]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branches 'regmap/topic/doc' and 'regmap/topic/rbtree' into...
[linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = obj->base.filp->f_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = obj->base.filp->f_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma;
285         LIST_HEAD(still_in_list);
286         int ret;
287
288         lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290         /* Closed vma are removed from the obj->vma_list - but they may
291          * still have an active binding on the object. To remove those we
292          * must wait for all rendering to complete to the object (as unbinding
293          * must anyway), and retire the requests.
294          */
295         ret = i915_gem_object_wait_rendering(obj, false);
296         if (ret)
297                 return ret;
298
299         i915_gem_retire_requests(to_i915(obj->base.dev));
300
301         while ((vma = list_first_entry_or_null(&obj->vma_list,
302                                                struct i915_vma,
303                                                obj_link))) {
304                 list_move_tail(&vma->obj_link, &still_in_list);
305                 ret = i915_vma_unbind(vma);
306                 if (ret)
307                         break;
308         }
309         list_splice(&still_in_list, &obj->vma_list);
310
311         return ret;
312 }
313
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322                                bool readonly)
323 {
324         struct reservation_object *resv;
325         struct i915_gem_active *active;
326         unsigned long active_mask;
327         int idx;
328
329         lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331         if (!readonly) {
332                 active = obj->last_read;
333                 active_mask = i915_gem_object_get_active(obj);
334         } else {
335                 active_mask = 1;
336                 active = &obj->last_write;
337         }
338
339         for_each_active(active_mask, idx) {
340                 int ret;
341
342                 ret = i915_gem_active_wait(&active[idx],
343                                            &obj->base.dev->struct_mutex);
344                 if (ret)
345                         return ret;
346         }
347
348         resv = i915_gem_object_get_dmabuf_resv(obj);
349         if (resv) {
350                 long err;
351
352                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353                                                           MAX_SCHEDULE_TIMEOUT);
354                 if (err < 0)
355                         return err;
356         }
357
358         return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367                         struct intel_rps_client *rps,
368                         bool readonly)
369 {
370         struct i915_gem_active *active;
371         unsigned long active_mask;
372         int idx;
373
374         active_mask = __I915_BO_ACTIVE(obj);
375         if (!active_mask)
376                 return 0;
377
378         if (!readonly) {
379                 active = obj->last_read;
380         } else {
381                 active_mask = 1;
382                 active = &obj->last_write;
383         }
384
385         for_each_active(active_mask, idx) {
386                 int ret;
387
388                 ret = i915_gem_active_wait_unlocked(&active[idx],
389                                                     I915_WAIT_INTERRUPTIBLE,
390                                                     NULL, rps);
391                 if (ret)
392                         return ret;
393         }
394
395         return 0;
396 }
397
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400         struct drm_i915_file_private *fpriv = file->driver_priv;
401
402         return &fpriv->rps;
403 }
404
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407                             int align)
408 {
409         drm_dma_handle_t *phys;
410         int ret;
411
412         if (obj->phys_handle) {
413                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414                         return -EBUSY;
415
416                 return 0;
417         }
418
419         if (obj->madv != I915_MADV_WILLNEED)
420                 return -EFAULT;
421
422         if (obj->base.filp == NULL)
423                 return -EINVAL;
424
425         ret = i915_gem_object_unbind(obj);
426         if (ret)
427                 return ret;
428
429         ret = i915_gem_object_put_pages(obj);
430         if (ret)
431                 return ret;
432
433         /* create a new object */
434         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435         if (!phys)
436                 return -ENOMEM;
437
438         obj->phys_handle = phys;
439         obj->ops = &i915_gem_phys_ops;
440
441         return i915_gem_object_get_pages(obj);
442 }
443
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pwrite *args,
447                      struct drm_file *file_priv)
448 {
449         struct drm_device *dev = obj->base.dev;
450         void *vaddr = obj->phys_handle->vaddr + args->offset;
451         char __user *user_data = u64_to_user_ptr(args->data_ptr);
452         int ret = 0;
453
454         /* We manually control the domain here and pretend that it
455          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456          */
457         ret = i915_gem_object_wait_rendering(obj, false);
458         if (ret)
459                 return ret;
460
461         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463                 unsigned long unwritten;
464
465                 /* The physical object once assigned is fixed for the lifetime
466                  * of the obj, so we can safely drop the lock and continue
467                  * to access vaddr.
468                  */
469                 mutex_unlock(&dev->struct_mutex);
470                 unwritten = copy_from_user(vaddr, user_data, args->size);
471                 mutex_lock(&dev->struct_mutex);
472                 if (unwritten) {
473                         ret = -EFAULT;
474                         goto out;
475                 }
476         }
477
478         drm_clflush_virt_range(vaddr, args->size);
479         i915_gem_chipset_flush(to_i915(dev));
480
481 out:
482         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483         return ret;
484 }
485
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488         struct drm_i915_private *dev_priv = to_i915(dev);
489         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495         kmem_cache_free(dev_priv->objects, obj);
496 }
497
498 static int
499 i915_gem_create(struct drm_file *file,
500                 struct drm_device *dev,
501                 uint64_t size,
502                 uint32_t *handle_p)
503 {
504         struct drm_i915_gem_object *obj;
505         int ret;
506         u32 handle;
507
508         size = roundup(size, PAGE_SIZE);
509         if (size == 0)
510                 return -EINVAL;
511
512         /* Allocate the new object */
513         obj = i915_gem_object_create(dev, size);
514         if (IS_ERR(obj))
515                 return PTR_ERR(obj);
516
517         ret = drm_gem_handle_create(file, &obj->base, &handle);
518         /* drop reference from allocate - handle holds it now */
519         i915_gem_object_put_unlocked(obj);
520         if (ret)
521                 return ret;
522
523         *handle_p = handle;
524         return 0;
525 }
526
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529                      struct drm_device *dev,
530                      struct drm_mode_create_dumb *args)
531 {
532         /* have to work out size/pitch and return them */
533         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534         args->size = args->pitch * args->height;
535         return i915_gem_create(file, dev,
536                                args->size, &args->handle);
537 }
538
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547                       struct drm_file *file)
548 {
549         struct drm_i915_gem_create *args = data;
550
551         return i915_gem_create(file, dev,
552                                args->size, &args->handle);
553 }
554
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557                         const char *gpu_vaddr, int gpu_offset,
558                         int length)
559 {
560         int ret, cpu_offset = 0;
561
562         while (length > 0) {
563                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564                 int this_length = min(cacheline_end - gpu_offset, length);
565                 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568                                      gpu_vaddr + swizzled_gpu_offset,
569                                      this_length);
570                 if (ret)
571                         return ret + length;
572
573                 cpu_offset += this_length;
574                 gpu_offset += this_length;
575                 length -= this_length;
576         }
577
578         return 0;
579 }
580
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583                           const char __user *cpu_vaddr,
584                           int length)
585 {
586         int ret, cpu_offset = 0;
587
588         while (length > 0) {
589                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590                 int this_length = min(cacheline_end - gpu_offset, length);
591                 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594                                        cpu_vaddr + cpu_offset,
595                                        this_length);
596                 if (ret)
597                         return ret + length;
598
599                 cpu_offset += this_length;
600                 gpu_offset += this_length;
601                 length -= this_length;
602         }
603
604         return 0;
605 }
606
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613                                     unsigned int *needs_clflush)
614 {
615         int ret;
616
617         *needs_clflush = 0;
618
619         if (!i915_gem_object_has_struct_page(obj))
620                 return -ENODEV;
621
622         ret = i915_gem_object_wait_rendering(obj, true);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_get_pages(obj);
627         if (ret)
628                 return ret;
629
630         i915_gem_object_pin_pages(obj);
631
632         i915_gem_object_flush_gtt_write_domain(obj);
633
634         /* If we're not in the cpu read domain, set ourself into the gtt
635          * read domain and manually flush cachelines (if required). This
636          * optimizes for the case when the gpu will dirty the data
637          * anyway again before the next pread happens.
638          */
639         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641                                                         obj->cache_level);
642
643         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
645                 if (ret)
646                         goto err_unpin;
647
648                 *needs_clflush = 0;
649         }
650
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660                                      unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         ret = i915_gem_object_wait_rendering(obj, false);
669         if (ret)
670                 return ret;
671
672         ret = i915_gem_object_get_pages(obj);
673         if (ret)
674                 return ret;
675
676         i915_gem_object_pin_pages(obj);
677
678         i915_gem_object_flush_gtt_write_domain(obj);
679
680         /* If we're not in the cpu write domain, set ourself into the
681          * gtt write domain and manually flush cachelines (as required).
682          * This optimizes for the case when the gpu will use the data
683          * right away and we therefore have to clflush anyway.
684          */
685         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688         /* Same trick applies to invalidate partially written cachelines read
689          * before writing.
690          */
691         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693                                                          obj->cache_level);
694
695         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
697                 if (ret)
698                         goto err_unpin;
699
700                 *needs_clflush = 0;
701         }
702
703         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704                 obj->cache_dirty = true;
705
706         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707         obj->dirty = 1;
708         /* return with the pages pinned */
709         return 0;
710
711 err_unpin:
712         i915_gem_object_unpin_pages(obj);
713         return ret;
714 }
715
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721                  char __user *user_data,
722                  bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724         char *vaddr;
725         int ret;
726
727         if (unlikely(page_do_bit17_swizzling))
728                 return -EINVAL;
729
730         vaddr = kmap_atomic(page);
731         if (needs_clflush)
732                 drm_clflush_virt_range(vaddr + shmem_page_offset,
733                                        page_length);
734         ret = __copy_to_user_inatomic(user_data,
735                                       vaddr + shmem_page_offset,
736                                       page_length);
737         kunmap_atomic(vaddr);
738
739         return ret ? -EFAULT : 0;
740 }
741
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744                              bool swizzled)
745 {
746         if (unlikely(swizzled)) {
747                 unsigned long start = (unsigned long) addr;
748                 unsigned long end = (unsigned long) addr + length;
749
750                 /* For swizzling simply ensure that we always flush both
751                  * channels. Lame, but simple and it works. Swizzled
752                  * pwrite/pread is far from a hotpath - current userspace
753                  * doesn't use it at all. */
754                 start = round_down(start, 128);
755                 end = round_up(end, 128);
756
757                 drm_clflush_virt_range((void *)start, end - start);
758         } else {
759                 drm_clflush_virt_range(addr, length);
760         }
761
762 }
763
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768                  char __user *user_data,
769                  bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771         char *vaddr;
772         int ret;
773
774         vaddr = kmap(page);
775         if (needs_clflush)
776                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777                                              page_length,
778                                              page_do_bit17_swizzling);
779
780         if (page_do_bit17_swizzling)
781                 ret = __copy_to_user_swizzled(user_data,
782                                               vaddr, shmem_page_offset,
783                                               page_length);
784         else
785                 ret = __copy_to_user(user_data,
786                                      vaddr + shmem_page_offset,
787                                      page_length);
788         kunmap(page);
789
790         return ret ? - EFAULT : 0;
791 }
792
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795                  uint64_t page_base, int page_offset,
796                  char __user *user_data,
797                  unsigned long length, bool pwrite)
798 {
799         void __iomem *ioaddr;
800         void *vaddr;
801         uint64_t unwritten;
802
803         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804         /* We can use the cpu mem copy function because this is X86. */
805         vaddr = (void __force *)ioaddr + page_offset;
806         if (pwrite)
807                 unwritten = __copy_from_user(vaddr, user_data, length);
808         else
809                 unwritten = __copy_to_user(user_data, vaddr, length);
810
811         io_mapping_unmap(ioaddr);
812         return unwritten;
813 }
814
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817                    struct drm_i915_gem_object *obj, uint64_t size,
818                    uint64_t data_offset, uint64_t data_ptr)
819 {
820         struct drm_i915_private *dev_priv = to_i915(dev);
821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
822         struct i915_vma *vma;
823         struct drm_mm_node node;
824         char __user *user_data;
825         uint64_t remain;
826         uint64_t offset;
827         int ret;
828
829         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830         if (!IS_ERR(vma)) {
831                 node.start = i915_ggtt_offset(vma);
832                 node.allocated = false;
833                 ret = i915_vma_put_fence(vma);
834                 if (ret) {
835                         i915_vma_unpin(vma);
836                         vma = ERR_PTR(ret);
837                 }
838         }
839         if (IS_ERR(vma)) {
840                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841                 if (ret)
842                         goto out;
843
844                 ret = i915_gem_object_get_pages(obj);
845                 if (ret) {
846                         remove_mappable_node(&node);
847                         goto out;
848                 }
849
850                 i915_gem_object_pin_pages(obj);
851         }
852
853         ret = i915_gem_object_set_to_gtt_domain(obj, false);
854         if (ret)
855                 goto out_unpin;
856
857         user_data = u64_to_user_ptr(data_ptr);
858         remain = size;
859         offset = data_offset;
860
861         mutex_unlock(&dev->struct_mutex);
862         if (likely(!i915.prefault_disable)) {
863                 ret = fault_in_pages_writeable(user_data, remain);
864                 if (ret) {
865                         mutex_lock(&dev->struct_mutex);
866                         goto out_unpin;
867                 }
868         }
869
870         while (remain > 0) {
871                 /* Operation in this page
872                  *
873                  * page_base = page offset within aperture
874                  * page_offset = offset within page
875                  * page_length = bytes to copy for this page
876                  */
877                 u32 page_base = node.start;
878                 unsigned page_offset = offset_in_page(offset);
879                 unsigned page_length = PAGE_SIZE - page_offset;
880                 page_length = remain < page_length ? remain : page_length;
881                 if (node.allocated) {
882                         wmb();
883                         ggtt->base.insert_page(&ggtt->base,
884                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885                                                node.start,
886                                                I915_CACHE_NONE, 0);
887                         wmb();
888                 } else {
889                         page_base += offset & PAGE_MASK;
890                 }
891                 /* This is a slow read/write as it tries to read from
892                  * and write to user memory which may result into page
893                  * faults, and so we cannot perform this under struct_mutex.
894                  */
895                 if (slow_user_access(&ggtt->mappable, page_base,
896                                      page_offset, user_data,
897                                      page_length, false)) {
898                         ret = -EFAULT;
899                         break;
900                 }
901
902                 remain -= page_length;
903                 user_data += page_length;
904                 offset += page_length;
905         }
906
907         mutex_lock(&dev->struct_mutex);
908         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909                 /* The user has modified the object whilst we tried
910                  * reading from it, and we now have no idea what domain
911                  * the pages should be in. As we have just been touching
912                  * them directly, flush everything back to the GTT
913                  * domain.
914                  */
915                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916         }
917
918 out_unpin:
919         if (node.allocated) {
920                 wmb();
921                 ggtt->base.clear_range(&ggtt->base,
922                                        node.start, node.size,
923                                        true);
924                 i915_gem_object_unpin_pages(obj);
925                 remove_mappable_node(&node);
926         } else {
927                 i915_vma_unpin(vma);
928         }
929 out:
930         return ret;
931 }
932
933 static int
934 i915_gem_shmem_pread(struct drm_device *dev,
935                      struct drm_i915_gem_object *obj,
936                      struct drm_i915_gem_pread *args,
937                      struct drm_file *file)
938 {
939         char __user *user_data;
940         ssize_t remain;
941         loff_t offset;
942         int shmem_page_offset, page_length, ret = 0;
943         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
944         int prefaulted = 0;
945         int needs_clflush = 0;
946         struct sg_page_iter sg_iter;
947
948         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
949         if (ret)
950                 return ret;
951
952         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953         user_data = u64_to_user_ptr(args->data_ptr);
954         offset = args->offset;
955         remain = args->size;
956
957         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958                          offset >> PAGE_SHIFT) {
959                 struct page *page = sg_page_iter_page(&sg_iter);
960
961                 if (remain <= 0)
962                         break;
963
964                 /* Operation in this page
965                  *
966                  * shmem_page_offset = offset within page in shmem file
967                  * page_length = bytes to copy for this page
968                  */
969                 shmem_page_offset = offset_in_page(offset);
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975                         (page_to_phys(page) & (1 << 17)) != 0;
976
977                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978                                        user_data, page_do_bit17_swizzling,
979                                        needs_clflush);
980                 if (ret == 0)
981                         goto next_page;
982
983                 mutex_unlock(&dev->struct_mutex);
984
985                 if (likely(!i915.prefault_disable) && !prefaulted) {
986                         ret = fault_in_pages_writeable(user_data, remain);
987                         /* Userspace is tricking us, but we've already clobbered
988                          * its pages with the prefault and promised to write the
989                          * data up to the first fault. Hence ignore any errors
990                          * and just continue. */
991                         (void)ret;
992                         prefaulted = 1;
993                 }
994
995                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996                                        user_data, page_do_bit17_swizzling,
997                                        needs_clflush);
998
999                 mutex_lock(&dev->struct_mutex);
1000
1001                 if (ret)
1002                         goto out;
1003
1004 next_page:
1005                 remain -= page_length;
1006                 user_data += page_length;
1007                 offset += page_length;
1008         }
1009
1010 out:
1011         i915_gem_obj_finish_shmem_access(obj);
1012
1013         return ret;
1014 }
1015
1016 /**
1017  * Reads data from the object referenced by handle.
