVIEW,
826         INTEL_SKYLAKE,
827         INTEL_BROXTON,
828         INTEL_KABYLAKE,
829         INTEL_GEMINILAKE,
830         INTEL_COFFEELAKE,
831         INTEL_CANNONLAKE,
832         INTEL_MAX_PLATFORMS
833 };
834
835 struct intel_device_info {
836         u32 display_mmio_offset;
837         u16 device_id;
838         u8 num_pipes;
839         u8 num_sprites[I915_MAX_PIPES];
840         u8 num_scalers[I915_MAX_PIPES];
841         u8 gen;
842         u16 gen_mask;
843         enum intel_platform platform;
844         u8 ring_mask; /* Rings supported by the HW */
845         u8 num_rings;
846 #define DEFINE_FLAG(name) u8 name:1
847         DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
848 #undef DEFINE_FLAG
849         u16 ddb_size; /* in blocks */
850         /* Register offsets for the various display pipes and transcoders */
851         int pipe_offsets[I915_MAX_TRANSCODERS];
852         int trans_offsets[I915_MAX_TRANSCODERS];
853         int palette_offsets[I915_MAX_PIPES];
854         int cursor_offsets[I915_MAX_PIPES];
855
856         /* Slice/subslice/EU info */
857         struct sseu_dev_info sseu;
858
859         struct color_luts {
860                 u16 degamma_lut_size;
861                 u16 gamma_lut_size;
862         } color;
863 };
864
865 struct intel_display_error_state;
866
867 struct i915_gpu_state {
868         struct kref ref;
869         struct timeval time;
870         struct timeval boottime;
871         struct timeval uptime;
872
873         struct drm_i915_private *i915;
874
875         char error_msg[128];
876         bool simulated;
877         bool awake;
878         bool wakelock;
879         bool suspended;
880         int iommu;
881         u32 reset_count;
882         u32 suspend_count;
883         struct intel_device_info device_info;
884         struct i915_params params;
885
886         /* Generic register state */
887         u32 eir;
888         u32 pgtbl_er;
889         u32 ier;
890         u32 gtier[4], ngtier;
891         u32 ccid;
892         u32 derrmr;
893         u32 forcewake;
894         u32 error; /* gen6+ */
895         u32 err_int; /* gen7 */
896         u32 fault_data0; /* gen8, gen9 */
897         u32 fault_data1; /* gen8, gen9 */
898         u32 done_reg;
899         u32 gac_eco;
900         u32 gam_ecochk;
901         u32 gab_ctl;
902         u32 gfx_mode;
903
904         u32 nfence;
905         u64 fence[I915_MAX_NUM_FENCES];
906         struct intel_overlay_error_state *overlay;
907         struct intel_display_error_state *display;
908         struct drm_i915_error_object *semaphore;
909         struct drm_i915_error_object *guc_log;
910
911         struct drm_i915_error_engine {
912                 int engine_id;
913                 /* Software tracked state */
914                 bool waiting;
915                 int num_waiters;
916                 unsigned long hangcheck_timestamp;
917                 bool hangcheck_stalled;
918                 enum intel_engine_hangcheck_action hangcheck_action;
919                 struct i915_address_space *vm;
920                 int num_requests;
921                 u32 reset_count;
922
923                 /* position of active request inside the ring */
924                 u32 rq_head, rq_post, rq_tail;
925
926                 /* our own tracking of ring head and tail */
927                 u32 cpu_ring_head;
928                 u32 cpu_ring_tail;
929
930                 u32 last_seqno;
931
932                 /* Register state */
933                 u32 start;
934                 u32 tail;
935                 u32 head;
936                 u32 ctl;
937                 u32 mode;
938                 u32 hws;
939                 u32 ipeir;
940                 u32 ipehr;
941                 u32 bbstate;
942                 u32 instpm;
943                 u32 instps;
944                 u32 seqno;
945                 u64 bbaddr;
946                 u64 acthd;
947                 u32 fault_reg;
948                 u64 faddr;
949                 u32 rc_psmi; /* sleep state */
950                 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
951                 struct intel_instdone instdone;
952
953                 struct drm_i915_error_context {
954                         char comm[TASK_COMM_LEN];
955                         pid_t pid;
956                         u32 handle;
957                         u32 hw_id;
958                         int ban_score;
959                         int active;
960                         int guilty;
961                 } context;
962
963                 struct drm_i915_error_object {
964                         u64 gtt_offset;
965                         u64 gtt_size;
966                         int page_count;
967                         int unused;
968                         u32 *pages[0];
969                 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
970
971                 struct drm_i915_error_object **user_bo;
972                 long user_bo_count;
973
974                 struct drm_i915_error_object *wa_ctx;
975
976                 struct drm_i915_error_request {
977                         long jiffies;
978                         pid_t pid;
979                         u32 context;
980                         int ban_score;
981                         u32 seqno;
982                         u32 head;
983                         u32 tail;
984                 } *requests, execlist[2];
985
986                 struct drm_i915_error_waiter {
987                         char comm[TASK_COMM_LEN];
988                         pid_t pid;
989                         u32 seqno;
990                 } *waiters;
991
992                 struct {
993                         u32 gfx_mode;
994                         union {
995                                 u64 pdp[4];
996                                 u32 pp_dir_base;
997                         };
998                 } vm_info;
999         } engine[I915_NUM_ENGINES];
1000
1001         struct drm_i915_error_buffer {
1002                 u32 size;
1003                 u32 name;
1004                 u32 rseqno[I915_NUM_ENGINES], wseqno;
1005                 u64 gtt_offset;
1006                 u32 read_domains;
1007                 u32 write_domain;
1008                 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1009                 u32 tiling:2;
1010                 u32 dirty:1;
1011                 u32 purgeable:1;
1012                 u32 userptr:1;
1013                 s32 engine:4;
1014                 u32 cache_level:3;
1015         } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1016         u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1017         struct i915_address_space *active_vm[I915_NUM_ENGINES];
1018 };
1019
1020 enum i915_cache_level {
1021         I915_CACHE_NONE = 0,
1022         I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1023         I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1024                               caches, eg sampler/render caches, and the
1025                               large Last-Level-Cache. LLC is coherent with
1026                               the CPU, but L3 is only visible to the GPU. */
1027         I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1028 };
1029
1030 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1031
1032 enum fb_op_origin {
1033         ORIGIN_GTT,
1034         ORIGIN_CPU,
1035         ORIGIN_CS,
1036         ORIGIN_FLIP,
1037         ORIGIN_DIRTYFB,
1038 };
1039
1040 struct intel_fbc {
1041         /* This is always the inner lock when overlapping with struct_mutex and
1042          * it's the outer lock when overlapping with stolen_lock. */
1043         struct mutex lock;
1044         unsigned threshold;
1045         unsigned int possible_framebuffer_bits;
1046         unsigned int busy_bits;
1047         unsigned int visible_pipes_mask;
1048         struct intel_crtc *crtc;
1049
1050         struct drm_mm_node compressed_fb;
1051         struct drm_mm_node *compressed_llb;
1052
1053         bool false_color;
1054
1055         bool enabled;
1056         bool active;
1057
1058         bool underrun_detected;
1059         struct work_struct underrun_work;
1060
1061         struct intel_fbc_state_cache {
1062                 struct i915_vma *vma;
1063
1064                 struct {
1065                         unsigned int mode_flags;
1066                         uint32_t hsw_bdw_pixel_rate;
1067                 } crtc;
1068
1069                 struct {
1070                         unsigned int rotation;
1071                         int src_w;
1072                         int src_h;
1073                         bool visible;
1074                 } plane;
1075
1076                 struct {
1077                         const struct drm_format_info *format;
1078                         unsigned int stride;
1079                 } fb;
1080         } state_cache;
1081
1082         struct intel_fbc_reg_params {
1083                 struct i915_vma *vma;
1084
1085                 struct {
1086                         enum pipe pipe;
1087                         enum plane plane;
1088                         unsigned int fence_y_offset;
1089                 } crtc;
1090
1091                 struct {
1092                         const struct drm_format_info *format;
1093                         unsigned int stride;
1094                 } fb;
1095
1096                 int cfb_size;
1097         } params;
1098
1099         struct intel_fbc_work {
1100                 bool scheduled;
1101                 u32 scheduled_vblank;
1102                 struct work_struct work;
1103         } work;
1104
1105         const char *no_fbc_reason;
1106 };
1107
1108 /*
1109  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1110  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1111  * parsing for same resolution.
1112  */
1113 enum drrs_refresh_rate_type {
1114         DRRS_HIGH_RR,
1115         DRRS_LOW_RR,
1116         DRRS_MAX_RR, /* RR count */
1117 };
1118
1119 enum drrs_support_type {
1120         DRRS_NOT_SUPPORTED = 0,
1121         STATIC_DRRS_SUPPORT = 1,
1122         SEAMLESS_DRRS_SUPPORT = 2
1123 };
1124
1125 struct intel_dp;
1126 struct i915_drrs {
1127         struct mutex mutex;
1128         struct delayed_work work;
1129         struct intel_dp *dp;
1130         unsigned busy_frontbuffer_bits;
1131         enum drrs_refresh_rate_type refresh_rate_type;
1132         enum drrs_support_type type;
1133 };
1134
1135 struct i915_psr {
1136         struct mutex lock;
1137         bool sink_support;
1138         bool source_ok;
1139         struct intel_dp *enabled;
1140         bool active;
1141         struct delayed_work work;
1142         unsigned busy_frontbuffer_bits;
1143         bool psr2_support;
1144         bool aux_frame_sync;
1145         bool link_standby;
1146         bool y_cord_support;
1147         bool colorimetry_support;
1148         bool alpm;
1149 };
1150
1151 enum intel_pch {
1152         PCH_NONE = 0,   /* No PCH present */
1153         PCH_IBX,        /* Ibexpeak PCH */
1154         PCH_CPT,        /* Cougarpoint/Pantherpoint PCH */
1155         PCH_LPT,        /* Lynxpoint/Wildcatpoint PCH */
1156         PCH_SPT,        /* Sunrisepoint PCH */
1157         PCH_KBP,        /* Kabypoint PCH */
1158         PCH_CNP,        /* Cannonpoint PCH */
1159         PCH_NOP,
1160 };
1161
1162 enum intel_sbi_destination {
1163         SBI_ICLK,
1164         SBI_MPHY,
1165 };
1166
1167 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1168 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1169 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1170 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1171 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1172
1173 struct intel_fbdev;
1174 struct intel_fbc_work;
1175
1176 struct intel_gmbus {
1177         struct i2c_adapter adapter;
1178 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1179         u32 force_bit;
1180         u32 reg0;
1181         i915_reg_t gpio_reg;
1182         struct i2c_algo_bit_data bit_algo;
1183         struct drm_i915_private *dev_priv;
1184 };
1185
1186 struct i915_suspend_saved_registers {
1187         u32 saveDSPARB;
1188         u32 saveFBC_CONTROL;
1189         u32 saveCACHE_MODE_0;
1190         u32 saveMI_ARB_STATE;
1191         u32 saveSWF0[16];
1192         u32 saveSWF1[16];
1193         u32 saveSWF3[3];
1194         uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1195         u32 savePCH_PORT_HOTPLUG;
1196         u16 saveGCDGMBUS;
1197 };
1198
1199 struct vlv_s0ix_state {
1200         /* GAM */
1201         u32 wr_watermark;
1202         u32 gfx_prio_ctrl;
1203         u32 arb_mode;
1204         u32 gfx_pend_tlb0;
1205         u32 gfx_pend_tlb1;
1206         u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1207         u32 media_max_req_count;
1208         u32 gfx_max_req_count;
1209         u32 render_hwsp;
1210         u32 ecochk;
1211         u32 bsd_hwsp;
1212         u32 blt_hwsp;
1213         u32 tlb_rd_addr;
1214
1215         /* MBC */
1216         u32 g3dctl;
1217         u32 gsckgctl;
1218         u32 mbctl;
1219
1220         /* GCP */
1221         u32 ucgctl1;
1222         u32 ucgctl3;
1223         u32 rcgctl1;
1224         u32 rcgctl2;
1225         u32 rstctl;
1226         u32 misccpctl;
1227
1228         /* GPM */
1229         u32 gfxpause;
1230         u32 rpdeuhwtc;
1231         u32 rpdeuc;
1232         u32 ecobus;
1233         u32 pwrdwnupctl;
1234         u32 rp_down_timeout;
1235         u32 rp_deucsw;
1236         u32 rcubmabdtmr;
1237         u32 rcedata;
1238         u32 spare2gh;
1239
1240         /* Display 1 CZ domain */
1241         u32 gt_imr;
1242         u32 gt_ier;
1243         u32 pm_imr;
1244         u32 pm_ier;
1245         u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1246
1247         /* GT SA CZ domain */
1248         u32 tilectl;
1249         u32 gt_fifoctl;
1250         u32 gtlc_wake_ctrl;
1251         u32 gtlc_survive;
1252         u32 pmwgicz;
1253
1254         /* Display 2 CZ domain */
1255         u32 gu_ctl0;
1256         u32 gu_ctl1;
1257         u32 pcbr;
1258         u32 clock_gate_dis2;
1259 };
1260
1261 struct intel_rps_ei {
1262         ktime_t ktime;
1263         u32 render_c0;
1264         u32 media_c0;
1265 };
1266
1267 struct intel_gen6_power_mgmt {
1268         /*
1269          * work, interrupts_enabled and pm_iir are protected by
1270          * dev_priv->irq_lock
1271          */
1272         struct work_struct work;
1273         bool interrupts_enabled;
1274         u32 pm_iir;
1275
1276         /* PM interrupt bits that should never be masked */
1277         u32 pm_intrmsk_mbz;
1278
1279         /* Frequencies are stored in potentially platform dependent multiples.