1018  * @dev: drm device pointer
1019  * @data: ioctl data blob
1020  * @file: drm file pointer
1021  *
1022  * On error, the contents of *data are undefined.
1023  */
1024 int
1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1026                      struct drm_file *file)
1027 {
1028         struct drm_i915_gem_pread *args = data;
1029         struct drm_i915_gem_object *obj;
1030         int ret = 0;
1031
1032         if (args->size == 0)
1033                 return 0;
1034
1035         if (!access_ok(VERIFY_WRITE,
1036                        u64_to_user_ptr(args->data_ptr),
1037                        args->size))
1038                 return -EFAULT;
1039
1040         obj = i915_gem_object_lookup(file, args->handle);
1041         if (!obj)
1042                 return -ENOENT;
1043
1044         /* Bounds check source.  */
1045         if (args->offset > obj->base.size ||
1046             args->size > obj->base.size - args->offset) {
1047                 ret = -EINVAL;
1048                 goto err;
1049         }
1050
1051         trace_i915_gem_object_pread(obj, args->offset, args->size);
1052
1053         ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054         if (ret)
1055                 goto err;
1056
1057         ret = i915_mutex_lock_interruptible(dev);
1058         if (ret)
1059                 goto err;
1060
1061         ret = i915_gem_shmem_pread(dev, obj, args, file);
1062
1063         /* pread for non shmem backed objects */
1064         if (ret == -EFAULT || ret == -ENODEV) {
1065                 intel_runtime_pm_get(to_i915(dev));
1066                 ret = i915_gem_gtt_pread(dev, obj, args->size,
1067                                         args->offset, args->data_ptr);
1068                 intel_runtime_pm_put(to_i915(dev));
1069         }
1070
1071         i915_gem_object_put(obj);
1072         mutex_unlock(&dev->struct_mutex);
1073
1074         return ret;
1075
1076 err:
1077         i915_gem_object_put_unlocked(obj);
1078         return ret;
1079 }
1080
1081 /* This is the fast write path which cannot handle
1082  * page faults in the source data
1083  */
1084
1085 static inline int
1086 fast_user_write(struct io_mapping *mapping,
1087                 loff_t page_base, int page_offset,
1088                 char __user *user_data,
1089                 int length)
1090 {
1091         void __iomem *vaddr_atomic;
1092         void *vaddr;
1093         unsigned long unwritten;
1094
1095         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1096         /* We can use the cpu mem copy function because this is X86. */
1097         vaddr = (void __force*)vaddr_atomic + page_offset;
1098         unwritten = __copy_from_user_inatomic_nocache(vaddr,
1099                                                       user_data, length);
1100         io_mapping_unmap_atomic(vaddr_atomic);
1101         return unwritten;
1102 }
1103
1104 /**
1105  * This is the fast pwrite path, where we copy the data directly from the
1106  * user into the GTT, uncached.
1107  * @i915: i915 device private data
1108  * @obj: i915 gem object
1109  * @args: pwrite arguments structure
1110  * @file: drm file pointer
1111  */
1112 static int
1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1114                          struct drm_i915_gem_object *obj,
1115                          struct drm_i915_gem_pwrite *args,
1116                          struct drm_file *file)
1117 {
1118         struct i915_ggtt *ggtt = &i915->ggtt;
1119         struct drm_device *dev = obj->base.dev;
1120         struct i915_vma *vma;
1121         struct drm_mm_node node;
1122         uint64_t remain, offset;
1123         char __user *user_data;
1124         int ret;
1125         bool hit_slow_path = false;
1126
1127         if (i915_gem_object_is_tiled(obj))
1128                 return -EFAULT;
1129
1130         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1131                                        PIN_MAPPABLE | PIN_NONBLOCK);
1132         if (!IS_ERR(vma)) {
1133                 node.start = i915_ggtt_offset(vma);
1134                 node.allocated = false;
1135                 ret = i915_vma_put_fence(vma);
1136                 if (ret) {
1137                         i915_vma_unpin(vma);
1138                         vma = ERR_PTR(ret);
1139                 }
1140         }
1141         if (IS_ERR(vma)) {
1142                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143                 if (ret)
1144                         goto out;
1145
1146                 ret = i915_gem_object_get_pages(obj);
1147                 if (ret) {
1148                         remove_mappable_node(&node);
1149                         goto out;
1150                 }
1151
1152                 i915_gem_object_pin_pages(obj);
1153         }
1154
1155         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156         if (ret)
1157                 goto out_unpin;
1158
1159         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160         obj->dirty = true;
1161
1162         user_data = u64_to_user_ptr(args->data_ptr);
1163         offset = args->offset;
1164         remain = args->size;
1165         while (remain) {
1166                 /* Operation in this page
1167                  *
1168                  * page_base = page offset within aperture
1169                  * page_offset = offset within page
1170                  * page_length = bytes to copy for this page
1171                  */
1172                 u32 page_base = node.start;
1173                 unsigned page_offset = offset_in_page(offset);
1174                 unsigned page_length = PAGE_SIZE - page_offset;
1175                 page_length = remain < page_length ? remain : page_length;
1176                 if (node.allocated) {
1177                         wmb(); /* flush the write before we modify the GGTT */
1178                         ggtt->base.insert_page(&ggtt->base,
1179                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180                                                node.start, I915_CACHE_NONE, 0);
1181                         wmb(); /* flush modifications to the GGTT (insert_page) */
1182                 } else {
1183                         page_base += offset & PAGE_MASK;
1184                 }
1185                 /* If we get a fault while copying data, then (presumably) our
1186                  * source page isn't available.  Return the error and we'll
1187                  * retry in the slow path.
1188                  * If the object is non-shmem backed, we retry again with the
1189                  * path that handles page fault.
1190                  */
1191                 if (fast_user_write(&ggtt->mappable, page_base,
1192                                     page_offset, user_data, page_length)) {
1193                         hit_slow_path = true;
1194                         mutex_unlock(&dev->struct_mutex);
1195                         if (slow_user_access(&ggtt->mappable,
1196                                              page_base,
1197                                              page_offset, user_data,
1198                                              page_length, true)) {
1199                                 ret = -EFAULT;
1200                                 mutex_lock(&dev->struct_mutex);
1201                                 goto out_flush;
1202                         }
1203
1204                         mutex_lock(&dev->struct_mutex);
1205                 }
1206
1207                 remain -= page_length;
1208                 user_data += page_length;
1209                 offset += page_length;
1210         }
1211
1212 out_flush:
1213         if (hit_slow_path) {
1214                 if (ret == 0 &&
1215                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216                         /* The user has modified the object whilst we tried
1217                          * reading from it, and we now have no idea what domain
1218                          * the pages should be in. As we have just been touching
1219                          * them directly, flush everything back to the GTT
1220                          * domain.
1221                          */
1222                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223                 }
1224         }
1225
1226         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1227 out_unpin:
1228         if (node.allocated) {
1229                 wmb();
1230                 ggtt->base.clear_range(&ggtt->base,
1231                                        node.start, node.size,
1232                                        true);
1233                 i915_gem_object_unpin_pages(obj);
1234                 remove_mappable_node(&node);
1235         } else {
1236                 i915_vma_unpin(vma);
1237         }
1238 out:
1239         return ret;
1240 }
1241
1242 /* Per-page copy function for the shmem pwrite fastpath.
1243  * Flushes invalid cachelines before writing to the target if
1244  * needs_clflush_before is set and flushes out any written cachelines after
1245  * writing if needs_clflush is set. */
1246 static int
1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248                   char __user *user_data,
1249                   bool page_do_bit17_swizzling,
1250                   bool needs_clflush_before,
1251                   bool needs_clflush_after)
1252 {
1253         char *vaddr;
1254         int ret;
1255
1256         if (unlikely(page_do_bit17_swizzling))
1257                 return -EINVAL;
1258
1259         vaddr = kmap_atomic(page);
1260         if (needs_clflush_before)
1261                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1262                                        page_length);
1263         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264                                         user_data, page_length);
1265         if (needs_clflush_after)
1266                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1267                                        page_length);
1268         kunmap_atomic(vaddr);
1269
1270         return ret ? -EFAULT : 0;
1271 }
1272
1273 /* Only difference to the fast-path function is that this can handle bit17
1274  * and uses non-atomic copy and kmap functions. */
1275 static int
1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277                   char __user *user_data,
1278                   bool page_do_bit17_swizzling,
1279                   bool needs_clflush_before,
1280                   bool needs_clflush_after)
1281 {
1282         char *vaddr;
1283         int ret;
1284
1285         vaddr = kmap(page);
1286         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1287                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288                                              page_length,
1289                                              page_do_bit17_swizzling);
1290         if (page_do_bit17_swizzling)
1291                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1292                                                 user_data,
1293                                                 page_length);
1294         else
1295                 ret = __copy_from_user(vaddr + shmem_page_offset,
1296                                        user_data,
1297                                        page_length);
1298         if (needs_clflush_after)
1299                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300                                              page_length,
1301                                              page_do_bit17_swizzling);
1302         kunmap(page);
1303
1304         return ret ? -EFAULT : 0;
1305 }
1306
1307 static int
1308 i915_gem_shmem_pwrite(struct drm_device *dev,
1309                       struct drm_i915_gem_object *obj,
1310                       struct drm_i915_gem_pwrite *args,
1311                       struct drm_file *file)
1312 {
1313         ssize_t remain;
1314         loff_t offset;
1315         char __user *user_data;
1316         int shmem_page_offset, page_length, ret = 0;
1317         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1318         int hit_slowpath = 0;
1319         unsigned int needs_clflush;
1320         struct sg_page_iter sg_iter;
1321
1322         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1323         if (ret)
1324                 return ret;
1325
1326         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327         user_data = u64_to_user_ptr(args->data_ptr);
1328         offset = args->offset;
1329         remain = args->size;
1330
1331         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332                          offset >> PAGE_SHIFT) {
1333                 struct page *page = sg_page_iter_page(&sg_iter);
1334                 int partial_cacheline_write;
1335
1336                 if (remain <= 0)
1337                         break;
1338
1339                 /* Operation in this page
1340                  *
1341                  * shmem_page_offset = offset within page in shmem file
1342                  * page_length = bytes to copy for this page
1343                  */
1344                 shmem_page_offset = offset_in_page(offset);
1345
1346                 page_length = remain;
1347                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348                         page_length = PAGE_SIZE - shmem_page_offset;
1349
1350                 /* If we don't overwrite a cacheline completely we need to be
1351                  * careful to have up-to-date data by first clflushing. Don't
1352                  * overcomplicate things and flush the entire patch. */
1353                 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1354                         ((shmem_page_offset | page_length)
1355                                 & (boot_cpu_data.x86_clflush_size - 1));
1356
1357                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358                         (page_to_phys(page) & (1 << 17)) != 0;
1359
1360                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361                                         user_data, page_do_bit17_swizzling,
1362                                         partial_cacheline_write,
1363                                         needs_clflush & CLFLUSH_AFTER);
1364                 if (ret == 0)
1365                         goto next_page;
1366
1367                 hit_slowpath = 1;
1368                 mutex_unlock(&dev->struct_mutex);
1369                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370                                         user_data, page_do_bit17_swizzling,
1371                                         partial_cacheline_write,
1372                                         needs_clflush & CLFLUSH_AFTER);
1373
1374                 mutex_lock(&dev->struct_mutex);
1375
1376                 if (ret)
1377                         goto out;
1378
1379 next_page:
1380                 remain -= page_length;
1381                 user_data += page_length;
1382                 offset += page_length;
1383         }
1384
1385 out:
1386         i915_gem_obj_finish_shmem_access(obj);
1387
1388         if (hit_slowpath) {
1389                 /*
1390                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1391                  * cachelines in-line while writing and the object moved
1392                  * out of the cpu write domain while we've dropped the lock.
1393                  */
1394                 if (!(needs_clflush & CLFLUSH_AFTER) &&
1395                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1396                         if (i915_gem_clflush_object(obj, obj->pin_display))
1397                                 needs_clflush |= CLFLUSH_AFTER;
1398                 }
1399         }
1400
1401         if (needs_clflush & CLFLUSH_AFTER)
1402                 i915_gem_chipset_flush(to_i915(dev));
1403
1404         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1405         return ret;
1406 }
1407
1408 /**
1409  * Writes data to the object referenced by handle.
1410  * @dev: drm device
1411  * @data: ioctl data blob
1412  * @file: drm file
1413  *
1414  * On error, the contents of the buffer that were to be modified are undefined.
1415  */
1416 int
1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1418                       struct drm_file *file)
1419 {
1420         struct drm_i915_private *dev_priv = to_i915(dev);
1421         struct drm_i915_gem_pwrite *args = data;
1422         struct drm_i915_gem_object *obj;
1423         int ret;
1424
1425         if (args->size == 0)
1426                 return 0;
1427
1428         if (!access_ok(VERIFY_READ,
1429                        u64_to_user_ptr(args->data_ptr),
1430                        args->size))
1431                 return -EFAULT;
1432
1433         if (likely(!i915.prefault_disable)) {
1434                 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1435                                                    args->size);
1436                 if (ret)
1437                         return -EFAULT;
1438         }
1439
1440         obj = i915_gem_object_lookup(file, args->handle);
1441         if (!obj)
1442                 return -ENOENT;
1443
1444         /* Bounds check destination. */
1445         if (args->offset > obj->base.size ||
1446             args->size > obj->base.size - args->offset) {
1447                 ret = -EINVAL;
1448                 goto err;
1449         }
1450
1451         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452
1453         ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454         if (ret)
1455                 goto err;
1456
1457         intel_runtime_pm_get(dev_priv);
1458
1459         ret = i915_mutex_lock_interruptible(dev);
1460         if (ret)
1461                 goto err_rpm;
1462
1463         ret = -EFAULT;
1464         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1465          * it would end up going through the fenced access, and we'll get
1466          * different detiling behavior between reading and writing.
1467          * pread/pwrite currently are reading and writing from the CPU
1468          * perspective, requiring manual detiling by the client.
1469          */
1470         if (!i915_gem_object_has_struct_page(obj) ||
1471             cpu_write_needs_clflush(obj)) {
1472                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1473                 /* Note that the gtt paths might fail with non-page-backed user
1474                  * pointers (e.g. gtt mappings when moving data between
1475                  * textures). Fallback to the shmem path in that case. */
1476         }
1477
1478         if (ret == -EFAULT || ret == -ENOSPC) {
1479                 if (obj->phys_handle)
1480                         ret = i915_gem_phys_pwrite(obj, args, file);
1481                 else
1482                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1483         }
1484
1485         i915_gem_object_put(obj);
1486         mutex_unlock(&dev->struct_mutex);
1487         intel_runtime_pm_put(dev_priv);
1488
1489         return ret;
1490
1491 err_rpm:
1492         intel_runtime_pm_put(dev_priv);
1493 err:
1494         i915_gem_object_put_unlocked(obj);
1495         return ret;
1496 }
1497
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501         return (domain == I915_GEM_DOMAIN_GTT ?
1502                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504
1505 /**
1506  * Called when user space prepares to use an object with the CPU, either
1507  * through the mmap ioctl's mapping or a GTT mapping.
1508  * @dev: drm device
1509  * @data: ioctl data blob
1510  * @file: drm file
1511  */
1512 int
1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1514                           struct drm_file *file)
1515 {
1516         struct drm_i915_gem_set_domain *args = data;
1517         struct drm_i915_gem_object *obj;
1518         uint32_t read_domains = args->read_domains;
1519         uint32_t write_domain = args->write_domain;
1520         int ret;
1521
1522         /* Only handle setting domains to types used by the CPU. */
1523         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1524                 return -EINVAL;
1525
1526         /* Having something in the write domain implies it's in the read
1527          * domain, and only that read domain.  Enforce that in the request.
1528          */
1529         if (write_domain != 0 && read_domains != write_domain)
1530                 return -EINVAL;
1531
1532         obj = i915_gem_object_lookup(file, args->handle);
1533         if (!obj)
1534                 return -ENOENT;
1535
1536         /* Try to flush the object off the GPU without holding the lock.
1537          * We will repeat the flush holding the lock in the normal manner
1538          * to catch cases where we are gazumped.