1280          * In other words, *_freq needs to be multiplied by X to be interesting.
1281          * Soft limits are those which are used for the dynamic reclocking done
1282          * by the driver (raise frequencies under heavy loads, and lower for
1283          * lighter loads). Hard limits are those imposed by the hardware.
1284          *
1285          * A distinction is made for overclocking, which is never enabled by
1286          * default, and is considered to be above the hard limit if it's
1287          * possible at all.
1288          */
1289         u8 cur_freq;            /* Current frequency (cached, may not == HW) */
1290         u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
1291         u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
1292         u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
1293         u8 min_freq;            /* AKA RPn. Minimum frequency */
1294         u8 boost_freq;          /* Frequency to request when wait boosting */
1295         u8 idle_freq;           /* Frequency to request when we are idle */
1296         u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
1297         u8 rp1_freq;            /* "less than" RP0 power/freqency */
1298         u8 rp0_freq;            /* Non-overclocked max frequency. */
1299         u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
1300
1301         u8 up_threshold; /* Current %busy required to uplock */
1302         u8 down_threshold; /* Current %busy required to downclock */
1303
1304         int last_adj;
1305         enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1306
1307         bool enabled;
1308         struct delayed_work autoenable_work;
1309         atomic_t num_waiters;
1310         atomic_t boosts;
1311
1312         /* manual wa residency calculations */
1313         struct intel_rps_ei ei;
1314
1315         /*
1316          * Protects RPS/RC6 register access and PCU communication.
1317          * Must be taken after struct_mutex if nested. Note that
1318          * this lock may be held for long periods of time when
1319          * talking to hw - so only take it when talking to hw!
1320          */
1321         struct mutex hw_lock;
1322 };
1323
1324 /* defined intel_pm.c */
1325 extern spinlock_t mchdev_lock;
1326
1327 struct intel_ilk_power_mgmt {
1328         u8 cur_delay;
1329         u8 min_delay;
1330         u8 max_delay;
1331         u8 fmax;
1332         u8 fstart;
1333
1334         u64 last_count1;
1335         unsigned long last_time1;
1336         unsigned long chipset_power;
1337         u64 last_count2;
1338         u64 last_time2;
1339         unsigned long gfx_power;
1340         u8 corr;
1341
1342         int c_m;
1343         int r_t;
1344 };
1345
1346 struct drm_i915_private;
1347 struct i915_power_well;
1348
1349 struct i915_power_well_ops {
1350         /*
1351          * Synchronize the well's hw state to match the current sw state, for
1352          * example enable/disable it based on the current refcount. Called
1353          * during driver init and resume time, possibly after first calling
1354          * the enable/disable handlers.
1355          */
1356         void (*sync_hw)(struct drm_i915_private *dev_priv,
1357                         struct i915_power_well *power_well);
1358         /*
1359          * Enable the well and resources that depend on it (for example
1360          * interrupts located on the well). Called after the 0->1 refcount
1361          * transition.
1362          */
1363         void (*enable)(struct drm_i915_private *dev_priv,
1364                        struct i915_power_well *power_well);
1365         /*
1366          * Disable the well and resources that depend on it. Called after
1367          * the 1->0 refcount transition.
1368          */
1369         void (*disable)(struct drm_i915_private *dev_priv,
1370                         struct i915_power_well *power_well);
1371         /* Returns the hw enabled state. */
1372         bool (*is_enabled)(struct drm_i915_private *dev_priv,
1373                            struct i915_power_well *power_well);
1374 };
1375
1376 /* Power well structure for haswell */
1377 struct i915_power_well {
1378         const char *name;
1379         bool always_on;
1380         /* power well enable/disable usage count */
1381         int count;
1382         /* cached hw enabled state */
1383         bool hw_enabled;
1384         u64 domains;
1385         /* unique identifier for this power well */
1386         enum i915_power_well_id id;
1387         /*
1388          * Arbitraty data associated with this power well. Platform and power
1389          * well specific.
1390          */
1391         union {
1392                 struct {
1393                         enum dpio_phy phy;
1394                 } bxt;
1395                 struct {
1396                         /* Mask of pipes whose IRQ logic is backed by the pw */
1397                         u8 irq_pipe_mask;
1398                         /* The pw is backing the VGA functionality */
1399                         bool has_vga:1;
1400                         bool has_fuses:1;
1401                 } hsw;
1402         };
1403         const struct i915_power_well_ops *ops;
1404 };
1405
1406 struct i915_power_domains {
1407         /*
1408          * Power wells needed for initialization at driver init and suspend
1409          * time are on. They are kept on until after the first modeset.
1410          */
1411         bool init_power_on;
1412         bool initializing;
1413         int power_well_count;
1414
1415         struct mutex lock;
1416         int domain_use_count[POWER_DOMAIN_NUM];
1417         struct i915_power_well *power_wells;
1418 };
1419
1420 #define MAX_L3_SLICES 2
1421 struct intel_l3_parity {
1422         u32 *remap_info[MAX_L3_SLICES];
1423         struct work_struct error_work;
1424         int which_slice;
1425 };
1426
1427 struct i915_gem_mm {
1428         /** Memory allocator for GTT stolen memory */
1429         struct drm_mm stolen;
1430         /** Protects the usage of the GTT stolen memory allocator. This is
1431          * always the inner lock when overlapping with struct_mutex. */
1432         struct mutex stolen_lock;
1433
1434         /** List of all objects in gtt_space. Used to restore gtt
1435          * mappings on resume */
1436         struct list_head bound_list;
1437         /**
1438          * List of objects which are not bound to the GTT (thus
1439          * are idle and not used by the GPU). These objects may or may
1440          * not actually have any pages attached.
1441          */
1442         struct list_head unbound_list;
1443
1444         /** List of all objects in gtt_space, currently mmaped by userspace.
1445          * All objects within this list must also be on bound_list.
1446          */
1447         struct list_head userfault_list;
1448
1449         /**
1450          * List of objects which are pending destruction.
1451          */
1452         struct llist_head free_list;
1453         struct work_struct free_work;
1454
1455         /** Usable portion of the GTT for GEM */
1456         dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1457
1458         /** PPGTT used for aliasing the PPGTT with the GTT */
1459         struct i915_hw_ppgtt *aliasing_ppgtt;
1460
1461         struct notifier_block oom_notifier;
1462         struct notifier_block vmap_notifier;
1463         struct shrinker shrinker;
1464
1465         /** LRU list of objects with fence regs on them. */
1466         struct list_head fence_list;
1467
1468         /**
1469          * Workqueue to fault in userptr pages, flushed by the execbuf
1470          * when required but otherwise left to userspace to try again
1471          * on EAGAIN.
1472          */
1473         struct workqueue_struct *userptr_wq;
1474
1475         u64 unordered_timeline;
1476
1477         /* the indicator for dispatch video commands on two BSD rings */
1478         atomic_t bsd_engine_dispatch_index;
1479
1480         /** Bit 6 swizzling required for X tiling */
1481         uint32_t bit_6_swizzle_x;
1482         /** Bit 6 swizzling required for Y tiling */
1483         uint32_t bit_6_swizzle_y;
1484
1485         /* accounting, useful for userland debugging */
1486         spinlock_t object_stat_lock;
1487         u64 object_memory;
1488         u32 object_count;
1489 };
1490
1491 struct drm_i915_error_state_buf {
1492         struct drm_i915_private *i915;
1493         unsigned bytes;
1494         unsigned size;
1495         int err;
1496         u8 *buf;
1497         loff_t start;
1498         loff_t pos;
1499 };
1500
1501 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1502 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1503
1504 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1505 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1506
1507 struct i915_gpu_error {
1508         /* For hangcheck timer */
1509 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1510 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1511
1512         struct delayed_work hangcheck_work;
1513
1514         /* For reset and error_state handling. */
1515         spinlock_t lock;
1516         /* Protected by the above dev->gpu_error.lock. */
1517         struct i915_gpu_state *first_error;
1518
1519         unsigned long missed_irq_rings;
1520
1521         /**
1522          * State variable controlling the reset flow and count
1523          *
1524          * This is a counter which gets incremented when reset is triggered,
1525          *
1526          * Before the reset commences, the I915_RESET_BACKOFF bit is set
1527          * meaning that any waiters holding onto the struct_mutex should
1528          * relinquish the lock immediately in order for the reset to start.
1529          *
1530          * If reset is not completed succesfully, the I915_WEDGE bit is
1531          * set meaning that hardware is terminally sour and there is no
1532          * recovery. All waiters on the reset_queue will be woken when
1533          * that happens.
1534          *
1535          * This counter is used by the wait_seqno code to notice that reset
1536          * event happened and it needs to restart the entire ioctl (since most
1537          * likely the seqno it waited for won't ever signal anytime soon).
1538          *
1539          * This is important for lock-free wait paths, where no contended lock
1540          * naturally enforces the correct ordering between the bail-out of the
1541          * waiter and the gpu reset work code.
1542          */
1543         unsigned long reset_count;
1544
1545         /**
1546          * flags: Control various stages of the GPU reset
1547          *
1548          * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1549          * other users acquiring the struct_mutex. To do this we set the
1550          * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1551          * and then check for that bit before acquiring the struct_mutex (in
1552          * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1553          * secondary role in preventing two concurrent global reset attempts.
1554          *
1555          * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1556          * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1557          * but it may be held by some long running waiter (that we cannot
1558          * interrupt without causing trouble). Once we are ready to do the GPU
1559          * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1560          * they already hold the struct_mutex and want to participate they can
1561          * inspect the bit and do the reset directly, otherwise the worker
1562          * waits for the struct_mutex.
1563          *
1564          * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1565          * acquire the struct_mutex to reset an engine, we need an explicit
1566          * flag to prevent two concurrent reset attempts in the same engine.
1567          * As the number of engines continues to grow, allocate the flags from
1568          * the most significant bits.
1569          *
1570          * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1571          * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1572          * i915_gem_request_alloc(), this bit is checked and the sequence
1573          * aborted (with -EIO reported to userspace) if set.
1574          */
1575         unsigned long flags;
1576 #define I915_RESET_BACKOFF      0
1577 #define I915_RESET_HANDOFF      1
1578 #define I915_WEDGED             (BITS_PER_LONG - 1)
1579 #define I915_RESET_ENGINE       (I915_WEDGED - I915_NUM_ENGINES)
1580
1581         /** Number of times an engine has been reset */
1582         u32 reset_engine_count[I915_NUM_ENGINES];
1583
1584         /**
1585          * Waitqueue to signal when a hang is detected. Used to for waiters
1586          * to release the struct_mutex for the reset to procede.
1587          */
1588         wait_queue_head_t wait_queue;
1589
1590         /**
1591          * Waitqueue to signal when the reset has completed. Used by clients
1592          * that wait for dev_priv->mm.wedged to settle.
1593          */
1594         wait_queue_head_t reset_queue;
1595
1596         /* For missed irq/seqno simulation. */
1597         unsigned long test_irq_rings;
1598 };
1599
1600 enum modeset_restore {
1601         MODESET_ON_LID_OPEN,
1602         MODESET_DONE,
1603         MODESET_SUSPENDED,
1604 };
1605
1606 #define DP_AUX_A 0x40
1607 #define DP_AUX_B 0x10
1608 #define DP_AUX_C 0x20
1609 #define DP_AUX_D 0x30
1610
1611 #define DDC_PIN_B  0x05
1612 #define DDC_PIN_C  0x04
1613 #define DDC_PIN_D  0x06
1614
1615 struct ddi_vbt_port_info {
1616         /*
1617          * This is an index in the HDMI/DVI DDI buffer translation table.
1618          * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1619          * populate this field.
1620          */
1621 #define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1622         uint8_t hdmi_level_shift;
1623
1624         uint8_t supports_dvi:1;
1625         uint8_t supports_hdmi:1;
1626         uint8_t supports_dp:1;
1627         uint8_t supports_edp:1;
1628
1629         uint8_t alternate_aux_channel;
1630         uint8_t alternate_ddc_pin;
1631
1632         uint8_t dp_boost_level;
1633         uint8_t hdmi_boost_level;
1634 };
1635
1636 enum psr_lines_to_wait {
1637         PSR_0_LINES_TO_WAIT = 0,
1638         PSR_1_LINE_TO_WAIT,
1639         PSR_4_LINES_TO_WAIT,
1640         PSR_8_LINES_TO_WAIT
1641 };
1642
1643 struct intel_vbt_data {
1644         struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1645         struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1646
1647         /* Feature bits */
1648         unsigned int int_tv_support:1;
1649         unsigned int lvds_dither:1;
1650         unsigned int lvds_vbt:1;
1651         unsigned int int_crt_support:1;
1652         unsigned int lvds_use_ssc:1;
1653         unsigned int display_clock_mode:1;
1654         unsigned int fdi_rx_polarity_inverted:1;
1655         unsigned int panel_type:4;
1656         int lvds_ssc_freq;
1657         unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1658
1659         enum drrs_support_type drrs_type;
1660
1661         struct {
1662                 int rate;
1663                 int lanes;
1664                 int preemphasis;
1665                 int vswing;
1666                 bool low_vswing;
1667                 bool initialized;
1668                 bool support;
1669                 int bpp;
1670                 struct edp_power_seq pps;
1671         } edp;
1672
1673         struct {
1674                 bool full_link;
1675                 bool require_aux_wakeup;
1676                 int idle_frames;
1677                 enum psr_lines_to_wait lines_to_wait;
1678                 int tp1_wakeup_time;
1679                 int tp2_tp3_wakeup_time;
1680         } psr;
1681
1682         struct {
1683                 u16 pwm_freq_hz;
1684                 bool present;
1685                 bool active_low_pwm;
1686                 u8 min_brightness;      /* min_brightness/255 of max */
1687                 u8 controller;          /* brightness controller number */
1688                 enum intel_backlight_type type;
1689         } backlight;
1690
1691         /* MIPI DSI */
1692         struct {
1693                 u16 panel_id;
1694                 struct mipi_config *config;
1695                 struct mipi_pps_data *pps;
1696                 u8 seq_version;
1697                 u32 size;
1698                 u8 *data;
1699                 const u8 *sequence[MIPI_SEQ_MAX];
1700         } dsi;
1701
1702         int crt_ddc_pin;
1703
1704         int child_dev_num;
1705         union child_device_config *child_dev;
1706
1707         struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1708         struct sdvo_device_mapping sdvo_mappings[2];
1709 };
1710
1711 enum intel_ddb_partitioning {
1712         INTEL_DDB_PART_1_2,
1713         INTEL_DDB_PART_5_6, /* IVB+ */
1714 };
1715
1716 struct intel_wm_level {
1717         bool enable;
1718         uint32_t pri_val;
1719         uint32_t spr_val;
1720         uint32_t cur_val;
1721         uint32_t fbc_val;
1722 };
1723
1724 struct ilk_wm_values {
1725         uint32_t wm_pipe[3];
1726         uint32_t wm_lp[3];
1727         uint32_t wm_lp_spr[3];
1728         uint32_t wm_linetime[3];
1729         bool enable_fbc_wm;
1730         enum intel_ddb_partitioning partitioning;
1731 };
1732
1733 struct g4x_pipe_wm {
1734         uint16_t plane[I915_MAX_PLANES];
1735         uint16_t fbc;
1736 };
1737
1738 struct g4x_sr_wm {
1739         uint16_t plane;
1740         uint16_t cursor;
1741         uint16_t fbc;
1742 };
1743
1744 struct vlv_wm_ddl_values {
1745         uint8_t plane[I915_MAX_PLANES];
1746 };
1747
1748 struct vlv_wm_values {
1749         struct g4x_pipe_wm pipe[3];
1750         struct g4x_sr_wm sr;
1751         struct vlv_wm_ddl_values ddl[3];
1752         uint8_t level;
1753         bool cxsr;
1754 };
1755
1756 struct g4x_wm_values {
1757         struct g4x_pipe_wm pipe[2];
1758         struct g4x_sr_wm sr;
1759         struct g4x_sr_wm hpll;
1760         bool cxsr;
1761         bool hpll_en;
1762         bool fbc_en;
1763 };
1764
1765 struct skl_ddb_entry {
1766         uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1767 };
1768
1769 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1770 {
1771         return entry->end - entry->start;
1772 }
1773
1774 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1775                                        const struct skl_ddb_entry *e2)
1776 {
1777         if (e1->start == e2->start && e1->end == e2->end)
1778                 return true;
1779
1780         return false;
1781 }
1782
1783 struct skl_ddb_allocation {
1784         struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1785         struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1786 };
1787
1788 struct skl_wm_values {
1789         unsigned dirty_pipes;
1790         struct skl_ddb_allocation ddb;
1791 };
1792
1793 struct skl_wm_level {
1794         bool plane_en;
1795         uint16_t plane_res_b;
1796         uint8_t plane_res_l;
1797 };
1798
1799 /*
1800  * This struct helps tracking the state needed for runtime PM, which puts the
1801  * device in PCI D3 state. Notice that when this happens, nothing on the
1802  * graphics device works, even register access, so we don't get interrupts nor
1803  * anything else.
1804  *
1805  * Every piece of our code that needs to actually touch the hardware needs to
1806  * either call intel_runtime_pm_get or call intel_display_power_get with the
1807  * appropriate power domain.
1808  *
1809  * Our driver uses the autosuspend delay feature, which means we'll only really
1810  * suspend if we stay with zero refcount for a certain amount of time. The
1811  * default value is currently very conservative (see intel_runtime_pm_enable), but
1812  * it can be changed with the standard runtime PM files from sysfs.
1813  *
1814  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1815  * goes back to false exactly before we reenable the IRQs. We use this variable
1816  * to check if someone is trying to enable/disable IRQs while they're supposed
1817  * to be disabled. This shouldn't happen and we'll print some error messages in
1818  * case it happens.
1819  *
1820  * For more, read the Documentation/power/runtime_pm.txt.
1821  */
1822 struct i915_runtime_pm {
1823         atomic_t wakeref_count;
1824         bool suspended;
1825         bool irqs_enabled;
1826 };
1827
1828 enum intel_pipe_crc_source {
1829         INTEL_PIPE_CRC_SOURCE_NONE,
1830         INTEL_PIPE_CRC_SOURCE_PLANE1,
1831         INTEL_PIPE_CRC_SOURCE_PLANE2,
1832         INTEL_PIPE_CRC_SOURCE_PF,
1833         INTEL_PIPE_CRC_SOURCE_PIPE,
1834         /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1835         INTEL_PIPE_CRC_SOURCE_TV,
1836         INTEL_PIPE_CRC_SOURCE_DP_B,
1837         INTEL_PIPE_CRC_SOURCE_DP_C,
1838         INTEL_PIPE_CRC_SOURCE_DP_D,
1839         INTEL_PIPE_CRC_SOURCE_AUTO,
1840         INTEL_PIPE_CRC_SOURCE_MAX,
1841 };
1842
1843 struct intel_pipe_crc_entry {
1844         uint32_t frame;
1845         uint32_t crc[5];
1846 };
1847
1848 #define INTEL_PIPE_CRC_ENTRIES_NR       128
1849 struct intel_pipe_crc {
1850         spinlock_t lock;
1851         bool opened;            /* exclusive access to the result file */
1852         struct intel_pipe_crc_entry *entries;
1853         enum intel_pipe_crc_source source;
1854         int head, tail;
1855         wait_queue_head_t wq;
1856         int skipped;
1857 };
1858
1859 struct i915_frontbuffer_tracking {
1860         spinlock_t lock;
1861
1862         /*
1863          * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1864          * scheduled flips.
1865          */
1866         unsigned busy_bits;
1867         unsigned flip_bits;
1868 };
1869
1870 struct i915_wa_reg {
1871         i915_reg_t addr;
1872         u32 value;
1873         /* bitmask representing WA bits */
1874         u32 mask;
1875 };
1876
1877 /*
1878  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1879  * allowing it for RCS as we don't foresee any requirement of having
1880  * a whitelist for other engines. When it is really required for
1881  * other engines then the limit need to be increased.
1882  */
1883 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1884
1885 struct i915_workarounds {
1886         struct i915_wa_reg reg[I915_MAX_WA_REGS];
1887         u32 count;
1888         u32 hw_whitelist_count[I915_NUM_ENGINES];
1889 };
1890
1891 struct i915_virtual_gpu {
1892         bool active;
1893 };
1894
1895 /* used in computing the new watermarks state */
1896 struct intel_wm_config {
1897         unsigned int num_pipes_active;
1898         bool sprites_enabled;
1899         bool sprites_scaled;
1900 };
1901
1902 struct i915_oa_format {
1903         u32 format;
1904         int size;
1905 };
1906
1907 struct i915_oa_reg {
1908         i915_reg_t addr;
1909         u32 value;
1910 };
1911
1912 struct i915_perf_stream;
1913
1914 /**
1915  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1916  */
1917 struct i915_perf_stream_ops {
1918         /**
1919          * @enable: Enables the collection of HW samples, either in response to
1920          * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1921          * without `I915_PERF_FLAG_DISABLED`.
1922          */
1923         void (*enable)(struct i915_perf_stream *stream);
1924
1925         /**
1926          * @disable: Disables the collection of HW samples, either in response
1927          * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1928          * the stream.
1929          */
1930         void (*disable)(struct i915_perf_stream *stream);
1931
1932         /**
1933          * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1934          * once there is something ready to read() for the stream
1935          */
1936         void (*poll_wait)(struct i915_perf_stream *stream,
1937                           struct file *file,
1938                           poll_table *wait);
1939
1940         /**
1941          * @wait_unlocked: For handling a blocking read, wait until there is
1942          * something to ready to read() for the stream. E.g. wait on the same
1943          * wait queue that would be passed to poll_wait().
1944          */
1945         int (*wait_unlocked)(struct i915_perf_stream *stream);
1946
1947         /**
1948          * @read: Copy buffered metrics as records to userspace
1949          * **buf**: the userspace, destination buffer
1950          * **count**: the number of bytes to copy, requested by userspace
1951          * **offset**: zero at the start of the read, updated as the read
1952          * proceeds, it represents how many bytes have been copied so far and
1953          * the buffer offset for copying the next record.
1954          *
1955          * Copy as many buffered i915 perf samples and records for this stream
1956          * to userspace as will fit in the given buffer.
1957          *
1958          * Only write complete records; returning -%ENOSPC if there isn't room
1959          * for a complete record.
1960          *
1961          * Return any error condition that results in a short read such as
1962          * -%ENOSPC or -%EFAULT, even though these may be squashed before
1963          * returning to userspace.
1964          */
1965         int (*read)(struct i915_perf_stream *stream,
1966                     char __user *buf,
1967                     size_t count,
1968                     size_t *offset);
1969
1970         /**
1971          * @destroy: Cleanup any stream specific resources.
1972          *
1973          * The stream will always be disabled before this is called.
1974          */
1975         void (*destroy)(struct i915_perf_stream *stream);
1976 };
1977
1978 /**
1979  * struct i915_perf_stream - state for a single open stream FD
1980  */
1981 struct i915_perf_stream {
1982         /**
1983          * @dev_priv: i915 drm device
1984          */
1985         struct drm_i915_private *dev_priv;
1986
1987         /**
1988          * @link: Links the stream into ``&drm_i915_private->streams``
1989          */
1990         struct list_head link;
1991
1992         /**
1993          * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1994          * properties given when opening a stream, representing the contents
1995          * of a single sample as read() by userspace.
1996          */
1997         u32 sample_flags;
1998
1999         /**
2000          * @sample_size: Considering the configured contents of a sample
2001          * combined with the required header size, this is the total size
2002          * of a single sample record.
2003          */
2004         int sample_size;
2005
2006         /**
2007          * @ctx: %NULL if measuring system-wide across all contexts or a
2008          * specific context that is being monitored.
2009          */
2010         struct i915_gem_context *ctx;
2011
2012         /**
2013          * @enabled: Whether the stream is currently enabled, considering
2014          * whether the stream was opened in a disabled state and based
2015          * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2016          */
2017         bool enabled;
2018
2019         /**
2020          * @ops: The callbacks providing the implementation of this specific
2021          * type of configured stream.
2022          */
2023         const struct i915_perf_stream_ops *ops;
2024 };
2025
2026 /**
2027  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2028  */
2029 struct i915_oa_ops {
2030         /**
2031          * @init_oa_buffer: Resets the head and tail pointers of the
2032          * circular buffer for periodic OA reports.