1539          */
1540         ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_mutex_lock_interruptible(dev);
1545         if (ret)
1546                 goto err;
1547
1548         if (read_domains & I915_GEM_DOMAIN_GTT)
1549                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1550         else
1551                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1552
1553         if (write_domain != 0)
1554                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1555
1556         i915_gem_object_put(obj);
1557         mutex_unlock(&dev->struct_mutex);
1558         return ret;
1559
1560 err:
1561         i915_gem_object_put_unlocked(obj);
1562         return ret;
1563 }
1564
1565 /**
1566  * Called when user space has done writes to this buffer
1567  * @dev: drm device
1568  * @data: ioctl data blob
1569  * @file: drm file
1570  */
1571 int
1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573                          struct drm_file *file)
1574 {
1575         struct drm_i915_gem_sw_finish *args = data;
1576         struct drm_i915_gem_object *obj;
1577         int err = 0;
1578
1579         obj = i915_gem_object_lookup(file, args->handle);
1580         if (!obj)
1581                 return -ENOENT;
1582
1583         /* Pinned buffers may be scanout, so flush the cache */
1584         if (READ_ONCE(obj->pin_display)) {
1585                 err = i915_mutex_lock_interruptible(dev);
1586                 if (!err) {
1587                         i915_gem_object_flush_cpu_write_domain(obj);
1588                         mutex_unlock(&dev->struct_mutex);
1589                 }
1590         }
1591
1592         i915_gem_object_put_unlocked(obj);
1593         return err;
1594 }
1595
1596 /**
1597  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1598  *                       it is mapped to.
1599  * @dev: drm device
1600  * @data: ioctl data blob
1601  * @file: drm file
1602  *
1603  * While the mapping holds a reference on the contents of the object, it doesn't
1604  * imply a ref on the object itself.
1605  *
1606  * IMPORTANT:
1607  *
1608  * DRM driver writers who look a this function as an example for how to do GEM
1609  * mmap support, please don't implement mmap support like here. The modern way
1610  * to implement DRM mmap support is with an mmap offset ioctl (like
1611  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1612  * That way debug tooling like valgrind will understand what's going on, hiding
1613  * the mmap call in a driver private ioctl will break that. The i915 driver only
1614  * does cpu mmaps this way because we didn't know better.
1615  */
1616 int
1617 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1618                     struct drm_file *file)
1619 {
1620         struct drm_i915_gem_mmap *args = data;
1621         struct drm_i915_gem_object *obj;
1622         unsigned long addr;
1623
1624         if (args->flags & ~(I915_MMAP_WC))
1625                 return -EINVAL;
1626
1627         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1628                 return -ENODEV;
1629
1630         obj = i915_gem_object_lookup(file, args->handle);
1631         if (!obj)
1632                 return -ENOENT;
1633
1634         /* prime objects have no backing filp to GEM mmap
1635          * pages from.
1636          */
1637         if (!obj->base.filp) {
1638                 i915_gem_object_put_unlocked(obj);
1639                 return -EINVAL;
1640         }
1641
1642         addr = vm_mmap(obj->base.filp, 0, args->size,
1643                        PROT_READ | PROT_WRITE, MAP_SHARED,
1644                        args->offset);
1645         if (args->flags & I915_MMAP_WC) {
1646                 struct mm_struct *mm = current->mm;
1647                 struct vm_area_struct *vma;
1648
1649                 if (down_write_killable(&mm->mmap_sem)) {
1650                         i915_gem_object_put_unlocked(obj);
1651                         return -EINTR;
1652                 }
1653                 vma = find_vma(mm, addr);
1654                 if (vma)
1655                         vma->vm_page_prot =
1656                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1657                 else
1658                         addr = -ENOMEM;
1659                 up_write(&mm->mmap_sem);
1660
1661                 /* This may race, but that's ok, it only gets set */
1662                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1663         }
1664         i915_gem_object_put_unlocked(obj);
1665         if (IS_ERR((void *)addr))
1666                 return addr;
1667
1668         args->addr_ptr = (uint64_t) addr;
1669
1670         return 0;
1671 }
1672
1673 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1674 {
1675         u64 size;
1676
1677         size = i915_gem_object_get_stride(obj);
1678         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1679
1680         return size >> PAGE_SHIFT;
1681 }
1682
1683 /**
1684  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1685  *
1686  * A history of the GTT mmap interface:
1687  *
1688  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1689  *     aligned and suitable for fencing, and still fit into the available
1690  *     mappable space left by the pinned display objects. A classic problem
1691  *     we called the page-fault-of-doom where we would ping-pong between
1692  *     two objects that could not fit inside the GTT and so the memcpy
1693  *     would page one object in at the expense of the other between every
1694  *     single byte.
1695  *
1696  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1697  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1698  *     object is too large for the available space (or simply too large
1699  *     for the mappable aperture!), a view is created instead and faulted
1700  *     into userspace. (This view is aligned and sized appropriately for
1701  *     fenced access.)
1702  *
1703  * Restrictions:
1704  *
1705  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1706  *    hangs on some architectures, corruption on others. An attempt to service
1707  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1708  *
1709  *  * the object must be able to fit into RAM (physical memory, though no
1710  *    limited to the mappable aperture).
1711  *
1712  *
1713  * Caveats:
1714  *
1715  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1716  *    all data to system memory. Subsequent access will not be synchronized.
1717  *
1718  *  * all mappings are revoked on runtime device suspend.
1719  *
1720  *  * there are only 8, 16 or 32 fence registers to share between all users
1721  *    (older machines require fence register for display and blitter access
1722  *    as well). Contention of the fence registers will cause the previous users
1723  *    to be unmapped and any new access will generate new page faults.
1724  *
1725  *  * running out of memory while servicing a fault may generate a SIGBUS,
1726  *    rather than the expected SIGSEGV.
1727  */
1728 int i915_gem_mmap_gtt_version(void)
1729 {
1730         return 1;
1731 }
1732
1733 /**
1734  * i915_gem_fault - fault a page into the GTT
1735  * @area: CPU VMA in question
1736  * @vmf: fault info
1737  *
1738  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1739  * from userspace.  The fault handler takes care of binding the object to
1740  * the GTT (if needed), allocating and programming a fence register (again,
1741  * only if needed based on whether the old reg is still valid or the object
1742  * is tiled) and inserting a new PTE into the faulting process.
1743  *
1744  * Note that the faulting process may involve evicting existing objects
1745  * from the GTT and/or fence registers to make room.  So performance may
1746  * suffer if the GTT working set is large or there are few fence registers
1747  * left.
1748  *
1749  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1750  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1751  */
1752 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1753 {
1754 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1755         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1756         struct drm_device *dev = obj->base.dev;
1757         struct drm_i915_private *dev_priv = to_i915(dev);
1758         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1759         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1760         struct i915_vma *vma;
1761         pgoff_t page_offset;
1762         unsigned int flags;
1763         int ret;
1764
1765         /* We don't use vmf->pgoff since that has the fake offset */
1766         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1767                 PAGE_SHIFT;
1768
1769         trace_i915_gem_object_fault(obj, page_offset, true, write);
1770
1771         /* Try to flush the object off the GPU first without holding the lock.
1772          * Upon acquiring the lock, we will perform our sanity checks and then
1773          * repeat the flush holding the lock in the normal manner to catch cases
1774          * where we are gazumped.
1775          */
1776         ret = __unsafe_wait_rendering(obj, NULL, !write);
1777         if (ret)
1778                 goto err;
1779
1780         intel_runtime_pm_get(dev_priv);
1781
1782         ret = i915_mutex_lock_interruptible(dev);
1783         if (ret)
1784                 goto err_rpm;
1785
1786         /* Access to snoopable pages through the GTT is incoherent. */
1787         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1788                 ret = -EFAULT;
1789                 goto err_unlock;
1790         }
1791
1792         /* If the object is smaller than a couple of partial vma, it is
1793          * not worth only creating a single partial vma - we may as well
1794          * clear enough space for the full object.
1795          */
1796         flags = PIN_MAPPABLE;
1797         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1798                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1799
1800         /* Now pin it into the GTT as needed */
1801         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1802         if (IS_ERR(vma)) {
1803                 struct i915_ggtt_view view;
1804                 unsigned int chunk_size;
1805
1806                 /* Use a partial view if it is bigger than available space */
1807                 chunk_size = MIN_CHUNK_PAGES;
1808                 if (i915_gem_object_is_tiled(obj))
1809                         chunk_size = roundup(chunk_size, tile_row_pages(obj));
1810
1811                 memset(&view, 0, sizeof(view));
1812                 view.type = I915_GGTT_VIEW_PARTIAL;
1813                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1814                 view.params.partial.size =
1815                         min_t(unsigned int, chunk_size,
1816                               (area->vm_end - area->vm_start) / PAGE_SIZE -
1817                               view.params.partial.offset);
1818
1819                 /* If the partial covers the entire object, just create a
1820                  * normal VMA.
1821                  */
1822                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1823                         view.type = I915_GGTT_VIEW_NORMAL;
1824
1825                 /* Userspace is now writing through an untracked VMA, abandon
1826                  * all hope that the hardware is able to track future writes.
1827                  */
1828                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1829
1830                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1831         }
1832         if (IS_ERR(vma)) {
1833                 ret = PTR_ERR(vma);
1834                 goto err_unlock;
1835         }
1836
1837         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1838         if (ret)
1839                 goto err_unpin;
1840
1841         ret = i915_vma_get_fence(vma);
1842         if (ret)
1843                 goto err_unpin;
1844
1845         /* Finally, remap it using the new GTT offset */
1846         ret = remap_io_mapping(area,
1847                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1848                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1849                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1850                                &ggtt->mappable);
1851         if (ret)
1852                 goto err_unpin;
1853
1854         obj->fault_mappable = true;
1855 err_unpin:
1856         __i915_vma_unpin(vma);
1857 err_unlock:
1858         mutex_unlock(&dev->struct_mutex);
1859 err_rpm:
1860         intel_runtime_pm_put(dev_priv);
1861 err:
1862         switch (ret) {
1863         case -EIO:
1864                 /*
1865                  * We eat errors when the gpu is terminally wedged to avoid
1866                  * userspace unduly crashing (gl has no provisions for mmaps to
1867                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868                  * and so needs to be reported.
1869                  */
1870                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871                         ret = VM_FAULT_SIGBUS;
1872                         break;
1873                 }
1874         case -EAGAIN:
1875                 /*
1876                  * EAGAIN means the gpu is hung and we'll wait for the error
1877                  * handler to reset everything when re-faulting in
1878                  * i915_mutex_lock_interruptible.
1879                  */
1880         case 0:
1881         case -ERESTARTSYS:
1882         case -EINTR:
1883         case -EBUSY:
1884                 /*
1885                  * EBUSY is ok: this just means that another thread
1886                  * already did the job.
1887                  */
1888                 ret = VM_FAULT_NOPAGE;
1889                 break;
1890         case -ENOMEM:
1891                 ret = VM_FAULT_OOM;
1892                 break;
1893         case -ENOSPC:
1894         case -EFAULT:
1895                 ret = VM_FAULT_SIGBUS;
1896                 break;
1897         default:
1898                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899                 ret = VM_FAULT_SIGBUS;
1900                 break;
1901         }
1902         return ret;
1903 }
1904
1905 /**
1906  * i915_gem_release_mmap - remove physical page mappings
1907  * @obj: obj in question
1908  *
1909  * Preserve the reservation of the mmapping with the DRM core code, but
1910  * relinquish ownership of the pages back to the system.
1911  *
1912  * It is vital that we remove the page mapping if we have mapped a tiled
1913  * object through the GTT and then lose the fence register due to
1914  * resource pressure. Similarly if the object has been moved out of the
1915  * aperture, than pages mapped into userspace must be revoked. Removing the
1916  * mapping will then trigger a page fault on the next user access, allowing
1917  * fixup by i915_gem_fault().
1918  */
1919 void
1920 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1921 {
1922         /* Serialisation between user GTT access and our code depends upon
1923          * revoking the CPU's PTE whilst the mutex is held. The next user
1924          * pagefault then has to wait until we release the mutex.
1925          */
1926         lockdep_assert_held(&obj->base.dev->struct_mutex);
1927
1928         if (!obj->fault_mappable)
1929                 return;
1930
1931         drm_vma_node_unmap(&obj->base.vma_node,
1932                            obj->base.dev->anon_inode->i_mapping);
1933
1934         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1935          * memory transactions from userspace before we return. The TLB
1936          * flushing implied above by changing the PTE above *should* be
1937          * sufficient, an extra barrier here just provides us with a bit
1938          * of paranoid documentation about our requirement to serialise
1939          * memory writes before touching registers / GSM.
1940          */
1941         wmb();
1942
1943         obj->fault_mappable = false;
1944 }
1945
1946 void
1947 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1948 {
1949         struct drm_i915_gem_object *obj;
1950
1951         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1952                 i915_gem_release_mmap(obj);
1953 }
1954
1955 /**
1956  * i915_gem_get_ggtt_size - return required global GTT size for an object
1957  * @dev_priv: i915 device
1958  * @size: object size
1959  * @tiling_mode: tiling mode
1960  *
1961  * Return the required global GTT size for an object, taking into account
1962  * potential fence register mapping.
1963  */
1964 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1965                            u64 size, int tiling_mode)
1966 {
1967         u64 ggtt_size;
1968
1969         GEM_BUG_ON(size == 0);
1970
1971         if (INTEL_GEN(dev_priv) >= 4 ||
1972             tiling_mode == I915_TILING_NONE)
1973                 return size;
1974
1975         /* Previous chips need a power-of-two fence region when tiling */
1976         if (IS_GEN3(dev_priv))
1977                 ggtt_size = 1024*1024;
1978         else
1979                 ggtt_size = 512*1024;
1980
1981         while (ggtt_size < size)
1982                 ggtt_size <<= 1;
1983
1984         return ggtt_size;
1985 }
1986
1987 /**
1988  * i915_gem_get_ggtt_alignment - return required global GTT alignment
1989  * @dev_priv: i915 device
1990  * @size: object size
1991  * @tiling_mode: tiling mode
1992  * @fenced: is fenced alignment required or not
1993  *
1994  * Return the required global GTT alignment for an object, taking into account
1995  * potential fence register mapping.
1996  */
1997 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1998                                 int tiling_mode, bool fenced)
1999 {
2000         GEM_BUG_ON(size == 0);
2001
2002         /*
2003          * Minimum alignment is 4k (GTT page size), but might be greater
2004          * if a fence register is needed for the object.
2005          */
2006         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2007             tiling_mode == I915_TILING_NONE)
2008                 return 4096;
2009
2010         /*
2011          * Previous chips need to be aligned to the size of the smallest
2012          * fence register that can contain the object.
2013          */
2014         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2015 }
2016
2017 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2018 {
2019         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2020         int err;
2021
2022         err = drm_gem_create_mmap_offset(&obj->base);
2023         if (!err)
2024                 return 0;
2025
2026         /* We can idle the GPU locklessly to flush stale objects, but in order
2027          * to claim that space for ourselves, we need to take the big
2028          * struct_mutex to free the requests+objects and allocate our slot.
2029          */
2030         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2031         if (err)
2032                 return err;
2033
2034         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2035         if (!err) {
2036                 i915_gem_retire_requests(dev_priv);
2037                 err = drm_gem_create_mmap_offset(&obj->base);
2038                 mutex_unlock(&dev_priv->drm.struct_mutex);
2039         }
2040
2041         return err;
2042 }
2043
2044 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2045 {
2046         drm_gem_free_mmap_offset(&obj->base);
2047 }
2048
2049 int
2050 i915_gem_mmap_gtt(struct drm_file *file,
2051                   struct drm_device *dev,
2052                   uint32_t handle,
2053                   uint64_t *offset)
2054 {
2055         struct drm_i915_gem_object *obj;
2056         int ret;
2057
2058         obj = i915_gem_object_lookup(file, handle);
2059         if (!obj)
2060                 return -ENOENT;
2061
2062         ret = i915_gem_object_create_mmap_offset(obj);
2063         if (ret == 0)
2064                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2065
2066         i915_gem_object_put_unlocked(obj);
2067         return ret;
2068 }
2069
2070 /**
2071  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2072  * @dev: DRM device
2073  * @data: GTT mapping ioctl data
2074  * @file: GEM object info
2075  *
2076  * Simply returns the fake offset to userspace so it can mmap it.
2077  * The mmap call will end up in drm_gem_mmap(), which will set things
2078  * up so we can get faults in the handler above.
2079  *
2080  * The fault handler will take care of binding the object into the GTT
2081  * (since it may have been evicted to make room for something), allocating
2082  * a fence register, and mapping the appropriate aperture address into
2083  * userspace.
2084  */
2085 int
2086 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2087                         struct drm_file *file)
2088 {
2089         struct drm_i915_gem_mmap_gtt *args = data;
2090
2091         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2092 }
2093
2094 /* Immediately discard the backing storage */
2095 static void
2096 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2097 {
2098         i915_gem_object_free_mmap_offset(obj);
2099
2100         if (obj->base.filp == NULL)
2101                 return;
2102
2103         /* Our goal here is to return as much of the memory as
2104          * is possible back to the system as we are called from OOM.