2033          *
2034          * Called when first opening a stream for OA metrics, but also may be
2035          * called in response to an OA buffer overflow or other error
2036          * condition.
2037          *
2038          * Note it may be necessary to clear the full OA buffer here as part of
2039          * maintaining the invariable that new reports must be written to
2040          * zeroed memory for us to be able to reliable detect if an expected
2041          * report has not yet landed in memory.  (At least on Haswell the OA
2042          * buffer tail pointer is not synchronized with reports being visible
2043          * to the CPU)
2044          */
2045         void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2046
2047         /**
2048          * @select_metric_set: The auto generated code that checks whether a
2049          * requested OA config is applicable to the system and if so sets up
2050          * the mux, oa and flex eu register config pointers according to the
2051          * current dev_priv->perf.oa.metrics_set.
2052          */
2053         int (*select_metric_set)(struct drm_i915_private *dev_priv);
2054
2055         /**
2056          * @enable_metric_set: Selects and applies any MUX configuration to set
2057          * up the Boolean and Custom (B/C) counters that are part of the
2058          * counter reports being sampled. May apply system constraints such as
2059          * disabling EU clock gating as required.
2060          */
2061         int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2062
2063         /**
2064          * @disable_metric_set: Remove system constraints associated with using
2065          * the OA unit.
2066          */
2067         void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2068
2069         /**
2070          * @oa_enable: Enable periodic sampling
2071          */
2072         void (*oa_enable)(struct drm_i915_private *dev_priv);
2073
2074         /**
2075          * @oa_disable: Disable periodic sampling
2076          */
2077         void (*oa_disable)(struct drm_i915_private *dev_priv);
2078
2079         /**
2080          * @read: Copy data from the circular OA buffer into a given userspace
2081          * buffer.
2082          */
2083         int (*read)(struct i915_perf_stream *stream,
2084                     char __user *buf,
2085                     size_t count,
2086                     size_t *offset);
2087
2088         /**
2089          * @oa_hw_tail_read: read the OA tail pointer register
2090          *
2091          * In particular this enables us to share all the fiddly code for
2092          * handling the OA unit tail pointer race that affects multiple
2093          * generations.
2094          */
2095         u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2096 };
2097
2098 struct intel_cdclk_state {
2099         unsigned int cdclk, vco, ref;
2100 };
2101
2102 struct drm_i915_private {
2103         struct drm_device drm;
2104
2105         struct kmem_cache *objects;
2106         struct kmem_cache *vmas;
2107         struct kmem_cache *requests;
2108         struct kmem_cache *dependencies;
2109         struct kmem_cache *priorities;
2110
2111         const struct intel_device_info info;
2112
2113         void __iomem *regs;
2114
2115         struct intel_uncore uncore;
2116
2117         struct i915_virtual_gpu vgpu;
2118
2119         struct intel_gvt *gvt;
2120
2121         struct intel_huc huc;
2122         struct intel_guc guc;
2123
2124         struct intel_csr csr;
2125
2126         struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2127
2128         /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2129          * controller on different i2c buses. */
2130         struct mutex gmbus_mutex;
2131
2132         /**
2133          * Base address of the gmbus and gpio block.
2134          */
2135         uint32_t gpio_mmio_base;
2136
2137         /* MMIO base address for MIPI regs */
2138         uint32_t mipi_mmio_base;
2139
2140         uint32_t psr_mmio_base;
2141
2142         uint32_t pps_mmio_base;
2143
2144         wait_queue_head_t gmbus_wait_queue;
2145
2146         struct pci_dev *bridge_dev;
2147         struct i915_gem_context *kernel_context;
2148         struct intel_engine_cs *engine[I915_NUM_ENGINES];
2149         struct i915_vma *semaphore;
2150
2151         struct drm_dma_handle *status_page_dmah;
2152         struct resource mch_res;
2153
2154         /* protects the irq masks */
2155         spinlock_t irq_lock;
2156
2157         bool display_irqs_enabled;
2158
2159         /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2160         struct pm_qos_request pm_qos;
2161
2162         /* Sideband mailbox protection */
2163         struct mutex sb_lock;
2164
2165         /** Cached value of IMR to avoid reads in updating the bitfield */
2166         union {
2167                 u32 irq_mask;
2168                 u32 de_irq_mask[I915_MAX_PIPES];
2169         };
2170         u32 gt_irq_mask;
2171         u32 pm_imr;
2172         u32 pm_ier;
2173         u32 pm_rps_events;
2174         u32 pm_guc_events;
2175         u32 pipestat_irq_mask[I915_MAX_PIPES];
2176
2177         struct i915_hotplug hotplug;
2178         struct intel_fbc fbc;
2179         struct i915_drrs drrs;
2180         struct intel_opregion opregion;
2181         struct intel_vbt_data vbt;
2182
2183         bool preserve_bios_swizzle;
2184
2185         /* overlay */
2186         struct intel_overlay *overlay;
2187
2188         /* backlight registers and fields in struct intel_panel */
2189         struct mutex backlight_lock;
2190
2191         /* LVDS info */
2192         bool no_aux_handshake;
2193
2194         /* protects panel power sequencer state */
2195         struct mutex pps_mutex;
2196
2197         struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2198         int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2199
2200         unsigned int fsb_freq, mem_freq, is_ddr3;
2201         unsigned int skl_preferred_vco_freq;
2202         unsigned int max_cdclk_freq;
2203
2204         unsigned int max_dotclk_freq;
2205         unsigned int rawclk_freq;
2206         unsigned int hpll_freq;
2207         unsigned int czclk_freq;
2208
2209         struct {
2210                 /*
2211                  * The current logical cdclk state.
2212                  * See intel_atomic_state.cdclk.logical
2213                  *
2214                  * For reading holding any crtc lock is sufficient,
2215                  * for writing must hold all of them.
2216                  */
2217                 struct intel_cdclk_state logical;
2218                 /*
2219                  * The current actual cdclk state.
2220                  * See intel_atomic_state.cdclk.actual
2221                  */
2222                 struct intel_cdclk_state actual;
2223                 /* The current hardware cdclk state */
2224                 struct intel_cdclk_state hw;
2225         } cdclk;
2226
2227         /**
2228          * wq - Driver workqueue for GEM.
2229          *
2230          * NOTE: Work items scheduled here are not allowed to grab any modeset
2231          * locks, for otherwise the flushing done in the pageflip code will
2232          * result in deadlocks.
2233          */
2234         struct workqueue_struct *wq;
2235
2236         /* Display functions */
2237         struct drm_i915_display_funcs display;
2238
2239         /* PCH chipset type */
2240         enum intel_pch pch_type;
2241         unsigned short pch_id;
2242
2243         unsigned long quirks;
2244
2245         enum modeset_restore modeset_restore;
2246         struct mutex modeset_restore_lock;
2247         struct drm_atomic_state *modeset_restore_state;
2248         struct drm_modeset_acquire_ctx reset_ctx;
2249
2250         struct list_head vm_list; /* Global list of all address spaces */
2251         struct i915_ggtt ggtt; /* VM representing the global address space */
2252
2253         struct i915_gem_mm mm;
2254         DECLARE_HASHTABLE(mm_structs, 7);
2255         struct mutex mm_lock;
2256
2257         /* Kernel Modesetting */
2258
2259         struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2260         struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2261
2262 #ifdef CONFIG_DEBUG_FS
2263         struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2264 #endif
2265
2266         /* dpll and cdclk state is protected by connection_mutex */
2267         int num_shared_dpll;
2268         struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2269         const struct intel_dpll_mgr *dpll_mgr;
2270
2271         /*
2272          * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2273          * Must be global rather than per dpll, because on some platforms
2274          * plls share registers.
2275          */
2276         struct mutex dpll_lock;
2277
2278         unsigned int active_crtcs;
2279         unsigned int min_pixclk[I915_MAX_PIPES];
2280
2281         int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2282
2283         struct i915_workarounds workarounds;
2284
2285         struct i915_frontbuffer_tracking fb_tracking;
2286
2287         struct intel_atomic_helper {
2288                 struct llist_head free_list;
2289                 struct work_struct free_work;
2290         } atomic_helper;
2291
2292         u16 orig_clock;
2293
2294         bool mchbar_need_disable;
2295
2296         struct intel_l3_parity l3_parity;
2297
2298         /* Cannot be determined by PCIID. You must always read a register. */
2299         u32 edram_cap;
2300
2301         /* gen6+ rps state */
2302         struct intel_gen6_power_mgmt rps;
2303
2304         /* ilk-only ips/rps state. Everything in here is protected by the global
2305          * mchdev_lock in intel_pm.c */
2306         struct intel_ilk_power_mgmt ips;
2307
2308         struct i915_power_domains power_domains;
2309
2310         struct i915_psr psr;
2311
2312         struct i915_gpu_error gpu_error;
2313
2314         struct drm_i915_gem_object *vlv_pctx;
2315
2316         /* list of fbdev register on this device */
2317         struct intel_fbdev *fbdev;
2318         struct work_struct fbdev_suspend_work;
2319
2320         struct drm_property *broadcast_rgb_property;
2321         struct drm_property *force_audio_property;
2322
2323         /* hda/i915 audio component */
2324         struct i915_audio_component *audio_component;
2325         bool audio_component_registered;
2326         /**
2327          * av_mutex - mutex for audio/video sync
2328          *
2329          */
2330         struct mutex av_mutex;
2331
2332         struct {
2333                 struct list_head list;
2334                 struct llist_head free_list;
2335                 struct work_struct free_work;
2336
2337                 /* The hw wants to have a stable context identifier for the
2338                  * lifetime of the context (for OA, PASID, faults, etc).
2339                  * This is limited in execlists to 21 bits.
2340                  */
2341                 struct ida hw_ida;
2342 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2343         } contexts;
2344
2345         u32 fdi_rx_config;
2346
2347         /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2348         u32 chv_phy_control;
2349         /*
2350          * Shadows for CHV DPLL_MD regs to keep the state
2351          * checker somewhat working in the presence hardware
2352          * crappiness (can't read out DPLL_MD for pipes B & C).
2353          */
2354         u32 chv_dpll_md[I915_MAX_PIPES];
2355         u32 bxt_phy_grc;
2356
2357         u32 suspend_count;
2358         bool suspended_to_idle;
2359         struct i915_suspend_saved_registers regfile;
2360         struct vlv_s0ix_state vlv_s0ix_state;
2361
2362         enum {
2363                 I915_SAGV_UNKNOWN = 0,
2364                 I915_SAGV_DISABLED,
2365                 I915_SAGV_ENABLED,
2366                 I915_SAGV_NOT_CONTROLLED
2367         } sagv_status;
2368
2369         struct {
2370                 /*
2371                  * Raw watermark latency values:
2372                  * in 0.1us units for WM0,
2373                  * in 0.5us units for WM1+.
2374                  */
2375                 /* primary */
2376                 uint16_t pri_latency[5];
2377                 /* sprite */
2378                 uint16_t spr_latency[5];
2379                 /* cursor */
2380                 uint16_t cur_latency[5];
2381                 /*
2382                  * Raw watermark memory latency values
2383                  * for SKL for all 8 levels
2384                  * in 1us units.
2385                  */
2386                 uint16_t skl_latency[8];
2387
2388                 /* current hardware state */
2389                 union {
2390                         struct ilk_wm_values hw;
2391                         struct skl_wm_values skl_hw;
2392                         struct vlv_wm_values vlv;
2393                         struct g4x_wm_values g4x;
2394                 };
2395
2396                 uint8_t max_level;
2397
2398                 /*
2399                  * Should be held around atomic WM register writing; also
2400                  * protects * intel_crtc->wm.active and
2401                  * cstate->wm.need_postvbl_update.
2402                  */
2403                 struct mutex wm_mutex;
2404
2405                 /*
2406                  * Set during HW readout of watermarks/DDB.  Some platforms
2407                  * need to know when we're still using BIOS-provided values
2408                  * (which we don't fully trust).
2409                  */
2410                 bool distrust_bios_wm;
2411         } wm;
2412
2413         struct i915_runtime_pm pm;
2414
2415         struct {
2416                 bool initialized;
2417
2418                 struct kobject *metrics_kobj;
2419                 struct ctl_table_header *sysctl_header;
2420
2421                 struct mutex lock;
2422                 struct list_head streams;
2423
2424                 struct {
2425                         struct i915_perf_stream *exclusive_stream;
2426
2427                         u32 specific_ctx_id;
2428
2429                         struct hrtimer poll_check_timer;
2430                         wait_queue_head_t poll_wq;
2431                         bool pollin;
2432
2433                         /**
2434                          * For rate limiting any notifications of spurious
2435                          * invalid OA reports
2436                          */
2437                         struct ratelimit_state spurious_report_rs;
2438
2439                         bool periodic;
2440                         int period_exponent;
2441                         int timestamp_frequency;
2442
2443                         int metrics_set;
2444
2445                         const struct i915_oa_reg *mux_regs[6];
2446                         int mux_regs_lens[6];
2447                         int n_mux_configs;
2448
2449                         const struct i915_oa_reg *b_counter_regs;
2450                         int b_counter_regs_len;
2451                         const struct i915_oa_reg *flex_regs;
2452                         int flex_regs_len;
2453
2454                         struct {
2455                                 struct i915_vma *vma;
2456                                 u8 *vaddr;
2457                                 u32 last_ctx_id;
2458                                 int format;
2459                                 int format_size;
2460
2461                                 /**
2462                                  * Locks reads and writes to all head/tail state
2463                                  *
2464                                  * Consider: the head and tail pointer state
2465                                  * needs to be read consistently from a hrtimer
2466                                  * callback (atomic context) and read() fop
2467                                  * (user context) with tail pointer updates
2468                                  * happening in atomic context and head updates
2469                                  * in user context and the (unlikely)
2470                                  * possibility of read() errors needing to
2471                                  * reset all head/tail state.
2472                                  *
2473                                  * Note: Contention or performance aren't
2474                                  * currently a significant concern here
2475                                  * considering the relatively low frequency of
2476                                  * hrtimer callbacks (5ms period) and that
2477                                  * reads typically only happen in response to a
2478                                  * hrtimer event and likely complete before the
2479                                  * next callback.
2480                                  *
2481                                  * Note: This lock is not held *while* reading
2482                                  * and copying data to userspace so the value
2483                                  * of head observed in htrimer callbacks won't
2484                                  * represent any partial consumption of data.
2485                                  */
2486                                 spinlock_t ptr_lock;
2487
2488                                 /**
2489                                  * One 'aging' tail pointer and one 'aged'
2490                                  * tail pointer ready to used for reading.
2491                                  *
2492                                  * Initial values of 0xffffffff are invalid
2493                                  * and imply that an update is required
2494                                  * (and should be ignored by an attempted
2495                                  * read)
2496                                  */
2497                                 struct {
2498                                         u32 offset;
2499                                 } tails[2];
2500
2501                                 /**
2502                                  * Index for the aged tail ready to read()
2503                                  * data up to.
2504                                  */
2505                                 unsigned int aged_tail_idx;
2506
2507                                 /**
2508                                  * A monotonic timestamp for when the current
2509                                  * aging tail pointer was read; used to
2510                                  * determine when it is old enough to trust.
2511                                  */
2512                                 u64 aging_timestamp;
2513
2514                                 /**
2515                                  * Although we can always read back the head
2516                                  * pointer register, we prefer to avoid
2517                                  * trusting the HW state, just to avoid any
2518                                  * risk that some hardware condition could
2519                                  * somehow bump the head pointer unpredictably
2520                                  * and cause us to forward the wrong OA buffer
2521                                  * data to userspace.
2522                                  */
2523                                 u32 head;
2524                         } oa_buffer;
2525
2526                         u32 gen7_latched_oastatus1;
2527                         u32 ctx_oactxctrl_offset;
2528                         u32 ctx_flexeu0_offset;
2529
2530                         /**
2531                          * The RPT_ID/reason field for Gen8+ includes a bit
2532                          * to determine if the CTX ID in the report is valid
2533                          * but the specific bit differs between Gen 8 and 9
2534                          */
2535                         u32 gen8_valid_ctx_bit;
2536
2537                         struct i915_oa_ops ops;
2538                         const struct i915_oa_format *oa_formats;
2539                         int n_builtin_sets;
2540                 } oa;
2541         } perf;
2542
2543         /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2544         struct {
2545                 void (*resume)(struct drm_i915_private *);
2546                 void (*cleanup_engine)(struct intel_engine_cs *engine);
2547
2548                 struct list_head timelines;
2549                 struct i915_gem_timeline global_timeline;
2550                 u32 active_requests;
2551
2552                 /**
2553                  * Is the GPU currently considered idle, or busy executing
2554                  * userspace requests? Whilst idle, we allow runtime power
2555                  * management to power down the hardware and display clocks.
2556                  * In order to reduce the effect on performance, there
2557                  * is a slight delay before we do so.
2558                  */
2559                 bool awake;
2560
2561                 /**
2562                  * We leave the user IRQ off as much as possible,
2563                  * but this means that requests will finish and never
2564                  * be retired once the system goes idle. Set a timer to
2565                  * fire periodically while the ring is running. When it
2566                  * fires, go retire requests.
2567                  */
2568                 struct delayed_work retire_work;
2569
2570                 /**
2571                  * When we detect an idle GPU, we want to turn on
2572                  * powersaving features. So once we see that there
2573                  * are no more requests outstanding and no more
2574                  * arrive within a small period of time, we fire
2575                  * off the idle_work.
2576                  */
2577                 struct delayed_work idle_work;
2578
2579                 ktime_t last_init_time;
2580         } gt;
2581
2582         /* perform PHY state sanity checks? */
2583         bool chv_phy_assert[2];
2584
2585         bool ipc_enabled;
2586
2587         /* Used to save the pipe-to-encoder mapping for audio */
2588         struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2589
2590         /* necessary resource sharing with HDMI LPE audio driver. */
2591         struct {
2592                 struct platform_device *platdev;
2593                 int     irq;
2594         } lpe_audio;
2595
2596         /*
2597          * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2598          * will be rejected. Instead look for a better place.
2599          */
2600 };
2601
2602 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2603 {
2604         return container_of(dev, struct drm_i915_private, drm);
2605 }
2606
2607 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2608 {
2609         return to_i915(dev_get_drvdata(kdev));
2610 }
2611
2612 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2613 {
2614         return container_of(guc, struct drm_i915_private, guc);
2615 }
2616
2617 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2618 {
2619         return container_of(huc, struct drm_i915_private, huc);
2620 }
2621
2622 /* Simple iterator over all initialised engines */
2623 #define for_each_engine(engine__, dev_priv__, id__) \
2624         for ((id__) = 0; \
2625              (id__) < I915_NUM_ENGINES; \
2626              (id__)++) \
2627                 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2628
2629 /* Iterator over subset of engines selected by mask */
2630 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2631         for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2632              tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2633
2634 enum hdmi_force_audio {
2635         HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2636         HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2637         HDMI_AUDIO_AUTO,                /* trust EDID */
2638         HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2639 };
2640
2641 #define I915_GTT_OFFSET_NONE ((u32)-1)
2642
2643 /*
2644  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2645  * considered to be the frontbuffer for the given plane interface-wise. This
2646  * doesn't mean that the hw necessarily already scans it out, but that any
2647  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2648  *
2649  * We have one bit per pipe and per scanout plane type.
2650  */
2651 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2652 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2653 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2654         (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2655 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2656         (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2657 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2658         (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2659 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2660         (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2661 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2662         (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2663
2664 /*
2665  * Optimised SGL iterator for GEM objects
2666  */
2667 static __always_inline struct sgt_iter {
2668         struct scatterlist *sgp;
2669         union {
2670                 unsigned long pfn;
2671                 dma_addr_t dma;
2672         };
2673         unsigned int curr;
2674         unsigned int max;
2675 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2676         struct sgt_iter s = { .sgp = sgl };
2677
2678         if (s.sgp) {
2679                 s.max = s.curr = s.sgp->offset;
2680                 s.max += s.sgp->length;
2681                 if (dma)
2682                         s.dma = sg_dma_address(s.sgp);
2683                 else
2684                         s.pfn = page_to_pfn(sg_page(s.sgp));
2685         }
2686
2687         return s;
2688 }
2689
2690 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2691 {
2692         ++sg;
2693         if (unlikely(sg_is_chain(sg)))
2694                 sg = sg_chain_ptr(sg);
2695         return sg;
2696 }
2697
2698 /**
2699  * __sg_next - return the next scatterlist entry in a list
2700  * @sg:         The current sg entry
2701  *
2702  * Description:
2703  *   If the entry is the last, return NULL; otherwise, step to the next
2704  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2705  *   otherwise just return the pointer to the current element.
2706  **/
2707 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2708 {
2709 #ifdef CONFIG_DEBUG_SG
2710         BUG_ON(sg->sg_magic != SG_MAGIC);
2711 #endif
2712         return sg_is_last(sg) ? NULL : ____sg_next(sg);
2713 }
2714
2715 /**
2716  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2717  * @__dmap:     DMA address (output)
2718  * @__iter:     'struct sgt_iter' (iterator state, internal)
2719  * @__sgt:      sg_table to iterate over (input)
2720  */
2721 #define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2722         for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2723              ((__dmap) = (__iter).dma + (__iter).curr);                 \
2724              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2725              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2726
2727 /**
2728  * for_each_sgt_page - iterate over the pages of the given sg_table
2729  * @__pp:       page pointer (output)
2730  * @__iter:     'struct sgt_iter' (iterator state, internal)
2731  * @__sgt:      sg_table to iterate over (input)
2732  */
2733 #define for_each_sgt_page(__pp, __iter, __sgt)                          \
2734         for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2735              ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2736               pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2737              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2738              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2739
2740 static inline const struct intel_device_info *
2741 intel_info(const struct drm_i915_private *dev_priv)
2742 {
2743         return &dev_priv->info;
2744 }
2745
2746 #define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2747
2748 #define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2749 #define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2750
2751 #define REVID_FOREVER           0xff
2752 #define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2753
2754 #define GEN_FOREVER (0)
2755 /*
2756  * Returns true if Gen is in inclusive range [Start, End].
2757  *
2758  * Use GEN_FOREVER for unbound start and or end.
2759  */
2760 #define IS_GEN(dev_priv, s, e) ({ \
2761         unsigned int __s = (s), __e = (e); \
2762         BUILD_BUG_ON(!__builtin_constant_p(s)); \
2763         BUILD_BUG_ON(!__builtin_constant_p(e)); \
2764         if ((__s) != GEN_FOREVER) \
2765                 __s = (s) - 1; \
2766         if ((__e) == GEN_FOREVER) \
2767                 __e = BITS_PER_LONG - 1; \
2768         else \
2769                 __e = (e) - 1; \
2770         !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2771 })
2772
2773 /*
2774  * Return true if revision is in range [since,until] inclusive.