2105          * To do this we must instruct the shmfs to drop all of its
2106          * backing pages, *now*.
2107          */
2108         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2109         obj->madv = __I915_MADV_PURGED;
2110 }
2111
2112 /* Try to discard unwanted pages */
2113 static void
2114 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2115 {
2116         struct address_space *mapping;
2117
2118         switch (obj->madv) {
2119         case I915_MADV_DONTNEED:
2120                 i915_gem_object_truncate(obj);
2121         case __I915_MADV_PURGED:
2122                 return;
2123         }
2124
2125         if (obj->base.filp == NULL)
2126                 return;
2127
2128         mapping = obj->base.filp->f_mapping,
2129         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2130 }
2131
2132 static void
2133 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2134 {
2135         struct sgt_iter sgt_iter;
2136         struct page *page;
2137         int ret;
2138
2139         BUG_ON(obj->madv == __I915_MADV_PURGED);
2140
2141         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2142         if (WARN_ON(ret)) {
2143                 /* In the event of a disaster, abandon all caches and
2144                  * hope for the best.
2145                  */
2146                 i915_gem_clflush_object(obj, true);
2147                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2148         }
2149
2150         i915_gem_gtt_finish_object(obj);
2151
2152         if (i915_gem_object_needs_bit17_swizzle(obj))
2153                 i915_gem_object_save_bit_17_swizzle(obj);
2154
2155         if (obj->madv == I915_MADV_DONTNEED)
2156                 obj->dirty = 0;
2157
2158         for_each_sgt_page(page, sgt_iter, obj->pages) {
2159                 if (obj->dirty)
2160                         set_page_dirty(page);
2161
2162                 if (obj->madv == I915_MADV_WILLNEED)
2163                         mark_page_accessed(page);
2164
2165                 put_page(page);
2166         }
2167         obj->dirty = 0;
2168
2169         sg_free_table(obj->pages);
2170         kfree(obj->pages);
2171 }
2172
2173 int
2174 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2175 {
2176         const struct drm_i915_gem_object_ops *ops = obj->ops;
2177
2178         if (obj->pages == NULL)
2179                 return 0;
2180
2181         if (obj->pages_pin_count)
2182                 return -EBUSY;
2183
2184         GEM_BUG_ON(obj->bind_count);
2185
2186         /* ->put_pages might need to allocate memory for the bit17 swizzle
2187          * array, hence protect them from being reaped by removing them from gtt
2188          * lists early. */
2189         list_del(&obj->global_list);
2190
2191         if (obj->mapping) {
2192                 void *ptr;
2193
2194                 ptr = ptr_mask_bits(obj->mapping);
2195                 if (is_vmalloc_addr(ptr))
2196                         vunmap(ptr);
2197                 else
2198                         kunmap(kmap_to_page(ptr));
2199
2200                 obj->mapping = NULL;
2201         }
2202
2203         ops->put_pages(obj);
2204         obj->pages = NULL;
2205
2206         i915_gem_object_invalidate(obj);
2207
2208         return 0;
2209 }
2210
2211 static int
2212 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2213 {
2214         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2215         int page_count, i;
2216         struct address_space *mapping;
2217         struct sg_table *st;
2218         struct scatterlist *sg;
2219         struct sgt_iter sgt_iter;
2220         struct page *page;
2221         unsigned long last_pfn = 0;     /* suppress gcc warning */
2222         int ret;
2223         gfp_t gfp;
2224
2225         /* Assert that the object is not currently in any GPU domain. As it
2226          * wasn't in the GTT, there shouldn't be any way it could have been in
2227          * a GPU cache
2228          */
2229         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2230         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2231
2232         st = kmalloc(sizeof(*st), GFP_KERNEL);
2233         if (st == NULL)
2234                 return -ENOMEM;
2235
2236         page_count = obj->base.size / PAGE_SIZE;
2237         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2238                 kfree(st);
2239                 return -ENOMEM;
2240         }
2241
2242         /* Get the list of pages out of our struct file.  They'll be pinned
2243          * at this point until we release them.
2244          *
2245          * Fail silently without starting the shrinker
2246          */
2247         mapping = obj->base.filp->f_mapping;
2248         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2249         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2250         sg = st->sgl;
2251         st->nents = 0;
2252         for (i = 0; i < page_count; i++) {
2253                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2254                 if (IS_ERR(page)) {
2255                         i915_gem_shrink(dev_priv,
2256                                         page_count,
2257                                         I915_SHRINK_BOUND |
2258                                         I915_SHRINK_UNBOUND |
2259                                         I915_SHRINK_PURGEABLE);
2260                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2261                 }
2262                 if (IS_ERR(page)) {
2263                         /* We've tried hard to allocate the memory by reaping
2264                          * our own buffer, now let the real VM do its job and
2265                          * go down in flames if truly OOM.
2266                          */
2267                         i915_gem_shrink_all(dev_priv);
2268                         page = shmem_read_mapping_page(mapping, i);
2269                         if (IS_ERR(page)) {
2270                                 ret = PTR_ERR(page);
2271                                 goto err_sg;
2272                         }
2273                 }
2274 #ifdef CONFIG_SWIOTLB
2275                 if (swiotlb_nr_tbl()) {
2276                         st->nents++;
2277                         sg_set_page(sg, page, PAGE_SIZE, 0);
2278                         sg = sg_next(sg);
2279                         continue;
2280                 }
2281 #endif
2282                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2283                         if (i)
2284                                 sg = sg_next(sg);
2285                         st->nents++;
2286                         sg_set_page(sg, page, PAGE_SIZE, 0);
2287                 } else {
2288                         sg->length += PAGE_SIZE;
2289                 }
2290                 last_pfn = page_to_pfn(page);
2291
2292                 /* Check that the i965g/gm workaround works. */
2293                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2294         }
2295 #ifdef CONFIG_SWIOTLB
2296         if (!swiotlb_nr_tbl())
2297 #endif
2298                 sg_mark_end(sg);
2299         obj->pages = st;
2300
2301         ret = i915_gem_gtt_prepare_object(obj);
2302         if (ret)
2303                 goto err_pages;
2304
2305         if (i915_gem_object_needs_bit17_swizzle(obj))
2306                 i915_gem_object_do_bit_17_swizzle(obj);
2307
2308         if (i915_gem_object_is_tiled(obj) &&
2309             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2310                 i915_gem_object_pin_pages(obj);
2311
2312         return 0;
2313
2314 err_sg:
2315         sg_mark_end(sg);
2316 err_pages:
2317         for_each_sgt_page(page, sgt_iter, st)
2318                 put_page(page);
2319         sg_free_table(st);
2320         kfree(st);
2321
2322         /* shmemfs first checks if there is enough memory to allocate the page
2323          * and reports ENOSPC should there be insufficient, along with the usual
2324          * ENOMEM for a genuine allocation failure.
2325          *
2326          * We use ENOSPC in our driver to mean that we have run out of aperture
2327          * space and so want to translate the error from shmemfs back to our
2328          * usual understanding of ENOMEM.
2329          */
2330         if (ret == -ENOSPC)
2331                 ret = -ENOMEM;
2332
2333         return ret;
2334 }
2335
2336 /* Ensure that the associated pages are gathered from the backing storage
2337  * and pinned into our object. i915_gem_object_get_pages() may be called
2338  * multiple times before they are released by a single call to
2339  * i915_gem_object_put_pages() - once the pages are no longer referenced
2340  * either as a result of memory pressure (reaping pages under the shrinker)
2341  * or as the object is itself released.
2342  */
2343 int
2344 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2345 {
2346         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2347         const struct drm_i915_gem_object_ops *ops = obj->ops;
2348         int ret;
2349
2350         if (obj->pages)
2351                 return 0;
2352
2353         if (obj->madv != I915_MADV_WILLNEED) {
2354                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2355                 return -EFAULT;
2356         }
2357
2358         BUG_ON(obj->pages_pin_count);
2359
2360         ret = ops->get_pages(obj);
2361         if (ret)
2362                 return ret;
2363
2364         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2365
2366         obj->get_page.sg = obj->pages->sgl;
2367         obj->get_page.last = 0;
2368
2369         return 0;
2370 }
2371
2372 /* The 'mapping' part of i915_gem_object_pin_map() below */
2373 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2374                                  enum i915_map_type type)
2375 {
2376         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2377         struct sg_table *sgt = obj->pages;
2378         struct sgt_iter sgt_iter;
2379         struct page *page;
2380         struct page *stack_pages[32];
2381         struct page **pages = stack_pages;
2382         unsigned long i = 0;
2383         pgprot_t pgprot;
2384         void *addr;
2385
2386         /* A single page can always be kmapped */
2387         if (n_pages == 1 && type == I915_MAP_WB)
2388                 return kmap(sg_page(sgt->sgl));
2389
2390         if (n_pages > ARRAY_SIZE(stack_pages)) {
2391                 /* Too big for stack -- allocate temporary array instead */
2392                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2393                 if (!pages)
2394                         return NULL;
2395         }
2396
2397         for_each_sgt_page(page, sgt_iter, sgt)
2398                 pages[i++] = page;
2399
2400         /* Check that we have the expected number of pages */
2401         GEM_BUG_ON(i != n_pages);
2402
2403         switch (type) {
2404         case I915_MAP_WB:
2405                 pgprot = PAGE_KERNEL;
2406                 break;
2407         case I915_MAP_WC:
2408                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2409                 break;
2410         }
2411         addr = vmap(pages, n_pages, 0, pgprot);
2412
2413         if (pages != stack_pages)
2414                 drm_free_large(pages);
2415
2416         return addr;
2417 }
2418
2419 /* get, pin, and map the pages of the object into kernel space */
2420 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2421                               enum i915_map_type type)
2422 {
2423         enum i915_map_type has_type;
2424         bool pinned;
2425         void *ptr;
2426         int ret;
2427
2428         lockdep_assert_held(&obj->base.dev->struct_mutex);
2429         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2430
2431         ret = i915_gem_object_get_pages(obj);
2432         if (ret)
2433                 return ERR_PTR(ret);
2434
2435         i915_gem_object_pin_pages(obj);
2436         pinned = obj->pages_pin_count > 1;
2437
2438         ptr = ptr_unpack_bits(obj->mapping, has_type);
2439         if (ptr && has_type != type) {
2440                 if (pinned) {
2441                         ret = -EBUSY;
2442                         goto err;
2443                 }
2444
2445                 if (is_vmalloc_addr(ptr))
2446                         vunmap(ptr);
2447                 else
2448                         kunmap(kmap_to_page(ptr));
2449
2450                 ptr = obj->mapping = NULL;
2451         }
2452
2453         if (!ptr) {
2454                 ptr = i915_gem_object_map(obj, type);
2455                 if (!ptr) {
2456                         ret = -ENOMEM;
2457                         goto err;
2458                 }
2459
2460                 obj->mapping = ptr_pack_bits(ptr, type);
2461         }
2462
2463         return ptr;
2464
2465 err:
2466         i915_gem_object_unpin_pages(obj);
2467         return ERR_PTR(ret);
2468 }
2469
2470 static void
2471 i915_gem_object_retire__write(struct i915_gem_active *active,
2472                               struct drm_i915_gem_request *request)
2473 {
2474         struct drm_i915_gem_object *obj =
2475                 container_of(active, struct drm_i915_gem_object, last_write);
2476
2477         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2478 }
2479
2480 static void
2481 i915_gem_object_retire__read(struct i915_gem_active *active,
2482                              struct drm_i915_gem_request *request)
2483 {
2484         int idx = request->engine->id;
2485         struct drm_i915_gem_object *obj =
2486                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2487
2488         GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2489
2490         i915_gem_object_clear_active(obj, idx);
2491         if (i915_gem_object_is_active(obj))
2492                 return;
2493
2494         /* Bump our place on the bound list to keep it roughly in LRU order
2495          * so that we don't steal from recently used but inactive objects
2496          * (unless we are forced to ofc!)
2497          */
2498         if (obj->bind_count)
2499                 list_move_tail(&obj->global_list,
2500                                &request->i915->mm.bound_list);
2501
2502         i915_gem_object_put(obj);
2503 }
2504
2505 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2506 {
2507         unsigned long elapsed;
2508
2509         if (ctx->hang_stats.banned)
2510                 return true;
2511
2512         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2513         if (ctx->hang_stats.ban_period_seconds &&
2514             elapsed <= ctx->hang_stats.ban_period_seconds) {
2515                 DRM_DEBUG("context hanging too fast, banning!\n");
2516                 return true;
2517         }
2518
2519         return false;
2520 }
2521
2522 static void i915_set_reset_status(struct i915_gem_context *ctx,
2523                                   const bool guilty)
2524 {
2525         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2526
2527         if (guilty) {
2528                 hs->banned = i915_context_is_banned(ctx);
2529                 hs->batch_active++;
2530                 hs->guilty_ts = get_seconds();
2531         } else {
2532                 hs->batch_pending++;
2533         }
2534 }
2535
2536 struct drm_i915_gem_request *
2537 i915_gem_find_active_request(struct intel_engine_cs *engine)
2538 {
2539         struct drm_i915_gem_request *request;
2540
2541         /* We are called by the error capture and reset at a random
2542          * point in time. In particular, note that neither is crucially
2543          * ordered with an interrupt. After a hang, the GPU is dead and we
2544          * assume that no more writes can happen (we waited long enough for
2545          * all writes that were in transaction to be flushed) - adding an
2546          * extra delay for a recent interrupt is pointless. Hence, we do
2547          * not need an engine->irq_seqno_barrier() before the seqno reads.
2548          */
2549         list_for_each_entry(request, &engine->request_list, link) {
2550                 if (i915_gem_request_completed(request))
2551                         continue;
2552
2553                 if (!i915_sw_fence_done(&request->submit))
2554                         break;
2555
2556                 return request;
2557         }
2558
2559         return NULL;
2560 }
2561
2562 static void reset_request(struct drm_i915_gem_request *request)
2563 {
2564         void *vaddr = request->ring->vaddr;
2565         u32 head;
2566
2567         /* As this request likely depends on state from the lost
2568          * context, clear out all the user operations leaving the
2569          * breadcrumb at the end (so we get the fence notifications).
2570          */
2571         head = request->head;
2572         if (request->postfix < head) {
2573                 memset(vaddr + head, 0, request->ring->size - head);
2574                 head = 0;
2575         }
2576         memset(vaddr + head, 0, request->postfix - head);
2577 }
2578
2579 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2580 {
2581         struct drm_i915_gem_request *request;
2582         struct i915_gem_context *incomplete_ctx;
2583         bool ring_hung;
2584
2585         /* Ensure irq handler finishes, and not run again. */
2586         tasklet_kill(&engine->irq_tasklet);
2587         if (engine->irq_seqno_barrier)
2588                 engine->irq_seqno_barrier(engine);
2589
2590         request = i915_gem_find_active_request(engine);
2591         if (!request)
2592                 return;
2593
2594         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2595         i915_set_reset_status(request->ctx, ring_hung);
2596         if (!ring_hung)
2597                 return;
2598
2599         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2600                          engine->name, request->fence.seqno);
2601
2602         /* Setup the CS to resume from the breadcrumb of the hung request */
2603         engine->reset_hw(engine, request);
2604
2605         /* Users of the default context do not rely on logical state
2606          * preserved between batches. They have to emit full state on
2607          * every batch and so it is safe to execute queued requests following
2608          * the hang.
2609          *
2610          * Other contexts preserve state, now corrupt. We want to skip all
2611          * queued requests that reference the corrupt context.
2612          */
2613         incomplete_ctx = request->ctx;
2614         if (i915_gem_context_is_default(incomplete_ctx))
2615                 return;
2616
2617         list_for_each_entry_continue(request, &engine->request_list, link)
2618                 if (request->ctx == incomplete_ctx)
2619                         reset_request(request);
2620 }
2621
2622 void i915_gem_reset(struct drm_i915_private *dev_priv)
2623 {
2624         struct intel_engine_cs *engine;
2625
2626         i915_gem_retire_requests(dev_priv);
2627
2628         for_each_engine(engine, dev_priv)
2629                 i915_gem_reset_engine(engine);
2630
2631         i915_gem_restore_fences(&dev_priv->drm);
2632
2633         if (dev_priv->gt.awake) {
2634                 intel_sanitize_gt_powersave(dev_priv);
2635                 intel_enable_gt_powersave(dev_priv);
2636                 if (INTEL_GEN(dev_priv) >= 6)
2637                         gen6_rps_busy(dev_priv);
2638         }
2639 }
2640
2641 static void nop_submit_request(struct drm_i915_gem_request *request)
2642 {
2643 }
2644
2645 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2646 {
2647         engine->submit_request = nop_submit_request;
2648
2649         /* Mark all pending requests as complete so that any concurrent
2650          * (lockless) lookup doesn't try and wait upon the request as we
2651          * reset it.