2775  *
2776  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2777  */
2778 #define IS_REVID(p, since, until) \
2779         (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2780
2781 #define IS_I830(dev_priv)       ((dev_priv)->info.platform == INTEL_I830)
2782 #define IS_I845G(dev_priv)      ((dev_priv)->info.platform == INTEL_I845G)
2783 #define IS_I85X(dev_priv)       ((dev_priv)->info.platform == INTEL_I85X)
2784 #define IS_I865G(dev_priv)      ((dev_priv)->info.platform == INTEL_I865G)
2785 #define IS_I915G(dev_priv)      ((dev_priv)->info.platform == INTEL_I915G)
2786 #define IS_I915GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I915GM)
2787 #define IS_I945G(dev_priv)      ((dev_priv)->info.platform == INTEL_I945G)
2788 #define IS_I945GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I945GM)
2789 #define IS_I965G(dev_priv)      ((dev_priv)->info.platform == INTEL_I965G)
2790 #define IS_I965GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I965GM)
2791 #define IS_G45(dev_priv)        ((dev_priv)->info.platform == INTEL_G45)
2792 #define IS_GM45(dev_priv)       ((dev_priv)->info.platform == INTEL_GM45)
2793 #define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2794 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2795 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2796 #define IS_PINEVIEW(dev_priv)   ((dev_priv)->info.platform == INTEL_PINEVIEW)
2797 #define IS_G33(dev_priv)        ((dev_priv)->info.platform == INTEL_G33)
2798 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2799 #define IS_IVYBRIDGE(dev_priv)  ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2800 #define IS_IVB_GT1(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0156 || \
2801                                  INTEL_DEVID(dev_priv) == 0x0152 || \
2802                                  INTEL_DEVID(dev_priv) == 0x015a)
2803 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2804 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2805 #define IS_HASWELL(dev_priv)    ((dev_priv)->info.platform == INTEL_HASWELL)
2806 #define IS_BROADWELL(dev_priv)  ((dev_priv)->info.platform == INTEL_BROADWELL)
2807 #define IS_SKYLAKE(dev_priv)    ((dev_priv)->info.platform == INTEL_SKYLAKE)
2808 #define IS_BROXTON(dev_priv)    ((dev_priv)->info.platform == INTEL_BROXTON)
2809 #define IS_KABYLAKE(dev_priv)   ((dev_priv)->info.platform == INTEL_KABYLAKE)
2810 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2811 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2812 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2813 #define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2814 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2815                                     (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2816 #define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2817                                  ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2818                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2819                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2820 /* ULX machines are also considered ULT. */
2821 #define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2822                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2823 #define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2824                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2825 #define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2826                                  (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2827 #define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2828                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2829 /* ULX machines are also considered ULT. */
2830 #define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2831                                  INTEL_DEVID(dev_priv) == 0x0A1E)
2832 #define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2833                                  INTEL_DEVID(dev_priv) == 0x1913 || \
2834                                  INTEL_DEVID(dev_priv) == 0x1916 || \
2835                                  INTEL_DEVID(dev_priv) == 0x1921 || \
2836                                  INTEL_DEVID(dev_priv) == 0x1926)
2837 #define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2838                                  INTEL_DEVID(dev_priv) == 0x1915 || \
2839                                  INTEL_DEVID(dev_priv) == 0x191E)
2840 #define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2841                                  INTEL_DEVID(dev_priv) == 0x5913 || \
2842                                  INTEL_DEVID(dev_priv) == 0x5916 || \
2843                                  INTEL_DEVID(dev_priv) == 0x5921 || \
2844                                  INTEL_DEVID(dev_priv) == 0x5926)
2845 #define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2846                                  INTEL_DEVID(dev_priv) == 0x5915 || \
2847                                  INTEL_DEVID(dev_priv) == 0x591E)
2848 #define IS_SKL_GT2(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2849                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2850 #define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2851                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2852 #define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2853                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2854 #define IS_KBL_GT2(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2855                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2856 #define IS_KBL_GT3(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2857                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2858 #define IS_CFL_ULT(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2859                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2860
2861 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2862
2863 #define SKL_REVID_A0            0x0
2864 #define SKL_REVID_B0            0x1
2865 #define SKL_REVID_C0            0x2
2866 #define SKL_REVID_D0            0x3
2867 #define SKL_REVID_E0            0x4
2868 #define SKL_REVID_F0            0x5
2869 #define SKL_REVID_G0            0x6
2870 #define SKL_REVID_H0            0x7
2871
2872 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2873
2874 #define BXT_REVID_A0            0x0
2875 #define BXT_REVID_A1            0x1
2876 #define BXT_REVID_B0            0x3
2877 #define BXT_REVID_B_LAST        0x8
2878 #define BXT_REVID_C0            0x9
2879
2880 #define IS_BXT_REVID(dev_priv, since, until) \
2881         (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2882
2883 #define KBL_REVID_A0            0x0
2884 #define KBL_REVID_B0            0x1
2885 #define KBL_REVID_C0            0x2
2886 #define KBL_REVID_D0            0x3
2887 #define KBL_REVID_E0            0x4
2888
2889 #define IS_KBL_REVID(dev_priv, since, until) \
2890         (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2891
2892 #define GLK_REVID_A0            0x0
2893 #define GLK_REVID_A1            0x1
2894
2895 #define IS_GLK_REVID(dev_priv, since, until) \
2896         (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2897
2898 #define CNL_REVID_A0            0x0
2899 #define CNL_REVID_B0            0x1
2900
2901 #define IS_CNL_REVID(p, since, until) \
2902         (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2903
2904 /*
2905  * The genX designation typically refers to the render engine, so render
2906  * capability related checks should use IS_GEN, while display and other checks
2907  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2908  * chips, etc.).
2909  */
2910 #define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2911 #define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2912 #define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2913 #define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2914 #define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2915 #define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2916 #define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2917 #define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2918 #define IS_GEN10(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(9)))
2919
2920 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2921 #define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2922 #define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2923
2924 #define ENGINE_MASK(id) BIT(id)
2925 #define RENDER_RING     ENGINE_MASK(RCS)
2926 #define BSD_RING        ENGINE_MASK(VCS)
2927 #define BLT_RING        ENGINE_MASK(BCS)
2928 #define VEBOX_RING      ENGINE_MASK(VECS)
2929 #define BSD2_RING       ENGINE_MASK(VCS2)
2930 #define ALL_ENGINES     (~0)
2931
2932 #define HAS_ENGINE(dev_priv, id) \
2933         (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2934
2935 #define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
2936 #define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
2937 #define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
2938 #define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
2939
2940 #define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
2941 #define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
2942 #define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2943 #define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
2944                                  IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2945
2946 #define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
2947
2948 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2949                 ((dev_priv)->info.has_logical_ring_contexts)
2950 #define USES_PPGTT(dev_priv)            (i915.enable_ppgtt)
2951 #define USES_FULL_PPGTT(dev_priv)       (i915.enable_ppgtt >= 2)
2952 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2953
2954 #define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
2955 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2956                 ((dev_priv)->info.overlay_needs_physical)
2957
2958 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2959 #define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
2960
2961 /* WaRsDisableCoarsePowerGating:skl,bxt */
2962 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2963         (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2964
2965 /*
2966  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2967  * even when in MSI mode. This results in spurious interrupt warnings if the
2968  * legacy irq no. is shared with another device. The kernel then disables that
2969  * interrupt source and so prevents the other device from working properly.
2970  */
2971 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
2972 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2973
2974 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2975  * rows, which changed the alignment requirements and fence programming.
2976  */
2977 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2978                                          !(IS_I915G(dev_priv) || \
2979                                          IS_I915GM(dev_priv)))
2980 #define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
2981 #define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
2982
2983 #define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
2984 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2985 #define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
2986 #define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2987
2988 #define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2989
2990 #define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
2991
2992 #define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
2993 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2994 #define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
2995 #define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
2996 #define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
2997
2998 #define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
2999
3000 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3001 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3002
3003 /*
3004  * For now, anything with a GuC requires uCode loading, and then supports
3005  * command submission once loaded. But these are logically independent
3006  * properties, so we have separate macros to test them.
3007  */
3008 #define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
3009 #define HAS_GUC_CT(dev_priv)    ((dev_priv)->info.has_guc_ct)
3010 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3011 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3012 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3013
3014 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3015
3016 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3017
3018 #define INTEL_PCH_DEVICE_ID_MASK                0xff80
3019 #define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
3020 #define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
3021 #define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
3022 #define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
3023 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
3024 #define INTEL_PCH_WPT_DEVICE_ID_TYPE            0x8c80
3025 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE         0x9c80
3026 #define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
3027 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
3028 #define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA280
3029 #define INTEL_PCH_CNP_DEVICE_ID_TYPE            0xA300
3030 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE         0x9D80
3031 #define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
3032 #define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
3033 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
3034
3035 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3036 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3037 #define HAS_PCH_CNP_LP(dev_priv) \
3038         ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3039 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3040 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3041 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3042 #define HAS_PCH_LPT_LP(dev_priv) \
3043         ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3044          (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3045 #define HAS_PCH_LPT_H(dev_priv) \
3046         ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3047          (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3048 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3049 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3050 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3051 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3052
3053 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3054
3055 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3056
3057 /* DPF == dynamic parity feature */
3058 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3059 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3060                                  2 : HAS_L3_DPF(dev_priv))
3061
3062 #define GT_FREQUENCY_MULTIPLIER 50
3063 #define GEN9_FREQ_SCALER 3
3064
3065 #include "i915_trace.h"
3066
3067 static inline bool intel_vtd_active(void)
3068 {
3069 #ifdef CONFIG_INTEL_IOMMU
3070         if (intel_iommu_gfx_mapped)
3071                 return true;
3072 #endif
3073         return false;
3074 }
3075
3076 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3077 {
3078         return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3079 }
3080
3081 static inline bool
3082 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3083 {
3084         return IS_BROXTON(dev_priv) && intel_vtd_active();
3085 }
3086
3087 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3088                                 int enable_ppgtt);
3089
3090 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3091
3092 /* i915_drv.c */
3093 void __printf(3, 4)
3094 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3095               const char *fmt, ...);
3096
3097 #define i915_report_error(dev_priv, fmt, ...)                              \
3098         __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3099
3100 #ifdef CONFIG_COMPAT
3101 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3102                               unsigned long arg);
3103 #else
3104 #define i915_compat_ioctl NULL
3105 #endif
3106 extern const struct dev_pm_ops i915_pm_ops;
3107
3108 extern int i915_driver_load(struct pci_dev *pdev,
3109                             const struct pci_device_id *ent);
3110 extern void i915_driver_unload(struct drm_device *dev);
3111 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3112 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3113
3114 #define I915_RESET_QUIET BIT(0)
3115 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3116 extern int i915_reset_engine(struct intel_engine_cs *engine,
3117                              unsigned int flags);
3118
3119 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3120 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3121 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3122 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3123 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3124 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3125 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3126 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3127 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3128
3129 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3130 int intel_engines_init(struct drm_i915_private *dev_priv);
3131
3132 /* intel_hotplug.c */
3133 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3134                            u32 pin_mask, u32 long_mask);
3135 void intel_hpd_init(struct drm_i915_private *dev_priv);
3136 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3137 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3138 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3139 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3140 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3141
3142 /* i915_irq.c */
3143 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3144 {
3145         unsigned long delay;
3146
3147         if (unlikely(!i915.enable_hangcheck))
3148                 return;
3149
3150         /* Don't continually defer the hangcheck so that it is always run at
3151          * least once after work has been scheduled on any ring. Otherwise,
3152          * we will ignore a hung ring if a second ring is kept busy.
3153          */
3154
3155         delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3156         queue_delayed_work(system_long_wq,
3157                            &dev_priv->gpu_error.hangcheck_work, delay);
3158 }
3159
3160 __printf(3, 4)
3161 void i915_handle_error(struct drm_i915_private *dev_priv,
3162                        u32 engine_mask,
3163                        const char *fmt, ...);
3164
3165 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3166 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3167 int intel_irq_install(struct drm_i915_private *dev_priv);
3168 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3169
3170 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3171 {
3172         return dev_priv->gvt;
3173 }
3174
3175 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3176 {
3177         return dev_priv->vgpu.active;
3178 }
3179
3180 void
3181 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3182                      u32 status_mask);
3183
3184 void
3185 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3186                       u32 status_mask);
3187
3188 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3189 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3190 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3191                                    uint32_t mask,
3192                                    uint32_t bits);
3193 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3194                             uint32_t interrupt_mask,
3195                             uint32_t enabled_irq_mask);
3196 static inline void
3197 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3198 {
3199         ilk_update_display_irq(dev_priv, bits, bits);
3200 }
3201 static inline void
3202 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3203 {
3204         ilk_update_display_irq(dev_priv, bits, 0);
3205 }
3206 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3207                          enum pipe pipe,
3208                          uint32_t interrupt_mask,
3209                          uint32_t enabled_irq_mask);
3210 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3211                                        enum pipe pipe, uint32_t bits)
3212 {
3213         bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3214 }
3215 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3216                                         enum pipe pipe, uint32_t bits)
3217 {
3218         bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3219 }
3220 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3221                                   uint32_t interrupt_mask,
3222                                   uint32_t enabled_irq_mask);
3223 static inline void
3224 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3225 {
3226         ibx_display_interrupt_update(dev_priv, bits, bits);
3227 }
3228 static inline void
3229 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3230 {
3231         ibx_display_interrupt_update(dev_priv, bits, 0);
3232 }
3233
3234 /* i915_gem.c */
3235 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3236                           struct drm_file *file_priv);
3237 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3238                          struct drm_file *file_priv);
3239 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3240                           struct drm_file *file_priv);
3241 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3242                         struct drm_file *file_priv);
3243 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3244                         struct drm_file *file_priv);
3245 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3246                               struct drm_file *file_priv);
3247 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3248                              struct drm_file *file_priv);
3249 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3250                         struct drm_file *file_priv);
3251 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3252                          struct drm_file *file_priv);
3253 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3254                         struct drm_file *file_priv);
3255 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3256                                struct drm_file *file);
3257 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3258                                struct drm_file *file);
3259 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3260                             struct drm_file *file_priv);
3261 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3262                            struct drm_file *file_priv);
3263 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3264                               struct drm_file *file_priv);
3265 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3266                               struct drm_file *file_priv);
3267 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3268 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3269 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3270                            struct drm_file *file);
3271 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3272                                 struct drm_file *file_priv);
3273 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3274                         struct drm_file *file_priv);
3275 void i915_gem_sanitize(struct drm_i915_private *i915);
3276 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3277 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3278 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3279 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3280 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3281
3282 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3283 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3284 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3285                          const struct drm_i915_gem_object_ops *ops);
3286 struct drm_i915_gem_object *
3287 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3288 struct drm_i915_gem_object *
3289 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3290                                  const void *data, size_t size);
3291 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3292 void i915_gem_free_object(struct drm_gem_object *obj);
3293
3294 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3295 {
3296         /* A single pass should suffice to release all the freed objects (along
3297          * most call paths) , but be a little more paranoid in that freeing
3298          * the objects does take a little amount of time, during which the rcu
3299          * callbacks could have added new objects into the freed list, and
3300          * armed the work again.