2652          */
2653         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2654
2655         /*
2656          * Clear the execlists queue up before freeing the requests, as those
2657          * are the ones that keep the context and ringbuffer backing objects
2658          * pinned in place.
2659          */
2660
2661         if (i915.enable_execlists) {
2662                 spin_lock(&engine->execlist_lock);
2663                 INIT_LIST_HEAD(&engine->execlist_queue);
2664                 i915_gem_request_put(engine->execlist_port[0].request);
2665                 i915_gem_request_put(engine->execlist_port[1].request);
2666                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2667                 spin_unlock(&engine->execlist_lock);
2668         }
2669
2670         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2671 }
2672
2673 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2674 {
2675         struct intel_engine_cs *engine;
2676
2677         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2678         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2679
2680         i915_gem_context_lost(dev_priv);
2681         for_each_engine(engine, dev_priv)
2682                 i915_gem_cleanup_engine(engine);
2683         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2684
2685         i915_gem_retire_requests(dev_priv);
2686 }
2687
2688 static void
2689 i915_gem_retire_work_handler(struct work_struct *work)
2690 {
2691         struct drm_i915_private *dev_priv =
2692                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2693         struct drm_device *dev = &dev_priv->drm;
2694
2695         /* Come back later if the device is busy... */
2696         if (mutex_trylock(&dev->struct_mutex)) {
2697                 i915_gem_retire_requests(dev_priv);
2698                 mutex_unlock(&dev->struct_mutex);
2699         }
2700
2701         /* Keep the retire handler running until we are finally idle.
2702          * We do not need to do this test under locking as in the worst-case
2703          * we queue the retire worker once too often.
2704          */
2705         if (READ_ONCE(dev_priv->gt.awake)) {
2706                 i915_queue_hangcheck(dev_priv);
2707                 queue_delayed_work(dev_priv->wq,
2708                                    &dev_priv->gt.retire_work,
2709                                    round_jiffies_up_relative(HZ));
2710         }
2711 }
2712
2713 static void
2714 i915_gem_idle_work_handler(struct work_struct *work)
2715 {
2716         struct drm_i915_private *dev_priv =
2717                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2718         struct drm_device *dev = &dev_priv->drm;
2719         struct intel_engine_cs *engine;
2720         bool rearm_hangcheck;
2721
2722         if (!READ_ONCE(dev_priv->gt.awake))
2723                 return;
2724
2725         if (READ_ONCE(dev_priv->gt.active_engines))
2726                 return;
2727
2728         rearm_hangcheck =
2729                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2730
2731         if (!mutex_trylock(&dev->struct_mutex)) {
2732                 /* Currently busy, come back later */
2733                 mod_delayed_work(dev_priv->wq,
2734                                  &dev_priv->gt.idle_work,
2735                                  msecs_to_jiffies(50));
2736                 goto out_rearm;
2737         }
2738
2739         if (dev_priv->gt.active_engines)
2740                 goto out_unlock;
2741
2742         for_each_engine(engine, dev_priv)
2743                 i915_gem_batch_pool_fini(&engine->batch_pool);
2744
2745         GEM_BUG_ON(!dev_priv->gt.awake);
2746         dev_priv->gt.awake = false;
2747         rearm_hangcheck = false;
2748
2749         if (INTEL_GEN(dev_priv) >= 6)
2750                 gen6_rps_idle(dev_priv);
2751         intel_runtime_pm_put(dev_priv);
2752 out_unlock:
2753         mutex_unlock(&dev->struct_mutex);
2754
2755 out_rearm:
2756         if (rearm_hangcheck) {
2757                 GEM_BUG_ON(!dev_priv->gt.awake);
2758                 i915_queue_hangcheck(dev_priv);
2759         }
2760 }
2761
2762 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2763 {
2764         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2765         struct drm_i915_file_private *fpriv = file->driver_priv;
2766         struct i915_vma *vma, *vn;
2767
2768         mutex_lock(&obj->base.dev->struct_mutex);
2769         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2770                 if (vma->vm->file == fpriv)
2771                         i915_vma_close(vma);
2772         mutex_unlock(&obj->base.dev->struct_mutex);
2773 }
2774
2775 /**
2776  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2777  * @dev: drm device pointer
2778  * @data: ioctl data blob
2779  * @file: drm file pointer
2780  *
2781  * Returns 0 if successful, else an error is returned with the remaining time in
2782  * the timeout parameter.
2783  *  -ETIME: object is still busy after timeout
2784  *  -ERESTARTSYS: signal interrupted the wait
2785  *  -ENONENT: object doesn't exist
2786  * Also possible, but rare:
2787  *  -EAGAIN: GPU wedged
2788  *  -ENOMEM: damn
2789  *  -ENODEV: Internal IRQ fail
2790  *  -E?: The add request failed
2791  *
2792  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2793  * non-zero timeout parameter the wait ioctl will wait for the given number of
2794  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2795  * without holding struct_mutex the object may become re-busied before this
2796  * function completes. A similar but shorter * race condition exists in the busy
2797  * ioctl
2798  */
2799 int
2800 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2801 {
2802         struct drm_i915_gem_wait *args = data;
2803         struct intel_rps_client *rps = to_rps_client(file);
2804         struct drm_i915_gem_object *obj;
2805         unsigned long active;
2806         int idx, ret = 0;
2807
2808         if (args->flags != 0)
2809                 return -EINVAL;
2810
2811         obj = i915_gem_object_lookup(file, args->bo_handle);
2812         if (!obj)
2813                 return -ENOENT;
2814
2815         active = __I915_BO_ACTIVE(obj);
2816         for_each_active(active, idx) {
2817                 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2818                 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2819                                                     I915_WAIT_INTERRUPTIBLE,
2820                                                     timeout, rps);
2821                 if (ret)
2822                         break;
2823         }
2824
2825         i915_gem_object_put_unlocked(obj);
2826         return ret;
2827 }
2828
2829 static void __i915_vma_iounmap(struct i915_vma *vma)
2830 {
2831         GEM_BUG_ON(i915_vma_is_pinned(vma));
2832
2833         if (vma->iomap == NULL)
2834                 return;
2835
2836         io_mapping_unmap(vma->iomap);
2837         vma->iomap = NULL;
2838 }
2839
2840 int i915_vma_unbind(struct i915_vma *vma)
2841 {
2842         struct drm_i915_gem_object *obj = vma->obj;
2843         unsigned long active;
2844         int ret;
2845
2846         /* First wait upon any activity as retiring the request may
2847          * have side-effects such as unpinning or even unbinding this vma.
2848          */
2849         active = i915_vma_get_active(vma);
2850         if (active) {
2851                 int idx;
2852
2853                 /* When a closed VMA is retired, it is unbound - eek.
2854                  * In order to prevent it from being recursively closed,
2855                  * take a pin on the vma so that the second unbind is
2856                  * aborted.
2857                  */
2858                 __i915_vma_pin(vma);
2859
2860                 for_each_active(active, idx) {
2861                         ret = i915_gem_active_retire(&vma->last_read[idx],
2862                                                    &vma->vm->dev->struct_mutex);
2863                         if (ret)
2864                                 break;
2865                 }
2866
2867                 __i915_vma_unpin(vma);
2868                 if (ret)
2869                         return ret;
2870
2871                 GEM_BUG_ON(i915_vma_is_active(vma));
2872         }
2873
2874         if (i915_vma_is_pinned(vma))
2875                 return -EBUSY;
2876
2877         if (!drm_mm_node_allocated(&vma->node))
2878                 goto destroy;
2879
2880         GEM_BUG_ON(obj->bind_count == 0);
2881         GEM_BUG_ON(!obj->pages);
2882
2883         if (i915_vma_is_map_and_fenceable(vma)) {
2884                 /* release the fence reg _after_ flushing */
2885                 ret = i915_vma_put_fence(vma);
2886                 if (ret)
2887                         return ret;
2888
2889                 /* Force a pagefault for domain tracking on next user access */
2890                 i915_gem_release_mmap(obj);
2891
2892                 __i915_vma_iounmap(vma);
2893                 vma->flags &= ~I915_VMA_CAN_FENCE;
2894         }
2895
2896         if (likely(!vma->vm->closed)) {
2897                 trace_i915_vma_unbind(vma);
2898                 vma->vm->unbind_vma(vma);
2899         }
2900         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2901
2902         drm_mm_remove_node(&vma->node);
2903         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2904
2905         if (vma->pages != obj->pages) {
2906                 GEM_BUG_ON(!vma->pages);
2907                 sg_free_table(vma->pages);
2908                 kfree(vma->pages);
2909         }
2910         vma->pages = NULL;
2911
2912         /* Since the unbound list is global, only move to that list if
2913          * no more VMAs exist. */
2914         if (--obj->bind_count == 0)
2915                 list_move_tail(&obj->global_list,
2916                                &to_i915(obj->base.dev)->mm.unbound_list);
2917
2918         /* And finally now the object is completely decoupled from this vma,
2919          * we can drop its hold on the backing storage and allow it to be
2920          * reaped by the shrinker.
2921          */
2922         i915_gem_object_unpin_pages(obj);
2923
2924 destroy:
2925         if (unlikely(i915_vma_is_closed(vma)))
2926                 i915_vma_destroy(vma);
2927
2928         return 0;
2929 }
2930
2931 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2932                            unsigned int flags)
2933 {
2934         struct intel_engine_cs *engine;
2935         int ret;
2936
2937         for_each_engine(engine, dev_priv) {
2938                 if (engine->last_context == NULL)
2939                         continue;
2940
2941                 ret = intel_engine_idle(engine, flags);
2942                 if (ret)
2943                         return ret;
2944         }
2945
2946         return 0;
2947 }
2948
2949 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2950                                      unsigned long cache_level)
2951 {
2952         struct drm_mm_node *gtt_space = &vma->node;
2953         struct drm_mm_node *other;
2954
2955         /*
2956          * On some machines we have to be careful when putting differing types
2957          * of snoopable memory together to avoid the prefetcher crossing memory
2958          * domains and dying. During vm initialisation, we decide whether or not
2959          * these constraints apply and set the drm_mm.color_adjust
2960          * appropriately.
2961          */
2962         if (vma->vm->mm.color_adjust == NULL)
2963                 return true;
2964
2965         if (!drm_mm_node_allocated(gtt_space))
2966                 return true;
2967
2968         if (list_empty(&gtt_space->node_list))
2969                 return true;
2970
2971         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2972         if (other->allocated && !other->hole_follows && other->color != cache_level)
2973                 return false;
2974
2975         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2976         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2977                 return false;
2978
2979         return true;
2980 }
2981
2982 /**
2983  * i915_vma_insert - finds a slot for the vma in its address space
2984  * @vma: the vma
2985  * @size: requested size in bytes (can be larger than the VMA)
2986  * @alignment: required alignment
2987  * @flags: mask of PIN_* flags to use
2988  *
2989  * First we try to allocate some free space that meets the requirements for
2990  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2991  * preferrably the oldest idle entry to make room for the new VMA.
2992  *
2993  * Returns:
2994  * 0 on success, negative error code otherwise.
2995  */
2996 static int
2997 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2998 {
2999         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3000         struct drm_i915_gem_object *obj = vma->obj;
3001         u64 start, end;
3002         int ret;
3003
3004         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3005         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3006
3007         size = max(size, vma->size);
3008         if (flags & PIN_MAPPABLE)
3009                 size = i915_gem_get_ggtt_size(dev_priv, size,
3010                                               i915_gem_object_get_tiling(obj));
3011
3012         alignment = max(max(alignment, vma->display_alignment),
3013                         i915_gem_get_ggtt_alignment(dev_priv, size,
3014                                                     i915_gem_object_get_tiling(obj),
3015                                                     flags & PIN_MAPPABLE));
3016
3017         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3018
3019         end = vma->vm->total;
3020         if (flags & PIN_MAPPABLE)
3021                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3022         if (flags & PIN_ZONE_4G)
3023                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3024
3025         /* If binding the object/GGTT view requires more space than the entire
3026          * aperture has, reject it early before evicting everything in a vain
3027          * attempt to find space.
3028          */
3029         if (size > end) {
3030                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3031                           size, obj->base.size,
3032                           flags & PIN_MAPPABLE ? "mappable" : "total",
3033                           end);
3034                 return -E2BIG;
3035         }
3036
3037         ret = i915_gem_object_get_pages(obj);
3038         if (ret)
3039                 return ret;
3040
3041         i915_gem_object_pin_pages(obj);
3042
3043         if (flags & PIN_OFFSET_FIXED) {
3044                 u64 offset = flags & PIN_OFFSET_MASK;
3045                 if (offset & (alignment - 1) || offset > end - size) {
3046                         ret = -EINVAL;
3047                         goto err_unpin;
3048                 }
3049
3050                 vma->node.start = offset;
3051                 vma->node.size = size;
3052                 vma->node.color = obj->cache_level;
3053                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3054                 if (ret) {
3055                         ret = i915_gem_evict_for_vma(vma);
3056                         if (ret == 0)
3057                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3058                         if (ret)
3059                                 goto err_unpin;
3060                 }
3061         } else {
3062                 u32 search_flag, alloc_flag;
3063
3064                 if (flags & PIN_HIGH) {
3065                         search_flag = DRM_MM_SEARCH_BELOW;
3066                         alloc_flag = DRM_MM_CREATE_TOP;
3067                 } else {
3068                         search_flag = DRM_MM_SEARCH_DEFAULT;
3069                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3070                 }
3071
3072                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3073                  * so we know that we always have a minimum alignment of 4096.
3074                  * The drm_mm range manager is optimised to return results
3075                  * with zero alignment, so where possible use the optimal
3076                  * path.
3077                  */
3078                 if (alignment <= 4096)
3079                         alignment = 0;
3080
3081 search_free:
3082                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3083                                                           &vma->node,
3084                                                           size, alignment,
3085                                                           obj->cache_level,
3086                                                           start, end,
3087                                                           search_flag,
3088                                                           alloc_flag);
3089                 if (ret) {
3090                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3091                                                        obj->cache_level,
3092                                                        start, end,
3093                                                        flags);
3094                         if (ret == 0)
3095                                 goto search_free;
3096
3097                         goto err_unpin;
3098                 }
3099         }
3100         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3101
3102         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3103         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3104         obj->bind_count++;
3105
3106         return 0;
3107
3108 err_unpin:
3109         i915_gem_object_unpin_pages(obj);
3110         return ret;
3111 }
3112
3113 bool
3114 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3115                         bool force)
3116 {
3117         /* If we don't have a page list set up, then we're not pinned
3118          * to GPU, and we can ignore the cache flush because it'll happen
3119          * again at bind time.
3120          */
3121         if (obj->pages == NULL)
3122                 return false;
3123
3124         /*
3125          * Stolen memory is always coherent with the GPU as it is explicitly
3126          * marked as wc by the system, or the system is cache-coherent.
3127          */
3128         if (obj->stolen || obj->phys_handle)
3129                 return false;
3130
3131         /* If the GPU is snooping the contents of the CPU cache,
3132          * we do not need to manually clear the CPU cache lines.  However,
3133          * the caches are only snooped when the render cache is
3134          * flushed/invalidated.  As we always have to emit invalidations
3135          * and flushes when moving into and out of the RENDER domain, correct
3136          * snooping behaviour occurs naturally as the result of our domain
3137          * tracking.
3138          */
3139         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3140                 obj->cache_dirty = true;
3141                 return false;
3142         }
3143
3144         trace_i915_gem_object_clflush(obj);
3145         drm_clflush_sg(obj->pages);
3146         obj->cache_dirty = false;
3147
3148         return true;
3149 }
3150
3151 /** Flushes the GTT write domain for the object if it's dirty. */
3152 static void
3153 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3154 {
3155         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3156
3157         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3158                 return;
3159
3160         /* No actual flushing is required for the GTT write domain.  Writes
3161          * to it "immediately" go to main memory as far as we know, so there's
3162          * no chipset flush.  It also doesn't land in render cache.
3163          *
3164          * However, we do have to enforce the order so that all writes through
3165          * the GTT land before any writes to the device, such as updates to
3166          * the GATT itself.
3167          *
3168          * We also have to wait a bit for the writes to land from the GTT.
3169          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3170          * timing. This issue has only been observed when switching quickly
3171          * between GTT writes and CPU reads from inside the kernel on recent hw,
3172          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3173          * system agents we cannot reproduce this behaviour).
3174          */
3175         wmb();
3176         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3177                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3178
3179         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3180
3181         obj->base.write_domain = 0;
3182         trace_i915_gem_object_change_domain(obj,
3183                                             obj->base.read_domains,
3184                                             I915_GEM_DOMAIN_GTT);
3185 }
3186
3187 /** Flushes the CPU write domain for the object if it's dirty. */
3188 static void
3189 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3190 {
3191         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3192                 return;
3193
3194         if (i915_gem_clflush_object(obj, obj->pin_display))
3195                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3196
3197         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3198
3199         obj->base.write_domain = 0;
3200         trace_i915_gem_object_change_domain(obj,
3201                                             obj->base.read_domains,
3202                                             I915_GEM_DOMAIN_CPU);
3203 }
3204
3205 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3206 {
3207         struct i915_vma *vma;
3208
3209         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3210                 if (!i915_vma_is_ggtt(vma))
3211                         continue;
3212
3213                 if (i915_vma_is_active(vma))
3214                         continue;
3215
3216                 if (!drm_mm_node_allocated(&vma->node))
3217                         continue;
3218
3219                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3220         }
3221 }
3222
3223 /**
3224  * Moves a single object to the GTT read, and possibly write domain.
3225  * @obj: object to act on
3226  * @write: ask for write access or read only
3227  *
3228  * This function returns when the move is complete, including waiting on
3229  * flushes to occur.
3230  */
3231 int
3232 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3233 {
3234         uint32_t old_write_domain, old_read_domains;
3235         int ret;
3236
3237         ret = i915_gem_object_wait_rendering(obj, !write);
3238         if (ret)
3239                 return ret;
3240
3241         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3242                 return 0;
3243
3244         /* Flush and acquire obj->pages so that we are coherent through
3245          * direct access in memory with previous cached writes through
3246          * shmemfs and that our cache domain tracking remains valid.
3247          * For example, if the obj->filp was moved to swap without us
3248          * being notified and releasing the pages, we would mistakenly
3249          * continue to assume that the obj remained out of the CPU cached
3250          * domain.
3251          */
3252         ret = i915_gem_object_get_pages(obj);
3253         if (ret)
3254                 return ret;
3255
3256         i915_gem_object_flush_cpu_write_domain(obj);
3257
3258         /* Serialise direct access to this object with the barriers for
3259          * coherent writes from the GPU, by effectively invalidating the
3260          * GTT domain upon first access.
3261          */
3262         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3263                 mb();
3264
3265         old_write_domain = obj->base.write_domain;
3266         old_read_domains = obj->base.read_domains;
3267
3268         /* It should now be out of any other write domains, and we can update
3269          * the domain values for our changes.
3270          */
3271         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3272         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3273         if (write) {
3274                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3275                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3276                 obj->dirty = 1;
3277         }
3278
3279         trace_i915_gem_object_change_domain(obj,
3280                                             old_read_domains,
3281                                             old_write_domain);
3282
3283         /* And bump the LRU for this access */
3284         i915_gem_object_bump_inactive_ggtt(obj);
3285
3286         return 0;
3287 }
3288
3289 /**
3290  * Changes the cache-level of an object across all VMA.
3291  * @obj: object to act on
3292  * @cache_level: new cache level to set for the object
3293  *
3294  * After this function returns, the object will be in the new cache-level
3295  * across all GTT and the contents of the backing storage will be coherent,
3296  * with respect to the new cache-level. In order to keep the backing storage
3297  * coherent for all users, we only allow a single cache level to be set
3298  * globally on the object and prevent it from being changed whilst the
3299  * hardware is reading from the object. That is if the object is currently
3300  * on the scanout it will be set to uncached (or equivalent display
3301  * cache coherency) and all non-MOCS GPU access will also be uncached so
3302  * that all direct access to the scanout remains coherent.
3303  */
3304 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3305                                     enum i915_cache_level cache_level)
3306 {
3307         struct i915_vma *vma;
3308         int ret = 0;
3309
3310         if (obj->cache_level == cache_level)
3311                 goto out;
3312
3313         /* Inspect the list of currently bound VMA and unbind any that would
3314          * be invalid given the new cache-level. This is principally to
3315          * catch the issue of the CS prefetch crossing page boundaries and
3316          * reading an invalid PTE on older architectures.
3317          */
3318 restart:
3319         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3320                 if (!drm_mm_node_allocated(&vma->node))
3321                         continue;
3322
3323                 if (i915_vma_is_pinned(vma)) {
3324                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3325                         return -EBUSY;
3326                 }
3327
3328                 if (i915_gem_valid_gtt_space(vma, cache_level))
3329                         continue;
3330
3331                 ret = i915_vma_unbind(vma);
3332                 if (ret)
3333                         return ret;
3334
3335                 /* As unbinding may affect other elements in the
3336                  * obj->vma_list (due to side-effects from retiring
3337                  * an active vma), play safe and restart the iterator.
3338                  */
3339                 goto restart;
3340         }
3341
3342         /* We can reuse the existing drm_mm nodes but need to change the
3343          * cache-level on the PTE. We could simply unbind them all and
3344          * rebind with the correct cache-level on next use. However since
3345          * we already have a valid slot, dma mapping, pages etc, we may as
3346          * rewrite the PTE in the belief that doing so tramples upon less
3347          * state and so involves less work.
3348          */
3349         if (obj->bind_count) {
3350                 /* Before we change the PTE, the GPU must not be accessing it.
3351                  * If we wait upon the object, we know that all the bound
3352                  * VMA are no longer active.
3353                  */
3354                 ret = i915_gem_object_wait_rendering(obj, false);
3355                 if (ret)
3356                         return ret;
3357
3358                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3359                         /* Access to snoopable pages through the GTT is
3360                          * incoherent and on some machines causes a hard
3361                          * lockup. Relinquish the CPU mmaping to force
3362                          * userspace to refault in the pages and we can
3363                          * then double check if the GTT mapping is still
3364                          * valid for that pointer access.
3365                          */
3366                         i915_gem_release_mmap(obj);
3367
3368                         /* As we no longer need a fence for GTT access,
3369                          * we can relinquish it now (and so prevent having
3370                          * to steal a fence from someone else on the next
3371                          * fence request). Note GPU activity would have
3372                          * dropped the fence as all snoopable access is
3373                          * supposed to be linear.
3374                          */
3375                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3376                                 ret = i915_vma_put_fence(vma);
3377                                 if (ret)
3378                                         return ret;
3379                         }
3380                 } else {
3381                         /* We either have incoherent backing store and
3382                          * so no GTT access or the architecture is fully
3383                          * coherent. In such cases, existing GTT mmaps
3384                          * ignore the cache bit in the PTE and we can
3385                          * rewrite it without confusing the GPU or having
3386                          * to force userspace to fault back in its mmaps.
3387                          */
3388                 }
3389
3390                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3391                         if (!drm_mm_node_allocated(&vma->node))
3392                                 continue;
3393
3394                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3395                         if (ret)
3396                                 return ret;
3397                 }
3398         }
3399
3400         list_for_each_entry(vma, &obj->vma_list, obj_link)
3401                 vma->node.color = cache_level;
3402         obj->cache_level = cache_level;
3403
3404 out:
3405         /* Flush the dirty CPU caches to the backing storage so that the
3406          * object is now coherent at its new cache level (with respect
3407          * to the access domain).
3408          */
3409         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3410                 if (i915_gem_clflush_object(obj, true))
3411                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3412         }
3413
3414         return 0;
3415 }
3416
3417 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3418                                struct drm_file *file)
3419 {
3420         struct drm_i915_gem_caching *args = data;
3421         struct drm_i915_gem_object *obj;
3422
3423         obj = i915_gem_object_lookup(file, args->handle);
3424         if (!obj)
3425                 return -ENOENT;
3426
3427         switch (obj->cache_level) {
3428         case I915_CACHE_LLC:
3429         case I915_CACHE_L3_LLC:
3430                 args->caching = I915_CACHING_CACHED;
3431                 break;
3432
3433         case I915_CACHE_WT:
3434                 args->caching = I915_CACHING_DISPLAY;
3435                 break;
3436
3437         default:
3438                 args->caching = I915_CACHING_NONE;
3439                 break;
3440         }
3441
3442         i915_gem_object_put_unlocked(obj);
3443         return 0;
3444 }
3445
3446 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3447                                struct drm_file *file)
3448 {
3449         struct drm_i915_private *dev_priv = to_i915(dev);
3450         struct drm_i915_gem_caching *args = data;
3451         struct drm_i915_gem_object *obj;
3452         enum i915_cache_level level;
3453         int ret;
3454
3455         switch (args->caching) {
3456         case I915_CACHING_NONE:
3457                 level = I915_CACHE_NONE;
3458                 break;
3459         case I915_CACHING_CACHED:
3460                 /*
3461                  * Due to a HW issue on BXT A stepping, GPU stores via a
3462                  * snooped mapping may leave stale data in a corresponding CPU
3463                  * cacheline, whereas normally such cachelines would get
3464                  * invalidated.
3465                  */
3466                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3467                         return -ENODEV;
3468
3469                 level = I915_CACHE_LLC;
3470                 break;
3471         case I915_CACHING_DISPLAY:
3472                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3473                 break;
3474         default:
3475                 return -EINVAL;
3476         }
3477
3478         intel_runtime_pm_get(dev_priv);
3479
3480         ret = i915_mutex_lock_interruptible(dev);
3481         if (ret)
3482                 goto rpm_put;
3483
3484         obj = i915_gem_object_lookup(file, args->handle);
3485         if (!obj) {
3486                 ret = -ENOENT;
3487                 goto unlock;
3488         }
3489
3490         ret = i915_gem_object_set_cache_level(obj, level);
3491
3492         i915_gem_object_put(obj);
3493 unlock:
3494         mutex_unlock(&dev->struct_mutex);
3495 rpm_put:
3496         intel_runtime_pm_put(dev_priv);
3497
3498         return ret;
3499 }
3500
3501 /*
3502  * Prepare buffer for display plane (scanout, cursors, etc).
3503  * Can be called from an uninterruptible phase (modesetting) and allows
3504  * any flushes to be pipelined (for pageflips).
3505  */
3506 struct i915_vma *
3507 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3508                                      u32 alignment,
3509                                      const struct i915_ggtt_view *view)
3510 {
3511         struct i915_vma *vma;
3512         u32 old_read_domains, old_write_domain;
3513         int ret;
3514
3515         /* Mark the pin_display early so that we account for the
3516          * display coherency whilst setting up the cache domains.
3517          */
3518         obj->pin_display++;
3519
3520         /* The display engine is not coherent with the LLC cache on gen6.  As
3521          * a result, we make sure that the pinning that is about to occur is
3522          * done with uncached PTEs. This is lowest common denominator for all
3523          * chipsets.
3524          *
3525          * However for gen6+, we could do better by using the GFDT bit instead
3526          * of uncaching, which would allow us to flush all the LLC-cached data
3527          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3528          */
3529         ret = i915_gem_object_set_cache_level(obj,
3530                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3531         if (ret) {
3532                 vma = ERR_PTR(ret);
3533                 goto err_unpin_display;
3534         }
3535
3536         /* As the user may map the buffer once pinned in the display plane
3537          * (e.g. libkms for the bootup splash), we have to ensure that we
3538          * always use map_and_fenceable for all scanout buffers. However,
3539          * it may simply be too big to fit into mappable, in which case
3540          * put it anyway and hope that userspace can cope (but always first
3541          * try to preserve the existing ABI).
3542          */
3543         vma = ERR_PTR(-ENOSPC);
3544         if (view->type == I915_GGTT_VIEW_NORMAL)
3545                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3546                                                PIN_MAPPABLE | PIN_NONBLOCK);
3547         if (IS_ERR(vma)) {
3548                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3549                 unsigned int flags;
3550
3551                 /* Valleyview is definitely limited to scanning out the first
3552                  * 512MiB. Lets presume this behaviour was inherited from the
3553                  * g4x display engine and that all earlier gen are similarly
3554                  * limited. Testing suggests that it is a little more
3555                  * complicated than this. For example, Cherryview appears quite
3556                  * happy to scanout from anywhere within its global aperture.
3557                  */
3558                 flags = 0;
3559                 if (HAS_GMCH_DISPLAY(i915))
3560                         flags = PIN_MAPPABLE;
3561                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3562         }
3563         if (IS_ERR(vma))
3564                 goto err_unpin_display;
3565
3566         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3567
3568         i915_gem_object_flush_cpu_write_domain(obj);
3569
3570         old_write_domain = obj->base.write_domain;
3571         old_read_domains = obj->base.read_domains;
3572
3573         /* It should now be out of any other write domains, and we can update
3574          * the domain values for our changes.
3575          */
3576         obj->base.write_domain = 0;
3577         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3578
3579         trace_i915_gem_object_change_domain(obj,
3580                                             old_read_domains,
3581                                             old_write_domain);
3582
3583         return vma;
3584
3585 err_unpin_display:
3586         obj->pin_display--;
3587         return vma;
3588 }
3589
3590 void
3591 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3592 {
3593         if (WARN_ON(vma->obj->pin_display == 0))
3594                 return;
3595
3596         if (--vma->obj->pin_display == 0)
3597                 vma->display_alignment = 0;
3598
3599         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3600         if (!i915_vma_is_active(vma))
3601                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3602
3603         i915_vma_unpin(vma);
3604 }
3605
3606 /**
3607  * Moves a single object to the CPU read, and possibly write domain.
3608  * @obj: object to act on
3609  * @write: requesting write or read-only access
3610  *
3611  * This function returns when the move is complete, including waiting on
3612  * flushes to occur.
3613  */
3614 int
3615 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3616 {
3617         uint32_t old_write_domain, old_read_domains;
3618         int ret;
3619
3620         ret = i915_gem_object_wait_rendering(obj, !write);
3621         if (ret)
3622                 return ret;
3623
3624         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3625                 return 0;
3626
3627         i915_gem_object_flush_gtt_write_domain(obj);
3628
3629         old_write_domain = obj->base.write_domain;
3630         old_read_domains = obj->base.read_domains;
3631
3632         /* Flush the CPU cache if it's still invalid. */
3633         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3634                 i915_gem_clflush_object(obj, false);
3635
3636                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3637         }
3638
3639         /* It should now be out of any other write domains, and we can update
3640          * the domain values for our changes.
3641          */
3642         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3643
3644         /* If we're writing through the CPU, then the GPU read domains will
3645          * need to be invalidated at next use.
3646          */
3647         if (write) {
3648                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3649                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3650         }
3651
3652         trace_i915_gem_object_change_domain(obj,
3653                                             old_read_domains,
3654                                             old_write_domain);
3655
3656         return 0;
3657 }
3658
3659 /* Throttle our rendering by waiting until the ring has completed our requests
3660  * emitted over 20 msec ago.
3661  *
3662  * Note that if we were to use the current jiffies each time around the loop,
3663  * we wouldn't escape the function with any frames outstanding if the time to
3664  * render a frame was over 20ms.
3665  *
3666  * This should get us reasonable parallelism between CPU and GPU but also
3667  * relatively low latency when blocking on a particular request to finish.
3668  */
3669 static int
3670 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3671 {
3672         struct drm_i915_private *dev_priv = to_i915(dev);
3673         struct drm_i915_file_private *file_priv = file->driver_priv;
3674         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3675         struct drm_i915_gem_request *request, *target = NULL;
3676         int ret;
3677
3678         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3679         if (ret)
3680                 return ret;
3681
3682         /* ABI: return -EIO if already wedged */
3683         if (i915_terminally_wedged(&dev_priv->gpu_error))
3684                 return -EIO;
3685
3686         spin_lock(&file_priv->mm.lock);
3687         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3688                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3689                         break;
3690
3691                 /*
3692                  * Note that the request might not have been submitted yet.
3693                  * In which case emitted_jiffies will be zero.
3694                  */
3695                 if (!request->emitted_jiffies)
3696                         continue;
3697
3698                 target = request;
3699         }
3700         if (target)
3701                 i915_gem_request_get(target);
3702         spin_unlock(&file_priv->mm.lock);
3703
3704         if (target == NULL)
3705                 return 0;
3706
3707         ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3708         i915_gem_request_put(target);
3709
3710         return ret;
3711 }
3712
3713 static bool
3714 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3715 {
3716         if (!drm_mm_node_allocated(&vma->node))
3717                 return false;
3718
3719         if (vma->node.size < size)
3720                 return true;
3721
3722         if (alignment && vma->node.start & (alignment - 1))
3723                 return true;
3724
3725         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3726                 return true;
3727
3728         if (flags & PIN_OFFSET_BIAS &&
3729             vma->node.start < (flags & PIN_OFFSET_MASK))
3730                 return true;
3731
3732         if (flags & PIN_OFFSET_FIXED &&
3733             vma->node.start != (flags & PIN_OFFSET_MASK))
3734                 return true;
3735
3736         return false;
3737 }
3738
3739 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3740 {
3741         struct drm_i915_gem_object *obj = vma->obj;
3742         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3743         bool mappable, fenceable;
3744         u32 fence_size, fence_alignment;
3745
3746         fence_size = i915_gem_get_ggtt_size(dev_priv,
3747                                             vma->size,
3748                                             i915_gem_object_get_tiling(obj));
3749         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3750                                                       vma->size,
3751                                                       i915_gem_object_get_tiling(obj),
3752                                                       true);
3753
3754         fenceable = (vma->node.size == fence_size &&
3755                      (vma->node.start & (fence_alignment - 1)) == 0);
3756
3757         mappable = (vma->node.start + fence_size <=
3758                     dev_priv->ggtt.mappable_end);
3759
3760         /*
3761          * Explicitly disable for rotated VMA since the display does not
3762          * need the fence and the VMA is not accessible to other users.