3301          */
3302         do {
3303                 rcu_barrier();
3304         } while (flush_work(&i915->mm.free_work));
3305 }
3306
3307 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3308 {
3309         /*
3310          * Similar to objects above (see i915_gem_drain_freed-objects), in
3311          * general we have workers that are armed by RCU and then rearm
3312          * themselves in their callbacks. To be paranoid, we need to
3313          * drain the workqueue a second time after waiting for the RCU
3314          * grace period so that we catch work queued via RCU from the first
3315          * pass. As neither drain_workqueue() nor flush_workqueue() report
3316          * a result, we make an assumption that we only don't require more
3317          * than 2 passes to catch all recursive RCU delayed work.
3318          *
3319          */
3320         int pass = 2;
3321         do {
3322                 rcu_barrier();
3323                 drain_workqueue(i915->wq);
3324         } while (--pass);
3325 }
3326
3327 struct i915_vma * __must_check
3328 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3329                          const struct i915_ggtt_view *view,
3330                          u64 size,
3331                          u64 alignment,
3332                          u64 flags);
3333
3334 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3335 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3336
3337 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3338
3339 static inline int __sg_page_count(const struct scatterlist *sg)
3340 {
3341         return sg->length >> PAGE_SHIFT;
3342 }
3343
3344 struct scatterlist *
3345 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3346                        unsigned int n, unsigned int *offset);
3347
3348 struct page *
3349 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3350                          unsigned int n);
3351
3352 struct page *
3353 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3354                                unsigned int n);
3355
3356 dma_addr_t
3357 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3358                                 unsigned long n);
3359
3360 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3361                                  struct sg_table *pages);
3362 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3363
3364 static inline int __must_check
3365 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3366 {
3367         might_lock(&obj->mm.lock);
3368
3369         if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3370                 return 0;
3371
3372         return __i915_gem_object_get_pages(obj);
3373 }
3374
3375 static inline void
3376 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3377 {
3378         GEM_BUG_ON(!obj->mm.pages);
3379
3380         atomic_inc(&obj->mm.pages_pin_count);
3381 }
3382
3383 static inline bool
3384 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3385 {
3386         return atomic_read(&obj->mm.pages_pin_count);
3387 }
3388
3389 static inline void
3390 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3391 {
3392         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3393         GEM_BUG_ON(!obj->mm.pages);
3394
3395         atomic_dec(&obj->mm.pages_pin_count);
3396 }
3397
3398 static inline void
3399 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3400 {
3401         __i915_gem_object_unpin_pages(obj);
3402 }
3403
3404 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3405         I915_MM_NORMAL = 0,
3406         I915_MM_SHRINKER
3407 };
3408
3409 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3410                                  enum i915_mm_subclass subclass);
3411 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3412
3413 enum i915_map_type {
3414         I915_MAP_WB = 0,
3415         I915_MAP_WC,
3416 };
3417
3418 /**
3419  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3420  * @obj: the object to map into kernel address space
3421  * @type: the type of mapping, used to select pgprot_t
3422  *
3423  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3424  * pages and then returns a contiguous mapping of the backing storage into
3425  * the kernel address space. Based on the @type of mapping, the PTE will be
3426  * set to either WriteBack or WriteCombine (via pgprot_t).
3427  *
3428  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3429  * mapping is no longer required.
3430  *
3431  * Returns the pointer through which to access the mapped object, or an
3432  * ERR_PTR() on error.
3433  */
3434 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3435                                            enum i915_map_type type);
3436
3437 /**
3438  * i915_gem_object_unpin_map - releases an earlier mapping
3439  * @obj: the object to unmap
3440  *
3441  * After pinning the object and mapping its pages, once you are finished
3442  * with your access, call i915_gem_object_unpin_map() to release the pin
3443  * upon the mapping. Once the pin count reaches zero, that mapping may be
3444  * removed.
3445  */
3446 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3447 {
3448         i915_gem_object_unpin_pages(obj);
3449 }
3450
3451 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3452                                     unsigned int *needs_clflush);
3453 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3454                                      unsigned int *needs_clflush);
3455 #define CLFLUSH_BEFORE  BIT(0)
3456 #define CLFLUSH_AFTER   BIT(1)
3457 #define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3458
3459 static inline void
3460 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3461 {
3462         i915_gem_object_unpin_pages(obj);
3463 }
3464
3465 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3466 void i915_vma_move_to_active(struct i915_vma *vma,
3467                              struct drm_i915_gem_request *req,
3468                              unsigned int flags);
3469 int i915_gem_dumb_create(struct drm_file *file_priv,
3470                          struct drm_device *dev,
3471                          struct drm_mode_create_dumb *args);
3472 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3473                       uint32_t handle, uint64_t *offset);
3474 int i915_gem_mmap_gtt_version(void);
3475
3476 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3477                        struct drm_i915_gem_object *new,
3478                        unsigned frontbuffer_bits);
3479
3480 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3481
3482 struct drm_i915_gem_request *
3483 i915_gem_find_active_request(struct intel_engine_cs *engine);
3484
3485 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3486
3487 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3488 {
3489         return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3490 }
3491
3492 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3493 {
3494         return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3495 }
3496
3497 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3498 {
3499         return unlikely(test_bit(I915_WEDGED, &error->flags));
3500 }
3501
3502 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3503 {
3504         return i915_reset_backoff(error) | i915_terminally_wedged(error);
3505 }
3506
3507 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3508 {
3509         return READ_ONCE(error->reset_count);
3510 }
3511
3512 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3513                                           struct intel_engine_cs *engine)
3514 {
3515         return READ_ONCE(error->reset_engine_count[engine->id]);
3516 }
3517
3518 struct drm_i915_gem_request *
3519 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3520 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3521 void i915_gem_reset(struct drm_i915_private *dev_priv);
3522 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3523 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3524 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3525 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3526 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3527                            struct drm_i915_gem_request *request);
3528
3529 void i915_gem_init_mmio(struct drm_i915_private *i915);
3530 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3531 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3532 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3533 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3534 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3535                            unsigned int flags);
3536 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3537 void i915_gem_resume(struct drm_i915_private *dev_priv);
3538 int i915_gem_fault(struct vm_fault *vmf);
3539 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3540                          unsigned int flags,
3541                          long timeout,
3542                          struct intel_rps_client *rps);
3543 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3544                                   unsigned int flags,
3545                                   int priority);
3546 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3547
3548 int __must_check
3549 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3550 int __must_check
3551 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3552 int __must_check
3553 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3554 struct i915_vma * __must_check
3555 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3556                                      u32 alignment,
3557                                      const struct i915_ggtt_view *view);
3558 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3559 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3560                                 int align);
3561 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3562 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3563
3564 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3565                                     enum i915_cache_level cache_level);
3566
3567 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3568                                 struct dma_buf *dma_buf);
3569
3570 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3571                                 struct drm_gem_object *gem_obj, int flags);
3572
3573 static inline struct i915_hw_ppgtt *
3574 i915_vm_to_ppgtt(struct i915_address_space *vm)
3575 {
3576         return container_of(vm, struct i915_hw_ppgtt, base);
3577 }
3578
3579 /* i915_gem_fence_reg.c */
3580 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3581 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3582
3583 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3584 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3585
3586 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3587 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3588                                        struct sg_table *pages);
3589 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3590                                          struct sg_table *pages);
3591
3592 static inline struct i915_gem_context *
3593 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3594 {
3595         return idr_find(&file_priv->context_idr, id);
3596 }
3597
3598 static inline struct i915_gem_context *
3599 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3600 {
3601         struct i915_gem_context *ctx;
3602
3603         rcu_read_lock();
3604         ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3605         if (ctx && !kref_get_unless_zero(&ctx->ref))
3606                 ctx = NULL;
3607         rcu_read_unlock();
3608
3609         return ctx;
3610 }
3611
3612 static inline struct intel_timeline *
3613 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3614                                  struct intel_engine_cs *engine)
3615 {
3616         struct i915_address_space *vm;
3617
3618         vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3619         return &vm->timeline.engine[engine->id];
3620 }
3621
3622 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3623                          struct drm_file *file);
3624 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3625                             struct i915_gem_context *ctx,
3626                             uint32_t *reg_state);
3627
3628 /* i915_gem_evict.c */
3629 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3630                                           u64 min_size, u64 alignment,
3631                                           unsigned cache_level,
3632                                           u64 start, u64 end,
3633                                           unsigned flags);
3634 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3635                                          struct drm_mm_node *node,
3636                                          unsigned int flags);
3637 int i915_gem_evict_vm(struct i915_address_space *vm);
3638
3639 /* belongs in i915_gem_gtt.h */
3640 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3641 {
3642         wmb();
3643         if (INTEL_GEN(dev_priv) < 6)
3644                 intel_gtt_chipset_flush();
3645 }
3646
3647 /* i915_gem_stolen.c */
3648 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3649                                 struct drm_mm_node *node, u64 size,
3650                                 unsigned alignment);
3651 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3652                                          struct drm_mm_node *node, u64 size,
3653                                          unsigned alignment, u64 start,
3654                                          u64 end);
3655 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3656                                  struct drm_mm_node *node);
3657 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3658 void i915_gem_cleanup_stolen(struct drm_device *dev);
3659 struct drm_i915_gem_object *
3660 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3661 struct drm_i915_gem_object *
3662 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3663                                                u32 stolen_offset,
3664                                                u32 gtt_offset,
3665                                                u32 size);
3666
3667 /* i915_gem_internal.c */
3668 struct drm_i915_gem_object *
3669 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3670                                 phys_addr_t size);
3671
3672 /* i915_gem_shrinker.c */
3673 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3674                               unsigned long target,
3675                               unsigned flags);
3676 #define I915_SHRINK_PURGEABLE 0x1
3677 #define I915_SHRINK_UNBOUND 0x2
3678 #define I915_SHRINK_BOUND 0x4
3679 #define I915_SHRINK_ACTIVE 0x8
3680 #define I915_SHRINK_VMAPS 0x10
3681 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3682 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3683 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3684
3685
3686 /* i915_gem_tiling.c */
3687 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3688 {
3689         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3690
3691         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3692                 i915_gem_object_is_tiled(obj);
3693 }
3694
3695 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3696                         unsigned int tiling, unsigned int stride);
3697 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3698                              unsigned int tiling, unsigned int stride);
3699
3700 /* i915_debugfs.c */
3701 #ifdef CONFIG_DEBUG_FS
3702 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3703 int i915_debugfs_connector_add(struct drm_connector *connector);
3704 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3705 #else
3706 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3707 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3708 { return 0; }
3709 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3710 #endif
3711
3712 /* i915_gpu_error.c */
3713 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3714
3715 __printf(2, 3)
3716 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3717 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3718                             const struct i915_gpu_state *gpu);
3719 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3720                               struct drm_i915_private *i915,
3721                               size_t count, loff_t pos);
3722 static inline void i915_error_state_buf_release(
3723         struct drm_i915_error_state_buf *eb)
3724 {
3725         kfree(eb->buf);
3726 }
3727
3728 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3729 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3730                               u32 engine_mask,
3731                               const char *error_msg);
3732
3733 static inline struct i915_gpu_state *
3734 i915_gpu_state_get(struct i915_gpu_state *gpu)
3735 {
3736         kref_get(&gpu->ref);
3737         return gpu;
3738 }
3739
3740 void __i915_gpu_state_free(struct kref *kref);
3741 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3742 {
3743         if (gpu)
3744                 kref_put(&gpu->ref, __i915_gpu_state_free);
3745 }
3746
3747 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3748 void i915_reset_error_state(struct drm_i915_private *i915);
3749
3750 #else
3751
3752 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3753                                             u32 engine_mask,
3754                                             const char *error_msg)
3755 {
3756 }
3757
3758 static inline struct i915_gpu_state *
3759 i915_first_error_state(struct drm_i915_private *i915)
3760 {
3761         return NULL;
3762 }
3763
3764 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3765 {
3766 }
3767
3768 #endif
3769
3770 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3771
3772 /* i915_cmd_parser.c */
3773 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3774 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3775 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3776 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3777                             struct drm_i915_gem_object *batch_obj,
3778                             struct drm_i915_gem_object *shadow_batch_obj,
3779                             u32 batch_start_offset,
3780                             u32 batch_len,
3781                             bool is_master);
3782
3783 /* i915_perf.c */
3784 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3785 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3786 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3787 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3788
3789 /* i915_suspend.c */
3790 extern int i915_save_state(struct drm_i915_private *dev_priv);
3791 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3792
3793 /* i915_sysfs.c */
3794 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3795 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3796
3797 /* intel_lpe_audio.c */
3798 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3799 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3800 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3801 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3802                             enum pipe pipe, enum port port,
3803                             const void *eld, int ls_clock, bool dp_output);
3804
3805 /* intel_i2c.c */
3806 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3807 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3808 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3809                                      unsigned int pin);
3810
3811 extern struct i2c_adapter *
3812 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3813 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3814 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3815 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3816 {