3763          */
3764         if (mappable && fenceable &&
3765             vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3766                 vma->flags |= I915_VMA_CAN_FENCE;
3767         else
3768                 vma->flags &= ~I915_VMA_CAN_FENCE;
3769 }
3770
3771 int __i915_vma_do_pin(struct i915_vma *vma,
3772                       u64 size, u64 alignment, u64 flags)
3773 {
3774         unsigned int bound = vma->flags;
3775         int ret;
3776
3777         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3778         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3779
3780         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3781                 ret = -EBUSY;
3782                 goto err;
3783         }
3784
3785         if ((bound & I915_VMA_BIND_MASK) == 0) {
3786                 ret = i915_vma_insert(vma, size, alignment, flags);
3787                 if (ret)
3788                         goto err;
3789         }
3790
3791         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3792         if (ret)
3793                 goto err;
3794
3795         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3796                 __i915_vma_set_map_and_fenceable(vma);
3797
3798         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3799         return 0;
3800
3801 err:
3802         __i915_vma_unpin(vma);
3803         return ret;
3804 }
3805
3806 struct i915_vma *
3807 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3808                          const struct i915_ggtt_view *view,
3809                          u64 size,
3810                          u64 alignment,
3811                          u64 flags)
3812 {
3813         struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3814         struct i915_vma *vma;
3815         int ret;
3816
3817         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3818         if (IS_ERR(vma))
3819                 return vma;
3820
3821         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3822                 if (flags & PIN_NONBLOCK &&
3823                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3824                         return ERR_PTR(-ENOSPC);
3825
3826                 WARN(i915_vma_is_pinned(vma),
3827                      "bo is already pinned in ggtt with incorrect alignment:"
3828                      " offset=%08x, req.alignment=%llx,"
3829                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3830                      i915_ggtt_offset(vma), alignment,
3831                      !!(flags & PIN_MAPPABLE),
3832                      i915_vma_is_map_and_fenceable(vma));
3833                 ret = i915_vma_unbind(vma);
3834                 if (ret)
3835                         return ERR_PTR(ret);
3836         }
3837
3838         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3839         if (ret)
3840                 return ERR_PTR(ret);
3841
3842         return vma;
3843 }
3844
3845 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3846 {
3847         /* Note that we could alias engines in the execbuf API, but
3848          * that would be very unwise as it prevents userspace from
3849          * fine control over engine selection. Ahem.
3850          *
3851          * This should be something like EXEC_MAX_ENGINE instead of
3852          * I915_NUM_ENGINES.
3853          */
3854         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3855         return 0x10000 << id;
3856 }
3857
3858 static __always_inline unsigned int __busy_write_id(unsigned int id)
3859 {
3860         /* The uABI guarantees an active writer is also amongst the read
3861          * engines. This would be true if we accessed the activity tracking
3862          * under the lock, but as we perform the lookup of the object and
3863          * its activity locklessly we can not guarantee that the last_write
3864          * being active implies that we have set the same engine flag from
3865          * last_read - hence we always set both read and write busy for
3866          * last_write.
3867          */
3868         return id | __busy_read_flag(id);
3869 }
3870
3871 static __always_inline unsigned int
3872 __busy_set_if_active(const struct i915_gem_active *active,
3873                      unsigned int (*flag)(unsigned int id))
3874 {
3875         struct drm_i915_gem_request *request;
3876
3877         request = rcu_dereference(active->request);
3878         if (!request || i915_gem_request_completed(request))
3879                 return 0;
3880
3881         /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3882          * discussion of how to handle the race correctly, but for reporting
3883          * the busy state we err on the side of potentially reporting the
3884          * wrong engine as being busy (but we guarantee that the result
3885          * is at least self-consistent).
3886          *
3887          * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3888          * whilst we are inspecting it, even under the RCU read lock as we are.
3889          * This means that there is a small window for the engine and/or the
3890          * seqno to have been overwritten. The seqno will always be in the
3891          * future compared to the intended, and so we know that if that
3892          * seqno is idle (on whatever engine) our request is idle and the
3893          * return 0 above is correct.
3894          *
3895          * The issue is that if the engine is switched, it is just as likely
3896          * to report that it is busy (but since the switch happened, we know
3897          * the request should be idle). So there is a small chance that a busy
3898          * result is actually the wrong engine.
3899          *
3900          * So why don't we care?
3901          *
3902          * For starters, the busy ioctl is a heuristic that is by definition
3903          * racy. Even with perfect serialisation in the driver, the hardware
3904          * state is constantly advancing - the state we report to the user
3905          * is stale.
3906          *
3907          * The critical information for the busy-ioctl is whether the object
3908          * is idle as userspace relies on that to detect whether its next
3909          * access will stall, or if it has missed submitting commands to
3910          * the hardware allowing the GPU to stall. We never generate a
3911          * false-positive for idleness, thus busy-ioctl is reliable at the
3912          * most fundamental level, and we maintain the guarantee that a
3913          * busy object left to itself will eventually become idle (and stay
3914          * idle!).
3915          *
3916          * We allow ourselves the leeway of potentially misreporting the busy
3917          * state because that is an optimisation heuristic that is constantly
3918          * in flux. Being quickly able to detect the busy/idle state is much
3919          * more important than accurate logging of exactly which engines were
3920          * busy.
3921          *
3922          * For accuracy in reporting the engine, we could use
3923          *
3924          *      result = 0;
3925          *      request = __i915_gem_active_get_rcu(active);
3926          *      if (request) {
3927          *              if (!i915_gem_request_completed(request))
3928          *                      result = flag(request->engine->exec_id);
3929          *              i915_gem_request_put(request);
3930          *      }
3931          *
3932          * but that still remains susceptible to both hardware and userspace
3933          * races. So we accept making the result of that race slightly worse,
3934          * given the rarity of the race and its low impact on the result.
3935          */
3936         return flag(READ_ONCE(request->engine->exec_id));
3937 }
3938
3939 static __always_inline unsigned int
3940 busy_check_reader(const struct i915_gem_active *active)
3941 {
3942         return __busy_set_if_active(active, __busy_read_flag);
3943 }
3944
3945 static __always_inline unsigned int
3946 busy_check_writer(const struct i915_gem_active *active)
3947 {
3948         return __busy_set_if_active(active, __busy_write_id);
3949 }
3950
3951 int
3952 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3953                     struct drm_file *file)
3954 {
3955         struct drm_i915_gem_busy *args = data;
3956         struct drm_i915_gem_object *obj;
3957         unsigned long active;
3958
3959         obj = i915_gem_object_lookup(file, args->handle);
3960         if (!obj)
3961                 return -ENOENT;
3962
3963         args->busy = 0;
3964         active = __I915_BO_ACTIVE(obj);
3965         if (active) {
3966                 int idx;
3967
3968                 /* Yes, the lookups are intentionally racy.
3969                  *
3970                  * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3971                  * to regard the value as stale and as our ABI guarantees
3972                  * forward progress, we confirm the status of each active
3973                  * request with the hardware.
3974                  *
3975                  * Even though we guard the pointer lookup by RCU, that only
3976                  * guarantees that the pointer and its contents remain
3977                  * dereferencable and does *not* mean that the request we
3978                  * have is the same as the one being tracked by the object.
3979                  *
3980                  * Consider that we lookup the request just as it is being
3981                  * retired and freed. We take a local copy of the pointer,
3982                  * but before we add its engine into the busy set, the other
3983                  * thread reallocates it and assigns it to a task on another
3984                  * engine with a fresh and incomplete seqno. Guarding against
3985                  * that requires careful serialisation and reference counting,
3986                  * i.e. using __i915_gem_active_get_request_rcu(). We don't,
3987                  * instead we expect that if the result is busy, which engines
3988                  * are busy is not completely reliable - we only guarantee
3989                  * that the object was busy.
3990                  */
3991                 rcu_read_lock();
3992
3993                 for_each_active(active, idx)
3994                         args->busy |= busy_check_reader(&obj->last_read[idx]);
3995
3996                 /* For ABI sanity, we only care that the write engine is in
3997                  * the set of read engines. This should be ensured by the
3998                  * ordering of setting last_read/last_write in
3999                  * i915_vma_move_to_active(), and then in reverse in retire.
4000                  * However, for good measure, we always report the last_write
4001                  * request as a busy read as well as being a busy write.
4002                  *
4003                  * We don't care that the set of active read/write engines
4004                  * may change during construction of the result, as it is
4005                  * equally liable to change before userspace can inspect
4006                  * the result.
4007                  */
4008                 args->busy |= busy_check_writer(&obj->last_write);
4009
4010                 rcu_read_unlock();
4011         }
4012
4013         i915_gem_object_put_unlocked(obj);
4014         return 0;
4015 }
4016
4017 int
4018 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4019                         struct drm_file *file_priv)
4020 {
4021         return i915_gem_ring_throttle(dev, file_priv);
4022 }
4023
4024 int
4025 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4026                        struct drm_file *file_priv)
4027 {
4028         struct drm_i915_private *dev_priv = to_i915(dev);
4029         struct drm_i915_gem_madvise *args = data;
4030         struct drm_i915_gem_object *obj;
4031         int ret;
4032
4033         switch (args->madv) {
4034         case I915_MADV_DONTNEED:
4035         case I915_MADV_WILLNEED:
4036             break;
4037         default:
4038             return -EINVAL;
4039         }
4040
4041         ret = i915_mutex_lock_interruptible(dev);
4042         if (ret)
4043                 return ret;
4044
4045         obj = i915_gem_object_lookup(file_priv, args->handle);
4046         if (!obj) {
4047                 ret = -ENOENT;
4048                 goto unlock;
4049         }
4050
4051         if (obj->pages &&
4052             i915_gem_object_is_tiled(obj) &&
4053             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4054                 if (obj->madv == I915_MADV_WILLNEED)
4055                         i915_gem_object_unpin_pages(obj);
4056                 if (args->madv == I915_MADV_WILLNEED)
4057                         i915_gem_object_pin_pages(obj);
4058         }
4059
4060         if (obj->madv != __I915_MADV_PURGED)
4061                 obj->madv = args->madv;
4062
4063         /* if the object is no longer attached, discard its backing storage */
4064         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4065                 i915_gem_object_truncate(obj);
4066
4067         args->retained = obj->madv != __I915_MADV_PURGED;
4068
4069         i915_gem_object_put(obj);
4070 unlock:
4071         mutex_unlock(&dev->struct_mutex);
4072         return ret;
4073 }
4074
4075 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4076                           const struct drm_i915_gem_object_ops *ops)
4077 {
4078         int i;
4079
4080         INIT_LIST_HEAD(&obj->global_list);
4081         for (i = 0; i < I915_NUM_ENGINES; i++)
4082                 init_request_active(&obj->last_read[i],
4083                                     i915_gem_object_retire__read);
4084         init_request_active(&obj->last_write,
4085                             i915_gem_object_retire__write);
4086         INIT_LIST_HEAD(&obj->obj_exec_link);
4087         INIT_LIST_HEAD(&obj->vma_list);
4088         INIT_LIST_HEAD(&obj->batch_pool_link);
4089
4090         obj->ops = ops;
4091
4092         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4093         obj->madv = I915_MADV_WILLNEED;
4094
4095         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4096 }
4097
4098 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4100         .get_pages = i915_gem_object_get_pages_gtt,
4101         .put_pages = i915_gem_object_put_pages_gtt,
4102 };
4103
4104 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4105                                                   size_t size)
4106 {
4107         struct drm_i915_gem_object *obj;
4108         struct address_space *mapping;
4109         gfp_t mask;
4110         int ret;
4111
4112         obj = i915_gem_object_alloc(dev);
4113         if (obj == NULL)
4114                 return ERR_PTR(-ENOMEM);
4115
4116         ret = drm_gem_object_init(dev, &obj->base, size);
4117         if (ret)
4118                 goto fail;
4119
4120         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4121         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4122                 /* 965gm cannot relocate objects above 4GiB. */
4123                 mask &= ~__GFP_HIGHMEM;
4124                 mask |= __GFP_DMA32;
4125         }
4126
4127         mapping = obj->base.filp->f_mapping;
4128         mapping_set_gfp_mask(mapping, mask);
4129
4130         i915_gem_object_init(obj, &i915_gem_object_ops);
4131
4132         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4133         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4134
4135         if (HAS_LLC(dev)) {
4136                 /* On some devices, we can have the GPU use the LLC (the CPU
4137                  * cache) for about a 10% performance improvement
4138                  * compared to uncached.  Graphics requests other than
4139                  * display scanout are coherent with the CPU in
4140                  * accessing this cache.  This means in this mode we
4141                  * don't need to clflush on the CPU side, and on the
4142                  * GPU side we only need to flush internal caches to
4143                  * get data visible to the CPU.
4144                  *
4145                  * However, we maintain the display planes as UC, and so
4146                  * need to rebind when first used as such.
4147                  */
4148                 obj->cache_level = I915_CACHE_LLC;
4149         } else
4150                 obj->cache_level = I915_CACHE_NONE;
4151
4152         trace_i915_gem_object_create(obj);
4153
4154         return obj;
4155
4156 fail:
4157         i915_gem_object_free(obj);
4158
4159         return ERR_PTR(ret);
4160 }
4161
4162 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4163 {
4164         /* If we are the last user of the backing storage (be it shmemfs
4165          * pages or stolen etc), we know that the pages are going to be
4166          * immediately released. In this case, we can then skip copying
4167          * back the contents from the GPU.
4168          */
4169
4170         if (obj->madv != I915_MADV_WILLNEED)
4171                 return false;
4172
4173         if (obj->base.filp == NULL)
4174                 return true;
4175
4176         /* At first glance, this looks racy, but then again so would be
4177          * userspace racing mmap against close. However, the first external
4178          * reference to the filp can only be obtained through the
4179          * i915_gem_mmap_ioctl() which safeguards us against the user
4180          * acquiring such a reference whilst we are in the middle of
4181          * freeing the object.
4182          */
4183         return atomic_long_read(&obj->base.filp->f_count) == 1;
4184 }
4185
4186 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4187 {
4188         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4189         struct drm_device *dev = obj->base.dev;
4190         struct drm_i915_private *dev_priv = to_i915(dev);
4191         struct i915_vma *vma, *next;
4192
4193         intel_runtime_pm_get(dev_priv);
4194
4195         trace_i915_gem_object_destroy(obj);
4196
4197         /* All file-owned VMA should have been released by this point through
4198          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4199          * However, the object may also be bound into the global GTT (e.g.
4200          * older GPUs without per-process support, or for direct access through
4201          * the GTT either for the user or for scanout). Those VMA still need to
4202          * unbound now.
4203          */
4204         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4205                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4206                 GEM_BUG_ON(i915_vma_is_active(vma));
4207                 vma->flags &= ~I915_VMA_PIN_MASK;
4208                 i915_vma_close(vma);
4209         }
4210         GEM_BUG_ON(obj->bind_count);
4211
4212         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4213          * before progressing. */
4214         if (obj->stolen)
4215                 i915_gem_object_unpin_pages(obj);
4216
4217         WARN_ON(atomic_read(&obj->frontbuffer_bits));
4218
4219         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4220             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4221             i915_gem_object_is_tiled(obj))
4222                 i915_gem_object_unpin_pages(obj);
4223
4224         if (WARN_ON(obj->pages_pin_count))
4225                 obj->pages_pin_count = 0;
4226         if (discard_backing_storage(obj))
4227                 obj->madv = I915_MADV_DONTNEED;
4228         i915_gem_object_put_pages(obj);
4229
4230         BUG_ON(obj->pages);
4231
4232         if (obj->base.import_attach)
4233                 drm_prime_gem_destroy(&obj->base, NULL);
4234
4235         if (obj->ops->release)
4236                 obj->ops->release(obj);
4237
4238         drm_gem_object_release(&obj->base);
4239         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4240
4241         kfree(obj->bit_17);
4242         i915_gem_object_free(obj);
4243
4244         intel_runtime_pm_put(dev_priv);
4245 }
4246
4247 int i915_gem_suspend(struct drm_device *dev)
4248 {
4249         struct drm_i915_private *dev_priv = to_i915(dev);
4250         int ret;
4251
4252         intel_suspend_gt_powersave(dev_priv);
4253
4254         mutex_lock(&dev->struct_mutex);
4255
4256         /* We have to flush all the executing contexts to main memory so
4257          * that they can saved in the hibernation image. To ensure the last
4258          * context image is coherent, we have to switch away from it. That
4259          * leaves the dev_priv->kernel_context still active when
4260          * we actually suspend, and its image in memory may not match the GPU
4261          * state. Fortunately, the kernel_context is disposable and we do
4262          * not rely on its state.
4263          */
4264         ret = i915_gem_switch_to_kernel_context(dev_priv);
4265         if (ret)
4266                 goto err;
4267
4268         ret = i915_gem_wait_for_idle(dev_priv,
4269                                      I915_WAIT_INTERRUPTIBLE |
4270                                      I915_WAIT_LOCKED);
4271         if (ret)
4272                 goto err;
4273
4274         i915_gem_retire_requests(dev_priv);
4275
4276         i915_gem_context_lost(dev_priv);
4277         mutex_unlock(&dev->struct_mutex);
4278
4279         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4280         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4281         flush_delayed_work(&dev_priv->gt.idle_work);
4282
4283         /* Assert that we sucessfully flushed all the work and
4284          * reset the GPU back to its idle, low power state.
4285          */
4286         WARN_ON(dev_priv->gt.awake);
4287
4288         return 0;
4289
4290 err:
4291         mutex_unlock(&dev->struct_mutex);
4292         return ret;
4293 }
4294
4295 void i915_gem_resume(struct drm_device *dev)
4296 {
4297         struct drm_i915_private *dev_priv = to_i915(dev);
4298
4299         mutex_lock(&dev->struct_mutex);
4300         i915_gem_restore_gtt_mappings(dev);
4301
4302         /* As we didn't flush the kernel context before suspend, we cannot
4303          * guarantee that the context image is complete. So let's just reset
4304          * it and start again.
4305          */
4306         dev_priv->gt.resume(dev_priv);
4307
4308         mutex_unlock(&dev->struct_mutex);
4309 }
4310
4311 void i915_gem_init_swizzling(struct drm_device *dev)
4312 {
4313         struct drm_i915_private *dev_priv = to_i915(dev);
4314
4315         if (INTEL_INFO(dev)->gen < 5 ||
4316             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4317                 return;
4318
4319         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4320                                  DISP_TILE_SURFACE_SWIZZLING);
4321
4322         if (IS_GEN5(dev))
4323                 return;
4324
4325         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4326         if (IS_GEN6(dev))
4327                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4328         else if (IS_GEN7(dev))
4329                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4330         else if (IS_GEN8(dev))
4331                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4332         else
4333                 BUG();
4334 }
4335
4336 static void init_unused_ring(struct drm_device *dev, u32 base)
4337 {
4338         struct drm_i915_private *dev_priv = to_i915(dev);
4339
4340         I915_WRITE(RING_CTL(base), 0);
4341         I915_WRITE(RING_HEAD(base), 0);
4342         I915_WRITE(RING_TAIL(base), 0);
4343         I915_WRITE(RING_START(base), 0);
4344 }
4345
4346 static void init_unused_rings(struct drm_device *dev)
4347 {
4348         if (IS_I830(dev)) {
4349                 init_unused_ring(dev, PRB1_BASE);
4350                 init_unused_ring(dev, SRB0_BASE);
4351                 init_unused_ring(dev, SRB1_BASE);
4352                 init_unused_ring(dev, SRB2_BASE);
4353                 init_unused_ring(dev, SRB3_BASE);
4354         } else if (IS_GEN2(dev)) {
4355                 init_unused_ring(dev, SRB0_BASE);
4356                 init_unused_ring(dev, SRB1_BASE);
4357         } else if (IS_GEN3(dev)) {
4358                 init_unused_ring(dev, PRB1_BASE);
4359                 init_unused_ring(dev, PRB2_BASE);
4360         }
4361 }
4362
4363 int
4364 i915_gem_init_hw(struct drm_device *dev)
4365 {
4366         struct drm_i915_private *dev_priv = to_i915(dev);
4367         struct intel_engine_cs *engine;
4368         int ret;
4369
4370         /* Double layer security blanket, see i915_gem_init() */
4371         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4372
4373         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4374                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4375
4376         if (IS_HASWELL(dev))
4377                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4378                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4379
4380         if (HAS_PCH_NOP(dev)) {
4381                 if (IS_IVYBRIDGE(dev)) {
4382                         u32 temp = I915_READ(GEN7_MSG_CTL);
4383                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4384                         I915_WRITE(GEN7_MSG_CTL, temp);
4385                 } else if (INTEL_INFO(dev)->gen >= 7) {
4386                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4387                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4388                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4389                 }
4390         }
4391
4392         i915_gem_init_swizzling(dev);
4393
4394         /*
4395          * At least 830 can leave some of the unused rings
4396          * "active" (ie. head != tail) after resume which
4397          * will prevent c3 entry. Makes sure all unused rings
4398          * are totally idle.
4399          */
4400         init_unused_rings(dev);
4401
4402         BUG_ON(!dev_priv->kernel_context);
4403
4404         ret = i915_ppgtt_init_hw(dev);
4405         if (ret) {
4406                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4407                 goto out;
4408         }
4409
4410         /* Need to do basic initialisation of all rings first: */
4411         for_each_engine(engine, dev_priv) {
4412                 ret = engine->init_hw(engine);
4413                 if (ret)
4414                         goto out;
4415         }
4416
4417         intel_mocs_init_l3cc_table(dev);
4418
4419         /* We can't enable contexts until all firmware is loaded */
4420         ret = intel_guc_setup(dev);
4421         if (ret)
4422                 goto out;
4423
4424 out:
4425         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4426         return ret;
4427 }
4428
4429 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4430 {
4431         if (INTEL_INFO(dev_priv)->gen < 6)
4432                 return false;
4433
4434         /* TODO: make semaphores and Execlists play nicely together */
4435         if (i915.enable_execlists)
4436                 return false;
4437
4438         if (value >= 0)
4439                 return value;
4440
4441 #ifdef CONFIG_INTEL_IOMMU
4442         /* Enable semaphores on SNB when IO remapping is off */
4443         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4444                 return false;
4445 #endif
4446
4447         return true;
4448 }
4449
4450 int i915_gem_init(struct drm_device *dev)
4451 {
4452         struct drm_i915_private *dev_priv = to_i915(dev);
4453         int ret;
4454
4455         mutex_lock(&dev->struct_mutex);
4456
4457         if (!i915.enable_execlists) {
4458                 dev_priv->gt.resume = intel_legacy_submission_resume;
4459                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4460         } else {
4461                 dev_priv->gt.resume = intel_lr_context_resume;
4462                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4463         }
4464
4465         /* This is just a security blanket to placate dragons.
4466          * On some systems, we very sporadically observe that the first TLBs
4467          * used by the CS may be stale, despite us poking the TLB reset. If
4468          * we hold the forcewake during initialisation these problems
4469          * just magically go away.
4470          */
4471         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4472
4473         i915_gem_init_userptr(dev_priv);
4474
4475         ret = i915_gem_init_ggtt(dev_priv);
4476         if (ret)
4477                 goto out_unlock;
4478
4479         ret = i915_gem_context_init(dev);
4480         if (ret)
4481                 goto out_unlock;
4482
4483         ret = intel_engines_init(dev);
4484         if (ret)
4485                 goto out_unlock;
4486
4487         ret = i915_gem_init_hw(dev);
4488         if (ret == -EIO) {
4489                 /* Allow engine initialisation to fail by marking the GPU as
4490                  * wedged. But we only want to do this where the GPU is angry,
4491                  * for all other failure, such as an allocation failure, bail.
4492                  */
4493                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4494                 i915_gem_set_wedged(dev_priv);
4495                 ret = 0;
4496         }
4497
4498 out_unlock:
4499         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4500         mutex_unlock(&dev->struct_mutex);
4501
4502         return ret;
4503 }
4504
4505 void
4506 i915_gem_cleanup_engines(struct drm_device *dev)
4507 {
4508         struct drm_i915_private *dev_priv = to_i915(dev);
4509         struct intel_engine_cs *engine;
4510
4511         for_each_engine(engine, dev_priv)
4512                 dev_priv->gt.cleanup_engine(engine);
4513 }
4514
4515 static void
4516 init_engine_lists(struct intel_engine_cs *engine)
4517 {
4518         INIT_LIST_HEAD(&engine->request_list);
4519 }
4520
4521 void
4522 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4523 {
4524         struct drm_device *dev = &dev_priv->drm;
4525         int i;
4526
4527         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4528             !IS_CHERRYVIEW(dev_priv))
4529                 dev_priv->num_fence_regs = 32;
4530         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4531                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4532                 dev_priv->num_fence_regs = 16;
4533         else
4534                 dev_priv->num_fence_regs = 8;
4535
4536         if (intel_vgpu_active(dev_priv))
4537                 dev_priv->num_fence_regs =
4538                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4539
4540         /* Initialize fence registers to zero */
4541         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4542                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4543
4544                 fence->i915 = dev_priv;
4545                 fence->id = i;
4546                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4547         }
4548         i915_gem_restore_fences(dev);
4549
4550         i915_gem_detect_bit_6_swizzle(dev);
4551 }
4552
4553 void
4554 i915_gem_load_init(struct drm_device *dev)
4555 {
4556         struct drm_i915_private *dev_priv = to_i915(dev);
4557         int i;
4558
4559         dev_priv->objects =
4560                 kmem_cache_create("i915_gem_object",
4561                                   sizeof(struct drm_i915_gem_object), 0,
4562                                   SLAB_HWCACHE_ALIGN,
4563                                   NULL);
4564         dev_priv->vmas =
4565                 kmem_cache_create("i915_gem_vma",
4566                                   sizeof(struct i915_vma), 0,
4567                                   SLAB_HWCACHE_ALIGN,
4568                                   NULL);
4569         dev_priv->requests =
4570                 kmem_cache_create("i915_gem_request",
4571                                   sizeof(struct drm_i915_gem_request), 0,
4572                                   SLAB_HWCACHE_ALIGN |
4573                                   SLAB_RECLAIM_ACCOUNT |
4574                                   SLAB_DESTROY_BY_RCU,
4575                                   NULL);
4576
4577         INIT_LIST_HEAD(&dev_priv->context_list);
4578         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4579         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4580         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4581         for (i = 0; i < I915_NUM_ENGINES; i++)
4582                 init_engine_lists(&dev_priv->engine[i]);
4583         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4584                           i915_gem_retire_work_handler);
4585         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4586                           i915_gem_idle_work_handler);
4587         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4588         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4589
4590         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4591
4592         init_waitqueue_head(&dev_priv->pending_flip_queue);
4593
4594         dev_priv->mm.interruptible = true;
4595
4596         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4597
4598         spin_lock_init(&dev_priv->fb_tracking.lock);
4599 }
4600
4601 void i915_gem_load_cleanup(struct drm_device *dev)
4602 {
4603         struct drm_i915_private *dev_priv = to_i915(dev);
4604
4605         kmem_cache_destroy(dev_priv->requests);
4606         kmem_cache_destroy(dev_priv->vmas);
4607         kmem_cache_destroy(dev_priv->objects);
4608
4609         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4610         rcu_barrier();
4611 }
4612
4613 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4614 {
4615         intel_runtime_pm_get(dev_priv);
4616
4617         mutex_lock(&dev_priv->drm.struct_mutex);
4618         i915_gem_shrink_all(dev_priv);
4619         mutex_unlock(&dev_priv->drm.struct_mutex);
4620
4621         intel_runtime_pm_put(dev_priv);
4622
4623         return 0;
4624 }
4625
4626 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4627 {
4628         struct drm_i915_gem_object *obj;
4629         struct list_head *phases[] = {
4630                 &dev_priv->mm.unbound_list,
4631                 &dev_priv->mm.bound_list,
4632                 NULL
4633         }, **p;
4634
4635         /* Called just before we write the hibernation image.
4636          *
4637          * We need to update the domain tracking to reflect that the CPU
4638          * will be accessing all the pages to create and restore from the
4639          * hibernation, and so upon restoration those pages will be in the
4640          * CPU domain.
4641          *
4642          * To make sure the hibernation image contains the latest state,
4643          * we update that state just before writing out the image.
4644          *
4645          * To try and reduce the hibernation image, we manually shrink
4646          * the objects as well.
4647          */
4648
4649         mutex_lock(&dev_priv->drm.struct_mutex);
4650         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4651
4652         for (p = phases; *p; p++) {
4653                 list_for_each_entry(obj, *p, global_list) {
4654                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4655                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4656                 }
4657         }
4658         mutex_unlock(&dev_priv->drm.struct_mutex);
4659
4660         return 0;
4661 }
4662
4663 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4664 {
4665         struct drm_i915_file_private *file_priv = file->driver_priv;
4666         struct drm_i915_gem_request *request;
4667
4668         /* Clean up our request list when the client is going away, so that
4669          * later retire_requests won't dereference our soon-to-be-gone
4670          * file_priv.
4671          */
4672         spin_lock(&file_priv->mm.lock);
4673         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4674                 request->file_priv = NULL;
4675         spin_unlock(&file_priv->mm.lock);
4676
4677         if (!list_empty(&file_priv->rps.link)) {
4678                 spin_lock(&to_i915(dev)->rps.client_lock);
4679                 list_del(&file_priv->rps.link);
4680                 spin_unlock(&to_i915(dev)->rps.client_lock);
4681         }
4682 }
4683
4684 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4685 {
4686         struct drm_i915_file_private *file_priv;
4687         int ret;
4688
4689         DRM_DEBUG_DRIVER("\n");
4690
4691         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4692         if (!file_priv)
4693                 return -ENOMEM;
4694
4695         file->driver_priv = file_priv;
4696         file_priv->dev_priv = to_i915(dev);
4697         file_priv->file = file;
4698         INIT_LIST_HEAD(&file_priv->rps.link);
4699
4700         spin_lock_init(&file_priv->mm.lock);
4701         INIT_LIST_HEAD(&file_priv->mm.request_list);
4702
4703         file_priv->bsd_engine = -1;
4704
4705         ret = i915_gem_context_open(dev, file);
4706         if (ret)
4707                 kfree(file_priv);
4708
4709         return ret;
4710 }
4711
4712 /**
4713  * i915_gem_track_fb - update frontbuffer tracking
4714  * @old: current GEM buffer for the frontbuffer slots
4715  * @new: new GEM buffer for the frontbuffer slots
4716  * @frontbuffer_bits: bitmask of frontbuffer slots
4717  *
4718  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4719  * from @old and setting them in @new. Both @old and @new can be NULL.
4720  */
4721 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4722                        struct drm_i915_gem_object *new,
4723                        unsigned frontbuffer_bits)
4724 {
4725         /* Control of individual bits within the mask are guarded by
4726          * the owning plane->mutex, i.e. we can never see concurrent
4727          * manipulation of individual bits. But since the bitfield as a whole
4728          * is updated using RMW, we need to use atomics in order to update
4729          * the bits.
4730          */
4731         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4732                      sizeof(atomic_t) * BITS_PER_BYTE);
4733
4734         if (old) {
4735                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4736                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4737         }
4738
4739         if (new) {
4740                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4741                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4742         }
4743 }
4744
4745 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4746 struct page *
4747 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4748 {
4749         struct page *page;
4750
4751         /* Only default objects have per-page dirty tracking */
4752         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4753                 return NULL;
4754
4755         page = i915_gem_object_get_page(obj, n);
4756         set_page_dirty(page);
4757         return page;
4758 }
4759
4760 /* Allocate a new GEM object and fill it with the supplied data */
4761 struct drm_i915_gem_object *
4762 i915_gem_object_create_from_data(struct drm_device *dev,
4763                                  const void *data, size_t size)
4764 {
4765         struct drm_i915_gem_object *obj;
4766         struct sg_table *sg;
4767         size_t bytes;
4768         int ret;
4769
4770         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4771         if (IS_ERR(obj))
4772                 return obj;
4773
4774         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4775         if (ret)
4776                 goto fail;
4777
4778         ret = i915_gem_object_get_pages(obj);
4779         if (ret)
4780                 goto fail;
4781
4782         i915_gem_object_pin_pages(obj);
4783         sg = obj->pages;
4784         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4785         obj->dirty = 1;         /* Backing store is now out of date */
4786         i915_gem_object_unpin_pages(obj);
4787
4788         if (WARN_ON(bytes != size)) {
4789                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4790                 ret = -EFAULT;
4791                 goto fail;
4792         }
4793
4794         return obj;
4795
4796 fail:
4797         i915_gem_object_put(obj);
4798         return ERR_PTR(ret);
4799 }