3817         return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3818 }
3819 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3820
3821 /* intel_bios.c */
3822 void intel_bios_init(struct drm_i915_private *dev_priv);
3823 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3824 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3825 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3826 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3827 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3828 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3829 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3830 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3831                                      enum port port);
3832 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3833                                 enum port port);
3834
3835
3836 /* intel_opregion.c */
3837 #ifdef CONFIG_ACPI
3838 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3839 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3840 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3841 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3842 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3843                                          bool enable);
3844 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3845                                          pci_power_t state);
3846 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3847 #else
3848 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3849 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3850 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3851 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3852 {
3853 }
3854 static inline int
3855 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3856 {
3857         return 0;
3858 }
3859 static inline int
3860 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3861 {
3862         return 0;
3863 }
3864 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3865 {
3866         return -ENODEV;
3867 }
3868 #endif
3869
3870 /* intel_acpi.c */
3871 #ifdef CONFIG_ACPI
3872 extern void intel_register_dsm_handler(void);
3873 extern void intel_unregister_dsm_handler(void);
3874 #else
3875 static inline void intel_register_dsm_handler(void) { return; }
3876 static inline void intel_unregister_dsm_handler(void) { return; }
3877 #endif /* CONFIG_ACPI */
3878
3879 /* intel_device_info.c */
3880 static inline struct intel_device_info *
3881 mkwrite_device_info(struct drm_i915_private *dev_priv)
3882 {
3883         return (struct intel_device_info *)&dev_priv->info;
3884 }
3885
3886 const char *intel_platform_name(enum intel_platform platform);
3887 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3888 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3889
3890 /* modesetting */
3891 extern void intel_modeset_init_hw(struct drm_device *dev);
3892 extern int intel_modeset_init(struct drm_device *dev);
3893 extern void intel_modeset_gem_init(struct drm_device *dev);
3894 extern void intel_modeset_cleanup(struct drm_device *dev);
3895 extern int intel_connector_register(struct drm_connector *);
3896 extern void intel_connector_unregister(struct drm_connector *);
3897 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3898                                        bool state);
3899 extern void intel_display_resume(struct drm_device *dev);
3900 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3901 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3902 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3903 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3904 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3905 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3906                                   bool enable);
3907
3908 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3909                         struct drm_file *file);
3910
3911 /* overlay */
3912 extern struct intel_overlay_error_state *
3913 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3914 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3915                                             struct intel_overlay_error_state *error);
3916
3917 extern struct intel_display_error_state *
3918 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3919 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3920                                             struct intel_display_error_state *error);
3921
3922 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3923 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3924 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3925                       u32 reply_mask, u32 reply, int timeout_base_ms);
3926
3927 /* intel_sideband.c */
3928 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3929 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3930 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3931 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3932 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3933 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3934 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3935 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3936 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3937 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3938 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3939 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3940 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3941 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3942                    enum intel_sbi_destination destination);
3943 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3944                      enum intel_sbi_destination destination);
3945 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3946 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3947
3948 /* intel_dpio_phy.c */
3949 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3950                              enum dpio_phy *phy, enum dpio_channel *ch);
3951 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3952                                   enum port port, u32 margin, u32 scale,
3953                                   u32 enable, u32 deemphasis);
3954 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3955 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3956 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3957                             enum dpio_phy phy);
3958 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3959                               enum dpio_phy phy);
3960 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3961                                              uint8_t lane_count);
3962 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3963                                      uint8_t lane_lat_optim_mask);
3964 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3965
3966 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3967                               u32 deemph_reg_value, u32 margin_reg_value,
3968                               bool uniq_trans_scale);
3969 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3970                               bool reset);
3971 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3972 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3973 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3974 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3975
3976 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3977                               u32 demph_reg_value, u32 preemph_reg_value,
3978                               u32 uniqtranscale_reg_value, u32 tx3_demph);
3979 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3980 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3981 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3982
3983 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3984 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3985 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3986                            const i915_reg_t reg);
3987
3988 #define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3989 #define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3990
3991 #define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3992 #define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3993 #define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3994 #define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3995
3996 #define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3997 #define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3998 #define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3999 #define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4000
4001 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4002  * will be implemented using 2 32-bit writes in an arbitrary order with
4003  * an arbitrary delay between them. This can cause the hardware to
4004  * act upon the intermediate value, possibly leading to corruption and
4005  * machine death. For this reason we do not support I915_WRITE64, or
4006  * dev_priv->uncore.funcs.mmio_writeq.
4007  *
4008  * When reading a 64-bit value as two 32-bit values, the delay may cause
4009  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4010  * occasionally a 64-bit register does not actualy support a full readq
4011  * and must be read using two 32-bit reads.
4012  *
4013  * You have been warned.
4014  */
4015 #define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4016
4017 #define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
4018         u32 upper, lower, old_upper, loop = 0;                          \
4019         upper = I915_READ(upper_reg);                                   \
4020         do {                                                            \
4021                 old_upper = upper;                                      \
4022                 lower = I915_READ(lower_reg);                           \
4023                 upper = I915_READ(upper_reg);                           \
4024         } while (upper != old_upper && loop++ < 2);                     \
4025         (u64)upper << 32 | lower; })
4026
4027 #define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
4028 #define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
4029
4030 #define __raw_read(x, s) \
4031 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4032                                              i915_reg_t reg) \
4033 { \
4034         return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4035 }
4036
4037 #define __raw_write(x, s) \
4038 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4039                                        i915_reg_t reg, uint##x##_t val) \
4040 { \
4041         write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4042 }
4043 __raw_read(8, b)
4044 __raw_read(16, w)
4045 __raw_read(32, l)
4046 __raw_read(64, q)
4047
4048 __raw_write(8, b)
4049 __raw_write(16, w)
4050 __raw_write(32, l)
4051 __raw_write(64, q)
4052
4053 #undef __raw_read
4054 #undef __raw_write
4055
4056 /* These are untraced mmio-accessors that are only valid to be used inside
4057  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4058  * controlled.
4059  *
4060  * Think twice, and think again, before using these.
4061  *
4062  * As an example, these accessors can possibly be used between:
4063  *
4064  * spin_lock_irq(&dev_priv->uncore.lock);
4065  * intel_uncore_forcewake_get__locked();
4066  *
4067  * and
4068  *
4069  * intel_uncore_forcewake_put__locked();
4070  * spin_unlock_irq(&dev_priv->uncore.lock);
4071  *
4072  *
4073  * Note: some registers may not need forcewake held, so
4074  * intel_uncore_forcewake_{get,put} can be omitted, see
4075  * intel_uncore_forcewake_for_reg().
4076  *
4077  * Certain architectures will die if the same cacheline is concurrently accessed
4078  * by different clients (e.g. on Ivybridge). Access to registers should
4079  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4080  * a more localised lock guarding all access to that bank of registers.
4081  */
4082 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4083 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4084 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4085 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4086
4087 /* "Broadcast RGB" property */
4088 #define INTEL_BROADCAST_RGB_AUTO 0
4089 #define INTEL_BROADCAST_RGB_FULL 1
4090 #define INTEL_BROADCAST_RGB_LIMITED 2
4091
4092 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4093 {
4094         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4095                 return VLV_VGACNTRL;
4096         else if (INTEL_GEN(dev_priv) >= 5)
4097                 return CPU_VGACNTRL;
4098         else
4099                 return VGACNTRL;
4100 }
4101
4102 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4103 {
4104         unsigned long j = msecs_to_jiffies(m);
4105
4106         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4107 }
4108
4109 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4110 {
4111         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4112 }
4113
4114 static inline unsigned long
4115 timespec_to_jiffies_timeout(const struct timespec *value)
4116 {
4117         unsigned long j = timespec_to_jiffies(value);
4118
4119         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4120 }
4121
4122 /*
4123  * If you need to wait X milliseconds between events A and B, but event B
4124  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4125  * when event A happened, then just before event B you call this function and
4126  * pass the timestamp as the first argument, and X as the second argument.
4127  */
4128 static inline void
4129 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4130 {
4131         unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4132
4133         /*
4134          * Don't re-read the value of "jiffies" every time since it may change
4135          * behind our back and break the math.
4136          */
4137         tmp_jiffies = jiffies;
4138         target_jiffies = timestamp_jiffies +
4139                          msecs_to_jiffies_timeout(to_wait_ms);
4140
4141         if (time_after(target_jiffies, tmp_jiffies)) {
4142                 remaining_jiffies = target_jiffies - tmp_jiffies;
4143                 while (remaining_jiffies)
4144                         remaining_jiffies =
4145                             schedule_timeout_uninterruptible(remaining_jiffies);
4146         }
4147 }
4148
4149 static inline bool
4150 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4151 {
4152         struct intel_engine_cs *engine = req->engine;
4153         u32 seqno;
4154
4155         /* Note that the engine may have wrapped around the seqno, and
4156          * so our request->global_seqno will be ahead of the hardware,
4157          * even though it completed the request before wrapping. We catch
4158          * this by kicking all the waiters before resetting the seqno
4159          * in hardware, and also signal the fence.
4160          */
4161         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4162                 return true;
4163
4164         /* The request was dequeued before we were awoken. We check after
4165          * inspecting the hw to confirm that this was the same request
4166          * that generated the HWS update. The memory barriers within
4167          * the request execution are sufficient to ensure that a check
4168          * after reading the value from hw matches this request.
4169          */
4170         seqno = i915_gem_request_global_seqno(req);
4171         if (!seqno)
4172                 return false;
4173
4174         /* Before we do the heavier coherent read of the seqno,
4175          * check the value (hopefully) in the CPU cacheline.
4176          */
4177         if (__i915_gem_request_completed(req, seqno))
4178                 return true;
4179
4180         /* Ensure our read of the seqno is coherent so that we
4181          * do not "miss an interrupt" (i.e. if this is the last
4182          * request and the seqno write from the GPU is not visible
4183          * by the time the interrupt fires, we will see that the
4184          * request is incomplete and go back to sleep awaiting
4185          * another interrupt that will never come.)
4186          *
4187          * Strictly, we only need to do this once after an interrupt,
4188          * but it is easier and safer to do it every time the waiter
4189          * is woken.
4190          */
4191         if (engine->irq_seqno_barrier &&
4192             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4193                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4194
4195                 /* The ordering of irq_posted versus applying the barrier
4196                  * is crucial. The clearing of the current irq_posted must
4197                  * be visible before we perform the barrier operation,
4198                  * such that if a subsequent interrupt arrives, irq_posted
4199                  * is reasserted and our task rewoken (which causes us to
4200                  * do another __i915_request_irq_complete() immediately
4201                  * and reapply the barrier). Conversely, if the clear
4202                  * occurs after the barrier, then an interrupt that arrived
4203                  * whilst we waited on the barrier would not trigger a
4204                  * barrier on the next pass, and the read may not see the
4205                  * seqno update.
4206                  */
4207                 engine->irq_seqno_barrier(engine);
4208
4209                 /* If we consume the irq, but we are no longer the bottom-half,
4210                  * the real bottom-half may not have serialised their own
4211                  * seqno check with the irq-barrier (i.e. may have inspected
4212                  * the seqno before we believe it coherent since they see
4213                  * irq_posted == false but we are still running).
4214                  */
4215                 spin_lock_irq(&b->irq_lock);
4216                 if (b->irq_wait && b->irq_wait->tsk != current)
4217                         /* Note that if the bottom-half is changed as we
4218                          * are sending the wake-up, the new bottom-half will
4219                          * be woken by whomever made the change. We only have
4220                          * to worry about when we steal the irq-posted for
4221                          * ourself.
4222                          */
4223                         wake_up_process(b->irq_wait->tsk);
4224                 spin_unlock_irq(&b->irq_lock);
4225
4226                 if (__i915_gem_request_completed(req, seqno))
4227                         return true;
4228         }
4229
4230         return false;
4231 }
4232
4233 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4234 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4235
4236 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4237  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4238  * perform the operation. To check beforehand, pass in the parameters to
4239  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4240  * you only need to pass in the minor offsets, page-aligned pointers are
4241  * always valid.
4242  *
4243  * For just checking for SSE4.1, in the foreknowledge that the future use
4244  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4245  */
4246 #define i915_can_memcpy_from_wc(dst, src, len) \
4247         i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4248
4249 #define i915_has_memcpy_from_wc() \
4250         i915_memcpy_from_wc(NULL, NULL, 0)
4251
4252 /* i915_mm.c */
4253 int remap_io_mapping(struct vm_area_struct *vma,
4254                      unsigned long addr, unsigned long pfn, unsigned long size,
4255                      struct io_mapping *iomap);
4256
4257 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4258 {
4259         return (obj->cache_level != I915_CACHE_NONE ||
4260                 HAS_LLC(to_i915(obj->base.dev)));
4261 }
4262
4263 #endif